
Automatically Costed Autonomous Mobility

Xiao Yan Deng, Phil Trinder and Greg Michaelson
School of Mathematical and Computer Sciences

Heriot-Watt University, Edinburgh, EH14 4AS,Scotland,
{xyd3,trinder,greg}@macs.hw.ac.uk

Abstract

To share resources in open distributed systems we have
developed autonomous mobile programs, which periodi-
cally use a cost model to decide where to execute in a net-
work. In addition self-aware mobile coordination for com-
mon patterns of computation over collections are encapsu-
lated byautonomous mobility skeletons.

Performance can be improved if an autonomous mobile
program can predict the cost of the entire program rather
than a single iteration. We propose a cost calculus that cal-
culate the costs for the remainder of a computation at arbi-
trary program points. We extend our autonomous mobility
skeleton cost models to be parametrised on the cost of the
remainder of the program, and proposecosted autonomous
mobility skeletons. An automatic cost analyser which im-
plements the calculus has been built in Jocaml, which out-
puts Jocaml programs with higher-order functions replaced
by costed autonomous mobility skeletons.

1 Introduction

Developments in networks have made it possible to ex-
ploit the computational power and resources available in
global networks [2]. To manage load on large and dynamic
networks we have developedautonomous mobile programs
(AMPs)[6] that periodically make a decision about where
to execute in a network. The decisions are informed by
cost models that measure current performance, the relative
speeds of alternative network locations, and communication
costs.

A disadvantage of directly programming AMPs is that
the cost model, mobility decision function, and network in-
terrogation are all explicit in the program. To encapsulate
the self-aware mobile control for common patterns of com-
putation over collections, we have exploredautonomous
mobility skeletons(AMSs) in [4]. AMSs are akin to algo-
rithmic skeletons in being polymorphic higher-order func-
tions, but where algorithmic skeletons abstract over parallel

coordination, AMSs abstract over autonomous mobile co-
ordination. For example the standardmap applies a given
function to a sequence of elements and returns a sequence
of results. Theautomap AMS performs the same compu-
tation asmap, but may cause the program to migrate to a
faster location.

A limitation of the AMSs is that they assume that a single
higher-order function is the dominating computation for the
program. For example, if there are multiple higher-order
functions in the program, e.g. in program(automap f1
l1); (automap f2 l2), the secondautomap is the
remainder after the firstautomap. Whenautomap f1
l1 makes the decision to move or not, it might not move
if it only considers the cost of itself, but it might move if it
also considers the cost ofautomap f2 l2. In general to
deploy autonomous mobility effectively, it is necessary to
know the cost of the remainder of the program, and not just
the cost of a single iteration.

Thus, we explore a calculus to manipulate, and ulti-
mately automatically statically extract costs for the remain-
der/continuation of a computation, at arbitrary points at
compile time. We have constructed anautomatic continu-
ation cost analyserwhich implements the cost calculus for
a Jocaml subset to produce cost equations parametrised on
program variables in context, and may be used to find both
cost in higher-order functions and the continuation cost of
the higher-order functions. We extend our AMS cost model
to be parametrised on the cost of the remainder of the pro-
gram. Costed autonomous mobility skeletons (CAMSs) are
built which not only encapsulate the common patten of au-
tonomous mobility but take additional cost parameters rep-
resenting the costs of the remainder of the program.

The structure of the paper is as follows.Section 2
discusses related work.Section 3 introduces costed au-
tonomous mobility skeletons.Section 4 defines a small
strict higher-order languageJ ′ and builds the cost calcu-
lus for J ′. Section 5 describes the implementation of an
automatic continuation cost analyser which implements the
cost calculus.Section 6 compares the performance of the
programs using CAMSs with the programs using AMSs.

Section 7 summaries.

2 Background

2.1 Autonomous Mobile Programs & Au-
tonomous Mobility Skeletons

AMPs have strong connections with both agents and au-
tonomous systems. An agent is an encapsulated computer
system that is situated in some environment, and that is ca-
pable of flexible, autonomous action in that environment in
order to meet its design objectives[22, 18]. Mobility is the
ability to transport itself from one machine to another and
retaining its current state. Agents with mobility are called
mobile agents[12].

Autonomous systems are also called autonomic comput-
ing systems, and a definition has been given by IBM: au-
tonomic computing system can manage themselves given
high-level objectives from administrators[9]. The essence
of autonomic computing systems is self-management
requiring self-management areself-configuration, self-
optimization, self-healing, andself-protection.

AMPs are mobile agents and self-optimization systems.
They are aware of their processing resource needs and sen-
sitive to the environment in which they execute, and are able
to dynamically relocate themselves to minimise processing
time in the presence of varying external loads on shared
processing elements. They also have important differences
from agents and autonomous system. Firstly, unlike pre-
vious mobile agent approaches, AMPs are autonomous i.e.
making decision themselves when and where to move ac-
cording to the cost model. AMPs also differ from tradition
autonomous systems[9, 1, 19], which use schedulers to de-
cide whether to move, AMPs themselves can make this de-
cision.

AMSs[4] encapsulate self-aware mobile coordination for
common patterns of computation over collections. Au-
tonomous mobile programs with AMSs do not need to insert
additional code for making migration decision.

Mobile languages give programmers control over the
placement of code or active computations across the net-
work for sharing computational resources e.g. CPU speed
[10]. For example Jocaml[8] is a functional programming
language. Java Voyager[14] and JavaGo[17] extend Java.
We have previously presented AMPs[6] and theautomap,
autofold andAutoIterator AMSs[4], together with
performance measurements of Jocaml, Java Voyager, and
JavaGo implementations on modest LANs.

2.2 Cost Analysis

In the systems for sharing computational power,cost
modelsare used to estimate the cost of a program in terms of

time and to predict the behaviour of the program[15]. There
are two levels of cost models in general.Computation cost
modelsestimate the sequential computation time for pro-
grams. Coordination cost modelspredict the coordination
and communication behaviours of parallel, distributed and
mobile programing. Usually, coordination cost models take
costs which have been got from the computation cost mod-
els into account to make more efficient coordination deci-
sions.

A generic AMP coordination cost model and problem
specified cost models has been built in[6]. This paper fo-
cuses on thecomputation cost modelsfor AMPs. This kind
of cost analysis usually happens at compile time, so is also
called static cost analysis. Different static cost models have
been built for different systems. Cohen and Zuckerman
consider cost analysis of Algol-60 programs[3]. Wegbreit
works on cost analysis of Lisp programs addressed the treat-
ment of recursion[21]. Ramshaw[13] discusses the formal
verification of cost specifications. Many of the cost analysis
use semantics-based methods e.g Rosendahl[16] uses ab-
stract interpretation for cost analysis, and Wadler[20] uses
projection analysis. Loidl has built static cost semanticsfor
for languageL in[11], and Reistad and Gifford built static
cost for data-dependent expressions in[15].

All these computation cost analyses produce the cost of
expressions, but not the costs following the expressions,
which is more useful to predict the behaviour of the pro-
grams. We built a static cost calculus for a Jocaml subset.
That calculates the continuation cost of each expression in
a program.

3 Costed Autonomous Mobility Skeletons

Costed autonomous mobility skeletons (CAMSs) are
built to improve the performance of AMSs. CAMSs e.g.
camap andcafold are implemented in Jocaml.camap
f [a1; ...;an] costf costafter, performs the
same computation asautomap f [a1;...;an], but
takes another two argumentscostf and costafter,
recording the cost off and the continuation cost of the
higher-order functions. Similarly, the Jocmalcafold is
implemented.

The CAMS cost model improves the AMS cost model,
which only considers the cost in the skeleton. Equation (1)
defines the total work of the program, whereWall is the cost
of the skeleton.

Wall = costf ∗ (length of the list) (1)

The CAMS cost model is parametrised on both the cost
in the skeletons and the continuation cost of the skeletons.
Equation (2) shows the total work is the cost in the CAMS
and the costafter of the CAMS.

Wall = costf ∗ (length of the list) + costafter (2)

4 Cost Calculus for J ′

To illustrate the concept ofcostafter i.e. the contin-
uation cost of a program, this section gives a small lan-
guage,e ::= n | e+e, where n is integer. Using expression
2+3 as an example, the costafter of2 can be calculated as
E⊢c 3 $ c3 E⊢c +$ c+

E⊢a 2 � (2+3) £ c3+c+

, wherec3 is the cost of3, c+ is the

cost of “+”, and the costafter of2 is c3 + c+. The seman-
tic functions⊢c and⊢a produce the cost and costafter of
expressions in the environment E.

The problem with this calculation is if there are two sim-
ilar expression or one expression in two or more place in
the program, it is difficult to identify the expression whose
costafter needs to be calculated. To solve this problem,
every expression in a program is given a unique number,
which is called itsindex. Then the general three stages to
calculate the costafter are:indexingthe program, calculat-
ing thecostof expressions in the program, and calculating
thecostafterof the point to be required. Calculating the cost
of expression is standard and use techniques similar to e.g.
cost models in[11, 16, 20]. Calculate the costafter, which is
to predict a continuation cost in a program, is novel.

A cost calculus has been built for languageJ [5], a sub-
set of Jocaml.J is a core functional language and readily
able to describe non-trivial programs like matrix multiplica-
tion and ray tracing. To explain the principles, we introduce
an even simpler languageJ ′, a subset ofJ . Note that this
cost calculus does not consider the type system and size sys-
tem of the language.

4.1 Syntax of Language J ′

e ::= expression
k constant

| v variable
| fun v → e lambda
| e e application
| e op e operation
| map e e map
| e (* e *) user cost
| < n, e > index

op ::= operator
+ | - | * | / arithmetical

| > | < | >= | <= | = | ! = logical
| :: cons
| ; sequential composition

Figure 1: Syntax ofJ ′

Figure 1 shows the abstract syntax ofJ ′. To simplify
the presentation it is assumed that variable names (v) in the

program are unique.J ′ is a core functional language with
two unusual expression. Theindex expression is presented
because the whole program has been indexed. Costing re-
cursive functions is undecidable. Thus to deal with the cost
of recursive functions,user costsare introduced intoJ ′.

4.2 Indexing Expressions

Figure 2 shows an example of indexing an AST. In the
figure, tree A is the original abstract syntax tree for ex-
pressione, ((a*b)*c), and tree B is the indexed ab-
stract syntax tree. The indexed expression fore is: <5,
(<3,(<1,a>*<2,b>)>*<4,c>)>.

B: (IAST)A: (AST)

index

*

* c

 a b <1,a> <2,b>

<3,*> <4,c>

 <5,*>

Figure 2: Indexing Example

4.3 Cost Semantics

Figure 3 shows part of the cost semantics ofJ ′. Seman-
tic function⊢c : env→ e → (e * cost) takes the environ-
ment (env) and an expression (e), and returns a tuple of the
expression and the cost of the expression (cost) under the
environment E.

E ⊢c k $ 0
(3)

{v, c} + E ⊢c v $ c + 1
(4)

E ⊢c e1 $ c1 E ⊢c e2 $ c2

E ⊢c e1 op e2 $ 1 + c1 + c2

(5)

E ⊢c e1 $ c1 E ⊢c e2 $ c2

E ⊢c map e1 e2 $ c1 ∗ (length e2) + c2

(6)

E ⊢c e $ c

E ⊢c < i, e > $ c
(7)

.......

Figure 3: Partial Cost Semantics forJ ′

Equation (3) infers the cost of an constant as0 in envi-
ronment E. Equation (4) shows that the cost of the value
of variable (v), herec, has been stored in the environment,
so the total cost of variable (v) is the cost to access the
variable and the cost of the value of the variable, giving

c + 1. Equation (5) performs the cost of operation expres-
sions (e1 op e2). If the cost ofe1 is c1, and the cost ofe2

is c2 then the cost ofe1 op e2 is 1 + c1 + c2, where1 is the
cost for getting the operator. Equation (7) shows that the
cost of index expression< i, e > is the cost of expression
e (c). Figure 4 shows the progress of costing the expression
in Figure 2.

cost< 5, (< 3, (< 1, a > ∗ < 2, b >) > ∗ < 4, c >) >

⇒ cost(< 3, (< 1, a > ∗ < 2, b >) > ∗ < 4, c >) (7)
⇒ 1+cost< 3, (< 1, a > ∗ < 2, b >) >+cost< 4, c > (5)
⇒ 1+(1+cost< 1, a >+cost< 2, b >)+cost< 4, c > (7,5)
⇒ 1+(1+costa+cost< 2, b >)+cost< 4, c > (7)
⇒ 1+(1+(1+ca)+cost< 2, b >)+cost< 4, c > (4)
⇒ 1+(1+(1+ca)+(1+cb))+cost< 4, c > (7,4)
⇒ 1+(1+(1+ca)+(1+cb))+(1+cc) (7,4)

Figure 4: An Example of Costing inJ ′

4.4 Continuation Costs

There are two approaches to calculate the cost of the con-
tinuations (costafter) in a program. One is translating the
direct program into continuation passing style (CPS)[7] to
obtain the continuation of the current expression, then cal-
culating the cost of the continuation. Another approach is
to pass the continuation cost directly rather than pass the
continuation back to the current expression. There are two
advantages of this better approach. First, we do not need to
translate the program into CPS. Second, it is easier to pass
an integer, the cost, back to the current expression than the
execution state of the program e.g. the call stack or values
of variables.

Figure 5 shows part of the costafter semantics. Seman-
tic function ⊢a : env → e → e → cost takes the envi-
ronment (env) and two expressions and returns a cost i.e.
the costafter of the first expression in the second expres-
sion. Equation (8) states that if expressione is equal toe′

e ≡ e′

E ⊢a e � e′ £ 0
(8)

e ∈ e1 E ⊢a e � e1 £ c1 E ⊢c e2 $ c2

E ⊢a e � (e1 op e2)£ 1 + c1 + c2

(9a)

e ∈ e2 E ⊢a e � e2 £ c2

E ⊢a e � (e1 op e2)£ c2 + 1
(9b)

E ⊢a e � (e1 op e2)£ 0
(9c)

E ⊢a e � e1 £ c

E ⊢a e � < i, e1 > £ c
(10)

......

Figure 5: Costafter Semantics

costafterb in
< 5, (< 3, (< 1, a > ∗ < 2, b >) > ∗ < 4, c >) >

⇒ costafterb in
(< 3, (< 1, a > ∗ < 2, b >) > ∗ < 4, c >) (10)

⇒ 1+costafterb in
< 3, (< 1, a > ∗ < 2, b >) >+cost< 4, c > (9a)

⇒ 1+costafterb in
(< 1, a > ∗ < 2, b >)+cost< 4, c > (10)

⇒ 1+(1+costafterb in < 2, b >)+cost< 4, c > (9b)
⇒ 1+(1+costafterb in b)+cost< 4, c > (10)
⇒ 1+(1+0)+cost< 4, c > (8)
⇒ 1+(1+0)+(1+cc) (Figure 4)

Figure 6: An Example of Costafter

(e ≡ e′)then the costafter ofe in e′ is 0, where “≡” is syntax
equality. Equations (9a), (9b), and (9c) define the costafter
of e in operation expression(e1 op e2). If e1 containse,
then the costafter ofe in (e1 e2) is the costafter ofe in e1

(c1), plus the cost ofe2 (c2) plus1, which is the cost for get-
ting the operator. Equation (10) shows that the costafter of
e in index expression< i, e1 > is the same as the costafter
of e in expressione1.

Figure 6 shows an example of calculating the costafter
of b in the indexed expression<5,(<3,(<1,a>*
<2,b>)>*<4,c>)>.

5 Automatic Continuation Cost Analyser

5.1 Structure of the Automatic Continua-
tion Cost Analyser

The cost calculus has been implemented as an automatic
cost analyser in Jocaml. The analyser produces cost equa-
tions parametrised on program variables in context, and
finds both cost in higher-order functions and the costafter of
the higher-order functions, and converts higher-order func-
tions to CAMSs with costafters. Ascostafteris the cost of
the continuations, the analyser is also called anautomatic
continuation cost analyser. The analyser takes programs in
a subset of Jocaml with higher-order functions as input and
outputs Jocaml AMPs with CAMSs.

Figure 7 shows the structure of the automatic contin-
uation cost analyser. Parser takes Jocaml programs with
higher-order functions, and outputs the ASTs. Indexer takes
the AST and decorates every nodes, i.e. gives each expres-
sion a unique integer as an index, so the output is IAST.
Indexer is an implementation of the index semantics in Sec-
tion 4.2. Coster takes the IAST and outputs the costafter
for each node. The coster has two parts: the first imple-
ments the cost semantics in Section 4.3 to calculate the
cost of each expression, the second part implements the
costafter semantics in Section 4.4 to calculate the costafter
of each expression. The second part will use the the costs

Indexer

Abstract Syntax Tree

Indexed Abstract Syntax Tree

Indexed Abstract Syntax Tree

Generator

Coster (get costafter)

output

Input

output

output

Input

Input

Jocaml + HOFs

+Costafter

Input

output Jocaml+CAMSs

Parser

Calculus
Cost

Figure 7: Automatic Continuation Cost Analyser

from the first part. The Generator generates a Jocaml AMP
which has the same functionality as the original Jocaml pro-
gram but using CAMSs instead of higher-order functions.
For example, if the original program ismap f l, the ob-
ject program after the generator iscamap f l costf
costafter, wherecostf is the cost off applied to the
first element ofl, which can be calculated using the cost se-
mantics, andcostafter is the cost after themap expres-
sion in the program, which can be calculated using costafter
semantics.

5.2 An Example of the Cost Analyser

This section uses expressione,
(map (fun x -> x+1) [1;2]);

(map (fun y -> y-1) [3;4])

as an example to explain how the analyser converts higher-
order functions to CAMS.e has two sub-expressions
e1, (map (fun x -> x+1) [1;2]), ande2, (map
(fun y -> y-1) [3;4]). So e can be presented as
e1; e2. To construct CAMSs, four issues should be consid-
ered: (1) the cost of(fun x -> x+1), (2) the cost of
(fun y -> y-1), (3) the costafter ofe1 in e, and (4)
the costafter ofe2 in e.

According to equations in Section 4.3, the cost of
(fun x -> x+1) can be calculated as(fun x ->
(1+((1+0)+0))) (hd [1;2]), and simplifies to 2.
The cost of e2 is ((fun y -> (1+((1+0)+0)))
(hd [3;4]))*(length [3;4]) and simplifies as 4.
The costafter ofe1 in e is the costafter ofe1 in e1, which is
0, plus the cost ofe2, plus 1. So the total costafter ofe1 in e

is 5. Hence, the analyser convertse1 to (camap (fun x
-> (x+1)) [1;2] (2) (5)). Similarly, e2 is con-
verted to(camap (fun y -> (y-1)) [3;4] (2)
(1)). So the output from the analyser is:

(camap (fun x -> (x+1)) [1;2] (2) (5));

(camap (fun y -> (y-1)) [3;4] (2) (1))

6 Evaluation

We have evaluated six automatically costed programs
with single or sequentially composed CAMS against the
corresponding AMS programs.

6.1 Single Higher Order Function Exam-
ples

The initial hypothesis is if there is only one higher-order
functions in the AMP, the performances of the CAMS pro-
grams should be the the same as the corresponding AMS
programs. That is the AMPs should exhibit the same move-
ment behaviour at the same moment and hence have the
same execution times. Two single higher-order function
AMPs have been tested: matrix multiplication and ray trac-
ing.

Different size matrix multiplication have been executed
to see if the CAMS programs have the same execution time
as the corresponding AMS programs. The test environment
has three locations with CPU speeds 534MHZ(ncc1710),
933MHZ(jove) and 1894MHZ(lxtrinder). The loads on
these three locations are almost zero, and both the CAMS
and AMS programs are started on the first location. Figure 8
shows that the CAMS programs behave the same as the cor-
responding AMS programs. Similar results are gained for
ray tracing AMPs.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 8: CAMS/AMS Matrix Mult. Exec.Time

6.2 Sequentially Composed Iterations

To investigate the performance of the skeletons when an
AMP contains the sequential composition of several higher-
order functions, four programs are compared: double ma-
trix multiplication, invertible matrix, double ray tracing,
and five matrix multiplications. The test environments in
this section are the same as in Section 6.1.

The invertible matrix program takes two matrices and
checks if them are invertible to each other. In this program

two matrices multiplication are performed sequentially, so
there are two higher-order functions. Figure 9 compares the
camap andautomap invertible matrix. Thecamap AMP
starts moving at matrix size of 230*230, but theautomap
AMP starts moving still at 330*330, because thecamap
considers the total remaining costs of the entire program but
automap only consider the remaining costs in the func-
tion.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 9: CAMS/AMS Inver Matrix Exec.Time

6.3 Varying Loads

When there is more than one higher-order function in
AMPs, the CAMS programs may do more checks than the
corresponding AMS programs. This is an advantage for re-
acting to the change of environment. The experiments in
this section test the behaviour of CAMS and AMS programs
when the loads of locations in the network are changed.
Tests for two AMPs have been done: invertible matrix and
five matrix multiplications. The tests are based on four lo-
cations, (1)ncc1710, (2)jove, (3)lxtrinder, and (4)linux81
(2800MHz). At the beginning, the first three location are
idle and the fourth location is heavily loaded with relative
CPU speed of 56MHz. The AMPs are tested one by one.
We start the AMPs on ncc1710, and they move to lxtrinder
as expected. At the same time linux81 finishes the work and
becomes idle.

Figure 10 compares the execution time of CAMS to
AMS invertible matrix programs. When the sizes of ma-
trices are larger than 450*450, the CAMS programs move
to the faster location linux81 again, but the corresponding
AMS programs do not, as thecamap in the CAMS pro-
grams do more checks thanautomap in the corresponding
AMS programs. In this case, the CAMS programs may fin-
ish more quickly than the corresponding AMS programs.
When the size of the matrix is larger than 450*450 but
smaller than 500*500, the CAMS programs is slower than
the corresponding AMS programs, as the additional coor-
dination time is bigger than the reduced execution time in

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 10: CAMS/AMS Inver. Matrix Exec. Time with
Changing Loads

a faster location. When the size of the matrix is larger than
500*500, the CAMS programs is faster than the correspond-
ing AMS programs.

When the size of matrix is smaller than 450*450, the
CAMS programs do not move, because the cost of moving
to another location is too big compared to the reduced ex-
ecution time in a faster location. In this case, the results
are similar to the result in Figure 9. Similar results are also
obtained for five matrix multiplication AMPs.

6.4 Discussion

From the results above the following conclusion can be
drawn: Firstly, if there is only one high-order function dom-
inating the computation, CAMS programs reproduce the
movement of the corresponding AMS programs. Secondly,
if there is more than one higher-order functions, CAMS
programs move with smaller size data than the correspond-
ing AMS programs. Finally, the CAMS programs react to
the change of environment more sensitively than the corre-
sponding AMS programs.

7 Conclusion & Future Work

To deploy autonomous mobility effectively, it is neces-
sary to know the cost of the program continuation. We have
developed a cost calculus to estimate the costs for the con-
tinuation at arbitrary program points. This calculus includes
three parts: indexing the abstract syntax tree, calculating the
cost of each expression, calculating the continuation cost
i.e. costafer of expressions.

We have extended our AMS cost models to be
parametrised on the continuation cost. Costed autonomous
mobility skeleton (CAMSs) have been built, which not only
encapsulate common patterns of autonomous mobility but
take additional cost parameters. Measurements show that
CAMS programs perform more effectively than AMS pro-
grams, because they have more accurate cost information.

Hence a CAMS program may move to a faster location
when the corresponding AMS program does not.

For an autonomous mobile program, it is not necessary
to calculate the continuation cost of each expression. We
are interested in the continuation cost of higher-order func-
tions. An automatic Jocaml cost analyser based on the cal-
culus has been built, which calculates both cost in higher-
order functions and the costafter of them, and converts these
higher-order functions into CAMSs.

There are a number of areas for future work. Firstly,
the current AMP experiments are performed on local area
networks. We would like to generalise the AMPs architec-
ture to large scale network e.g. WAN, Grid, etc. Secondly,
we aim to to build automatic resource driven mobility. We
propose to investigate the application of a generic cost-
based ethology to autonomous mobile multi-agent systems.
Specifically, we would like to use evolved biological for-
aging strategies to better engineer scalable self-organising
resource-location systems in large-scale dynamic networks.
Finally, we aim to adapt the calculus to the more main-
stream Java language.

References

[1] J. Abawajy. Autonomic Job Scheduling Policy for
Grid Computing. InLNCS 3516, pages 213–220, Ger-
many, May 2005. ICCS 2005, Springer.

[2] L. Cardelli. Abstrations for Mobile Computation.Se-
cure Internet Programming, pages 51–94, 1999.

[3] J. Cohen and C. Zuckerman. Two Languages for
Estimating Program Efficiency. Commun. ACM,
17(6):301–308, 1974.

[4] X. Y. Deng, G. Michaelson, and P. Trinder. Au-
tonomous Mobility Skeletons. Journal of Parallel
Computing, Volume 32, Issues 7-8:Pages 463–478 Al-
gorithmic Skeletons, September 2006.

[5] X. Y. Deng, G. Michaelson, and P. Trinder. Cost-
Driven Autonomous Mobility. Technical Report
MACS-TR-0051, School of Mathematical and Com-
puter Sciences: Heriot-Watt University, May 2007.

[6] X. Y. Deng, P. Trinder, and G. Michaelson. Au-
tonomous Mobile Programs. InIAT 2006 Main Con-
ference Proceedings, pages 177–186, Hong Kong, De-
cember 2006. IEEE Computer Society.

[7] D. P. Friedman, M. Wand, and C. T. Haynes.Essen-
tials of Programming Languages. MIT Press, 1992.

[8] Institut National de Recherche en Informatique et en
Automatique. The JoCaml language beta release:
Documentation and user’s manual, January 2001.

[9] J. O. Kephart and D. M. Chess. The Vision of Auto-
nomic Computing.Computer, 36(1):41–50, 2003.

[10] Z. Kirli. Mobile Computation with Functions. PhD
thesis, University of Edinburgh, LFCS: Division of In-
formatics, 2001.

[11] H.-W. Loidl. Granularity in Large-Scale Parallel
Functional Programming. PhD thesis, University of
Glasgow, April 1998. Department of Computing Sci-
ence.

[12] D. Milojicic, F. Douglis, and R. Wheeler. Mo-
bility: processes, computers, and agents. ACM
Press/Addison-Wesley Publishing Co., New York,
NY, USA, 1999.

[13] L. H. Ramshaw. Formalizing the Analysis of Algo-
rithms. PhD thesis, Stanford University Department
of Computer Secience, 1979.

[14] Recursion Software, Inc, 2591 North Dallas Parkway,
Suite 200, Frisco, TX 75034.Voyager User Guide,
May 2005.

[15] B. Reistad and D. K. Gifford. Static dependent costs
for estimating execution time. InLFP ’94, pages 65–
78. ACM Press New York, 1994.

[16] M. Rosendahl. Automatic Complexity Analysis. In
FPCA’89, pages 144–156, Imperial College, London,
UK, 1989. ACM Press New York.

[17] T. Sekiguchi. JavaGo, May 2006. http://homepage.
mac.com/t.sekiguchi/javago/index.html.

[18] P. T. Tosic and G. A. Agha. Towards a Hierar-
chical Taxonomy of Autonomous Agents. InIEEE
SMC’2004, pages 3421–3426, Hague, The Nether-
lands, October 2004. IEEE Xplore.

[19] C. V. Travis Desell, Kaoutar El Maghraoui. Load
Balancing of Autonomous Actors over Dynamic Net-
works. page 90268.1, 2004.

[20] P. Wadler. Strictness Analysis Aids Time Analysis.
In POPL’88, pages 119–132, San Diego, California,
USA, 1988. ACM Press.

[21] B. Wegbreit. Mechanical Program Analysis.Commun.
ACM, 18(9):528–539, 1975.

[22] M. Wooldridge. Agent-Based Software Engineering.
IEE Proceedings Software Engineering, 144(1):26–
37, 1997.

