

A Genetic Rule-Based Data Clustering Toolkit

I Sarafis, AMS Zalzala and P W Trinder
Department of Computing and Electrical Engineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK

i.sarafis@hw.ac.uk, a.zalzala@hw.ac.uk, trinder@cee.hw.ac.uk

Abstract- Clustering is a hard combinatorial problem and is
defined as the unsupervised classification of patterns. The
formation of clusters is based on the principle of maximizing the
similarity between objects of the same cluster while
simultaneously minimizing the similarity between objects
belonging to distinct clusters. This paper presents a tool for
database clustering using a rule-based genetic algorithm
(RBCGA). RBCGA evolves individuals consisting of a fixed set
of clustering rules, where each rule includes d non-binary
intervals, one for each feature. The investigations attempt to
alleviate certain drawbacks related to the classical minimization
of square-error criterion by suggesting a flexible fitness function
which takes into consideration, cluster asymmetry, density,
coverage and homogeny.

I. INTRODUCTION

The tremendous volume and diversity of real-world data
embedded in huge databases clearly overwhelm traditional
manual methods of data analysis, such as spreadsheets and
ad-hoc queries. An urgent need exists for a new generation of
techniques and tools with the ability to intelligently and
automatically assists users in analyzing mountains of stored
data for nuggets of useful knowledge. These techniques and
tools are the subject of the field of Knowledge Discovery on
Databases (KDD), which is considered to be the "extraction
of interesting (non-trivial, implicit, previously unknown and
potentially useful) information or patterns from data in large
databases [1]. Data Mining (DM) is a step in the process of
KDD consisting of applying algorithms that, under
acceptable computational efficiency limitations, produce a
particular enumeration of patterns over the data [2].

Clustering is a common data mining task and refers
to the application of algorithms for discovering interesting
data distributions in the underlying data space. Given a large
dataset consisting of multi-dimensional data points or
patterns, the data space is usually not uniformly occupied.
The aim of clustering procedures is to partition a
heterogeneous multi-dimensional data set into groups of
more homogenous characteristics [3]. The formation of
clusters is based on the principle of maximizing similarity
between patterns of the same cluster and simultaneously
minimizing the similarity between patterns belonging to
distinct clusters. Similarity or proximity is usually defined as
a distance function on pairs of patterns and based on the
values of the features of these patterns [4].

II. RELATED WORK

There are four basic types of clustering algorithms:
partitioning algorithms, hierarchical algorithms, density-
based algorithms and grid-based algorithms. Partitioning
algorithms construct a partition of N objects into a set of k
clusters [5]. Hierarchical algorithms create a hierarchical
decomposition of the database that can be presented as
dendrogram [13]. Density-based algorithms search for
regions in the data space that are denser than a threshold and
form clusters from these dense regions [14]. Grid-based
algorithms quantize the search space into a finite number of
cells and then operate on the quantized space [15]. Genetic
algorithms (GA) have been proposed for clustering, because
they avoid local optima and are insensitive to the
initialization [7, 16, 17]. The individuals encode a fixed
number (k) of clusters, using a binary representation for the
center of clusters. The minimization of the squared error
discussed in section III, is the fitness function used to guide
the search.

III. DRAWBACKS OF THE K-MEANS ALGORITHM

The classical k-means clustering algorithm – and its variation
the k-medoids – are representatives of partitioning techniques
and have widely been used in clustering applications [1]. The
reason behind the popularity of the k-means algorithm has to
do with the simplicity and the speed of the algorithm.
Broadly speaking, given the number of desired clusters, k-
means algorithm attempts to determine k partitions that
optimize a criterion function. The square-error criterion E is
the most commonly used and is defined as the sum of the
squared Euclidean distances between each multidimensional
pattern p belonging to Ci cluster and the center mi of this
cluster.

∑∑
= ∈

−=
k

i Cp
i

i

mpE
1

2
 (1)

In k-means algorithm, each cluster is represented by a vector
corresponding to the center of gravity for this cluster (section
IV). In k-medoids, each cluster is described by one of the
patterns, which are closely located to the center of gravity of
this cluster. Both k-means and k-medoids assign pattern to
clusters trying to minimize the square-error function in order
to obtain k partitions that are as compact and separated as
possible. However, there are some well-known drawbacks,
such as sensitivity to the initialization process, which can
lead to local optima, sensitivity to the presence of noise,

discovery of clusters with similar sizes and densities, and
discovery of hyperspherical clusters [3]. The k-means
method works well for clusters that are compact clouds (i.e.
hypersherical in shape) and are well separated from each
other. However, when there are large differences in the sizes
or geometries or densities of different clusters the square
error method could split large clusters to minimize equation
(1) [11].

IV. RULE-BASED GENETIC ALGORITHM

In this paper, we suggest a non-binary, rule-based
representation for the individuals and a flexible evaluation
function, which can be used to alleviate the certain
drawbacks of the k-means methods.

A. Individual Encoding
Let A={A1, A2, …, Ad} be a set of domains and S = A1× A2,
×…× Ad a d-dimensional numerical space. The input consists
of a set of d-dimensional patterns V={p1, p2, ..., pk}, where
each pi is a vector containing d numerical values, pi= [α1, α2,
…, αd]. The jth component (pij) of vector pi is drawn from
domain Aj.
Each individual consists of a set of k clustering rules. The
number of rules is fixed and corresponds to the number of
desired clusters. Each rule is constituted from d genes,
where each gene corresponds to an interval involving one
feature. Each ith gene, i=1,..,d, of the of a rule is subdivided
into two field: lower boundary (lbi) and upper boundary
(ubi), where lb and ub denotes the lower and upper value of
the ith feature in this rule. The conditional part of a rule is
formed by the conjunction (logical AND operator) of d
intervals corresponding to this rule. It should be pointed out
that our approach use real-coded chromosome representation.
For example, consider a string corresponding to the
clustering problem shown in Fig. 1. The two-dimensional
feature space shows k=2 clusters and two features, namely
salary and tax with domains Asalary={0,1000} and
Atax={0,400}, respectively.

Fig. 1. Distribution of patterns for features salary and tax.

Rule A: [[400 ≤salary ≤1000] AND [0 ≤ tax ≤100]]
Rule B: [[0 ≤salary ≤200] AND [300 ≤ tax ≤400]]

The entire chromosome, which corresponds to a complete
solution to the above clustering problem, is illustrated in Fig.
2.

Fig. 2. The structure of the individuals.

B. Fitness Function
In order for a GA-based system to effectively search for the
optimal solutions, an appropriate fitness function must be
carefully implemented. Generally speaking the choice of the
fitness function is closely related to the problem at hand. In
our case, we focus on optimizing a set of clustering criteria
that when they are simultaneously combined can ensure a)
high interclass dissimilarity and b) high intraclass similarity.
Interclass dissimilarity: The distinctness of two rule-
described clusters is defined in terms of the differences in
their descriptions. Obviously, more distinct descriptions for
the clusters produce better problem space decompositions. It
is essential to avoid the generation of overlapping cluster
descriptions.
Intraclass similarity: This refers to the degree of cohesion of
patterns within a specific cluster. The more coherent a cluster
is, the more uniformly distributed (in the d-dimensional
subspace defined by the cluster description) the patterns are.
To evaluate individual’s fitness we consider five different
concepts, namely, rule asymmetry, rule density, rule
coverage, rule homogeny and degree of rule overlapping.
Each one of the above criteria plays an important role in
maximizing interclass dissimilarity and intraclass similarity.

1) Rule asymmetry
Rule asymmetry is a key factor that is used to ensure uniform
distribution of patterns regarding to the patterns’s center of
gravity. Consider the distribution of a set S={p1, p2, ..., pk}
of d-dimensional
patterns with a center
of patterns CP={cp1,
cp2, ..., cpd}, where
cpi denotes the mean
value of patterns in
ith dimension

∑
=

=
k

j
iji p

k
cp

1

1
 and

a center of rule CR={cr1, cr2, ..., crd}, where cri denotes the
mean value of the interval corresponding to the i-th
dimension 2)(iiii lbublbcr −+= . The maximum
distance dpri(max) between cri and cpi (i=1,…, d) is

() 2)(max iii lbubdrp −= , and for each dimension the
coefficient of asymmetry ai is given by equation 2.

(max)i

i
i dpr

dpr
a = (2)

Hence, the coefficient of asymmetry a(R) for the R rule is
given by

∑
=

−=
d

i
iR a

d
a

1
)(

11 (3)

Obviously, the closer CR and CP are, the more uniformly
distributed around the center of gravity the patterns are.

2) Rule density and rule coverage
Broadly speaking, if A is a region in a d-dimensional feature
space defined by the rule R, then it can be represented as the
intersection of the intervals: (lb1≤ x1≤ub1), … , (lbd≤ xd≤ubd),
where lbi and ubi are the lower and upper boundaries of
feature xi. The d-dimensional volume VR is defined as the
product of the d sides dR lllV ∗∗∗= ...21 , where li= ubi -
lbi. Assuming that the region A which, is defined by the rule
R contains nR patterns, then the density of rule R is as
follows:

R

R
R V

nd =)((4)

Each rule R is assigned with another metric called rule
coverage cov(R)

total

R
R n

n=)(cov (5)

where, ntotal denotes the total number of patterns. All the
rule-related concepts are combined into a single function to
evaluate the weight fR of rule R when calculating the fitness
value of the entire chromosome

)()()(cov RRRR daf ∗∗= (6)
3) Rule homogeny
In real-world datasets, highly compact and closely located
clusters can be covered by the same rule. The GA must be
able to identify and quantify discontinuities in the
distribution of patterns for all dimensions and then to
combine the derived information in order to generate for
each rule R a homogeny coefficient h(R). In order to assess
rule’s homogeny, for each dimension d the interval defined
by the rule is subdivided into a number of bins Bins(d). The
optimal upper bound for the width W(d) of the bins is given by
the following equation [9] :

3
1

)(729.3
−

∗∗≤ Rdd nW σ (7)

where, σd is the standard deviation of the patterns belonging
to rule R in d dimension. For each bin the algorithm
calculates its coverage, which is simply the number of
patterns within the bin divided by the nR. Bins with coverage
below a threshold tsparse are considered as sparse and
therefore the homogeny coefficient hd for the d dimension of
rule R is calculated as follows:

binsnumberTotal
binsdenseNumberhd __

__= (8)

In our experiments the value of tsparse is the mean value of the
interval defined between the mean and median value of the
coverage metrics for all bins.
The homogeny coefficient h(R) for the entire rule is the mean
value of the homogeny coefficient for all dimensions

∑
=

=
d

i
iR h

d
h

1
)(

1
 (9)

Equation 6 can now be enchanced by taking into
consideration the factor h(R). Hence, the weight of a rule R
can now be listed as

)()()()(cov RRRRR hdaf ∗∗∗= (10)
In order to prevent the generation of offsprings, which cover
the entire search space equation, some kind of penalty for
“very” large rules should be imposed. This can easily be
done by simply multiplying equation (10) with the factor:

 −

Domain

R
V

V1 (11)

where VDomain denotes the maximum volume of the entire d-
dimensional domain. Hence, each rule is assigned a weight,
which is given by the following equation:

 −∗∗∗∗=

Domain

R
RRRRR V

Vhdaf 1cov)()()()((12)

4) Overlapping rules
During the evolution of individuals overlapping rules may
occur, causing confusion about the most appropriate cluster
to which it should be assigned. In an attempt to penalize
individuals containing overlapping rules, a weighted pattern

coefficient
k

NN
NN RkR

RRw
)()(2

)(1)(...
2

+++= replaces

the total number of patterns nR for each rule, where Nk(R)
represent the number of patterns covered by this rule and (k-
1) additional rules. This appears in all the above equations.
The factor introduced in equation 11 favours “small” rules
and can cause a premature convergence in a suboptimal
solution, because in relatively few generations individuals
containing small rules dominate the population. A way to
avoid this problem is by assigning the entire individual a
pattern coverage factor Pcov defined as follows:

total

k
COV n

kNNNP +++= ...221 (13)

where Nk denotes the total number of patterns covered by k
rules.
5) Final form of the fitness function
In our investigation, rules that contain fewer patterns than a
user-defined threshold a (e.g. 5% of the total number of
patterns), are considered as sparse and are excluded from the
evaluation procedure described above. Furthermore in order
to avoid the generation of empty or sparse rules, a penalty
based on the number of sparse clusters is imposed. So the

total fitness function used in our experiments takes the
following form

 ∗∗

−∗= ∑∑
==

NDR

i
i

COV
NDR

i
i

COV
eval f

NDR
P

TNR
NSRf

NDR
PF

1
)(

1
)(

(14)
where NDR is the number of dense rules included in the
individual, NSR is the total number of sparse rules and TNR
is the total number of rules.

C. Crossover Operator
The crossover operator used in our experiments is an
extension of a standard two-point crossover [10]. Recall that
each individual consists of a set of k clustering rules. The
number of rules is fixed and corresponds to the number of
desired clusters. Each rule is constituted from d genes,
where each gene corresponds to an interval involving one
feature. Each i-th gene, i=1,..,d, of the of a rule is subdivided
into two field: lower boundary (lbi) and upper boundary
(ubi), where lb and ub denotes the lower and upper value of
the i-th feature in this rule. The conditional part of a rule is
formed by the conjunction (logical AND). Two-point
crossover is applied to each of the k rules of the mating
parents generating two offsprings having fixed size. The idea
of performing k crossovers is to enable each rule to move
independently of the others. By adjusting independently each
rule every generation the number of generations needed for
the algorithm to converge is expected to be significantly
reduced.

D. Mutation Operator
When a binary representation is used, the mutation operator
flips the value (bits) of each gene. Our elaborate
representation requires more complex mutation operator,
which can be able to cope with non-binary genes.
Our mutation operator extends the step-size control
mechanism for mutating real-valued vectors, suggested by
Michalewicz [10]. The intuitive idea behind Michalewicz’s
mutation operator is to perform uniform mutation initially
and very local mutation at later stages. Recall that each rule
contains d intervals of the form [lb, ub]. The application of
the mutation operator in such kind of genes with domain
[a, b] is a two-step process: a) mutation of the lb and b)
mutation of ub.
1) Mutation of the left boundary lb
If the operator is applied at generation t then the new lb of
the gene is given by the following equation:

()
()

=−∆+
=−∆+

=
−−

−−

1,
0,

)1()1(

)1()1(
)(τ

τ
ifalbtlb
iflbbtlb

lb
tt

tt
t (15)

where lb(t-1) is the value of the left boundary in generation
(t-1) and τ is a random number that may take value 0 or 1.
Function ∆ provides the mutation operator the capability of
performing a uniform search initially, and very local search
at later stages. More precisely,

()

−∗=∆

 −
b

T
t

ryyt
1

1, (16)

where r is a random number from the interval [0,1] and b is a
user-defined parameter, which determines the degree of
dependency on the number of generations T. The function ∆
returns a value in the range [0, y] such that the probability of
returning a number close to 0 increases as the search
progresses.
2) Mutation of the right boundary ub
The right boundary ub of the gene is mutated by applying the
same method as in case of lb. The only difference is that a=
lb(t), in order to ensure that always

)()(tt ublb < (17)
E. Setting Parameters
The crossover operator is applied with a probability 90%.
The mutation rate is set to 0.9, and the probability of
mutating the value of a gene is 0.1. Although, Michalewicz
suggested an optimal value for the parameter b=5.0, we
found that the value of b=3.0 ensures population diversity.
Finally, to ensure population diversity at the later stages of
the search (when the factor b impose local search) a random
mutation in the value of the each gene is introduced with a
very small probability (e.q 0.005). The selection strategy that
is used in our experiments is a k-fold stochastic tournament
selection, with tournament size k=2. We also used an
elitism reproduction strategy where the best individual of
each generation was passed unaltered to the next generation.
The maximum number of generations was 200, which is the
only stopping criterion used in our experimentations. Finally,
the population size is 50 individuals. Knowing the mean
value md and the standard deviation σd of the patterns for the
d dimension the corresponding gene is randomly initialised
within the interval)]4(),4[(dddd mm σσ ∗+∗− (18)

V. EXPERIMENTAL RESULTS
We report the results of experiments with two data sets,
namely DS1 and DS2, which contain patterns in two
dimensions (Fig. 3). The number of patterns and the shape
of clusters in each data set are described in table I. Both data
sets are synthetically generated based on, but not identical to
published data sets: DS1 is from [11], and DS2 is from [12].

TABLE I
DATA SETS

 Number of
Patterns

Shape of Clusters Number of
clusters

DS1 1120
noise=0%

One big and two small
Circles with the same density

3

DS2 1650
noise=18%

Various, including ellipsoid,
triangular, rectangular

4

Fig. 3. Data sets 1 and 2.

DS1 contains one big and two small circles with the same
density. We applied an implementation of the standard k-
means algorithm in DS1 and the clustering results, given in
Fig 4 (a), are similar to the result reported in [11].

Fig. 4. Clustering results for DS1 using k-means (a) and RBCGA (b)

The k-means method splits the large cluster in order to
minimize the square-error [11]. RBCGA was tested against
DS1 50 times to find k=3 partitions. The set of parameters
used for the genetic operators were as defined in section IV
(E. Setting Parameters). In every 50 repetition RBCGA
generated clusters similar to those illustrated in Fig. 4 (b). In
contrast to k-means, RBCGA never splits the big cluster into
smaller ones. We increased the density of one of the small
cluster by a factor 3 and the clustering results were similar.
The mean fitness value derived from 50 repetitions is around
0.019. This is an indication that for DS1 our algorithm is not
sensitive to the initialization phase and always finds a
solution close to the global optimum. Finally, the
convergence speed of RBCGA for the DS1 is around 30
generations. The relatively small number of generations
needed for the RBCGA to find the best solution is probably
due to the absence of noise. Recall that the fitness function
reduces the weight for rules that contain bins, which are
sparse, and the more the noise lower the probability of sparse
bins.
DS2 contains clusters of various shapes, densities and sizes.
In addition, DS2 has random outliers scattered in the entire
space (table I). We evaluated the effectiveness of RBCGA in
discovering different types of distributions of data. The four
clusters illustrated in Fig. 3 are well separated each other and
the k-means algorithm usually reveals the clusters shown in
Fig. 5(a), but may produce different results depending on the
initialization phase and the presence of outliers (Fig. 5 (b)).

Fig. 5. Sensitivity of k-means to initialization and outliers.

We run RBCGA 50 times against the DS2 using the set of
parameters given in section IV (E. Setting Parameters), and a
typical result is illustrated in Fig. 6.

Fig. 6. Rules Discovered by RBCGA.

Fig. 7. Various statistics metrics related to individuals.

It is worthwhile to report that RBCGA always converges to
solutions where there are no overlapping rules. The
asymmetry graph in Fig. 7 depicts the mean value of
asymmetry for all rules regarding the best and worst
individuals. Clearly, the fitness function biases the
evolutionary search for solutions that contains rules with
relatively low asymmetry. The coverage graph in Fig. 7
corresponding to individual coverage factor Pcov indicates
that the best individual in each generation always has the

highest Pcov. Finally, the convergence speed of RBCGA for
the DS2 is around 150 generations, which is considerably
higher than for DS1. We suspect that the large number of
generations in case of DS2 is due to the relatively high ratio
of noise (18%).

VI. CONLCUSIONS AND FUTURE WORK

We have presented a genetic rule-based algorithm for data
clustering. RBCGA evolves individuals consisting of a fixed
set of clustering rules, where each rule includes d non-binary
intervals, one for each feature. A flexible fitness function is
presented which takes into consideration various factors in
order to maximise interclass dissimilarity and intraclass
similarity.
The preliminary experimental results reported in this paper
show that RBCGA can discover clusters of various shapes,
sizes and densities. Furthermore, it appears that RBCGA
never splits a large cluster into smaller ones, which is not the
case with the standard k-means algorithm. Another important
characteristic of RBCGA is its insensitivity to the
initialization phase: it always found solutions close to the
global optima.
Unfortunately, RBCGA does not easily scale up is
concerned. This is due to the form of the fitness function,
which is computational, very expensive regarding the total
number of patterns. Future work should target to improve
the scalability of RBCGA. This can be achieved by adopting
the idea of bins in order to replace the raw data with bins.
Another possible extension of the current work might be the
attempt to use multi-objective optimization approaches in
order to handle all the rule-related factors discusses earlier
with a different weight.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the provision of the EOS
software by BT’s Intelligent Systems Laboratory.

REFERENCES

[1] J. Han and M. Kamber, “Data Mining: Concepts and
Techniques,” Morgan Kaufman Publishers, 2000.

[2] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R.
Uthurusamy, “Advances in Knowledge Discovery and Data
Mining”, AAAI Press/The MIT Press, 1996.

[3] R.O. Duda and P.E Hart, “Pattern Classification and
Scene Analysis”, John Wiley & Sons, NY, USA, 1973.

[4] A.K. Jain and R.C. Dubes, “Algorithms for Clustering
Data”, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[5] L. Kaufman, “Finding groups in data: an introduction to
cluster analysis”, Wiley, New York, 1990.

[6] E. Bonsma, M. Shackleton and R. Shipman, “Eos - an
evolutionary and ecosystem research platform”, BT
Technology Journal, 18(14):24-31, 2000.

[7] Estivill-Castro, “Hybrid genetic algorithms are better for
spatial clustering”, Technical Report 99-08, Department of
Computer Science and Software Engineering, The University
of Newcastle, Callaghan, 2308 NSW, Australia, 1998.

[8] David E. Goldberg, “Genetic Algorithms in Search,
Optimization, and Machine Learning”, Addison-Wesley,
Reading, Massachusetts, 1989.

[9] David W.Scott, “Multivariate Density Estimation:
Theory”, Practice and Visualization (John Wiley, New York,
NY) 1992.

[10] Zbigniew Michalewicz, “Genetic Algorithms + Data
Structures = Evolution Program”, Third Edition, Springer-
Verlag, 1996.

[11] S. Guha, R. Rastogi, and K. Shim, “CURE: An efficient
clustering algorithm for large databases”, In Proceedings of
ACM SIGMOD International Conference on Management of
Data, pages 73--84, New York, 1998.

[12] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon:
Hierarchical clustering using dynamic modeling”, IEEE
Computer 32, pp. 68-75, August 1999.

[13] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH:
An Efficient Data Clustering Method for Very Large
Databases”, In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, pp. 103--
114, Montreal, Canada, 1996.

[14] A. Hinneburg, D.A Keim, “An Efficient Approach to
Clustering in Large Multimedia Databases with Noise”, In
Proceedings of the 4rd International Conference on
Knowledge Discovery and Data Mining, AAAI Press, 1998.

[15] W. Wang, J. Yang, and R. R. Muntz, “STING: A
Statistical Information Grid Approach to Spatial Data
Mining”, In Proceedings of the 23rd VLDB, pp. 186-195,
Athens, Greece, 1997.

[16] K. Krishna and M. Murty, “Genetic K-means
algorithm”, IEEE Transactions on Systems, Man, and
Cybernetics - PartB: Cybernetics, 29(3):433—439, 1999.

[17] L. O. Hall, I. B. Ozyurt, and J.C. Bezdek, “Clustering
with a genetically optimized approach”, IEEE Transactions
on evolutionary Computation, 3(2):103--112, July 1999.

