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Abstract- Clustering is a hard combinatorial problem and is 
defined as the unsupervised classification of patterns. The 
formation of clusters is based on the principle of maximizing the 
similarity between objects of the same cluster while 
simultaneously minimizing the similarity between objects 
belonging to distinct clusters.  This paper presents a tool for 
database clustering using a rule-based genetic algorithm 
(RBCGA).  RBCGA evolves individuals consisting of a fixed set 
of clustering rules, where each rule includes d non-binary 
intervals, one for each feature. The investigations attempt to 
alleviate certain drawbacks related to the classical minimization 
of square-error criterion by suggesting a flexible fitness function 
which takes into consideration, cluster asymmetry, density, 
coverage and homogeny.  

I. INTRODUCTION 

The tremendous volume and diversity of real-world data 
embedded in huge databases clearly overwhelm traditional 
manual methods of data analysis, such as spreadsheets and 
ad-hoc queries. An urgent need exists for a new generation of 
techniques and tools with the ability to intelligently and 
automatically assists users in analyzing mountains of stored 
data for nuggets of useful knowledge. These techniques and 
tools are the subject of the field of Knowledge Discovery on 
Databases (KDD), which is considered to be the "extraction 
of interesting (non-trivial, implicit, previously unknown and 
potentially useful) information or patterns from data in large 
databases [1]. Data Mining (DM) is a step in the process of 
KDD consisting of applying algorithms that, under 
acceptable computational efficiency limitations, produce a 
particular enumeration of patterns over the data [2]. 

Clustering is a common data mining task and refers 
to the application of algorithms for discovering interesting 
data distributions in the underlying data space. Given a large 
dataset consisting of multi-dimensional data points or 
patterns, the data space is usually not uniformly occupied. 
The aim of clustering procedures is to partition a 
heterogeneous multi-dimensional data set into groups of 
more homogenous characteristics [3]. The formation of 
clusters is based on the principle of maximizing similarity 
between patterns of the same cluster and simultaneously 
minimizing the similarity between patterns belonging to 
distinct clusters. Similarity or proximity is usually defined as 
a distance function on pairs of patterns and based on the 
values of the features of these patterns [4].  
 

II. RELATED WORK 

There are four basic types of clustering algorithms: 
partitioning algorithms, hierarchical algorithms, density-
based algorithms and grid-based algorithms. Partitioning 
algorithms construct a partition of N objects into a set of k 
clusters [5]. Hierarchical algorithms create a hierarchical 
decomposition of the database that can be presented as 
dendrogram [13]. Density-based algorithms search for 
regions in the data space that are denser than a threshold and 
form clusters from these dense regions [14]. Grid-based 
algorithms quantize the search space into a finite number of 
cells and then operate on the quantized space [15]. Genetic 
algorithms (GA) have been proposed for clustering, because 
they avoid local optima and are insensitive to the 
initialization [7, 16, 17]. The individuals encode a fixed 
number (k) of clusters, using a binary representation for the 
center of clusters. The minimization of the squared error 
discussed in section III, is the fitness function used to guide 
the search. 

III. DRAWBACKS OF THE K-MEANS ALGORITHM 

The classical k-means clustering algorithm – and its variation 
the k-medoids – are representatives of partitioning techniques 
and have widely been used in clustering applications [1]. The 
reason behind the popularity of the k-means algorithm has to 
do with the simplicity and the speed of the algorithm. 
Broadly speaking, given the number of desired clusters, k-
means algorithm attempts to determine k partitions that 
optimize a criterion function. The square-error criterion E is 
the most commonly used and is defined as the sum of the 
squared Euclidean distances between each multidimensional 
pattern p belonging to Ci cluster and the center mi of this 
cluster. 
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In k-means algorithm, each cluster is represented by a vector 
corresponding to the center of gravity for this cluster (section 
IV). In k-medoids, each cluster is described by one of the 
patterns, which are closely located to the center of gravity of 
this cluster. Both k-means and k-medoids assign pattern to 
clusters trying to minimize the square-error function in order 
to obtain k partitions that are as compact and separated as 
possible. However, there are some well-known drawbacks, 
such as sensitivity to the initialization process, which can 
lead to local optima, sensitivity to the presence of noise, 



 

discovery of clusters with similar sizes and densities, and 
discovery of hyperspherical clusters [3].  The k-means 
method works well for clusters that are compact clouds (i.e. 
hypersherical in shape) and are well separated from each 
other. However, when there are large differences in the sizes 
or geometries or densities of different clusters the square 
error method could split large clusters to minimize equation 
(1) [11].  

IV. RULE-BASED GENETIC ALGORITHM 

In this paper, we suggest a non-binary, rule-based 
representation for the individuals and a flexible evaluation 
function, which can be used to alleviate the certain 
drawbacks of the k-means methods. 

A. Individual Encoding  
Let A={A1, A2, …, Ad} be a set of  domains and S = A1× A2, 
×…× Ad a d-dimensional numerical space. The input consists 
of a set of d-dimensional patterns V={p1, p2, ..., pk}, where 
each pi is a vector containing d numerical values, pi= [α1, α2, 
…, αd]. The jth component (pij) of vector pi is drawn from 
domain Aj.  
Each individual consists of a set of k clustering rules. The 
number of rules is fixed and corresponds to the number of 
desired clusters.  Each rule is constituted from d genes, 
where each gene corresponds to an interval involving one 
feature. Each ith gene, i=1,..,d, of the of a rule is subdivided 
into two field: lower boundary (lbi) and upper boundary 
(ubi), where lb and ub denotes the lower and upper value of 
the ith feature in this rule. The conditional part of a rule is 
formed by the conjunction (logical AND operator) of d 
intervals corresponding to this rule. It should be pointed out 
that our approach use real-coded chromosome representation. 
For example, consider a string corresponding to the 
clustering problem shown in Fig. 1.  The two-dimensional 
feature space shows k=2 clusters and two features, namely 
salary and tax with domains Asalary={0,1000} and 
Atax={0,400}, respectively.  
 

 
Fig. 1. Distribution of patterns for features salary and tax. 

 
Rule A:  [[400 ≤salary ≤1000] AND [0 ≤ tax ≤100]] 
Rule B:  [[0 ≤salary ≤200] AND [300 ≤ tax ≤400]] 

 

The entire chromosome, which corresponds to a complete 
solution to the above clustering problem, is illustrated in Fig. 
2. 

 
Fig. 2. The structure of the individuals. 

B. Fitness Function 
In order for a GA-based system to effectively search for the 
optimal solutions, an appropriate fitness function must be 
carefully implemented. Generally speaking the choice of the 
fitness function is closely related to the problem at hand.  In 
our case, we focus on optimizing a set of clustering criteria 
that when they are simultaneously combined can ensure     a) 
high interclass dissimilarity and b) high intraclass similarity. 
Interclass dissimilarity: The distinctness of two rule-
described clusters is defined in terms of the differences in 
their descriptions. Obviously, more distinct descriptions for 
the clusters produce better problem space decompositions. It 
is essential to avoid the generation of overlapping cluster 
descriptions. 
Intraclass similarity: This refers to the degree of cohesion of 
patterns within a specific cluster. The more coherent a cluster 
is, the more uniformly distributed (in the d-dimensional 
subspace defined by the cluster description) the patterns are. 
To evaluate individual’s fitness we consider five different 
concepts, namely, rule asymmetry, rule density, rule 
coverage, rule homogeny and degree of rule overlapping. 
Each one of the above criteria plays an important role in 
maximizing interclass dissimilarity and intraclass similarity.  
 
1) Rule asymmetry 
Rule asymmetry is a key factor that is used to ensure uniform 
distribution of patterns regarding to the patterns’s center of 
gravity.  Consider the distribution of a set S={p1, p2, ..., pk} 
of d-dimensional 
patterns with a center 
of patterns CP={cp1, 
cp2, ..., cpd}, where 
cpi denotes the mean 
value of patterns in 
ith dimension  
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a center of rule CR={cr1, cr2, ..., crd}, where cri denotes the 
mean value of the interval corresponding to the i-th 
dimension 2)( iiii lbublbcr −+= . The maximum 
distance dpri(max) between cri and cpi (i=1,…, d) is 

( ) 2)(max iii lbubdrp −= , and for each dimension the 
coefficient of asymmetry ai is given by equation 2. 
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Hence, the coefficient of asymmetry a(R) for the R rule is 
given by 
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Obviously, the closer CR and CP are, the more uniformly 
distributed around the center of gravity the patterns are. 
 
2) Rule density and rule coverage 
Broadly speaking, if A is a region in a d-dimensional feature 
space defined by the rule R, then it can be represented as the 
intersection of the intervals: (lb1≤ x1≤ub1), … , (lbd≤ xd≤ubd), 
where lbi and ubi   are the lower and upper boundaries of 
feature xi. The d-dimensional volume VR is defined as the 
product of the d sides dR lllV ∗∗∗= ...21 , where li= ubi - 
lbi.  Assuming that the region A which, is defined by the rule 
R contains nR patterns, then the density of rule R is as 
follows:  

R
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Each rule R is assigned with another metric called rule 
coverage cov(R)  
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where, ntotal denotes the total number of patterns.  All the 
rule-related concepts are combined into a single function to 
evaluate the weight fR of rule R when calculating the fitness 
value of the entire chromosome  

)()()( cov RRRR daf ∗∗=  (6) 
3) Rule homogeny 
In real-world datasets, highly compact and closely located 
clusters can be covered by the same rule.  The GA must be 
able to identify and quantify discontinuities in the 
distribution of patterns for all dimensions and then to 
combine the derived information in order to generate for 
each rule R a homogeny coefficient h(R). In order to assess 
rule’s homogeny, for each dimension d the interval defined 
by the rule is subdivided into a number of bins Bins(d). The 
optimal upper bound for the width W(d) of the bins is given by 
the following equation [9] :  
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where, σd is the standard deviation of the patterns belonging 
to rule R in d dimension. For each bin the algorithm 
calculates its coverage, which is simply the number of 
patterns within the bin divided by the nR.  Bins with coverage 
below a threshold tsparse are considered as sparse and 
therefore the homogeny coefficient hd for the d dimension of 
rule R is calculated as follows: 

binsnumberTotal
binsdenseNumberhd __
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In our experiments the value of tsparse is the mean value of the 
interval defined between the mean  and median value of the 
coverage metrics for all bins.  
The homogeny coefficient h(R) for the entire rule is the mean 
value of the homogeny coefficient for all dimensions 
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Equation 6 can now be enchanced by taking into 
consideration the factor h(R). Hence, the weight of a rule R 
can now be listed as  

)()()()( cov RRRRR hdaf ∗∗∗=  (10) 
In order to prevent the generation of offsprings, which cover 
the entire search space equation, some kind of penalty for 
“very” large rules should be imposed.  This can easily be 
done by simply multiplying equation (10) with the factor: 
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where VDomain denotes the maximum volume of the entire d-
dimensional domain.  Hence, each rule is assigned a weight, 
which is given by the following equation: 
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4) Overlapping rules 
During the evolution of individuals overlapping rules may 
occur, causing confusion about the most appropriate cluster 
to which it should be assigned. In an attempt to penalize 
individuals containing overlapping rules, a weighted pattern 
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the total number of patterns nR for each rule, where Nk(R) 
represent the number of patterns covered by this rule and (k-
1) additional rules.  This appears in all the above equations. 
The factor introduced in equation 11 favours “small” rules 
and can cause a premature convergence in a suboptimal 
solution, because in relatively few generations individuals 
containing small rules dominate the population. A way to 
avoid this problem is by assigning the entire individual a 
pattern coverage factor Pcov defined as follows: 
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where Nk denotes the total number of patterns covered by k 
rules. 
5) Final form of the fitness function 
In our investigation, rules that contain fewer patterns than a 
user-defined threshold a (e.g. 5% of the total number of 
patterns), are considered as sparse and are excluded from the 
evaluation procedure described above.  Furthermore in order 
to avoid the generation of empty or sparse rules, a penalty 
based on the number of sparse clusters is imposed. So the 



 

total fitness function used in our experiments takes the 
following form 
















 ∗∗






−∗= ∑∑
==

NDR

i
i

COV
NDR

i
i

COV
eval f

NDR
P

TNR
NSRf

NDR
PF

1
)(

1
)(

(14) 
where NDR  is the number of dense rules included in the 
individual, NSR is the total number of sparse rules and TNR 
is the total number of rules. 

C. Crossover Operator 
The crossover operator used in our experiments is an 
extension of a standard two-point crossover [10].  Recall that 
each individual consists of a set of k clustering rules. The 
number of rules is fixed and corresponds to the number of 
desired clusters.  Each rule is constituted from d genes, 
where each gene corresponds to an interval involving one 
feature. Each i-th gene, i=1,..,d, of the of a rule is subdivided 
into two field: lower boundary (lbi) and upper boundary 
(ubi), where lb and ub denotes the lower and upper value of 
the i-th feature in this rule. The conditional part of a rule is 
formed by the conjunction (logical AND). Two-point 
crossover is applied to each of the k rules of the mating 
parents generating two offsprings having fixed size. The idea 
of performing k crossovers is to enable each rule to move 
independently of the others. By adjusting independently each 
rule every generation the number of generations needed for 
the algorithm to converge is expected to be significantly 
reduced.  

D. Mutation Operator 
When a binary representation is used, the mutation operator 
flips the value (bits) of each gene. Our elaborate 
representation requires more complex mutation operator, 
which can be able to cope with non-binary genes.  
Our mutation operator extends the step-size control 
mechanism for mutating real-valued vectors, suggested by 
Michalewicz [10]. The intuitive idea behind Michalewicz’s 
mutation operator is to perform uniform mutation initially 
and very local mutation at later stages.  Recall that each rule 
contains d intervals of the form [lb, ub]. The application of 
the mutation operator in such kind of genes with domain 
[a, b] is a two-step process: a) mutation of the lb and b) 
mutation of  ub. 
1) Mutation of the left boundary lb 
If the operator is applied at generation t then the new lb of 
the gene is given by the following equation: 
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where lb(t-1) is the value of the left boundary in generation 
(t-1) and τ is a random number that may take value 0 or 1.  
Function ∆ provides the mutation operator the capability of 
performing a uniform search initially, and very local search 
at later stages. More precisely, 
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where r is a random number from the interval [0,1] and b is a 
user-defined parameter, which determines the degree of 
dependency on the number of generations T. The function ∆ 
returns a value in the range [0, y] such that the probability of 
returning a number close to 0 increases as the search 
progresses.  
2)  Mutation of the right boundary ub 
The right boundary ub of the gene is mutated by applying the 
same method as in case of lb. The only difference is that a= 
lb(t), in order to ensure that always 

)()( tt ublb < (17) 
E.  Setting Parameters  
The crossover operator is applied with a probability 90%. 
The mutation rate is set to 0.9, and the probability of 
mutating the value of a gene is 0.1.  Although, Michalewicz 
suggested an optimal value for the parameter b=5.0, we 
found that the value of b=3.0 ensures population diversity. 
Finally, to ensure population diversity at the later stages of 
the search (when the factor b impose local search) a random 
mutation in the value of the each gene is introduced with a 
very small probability (e.q 0.005). The selection strategy that 
is used in our experiments is a k-fold stochastic tournament 
selection, with tournament size   k=2.  We also used an 
elitism reproduction strategy where the best individual of 
each generation was passed unaltered to the next generation. 
The maximum number of generations was 200, which is the 
only stopping criterion used in our experimentations. Finally, 
the population size is 50 individuals. Knowing the mean 
value md and the standard deviation σd of the patterns for the 
d dimension the corresponding gene is randomly initialised 
within the interval )]4(),4[( dddd mm σσ ∗+∗−  (18) 
 

V. EXPERIMENTAL RESULTS 
We report the results of experiments with two data sets, 
namely DS1 and DS2, which contain patterns in two 
dimensions (Fig. 3).  The number of patterns and the shape 
of clusters in each data set are described in table I.  Both data 
sets are synthetically generated based on, but not identical to 
published data sets: DS1 is from [11], and DS2 is from [12]. 
 

TABLE I 
DATA SETS 

 Number of 
Patterns  

Shape of Clusters Number of 
clusters 

DS1 1120  
noise=0% 

One big and two small 
Circles with the same density 

3 

DS2 1650 
noise=18% 

Various, including ellipsoid, 
triangular, rectangular  

4 

 
 
 
 



 

 
Fig. 3. Data sets 1 and 2. 

 
DS1 contains one big and two small circles with the same 
density. We applied an implementation of the standard k-
means algorithm in DS1 and the clustering results, given in 
Fig 4 (a), are similar to the result reported in [11].  
 

   
Fig. 4. Clustering results for DS1 using k-means (a) and RBCGA (b) 

 
The k-means method splits the large cluster in order to 
minimize the square-error [11]. RBCGA was tested against 
DS1 50 times to find k=3 partitions. The set of parameters 
used for the genetic operators were as defined in section IV 
(E. Setting Parameters). In every 50 repetition RBCGA 
generated clusters similar to those illustrated in Fig. 4 (b). In 
contrast to k-means, RBCGA never splits the big cluster into 
smaller ones.  We increased the density of one of the small 
cluster by a factor 3 and the clustering results were similar. 
The mean fitness value derived from 50 repetitions is around 
0.019. This is an indication that for DS1 our algorithm is not 
sensitive to the initialization phase and always finds a 
solution close to the global optimum.  Finally, the 
convergence speed of RBCGA for the DS1 is around 30 
generations. The relatively small number of generations 
needed for the RBCGA to find the best solution is probably 
due to the absence of noise. Recall that the fitness function 
reduces the weight for rules that contain bins, which are 
sparse, and the more the noise lower the probability of sparse 
bins.   
DS2 contains clusters of various shapes, densities and sizes. 
In addition, DS2 has random outliers scattered in the entire 
space (table I). We evaluated the effectiveness of RBCGA in 
discovering different types of distributions of data. The four 
clusters illustrated in Fig. 3 are well separated each other and 
the k-means algorithm usually reveals the clusters shown in 
Fig. 5(a), but may produce different results depending on the 
initialization phase and the presence of outliers (Fig. 5 (b)). 

       
Fig. 5. Sensitivity of k-means to initialization and outliers. 

 
We run RBCGA 50 times against the DS2 using the set of 
parameters given in section IV (E. Setting Parameters), and a 
typical result is illustrated in Fig. 6. 
 

 
Fig. 6. Rules Discovered by RBCGA. 

 

    
 

 
Fig. 7. Various statistics metrics related to individuals. 

 
It is worthwhile to report that RBCGA always converges to 
solutions where there are no overlapping rules. The 
asymmetry graph in Fig. 7 depicts the mean value of 
asymmetry for all rules regarding the best and worst 
individuals. Clearly, the fitness function biases the 
evolutionary search for solutions that contains rules with 
relatively low asymmetry. The coverage graph in Fig. 7 
corresponding to individual coverage factor Pcov indicates 
that the best individual in each generation always has the 



 

highest Pcov. Finally, the convergence speed of RBCGA for 
the DS2 is around 150 generations, which is considerably 
higher than for DS1. We suspect that the large number of 
generations in case of DS2 is due to the relatively high ratio 
of noise (18%). 

VI. CONLCUSIONS AND FUTURE WORK 

We have presented a genetic rule-based algorithm for data 
clustering. RBCGA evolves individuals consisting of a fixed 
set of clustering rules, where each rule includes d non-binary 
intervals, one for each feature. A flexible fitness function is 
presented which takes into consideration various factors in 
order to maximise interclass dissimilarity and intraclass 
similarity. 
The preliminary experimental results reported in this paper 
show that RBCGA can discover clusters of various shapes, 
sizes and densities. Furthermore, it appears that RBCGA 
never splits a large cluster into smaller ones, which is not the 
case with the standard k-means algorithm. Another important 
characteristic of RBCGA is its insensitivity to the 
initialization phase: it always found solutions close to the 
global optima.  
Unfortunately, RBCGA does not easily scale up is 
concerned. This is due to the form of the fitness function, 
which is computational, very expensive regarding the total 
number of patterns.  Future work should target to improve 
the scalability of RBCGA. This can be achieved by adopting 
the idea of bins in order to replace the raw data with bins. 
Another possible extension of the current work might be the 
attempt to use multi-objective optimization approaches in 
order to handle all the rule-related factors discusses earlier 
with a different weight.  
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