
Cost-Driven Autonomous Mobility

Xiao Yan Deng∗, Greg Michaelson, Phil Trinder

School of Mathematical and Computer Sciences

Heriot-Watt University, Edinburgh, EH14 4AS,Scotland

Abstract

Autonomous mobile programs (AMPs) offer a novel decentralised load
management technology where periodic use is made of cost models to decide
where to execute in a network. In this paper we demonstrate how sequential
programs can be automatically converted into AMPs. The AMPs are gen-
erated by an automatic continuation cost analyser that replaces iterations
with Costed Autonomous Mobility Skeletons (CAMS), that encapsulate au-
tonomous mobility. The CAMS cost model uses an entirely novel continua-
tion cost semantics to predict both the cost of the current iteration and the
continuation cost of the remainder of the program. We show that CAMS
convey significant performance advantages, e.g. reducing execution time by
up to 53%; that the continuation cost models are consistent with the exist-
ing AMP cost models; and that the overheads of collecting and utilising the
continuation costs are relatively small. We discuss example AMPs generated
by the analyser and demonstrate that they have very similar performance to
hand-costed CAMS programs.

Key words: Autonomous Systems, Load Balancing, Cost Models, Jocaml

1. Introduction

The explosive growth in wired and wireless networks enables the con-
struction of substantial distributed systems based on shared interconnected
clusters. However, the effective use of such systems raises pressing prob-
lems for the optimal utilisation of resources in the presence of dynamically

∗Corresponding author.
Email addresses: xyd3@macs.hw.ac.uk (Xiao Yan Deng), greg@macs.hw.ac.uk

(Greg Michaelson), trinder@macs.hw.ac.uk (Phil Trinder)

Preprint submitted to COMPUTER LANGUAGES, SYSTEMS AND STRUCTURESNovember 10, 2008

changing and unpredictable demand. The simplest approach is to statically
allocate new jobs to available resources, either blindly based on snapshots of
local cluster loads, or through various strategies for balancing user predicted
demand against available resource. However, such approaches can quickly
become suboptimal, especially if demand is predicted inaccurately, leading
to over or under resource allocation, or to resources being freed or retained
unpredictably.

An alternative is to try to dynamically manage resource consumption
by moving live jobs across processors or clusters at run time to maintain
balance. Load management and analysis of patterns of resource use may
be either centralised at a single location or, in larger networks, decentralised
across a number of locations. Such load monitoring can incur significant
local and global housekeeping overheads. More problematic, dynamic load
management is reactive and is driven by the need to continually recover from
imbalance.

We are exploring a novel approach to decentralised load management,
where decisions about when and where to execute are devolved to individ-
ual programs. That is, we develop autonomous mobile programs(AMPs)[1]
where, instead of some external system managing load, the program itself
decides whether its resource needs would be better served by movement to
another location. Furthermore, rather than simplistic movement based solely
on identifying the most lightly loaded location, our AMPs are aware of their
future resource needs and hence can make informed decisions about whether
those needs are best served locally or by movement elsewhere. We have
shown that collections of AMPs, while not aware of each other individually,
will nonetheless move to maintain optimal balance collectively [1].

The novelty in our approach lies in each program bearing its own cost
model which is parameterised on the remaining execution time and data
sizes. However, constructing AMP cost models by hand is a skilled task, so
we have been exploring common patterns of mobility we term autonomous
mobility skeletons (AMSs)[2] with standard cost models. Anticipating that
the most effective locus of mobility control lies in top-level iterations, our
AMSs generalise standard iterative forms. For example auto iter evaluates
the cost model to assess the benefits of moving periodically during a Java
iteration. Likewise auto map periodically considers moving while applying a
function to each element of a sequence.

While AMSs greatly simplify the construction of AMPs, nonetheless they
still require considerable proficiency in cost model construction. Hence, we

2

have been investigating the automatic generation of cost models from pro-
grams using AMS as loci[3]. Our results suggest that even simple auto-
matically generated cost models can be highly effective in enabling mobile
programs to adapt sanely to dynamically changing environments.

Novelty

The paper situates the work (Section 2) and outlines earlier work (Sec-
tion 3) before making the following four research contributions.

• We present a new continuation cost semantics for a core mobile func-
tional programming language J that predicts the cost of computing
the remainder of a program at arbitrary program points. We believe
our cost semantics is the first to cost continuations rather than entire
programs. The continuation cost equations are generated statically
but are designed to be parameterised dynamically to more accurately
predict the time to evaluate the remainder of the program (Section 4).

• The continuation costs are incorporated into a cost model for high-
level abstractions of autonomously-mobile iterations over collections,
called Costed Autonomous Mobility Skeletons (CAMS), and a Jocaml
implementation of a CAMS is exhibited (Section 5).

• We evaluate the continuation cost semantics and CAMS using six pairs
of programs to show, inter alia, the following. The continuation cost
models are consistent with the existing AMP cost models. The over-
heads of collecting and utilising the continuation costs are relatively
small. Most significantly, utilising the predicted continuation costs can
convey significant performance advantages compared with both static
and AMS programs (Section 6).

• We show that sequential programs can be automatically converted into
AMPs that move to better exploit computational resources on a net-
work. We do so by exhibiting an automatic continuation cost analyser
that implements the continuation cost semantics to supply cost equa-
tions to a translator that replaces iterating higher-order functions with
the corresponding CAMS. We show example AMPs generated by the
analyser and demonstrate that they have very similar performance to
hand-costed CAMS programs (Section 7).

3

The continuation cost analyser and CAMS were outlined in [3]. Here
we present the underlying indexing, cost semantics, and continuation cost
semantics. We likewise present the CAMS cost model and implementation
for the first time, evaluate CAMS performance against more AMPs and make
a deeper performance analysis. Finally we elaborate the architecture of the
continuation cost analyser, and demonstrate it against further, and more
substantial, examples.

2. Related Work

The idea of relocating a process during execution has existed for some
time, and is termed migration, rescheduling or strong mobility by differ-
ent communities. Strong mobility is discussed in section 2.1. Much work
was done on load management using task migration in distributed operat-
ing systems in the 1970s [4], and some well known examples are Mach [5]
and MOSIX [6]. Sophisticated distributed memory implementations of par-
allel programming languages support task migration, for example the Charm
parallel C++[7]. However, where parallel languages are typically designed
for homogeneous dedicated architectures, AMPs operate on heterogeneous
shared architectures. Moreover, both distributed operating systems and par-
allel programming languages differ from AMPs as the tasks are passive, and
the scheduling is typically centralised.

Grid workflow reschedulers are more closely related to AMPs, and are
currently the focus of considerable research effort. An excellent taxonomy
of Grid workflow management systems can be found in [8]. Like AMPs
Grid workflow reschedulers operate on heterogeneous shared networks, and
many make decentralised scheduling decisions, use performance prediction
to inform scheduling decisions, and reschedule after periodic reassessment
of system status. However our AMP approach is novel in automating the
performance prediction process as a one-off, compile-time program analysis,
and in devolving the rescheduling decisions to individual programs. Effective
load management is only derived as an emergent behaviour from collections
of AMPs.

Although loop scheduling mechanisms [9], many algorithmic skeletons [10],
and autonomous mobility skeletons (AMS) all operate on iterations, they do
so for very different purposes. Both algorithmic skeletons and loop scheduling
mechanisms parallelise their own iterations. In contrast, AMS do not par-
allelise iterations but rather use them to to predict work and to determine

4

whether to move.
The remainder of this section surveys related work in the three core AMP

technologies: mobile computations, autonomous systems and cost analysis.

2.1. Mobility and Mobile Languages

Mobile computations can move between locations in a network and po-
tentially enable better use of shared computational resources [11]. Mobile
programming languages like Jocaml [12] or Java Voyager [13] give program-
mers control over the placement of code or active computations across the
network. Basically a mobile program can transport its state and code to
another location in a network, where it resumes execution [14].

Fuggetta et. al. distinguish two forms of mobility supported by mobile
languages [15]. Weak mobility is the ability to move only code from one lo-
cation to another. Strong mobility is the ability to move both code and its
current execution state[2]. Jocaml is a strict functional programming lan-
guage with strong mobility, and while JavaGo also supports strong mobility,
Voyager supports only weak mobility. While strong mobility is required for
arbitrary AMPs, they may be constructed in a language with weak mobility
if the locus of movement is a function without external states beyond param-
eter values. Thus, AMPs[1] and AMSs[2] have been developed in Jocaml,
Java Voyager, and JavaGo. However the cost semantics we define, automate
and evaluate in sections 4 - 7 is for substantial subset of Jocaml only.

AMPs are relatively unusual mobile programs. AMPs relocate to obtain
computational resource and hence collections of AMPs manage load. In
contrast most strongly mobile programs relocate to obtain other resources,
e.g. access to a specific repository. Moreover, where movement control is
explicit in most strongly mobile programs, the purpose of our cost analysis
and of AMS and CAMS is to make the movement as implicit as possible.

2.2. Agents & Autonomous Systems

Agent technology is a high-level, implementation independent approach
to developing software as collections of distinct but interacting entities which
cooperate to achieve some common goal. With the continuing decline in price
and increase in speed of both processors and networks, it has become feasible
to apply agent technology to problems involving cooperation in distributed
environments, in particular, where agents may change location, typically to
manipulate resources in varying locations.

5

An agent is “an encapsulated computer system that is situated in some
environment, and that is capable of flexible, autonomous action in that en-
vironment in order to meet its design objectives” [16, 17]. An agent with
mobility is called a mobile agent [18], and AMPs are mobile agents.

Autonomous systems are also called autonomic computing systems, and
a definition has been given by IBM: “autonomic computing system can man-
age themselves given high-level objectives from administrators” [19, 20]. and
maintenance. Autonomic systems will maintain and adjust their operation
in the face of changing components, workloads, demands, and external con-
ditions and in the face of hardware or software failures. Four aspects of
self-management are Self-configuration, Self-optimisation, Self-healing, and
Self-protection. Different autonomic systems may have some or all these four
aspects. AMPs are primarily self-optimisation systems. They are aware of
their processing resource needs and sensitive to the environment in which
they execute, and are able to dynamically relocate themselves to minimise
processing time in the presence of varying external loads on shared locations.

Most distributed environments are shared by multiple users. In particu-
lar, distributed agent-based systems must also contend with external compe-
tition for resources, not least for the locations they share. The agents com-
munity has focused on autonomous problem solving, which can act flexibly
in uncertain and dynamic environments. Mobile languages provides efficient
tools to make the agent move more flexibly in the large scale network, which
make it possible to build self-management systems (autonomous systems) for
resource sharing using agent technology. So many autonomous systems are
based on mobile agents [16].

AMPs have strong connections with both Agents and Autonomous Sys-
tems, but they also have important differences. Firstly, unlike previous mo-
bile agents approaches, AMPs have cost models and are autonomous, making
decision themselves when and where to move according to the cost model.
Furthermopre, unlike traditional autonomous systems [19, 21, 22], which use
schedulers to decide whether to move, AMPs themselves can make the deci-
sion when and where to move according to the cost model [1].

2.3. Cost Analysis

Cost models estimate the resource consumption of a program, typically
it’s execution time or memory consumption [23]. Although the cost of an ar-
bitrary program cannot be accurately modelled, as this would imply solving
the halting problem, useful predictions can be obtained for many programs.

6

Costs may be modelled statically prior to execution, or dynamically during
execution. Our work focuses primarily on generating static models of com-
putation, communication, and coordination costs: the latter being the cost
of determining where best to execute in a network. Here, statically gen-
erated models are dynamically instantiated to predict and adapt program
behaviour.

Predicting resource consumption is an important problem and a range
of static computation cost models have been constructed. Early work in-
cludes that of Cohen and Zuckerman, who consider cost analysis of Algol-60
programs [24]; Wegbreit, whose pioneering work on cost analysis of Lisp
programs addressed the treatment of recursion [25]; and Ramshaw [26] and
Wegbreit [27], who discuss the formal verification of cost specifications. Many
of the cost analyses use non-standard semantics, e.g Rosendahl [28] uses ab-
stract interpretation for cost analysis, and Wadler [29] uses projection anal-
ysis.

Recent approaches use type inference to model time and space costs. In
their influential paper, Hughes and Pareto[30] combine a sized type system
with region based memory management to semi-automate the prediction of
space costs in Embeded ML. Hammond et al [31] have extended the ap-
proach to develop a sized time system for a model higher-order functional
language. In complementary work, Hofmann and Jost[32, 33] have been ex-
ploring amortised cost models for heap use, which Hermann et al[34] have
extended to stack, heap and time analysis. Finally, Brady and Hammond[35]
have been using dependent types to support static cost analysis.

Cost models that incorporate communication costs are well developed for
parallel programming languages. For example many parallel languages use
algorithmic skeletons which encapsulate the expression of parallelism, com-
munication, synchronisation and embedding, and often have an associated
cost model. Thus, Skillicorn and Cai have developed a cost calculus for the
Bird Meertens Formalism (BMF) [36], and Rangaswami has developed the
HOPP skeleton-based parallel programming language with an associated
cost model [37].

We have developed a generic cost model for AMPS that incorporates not
only computation and communication cost, but also coordination costs. We
believe this is one of the first cost models for a mobile language. This generic
model is instantiated for specific instances, e.g. for matrix multiplication [1,
2]. The continuation cost semantics we present in Section 4 uses an approach
similar to [38], but calculates costs using a non-standard semantics rather

7

than type inference.
The cost semantics is extremely novel in being the first semantics to

cost continuations. Additional novelty is provided by costing coordination
alongside the classical computation and communication costs.

3. Previous Work

3.1. Autonomous Mobile Programs

To manage load on large and dynamic networks we have developed what
we term autonomous mobile programs (AMPs), which are aware of their
processing resource needs and sensitive to the environment in which they
execute [1]. Unlike autonomous mobile agents that move to change their
function or computation, an AMP always performs the same computation,
but move to change coordination, i.e. to improve performance. AMPs are
able to dynamically relocate themselves to minimise execution time in the
presence of varying external loads on a network of shared locations. The
advantages of an AMP architecture are as follows.

• Mobility is truly autonomous as the AMPs themselves use local and
external load information to determine when and where to move rather
than relying on a central scheduler.

• AMPs combine analytic cost models with empirical observation of their
own behaviours to determine their current progress. The generic AMP
cost model is reprised in Section 5.1.

• The cost of movement can be kept to a very small proportion of over-
all execution time, under the assumption that location performance
does not change radically immediately after a move, see discussion of
Equation (20) in Section 5.1.

A limitation of the cost model is that the parameterisation assumes that
the computation is regular in the sense that the computational cost of each
iteration is similar to those of the preceding iterations. This is formalised
and discussed further in Section 5.

8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200

T
im

e(
S

ec
)

Size(n)

"mobile"
"static"

Figure 1: AMP and Static Matrix Multiplication Execution Time

3.2. Single AMP Performance

AMPs may dramatically reduce execution time. Figure 1 compares the
execution times of static and mobile matrix multiplication programs. Our
test environment is based on three locations with CPU speed 534MHZ,
933MHZ and 1894MHZ. The loads on these three computers are almost zero.
We launch both static and mobile programs on the first location. The exe-
cution time of the static and mobile programs is very similar up to matrix
sizes of 500x500 as both programs execute on the original location. For
matrix sizes above 500x500 the cost of moving is outweighed by the speed
of the fastest location and the mobile program moves, successfully reducing
execution time for all larger matrices.

Figure 2 shows the movement of the AMP matrix multiplication during
successive execution time periods with CPU speeds normalised by the local
loads. We launch the AMP in time period 0 on Loc1. In time period 1 it
moves to the fastest processor currently available Loc3. When Loc3 becomes
more heavily loaded in period 2 the AMP moves to the new fastest processor
Loc5. In time period 3, Loc4 becomes less loaded and hence fastest location,
so the AMP moves to it. Similarly for the other moves.

9

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8

R
E

LA
T

IV
E

 C
P

U
(M

Z
H

)

TIME PERIOD

(1)

(2) (3)

(4)

"program"
Loc1
Loc2
Loc3
Loc4
Loc5

Figure 2: Single AMP Matrix Multiplication Movement

We draw the following conclusions from Figure 2:

• The program may move repeatedly to adapt to changing loads and
always finds the fastest location in a single step.

• Move (1) shows that if there is a faster location then the AMP moves
to it.

• Move (2) shows that AMPs can respond to changes in current location.

• Move (3) shows that AMPs can respond to changes in other locations.

• Move (4) shows that even if the speed differential is small, the AMP
moves.

3.3. Collections of AMPs

A collection of AMPs is balanced if every AMP has similar relative CPU
speed, i.e. CPU speed divided by load, available to it. Experiments on both
homogeneous and heterogeneous networks show that collections of AMPs

10

quickly obtain and maintain balanced loads on the locations of a network [1]
and [2].

For illustration Figure 3 shows the movement of 25 AMPs on a network
of 15 locations with CPU speeds 3193MHz (Loc1-Loc5), 2168MHZ (Loc6-
Loc10), and 1793MHz (Loc11-Loc15). All the AMPs are launched on Loc1,
and after some movements the AMPs achieve a balance (denoted B in the
figure) in time period “k” with one AMP on each of the slower machines
(Loc11-Loc15), two AMPs on each of the faster machines (Loc2-Loc10), ex-
cepting that one of the faster machines has 3 AMPs and the launch location
(Loc1) is a communication bottleneck and has just 1 AMP. Thereafter the
AMPs remain statically balanced until an AMP on the fast Loc4 terminates
at period “k+x”, inducing a rebalancing period (denoted R in the figure)
until period “l”. The AMPs remain statically balanced until an AMP on the
slow Loc12 terminates at period “l+y”, inducing a rebalancing period until
period “m”.

Loc1

Loc2

Loc3

Loc4

Loc5

Loc6

Loc7

Loc8

Loc9

Loc10

Loc11

Loc12

Loc13

Loc14

Loc15

0 1 k k+1 k+x k+x+1 l l+1 l+y l+y+1 m m+1 n

LO
C

A
T

IO
N

S

TIME PERIOD

B :Balancing
R:Removing AMP(s)

25 1

3

2

2

2

2

2

2

2

2

1

1

1

1

1
B

..... 1

3

2

2-1

2

2

2

2

2

2

1

1

1

1

1
R

..... 1

3

2

2

2

2

2

2

2

1

1

1

1

1

1
B

..... 1

3

2

2

2

2

2

2

2

1

1

1-1

1

1

1
R

..... 1

3

2

2

2

1

1

2

2

2

1

1

1

1

1
B

.....

Figure 3: 25 AMPs on a Heterogeneous Network (15 Locations)

3.4. Autonomous Mobility Skeletons
A disadvantage of directly programming AMPs is that the cost model,

mobility decision function, and network interrogation are all explicit in the

11

program. We have defined and evaluated autonomous mobility skeletons
(AMS) that encapsulate autonomous mobility for common patterns of com-
putation over collections [2]. AMSs are polymorphic higher-order functions,
such as that make mobility decisions by combining generic and task specific
cost models. We have built AMSs for the classic higher-order functions map

and fold and for the object-oriented Iterator interface [39]. decisions.
The automap AMS, performs the same computation as the map high

order function, but may cause the program to migrate to a faster loca-
tion. The standard Jocaml map, map f [a1; ...;an] applies function f

to each list element a1, ...,an, building the list [f a1; ...; f an]. au-
tomap, automap cur f [a1;...;an] computes the same value but takes
another argument cur, recording current location information, e.g. CPU
speed and load. The standard left fold, fold f a [b1; ...; bn], com-
putes f (... (f (f a b1) b2) ...) bn. autofold f a [b1;...;bn]

computes the same value but may migrate to a faster location. The automap

and autofold AMSs have also been constructed in both Jocaml and Java
Voyager.

In the object-oriented as opposed to the functional paradigm, the Java
Iterator specifies a generic mechanism to enumerate the elements of a col-
lection. The AutoIterator AMS class implements the Iterator methods
(hasNext, next and remove), and extends it with autonext, which has the
same functionality as next but can make autonomous mobility

4. Continuation Cost Calculus

Autonomous mobility skeletons only consider the costs of a single collec-
tion iteration. This is adequate only if a single collection iteration dominates
the computational cost of the program. To deploy autonomous mobility ef-
fectively more generally, it is necessary to know the cost of the remainder of
the program in addition to the cost of the current iteration. The cost of the
remainder of the program is precisely the cost of the program continuation
in denotational semantics [40] and we term it the continuation cost.

To the best of our knowledge the continuation cost model presented here
is the first such model ever described. To calculate the continuation cost
at an arbitrary program point, the cost of every expression must first be
calculated. To illustrate the concept we use a small language, e ::= n | e+e,
where n is integer. Cost judgements have the form E ⊢c e $ c indicating
that the cost e is c in cost environment E. Given this cost function, the

12

continuation cost judgements have the form E ⊢a e � e′ £ c indicating that
the continuation cost after e in e′ is c in cost environment E. For example

in 2+3, the continuation cost of 2 can be calculated as E⊢c 3 $ c3 E⊢c +$ c+

E⊢a 2 � (2+3) £ c3+c+
,

where c3 is the cost of 3, c+ is the cost of “+”, and the continuation cost of
2 is c3 + c+.

A key issue with continuation costs is to distinguish the intended expres-
sion if it occurs more than once in a program. For example, in expression
10+10, there are two 10s and their continuation costs are different. To solve
this problem the program is indexed, i.e. every expression in a program is
assigned a unique number, its index. After indexing, the expression 10+10

becomes < 3, < 1,10> + < 2,10>>, and the two 10s can be distinguished
as < 1,10> and < 2,10>.

Continuation costs are calculated in the following three stage process

• Index the program (Appendix A).

• Calculate the cost of all expressions in the program (Section 4.2).

• Calculate the continuation cost of a specified program point (Section 4.3).

For reference Figure 4 lists the semantic functions used in the calculus,
and defined in the following sections. In these semantic functions, cost is
integer and the environment env incorporates costs, i.e. env : (v ∗ cost)∗.

⊢i : n → e → e * n index
⊢c : env → e → n expression cost
≡ : e → e syntactic equality
∈ : e → e → boolean syntactic containment
⊢a : env → e → e → cost continuation cost

Figure 4: Semantic Functions

Calculating the cost of expression uses standard static cost semantics
techniques as discussed in section 2.3. However, calculating the continua-
tion costs is entirely novel as most cost models cost entire terms. Both the
cost semantics and continuation cost semantics have been implemented as
components of an Automatic Continuation Cost Analyser, as described in
section 7.1.

13

4.1. Syntax of Language J ′

Continuation cost semantics have been defined for J , a substantial sub-
set of the Jocaml mobile programming language. J is a core functional
language including specific higher-order functions like map and fold, and is
readily able to describe non-trivial programs like matrix multiplication and
ray tracing. The syntax and cost calculus for J is presented in [41]. As
a vehicle for explaining the principles of the semantics in this paper, this
section introduces a simpler language J ′, a subset of J . A subset of a strict
functional language is chosen because it is significantly easier to define cost
analyses for them than for their lazy counterparts.

e ::= expression
k constant

| v variable
| fun v → e lambda
| e e application
| e op e operation
| map e e map

| e (* e *) user cost pragma
| < n, e > index

op ::= operator
+ | - | * | / arithmetical

| > | < | >= | <= | = | ! = logical
| :: cons
| ; sequential composition

Figure 5: Syntax of J ′

Figure 5 shows the abstract syntax of J ′. To simplify the presentation it
is assumed that all identifiers (v) are unique. J ′ is a core lambda calculus
with two unusual expression, the index expression and user cost pragmas.
The index expression is required as every subexpression in the program is
indexed with a unique integer n. As costing arbitrary recursive functions
is undecidable, user cost pragmas are introduced, and their application is
elaborated in Section 4.2, with examples in Section 7.4.

14

4.2. Cost Semantics

Figure 6 defines the cost semantics for J ′, E ⊢c e $ n The ⊢c function
takes a cost environment (E) and an expression (e), and returns the predicted
cost (n) in that environment. This cost semantics is standard, and is similar
to [38] and others.

The cost environment records the cost of accessing variables, and in a lan-
guage like J ′ that omits data structures, e.g. tuples, this is always 0. The cost
environments are included in the cost semantics in Figures 6 and 8 to illus-
trate how they are used in richer languages like J that have structured data.
The cost semantics reflects the strict, or applicative, semantics of Jocaml,
e.g. the cost of evaluating function arguments is reflected in Equations (4)
and (7).

E ⊢c k $ 0
(1)

{v, c} ⊕ E ⊢c v $ c + 1
(2)

{v, 0} ⊕ E ⊢c e $ c

E ⊢c fun v → e $ c
(3)

E ⊢c e1 $ c1 E ⊢c e2 $ c2

E ⊢c (e1 e2) $ c1 + c2
(4)

E ⊢c e1 $ c1 E ⊢c e2 $ c2

E ⊢c e1 op e2 $ 1 + c1 + c2
(5)

E ⊢c e (∗ c ∗) $ c
(6)

E ⊢c e1 $ c1 E ⊢c e2 $ c2

E ⊢c map e1 e2 $ c1 ∗ (length e2) + c2
(7)

E ⊢c e $ c

E ⊢c < i, e > $ c
(8)

Figure 6: Cost Semantics for J ′

Equation (1) calculates the cost of an constant as 0.

15

Equation (2) shows that the cost of the value of a variable v has has been
stored in the environment as c, so the total cost of v is calculated as c plus
an access cost of 1.

Equation (3) calculates the cost of a lambda abstraction as the the cost
of the body in an environment where the the parameter has zero cost.

Equation (4) calculates the cost of a function application as the cost of
the function body c1 plus the cost of the argument c2. Equation (5) is very
similar.

Equation (6) enables the user to specify a cost and is intended to be used
for arbitrary recursive functions.

Equation (7) calculates the cost of a map as the sum of the cost of com-
puting the list c2 and the product of the cost of the function body c1 and the
length of the list. Note that this equation assumes that the cost of applying
the mapped function to every list elements is uniform.

Equation (8) calculates the cost of index expression as the cost of the
expression.

Figure 7 shows the costing of (map (fun x→x+10) [20]) in a cost en-
vironment E that is initially empty. During the evaluation the environ-
ment is extended with x bound to zero, i.e. E’ = {x, 0} ⊕ E. Index-
ing this expression produces <8,(map <4,(fun x→ <3,(<1,x>+<2,10>)>)>

<7,<5,20>::<6,[]>>)>, as depicted in Figure 29. However for clarity in the
example costing we elide the indices. The predicted cost of 3 is the sum of
the cost of evaluating the list (1) and the product of the cost of the func-
tion body (2) and the length of the list (1). The automated cost analyser
presented in Section 7 produces the following unsimplified cost term for this
expression: (1 + ((1 + 0) + 0)) ∗ (length [20]) + (1 + (0 + 0)).

E′ ⊢c x $ 0 + 1 E′ ⊢c 10 $ 0 (2,1)

E′ ⊢c x + 10 $ 1 + ((0 + 1) + 0) (5)

E ⊢c fun x → (x + 10) $ 2 (3) E⊢c 20 $ 0 E⊢c [] $ 0 (1,1)

E⊢c 20::[] $ 1+(0+0) (5)

E ⊢c map (fun x → (x + 10)) ([20]) $ 2 ∗ (length [20]) + 1 (7)

Figure 7: J ′ Cost Example

16

e ≡ e′

E ⊢a e � e′ £ 0
(9)

e ∈ e1 E ⊢a e � e1 £ c

E ⊢a e � fun v → e1 £ c
(10a)

e /∈ e1

E ⊢a e � fun v → e1 £ 0
(10b)

e ∈ e1 E ⊢a e � e1 £ c1 E ⊢c e2 $ c2

E ⊢a e � (e1 e2)£ c1 + c2
(11a)

e ∈ e2 E ⊢a e � e2 £ c2

E ⊢a e � (e1 e2)£ c2
(11b)

e /∈ e1 e /∈ e2

E ⊢a e � (e1 e2)£ 0
(11c)

e ∈ e1 E ⊢a e � e1 £ c1 E ⊢c e2 $ c2

E ⊢a e � (e1 op e2)£ 1 + c1 + c2
(12a)

e ∈ e2 E ⊢a e � e2 £ c2

E ⊢a e � (e1 op e2)£ c2 + 1
(12b)

e /∈ e1 e /∈ e2

E ⊢a e � (e1 op e2)£ 0
(12c)

E ⊢a e � e1 (∗ c ∗)£ 0
(13)

e ∈ e1 E ⊢c map e1 e2 $ c E ⊢a e � e1 £ c1

E ⊢a e � map e1 e2 £ c + c1 + c2
(14a)

e ∈ e2 E ⊢c map e1 e2 $ c E ⊢a e � e2 £ c2

E ⊢a e � map e1 e2 £ c + c2
(14b)

e /∈ e1 e /∈ e2

E ⊢a e � map e1 e2 £ 0
(14c)

E ⊢a e � e1 £ c

E ⊢a e� < i, e1 > £ c
(15)

Figure 8: Continuation Cost Semantics for J ′

17

4.3. Continuation Cost Semantics

This section introduces the continuation cost semantics of J ′, and we
believe the first ever continuation cost semantics for any language. Con-
tinuation costs could be calculated by translating the direct program into
continuation passing style (CPS) [42], and then costing the continuations
now explicit in the program. We prefer the direct programming style and
hence to pass the continuation costs rather than the continuations. An addi-
tional advantage is that the integer cost parameters are rather simpler than
continuations to pass and manipulate.

To define continuation costs we must be able to determine both the syn-
tactic equality (e ≡ e′) of expressions and to determine when one expression
syntactically contains another (e ∈ e′). These definitions are standard and
are discussed in Appendix B.

Figure 8 defines the continuation cost semantics for J ′, E ⊢a e � e′ £n.
The ⊢a function takes a cost environment (E) and and two expressions (e
and e′) and returns the predicted continuation cost of the first expression in
the second: that is, the work that remains to be done in e′ after evaluating
e. Like the cost semantics, the continuation costs reflect the strict semantics
of Jocaml.

Equation (9) specifies that the continuation cost of an expression in itself
is 0.

Equation (10a) specifies that the continuation cost of an expression con-
tained in a lambda abstraction the continuation cost in the body. Conversely
Equation (10b) specifies that is expressions not contained in the abstraction
have continuation cost 0.

Equation (11a), (11b), and (11c) specify the continuation cost of an ex-
pression in a function application. Equation (11c) specifies that expressions
not contained in the application have continuation cost 0. Equation (11b)
specifies that expressions contained in the argument have the continuation
cost of the argument. Equation (11a) specifies that expressions contained in
the function body have continuation cost comprising the cost of the argu-
ment plus the continuation cost of the expression in the function body. Note
that as every expressions has a unique index, only one of Equations (11a)
or (11b) will ever apply.

Equation sets (20) and (22) are similar to Equation set (19).
Equation (13) specifies that the continuation cost of an expression in a

user cost expression is 0.

18

Equation (15) specifies that the continuation cost of an expression e in
an indexed expression e1 is the the continuation cost of e in e1.

E ⊢a 15 � 15 £ 0 (9) E ⊢c map (fun x → (x + 10)) (20 :: []) $ 3 (Figure 7)

E ⊢a 15 � 15 :: map (fun x → (x + 10)) (20 :: [])£ 1 + 0 + 3 (12a)

E ⊢a 15 � 8 :: 15 :: map (fun x → (x + 10)) (20 :: [])£ 1 + 0 + 3 (12b)

Figure 9: J ′ Continuation Cost Example

Figure 9 illustrates continuation costing by determining the continuation
cost of 15 in 8::15::(map (fun x ->x+10) [20]). The continuation cost
of 1 + 0 + 3 comprises three parts: a unit cost for the second cons (::)
operation, a zero cost for the 15, and a 3 unit cost for the map expression,
as determined in Figure 7. This latter cost is a cost and not a continuation
cost. Note also that the cost of performing the first cons operation (8 ::) is
not included as it is incurred before the 15 in the term.

5. Costed Autonomous Mobility Skeletons

To produce skeletons capable of modelling not only the cost of the current
iteration, but also the cost of the remainder of the program, the continuation
cost equations from the previous section must be incorporated into the skele-
ton cost model. The new skeletons are termed Costed Autonomous Mobility
Skeletons (CAMS) and are parameterised with both costs and continuation
costs. As we shall see, the CAMS cost model is a specialisation of the generic
AMP cost model. This section concludes by outlining the implementation of
the camap and cafold CAMS in Jocaml.

5.1. AMP Generic Cost Model

A cost model is used by an AMP to inform the decision whether to move
to a new location. The cost model is generated statically, and is parame-
terised dynamically to determine movement behaviour. The generic AMP
cost model in Figure 10 is described in detail in [1].

Equation (16) states that the total execution time of an AMP is the sum
of the computation, communication and coordination times. All times are
measured in seconds.

Equation (17) gives the condition under which the program will move,
i.e. if the time to complete in the current location Th is more than the time

19

Ttotal = TComp + TComm + TCoord (16)

Th > Tcomm + Tn (17)

TComm = mTcomm (18)

TCoord = npTcoord (19)

TCoord < OTstatic (20)

n <
OTstatic

pTcoord

(21)

Te = Wd/Sh (22)

Th = Wl/Sh (23)

Tn = Wl/Sn (24)

Wa =
∑

Wd (25)

Wd = Wa − Wa′ (26)

Wl = Wall − Wa (27)

O : Overhead e.g. 5%
Ttotal : total execution time
Tstatic : time for static program running on

the current location
TComm : total time for communication
Tcomm : time for a single communication
TCoord : total time for coordination
Tcoord : time for coordination with a single location
TComp : time for computation
Te : time elapsed at current location
Th : predicted time at current location (here)
Tn : predicted time at best available (next) alternative location
Wall : all work (cycles)
Wa : total work that has been completed (cycles)
Wd : work completed at current location (cycles)
Wl : the work left (cycles)
Sh : CPU speed of current (here) location (cycles/s)
Sn : CPU speed of best available (next) alternative location (cycles/s)
m : number of AMP movements
n : number of movement checks
p : number of locations

Figure 10: Generic Cost Model for AMPs20

to complete in the best available remote location Tn plus the time to send
the computation to the new location Tcomm.

Equation (18) states that total communication costs is the product of the
number of moves and the communication cost of each move.

Equation (19) states that total coordination cost is the product of the
number of locations, the number of movement checks and the time for a
single movement check.

Equation (20) limits the coordination cost of AMPs by selecting some
overhead value O, say 5% and seeking to guarantee that the AMP execution
time will never exceed than 100 + O% a static version of the program. This
guarantee is only valid providing that the loads on the locations, primarily
current and target locations, do not change dramatically immediately after
the move. A more complete discussion of this issue can be found in [1].

Substituting Equation (19) in (20) gives Equation (21) which specifies
how many coordination actions will occur during the AMP execution.

Equations (22), (23) and (24) relate time, work and CPU speed. Implicit
in these equations is the assumption that the computation is regular in the
sense that the work left to be done Wl can be predicted from the work already
completed Wa. While this is true for many programs including the example
programs in this paper, many other programs do not possess this property.
A more complete discussion of this issue can be found in [1], including ideas
for adapting the model for less regular computations.

Equation (25) states that the total work completed is the sum of the work
done Wd at each location.

Equation (26) states that the work done at the current location is work
done Wa less the work done at the point the AMP arrived at the location
Wa′ .

Equation (27) states that the remaining work is the total work minus
work done.

5.2. CAMS Cost Model

The cost model for costed autonomous mobility skeletons in Figure 11
instantiates the generic AMP cost model and is parameterised on the con-
tinuation cost of the skeletons. That is CAMS determine whether to move
or not by predicting not only the cost of the current iteration, but also the
cost of the remainder of the program. In this cost model:

Equation (28) states that the total work is the cost of the current iteration
plus the continuation cost. The cost of the current iteration is, as for AMS,

21

Wall = (|cf ∗ size(collection) + continuationCost|) (28)

Wd = (|cf |) (29)

Te =
Wd

Sh

=
(|cf |)

Sh

(30)

Th =
Wl

Sh

=
WlTe

(|cf |)
(31)

Tn =
Wl

Sn

=
ShTh

Sn

(32)

Figure 11: Cost Model for CAMS

the product of the cost of evaluating a single element cf and the size of the
collection. For map and fold, size is the length of the list. The abstract
costs produced by the continuation cost semantics are converted into cycles
by a mapping function: (|.|). The calibration of this mapping is covered next.

Equation (29) reflects the CAMS design where the speed of the current lo-
cation is calculated just once by computing a single element of the collection,
and hence the work done at the current location is simply (|cf |). Comparing
the elapsed time for this computation (|cf |) with the predicted abstract time
cf , calibrates the mapping between the two on this location.

Substituting Equation (29) in (22) derives Equation (30) that predicts
the elapsed time at the current location.

The speed of the current location can be derived from Equation (30) as

Sh =
(|cf |)

Te
, and substituting in Equation (23) derives Equation (31) that pre-

dicts the time to complete the program at the current location as a function
of Te.

The work remaining can be derived from the first equality in Equa-
tion (31) as Wl = ThSh, and substituting in Equation (24) derives Equa-
tion (32) that predicts the time to complete the program at the best available
alternative location as the product of the time to complete here and the the
ratio of the current and best available location speeds.

As an instantiation of the generic AMP cost model, the CAMS Cost
Model inherits its limitations. That is the model is valid only for regular
computations, and only guarantees minimal overheads if location loads re-
main stable, as discussed for Equations (20) and (22) above.

22

5.3. Implementing Costed Autonomous Mobility Skeletons

Figure 12 shows a Jocaml implementation of a camap costed autonomous
mobility skeleton. f is the function to be mapped over the list l. costf is
the cost for one appplication of f and continuationCost is the continuation
cost.

camap is the top level CAMS which in turn calls the auxilliary cmap’ after
calculating the overall work, and timing f applied to the first element of l as a
base measurae. The movement check is encoded in check move function that
applies the cost model from Figure 10, and specifically Equation (17). The
checkInfo function accumulates the dynamic information required by the
cost model, and recalculates when the AMP should consider moving again.
Both functions are the same as used in AMSs, and the implementation of
cafold is similar [41].

6. Evaluating Costed Autonomous Mobility Skeletons

To demonstrate the utility of the continuation costs we compare the per-
formance of costed autonomous mobility skeletons (CAMS) with autonomous
mobility skeletons (AMS). More specifically we compare the performance of
six pairs of programs where one program is constructed with an AMS and
the other with a CAMS. All of the results reported in this section are for
programs using either automap or camap. Measurements using the cafold

CAMS are reported in [3, 41]. The evaluation is broadly classified into single-
iteration, sequences of iterations, and behaviour under varying loads.

The predicted costs required to parameterise the CAMS programs are
calculated by hand using the cost calculus for J . Section 7 will introduce
an automatic continuation cost analyser, that can automatically translate
iterations into costed autonomous mobility skeleton.

6.1. Single Iteration Examples

To show the consistency of the cost and continuation cost semantics we
consider programs dominated by a single iteration. In these programs the
continuation cost approximates zero and hence does not usefully contribute
to movement decisions. In this case we hypothesise that CAMS programs
will reproduce the movement of the corresponding AMS program. That is
both AMPs should exhibit the same movement behaviours at the same points
during execution and hence have similar execution times.

23

let rec camap’ f l costf continuationCost fhtime workleft=

let (h::t) = l in

if (((!t_current)-.(!t_last)) >= (!whencheck))

then

(check_move costf workleft fhtime;

let (fh,fhtime’) = timedapply f h in

t_current := Unix.gettimeofday();

getInfo costf fhtime’;

fh::camap’ f t costf continuationCost fhtime’ (workleft-costf)

)

else

(let fh = f h in

t_current := Unix.gettimeofday();

fh::camap’ f t costf continuationCost fhtime (workleft-costf)

)

let camap f l costf continuationCost =

let (h::t) = l in

(let localwork = costf * (length l) in

let work = localwork + continuationCost in

let (fh,fhtime) = timedapply f h in

t_current := Unix.gettimeofday();

getInfo costf fhtime;

fh::camap’ f t costf continuationCost fhtime (work-costf)

)

Figure 12: Implementation of camap in Jocaml

Moreover, there is the risk that the runtime cost of maintaining and util-
ising continuation costs in CAMS could have a deleterious effect on AMP
performance. This effect will be most pronounced for programs dominated
by a single iteration, i.e. where the continuation cost so carefully managed
provides no benefit. If, however, the cost of maintaining and utilising con-
tinuation costs is small we further hypothesise that a CAMS encoding of
single-iteration AMP should have very similar performance to an AMS en-
coding.

Two single iteration AMPs have been tested both using the map higher-
order function: matrix multiplication and ray tracing. Ray tracing is a

24

well-known graphics algorithm that models the path taken by light rays as
they interact with optical surfaces. Different size matrices are multiplied,
and scenes traced, to compare the coordination behaviour of the AMS and
CAMS programs. The test environment has three locations with CPU speeds
534MHZ(ncc1710), 933MHZ(jove) and 1894MHZ(lxtrinder). The loads on
these three locations are almost zero, and both the CAMS and AMS pro-
grams are launched on the first location.

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 13: CAMS and AMS Single Iteration (Matrix Mult.) Execution
Time

Figure 13 and Figure 14 show that both hypotheses are substantiated.
That is the cost and continuation cost models are consistent as the CAMS
and AMS programs exhibit very similar movement behaviours. Moreover
the overheads of collecting and utilising the continuation costs are relatively
small as the CAMS and AMS programs have very similar performance. For
example both the CAMS and AMS matrix multiplications compute that it
is beneficial to move when the matrix size reaches 330*330, and hence the
execution time curves in Figure 13 have very similar shapes. Moreover the
execution time of the programs at all data sizes are very similar and we
conclude that the overheads of collecting and utilising the continuation costs

25

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 14: CAMS and AMS Single Iteration (Ray Tracing) Execution Time

are relatively small. Figure 14 shows that the raytracing CAMS and AMS
programs repeat the pattern, as do the graphs in the following sections.

6.2. Sequences of Iterations

A CAMS encoding should deliver better performance than an AMS en-
coding for AMPs comprising sequences of iterations because the cost model
used in the earlier iterations includes the predicted costs of the remainder
of the program, i.e. the subsequent iterations. This section investigates the
performance of two pairs of AMS and CAMS encodings of programs com-
prising sequences of iterations, specifically sequential compositions of maps.
The AMPs embody a test to see if two matrices are invertible and a sequence
of five matrix multiplications. The test environment is the same as in Sec-
tion 6.1. The results for a further two pairs of programs, including raytracing
a sequence of scenes, are reported in [41].

The invertible matrix program takes two matrices m1 and m2 and checks
if they are invertible by multiplying them in both orders and checking that
the result is the identity matrix in each case. The essence of the program is
as follows.

26

let m12 = mmult m1 m2;;

let isId12 = checkEqual m12 idMat;;

let m21 = mmult m2 m1;;

let isId21 = checkEqual m21 idMat;;

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500 600

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 15: CAMS and AMS Multiple Iteration (Invertible Matrix)
Execution Time

Figure 15 compares the performance of an CAMS encoding of invertible
matrix using camap, and an AMS encoding using automap. The camap AMP
computes that it is beneficial to move when the matrix size reaches 230*230,
but the automap AMP only moves when the matrix size reaches 330*330.
The camap AMP moves sooner because it’s cost model incorporates the con-
tinuation cost, i.e. the cost of the second matrix multiplication. For matrices
between 230*230 and 330*330 the CAMS program has a significant perfor-
mance advantage, up to a maximum of 33%.

For any multi-iteration program, a CAMS encoding will gain a perfor-
mance advantage over the corresponding AMS program by moving at a
smaller data size. For illustration, Figures 16 and 17 show that the CAMS
encoding of a double raytracer and of a 5-fold matrix multiplication move at

27

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45 50

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 16: CAMS and AMS Multiple
Iteration (Double Ray Tracing)

Execution Time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 17: CAMS and AMS Multiple
Iteration (Five Matrix Mults)

Execution Time

smaller data size than the corresponding AMS encodings. The analysis of
other CAMS/AMS program pairs in [41] further supports this claim.

Figures 15, 16 and 17 also show that in some cases the CAMS programs
are marginally slower, i.e. no more than 11% slower, than the corresponding
AMS programs due to some additional movement checks and some rather
subtle quantum effects on the frequency of movement checks, as explained
below. In all cases the CAMS programs remain faster than the static pro-
grams.

• The AMS program may move at an earlier element (not size) than
the CAMS program if the matrix is large enough for both programs to
move, e.g. at size 330*330. This arises as follows, the first automap

cost model is parameterised only with the current 330 element iteration,
and hence determines to consider moving just once at element 165th.
In contrast the first camap cost model is parameterised with both the
current 330 element iteration and the continuation cost of the second
iteration, again 330 elements, and hence determines to consider moving
twice i.e. at element 220 = (330+330)/3. As the CAMS program moves
to the faster location later than the AMS program it is a little slower.

• A CAMS program may perform more movement checks than the cor-
responding AMS program. For example, after the 330*330 invertible
matrix AMS program moves to a faster location, the first automap cost
model is parameterised with only 165 elements and may not consider

28

moving again. However the first camap in the CAMS program is pa-
rameterised with 110+330=440 elements, and so may consider moving
again. The overhead of the additional movement checks will not ex-
ceed the overhead specified in Equation (20) of the cost model under
reasonable assumptions.

Figure 17 compares the performance of CAMS, AMS and static versions
of a program performing a sequence of five matrix multiplications. The
results are similar to those for the invertible matrix, but the composition of
more computations gives CAMS both a greater performance advantage over
AMS, i.e. up to a maximum of 53%, for a larger set of problem sizes: i.e.
between matrix sizes of 170*170 and 330*330. The CAMS program computes
that it is beneficial to move when the matrix size reaches 170*170 based on
the predicted cost of all five matrix multiplications. When the matrix size
reaches 330*330 the CAMS program is marginally slower, i.e. no more 15%
slower, than the AMS program due to some additional movement checks and
movement check quantisation, as for the invertible matrix program.

6.3. Performance of CAMS in Dynamic Networks

In the previous section we saw that a CAMS program with multiple
iterations may more frequently determine whether to move (i.e. do more
movement checks) than the corresponding AMS program. The additional
movement checks may make the CAMS program marginally slower than the
static or AMS versions, as illustrated for matrices larger than 330*330 in
Figure 15, and similarly in Figures 16 and 17.

The additional movement checks enable a CAMS program to react better
to changes in its environment than the corresponding AMS program. Fig-
ure 18 compares the execution times of CAMS and AMS invertible matrix
programs on a network where a very fast machine becomes available only late
in the computation. The experiment is described in detail in [41], but the
essence is as follows. The AMS program performs only a single movement
check and moves to a fast location early in the computation. In contrast
the CAMS program performs two movement checks, moving first to the fast
location, and then to the very fast location. In consequence the CAMS
program outperforms the AMS program for matrices larger than 500*500.
Figure 19 shows similar results for five matrix multiplication AMPs in the
same scenario.

29

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500 600

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 18: CAMS and AMS on
Dynamic Networks (Invertible

Matrix) Execution Time

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 19: CAMS and AMS on
Dynamic Networks (Five Matrix

Mults) Execution Time

6.4. Evaluation Summary

The conclusions drawn from the evaluation of CAMS in Sections 6.1, 6.2
and 6.3 are:

• The cost and continuation cost models are consistent as, for programs
dominated by a single iteration and hence where the continuation cost
is not useful, CAMS programs reproduce the movement of the corre-
sponding AMS program (Section 6.1).

• The overheads of collecting and utilising the continuation costs are
relatively small as CAMS and AMS programs have very similar perfor-
mance (Section 6.1).

• For programs dominated by sequences of iterations a CAMS encoding
models the cost of all iterations and hence may move when an AMS pro-
gram does not, thereby gaining a performance advantage. The more it-
erations in the program the greater the potential for gains (Section 6.2).

• When both the CAMS and AMS programs move, the CAMS programs
may be marginally slower, e.g. at most 11% in invertible matrix and
15% in five matrix multiplications, than the corresponding AMS pro-
gram due to some additional movement checks and quanta effects on
the frequency of movement checks.

30

• The additional movement checks enable CAMS programs to react to
network changes more sensitively than the corresponding AMS pro-
grams (Section 6.3).

7. Automatic Continuation Cost Analyser

Requiring the programmer to insert CAMS and their cost models into
a program places a burden on them. This might be avoided by automati-
cally converting a sequential program into an AMP that will move to exploit
computational resources on a network. In theory the automation should be
straightforward: the continuation cost semantics can be implemented as a
static analysis and the cost equations generated can be used by a translator
that replaces iterating higher-order functions with the corresponding CAMS,
e.g. a map f l is replaced by camap f l costf continuationCost. The
technique of replacing higher-order functions with algorithmic skeletons is
common in parallelising compilers, e.g. [43].

So much for the theory; in reality the challenge is to produce an effective
automatic analysis. That is, automated analyses typically produce unsimpli-
fied cost terms containing redundant arithmetic or other functions that incur
runtime overheads. The key issue is whether the AMPs with automatically-
generated CAMS have acceptable performance compared with hand-costed
CAMS.

The cost calculus has been implemented as an automatic continuation cost
analyser that generates cost equations parameterised on program variables
in context. The analyser generates both the cost of expressions, and the
continuation cost of iterations. The analyser takes a J program as input
and outputs J AMPs with CAMSs1.

7.1. Continuation Cost Analyser Structure

Figure 20 shows the structure of the continuation cost analyser which has
the following four primary components.

1. The Parser takes a J and outputs the abstract syntax tree (AST).

1As discussed in section 4.1, J is a subset of the Jocaml mobile programming language,
and a superset of the J ′ language illustrated in Section 4.

31

Indexed Abstract Syntax Tree

Indexed Abstract Syntax Tree

Abstract Syntax Tree

Coster (get costafter)

Indexer

Generator

output

Input

output

output

Input

Input

Input

output

+HOFsJ

+Costafter

J+CAMSs

Cost
Calculus

Parser

Figure 20: Structure of Automatic Continuation Cost Analyser

2. The Indexer is an implementation of the index semantics in Section 8.3
and adds a unique index to each AST node to produce an Indexed
Abstract Syntax Tree (IAST).

3. The Coster takes the IAST and adds the continuation cost to every
node. The coster has two parts: the first calculates the cost of each
expression using the cost semantics from Section 4.2; the second cal-
culates the continuation cost of each expression using the continuation
cost semantics from Section 4.3 which incorporates the costs previously
generated.

4. The Generator converts a J program into an AMP by replacing spe-
cific higher-order functions with the corresponding CAMS, e.g. map is
replaced by camap, parameterised with the continuation costs previ-
ously calculated.

7.2. Implementing the Cost Calculus

The implementations of the index, cost, and continuation cost func-
tions are as direct translations from their definitions in Figures 28, 6, and 7
respectively. The semantic functions use syntactic equality (=) and syntactic
containment contains functions directly translated from their definitions in
Section 8.3.

32

The index has type int -> expression -> (expression * int), and
takes the current index i and the expression to be indexed e and returns the
indexed expression and the next index, as outlined below.

let rec index i e =

match e with

(VAR s) -> (INDEX (i,VAR s),i+1) |

(INT i1) -> (INDEX (i,INT i1),i+1) |

.......

The cost function has type env -> expression -> int and computes
the cost of expression e in cost environment env, as outlined below.

let rec cost env e =

match e with

(VAR i) -> (*cost env*) (lookup env i) |

(INT _) -> INT 0 |

(OP(_,e1,e2)) -> OP(LADD,INT 1,OP(LADD,cost env e1,cost env e2)) |

.......

The continuationCost has type env -> expression -> expression
-> int and computes the continuation cost of expression e1 in expression
e2 in cost environment env, as outlined below.

let rec continuationCost env e1 e2 =

if e1=e2

then INT 0

else continuationCost’ env e1 e2

and continuationCost’ env e e’ =

match e’ with

(VAR i) -> INT 0 |

(INT i) -> INT 0 |

(OP(_,e1,e2)) ->

if contains e e1

then OP(LADD,continuationCost env e e1,OP(LADD,cost env e2,INT 1))

else

if contains e e2

then OP(LADD,continuationCost env e e2,INT 1)

else INT 0 |

.......

33

7.3. Generating Autonomous Mobility Skeletons

The generator replaces specific higher-order functions with the corre-
sponding CAMS parameterised with the continuation costs previously calcu-
lated. For example, if the original program is map f l, the object program
after the generator is camap f l costf continuationCost, where costf

is the cost of f applied to the first element of l calculated using the cost
semantics, and continuationCost is the cost after the map expression in the
program, calculated using continuation cost semantics.

As a simple example, let us consider generating CAMS corresponding to
expression e, (map (fun x -> x+1) [1;2]);(map (fun y -> y-1) [3;4]).
Expression e has two sub-expressions e1, (map (fun x -> x+1) [1;2]),
and e2, (map (fun y -> y-1) [3;4]). From Section 4, the following four
costs are used in the generation.

(1) The cost of the first mapped function (fun x -> x+1); which reduces
to (fun x -> (1+((1+0)+0))) (hd [1;2]) after applying Equations (4),
(3), and (2), and simplifies to 2.

(2) The continuation cost of e1 in e; which reduces to the continuation
cost of e1 in e1, which is 0 (Equation 9), plus the cost of e2, plus 1
(Equation 12a). The cost of e2 is ((fun y -> (1+((1+0)+0))) (hd

[3;4]))*(length [3;4])+((0+1)+1) (Equations 7), which simplifies
to 6. Hence the total continuation cost of e1 in e is 7.

(3) The cost of the second mapped function (fun y -> y-1), which re-
duces and simplifies as above to 2.

(4) The continuation cost of e2 in e, which reduces and simplifies as above
to 1.

The generator produces the following CAMS AMP.

(camap (fun x -> (x+1)) [1;2]

(((fun x -> (1+((1+0)+0))) (hd [1;2]))) (* cost of (fun x -> x+1) *)

(((0+(((fun y -> (1+((1+0)+0))) (hd [3;4]))*(length [3;4])))+(1+(0+1)))+1)

(* cont. cost of 1st map *)

);

(camap (fun y -> (y-1)) [3;4]

(((fun y -> (1+((1+0)+0))) (hd [3;4]))) (* cost of (fun y -> y-1) *)

(1) (* cont. cost of 2nd map *)

)

34

fun dist [] _ = [] |

dist (h1::t1) (h2::t2) = (h1::h2)::dist t1 t2 |

dist (h1::t1) [] = [h1]::dist t1 [];

fun transpose [] = [] |

transpose (row::rows) = dist row (transpose rows);

fun dotprod (h1::t1) (h2::t2) = h1*h2+dotprod t1 t2 |

dotprod _ _ = 0;

fun rowmult _ [] = [] |

rowmult row (col::cols) = dotprod row col::rowmult row cols;

fun rowsmult [] _ = [] |

rowsmult (row::rows) cols = rowmult row cols::rowsmult rows cols;

fun mmult m1 m2 = rowsmult m1 (transpose m2);

Figure 21: Recursive matrix multiplication

The AMP can be simplified to:

(camap (fun x -> (x+1)) [1;2] (2) (7));

(camap (fun y -> (y-1)) [3;4] (2) (1))

The generated CAMS AMP is very similar to what might have been written
after a manual analysis.

7.4. Automatic Analysis Example: Matrix Multiplication

The Automatic Continuation Cost Analyser is further illustrated by analysing
a J matrix multiplication program to generate a CAMS AMP.

Given matrices A[R, N] and B[N, C], we wish to form matrix C[N, N]
such that C[i, j] = sumA[i, k]∗B[k, j] : 1 <= k <= N . We are working with
a pure functional language without mutable arrays and so we reformulate
the problem to represent matrices as lists of lists. Figure 21 shows a simple
recursive matrix multiplication in SML.

The second matrix is transposed to form a list of list of columns. rowsmult
uses tt rowmult to construct successive rows of the final matrix. rowmult

then uses dotprod to form each element of a final matrix row from the dot
product of one row of the first matrix and one transposed column of the
second matrix.

In order to enable our automatic cost analysis, we next reformulate the
program to expose occurrences of map in rowmult and rowsmult as shown
in Figure 22.

35

fun map _ [] = [] |

map f (h::t) = f h::map f t;

fun inner row col = (dotprod row) col;

fun rowmult row cols = map (inner row) cols;

fun outer cols x = rowmult x cols

fun rowsmult rows cols = map (outer cols) rows

Figure 22: Matrix multiplication with higher order functions.

1 let rec dist = (fun vec1 -> fun vec2 ->

2 match (vec1,vec2) with

3 ([],vec) -> [] |

4 ((h1::t1),(h2::t2)) -> (h1::h2)::(dist t1 t2) |

5 ((h1::t1), []) -> [h1]::(dist t1 []))

6 (* fun mv11-> fun mv22 -> 3*(length mv11)*(length mv22) *)

7 in

8 let rec transpose = (fun e -> fold_right dist e [])

9 (* fun le -> 2*(length le)*(length le) *)

10 in

11 let rec dotprod = (fun mat1 -> fun mat2 ->

12 match (mat1,mat2) with

13 ((h1::t1),(h2::t2)) -> h1*h2+(dotprod t1 t2) |

14 (m1,m2) -> 0)

15 (* fun l1 -> fun l2 -> (4*(length l2)) *)

16 in

17 let rec rowmult = (fun cls -> fun row -> map (dotprod row) cls)

18 (* fun rowc -> fun lsc -> 4*(length rowc)*(length rowc) *)

19 in

20 let rec rowsmult = (fun rows -> fun cols ->

21 map (rowmult cols) rows)

22 in

23 let tm2 = transpose mat2(*0*) in

24 rowsmult mat1(*0*) tm2(*0*)

Figure 23: Annotated Matrix Multiplication for Automatic Cost Analysis

36

1 let rec dist =

2 ((fun vec1 -> (fun vec2 -> match (vec1,vec2) with

3 ([],vec) -> [] |

4 ((h1::t1),(h2::t2)) -> ((h1::h2)::((dist t1) t2)) |

5 ((h1::t1),[]) -> ([h1]::((dist t1) [])))));;

6 let rec transpose =

7 ((fun e -> (fold_right dist e [])));;

8 let rec dotprod =

9 ((fun mat1 -> (fun mat2 -> match (mat1,mat2) with

10 ((h1::t1),(h2::t2)) -> ((h1*h2)+((dotprod t1) t2)) |

11 (m1,m2) -> 0)));;

12 let rec rowmult =

13 ((fun cls -> (fun row -> (map (dotprod row) cls))));;

14 let rec rowsmult =

15 (fun rows -> (fun cols -> (map (rowmult cols) rows)));;

16 let tm2 = (transpose mat2)

17 in

18 (camap (rowmult tm2) (mat1)

19 (((4*(length tm2))*(length tm2))) (0))

Figure 24: Example Cost Analyser Output: Matrix Multiplication AMP

Finally, we rewrite the program in a form suitable for input to our anal-
yser as shown in Figure 23. Firstly, we now use the J Jocaml subset rather
than the somewhat more elegant SML above. Secondly, as we cannot auto-
matically cost arbitrary recursive functions we attach hand generated cost
functions to the dist, transpose, dotprod and rowmult functions on lines
6, 9, 15 and 18 respectively. Moreover the pragmas on lines 23 and 24 specify
that the cost of constructing the matrices are ignored.

We provide an imputed cost for rowmult despite the map. We do so
because our experimental system cannot yet adequately account for contin-
uation costs in nested higher order functions.

The analyser takes the code in Figure 23 as input and outputs the code
in Figure 24. Ignoring the reformatting the key change is on lines 18 and
19 where the top level map has been converted to the camap parameterised
with the matrix multiplication cost (4*(length tm2))*(length tm2) and
a continuation cost of 0.

37

7.5. Performance Comparison of Automatic and Hand Analyses

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500

T
im

e(
S

ec
)

Size(n*n)

"automatic"
"byHand"

"static"

Figure 25: Comparing Automatic and Hand-Costed Execution Times
(Double Matrix Mult.)

Compared with hand-written cost predictions, the costs generated by the
automatic continuation cost analyser (e.g. Figures 24) contain some addi-
tional cost calculations. However performance comparisons between auto-
matic and hand-costed CAMS programs show that the additional cost cal-
culations do not significantly effect performance. The performance of four
pairs of AMPs have been compared: double matrix multiplication, invertible
matrix, and double ray tracing. Figure 25 is a typical graph showing almost
identical execution times for automatic and for hand-costed CAMS AMPs
at all data sizes, in this case for double matrix multiplication. Figures 26
and 27 show similar patterns for invertable matrix and a double ray tracing
programs.

8. Conclusion & Future Work

8.1. Summary

A central issue in the burgeoning area of distributed systems is how dy-
namic collections of programs locate and share resources efficiently. Rather

38

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350 400 450 500

T
im

e(
S

ec
)

Size(n*n)

"automatic"
"byHand"

"static"

Figure 26: Comparing Automatic and
Hand-Costed Execution Times

(Invertible Matrix)

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45 50

T
im

e(
S

ec
)

Size(n*n)

"automatic"
"byHand"

"static"

Figure 27: Comparing Automatic and
Hand-Costed Execution Times

(Double Ray Tracing)

than relying on external load management we have, in earlier work, developed
autonomous mobile programs (AMPs) that periodically use a cost model to
decide where to execute in a network [1]. The key contribution of this paper
is to show how sequential programs can be converted into AMPs in a sub-
stantially automatic process that applies a novel continuation cost semantics.

The AMP cost model is generated statically, and is parameterised dy-
namically to determine movement behaviour. A limitation of the cost model
is that the parameterisation assumes that the computation is regular in the
sense that the computational cost of the following iterations is similar to
those of the preceding iterations. AMPs may dramatically reduce execu-
tion time, while guaranteeing to never make it worse by more than a small
specified overhead under realistic assumptions. Collections of AMPs perform
decentralised load balancing on both homogeneous and heterogeneous net-
works. Directly programming AMPs makes the cost model, mobility decision
function, and network interrogation explicit in the program. To provide a
more transparent interface, we have defined and evaluated autonomous mo-
bility skeletons (AMS) that encapsulate autonomous mobility for common
collection iterations [2] (Section 3).

Autonomous mobility skeletons only consider the costs of a single collec-
tion iteration. This is adequate only if a single collection iteration dominates
the computational cost of the program. To deploy autonomous mobility
more generally it is necessary to know, in addition to the cost of the current

39

iteration, the cost of the remainder of the program, or continuation cost [3].
We have developed a novel cost semantics that predicts the continua-

tion costs at arbitrary points in a J ′ program, i.e. for a core subset of the
Jocaml mobile programming language including iterating higher-order func-
tions like map. The continuation cost semantics requires that the program is
first indexed to distinguish common subexpressions, and that the cost of all
expressions have been calculated. The continuation cost equations are gen-
erated statically but are designed to be parameterised dynamically to more
accurately predict execution time (Section 4).

To produce skeletons capable of making autonomous movement decisions
not only the cost of the current iteration, but also the cost of the remainder
of the program, the continuation costs are incorporated into a cost model
for Costed Autonomous Mobility Skeletons (CAMS). The CAMS cost model
is a specialisation of the generic AMP cost model, and the implementation
of two CAMS (camap and cafold) in Jocaml is also outlined. The CAMS
cost model inherits the AMP cost model restriction to regular computations,
and to only guarantee minimal overheads if location loads remain stable
(Section 5).

To demonstrate the utility of the continuation costs we compare the per-
formance of CAMS with both AMS and static versions of six programs. The
evaluation shows the following. The cost and continuation cost models are
consistent for single-iteration programs. The overheads of collecting and util-
ising the continuation costs are relatively small as CAMS and AMS programs
have very similar performance. For programs dominated by sequences of it-
erations a CAMS program has a performance advantage as the continuation
cost model encourages it to move when an AMS does not, and the more iter-
ations in the program the greater the potential for performance gains, e.g. up
to a maximum of 53% for five matrix multiplications. When both the CAMS
and AMS programs move, the CAMS programs may be marginally slower,
e.g. at most 15% for five matrix multiplications, than the corresponding
AMS program due to some additional movement checks and quanta effects
on the frequency of movement checks. However the additional movement
checks enable CAMS programs to react to network changes more sensitively
than the corresponding AMS programs (Section 6).

We have shown how sequential programs can be automatically converted
into AMPs that move to better exploit computational resources on a net-
work. We do so by describing an automatic continuation cost analyser that
implements the continuation cost semantics to generate cost equations pa-

40

rameterised on program variables in context. The analyser generates both
the cost of expressions, and the continuation cost of iterations, i.e. specific
higher-order functions. The analyser translates a J program into a J AMP
with CAMSs. We show example AMPs generated by the analyser and demon-
strate that they have very similar performance to hand-costed CAMS pro-
grams (Section 7).

8.2. Discussion

The significance of our work is to demonstrate that, in principle, many
programs can be automatically converted to become autonomously mobile,
and hence gain substantial performance advantages on networks. The en-
abling technology is a prediction of the costs and continuation costs of ex-
pressions, and specifically the costs of iterations over collections.

It is perhaps surprising that such simple cost models are so effective, even
though they are relatively crudely parameterised on environmental changes.
However, we are not trying to make accurate worst case execution time
(WCET) predictions, where very precise model coefficients accounting for low
level time and space characteristics of the underlying hardware are needed.
Rather, we wish to know how long the rest of a program will take to exe-
cute relative to how long some of it has taken to execute already. Here, a
simple model that accounts for the proportionate times taken by program
components suffices, under simplifying assumptions about the relative inde-
pendence of such comparisons from particular implementations. Furthermore
movement decisions are based on ratios of predicted costs, for example Equa-
tion (32) predicts a completion time as the ratio between the predicted speeds
of two locations, and hence inaccuracies are uniform and smoothed.

Our models differ from others in several important respects. First of all,
while we might seek to simplify our automatically generated models, we do
not seek to solve them. This is because our models are for run-time rather
than compile time use. Environments change dynamically and so models
must be able to capture such change. Thus, our models are open form,
that is they have free variables which are bound in the context of use to
appropriate program variables.

There are substantial limitations of the current work. It is well known
that the costs of arbitrary recursive functions cannot be predicted, indeed to
do so would solve the halting problem. In our current work we rely on the
programmer to provide cost estimates using pragmas for arbitrary recursive
functions. We also cannot yet account for continuation costs in nested higher

41

order functions. However there is further good evidence from the algorith-
mic skeleton community that even simple nested higher order function cost
models are very effective, e.g. [36], and we could incorporate more elaborate
models e.g. [37] or solving recurrence relations as in [28].

Another limitation is that the AMS and CAMS cost models assume that
the iterations are regular in the sense that the time to compute one element
is a good predictor of the time to compute the remaining elements. There
are many computations where this is not the case, e.g. Mandlebrot sets. Po-
tentially the cost models could be adapted to cope better with irregularity,
e.g. using the computation of several elements as a basis for prediction. Fi-
nally the performance of AMPs including direct, AMS and CAMS encodings,
have only been demonstrated on relatively small LANs. We hypothesise that
they would function well on WANs, and have a design for scalable WAN
deployment [41], but have yet to validate it.

8.3. Further Work

The current work could be developed in a number of ways.

Resource Driven Mobility

The cost and continuation cost models presented here model execution
time, and AMPs effectively forage in a network for computational resource.
We speculate that similar cost models could be developed for other net-
work resources, e.g. bandwidth or repository capacity. Indeed there are
well-developed models of foraging behaviours in biology and we propose to
investigate the application of a generic cost-based ethology to autonomous
mobile multi-agent systems. Potentially evolved biological foraging strate-
gies enable the better engineering of scalable self-organising resource-location
systems in large-scale dynamic networks.

Costed Autonomously Mobile Java Programs

Our current continuation cost semantics and costed autonomous mobility
skeletons are defined for a subset of Jocaml. Java is more mainstream and
widely used than Jocaml, and has several mobile variants, e.g. [13, 44]. We
would like to build a continuation cost semantics for a substantial Java subset.
The immediate challenge would be to integrate continuation costs into our
AutoIter autonomously mobile iterator interface. In the longer term we
would also require to analyse patterns and object-oriented constructs in the
presence of inheritance.

42

n ⊢i k ⇒i (< n, k >, n + 1)
(33)

n ⊢i v ⇒i (< n, v >, n + 1)
(34)

n ⊢i e ⇒i (e′, n′)

n ⊢i fun v → e ⇒i (< n′, fun v → e′ >,n′ + 1)
(35)

n ⊢i e1 ⇒i (e′1, n
′) n′ ⊢i e2 ⇒i (e′2, n

′′)

n ⊢i (e1 e2) ⇒i (< n′′, (e′1 e′2) >,n′′ + 1)
(36)

n ⊢i e1 ⇒i (e′1, n
′) n′ ⊢i e2 ⇒i (e′2, n

′′)

n ⊢i e1 op e2 ⇒i (< n′′, e′1 op e′2 >,n′′ + 1)
(37)

n ⊢i e ⇒i (e′, n′)

n ⊢i e (∗ c ∗) ⇒i (< n′, e′ (∗ c ∗) >,n′ + 1)
(38)

n ⊢i e1 ⇒i (e′1, n
′) n′ ⊢i e2 ⇒i (e′2, n

′′)

n ⊢i map e1 e2 ⇒i (< n′′, map e′1 e′2 >,n′′ + 1)
(39)

n ⊢i < n′, e >⇒i (< n′, e >, n)
(40)

Figure 28: Index Semantics for J ′

Appendix A: Indexing Semantic Functions

Figure 28 defines the indexing semantic function: n ⊢i : e ⇒ (e’, n’).
Index takes an expression (e) and an integer representing the current index
(n) and returns a tuple comprising an indexed expression (e′) and an updated
index value (n′).

Equations (33) and (34) show that indexing a constant or a variable
increments the index by one.

Equation (35) shows that the body of a lambda abstraction is indexed
before indexing the abstraction. Equation (38) is very similar.

Equation (36) shows that in function applications the functions are in-
dexed first, then the argument, and finally the application. Equations (37)
and (39) are very similar.

Finally, indexing is idempotent so indexing an indexed expression leaves
it unchanged: Equation (40).

Figure 29 shows an example of indexing the expression (map (fun x→x+10) [20]).

43

index

A: (AST) B: (IAST)

<3,+>+

map <8,+>

<4,fun x−> > <7,::>

<5,20> <6,[]>

fun x−> ::

20 []

<1,x> <2,10>x 10

Figure 29: J ′ Indexing Example

In the figure tree A is the original abstract syntax tree (AST), and tree B is
the indexed abstract syntax tree (IAST) representing the indexed expression
<8,(map <4,(fun x→<3,(<1,x>+<2,10>)>)> <7,<5,20>::<6,[]>>)>.

Appendix B: Auxiliary Semantic Functions

This appendix presents the relatively standard syntactic containment
function, used in the continuation cost semantics in Section 4.3. The contin-
uation cost semantics also uses a standard syntactic, or structural, equality
without alpha conversion which is defined in [41] but not reproduced here.

Figure 30 shows the definition of syntactic containment, ∈ takes two
expressions and returns true if the second expression contains the first ex-
pression.

Equation (41) specifies that if two expressions are syntactically equal then
the first contains the other.

Equation (42) specifies that an expression is contained in a lambda ab-
straction if it is contained in the body.

Equation (43a) and (43b) specify that an expression is contained in a
functional application if it is contained in either the function or the argument.

The remaining equations follow the pattern of the previous equations.
As an example Figure 31 shows the deductions to determine whether expres-
sion from Figure 9, i.e. 8::15::(map (fun x ->x+10) [20]), contains the
expression 15.

44

e1 ≡ e2

e1 ∈ e2
(41)

e1 ∈ e2

e1 ∈ fun v → e2
(42)

e1 ∈ e2

e1 ∈ (e2 e3)
(43a)

e1 ∈ e3

e1 ∈ (e2 e3)
(43b)

e1 ∈ e2

e1 ∈ e2 op e3
(44a)

e1 ∈ e3

e1 ∈ e2 op e3
(44b)

e1 ∈ e2

e1 ∈ e2 (∗ c ∗)
(45)

e1 ∈ e2

e1 ∈ map e2 e3
(46a)

e1 ∈ e3

e1 ∈ map e2 e3
(46b)

e1 ∈ e2

e1 ∈< i, e2 >
(47)

Figure 30: J ′ Syntactic Containment

References

[1] X. Y. Deng, P. Trinder, G. Michaelson, Autonomous Mobile Pro-
grams, in: IAT ’06: Proceedings of the IEEE/WIC/ACM In-
ternational Conference on Intelligent Agent Technology (IAT 2006
Main Conference Proceedings) (IAT’06), IEEE Computer Soci-
ety, Washington, DC, USA, Hong Kong, 2006, pp. 177–186.
doi:http://dx.doi.org/10.1109/IAT.2006.42.

[2] X. Y. Deng, G. Michaelson, P. Trinder, Autonomous Mo-
bility Skeletons, Journal of Parallel Computing Volume
32, Issues 7-8 (2006) Pages 463–478 Algorithmic Skeletons.
doi:http://dx.doi.org/10.1016/j.parco.2006.04.002.

45

15 = 15
15 ≡ 15 (Equiv)

⇒ 15 ∈ 15 (41)
⇒ 15 ∈ 5 :: map (fun x → (x + 10)) (20 :: []) (44a)
⇒ 15 ∈ 8 :: (5 :: map (fun x → (x + 10)) (20 :: [])) (44b)

Figure 31: J ′ Contains Example

[3] X. Y. Deng, P. Trinder, G. Michaelson, Automatically Costed Au-
tonomous Mobility, in: IAT ’07: Proceedings of the IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT 2007
Main Conference Proceedings), IEEE Computer Society, Washington,
DC, USA, Silicon Valley, 2007, pp. 95–101.

[4] D. Milojicić, F. Douglis, R. Weeler, Mobility: Processes, Computers,
and Agents, Addison-Wesley, Reading, MA, USA, 1999.

[5] R. Baron, R. Rashid, E. Siegel, A. Tevanian, M. Young, Mach-1: An Op-
erating Environment for Large-Scale Multiprocessor Applications, IEEE
Software 2 (4) (1985) 65–67.

[6] A. Barak, O. La’adan, The MOSIX Multicomputer Operating System
for High-Performance Cluster Computing, Future Generation Computer
Systems 13 (4–5) (1998) 361–372.

[7] L. V. Kale, S. Krishnan, Charm++: A portable concurrent object ori-
ented system based on c, in: In Proceedings of the Conference on Ob-
ject Oriented Programming Systems, Languages and Applications, ACM
Press, 1993, pp. 91–108.

[8] J. Yu, R. Buyya, A taxonomy of workflow management systems for grid
computing, Tech. rep., Journal of Grid Computing (2005).

[9] J. Herrera, E. Huedo, R. Montero, I. Llorente, Loosely-coupled loop
scheduling in computational grids, Parallel and Distributed Process-
ing Symposium, 2006. IPDPS 2006. 20th International (2006) 6 pp.–
doi:10.1109/IPDPS.2006.1639657.

[10] M. Cole, Algorithmic skeletons: structured management of parallel com-
putation, MIT Press, 1989.

46

[11] Z. Kirli, Mobile Computation with Functions, Ph.D. thesis, University
of Edinburgh, Laboratory for Foundations of Computer Science:Division
of Informatics (2001).

[12] Institut National de Recherche en Informatique et en Automatique, The
JoCaml language beta release: Documentation and user’s manual (Jan-
uary 2001).

[13] Recursion Software, Inc, 2591 North Dallas Parkway, Suite 200, Frisco,
TX 75034, Voyager User Guide, http://www.recursionsw.com/ Voy-
ager/Voyager User Guide.pdf (May 2005).

[14] D. B. Lange, M. Oshima, Seven good reasons for mo-
bile agents, Commun. ACM 42 (3) (1999) 88–89.
doi:http://doi.acm.org/10.1145/295685.298136.

[15] A. Fuggetta, G. P. Picco, G. Vigna, Understanding Code Mobility, IEEE
Transactions on Software Engineering 24 (5) (1998) 342–361.
URL citeseer.ist.psu.edu/fuggetta98understanding.html

[16] M. Wooldridge, Agent-Based Software Engineering, IEE Proceedings
Software Engineering 144 (1) (1997) 26–37.
URL citeseer.ist.psu.edu/wooldridge94agentbased.html

[17] P. T. Tosic, G. A. Agha, Towards a Hierarchical Taxonomy of Au-
tonomous Agents, in: IEEE SMC’2004: International Conference on
Systems, Man and Cybernetics, IEEE Xplore, Hague, The Netherlands,
2004, pp. 3421–3426.

[18] D. Milojicic, F. Douglis, R. Wheeler, Mobility: processes, computers,
and agents, ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, 1999.

[19] J. O. Kephart, D. M. Chess, The Vision of Au-
tonomic Computing, Computer 36 (1) (2003) 41–50.
doi:http://dx.doi.org/10.1109/MC.2003.1160055.

[20] R. Murch, Autonomic Computing, 1st Edition, Published by IBM Press,
2004.

47

[21] J. Abawajy, Autonomic Job Scheduling Policy for Grid Computing, in:
Lecture Notes in Computer Science, LNCS 3516, Internation Conference
on Computationl Science - ICCS 2005, part 3, Springer, Germany, 2005,
pp. 213–220.

[22] C. V. Travis Desell, Kaoutar El Maghraoui, Load Balancing of Au-
tonomous Actors over Dynamic Networks (2004) 90268.1.

[23] B. Reistad, D. K. Gifford, Static dependent costs for estimating ex-
ecution time, in: LFP ’94: Proceedings of the 1994 ACM con-
ference on LISP and Functional Programming, ACM Press New
York, NY, USA, Orlando, Florida, United States, 1994, pp. 65–78.
doi:http://doi.acm.org/10.1145/182409.182439.

[24] J. Cohen, C. Zuckerman, Two Languages for Estimating
Program Efficiency, Commun. ACM 17 (6) (1974) 301–308.
doi:http://doi.acm.org/10.1145/355616.361015.

[25] B. Wegbreit, Mechanical Program Analysis, Commun. ACM 18 (9)
(1975) 528–539. doi:http://doi.acm.org/10.1145/361002.361016.

[26] L. H. Ramshaw, Formalizing the Analysis of Algorithms, Ph.D. thesis,
Stanford University Department of Computer Secience (1979).

[27] B. Wegbreit, Verifying program performance, J. ACM 23 (4) (1976)
691–699. doi:http://doi.acm.org/10.1145/321978.321987.

[28] M. Rosendahl, Automatic Complexity Analysis, in: FPCA ’89: Pro-
ceedings of the fourth international conference on Functional program-
ming languages and computer architecture, ACM Press New York, NY,
USA, Imperial College, London, United Kingdom, 1989, pp. 144–156.
doi:http://doi.acm.org/10.1145/99370.99381.

[29] P. Wadler, Strictness Analysis Aids Time Analysis, in: POPL
’88: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ACM Press, New York,
USA, San Diego, California, United States, 1988, pp. 119–132.
doi:http://doi.acm.org/10.1145/73560.73571.

48

[30] J. Hughes, L. Pareto, Recursion and dynamic data-structures in
bounded space: Towards embedded ML programming, in: International
Conference on Functional Programming, 1999, pp. 70–81.

[31] A. J. R. Portillo, K. Hammond, H.-W. Loidl, P. B. Vasconcelos, Cost
analysis using automatic size and time inference, in: R. Pena, T. Arts
(Eds.), Implementation of Functional Languages, 14th International
Workshop, IFL 2002, Madrid, Spain, September 16-18, 2002, Revised Se-
lected Papers, Vol. 2670 of Lecture Notes in Computer Science, Springer,
2002, pp. 232–248.

[32] M. Hofmann, S. Jost, Static prediction of heap space usage for first-order
functional programs, in: Proceedings of the 30th ACM Symposium on
Principles of Programming Languages, Vol. 38, ACM Press, 2003, pp.
185–197.

[33] M. Hofmann, S. Jost, Type-Based Amortised Heap-Space Analysis, in:
ESOP 2006, no. 3924 in LNCS, Springer-Verlag, 2006, pp. 22–37.

[34] C. A. Herrmann, A. Bonenfant, K. Hammond, S. Jost, H.-W. Loidl,
R.Pointon, Automatic Amortised Worst-Case Execution Time Anal-
ysis, in: C. Rochange (Ed.), 7th Intl. Workshop on Worst-Case
Execution Time (WCET) Analysis, Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany,
2007.

[35] E. Brady, K. Hammond, A Dependently Typed Framework for Static
Analysis of Program Execution Costs, in: A. Butterfield, C. Grelck,
F. Huch (Eds.), Implementation and Application of Functional Lan-
guages, 17th International Workshop, IFL 2005, Dublin, Ireland,
September 19-21, 2005, Revised Selected Papers, no. 4015 in LNCS,
Springer, 2006, pp. 74–90.

[36] D. B. Skillicorn, Parallelism and the Bird-Meertens Formalism, De-
partment of Computing and Information Science, Queen’s University,
Kingston, Ontario, 1992.
URL citeseer.ist.psu.edu/skillicorn92parallelism.html

[37] R. Rangaswami, A cost analysis for a higher-order parallel programming
model, Ph.D. thesis, Department of Computer Science, Edinburgh Uni-

49

versity (1996).
URL citeseer.ist.psu.edu/rangaswami96cost.html

[38] H.-W. Loidl, Granularity in Large-Scale Parallel Functional Program-
ming, Ph.D. thesis, University of Glasgow, department of Computing
Science (April 1998).

[39] S. Sahni, Data Structures, Algorithms, and Applications in Java, Mc
Graw Hill, University of Florida, 2000.

[40] C. Strachey, C. P. Wadsworth, Continuations: a Mathematical seman-
tics for handling full jumps, Tech. rep., Oxford University Comput-
ing Laboratory, reprinted in Higher Order and Symbolic Computation,
13(1/2), 135–152 (January 1974).

[41] X. Y. Deng, Cost-Driven Autonomous Mobility, Ph.D. thesis, School
of Mathematical and Computer Sciences, Heriot-Watt University, Edin-
burgh, UK (June 2007).

[42] D. P. Friedman, M. Wand, C. T. Haynes, Essentials of Programming
Languages, MIT Press, 1992.

[43] G. Michaelson, N. Scaife, P. Bristow, P. King, Nested algorithmic skele-
tons from higher order functions, Parallel Algorithms and Applications:
special issue on High Level Models and Languages for Parallel Process-
ing 16 (2001) 181–206.

[44] T. Sekiguchi, JavaGo, http://homepage.mac.com/t.sekiguchi/ jav-
ago/index.html (May 2006).

50

