
Vol.:(0123456789)

International Journal of Parallel Programming
https://doi.org/10.1007/s10766-022-00744-3

1 3

Generic Exact Combinatorial Search at HPC Scale

Ruairidh MacGregor1 · Blair Archibald1 · Phil Trinder1

Received: 9 September 2022 / Accepted: 21 November 2022
© The Author(s) 2022

Abstract
Exact combinatorial search is essential to a wide range of important applications,
and there are many large problems that need to be solved quickly. Searches are
extremely challenging to parallelise due to a combination of factors, e.g. searches
are non-deterministic, dynamic pruning changes the workload, and search tasks have
very different runtimes. YewPar is a C++/HPX framework that generalises paral-
lel search by providing a range of sophisticated search skeletons.This paper dem-
onstrates generic high performance combinatorial search, i.e. that a variety of exact
combinatorial searches can be easily parallelised for HPC using YewPar. We present
a new mechanism for profiling key aspects of YewPar parallel combinatorial search,
and demonstrate its value. We exhibit, for the first time, generic exact combinatorial
searches at HPC scale. We baseline YewPar against state-of-the-art sequential C++
and C++/OpenMP implementations. We demonstrate that deploying YewPar on an
HPC system can dramatically reduce the runtime of large problems, e.g. from days
to just 100s. The maximum relative speedups we achieve for an enumeration search
are near-linear up to 195(6825) compute-nodes(workers), super-linear for an optimi-
sation search on up to 128(4480) (pruning reduces the workload), and sub-linear for
decision searches on up to 64(2240) compute-nodes(workers).

Keywords Combinatorial search · Parallel skeletons · Constraint programming ·
High performance computing

1 Introduction

Exact combinatorial search is essential to a wide range of important applications
including constraint programming, graph matching, and planning. A classic exam-
ple would be to allocate parcels to vans, and to plan delivery routes for the vans.

 * Blair Archibald
 blair.archibald@glasgow.ac.uk

 Phil Trinder
 phil.trinder@glasgow.ac.uk

1 School of Computing Science, University of Glasgow, Glasgow, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-022-00744-3&domain=pdf

 International Journal of Parallel Programming

1 3

Combinatorial problems are solved by systematically exploring a space of (par-
tial) solutions, and doing so is computationally hard both in theory and in practice,
encouraging the use of approximate algorithms that quickly provide answers yet
with no guarantee of optimality. Alternatively, exact search exhaustively explores
the search space and delivers provably optimal answers. Conceptually exact com-
binatorial search proceeds by generating and traversing a (huge) tree representing
alternative options. Backtracking branch and bound search is a well known exam-
ple. Although searches can be time consuming, combining parallelism, on-demand
tree generation, search heuristics, and pruning can effectively reduce execution time.
Thus a search can be completed to meet time constraints, for example to load and
dispatch a fleet of delivery vans each morning.

Exact combinatorial search is very different to classical HPC applications. The
problems are NP-hard rather than polynomial. There is almost no use of vectors
or matrices: the primary data structure is a huge, dynamically generated, irregu-
lar search tree. Almost all values are discrete, e.g. integers or booleans. In place
of nested loops there are elaborate recursive control structures. The parallelism is
highly irregular, that is the number and runtimes of tasks are determined by the
search instance, and vary hugely, i.e. by several orders of magnitude [25]. Only a
small number of specific exact combinatorial searches have been hand-crafted for
HPC scale (around 1000 cores), e.g. [4, 9].

There are three main search types: enumeration, which searches for all solutions
matching some property, e.g. all maximal cliques in a graph1; decision, which looks
for a specific solution, e.g. a clique of size k ; and optimisation, which looks for a
solution that minimises/maximises an objective function, e.g. finding a maximum
clique. There are standard instances for many important search applications, e.g. the
DIMACS instances [10].

YewPar is a C++ parallel search framework [2, 5]. YewPar generalises search
by abstracting search tree generation, and by providing algorithmic skeletons that
support the three search types. The skeletons use sophisticated search coordinations
that control the parallel search including when new tasks are generated. These are
inspired by the literature, and are currently: Sequential, Depth-Bounded, Stack-
Stealing and Budget. It also provides low-level search specific schedulers and utili-
ties to deal with the irregularity of search and knowledge exchange between work-
ers. YewPar uses the HPX library for distributed task-parallelism [11], allowing
search on multi-cores, clusters, HPC systems etc.

This paper makes the following contributions.
We present a new mechanism for profiling key aspects of generic parallel combi-

natorial search in YewPar. While the extreme irregularity of parallel combinatorial
search is well known, it is seldom measured, and then only for specific search appli-
cations, e.g. [25]. Key novelties are (1) to provide profiles that quantify the irregu-
larity of various search applications in the generic YewPar framework, e.g. to report

1 A clique in a graph is a set of vertices C such that all vertices in C are pairwise adjacent. Maximal
cliques cannot be extended by including one more adjacent vertex and Maximum cliques are the largest
cliques in the graph.

1 3

International Journal of Parallel Programming

median task runtime, maximum task runtime, etc. (2) to make irregularity character-
istics visible to the developer to aid performance tuning (Sect. 5).

We demonstrate for the first time generic exact combinatorial searches at HPC
scale. Generic YewPar searches have previously only been demonstrated on rela-
tively small-scale clusters: 17 compute nodes and 270 cores [5]. We use a combina-
tion of techniques like repeated measurements and using multiple search instances
to address the challenges of parallel search, e.g. non-determinism, non-fixed work-
loads, irregular parallelism, and the nature of NP-hard problems. Baselining against
state-of-the-art sequential C++ and C++/OpenMP implementations on 9 standard
(DIMACS) search instances shows that the generality of YewPar incurs a mean
sequential slowdown of 9.6%, and a mean parallel slowdown of 27.6% on a sin-
gle 18-core compute node. Guided by the profiling we effectively parallelise seven
standard instances of the three searches, and systematically measure runtime and rel-
ative speedups at scale. We demonstrate that deploying YewPar on an HPC system
can dramatically reduce the runtime of large problems, e.g. from days to just 100 s.
The maximum relative speedups we achieve for the Numerical Semigroups enumer-
ation search are near-linear up to 192(6825) compute-nodes(workers), super-linear
for a Maximum Clique optimisation search on up to 128(4480) (pruning reduces the
workload), and sub-linear for a k-clique decision search on up to 64(2240) compute-
nodes(workers) (Sect. 6).

2 Background

2.1 The Challenges of Exact Combinatorial Search at HPC Scale

An exact combinatorial search generates and explores a massive tree of possi-
ble solutions. The search trees are generated on-demand to limit memory require-
ments, and provide ample opportunities to exploit parallelism. Space-splitting
approaches explore subtrees in parallel, speculatively for optimisation and deci-
sion searches. Portfolio approaches run multiple searches, with varying search
orders/heuristics, and share knowledge between searches.

We focus on space-splitting approaches here. As the search trees are so large
(potentially exponential in the input size) we can easily generate millions of par-
allel tasks: far more than commodity hardware can handle, but enough to keep for
modern HPC clusters busy.

However there are many aspects of search that make effective parallelisation
extremely challenging in practice. Searches differ from standard parallel work-
loads due to their heavy use of symbolic/integer data and methods as opposed to
floating point, and widespread use of conditionals meaning that neither vectorisa-
tion nor GPUs are beneficial.

Here we outline some specific challenges raised by combinatorial search at
HPC scale (100s of compute nodes, more than 5000 cores), and show that despite
these issues exact combinatorial search is a fruitful HPC domain.

 International Journal of Parallel Programming

1 3

Task Irregularity Parallel search tasks are highly irregular that is (1) some tasks
have short runtimes, e.g. several milliseconds, while others take orders of magnitude
longer, e.g. many minutes (2) tasks are generated dynamically, and the number of
tasks varies depending on the search instance, e.g. as determined by the number of
children of a search tree nodes. Many classical HPC workloads, e.g. computing over
a homogeneous mesh, are regular with tasks having similar runtimes, and the num-
ber of tasks can be statically predicted.

Search tasks explore subtrees, and the sizes of these often varies by orders of
magnitude. The problem is compounded as the shape of the search tree changes at
runtime as new knowledge, like improved bounds, is learned. In practice improved
knowledge can make a significant proportion of existing tasks redundant. We give a
detailed analysis of search task irregularity in Sect. 5.

Speculation Tree searches are commonly parallelised by speculatively exploring
subtrees in parallel. Most searches are compute, rather than memory or communi-
cation bound, and to achieve substantial speedups large amounts of speculation are
used.

Speculatively exploring subtrees earlier than a sequential algorithm can dramati-
cally improve performance: some parallel task may find a solution or strong bound
long before the sequential algorithm would. So superlinear speedups are not uncom-
mon. Conversely, speculation may result in the parallel search performing far more
work than the sequential search, and may lead to slowdowns as more cores are used.
These superlinear speedups and slowdowns due to increased workload are known as
performance anomalies.

Preserving Heuristics State of the art algorithms make essential use of search heu-
ristics that minimise search tree size by focusing on promising areas first. Paral-
lel searches must preserve the heuristic search ordering as far as possible, so stand-
ard random work stealing isn’t appropriate. Rather, scheduling is often carefully
designed to preserve search heuristics [3, 21].

Global Knowledge Exchange Search tasks discover information that must be shared
with other search tasks, e.g. a better bound in a branch and bound search. Sharing
global state must be managed carefully at HPC scale to avoid excessive communi-
cation and synchronisation overheads. It is likely that some search algorithms that
share significant amounts of data, such as clause learning SAT solvers, will strug-
gle to scale onto HPC. However many searches only share small amounts of data
globally. Moreover as the global data primarily provides opportunities to optimise
(e.g. prune the search tree), there is no strong synchronisation constraint: remote
search tasks are neither stalled, nor producing incorrect data prior to receiving the
new knowledge.

Programming Challenges State of the art search implementations are intricate [7, 19,
22], and it is unusual to see large scale parallelisations. Moreover few of the paral-
lel search implementations fully utilise modern architectures, e.g. provide two level

1 3

International Journal of Parallel Programming

(thread + process) parallelism. Even when parallel searches share common para-
digms, they are typically individually parallelised and there is little code reuse. One
approach to minimise development effort is to parallelise existing sequential solv-
ers [23]. Alternatively high level frameworks provide developers generic libraries to
compose searches [1, 8, 28].

This paper focuses on YewPar, the latest such framework, and designed to scale
to HPC.

2.2 YewPar

YewPar2 is carefully designed to manage the challenges of parallel search. Lazy
Node Generators produce the search trees, and skeletons are provided to efficiently
search them in parallel. To support distributed memory parallelism, YewPar builds
on the HPX [11] task parallelism library and runtime system. HPX is routinely
deployed on HPC and Cloud systems, and YewPar can readily exploit this portabil-
ity at scale. Complete descriptions of the YewPar design and implementation are
available in [2, 3], and we have recreated the architecture diagram from [3] (Fig. 1)
for ease of reading; it has the following key components.

Lazy Node Generators Search trees are too large to realise in memory, and searches
proceed depth-first lazily generating only the subtrees being searched. The Lazy
Node Generator for a specific search application is a data structure that takes a par-
ent search tree node and enumerates its children in traversal (i.e. heuristic) order.
While node generators create the children of a node, how and when the search tree is
constructed is determined by the skeletons.

Fig. 1 YewPar system stack from [3]

2 https:// github. com/ Blair Archi bald/ YewPar.

https://github.com/BlairArchibald/YewPar

 International Journal of Parallel Programming

1 3

Search Coordinations To minimise search time it is critical to choose heuristically
a good node to search next. We follow prior work e.g. [27], and use both applica-
tion heuristics (as encoded in the Lazy Node Generator), and select large subtrees
(to minimise communication and scheduling overheads) that we expect to find close
to the root of the search tree. In addition to sequential depth first search, YewPar
currently provides three parallel search coordinations inspired by approaches in
the literature [2]. Depth-Bounded search converts all nodes below a cut-off depth
dcutoff into tasks in a similar, but more dynamic, style to [30]. Stack-Stealing search
dynamically generates work by splitting the search tree on receipt of a work-stealing
request. In Budget search workers search subtrees until either the task completes or
the task has backtracked as many times as specified in a user-defined budget. At that
point new search tasks are spawned for the top-level nodes of the current sub-tree.

YewPar Skeletons compose a search coordination with one of the three search
types, for example BudgetDecision, or DepthBoundedOptimisation.
There are currently four search coordinations, and hence 12 (3× 4) skeletons. The
skeletons are implemented for runtime efficiency, e.g. C++ templates are used to
specialise the skeletons at compile-time. The skeleton APIs expose parameters like
depth cutoff or backtracking budget that control the parallel search.

Search Specific Schedulers YewPar layers the search coordination methods as cus-
tom schedulers on top of the existing HPX scheduler.3 That is, the HPX scheduler
manages several lightweight YewPar scheduler threads that perform the search. In
addition to search worker threads, each compute-node has a manager HPX thread
that handles aspects like messages and termination. The schedulers seek to preserve
search order heuristics, e.g. by using a bespoke order-preserving workpool [2, 3].

Knowledge Management The sharing of solutions and bounds relies on HPX’s par-
titioned global address space (PGAS). To minimise distributed queries, bounds are
broadcast to compute-nodes that keep track of the last received bound. The local
bound does not need to be up-to-date to maintain correctness, hence YewPar can
tolerate communication delays at the cost of missing pruning opportunities.

3 Ease of Use

YewPar is designed to be easy to use by combinatorial searchers who lack exper-
tise in parallel programming. For example, although each of the three searches we
describe in Sect. 4 uses a published state-of-the-art algorithm, they require only
around 500 lines of code.4 A recent example of Flowshop search required on the
magnitude of 50 lines of code to move from direct implementation to YewPar par-
allel [14]. Most of the search application is parameterised generic code. Notable

3 Using the default thread executor for HPX 1.2.1.
4 https:// github. com/ Blair Archi bald/ YewPar/ apps.

https://github.com/BlairArchibald/YewPar/apps

1 3

International Journal of Parallel Programming

exceptions are the node generator that produces the search tree, and the bounding
function (pruning predicate), that are search-specific and must be specified.

Crucially a YewPar user only composes extremely high level parallel constructs:
they select and parameterise a search skeleton. For example the search specified in
the first 6 lines of Listing 1 returns the maximal node in some space. The user speci-
fies the search coordination, in this case StackStealing, provides the applica-
tion-specific Lazy Node Generator Gen to generate the search tree, and chooses
the type of search, here Optimisation. The listing also illustrates how YewPar
implements pruning. The user provides an application-specific BoundFunction
that is called on each search tree node and prunes if the bound cannot beat the cur-
rent objective.

Providing such high level abstractions of the parallel search makes it easy to
experiment with alternate parallel searches and search parameters. As an example,
the last 8 lines of Listing 1 specify a parallel budget version of the maximal node
search, where each search task has a budget of 50,000 backtracks. In contrast, hand-
written parallel search applications like [7, 21] usually add parallelism constructs
directly to the main search algorithm, obfuscating the algorithm and making it very
difficult to experiment with alternate parallelisations without major refactoring.

A more complete description of how to specify parallel searches in YewPar are
provided in [5, 15]. The former provides a docker image artefact containing 6 exam-
ple search implementations.

The search coordinations provided by YewPar are significantly more advanced
than those commonly used in hand-written parallel searches. For example, in
Sect. 6 we baseline our YewPar implementation against a simple OpenMP version
that adds a pragma to the main search loop. The programming effort required to
produce the OpenMP and YewPar versions is very similar, but the OpenMP imple-
mentation is limited to shared memory, and to a simple depth 1 bounded search.
Implementing more complex search coordinations, e.g. a heuristic-preserving depth
2 bounded search is far more intricate. Search coordinations such as StackStealing

 International Journal of Parallel Programming

1 3

require access to the scheduler. Moreover conventional parallel schedulers often dis-
rupt search heuristics [21], and we show how the OpenMP scheduler disrupts the
baselining search instances in Sect. 6. This highlights the need for custom schedul-
ers as in YewPar.

3.1 Related Frameworks

While the vast majority of parallel searches are handwritten, there are some generic
frameworks such as Bob++ [8], MaLLBa [1], TASKWORK [12], and Muesli [28].
These provide a similar level of programming abstraction to YewPar, but are mainly
designed for branch and bound optimisation and, unlike YewPar, do not currently
support decision or enumeration searches and tend to only support one search coor-
dination. A wider discussion of existing frameworks an their relationship to YewPar
is in [2, Chapter 2].

4 Generic Exact Combinatorial Search

Due to the challenges of engineering performant parallel implementations of exact
combinatorial search, only a small number of specific exact combinatorial searches
have been hand-crafted for HPC scale, e.g. [4, 9]. YewPar is designed to minimise
the effort required to engineer performant searches by providing a library of re-usa-
ble skeletons and search coordinations. While this genericity has previously been
demonstrated by parallelising seven searches at cluster scale (100s of cores) [5], it
has never been demonstrated at HPC scale (1000s of cores).

We further demonstrate the ease of construction (Sect. 3) by exhibiting parallel
searches covering the three search types.

Numerical Semigroups The first application comes from group theory, and tackles
the problem of counting the number of numerical semigroups of a particular genus,
which is useful for areas such as algebraic geometry [6]. For mathematical searches
such as this, exactness is essential: an approximate answer has no value.

A numerical semigroup can be defined as “Let ℕ0 be the set of non-negative inte-
gers. A numerical semigroup is a subset � of ℕ0 which contains 0, is closed under
addition and has finite complement, N0 ⧵ � . The elements in N0 ⧵ � are the gaps of
� , and the number g = g(�) of gaps is the genus of � ” [7]. A numerical semigroup
can be viewed as taking a finite set of non-negative integers X such that ℕ0 ⧵ X
remains closed under addition.

A numerical semigroups search enumerates the number of semigroups with
genus g, e.g. of genus 46. The YewPar node generator uses Hivert’s algorithm [7]
and exploits the relation between subsequent numerical semigroups to generate
search tree nodes. So the search counts the number of search tree nodes at the speci-
fied depth, e.g. at depth 46.

1 3

International Journal of Parallel Programming

Maximum Clique The maximum clique optimisation problem seeks to find the larg-
est clique in graph G. A clique C ⊆ V such that ∀u, v ∈ C({u, v} ∈ E) . The node
generator implementation is based on the MCSa1 algorithm [29] that exploits graph
colouring for bounding/heuristic ordering (Fig. 2).

Maximum clique arises in areas such as computational biology, information
retrieval, economics and signal transmission theory [26]. Search instances are drawn
from the standard DIMACS challenge instances [10].

k-clique with Finite Geometry. Some applications require a specifically sized
clique. The k-clique decision search determines whether there is a clique C in a
graph G of size k, i.e. |C| = k . We apply k-clique to a problem in finite geometry—
determining if a spread in geometries of the Hermitian variety H(4, q2) exists [13].
A spread is a set of lines L such that every point is incident with exactly one element
of L. For H(4, q2) , a spread (if it exists) will have size q5 + 1 . Intuitively, a spread
forms a partition of the points.

Symmetries in the state space up to depth 3 are broken by pre-processing with
GAP [31]. So the clique being searched for is of size q5 + 1 − 3 . We consider geom-
etries of the form H(4, 32) , so k = 35 + 1 − 3 = 241, and the Maximum Clique node
generator is used to generate the search tree.

a b

c

d

ef

g

h

(a)

{c} [a,b,e]

{c,b} [] {c,e} []{c,a} [b]

{c,a,b} []

{f} [a,g,d]

{f,a} [g,d]

{f,a,g} [d]

{f,a,g,d} []

{f,a,d} []

{f,g} [d]

{f,g,d} []

{f,d} []

{} [c,f,g,h,d,b,a,e]

{g,a} [d,b]

{g,a,b} []{g,a,d} []

{g,d} [] {g,b} []

{g} [a,d,b]

{h,a} [] {h,e} []

{h} [a,e] {e} []. . .

(b)

Fig. 2 A maximum clique instance. a Input graph with clique {a, d, f , g} ; b corresponding search tree.
Each tree node displays the current clique and a list of candidate vertices (in heuristic order) to extend
that clique

 International Journal of Parallel Programming

1 3

5 Profiling Irregularity in Exact Combinatorial Search

Parallel exact combinatorial search produces extremely irregular parallelism
(Sect. 2.1). Although the irregularity of a small number of specific parallel searches
has previously been investigated, e.g. [25, Fig. 4], detailed analysis of irregularity is
uncommon, and the extent of the irregularity in most searches is unknown.

To provide detailed information on search task irregularity we have added a small
data store on each YewPar compute-node that records key aspects of the parallel
search: task runtimes, number of backtracks, number of search tree nodes visited,
and total number of tasks spawned. To allow the shape of the tree to be investigated,
the data is indexed by the tree depth where the task was spawned.

5.1 Experimental Setup

Measurements are made on the following platforms. A modified version of YewPar
that includes the new profiling techniques5 and OpenMP are compiled with gcc 8.2.0
and HPX 1.2.1. Cirrus is an HPC cluster comprising 228 compute-nodes, each hav-
ing twin 18-core Intel Xeon (Broadwell) CPUs (2.1Ghz), 256 GB of RAM and run-
ning Red Hat Enterprise Linux Version 8.1. The GPG Beowulf Cluster comprises 17
compute-nodes, each having dual 8-core Intel Xeon E5-2640v2 CPUs (2Ghz), 64GB
of RAM and running Ubuntu 18.04.2 LTS.

5.2 Search Task Runtimes

Search Task Runtime (STR) profiles shows the distribution of task runtimes for
tasks spawned at each depth in the search tree. Much of the variance arises from
the structure of the search tree. STR allows us to visualise the distribution of task
runtimes throughout a search and provides information about the shape of the search
tree for a given search instance.

We illustrate the range and distribution of search task runtimes using a violin
plot for the tasks spawned at each search tree depth, excluding the time for spawned
tasks to complete. The shape of each violin plot represents the distribution of runt-
imes, e.g. wide sections correspond to frequent runtimes. The white cross represents
the median value, and the black rectangle the interquartile range.

As a basis for comparison we record the STR for a relatively regular parallel tree
search. This synthetic search enumerates the tree nodes down to depth 30 in a bal-
anced binary tree (so all subtrees are the same size), creating tasks down to depth 8.
Fig. 3 shows the search task runtimes at different depths. Task runtimes at depths 0
to 7 are uniformly small. The tasks at depth 8 do most of the enumeration, and their
runtimes have a compact distribution with median 16.4ms and an interquartile range
of 16.3ms to 16.6ms.

5 https:// github. com/ ruair idhm98/ YewPar.

https://github.com/ruairidhm98/YewPar

1 3

International Journal of Parallel Programming

In contrast, Figs. 4, 5 and 6 show that the STR distributions for typical combi-
natorial searches are very different. Figure 4 is for a Numerical Semigroups genus
48 search, using the Budget skeleton with a budget of b = 107 backtracks. The
distribution of task runtimes is plotted for each depth in the search tree down to
depth 48. Although task sizes increase steadily at depths 1–7, there are few tasks
and little variance. This quantifies a known result that the Numerical Semigroups
search tree is narrow at low depths [7]. Between depths 12 and 41 there is mas-
sive variability in search task runtimes. For example at depth 16 the median task

Fig. 3 Regular search task runtimes: task runtime distributions for a balanced binary tree search to depth
30 using the Depthbounded skeleton, dcutoff = 8 (1 GPG cluster compute-node)

Fig. 4 Search task runtime distributions for a Numerical Semigroups genus 48 search, Budget skeleton
with b = 107 backtracks. Depths 2-5 spawn no tasks and are omitted (1 GPG cluster compute-node, 15
workers)

 International Journal of Parallel Programming

1 3

runtime is 19ms, while the interquartile range is 31.5ms, and the maximum task
runtime is 499ms.

Figure 5 provides more details of the Numerical Semigroups search task runt-
ime distributions at depths 36–39. Not only is the massive variability in runtimes
clear, but it is far more apparent that the distributions at these levels, as at other
levels, are multi-modal. For example the distributions at levels 36 and 37 both
have four clear modes.

Fig. 5 Search task runtime distributions for depths 36 to 39 of a Numerical Semigroups genus 48 search,
Budget skeleton with b = 107 backtracks (1 GPG cluster compute-node, 15 workers)

Fig. 6 Search task runtime distributions for a brock400_1 Maximum Clique search, depth 2 Depth-
bounded skeleton (1 GPG cluster compute-node, 15 workers)

1 3

International Journal of Parallel Programming

Figure 6 shows the search task runtime distributions for a Maximum Clique
search instance using the Depthbounded skeleton at depth 2 (dcutoff = 2). This opti-
misation search instance is brock400_1 from the DIMACS benchmark suite [10].
Tasks are spawned at only three depths and the vast majority of search tasks, 12,458
out of 12,753, are generated at depth 2. Depths 1 and 2 both exhibit massive vari-
ability in search task runtimes. Most tasks have short runtimes (less than 70 ms), but
a small number have much longer runtimes (over 900ms). At depth 2 the median
task runtime is 8ms, while the interquartile range is 26ms, and the maximum task
runtime is 916ms.

5.3 Search Tree Node Throughput

Search tree node throughput profiles show the number of nodes visited by some
search task per unit time. It is commonly used as a measure of search speed and,
indirectly, the size of the workload [17]. As the number of cores grows, increasing
node throughput illuminates how parallelism may reduce search runtime.

YewPar has been extended to record node throughput by counting each node vis-
ited during the search using a depth-indexed vector of atomic counters in the profil-
ing data store. To minimise the number of atomic operations each search worker
maintains a local counter and only updates the atomic counter in the vector on
termination.

Figure 7 shows the node throughput and relative speedup for a Numerical Semi-
groups genus 48 search. This enumeration search again uses the Budget skeleton
with a budget b of 107 backtracks, and is measured on between 1 and 16 compute
nodes of the GPG cluster. This graph, and the other graphs in this section, report
throughput as the mean number of nodes visited divided by the median runtime over
5 executions.

Fig. 7 Node throughput and relative speedup on GPG cluster compute nodes(workers) for a numerical
semigroups genus 49 search, Budget skeleton with b = 107 backtracks

 International Journal of Parallel Programming

1 3

Node throughput increases linearly as the number of compute nodes and cores
increases, and is closely correlated with the speedup. This is as expected for an enu-
meration search that has a fixed workload, i.e. must visit exactly the same number
of search tree nodes in every execution. So for enumeration searches a higher node
throughput directly correlates with speedup.

Figure 8 shows the node throughput and speedup for a Maximum Clique search
instance using the Depthbounded skeleton at depth 2 (dcutoff = 2). This optimisation
search instance is DIMACS brock800_2 and is measured on 1–16 compute nodes of
the GPG cluster.

Both node throughput and speedup increase superlinearly as the number of com-
pute nodes and cores increases, but are not strongly correlated. Speculative search
tasks account for the increase in node throughput as the number of cores increases.
We believe that the rate of increase of node throughput falls at high core counts
because the speculative threads prune much of the search tree. It is, however, not
easy to measure how much of the tree is pruned as the pruned subtrees are never
generated. The reduced node throughput is again as expected for an optimisation
search where pruning reduces the workload.

5.4 Using Profiles to Select and Parameterise Skeletons

Although far easier that hand coding a parallel search from scratch, a developer
using YewPar must both select an appropriate skeleton, and for most skeletons pro-
vide appropriate parameters. That is, no one skeleton works best for all search appli-
cations [5] and selecting inappropriate parameters results in poor performance [2].

The search task runtime and node throughput profiles above assist the developer
to select a skeleton and to parameterise it. They do so by accurately quantifying and

Fig. 8 Node throughput and relative speedup on GPG Cluster Compute Nodes(workers) for a
brock800_2 Maximum Clique search, depth 2 Depthbounded skeleton

1 3

International Journal of Parallel Programming

visualising search task runtime distributions, and hence the search tree shape. We
illustrate by example, and use similar techniques to parallelise the searches at HPC
scale in the next section.

For the MaxClique instance the STR profile in Fig. 6 shows that the distribu-
tion of task runtimes for this instance is not huge, and so it probably does not need
highly dynamic parallelism such as Stackstealing or Backtracking. If we select a
Depthbounded skeleton, a depth parameter must be specified. We see that most task
runtimes are very small (10s of ms), and at depths 0 and 1 there are too few tasks to
occupy the 15 workers on a GPG cluster node, i.e. less than 300 tasks. However at
depth 2 there are 12K tasks which is likely sufficient.

For the Numerical Semigroups instance the STR profile in Fig. 4 reveals that
tasks of widely varying runtimes are generated at many levels of the search tree (lev-
els 12–40). Hence a skeleton with dynamic parallelism is appropriate. As an enu-
meration search Numerical Semigroups does not need to deal with pruning, and so
may not need the fully dynamic Stackstealing skeleton, and the Budget skeleton is
likely most appropriate. Here a node throughput profile like Fig. 7 helps to select
the backtrack budget. We see that 30 workers are processing approximately 109
nodes/s, so each worker processes approximately 108 nodes/s. Selecting a budget of
107 means that each worker backtracks around 10 times each second: an appealing
heuristic value.

5.5 Overheads of Profiling

To understand how profiling impacts search performance we show the percentage
overhead for a collection of searches in Table 1. Overhead is calculated as the per-
centage difference in search runtime with and without profiling. The searches use
two different skeletons and feature both enumeration (Numerical Semigroups) and
optimisation (Maximum Clique) instances.

The overheads are modest adding just 5% on average. Hence profiling can be
used without dramatically effecting runtimes. Measuring node throughput adds
more overhead than search runtimes as they must count every node that is visited,
while STR only requires the time to be recorded at the start and end of the task run.
The overheads do vary between searches and brock400_4 has high overheads: up to

Table 1 Profiling overheads for 4 search applications and 2 search types (1 GPG Cluster Compute-Node,
15 workers)

Instance STR % overhead Throughput
% overhead

Numerical Semigroups g = 44 (Budget) 2 3
Numerical Semigroups g = 46 (Budget) 1 3
Maximum Clique brock400_1.clq (depthbounded) 7 9
Maximum Clique brock400_4.clq (depthbounded) 20 10
Geometric mean % overhead 4 5

 International Journal of Parallel Programming

1 3

20% for STR profiling. It may be that this is showing both profiling overheads and a
disrupted search order.

We expect YewPar users to only enable profiling when designing and tuning a
search. Hence the profiling implementation is designed to be turned off completely
for maximising performance, for example for the HPC executions in the next section.

6 Exact Combinatorial Search at HPC Scale

Measuring parallel searches is challenging primarily due to the non-determinism
caused by pruning, random work-stealing, and finding alternate valid solutions.
These can lead to performance anomalies (Sect. 2.1) that manifest as dramatic
slowdowns or superlinear speedups. We control for this by investigating multiple
instances of multiple search applications and selecting the median of 5 executions.
The experimental setup is as in Sect. 5.

6.1 Sequential and Single Compute‑Node Baselines

YewPar’s generality incurs some overheads compared to search specific implemen-
tations as it decouples search tree generation and traversal. For example, Lazy Node
Generators copy search tree nodes (in case they are stolen) instead of updating in-
place. We evaluate these overheads on Maximum Clique as a competitive sequential
implementation is available [19, 20].

Sequential Baseline The first 4 columns of Table 2 show the mean sequential runt-
imes (over 5 executions) of the 9 DIMACS clique instances [10] that take between
100 s and 1 h to run sequentially on Cirrus. The results show a limited cost of gen-
erality, i.e. a maximum slowdown of 22.44%, a minimum slowdown of − 2.56% , and
geometric mean slowdown of 9.7%. We attribute the small runtime reductions com-
pared with C++ for 2 search instances to optimisations arising from different C++
and C++/HPX compilation schemes.

Parallel Baseline Parallel execution adds additional overheads, e.g. the YewPar skel-
etons are parametric rather than specialised, and the distributed memory execution
framework is relatively heavyweight on a single compute node. To evaluate the scale
of these overheads we compare with a search-specific OpenMP version of the maxi-
mum clique implementation. It is imperative that the parallel search algorithm and
coordination are almost identical, as otherwise performance anomalies will disrupt
the comparison. Hence the Lazy Node Generator is carefully crafted to mimic the
Maximum Clique implementation [20], and the OpenMP implementation uses a
single task pragma to construct a set of tasks for each node at depth 1, closely
analogous to the DepthBounded skeleton in the YewPar implementation. The
penultimate paragraph of Sect. 3 compares these OpenMP and YewPar MaxClique
implementations.

1 3

International Journal of Parallel Programming

Ta
bl

e
2

 C
om

pa
rin

g
Ye

w
Pa

r
ru

nt
im

es
 (

s)
 a

nd
 s

lo
w

do
w

n
(%

)
w

ith
 h

an
d-

w
rit

te
n

m
ax

im
um

 c
liq

ue
 im

pl
em

en
ta

tio
ns

: s
eq

ue
nt

ia
l a

nd
 d

ep
th

-b
ou

nd
ed

 O
pe

nM
P

im
pl

em
en

ta
-

tio
ns

 (C
irr

us
)

Se
ar

ch
Se

qu
en

tia
l

Se
qu

en
tia

l
Sl

ow
do

w
n

%
O

pe
nM

P
O

pe
nM

P
D

ep
th

-b
ou

nd
ed

Sl
ow

do
w

n
%

In
st

an
ce

C
+

+
Ye

w
Pa

r
(1

 W
or

ke
r)

 C
+

+
(1

8
W

or
ke

rs
) C

+
+

Ye
w

Pa
r

br
oc

k4
00

_1
25

2.
60

30
1.

08
19

.1
9

29
5.

63
18

.8
9

23
.7

7
25

.8
9

br
oc

k4
00

_2
18

3.
38

21
8.

32
19

.0
5

21
7.

96
7.

80
10

.0
4

28
.7

4
br

oc
k4

00
_3

14
5.

44
17

4.
15

19
.7

4
23

0.
71

4.
26

5.
66

32
.8

6
br

oc
k8

00
_1

37
90

.7
2

38
68

.6
6

2.
06

59
14

.7
1

19
5.

48
24

0.
86

23
.2

2
br

oc
k8

00
_2

38
08

.8
2

37
64

.5
4

−
 1

.1
6

68
20

.6
8

23
2.

26
25

6.
52

10
.4

4
br

oc
k8

00
_3

35
12

.9
2

35
11

.7
5

−
 0

.0
3

46
97

.5
0

18
3.

88
20

7.
45

12
.8

2
br

oc
k8

00
_4

13
16

.1
6

12
82

.4
5

−
 2

.5
6

35
60

.0
1

86
.8

7
10

2.
15

17
.5

9
C

25
0.

9
17

25
.0

4
21

12
.0

6
22

.4
4

17
56

.4
8

11
5.

72
17

9.
57

55
.1

8
p_

ha
t7

00
-3

11
39

.0
0

12
78

.3
8

12
.2

4
10

20
.6

8
77

.5
2

11
5.

49
48

.9
8

G
eo

. M
ea

n
9.

66
27

.6
3

 International Journal of Parallel Programming

1 3

Comparing the second and fifth columns of Table 2 reveals significant slowdowns
for OpenMP using a single worker. These arise as the OpenMP scheduler does not
preserve the search heuristic, as revealed by the task schedule. That is OpenMP pro-
vides no guarantee that the search tasks are executed in the order they are spawned,
and this illustrates a common issue when using off-the-shelf parallelism frameworks
for search [21]. The effect is smaller in the parallel version as the likelihood that at
least one worker follows the heuristic increases.

Columns 5–7 of Table 2 compare the runtimes of the YewPar and OpenMP ver-
sions for the DIMACS search instances with 18 search workers on a single Cirrus
compute node. We measure the searches on 18 workers/cores rather than on all 36
physical cores available on a Cirrus compute node as experimentation reveals that
OpenMP performance reduces above 18 cores. We attribute this to starvation as the
depth 1 spawning creates too few tasks to utilise all of the cores. A depth-2 back-
tracking search would generate far more work, but implementing such a search in
OpenMP that is correct, and exactly emulates the YewPar DepthBounded search, is
far from trivial especially when trying to maintain search heuristics. The geometric
mean slowdown increases to 27.6%, with a maximum slowdown of 55%. We believe
these slowdowns are largely caused by increased copying used by YewPar (as any
node might become a task so should be self contained) but further investigation is
needed.

The sequential and single compute node overheads of YewPar are lower on
the GPG Cluster. For the same Maximum Clique codes on a slightly larger set of
DIMACS instances the mean sequential slowdown is 8.7%, and the slowdown on a
single 16-core compute node is 16.6% [5].

We conclude that for these search instances the parallel overheads of YewPar
remain moderate, while facilitating the execution of multiple search applications on
multiple platforms: multicores, clusters, or HPC systems.

6.2 HPC Performance Measurements

As exact combinatorial search problems are NP hard the workloads generated by
instances vary greatly, often by orders of magnitude. Hence it is not possible to
double problem size to measure weak scaling. Hence we report strong scaling, and
speedups are relative to execution on a small number of Cirrus compute nodes.

We measure the scaling of searches covering the three search types and using dif-
ferent YewPar skeletons. Specifically we measure the searches outlined in Sect. 4,
and the search instances measured are as follows. Numerical Semigroups is an Enu-
meration search at genus 61, using the Budget skeleton with a budget of 107 back-
tracks. Maximum Clique is an Optimisation search for the DIMACS p_hat1000-3
instance, and uses the Depthbounded skeleton with a depth cutoff of 2 for all meas-
urements other than on 4480 workers where we use a cutoff of 3 to minimise starva-
tion. k-clique is the finite geometry Decision search with k=241 and uses the Depth-
bounded skeleton with a depth cutoff of 3. This relatively high cutoff is selected
to generate many search tasks, as searching for a specific clique size induces huge

1 3

International Journal of Parallel Programming

amounts of pruning. While successful decision searches terminate early, here we
measure unsuccessful searches that must explore the entire space.

Runtimes Numerical Semigroups runtimes fall from 2649s on 16(560) Cirrus Com-
pute Nodes(workers) to 302s on 195(6825) Compute Nodes(workers). Recall that
each YewPar worker is associated with a core. Maximum Clique runtimes fall from
2255s on 8(280) to 102s on 128(4480) compute nodes(workers). For the 178_435
k-clique search, the most significant runtime decrease is from 4563s on 1(35) to
127s on 64(2240) compute nodes(workers). The other k-clique searches have low
runtimes: 178_517 has the greatest runtime: 393s on 1(35) and this reduces to 19s
on 64(2240) compute nodes(workers). A complete set of runtime and speedup data
is available [16].

The results demonstrate that deploying YewPar on an HPC system can dramati-
cally reduce the runtime of different types of combinatorial search compared with
state of the art sequential and parallel implementations. As a further example, the
runtimes for a Maximum Clique p_hat1000-3 have fallen from 130.8h (Sequen-
tial), 4.2h (Cilk+) and 3.0h (C++ custom threading) on a dual 32-core Intel Xeon
E5-2697A (2.6 GHz) [18] to 102s (4480 YewPar workers on Cirrus). As the Xeon
has a faster clock speed than both GPG and Cirrus we would expect even longer
sequential runtimes on these platforms.

Speedups Figure 9 shows the speedups for the Numerical Semigroups genus 61
search. The speedups are relative to execution on 16(560) compute nodes(workers).
The relative speedup is near linear up to 4480 workers, with parallel efficiency over
90%. By 6825 workers both speedup and efficiency have declined.

Fig. 9 Numerical semigroups genus 61 search, budget 107 backtracks; speedup relative to 16(560) Cirrus
compute nodes(workers)

 International Journal of Parallel Programming

1 3

Figure 10 shows relative speedups from 8(280) compute nodes (workers) for the
Maximum Clique p_hat1000-3 search. Relative speedups increase steadily as the
core counts increase up until 4608 cores where super-linear speedups are achieved.
Super-linear speedups are common for optimisation searches where pruning can
dramatically reduce the workload.

Fig. 10 Maximum Clique p_hat1000-3 search speedup relative to 8(280) Cirrus compute
nodes(workers); Depthbounded with cutoff 2, increased to 3 for 16(4480) to minimise starvation

Fig. 11 k-clique finite geometry search speedups relative to 1(35) Cirrus compute node(workers); Depth-
bounded with cutoff 3

1 3

International Journal of Parallel Programming

Figure 11 shows relative speedups from 1(35) compute nodes(workers)
for 5 instances of the k-clique decision search. Speedups vary from instance
to instance. The best speedup achieved is for instance 178_435 that has a sig-
nificantly longer runtime at 1(35) i.e. 4563s. Lower speedups are achieved for
instances with lower runtimes on 1(35), and these range from 393s for 178_517
to 113s for 59_684. For these instances runtimes are reduced to between 10s and
20s on 64(2240) compute nodes(workers), and the system is starved of work. So
it is likely that far better scaling could be achieved for larger search instances.

7 Conclusions

We report the first ever study of generic combinatorial search at HPC scale, i.e. 100s
of compute nodes and more than 4000 cores. The study demonstrates the capacity of
the YewPar search framework to scale to HPC.

We have demonstrated generic high performance combinatorial search, i.e.
that a variety of exact combinatorial searches can be easily parallelised for HPC
using YewPar. Complete implementations of sophisticated state-of-the art parallel
searches require only around 500 lines of code. Previously (1) just a few searches
have been individually hand-crafted for HPC scale e.g. [4, 9]; and (2) the generic-
ity of YewPar has only been demonstrated on a modest cluster (100s of cores) by
parallelising seven searches [5]. Here we exhibit HPC-scale searches using different
YewPar skeletons and covering the three search types: optimisation, enumeration,
and decision (Sect. 4).

We have presented a new mechanism for profiling key aspects of generic parallel
combinatorial search in YewPar. The extreme irregularity of parallel combinatorial
search has only rarely been measured, and then only for specific search applications,
e.g. [25]. We exhibit profiles that quantify the irregularity of many search appli-
cations in the generic YewPar framework. Although implemented for YewPar and
in HPX the profiling techniques do not depend directly on either. Search task runt-
ime profiling aids parallelisation by providing information on aspects like the huge
differences in search task runtimes, mean task runtime, and the radically different
(and frequently multi-modal) task runtime distributions at each search tree depth,
e.g. Fig. 4. Profiling node throughput quantifies the dramatic differences in paral-
lel behaviour between enumeration searches with fixed workloads, e.g. Fig. 7, and
optimisation searches with variable workloads, e.g. Fig. 8. Profiling has a geometric
mean overhead of only 5% (Sect. 5.5) making it accurate and usable in practice.
Moreover profiling can be turned off completely to maximise performance (Sect. 5).

We demonstrate, for the first time, generic exact combinatorial searches at HPC
scale. Baselining against state-of-the-art sequential C++ and C++/OpenMP imple-
mentations on 9 standard (DIMACS) search instances shows that the generality of
YewPar incurs a mean sequential slowdown of 9%, and a mean parallel slowdown
of 27.6% on a single 18-core compute node (Table 2). Guided by the profiling we
effectively parallelise seven standard instances of the three searches, and systemati-
cally measure runtime and relative speedups at scale. We show how deploying Yew-
Par on an HPC system can deliver dramatic reductions in runtime compared with

 International Journal of Parallel Programming

1 3

state of the art hand crafted search implementations, both sequential and parallel-
ised at smaller scale. For example reducing the p_hat1000-3 sequential search from
131 h to just 102 s using YewPar on 4480 cores (Fig. 10).

Comparing different search types shows similar speedup and scaling charac-
teristics to smaller-scale parallel search [5], e.g. pruning in the Maximum Clique
optimisation search reduces workload and hence delivers super-linear speedups up
to 128(4480) compute-nodes(workers) (Fig. 10). The maximum relative speedups
we achieve for the Numerical Semigroups enumeration search are near-linear up to
192(6825) compute-nodes(workers) (Fig. 9), and sub-linear for five k-clique deci-
sion searches on up to 64(2240) compute-nodes(workers) (Fig. 11). It is likely that
far better scaling can be achieved for k-clique, and other decision searches, if suit-
able instances can be found (Sect. 6).

Ongoing Work Currently determining good parameters for a search instance, like
depth cutoff or backtrack budget, entails a parameter sweep. Ongoing work seeks to
determine whether we can use pre-execution profiling to predict parameters, e.g. is
backtracks-per-second-per-worker sufficient to determine an appropriate budget
for search instances? We would also like to explore whether performance can be
improved by extending YewPar to use the profiling metrics to dynamically adapt the
search, e.g. a compute node with ample work may increase the depth cutoff to pro-
vide more search tasks.

A benefit of profiling the general framework is that we can explore other search
applications such as the Unbalanced-Tree Search benchmark [24] that is already
supported in YewPar [2].

Acknowledgements This work was supported EPSRC grants MaRIONet (EP/P006434), STARDUST
(EP/T014628) and S4: Science of Sensor Systems Software (EP/N007565).

Author contributions RM: methodology, software, validation, experimentation, visualization, writing—
original draft, writing—review & editing; BA: methodology, software, supervision, writing/review/edit-
ing, writing—original draft, writing—review and editing; PT: methodology, supervision, writing—origi-
nal draft, writing—review and editing

Declarations

Conflict of interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

International Journal of Parallel Programming

References

 1. Alba, E., et al.: MALLBA: a library of skeletons for combinatorial optimisation. In: Euro-Par, Pad-
erborn, Germany, August, 2002, Proceedings (2002)

 2. Archibald, B.: Skeletons for Exact Combinatorial Search at Scale. Ph.D. thesis, University of Glas-
gow (2018) http:// theses. gla. ac. uk/ id/ eprint/ 31000

 3. Archibald, B., Maier, P., Stewart, R., Trinder, P.: Implementing YewPar: A Framework for Parallel
Tree Search. Euro-Par, Gottingen (2019)

 4. Archibald, B., et al.: Sequential and parallel solution-biased search for subgraph algorithms. In:
CPAIOR 16th Thessaloniki, Greece, June 2019 (2019)

 5. Archibald, B., et al.: YewPar: skeletons for exact combinatorial search. In: PPoPP’20:, San Diego,
California, USA, February, 2020. ACM (2020)

 6. Barucci, V., et al.: Maximality Properties in Numerical Semigroups and Applications to One-
Dimensional Analytically Irreducible Local Domains, vol. 598. American Mathematical Society,
Providence (1997)

 7. Fromentin, J., Hivert, F.: Exploring the tree of numerical semigroups. Am. Math. Comput. 85(301),
2553–2568 (2016)

 8. Galea, F., Le Cun, B.: Bob++: a framework for exact combinatorial optimization methods on paral-
lel machines. In: International Conference High Performance Computing and Simulation (HPCS)
(2007)

 9. Heule, M.J.H., Kullmann, O.: The science of brute force. Commun. ACM 60(8), 70–79 (2017)
 10. Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second DIMACS Imple-

mentation Challenge, Workshop, October, 1993. American Mathematical Society (1996)
 11. Kaiser, H., et al.: HPX: A Task Based Programming Model in a Global Address Space. In: ICPG-

ASPM 2014, Eugene, OR, USA, Oct. 2014 (2014)
 12. Kehrer, S., Blochinger, W.: Development and operation of elastic parallel tree search applications

using TASKWORK. In: Ferguson, D., Muñoz, V.M., Pahl, C., Helfert, M. (eds.) Cloud Computing
and Services Science–9th International Conference, CLOSER 2019, Heraklion, Crete, Greece, May
2–4, 2019, Revised Selected Papers. Communications in Computer and Information Science, vol.
1218, pp. 42–65. Springer, Berlin (2019). https:// doi. org/ 10. 1007/ 978-3- 030- 49432-2_3

 13. Klein, A., Storme, L.: Applications of finite geometry in coding theory and cryptography. Inf. Secur.
Cod. Theory Rel. Comb. 29, 38–58 (2011)

 14. Knizikevičius, I., Trinder, P., Archibald, B., Yan, J.: Parallel flowshop in YewPar (2022). https:// doi.
org/ 10. 48550/ ARXIV. 2207. 06902

 15. Knizikevičius, I., Trinder, P., Archibald, B., Yan, J.: Parallel Flowshop in YewPar. arXiv preprint
arXiv: 2207. 06902 (2022)

 16. MacGregor, R.: Generic High Performance Exact Combinatorial Search [Data Repository]. https://
doi. org/ 10. 5281/ zenodo. 42703 36

 17. Maher, S.J., Ralphs, T.K., Shinano, Y.: Assessing the effectiveness of (parallel) branch-and-bound
algorithms. arXiv preprint arXiv: 2104. 10025 (2021)

 18. McCreesh, C.: Solving hard subgraph problems in parallel. Ph.D. thesis, University of Glasgow
(2017)

 19. McCreesh, C.: Sequential MCsa1 Maximum Clique Implementation (2018). https:// github. com/
ciara nm/ sicsa- multi core- chall enge- iii/ c++/

 20. McCreesh, C., Prosser, P.: Multi-threading a state-of-the-art maximum clique algorithm. Algorithms
6(4), 618–635 (2013)

 21. McCreesh, C., Prosser, P.: The shape of the search tree for the maximum clique problem and the
implications for parallel branch and bound. TOPC (2015). https:// doi. org/ 10. 1145/ 27423 59

 22. McCreesh, C., Prosser, P., Trimble, J.: The glasgow subgraph solver: Using constraint programming
to tackle hard subgraph isomorphism problem variants. In: Gadducci, F., Kehrer, T. (eds.) Graph
Transformation—13th International Conference, ICGT 2020, Held as Part of STAF 2020, Bergen,
Norway, June 25–26, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12150, pp. 316–
324. Springer, Berlin (2020). https:// doi. org/ 10. 1007/ 978-3- 030- 51372-6_ 19

 23. Menouer, T., et al.: Mixing static and dynamic partitioning to parallelize a constraint programming
solver. Int. J. Parallel Program. (2016). https:// doi. org/ 10. 1007/ s10766- 015- 0356-7

http://theses.gla.ac.uk/id/eprint/31000
https://doi.org/10.1007/978-3-030-49432-2_3
https://doi.org/10.48550/ARXIV.2207.06902
https://doi.org/10.48550/ARXIV.2207.06902
http://arxiv.org/abs/2207.06902
https://doi.org/10.5281/zenodo.4270336
https://doi.org/10.5281/zenodo.4270336
http://arxiv.org/abs/2104.10025
https://github.com/ciaranm/sicsa-multicore-challenge-iii/c++/
https://github.com/ciaranm/sicsa-multicore-challenge-iii/c++/
https://doi.org/10.1145/2742359
https://doi.org/10.1007/978-3-030-51372-6_19
https://doi.org/10.1007/s10766-015-0356-7

 International Journal of Parallel Programming

1 3

 24. Olivier, S., Huan, J., Liu, J., Prins, J., Dinan, J., Sadayappan, P., Tseng, C.W.: UTS: an unbalanced
tree search benchmark. In: International Workshop on Languages and Compilers for Parallel Com-
puting, pp. 235–250. Springer, Berlin

 25. Otten, L., Dechter, R.: AND/OR branch-and-bound on a computational grid. J. Artif. Intell. Res. 59,
351–435 (2017)

 26. Pardalos, P., Xue, J.: The maximum clique problem. J. Global Optim. 4, 301–328 (1994)
 27. Pietracaprina, A., et al.: Space-efficient parallel algorithms for combinatorial search problems. J.

Parallel Distrib. Comput. 76, 58–65 (2015)
 28. Poldner, M., Kuchen, H.: Algorithmic skeletons for branch & bound. In: ICSOFT, Setúbal, Portugal,

Sept. 2006 (2006)
 29. Prosser, P.: Exact algorithms for maximum clique: a computational study. Algorithms (2012).

https:// doi. org/ 10. 3390/ a5040 545
 30. Régin, J., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Schulte, C. (ed.) Principles

and Practice of Constraint Programming—19th International Conference, CP 2013, Uppsala, Swe-
den, Sept 16–20, vol. 8124, pp. 596–610. Springer, Berlin (2013). https:// doi. org/ 10. 1007/ 978-3-
642- 40627-0_ 45

 31. The GAP Group: GAP - Groups, Algorithms, and Programming, Version 4.8.7 (2017), https:// www.
gap- system. org/ Relea ses/4. 8.7. html

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.3390/a5040545
https://doi.org/10.1007/978-3-642-40627-0_45
https://doi.org/10.1007/978-3-642-40627-0_45
https://www.gap-system.org/Releases/4.8.7.html
https://www.gap-system.org/Releases/4.8.7.html

	Generic Exact Combinatorial Search at HPC Scale
	Abstract
	1 Introduction
	2 Background
	2.1 The Challenges of Exact Combinatorial Search at HPC Scale
	2.2 YewPar

	3 Ease of Use
	3.1 Related Frameworks

	4 Generic Exact Combinatorial Search
	5 Profiling Irregularity in Exact Combinatorial Search
	5.1 Experimental Setup
	5.2 Search Task Runtimes
	5.3 Search Tree Node Throughput
	5.4 Using Profiles to Select and Parameterise Skeletons
	5.5 Overheads of Profiling

	6 Exact Combinatorial Search at HPC Scale
	6.1 Sequential and Single Compute-Node Baselines
	6.2 HPC Performance Measurements

	7 Conclusions
	Acknowledgements
	References

