
Autonomous Mobility Skeletons

Xiao Yan Deng ∗ Greg Michaelson Phil Trinder

School of Mathematical and Computer Sciences

Heriot-Watt University, Edinburgh, EH14 4AS,Scotland

Abstract

To manage load on large and dynamic networks we have developed Autonomous
Mobile Programs (AMPs) that periodically use a cost model to decide where to
execute. A disadvantage of directly programming AMPs is that the cost model, mo-
bility decision function, and network interrogation are all explicit in the program.
This paper proposes autonomous mobility skeletons that encapsulate self-aware mo-
bile coordination for common patterns of computation over collections. Autonomous
mobility skeletons are akin to algorithmic skeletons in being polymorphic higher or-
der functions, but where algorithmic skeletons abstract over parallel coordination,
autonomous mobility skeletons abstract over autonomous mobile coordination. We
present the automap, autofold and autoiter autonomous mobility skeletons, to-
gether with performance measurements of Jocaml, Java implementations on small
networks. autoiter is an unusual skeleton, abstracting over the Iterator interface
commonly used with Java collections.

Key words: skeletons, mobile computation, autonomous mobile programs
1991 MSC: 68w15, 68w40

1 Introduction

Classical distributed load balancing mechanisms are centralised and control
a fixed set of locations. Such mechanisms are not appropriate for dynamic
or very large scale networks. We have developed Autonomous Mobile Pro-
grams (AMPs)[4,3] that periodically make a decision about where to execute
in a network. The decisions are informed by cost models that measure current

∗ Corresponding author.
Email addresses: xyd3@macs.hw.ac.uk (Xiao Yan Deng), greg@macs.hw.ac.uk

(Greg Michaelson), trinder@macs.hw.ac.uk (Phil Trinder).

Preprint submitted to Elsevier Science 16 April 2006

for i = 0 to n-1 do (*first level*)

checkmove();

for j = 0 to n-1 do (*second level*)

for k = 0 to n-1 do (*third level*)

m3.(i).(j) <- m3.(i).(j)+m1.(i).(k)*m2.(k).(j);

done done; done ;;

Fig. 1. Direct Autonomous Mobile Matrix Multiplication

Loc1

Loc2

Loc3

0 1 2 3 4 5 6 7 8 9 10 n

LO
C

A
T

IO
N

S

TIME PERIOD

............

P1
P2
P3
P4
P5
P6
P7

Fig. 2. AMP Load Management, 7 AMPs on 3 Locations

performance, the relative speeds of alternative network locations, and commu-
nication costs. Unlike autonomous mobile agents that move to change their
function or computation, an AMP always performs the same computation, but
moves to change coordination, i.e. to improve performance.

For example an autonomously mobile matrix multiplication program can be
constructed by inserting a checkmove function into the outer for loop, as shown
in Figure 1. The checkmove function interrogates the network to discover
available locations, their processor speed and load. This information is used to
parameterise cost models to determine whether to move. The program moves
if the predicted time to complete at the current location (Th) exceeds the time
to move to the best available location (Tcomm) and complete there (Tn), i.e.

Th > Tcomm + Tn (1)

Figure 2 shows the load balancing induced by a collection of 7 matrix mul-
tiplication AMPs on an homogeneous network where all three locations have
the same speed and no other load. All the AMPs are started on Location
1(Loc 1) in time period 0. In time periods 1 and 2, the processes move to
to optimise load balance with little change thereafter. Locations 2 and 3 are
equally loaded, but as an artefact of the Jocaml implementation Location 1,
as the initiating location is less heavily loaded. A comprehensive set of results
and analysis are available in [4].

2

A disadvantage of directly programming AMPs is that the cost model, mo-
bility decision function, and network interrogation are all explicit in the pro-
gram. This paper explores autonomous mobility skeletons that encapsulate
mobility control for common patterns of computation over collections. Auto
mobile skeletons are polymorphic higher order functions, such as automap or
autofold that make mobility decisions by combining generic and task specific
cost models.

This paper presents auto mobile skeletons for the classic higher order func-
tions map and fold and for the object oriented Iterator interface[8]. After
describing the skeleton context in section 2.2, autonomous mobility skeletons
for the functional mobile language Jocaml are introduced in section 3. In sec-
tion 4, we discuss the realisation of automap and autofold in Voyager [11], a
mobile version of Java. We next consider AutoIterator in section 5. Finally,
Section 6 summarises our results and considers future research.

2 Background

2.1 Mobile Computation

Network technology is pervasive and more and more software is executed on
multiple locations (or machines). In a mobile language, a programmer controls
the placement of code or computations in an open network, e.g. a program
can migrate between locations. A typical mobile program is a data mining
program that visits a series of repositories to extract interesting information
from each repository.

This software mobility is in contrast to hardware mobility where programs
move on portable devices like PDAs. A number of mobile programming lan-
guages have been developed, including Telescript [12], Jocaml [5] and a number
of Java variants, e.g. Java Voyager [11] and JavaGo [9].

Fuggetta et. al. distinguish two forms of mobility supported by mobile lan-
guages [6]: weak mobility is the ability to move only code from one machine
to another. Strong mobility is the ability to move both code and its current
execution state.

2.2 Algorithmic and Mobile Skeletons

Abstract skeletons are higher order constructs that abstract over common pat-
terns of coordination and must be parameterised with specific computations.

3

Skeletons

mmap mfold mzipper map dnc

platform dependent Skeletons

Jocaml Voyager JavaGo

Algorithmic Skeletons Mobility Skeletons Auto−Skeletons

Concrete
Skeletons

Abstract
Skeletons

automap autofold

Fig. 3. Skeleton Taxonomy

Concrete skeletons are executable, and the user must link computation-specific
code into the appropriate skeleton. Figure 3 shows the relationship amongst
different species of skeletons. The notion of algorithmic skeletons was charac-
terised by Cole[2] to capture common patterns of parallel coordination in a
closed or static set of locations. Mobility skeletons[1] are high-level abstractions
capturing common patterns of mobile coordination in an open network i.e. a
dynamic set of locations. With mobility skeletons the mobile coordination is
explicitly specified by the programmer, and the program makes no autonou-
mous decisions about where to execute. In contrast, auto-mobile skeletons

are self-aware. Using auto-mobile skeletons the programs can make the de-
cision about when and where to move. So auto-mobile skeletons encapsulate
autonomous coordination for common computations over collections, like map,
fold or iteration.

In Figure 3 we distinguish between the abstract conception of skeletons and
their concrete realisations. As we shall see, auto-mobile skeletons may have
different realisations in languages with different mobile constructs. Specifically
the realisation in a language with weak mobility will differ from that in a
language with strong mobility. In Figure 3 we distinguish between the abstract

conception of skeletons and their concrete realisations.

The motivation for auto mobile skeletons is to minimise processing time by
seeking the most favourable resources, without any requirement to visit specific
processors. Thus different concrete realisations of a skeleton may carry out
the same computation in a shortest time period with given resources, but the
patterns of coordination may be very different. We will explore this further
below.

4

let rec dotprod mat1 mat2 =

match (mat1,mat2) with

((h1::t1),(h2::t2)) -> h1*h2+dotprod t1 t2

| (_,_) -> 0

;;

let inner row col = (dotprod row) col;;

let rowmult row cols = List.map (dotprod row) cols;

;;

let outer cols x = rowmult x cols

;;

let rowsmult rows cols = automap current (outer cols) rows

;;

let mmultMat m1 m2 = rowsmult m1 (transpose m2);;

Fig. 4. Jocaml automap Matrix Multiplication

3 Jocaml Autonomous Mobility Skeletons

3.1 Jocaml AutoMap

The automap auto-mobile skeleton, performs the same computation as the
map high order function, but may cause the program to migrate to a faster
location. The standard Jocaml map, map f [a1; ...; an] applies function
f to each list element a1, ..., an, building the list [f a1; ...; f an].
AutoMap, automap cur f [a1;...;an] computes the same value but takes
another argument cur, recording current location information, e.g. CPU speed
and load.

For example, Figure 4 shows how the matrix multiplication may be refor-
mulated using automap. At first sight, this looks like a conventional program
using map. However, as we shall see next, automap also includes calls to generic
and problem specific cost functions to determine whether or not the program
should move.

3.2 AutoMap Design and Implementation

Potentially AutoMap could investigate moving after processing every element
of the list, but this induces enormous coordination overheads. Overheads are
limited by specifying that the total coordination overhead of the program
(TCoord) must be less than some small percentage (O, say 5%) of the execution
time of the static, i.e. immobile program, (Tstatic):

TCoord < OTstatic (2)

5

let getGran work f h =

let (fh,fhtime) = timedapply f h

in let t_static = fhtime * (float (work))

let t_coord = tcoord (numofhost)

in let times = (ov * t_static)/t_coord

in let gran = if times > 0

then (work/times)

else work+10

in (fh,fhtime,gran)

Fig. 5. getGran: Calculating CheckMove Granularity

AutoMap investigates moving after processing gran elements, and under the
assumption that the automap is the dominating computation for the program
gran is calculated from the time to compute a single element of the map result,
the length of the list, and the overhead percentage O by the getGran function
in Figure 5.

A generic AMP cost model is used to inform the AutoMap decision about
moving to a new location [3]. The cost model determines how much time
has elapsed(Te), and the relative speed (CPU speed divided by load) in order
to predict the time to complete in the current location Th. The network is
interrogated to discover the relative speeds of available locations and the time
to complete at the fastest remote location Tn is calculated. The program moves
if the predicted time to complete at the current location exceeds the time to
move to the best available location (Tcomm) and complete there, i.e. Th >

Tcomm + Tn. We have instantiated the generic auto mobile cost model for
AutoMap and validated the cost model[3]. The movement check is encoded in
the check move function in Figure 6.

The definition of automap is given in Figure 7. It first calls getGran to calculate
an initial granularity and before calling automap’. automap’ applies standard
map to gran elements before calling getInfo to evaluate the benefits of a move
and to recalculate a gran.

The coordination behaviour of the Jocaml AutoMap is depicted in Figure 8. As
Jocaml supports strong mobility, the program moves along with its execution
state. In the figure, we started a Jocaml program with automap, which applies
f to list l in location 1 (1). automap will decide where the program moves
or not automatically. So the whole program moves to location 2 with its data
and context (2). In location 2, the automap consumes the input list (3), and
produces a result list (4).

6

let check_move cur work workleft fhtime=

let t_comm = tc work

let t_h = fhtime * (float (workleft))

in map (check_relspeed cur) hostlist

let host_next = check_next cur hostlist

in let t_n =

if (cur <> host_next)

then (cur.relspeed)/(host_next.relspeed) * t_h + t_c

else t_h

in

if (t_h > t_n)

then (

go host_next

host_next

)

else cur

Fig. 6. getGran: Calculating CheckMove Granularity

let automap cur f l =

let work = List.length l

in let (fh,fhtime,gran) = getGran work f (hd l)

in fh::automap’ cur work (work-1) gran fhtime f t

let rec automap’ cur work workleft gran fhtime f l =

let xs = List.map f (take (gran-1) l)

let (h::t) = drop (gran-1) l

in let (cur’,gran’, fhtime’,fh’) =

getInfo cur work workleft gran fhtime f h

in xs@(fh’::automap’ cur’ work (workleft-gran) gran’ fhtime’ f t)

let getInfo cur work workleft gran fhtime f h=

let cur’ = check_move cur work workleft fhtime

let (fh’,fhtime’,gran’) = getGran work f h

in (cur’, gran’, fhtime’,fh’)

Fig. 7. Jocaml AutoMap

3.3 Jocaml AutoMap Performance

Figure 9 shows the execution times of the matrix multiplication program im-
plemented using automap. Using automap, our test environment is based on
three locations with CPU speeds 534MHZ, 933MHZ and 1894MHZ. The loads
on these three computers are almost zero. We started both the static and the
mobile programs on the slowest CPU. Figure 9 shows the result for matrix
multiplication, from which we can see the bigger the size of the matrix the

7

Process M

Location 1 Location 2

Location 1 Location 2

........

result

Process M

Location 1 Location 2

........

result

Location 1 Location 2

MoveTo

Data

......

result

Process M

Data

........

result

Process M

produce
result

automap f l;
automap f l;

automap f l; automap f l;

Data

get
data

Data

(1) (2)

(3) (4)

Fig. 8. Coordination Behaviour of Jocaml AutoMap

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000

T
im

e(
se

co
nd

s)

Size of Matrix(n*n)

"mobile"
"static"

Fig. 9. Jocaml Matrix Multiplication Execution Times

faster the mobile version is compared with the static version. If the matrix is
smaller than a certain size (here 330), the mobile version stays on the current
location, which is because it will take more than O% (overhead) of the time
for completing at the current location if the program does coordination and
move. So at this size, the program does not check information and move at all,
and the mobile program takes almost the same time as the static program. If
the size of matrix is bigger than 330 then the mobile program moves to the
fastest location, and then stays there, so the mobile program takes much less
time than the static program.

8

let autofold cur f accu l =

let work = List.length l

in let (fh,fhtime,gran) = getGran work (f accu) h

in autofoldl’ cur work (work-1) gran fhtime f fh t

let rec autofold’ cur work workleft gran fhtime f accu l =

let xs = fold f accu (take (gran-1) l)

let (h::t) = drop (gran-1) l

in let (cur’,gran’, fhtime’,fh’) =

getInfo cur work workleft gran fhtime (f xs) h

in autofoldl’ cur work (workleft-gran) gran’ fhtime’ f fh’ t

Fig. 10. Jocaml AutoFold Definition

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

T
im

e

Size

"mobile"
"static"

Fig. 11. Jocaml Coin Counting Execution Times

3.4 Jocaml AutoFold

The standard fold in Jocaml, fold f a [b1; ...; bn], computes f (... (f

(f a b1) b2) ...) bn. AutoFold is autofold cur f a [b1;...;bn] com-
putes the same value but may migrate to a faster location. The definition of
autofold is given in Figure 10

Figure 11 shows the execution times of static and autofold-based versions of
a coin counting program using a genetic algorithm[7]. As before, once the
program has a sufficiently large execution time, it benefits from moving to a
faster location.

4 Java Autonomous Mobility Skeletons

It is appealing to implement Java autonomous mobility skeletons as Java is a
popular language and there are numerous mobile Java variants. Voyager[11] is

9

public Object[] automap (Superclass obj, Object[] l){

Object[] resultl = new Object[l.length];

long timestart = 0;

long timeend = 0;

long fhtime = 0;

int work = l.length;

int gran = work;

int checkPos = 0;

ISuperclass proxy = (ISuperclass) Proxy.of(obj);

IMobility mobility = Mobility.of(proxy); //bulid mobility

for(int i=0;i<work;i++){ // map

timestart = System.currentTimeMillis();

resultl[i] = proxy.mapf (l[i]);

timeend = System.currentTimeMillis();

if((i-checkPos) == 0){

fhtime = timeend-timestart;

gran = getGran (work,fhtime);

checkPos = checkPos + gran;

check_move (work,(work-i-1),fhtime,mobility);

}

}

return resultl;

}

Fig. 12. Java Voyager AutoMap

a popular Java with weak mobility. Voyager[10] is a platform for distributed
application development. It provides a set of basic and advanced services and
features for distributed application development. Voyager ORB includes dis-
tributed naming service and mobile agent technology. We have developed the
two Jocaml auto-mobile skeletons in Voyager, automap and autofold.

4.1 Java Voyager AutoMap

The Voyager automap performs the same computation as, and similar coor-
dination to, the Jocaml automap. Figure 12 gives the definition of automap
in Voyager, where the Java check move and getGran auxiliary functions have
the same functionality as in section 3.2.

As Voyager supports only weak mobility, when the program moves, it commu-
nicates only the code, and not the execution state. Figure 13 shows the coordi-

10

Object A MoveTo

Process M

f

Location 1 Location 2

......

Process M

Location 1 Location 2

Data

........

result

Process MServer Server

Location 1 Location 2

Server

Object A

f

result

........

........

result

result

Process M Server

Object A

f

Location 1 Location 2

Data

Data
Data

reference

fetch

f

Object A

return

(1) (2)

(3) (4)

Fig. 13. Coordination Behaviour of Java Voyager AutoMap

nation behaviour of the Voyager automap. In the figure, we started a Voyager
program with automap, which applies f in Object A to list l in location 1.
automap will make decision where the program moves or not automatically. So
the program sends the code of Object A to location 2 (1). The system built a
reference from location 2 to the data in location 1 (2). In location 2, function
f fetches data from location 1, produces result and returns result to location
1 (3). After finished the code of Object A stays in location 2 and waits for
another migration but the data in location 1 will never move (4).

4.2 Voyager AutoMap Performance

An autonomously mobile matrix multiplication is readily written in Voyager
Java using automap, as in Figure 14. The new class Auto has an object auton,
which includes automap. Class RowMult has a function mapf, which is the
function the map will apply to the collection. When we do auton.automap

(rowM, mat1), automap will apply rowM.mapf on array mat1, at the same
time automap makes the decision of when and where to move.

Figure 15 shows the execution times of static and automap-based versions of
Voyager matrix multiplications, using the apparatus from section 3.3.

11

public static void main (String[] args){

int[][] mat1 = makeMatrix(size);

int[][] mat2 = makeMatrix(size);

int[][] matT = transpose(mat2);

RowMult rowM = new RowMult(matT);

Auto auton = new Auto();

int[][] res = auton.automap (rowM, mat1);

}

Fig. 14. Java Voyager Autonomously Mobile Matrix Multiplication

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200

T
im

e(
S

ec
)

Size(n*n)

"mobile"
"static"

Fig. 15. Java Voyager Matrix Multiplication Execution Times

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2000 4000 6000 8000 10000

T
im

e(
S

ec
)

Size(n*n)

"mobile"
"static"

Fig. 16. Java Voyager Coin Counting Execution Times

4.3 Java Voyager AutoFold

An autofold is also readily constructed in Voyager Java. Figure 16 shows
the execution times of static and autofold-based versions of a Java Voyager
coin counting program. These results are again similar to those for the Jocaml
autonomous mobility skeletons.

12

public class AutoIterator implements Iterator,Serializable{

public AutoIterator(ArrayList theList){

list = theList;

nextIndex = 0;

work = list.size();

}

public boolean hasNext(){

return nextIndex < work;

}

public Object next() {

if (nextIndex < work)

return list.get(nextIndex++);

else

throw new NoSuchElementException("No next element");

}

private int checkPos = 0;

private long timestart = 0;

private long timeend = 0;

private double fhtime = 0;

private int gran = work;

public migratory Object autoNext() {

if (nextIndex < work){

if(nextIndex == 0){

timestart = System.currentTimeMillis();

timeend = timestart;

}

else

if((nextIndex-checkPos) == 0){

timestart = timeend;

timeend = System.currentTimeMillis();

fhtime = timeend-timestart;

check_move (size,(work-nextIndex-1),fhtime);

gran = getGran (work,fhtime);

checkPos = checkPos + gran;

}

return list.get(nextIndex++);

}

else

throw new NoSuchElementException("No next element");

}

public void remove(){}

}

Fig. 17. JavaGo AutoIterator

13

public static void main(String args[]){

undock {

String port=null;

int listlength = Integer.parseInt(args[0]);

ArrayList al = new ArrayList();

for (int i=0;i<listlength;i++){

MatrixMul ii = new MatrixMul();

al.add(i,ii);

}

long timestart = System.currentTimeMillis();

AutoIterator ai = new AutoIterator(al);

while (ai.hasNext()){

MatrixMul iu = (MatrixMul)ai.autoNext();

int[][] mat = iu.Multiplication();

}

}

}

Fig. 18. JavaGo Autonomously Mobile Matrix Multiplication

5 An Autonomous Mobile Iterator

An iterator is a class that implements the Java Iterator interface, which
specifies a generic mechanism to enumerate the elements of a collection. The
methods in the interface Iterator are hasNext, next and remove[8]. The
AutoIterator class implements all three methods, and extends it with autonext

method, which has the same functionality as next but can make autonomous
mobility decisions.

AutoIterator requires strong mobility and hence Voyager, with only weak mo-
bility, cannot be used. JavaGo [9] supports strong mobility and Figure 17
shows an AutoIterator implementation again using analogous check move and
getGran functions.

Figure 18 shows how AutoIterator can be used to implement matrix mul-
tiplication. Each element of the list is a MatrixMul object and includes two
matrices and a function Multiplication, which multiplies the two matri-
ces. AutoIterator enumerates each object using autoNext and performs the
multiplication.

Figure 19 shows the execution times of static and AutoIterator-based versions
of a JavaGo matrix multiplication program.

14

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100

T
im

e(
S

ec
)

List Length(n)

"mobile"
"static"

Fig. 19. AutoIterator Matrix Multiplication Execution Times

6 Conclusion

Auto-mobile skeletons encapsulate common patterns of self-aware mobile coor-
dination that minimise execution time in networks with dynamically changing
loads. In analogy with other skeleton species, they hide low level mobile coordi-
nation details from users and provide higher level loci for designing load-aware
mobile systems.

We have demonstrated abstract auto-mobile skeletons with concrete realisa-
tions for the common higher-order functions map and fold, both in the func-
tional language context shared with other skeleton species, through Jocaml,
and in an object oriented context through mobile Javas. We have also demon-
strated a novel autoiter skeleton for the widely used object oriented iterator
interface. Our experiments suggest that, for our set of test programs, auto-
mobile skeletons can offer considerable savings in execution times, which scale
well as overall execution times increase.

With an auto-mobile skeleton the cost model is substantially implicit: predic-
tions are based on the size of the collection and on the time to compute a
single collection element. Moreover the predictions are dynamic: the time to
compute an element is periodically measured during the execution.

However, our auto-mobile skeletons have a number of limitations. They are
based on the assumption that programs using them expose useful loci of mobil-
ity in top-level loops that dominate the computation. If auto-mobile skeletons
are not deployed at the top level then the program will not be able to take
advantage of changes in neighbourhood loads during much of its life.

Furthermore, to make effective use of auto-mobile skeletons, their argument
computations must be regular. For irregular computations, closed form ana-
lytic cost models tend to introduce inaccuracies.

15

At present, only one auto-mobile skeleton may be present in a program. We
lack appropriate techniques to compose and nest auto-mobile skeletons, as we
lack the ability to compose and nest their cost models.

There are two main areas for future work. Firstly, we wish to generalise auto-
mobile skeletons to irregular problems with cost models and strategies to adapt
to their behaviour. Secondly, we wish to be able to nest and compose auto-
mobile skeletons.

To solve both problems, we are exploring a calculus to manipulate, and ulti-
mately extract automatically, continuation cost models that can provide costs
for the rest of a computation at arbitrary points during its execution. The
advantage of a continuation cost model is that it is not necessary to provide a
closed form solution as environmental information for a computation is always
available implicitly at run-time. Thus, branches are not necessarily a source
of loss of accuracy as concrete data values are available at the point where the
cost is calculated. The disadvantage is that a naive cost model may have the
same complexity as the computation it models, which, for programs with rel-
atively high coordination and low processing degrees, could add considerably
to the overall excution time.

We are experimenting with an early prototype of very simple coster for a tiny
language, in Standard ML, but where cost functions are generated in SML
rather than in the source language. We next need to look at meta-programming
techniques to integrate cost functions into the source language at appropriate
checking points.

References

[1] A. R. D. Bois, P. Trinder, and H. Loidl. Towards Mobility Skeletons. Parallel

Processing Letters, 15(3):273–288, 2005.

[2] M. Cole. Algorithmic skeletons: structured management of parallel computation.
MIT Press, 1989.

[3] X. Y. Deng, G. Michaelson, and P. Trinder. Towards High Level Autonomous
Mobility. In H.-W. Loidl, editor, Draft proceedings of Trends in Functional

Programming, 2004.

[4] X. Y. Deng, P. Trinder, and G. Michaelson. Autonomous Mobile Programs.
Technical report, School of Mathematical and Computer Sciences:Heriot-Watt
University, December 2005.

[5] C. Fournet, F. L. Fessant, L. Maranget, and A. Schmitt. Jocaml: a Language
for Concurrent Distributed and Mobile Programming. In Proceedings of the

16

Fourth Summer School on Advanced Functional Programming, pages 19–24, St
Anne’s College, Oxford, August 2002. Springer-Verlag.

[6] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility. IEEE

Transactions on Software Engineering, 24(5):342–361, 1998.

[7] J.Hawkins and A.Abdallah. A Generic Functional Genetic Algorithm. In
P.Trinder and G.Michaelson, editors, Draft proceedings of the First Scottish

Functional Programming Workshop, pages 151–168, Heriot-Watt University,
Edinburgh, 1999.

[8] S. Sahni. Data Structures, Algorithms, and Applications in Java. Mc Graw
Hill, University of Florida, 2000.

[9] T. Sekiguchi. JavaGo.
http://homepage.mac.com/t.sekiguchi/javago/index.html.

[10] R. Software. Voyager User Guide.

[11] T. Wheeler. Voyager Architecture
Best Practices, March 2005. http://www.recursionsw.com/Voyager/2005-03-
31-Voyager Architecture Best Practices.pdf.

[12] J. E. White. Mobile Agents. In J. Bradshaw, editor, Software Agents, pages
437–472, Menlo Park, CA, 1997. AAAI/MIT Press.

17

