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Abstract
Exact combinatorial search is essential to a wide range of important applications, 
and there are many large problems that need to be solved quickly. Searches are 
extremely challenging to parallelise due to a combination of factors, e.g. searches 
are non-deterministic, dynamic pruning changes the workload, and search tasks have 
very different runtimes. YewPar is a C++/HPX framework that generalises paral-
lel search by providing a range of sophisticated search skeletons.This paper dem-
onstrates generic high performance combinatorial search, i.e. that a variety of exact 
combinatorial searches can be easily parallelised for HPC using YewPar. We present 
a new mechanism for profiling key aspects of YewPar parallel combinatorial search, 
and demonstrate its value. We exhibit, for the first time, generic exact combinatorial 
searches at HPC scale. We baseline YewPar against state-of-the-art sequential C++ 
and C++/OpenMP implementations. We demonstrate that deploying YewPar on an 
HPC system can dramatically reduce the runtime of large problems, e.g. from days 
to just 100s. The maximum relative speedups we achieve for an enumeration search 
are near-linear up to 195(6825) compute-nodes(workers), super-linear for an optimi-
sation search on up to 128(4480) (pruning reduces the workload), and sub-linear for 
decision searches on up to 64(2240) compute-nodes(workers).

Keywords Combinatorial search · Parallel skeletons · Constraint programming · 
High performance computing

1 Introduction

Exact combinatorial search is essential to a wide range of important applications 
including constraint programming, graph matching, and planning. A classic exam-
ple would be to allocate parcels to vans, and to plan delivery routes for the vans. 
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Combinatorial problems are solved by systematically exploring a space of (par-
tial) solutions, and doing so is computationally hard both in theory and in practice, 
encouraging the use of approximate algorithms that quickly provide answers yet 
with no guarantee of optimality. Alternatively, exact search exhaustively explores 
the search space and delivers provably optimal answers. Conceptually exact com-
binatorial search proceeds by generating and traversing a (huge) tree representing 
alternative options. Backtracking branch and bound search is a well known exam-
ple. Although searches can be time consuming, combining parallelism, on-demand 
tree generation, search heuristics, and pruning can effectively reduce execution time. 
Thus a search can be completed to meet time constraints, for example to load and 
dispatch a fleet of delivery vans each morning.

Exact combinatorial search is very different to classical HPC applications. The 
problems are NP-hard rather than polynomial. There is almost no use of vectors 
or matrices: the primary data structure is a huge, dynamically generated, irregu-
lar search tree. Almost all values are discrete, e.g. integers or booleans. In place 
of nested loops there are elaborate recursive control structures. The parallelism is 
highly irregular, that is the number and runtimes of tasks are determined by the 
search instance, and vary hugely, i.e. by several orders of magnitude [25]. Only a 
small number of specific exact combinatorial searches have been hand-crafted for 
HPC scale (around 1000 cores), e.g. [4, 9].

There are three main search types: enumeration, which searches for all solutions 
matching some property, e.g. all maximal cliques in a graph1; decision, which looks 
for a specific solution, e.g. a clique of size k ; and optimisation, which looks for a 
solution that minimises/maximises an objective function, e.g. finding a maximum 
clique. There are standard instances for many important search applications, e.g. the 
DIMACS instances [10].

YewPar is a C++ parallel search framework [2, 5]. YewPar generalises search 
by abstracting search tree generation, and by providing algorithmic skeletons that 
support the three search types. The skeletons use sophisticated search coordinations 
that control the parallel search including when new tasks are generated. These are 
inspired by the literature, and are currently: Sequential, Depth-Bounded, Stack-
Stealing and Budget. It also provides low-level search specific schedulers and utili-
ties to deal with the irregularity of search and knowledge exchange between work-
ers. YewPar uses the HPX library for distributed task-parallelism [11], allowing 
search on multi-cores, clusters, HPC systems etc.

This paper makes the following contributions.
We present a new mechanism for profiling key aspects of generic parallel combi-

natorial search in YewPar. While the extreme irregularity of parallel combinatorial 
search is well known, it is seldom measured, and then only for specific search appli-
cations, e.g. [25]. Key novelties are (1) to provide profiles that quantify the irregu-
larity of various search applications in the generic YewPar framework, e.g. to report 

1 A clique in a graph is a set of vertices C such that all vertices in C are pairwise adjacent. Maximal 
cliques cannot be extended by including one more adjacent vertex and Maximum cliques are the largest 
cliques in the graph.
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median task runtime, maximum task runtime, etc. (2) to make irregularity character-
istics visible to the developer to aid performance tuning (Sect. 5).

We demonstrate for the first time generic exact combinatorial searches at HPC 
scale. Generic YewPar searches have previously only been demonstrated on rela-
tively small-scale clusters: 17 compute nodes and 270 cores [5]. We use a combina-
tion of techniques like repeated measurements and using multiple search instances 
to address the challenges of parallel search, e.g. non-determinism, non-fixed work-
loads, irregular parallelism, and the nature of NP-hard problems. Baselining against 
state-of-the-art sequential C++ and C++/OpenMP implementations on 9 standard 
(DIMACS) search instances shows that the generality of YewPar incurs a mean 
sequential slowdown of 9.6%, and a mean parallel slowdown of 27.6% on a sin-
gle 18-core compute node. Guided by the profiling we effectively parallelise seven 
standard instances of the three searches, and systematically measure runtime and rel-
ative speedups at scale. We demonstrate that deploying YewPar on an HPC system 
can dramatically reduce the runtime of large problems, e.g. from days to just 100 s. 
The maximum relative speedups we achieve for the Numerical Semigroups enumer-
ation search are near-linear up to 192(6825) compute-nodes(workers), super-linear 
for a Maximum Clique optimisation search on up to 128(4480) (pruning reduces the 
workload), and sub-linear for a k-clique decision search on up to 64(2240) compute-
nodes(workers) (Sect. 6).

2  Background

2.1  The Challenges of Exact Combinatorial Search at HPC Scale

An exact combinatorial search generates and explores a massive tree of possi-
ble solutions. The search trees are generated on-demand to limit memory require-
ments, and provide ample opportunities to exploit parallelism. Space-splitting 
approaches explore subtrees in parallel, speculatively for optimisation and deci-
sion searches. Portfolio approaches run multiple searches, with varying search 
orders/heuristics, and share knowledge between searches.

We focus on space-splitting approaches here. As the search trees are so large 
(potentially exponential in the input size) we can easily generate millions of par-
allel tasks: far more than commodity hardware can handle, but enough to keep for 
modern HPC clusters busy.

However there are many aspects of search that make effective parallelisation 
extremely challenging in practice. Searches differ from standard parallel work-
loads due to their heavy use of symbolic/integer data and methods as opposed to 
floating point, and widespread use of conditionals meaning that neither vectorisa-
tion nor GPUs are beneficial.

Here we outline some specific challenges raised by combinatorial search at 
HPC scale (100s of compute nodes, more than 5000 cores), and show that despite 
these issues exact combinatorial search is a fruitful HPC domain.
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Task Irregularity Parallel search tasks are highly irregular that is (1) some tasks 
have short runtimes, e.g. several milliseconds, while others take orders of magnitude 
longer, e.g. many minutes (2) tasks are generated dynamically, and the number of 
tasks varies depending on the search instance, e.g. as determined by the number of 
children of a search tree nodes. Many classical HPC workloads, e.g. computing over 
a homogeneous mesh, are regular with tasks having similar runtimes, and the num-
ber of tasks can be statically predicted.

Search tasks explore subtrees, and the sizes of these often varies by orders of 
magnitude. The problem is compounded as the shape of the search tree changes at 
runtime as new knowledge, like improved bounds, is learned. In practice improved 
knowledge can make a significant proportion of existing tasks redundant. We give a 
detailed analysis of search task irregularity in Sect. 5.

Speculation Tree searches are commonly parallelised by speculatively exploring 
subtrees in parallel. Most searches are compute, rather than memory or communi-
cation bound, and to achieve substantial speedups large amounts of speculation are 
used.

Speculatively exploring subtrees earlier than a sequential algorithm can dramati-
cally improve performance: some parallel task may find a solution or strong bound 
long before the sequential algorithm would. So superlinear speedups are not uncom-
mon. Conversely, speculation may result in the parallel search performing far more 
work than the sequential search, and may lead to slowdowns as more cores are used. 
These superlinear speedups and slowdowns due to increased workload are known as 
performance anomalies.

Preserving Heuristics State of the art algorithms make essential use of search heu-
ristics that minimise search tree size by focusing on promising areas first. Paral-
lel searches must preserve the heuristic search ordering as far as possible, so stand-
ard random work stealing isn’t appropriate. Rather, scheduling is often carefully 
designed to preserve search heuristics [3, 21].

Global Knowledge Exchange Search tasks discover information that must be shared 
with other search tasks, e.g. a better bound in a branch and bound search. Sharing 
global state must be managed carefully at HPC scale to avoid excessive communi-
cation and synchronisation overheads. It is likely that some search algorithms that 
share significant amounts of data, such as clause learning SAT solvers, will strug-
gle to scale onto HPC. However many searches only share small amounts of data 
globally. Moreover as the global data primarily provides opportunities to optimise 
(e.g. prune the search tree), there is no strong synchronisation constraint: remote 
search tasks are neither stalled, nor producing incorrect data prior to receiving the 
new knowledge.

Programming Challenges State of the art search implementations are intricate [7, 19, 
22], and it is unusual to see large scale parallelisations. Moreover few of the paral-
lel search implementations fully utilise modern architectures, e.g. provide two level 
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(thread + process) parallelism. Even when parallel searches share common para-
digms, they are typically individually parallelised and there is little code reuse. One 
approach to minimise development effort is to parallelise existing sequential solv-
ers [23]. Alternatively high level frameworks provide developers generic libraries to 
compose searches [1, 8, 28].

This paper focuses on YewPar, the latest such framework, and designed to scale 
to HPC.

2.2  YewPar

YewPar2 is carefully designed to manage the challenges of parallel search. Lazy 
Node Generators produce the search trees, and skeletons are provided to efficiently 
search them in parallel. To support distributed memory parallelism, YewPar builds 
on the HPX [11] task parallelism library and runtime system. HPX is routinely 
deployed on HPC and Cloud systems, and YewPar can readily exploit this portabil-
ity at scale. Complete descriptions of the YewPar design and implementation are 
available in [2, 3], and we have recreated the architecture diagram from [3] (Fig. 1) 
for ease of reading; it has the following key components.

Lazy Node Generators Search trees are too large to realise in memory, and searches 
proceed depth-first lazily generating only the subtrees being searched. The Lazy 
Node Generator for a specific search application is a data structure that takes a par-
ent search tree node and enumerates its children in traversal (i.e.   heuristic) order. 
While node generators create the children of a node, how and when the search tree is 
constructed is determined by the skeletons.

Fig. 1  YewPar system stack from [3]

2 https:// github. com/ Blair Archi bald/ YewPar.

https://github.com/BlairArchibald/YewPar
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Search Coordinations To minimise search time it is critical to choose heuristically 
a good node to search next. We follow prior work e.g. [27], and use both applica-
tion heuristics (as encoded in the Lazy Node Generator), and select large subtrees 
(to minimise communication and scheduling overheads) that we expect to find close 
to the root of the search tree. In addition to sequential depth first search, YewPar 
currently provides three parallel search coordinations inspired by approaches in 
the literature [2]. Depth-Bounded search converts all nodes below a cut-off depth 
dcutoff  into tasks in a similar, but more dynamic, style to [30]. Stack-Stealing search 
dynamically generates work by splitting the search tree on receipt of a work-stealing 
request. In Budget search workers search subtrees until either the task completes or 
the task has backtracked as many times as specified in a user-defined budget. At that 
point new search tasks are spawned for the top-level nodes of the current sub-tree.

YewPar Skeletons compose a search coordination with one of the three search 
types, for example BudgetDecision, or DepthBoundedOptimisation. 
There are currently four search coordinations, and hence 12 (3× 4) skeletons. The 
skeletons are implemented for runtime efficiency, e.g. C++ templates are used to 
specialise the skeletons at compile-time. The skeleton APIs expose parameters like 
depth cutoff  or backtracking budget that control the parallel search.

Search Specific Schedulers YewPar layers the search coordination methods as cus-
tom schedulers on top of the existing HPX scheduler.3 That is, the HPX scheduler 
manages several lightweight YewPar scheduler threads that perform the search. In 
addition to search worker threads, each compute-node has a manager HPX thread 
that handles aspects like messages and termination. The schedulers seek to preserve 
search order heuristics, e.g. by using a bespoke order-preserving workpool [2, 3].

Knowledge Management The sharing of solutions and bounds relies on HPX’s par-
titioned global address space (PGAS). To minimise distributed queries, bounds are 
broadcast to compute-nodes that keep track of the last received bound. The local 
bound does not need to be up-to-date to maintain correctness, hence YewPar can 
tolerate communication delays at the cost of missing pruning opportunities.

3  Ease of Use

YewPar is designed to be easy to use by combinatorial searchers who lack exper-
tise in parallel programming. For example, although each of the three searches we 
describe in Sect.  4 uses a published state-of-the-art algorithm, they require only 
around 500 lines of code.4 A recent example of Flowshop search required on the 
magnitude of 50 lines of code to move from direct implementation to YewPar par-
allel [14]. Most of the search application is parameterised generic code. Notable 

3 Using the default thread executor for HPX 1.2.1.
4 https:// github. com/ Blair Archi bald/ YewPar/ apps.

https://github.com/BlairArchibald/YewPar/apps
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exceptions are the node generator that produces the search tree, and the bounding 
function (pruning predicate), that are search-specific and must be specified.

Crucially a YewPar user only composes extremely high level parallel constructs: 
they select and parameterise a search skeleton. For example the search specified in 
the first 6 lines of Listing 1 returns the maximal node in some space. The user speci-
fies the search coordination, in this case StackStealing, provides the applica-
tion-specific Lazy Node Generator Gen to generate the search tree, and chooses 
the type of search, here Optimisation. The listing also illustrates how YewPar 
implements pruning. The user provides an application-specific BoundFunction 
that is called on each search tree node and prunes if the bound cannot beat the cur-
rent objective.

Providing such high level abstractions of the parallel search makes it easy to 
experiment with alternate parallel searches and search parameters. As an example, 
the last 8 lines of Listing 1 specify a parallel budget version of the maximal node 
search, where each search task has a budget of 50,000 backtracks. In contrast, hand-
written parallel search applications like [7, 21] usually add parallelism constructs 
directly to the main search algorithm, obfuscating the algorithm and making it very 
difficult to experiment with alternate parallelisations without major refactoring.

A more complete description of how to specify parallel searches in YewPar are 
provided in [5, 15]. The former provides a docker image artefact containing 6 exam-
ple search implementations.

The search coordinations provided by YewPar are significantly more advanced 
than those commonly used in hand-written parallel searches. For example, in 
Sect. 6 we baseline our YewPar implementation against a simple OpenMP version 
that adds a pragma to the main search loop. The programming effort required to 
produce the OpenMP and YewPar versions is very similar, but the OpenMP imple-
mentation is limited to shared memory, and to a simple depth 1 bounded search. 
Implementing more complex search coordinations, e.g. a heuristic-preserving depth 
2 bounded search is far more intricate. Search coordinations such as StackStealing 
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require access to the scheduler. Moreover conventional parallel schedulers often dis-
rupt search heuristics [21], and we show how the OpenMP scheduler disrupts the 
baselining search instances in Sect. 6. This highlights the need for custom schedul-
ers as in YewPar.

3.1  Related Frameworks

While the vast majority of parallel searches are handwritten, there are some generic 
frameworks such as Bob++ [8], MaLLBa [1], TASKWORK [12], and Muesli [28]. 
These provide a similar level of programming abstraction to YewPar, but are mainly 
designed for branch and bound optimisation and, unlike YewPar, do not currently 
support decision or enumeration searches and tend to only support one search coor-
dination. A wider discussion of existing frameworks an their relationship to YewPar 
is in [2, Chapter 2].

4  Generic Exact Combinatorial Search

Due to the challenges of engineering performant parallel implementations of exact 
combinatorial search, only a small number of specific exact combinatorial searches 
have been hand-crafted for HPC scale, e.g. [4, 9]. YewPar is designed to minimise 
the effort required to engineer performant searches by providing a library of re-usa-
ble skeletons and search coordinations. While this genericity has previously been 
demonstrated by parallelising seven searches at cluster scale (100s of cores) [5], it 
has never been demonstrated at HPC scale (1000s of cores).

We further demonstrate the ease of construction (Sect. 3) by exhibiting parallel 
searches covering the three search types.

Numerical Semigroups The first application comes from group theory, and tackles 
the problem of counting the number of numerical semigroups of a particular genus, 
which is useful for areas such as algebraic geometry [6]. For mathematical searches 
such as this, exactness is essential: an approximate answer has no value.

A numerical semigroup can be defined as “Let ℕ0 be the set of non-negative inte-
gers. A numerical semigroup is a subset � of ℕ0 which contains 0, is closed under 
addition and has finite complement, N0 ⧵ � . The elements in N0 ⧵ � are the gaps of 
� , and the number g = g(�) of gaps is the genus of � ” [7]. A numerical semigroup 
can be viewed as taking a finite set of non-negative integers X such that ℕ0 ⧵ X 
remains closed under addition.

A numerical semigroups search enumerates the number of semigroups with 
genus g, e.g. of genus 46. The YewPar node generator uses Hivert’s algorithm [7] 
and exploits the relation between subsequent numerical semigroups to generate 
search tree nodes. So the search counts the number of search tree nodes at the speci-
fied depth, e.g. at depth 46.
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Maximum Clique The maximum clique optimisation problem seeks to find the larg-
est clique in graph G. A clique C ⊆ V  such that ∀u, v ∈ C({u, v} ∈ E) . The node 
generator implementation is based on the MCSa1 algorithm [29] that exploits graph 
colouring for bounding/heuristic ordering (Fig. 2).

Maximum clique arises in areas such as computational biology, information 
retrieval, economics and signal transmission theory [26]. Search instances are drawn 
from the standard DIMACS challenge instances [10].

k-clique with Finite Geometry. Some applications require a specifically sized 
clique. The k-clique decision search determines whether there is a clique C in a 
graph G of size k, i.e. |C| = k . We apply k-clique to a problem in finite geometry—
determining if a spread in geometries of the Hermitian variety H(4, q2) exists [13]. 
A spread is a set of lines L such that every point is incident with exactly one element 
of L. For H(4, q2) , a spread (if it exists) will have size q5 + 1 . Intuitively, a spread 
forms a partition of the points.

Symmetries in the state space up to depth 3 are broken by pre-processing with 
GAP [31]. So the clique being searched for is of size q5 + 1 − 3 . We consider geom-
etries of the form H(4, 32) , so k = 35 + 1 − 3 = 241, and the Maximum Clique node 
generator is used to generate the search tree.

a b

c

d

ef

g

h

(a)

{c} [a,b,e]

{c,b} [] {c,e} []{c,a} [b]

{c,a,b} []

{f}  [a,g,d]

{f,a}  [g,d]

{f,a,g}  [d]

{f,a,g,d} []

{f,a,d} []

{f,g} [d]

{f,g,d} []

{f,d} []

{}  [c,f,g,h,d,b,a,e]

{g,a} [d,b]

{g,a,b} []{g,a,d} []

{g,d} [] {g,b} []

{g} [a,d,b]

{h,a} [] {h,e} []

{h} [a,e] {e}   []. . .

(b)

Fig. 2  A maximum clique instance. a Input graph with clique {a, d, f , g} ; b corresponding search tree. 
Each tree node displays the current clique and a list of candidate vertices (in heuristic order) to extend 
that clique
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5  Profiling Irregularity in Exact Combinatorial Search

Parallel exact combinatorial search produces extremely irregular parallelism 
(Sect. 2.1). Although the irregularity of a small number of specific parallel searches 
has previously been investigated, e.g. [25, Fig. 4], detailed analysis of irregularity is 
uncommon, and the extent of the irregularity in most searches is unknown.

To provide detailed information on search task irregularity we have added a small 
data store on each YewPar compute-node that records key aspects of the parallel 
search: task runtimes, number of backtracks, number of search tree nodes visited, 
and total number of tasks spawned. To allow the shape of the tree to be investigated, 
the data is indexed by the tree depth where the task was spawned.

5.1  Experimental Setup

Measurements are made on the following platforms. A modified version of YewPar 
that includes the new profiling techniques5 and OpenMP are compiled with gcc 8.2.0 
and HPX 1.2.1. Cirrus is an HPC cluster comprising 228 compute-nodes, each hav-
ing twin 18-core Intel Xeon (Broadwell) CPUs (2.1Ghz), 256 GB of RAM and run-
ning Red Hat Enterprise Linux Version 8.1. The GPG Beowulf Cluster comprises 17 
compute-nodes, each having dual 8-core Intel Xeon E5-2640v2 CPUs (2Ghz), 64GB 
of RAM and running Ubuntu 18.04.2 LTS.

5.2  Search Task Runtimes

Search Task Runtime (STR) profiles shows the distribution of task runtimes for 
tasks spawned at each depth in the search tree. Much of the variance arises from 
the structure of the search tree. STR allows us to visualise the distribution of task 
runtimes throughout a search and provides information about the shape of the search 
tree for a given search instance.

We illustrate the range and distribution of search task runtimes using a violin 
plot for the tasks spawned at each search tree depth, excluding the time for spawned 
tasks to complete. The shape of each violin plot represents the distribution of runt-
imes, e.g. wide sections correspond to frequent runtimes. The white cross represents 
the median value, and the black rectangle the interquartile range.

As a basis for comparison we record the STR for a relatively regular parallel tree 
search. This synthetic search enumerates the tree nodes down to depth 30 in a bal-
anced binary tree (so all subtrees are the same size), creating tasks down to depth 8. 
Fig. 3 shows the search task runtimes at different depths. Task runtimes at depths 0 
to 7 are uniformly small. The tasks at depth 8 do most of the enumeration, and their 
runtimes have a compact distribution with median 16.4ms and an interquartile range 
of 16.3ms to 16.6ms.

5 https:// github. com/ ruair idhm98/ YewPar.

https://github.com/ruairidhm98/YewPar
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In contrast, Figs. 4, 5 and 6 show that the STR distributions for typical combi-
natorial searches are very different. Figure 4 is for a Numerical Semigroups genus 
48 search, using the Budget skeleton with a budget of b = 107 backtracks. The 
distribution of task runtimes is plotted for each depth in the search tree down to 
depth 48. Although task sizes increase steadily at depths 1–7, there are few tasks 
and little variance. This quantifies a known result that the Numerical Semigroups 
search tree is narrow at low depths [7]. Between depths 12 and 41 there is mas-
sive variability in search task runtimes. For example at depth 16 the median task 

Fig. 3  Regular search task runtimes: task runtime distributions for a balanced binary tree search to depth 
30 using the Depthbounded skeleton, dcutoff = 8 (1 GPG cluster compute-node)

Fig. 4  Search task runtime distributions for a Numerical Semigroups genus 48 search, Budget skeleton 
with b = 107 backtracks. Depths 2-5 spawn no tasks and are omitted (1 GPG cluster compute-node, 15 
workers)
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runtime is 19ms, while the interquartile range is 31.5ms, and the maximum task 
runtime is 499ms.

Figure 5 provides more details of the Numerical Semigroups search task runt-
ime distributions at depths 36–39. Not only is the massive variability in runtimes 
clear, but it is far more apparent that the distributions at these levels, as at other 
levels, are multi-modal. For example the distributions at levels 36 and 37 both 
have four clear modes.

Fig. 5  Search task runtime distributions for depths 36 to 39 of a Numerical Semigroups genus 48 search, 
Budget skeleton with b = 107 backtracks (1 GPG cluster compute-node, 15 workers)

Fig. 6  Search task runtime distributions for a brock400_1 Maximum Clique search, depth 2 Depth-
bounded skeleton (1 GPG cluster compute-node, 15 workers)
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Figure  6 shows the search task runtime distributions for a Maximum Clique 
search instance using the Depthbounded skeleton at depth 2 ( dcutoff = 2 ). This opti-
misation search instance is brock400_1 from the DIMACS benchmark suite [10]. 
Tasks are spawned at only three depths and the vast majority of search tasks, 12,458 
out of 12,753, are generated at depth 2. Depths 1 and 2 both exhibit massive vari-
ability in search task runtimes. Most tasks have short runtimes (less than 70 ms), but 
a small number have much longer runtimes (over 900ms). At depth 2 the median 
task runtime is 8ms, while the interquartile range is 26ms, and the maximum task 
runtime is 916ms.

5.3  Search Tree Node Throughput

Search tree node throughput profiles show the number of nodes visited by some 
search task per unit time. It is commonly used as a measure of search speed and, 
indirectly, the size of the workload [17]. As the number of cores grows, increasing 
node throughput illuminates how parallelism may reduce search runtime.

YewPar has been extended to record node throughput by counting each node vis-
ited during the search using a depth-indexed vector of atomic counters in the profil-
ing data store. To minimise the number of atomic operations each search worker 
maintains a local counter and only updates the atomic counter in the vector on 
termination.

Figure 7 shows the node throughput and relative speedup for a Numerical Semi-
groups genus 48 search. This enumeration search again uses the Budget skeleton 
with a budget b of 107 backtracks, and is measured on between 1 and 16 compute 
nodes of the GPG cluster. This graph, and the other graphs in this section, report 
throughput as the mean number of nodes visited divided by the median runtime over 
5 executions.

Fig. 7  Node throughput and relative speedup on GPG cluster compute nodes(workers) for a numerical 
semigroups genus 49 search, Budget skeleton with b = 107 backtracks
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Node throughput increases linearly as the number of compute nodes and cores 
increases, and is closely correlated with the speedup. This is as expected for an enu-
meration search that has a fixed workload, i.e. must visit exactly the same number 
of search tree nodes in every execution. So for enumeration searches a higher node 
throughput directly correlates with speedup.

Figure 8 shows the node throughput and speedup for a Maximum Clique search 
instance using the Depthbounded skeleton at depth 2 ( dcutoff = 2 ). This optimisation 
search instance is DIMACS brock800_2 and is measured on 1–16 compute nodes of 
the GPG cluster.

Both node throughput and speedup increase superlinearly as the number of com-
pute nodes and cores increases, but are not strongly correlated. Speculative search 
tasks account for the increase in node throughput as the number of cores increases. 
We believe that the rate of increase of node throughput falls at high core counts 
because the speculative threads prune much of the search tree. It is, however, not 
easy to measure how much of the tree is pruned as the pruned subtrees are never 
generated. The reduced node throughput is again as expected for an optimisation 
search where pruning reduces the workload.

5.4  Using Profiles to Select and Parameterise Skeletons

Although far easier that hand coding a parallel search from scratch, a developer 
using YewPar must both select an appropriate skeleton, and for most skeletons pro-
vide appropriate parameters. That is, no one skeleton works best for all search appli-
cations [5] and selecting inappropriate parameters results in poor performance [2].

The search task runtime and node throughput profiles above assist the developer 
to select a skeleton and to parameterise it. They do so by accurately quantifying and 

Fig. 8  Node throughput and relative speedup on GPG Cluster Compute Nodes(workers) for a 
brock800_2 Maximum Clique search, depth 2 Depthbounded skeleton
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visualising search task runtime distributions, and hence the search tree shape. We 
illustrate by example, and use similar techniques to parallelise the searches at HPC 
scale in the next section.

For the MaxClique instance the STR profile in Fig.  6 shows that the distribu-
tion of task runtimes for this instance is not huge, and so it probably does not need 
highly dynamic parallelism such as Stackstealing or Backtracking. If we select a 
Depthbounded skeleton, a depth parameter must be specified. We see that most task 
runtimes are very small (10s of ms), and at depths 0 and 1 there are too few tasks to 
occupy the 15 workers on a GPG cluster node, i.e. less than 300 tasks. However at 
depth 2 there are 12K tasks which is likely sufficient.

For the Numerical Semigroups instance the STR profile in Fig.  4 reveals that 
tasks of widely varying runtimes are generated at many levels of the search tree (lev-
els 12–40). Hence a skeleton with dynamic parallelism is appropriate. As an enu-
meration search Numerical Semigroups does not need to deal with pruning, and so 
may not need the fully dynamic Stackstealing skeleton, and the Budget skeleton is 
likely most appropriate. Here a node throughput profile like Fig. 7 helps to select 
the backtrack budget. We see that 30 workers are processing approximately 109 
nodes/s, so each worker processes approximately 108 nodes/s. Selecting a budget of 
107 means that each worker backtracks around 10 times each second: an appealing 
heuristic value.

5.5  Overheads of Profiling

To understand how profiling impacts search performance we show the percentage 
overhead for a collection of searches in Table 1. Overhead is calculated as the per-
centage difference in search runtime with and without profiling. The searches use 
two different skeletons and feature both enumeration (Numerical Semigroups) and 
optimisation (Maximum Clique) instances.

The overheads are modest adding just 5% on average. Hence profiling can be 
used without dramatically effecting runtimes. Measuring node throughput adds 
more overhead than search runtimes as they must count every node that is visited, 
while STR only requires the time to be recorded at the start and end of the task run. 
The overheads do vary between searches and brock400_4 has high overheads: up to 

Table 1  Profiling overheads for 4 search applications and 2 search types (1 GPG Cluster Compute-Node, 
15 workers)

Instance STR % overhead Throughput 
% overhead

Numerical Semigroups g = 44 (Budget) 2 3
Numerical Semigroups g = 46 (Budget) 1 3
Maximum Clique brock400_1.clq (depthbounded) 7 9
Maximum Clique brock400_4.clq (depthbounded) 20 10
Geometric mean % overhead 4 5
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20% for STR profiling. It may be that this is showing both profiling overheads and a 
disrupted search order.

We expect YewPar users to only enable profiling when designing and tuning a 
search. Hence the profiling implementation is designed to be turned off completely 
for maximising performance, for example for the HPC executions in the next section.

6  Exact Combinatorial Search at HPC Scale

Measuring parallel searches is challenging primarily due to the non-determinism 
caused by pruning, random work-stealing, and finding alternate valid solutions. 
These can lead to performance anomalies (Sect.  2.1) that manifest as dramatic 
slowdowns or superlinear speedups. We control for this by investigating multiple 
instances of multiple search applications and selecting the median of 5 executions. 
The experimental setup is as in Sect. 5.

6.1  Sequential and Single Compute‑Node Baselines

YewPar’s generality incurs some overheads compared to search specific implemen-
tations as it decouples search tree generation and traversal. For example, Lazy Node 
Generators copy search tree nodes (in case they are stolen) instead of updating in-
place. We evaluate these overheads on Maximum Clique as a competitive sequential 
implementation is available [19, 20].

Sequential Baseline The first 4 columns of Table 2 show the mean sequential runt-
imes (over 5 executions) of the 9 DIMACS clique instances [10] that take between 
100 s and 1 h to run sequentially on Cirrus. The results show a limited cost of gen-
erality, i.e. a maximum slowdown of 22.44%, a minimum slowdown of − 2.56% , and 
geometric mean slowdown of 9.7%. We attribute the small runtime reductions com-
pared with C++ for 2 search instances to optimisations arising from different C++ 
and C++/HPX compilation schemes.

Parallel Baseline Parallel execution adds additional overheads, e.g. the YewPar skel-
etons are parametric rather than specialised, and the distributed memory execution 
framework is relatively heavyweight on a single compute node. To evaluate the scale 
of these overheads we compare with a search-specific OpenMP version of the maxi-
mum clique implementation. It is imperative that the parallel search algorithm and 
coordination are almost identical, as otherwise performance anomalies will disrupt 
the comparison. Hence the Lazy Node Generator is carefully crafted to mimic the 
Maximum Clique implementation [20], and the OpenMP implementation uses a 
single task pragma to construct a set of tasks for each node at depth 1, closely 
analogous to the DepthBounded skeleton in the YewPar implementation. The 
penultimate paragraph of Sect. 3 compares these OpenMP and YewPar MaxClique 
implementations.
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Comparing the second and fifth columns of Table 2 reveals significant slowdowns 
for OpenMP using a single worker. These arise as the OpenMP scheduler does not 
preserve the search heuristic, as revealed by the task schedule. That is OpenMP pro-
vides no guarantee that the search tasks are executed in the order they are spawned, 
and this illustrates a common issue when using off-the-shelf parallelism frameworks 
for search [21]. The effect is smaller in the parallel version as the likelihood that at 
least one worker follows the heuristic increases.

Columns 5–7 of Table 2 compare the runtimes of the YewPar and OpenMP ver-
sions for the DIMACS search instances with 18 search workers on a single Cirrus 
compute node. We measure the searches on 18 workers/cores rather than on all 36 
physical cores available on a Cirrus compute node as experimentation reveals that 
OpenMP performance reduces above 18 cores. We attribute this to starvation as the 
depth 1 spawning creates too few tasks to utilise all of the cores. A depth-2 back-
tracking search would generate far more work, but implementing such a search in 
OpenMP that is correct, and exactly emulates the YewPar DepthBounded search, is 
far from trivial especially when trying to maintain search heuristics. The geometric 
mean slowdown increases to 27.6%, with a maximum slowdown of 55%. We believe 
these slowdowns are largely caused by increased copying used by YewPar (as any 
node might become a task so should be self contained) but further investigation is 
needed.

The sequential and single compute node overheads of YewPar are lower on 
the GPG Cluster. For the same Maximum Clique codes on a slightly larger set of 
DIMACS instances the mean sequential slowdown is 8.7%, and the slowdown on a 
single 16-core compute node is 16.6% [5].

We conclude that for these search instances the parallel overheads of YewPar 
remain moderate, while facilitating the execution of multiple search applications on 
multiple platforms: multicores, clusters, or HPC systems.

6.2  HPC Performance Measurements

As exact combinatorial search problems are NP hard the workloads generated by 
instances vary greatly, often by orders of magnitude. Hence it is not possible to 
double problem size to measure weak scaling. Hence we report strong scaling, and 
speedups are relative to execution on a small number of Cirrus compute nodes.

We measure the scaling of searches covering the three search types and using dif-
ferent YewPar skeletons. Specifically we measure the searches outlined in Sect. 4, 
and the search instances measured are as follows. Numerical Semigroups is an Enu-
meration search at genus 61, using the Budget skeleton with a budget of 107 back-
tracks. Maximum Clique is an Optimisation search for the DIMACS p_hat1000-3 
instance, and uses the Depthbounded skeleton with a depth cutoff of 2 for all meas-
urements other than on 4480 workers where we use a cutoff of 3 to minimise starva-
tion. k-clique is the finite geometry Decision search with k=241 and uses the Depth-
bounded skeleton with a depth cutoff of 3. This relatively high cutoff is selected 
to generate many search tasks, as searching for a specific clique size induces huge 
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amounts of pruning. While successful decision searches terminate early, here we 
measure unsuccessful searches that must explore the entire space.

Runtimes Numerical Semigroups runtimes fall from 2649s on 16(560) Cirrus Com-
pute Nodes(workers) to 302s on 195(6825) Compute Nodes(workers). Recall that 
each YewPar worker is associated with a core. Maximum Clique runtimes fall from 
2255s on 8(280) to 102s on 128(4480) compute nodes(workers). For the 178_435 
k-clique search, the most significant runtime decrease is from 4563s on 1(35) to 
127s on 64(2240) compute nodes(workers). The other k-clique searches have low 
runtimes: 178_517 has the greatest runtime: 393s on 1(35) and this reduces to 19s 
on 64(2240) compute nodes(workers). A complete set of runtime and speedup data 
is available [16].

The results demonstrate that deploying YewPar on an HPC system can dramati-
cally reduce the runtime of different types of combinatorial search compared with 
state of the art sequential and parallel implementations. As a further example, the 
runtimes for a Maximum Clique p_hat1000-3 have fallen from 130.8h (Sequen-
tial), 4.2h (Cilk+) and 3.0h (C++ custom threading) on a dual 32-core Intel Xeon 
E5-2697A (2.6 GHz) [18] to 102s (4480 YewPar workers on Cirrus). As the Xeon 
has a faster clock speed than both GPG and Cirrus we would expect even longer 
sequential runtimes on these platforms.

Speedups Figure  9 shows the speedups for the Numerical Semigroups genus 61 
search. The speedups are relative to execution on 16(560) compute nodes(workers). 
The relative speedup is near linear up to 4480 workers, with parallel efficiency over 
90%. By 6825 workers both speedup and efficiency have declined.

Fig. 9  Numerical semigroups genus 61 search, budget 107 backtracks; speedup relative to 16(560) Cirrus 
compute nodes(workers)
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Figure 10 shows relative speedups from 8(280) compute nodes (workers) for the 
Maximum Clique p_hat1000-3 search. Relative speedups increase steadily as the 
core counts increase up until 4608 cores where super-linear speedups are achieved. 
Super-linear speedups are common for optimisation searches where pruning can 
dramatically reduce the workload.

Fig. 10  Maximum Clique p_hat1000-3 search speedup relative to 8(280) Cirrus compute 
nodes(workers); Depthbounded with cutoff 2, increased to 3 for 16(4480) to minimise starvation

Fig. 11  k-clique finite geometry search speedups relative to 1(35) Cirrus compute node(workers); Depth-
bounded with cutoff 3
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Figure  11 shows relative speedups from 1(35) compute nodes(workers) 
for 5 instances of the k-clique decision search. Speedups vary from instance 
to instance. The best speedup achieved is for instance 178_435 that has a sig-
nificantly longer runtime at 1(35) i.e.  4563s. Lower speedups are achieved for 
instances with lower runtimes on 1(35), and these range from 393s for 178_517 
to 113s for 59_684. For these instances runtimes are reduced to between 10s and 
20s on 64(2240) compute nodes(workers), and the system is starved of work. So 
it is likely that far better scaling could be achieved for larger search instances.

7  Conclusions

We report the first ever study of generic combinatorial search at HPC scale, i.e. 100s 
of compute nodes and more than 4000 cores. The study demonstrates the capacity of 
the YewPar search framework to scale to HPC.

We have demonstrated generic high performance combinatorial search, i.e. 
that a variety of exact combinatorial searches can be easily parallelised for HPC 
using YewPar. Complete implementations of sophisticated state-of-the art parallel 
searches require only around 500 lines of code. Previously (1) just a few searches 
have been individually hand-crafted for HPC scale e.g. [4, 9]; and (2) the generic-
ity of YewPar has only been demonstrated on a modest cluster (100s of cores) by 
parallelising seven searches [5]. Here we exhibit HPC-scale searches using different 
YewPar skeletons and covering the three search types: optimisation, enumeration, 
and decision (Sect. 4).

We have presented a new mechanism for profiling key aspects of generic parallel 
combinatorial search in YewPar. The extreme irregularity of parallel combinatorial 
search has only rarely been measured, and then only for specific search applications, 
e.g. [25]. We exhibit profiles that quantify the irregularity of many search appli-
cations in the generic YewPar framework. Although implemented for YewPar and 
in HPX the profiling techniques do not depend directly on either. Search task runt-
ime profiling aids parallelisation by providing information on aspects like the huge 
differences in search task runtimes, mean task runtime, and the radically different 
(and frequently multi-modal) task runtime distributions at each search tree depth, 
e.g. Fig. 4. Profiling node throughput quantifies the dramatic differences in paral-
lel behaviour between enumeration searches with fixed workloads, e.g. Fig. 7, and 
optimisation searches with variable workloads, e.g. Fig. 8. Profiling has a geometric 
mean overhead of only 5% (Sect.  5.5) making it accurate and usable in practice. 
Moreover profiling can be turned off completely to maximise performance (Sect. 5).

We demonstrate, for the first time, generic exact combinatorial searches at HPC 
scale. Baselining against state-of-the-art sequential C++ and C++/OpenMP imple-
mentations on 9 standard (DIMACS) search instances shows that the generality of 
YewPar incurs a mean sequential slowdown of 9%, and a mean parallel slowdown 
of 27.6% on a single 18-core compute node (Table 2). Guided by the profiling we 
effectively parallelise seven standard instances of the three searches, and systemati-
cally measure runtime and relative speedups at scale. We show how deploying Yew-
Par on an HPC system can deliver dramatic reductions in runtime compared with 
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state of the art hand crafted search implementations, both sequential and parallel-
ised at smaller scale. For example reducing the p_hat1000-3 sequential search from 
131 h to just 102 s using YewPar on 4480 cores (Fig. 10).

Comparing different search types shows similar speedup and scaling charac-
teristics to smaller-scale parallel search [5], e.g. pruning in the Maximum Clique 
optimisation search reduces workload and hence delivers super-linear speedups up 
to 128(4480) compute-nodes(workers) (Fig.  10). The maximum relative speedups 
we achieve for the Numerical Semigroups enumeration search are near-linear up to 
192(6825) compute-nodes(workers) (Fig.  9), and sub-linear for five k-clique deci-
sion searches on up to 64(2240) compute-nodes(workers) (Fig. 11). It is likely that 
far better scaling can be achieved for k-clique, and other decision searches, if suit-
able instances can be found (Sect. 6).

Ongoing Work Currently determining good parameters for a search instance, like 
depth cutoff or backtrack budget, entails a parameter sweep. Ongoing work seeks to 
determine whether we can use pre-execution profiling to predict parameters, e.g. is 
backtracks-per-second-per-worker sufficient to determine an appropriate budget 
for search instances? We would also like to explore whether performance can be 
improved by extending YewPar to use the profiling metrics to dynamically adapt the 
search, e.g. a compute node with ample work may increase the depth cutoff to pro-
vide more search tasks.

A benefit of profiling the general framework is that we can explore other search 
applications such as the Unbalanced-Tree Search benchmark [24] that is already 
supported in YewPar [2].
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