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t. This paper presents a pra
ti
al evaluation and 
omparison of three state-of-the-art parallel fun
tional languages. The evaluation is based on implementationsof three typi
al symboli
 
omputation programs, with performan
e measured on aBeowulf-
lass parallel ar
hite
ture.We assess three mature parallel fun
tional languages: PMLS, a system for impli
-itly parallel exe
ution of ML programs; GpH, a mainly impli
it parallel extensionof Haskell; and Eden, a more expli
it parallel extension of Haskell designed for bothdistributed and parallel exe
ution. While all three languages employ a 
ompletelyimpli
it approa
h to 
ommuni
ation, ea
h language takes a di�erent approa
h tospe
ifying and 
ontrolling parallelism, ranging from expli
it identi�
ation of pro-
esses as language 
onstru
ts (Eden) through annotation of potential parallelism(GpH) to automati
 dete
tion of parallel skeletons in sequential 
ode (PMLS).We present detailed performan
e measurements of all three systems on a widelyavailable parallel ar
hite
ture: a Beowulf 
luster of low-
ost 
ommodity worksta-tions. We use three representative symboli
 appli
ations: a matrix multipli
ationalgorithm, an exa
t linear system solver, and a simple ray-tra
er. Our results showhow moderate speedups 
an be a
hieved with little or no 
hanges to the sequential
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2 Loidl et al.
ode, and that parallel performan
e 
an be signi�
antly improved even within ourhigh-level model of parallel fun
tional programming by 
ontrolling key aspe
ts ofthe program su
h as load distribution and thread granularity.Keywords: Parallel Computation, Fun
tional Programming, Skeletons, Impli
itParallelism, Automati
 Task De
omposition, Load Balan
ing, Haskell, ML.1. Introdu
tionThe potential advantages of purely fun
tional programming languagesfor prototyping and developing parallel programs have long beenre
ognised (Burge, 1975). The high level of programming abstra
tionsimpli�es the task of programming, fosters 
ode reuse and fa
ilitatesthe development of substantially ar
hite
ture-independent programs.The absen
e of side-e�e
ts avoids the unne
essary serialisation whi
his a feature of most 
onventional programs. A 
omprehensive dis
ussionof these issues is given by Hammond and Mi
haelson (1999).Realising this potential in an e�e
tive manner has proved an elu-sive goal, however. Redu
ing or eliminating programmer 
ontrol pla
es
onsiderable emphasis on sophisti
ated automati
 systems for dete
tingand 
ontrolling parallelism, making su
h systems fairly rare and oftenonly available on a few parallel ar
hite
tures. A 
omparison of di�erentimplementations of su
h automati
 resour
e management me
hanisms,as presented in this paper, is even rarer | to our knowledge this is the�rst head-to-head performan
e 
omparison of several parallel fun
tionallanguages on the same parallel ar
hite
ture.For this paper, �ve resear
h groups have 
ooperated to produ
e the
omparisons. We assess three parallel fun
tional languages: Eden andGpH, both extensions of the standard non-stri
t fun
tional languageHaskell (Peyton Jones and Hughes, 1999), and PMLS, a parallel imple-mentation of the stri
t fun
tional language ML (Milner et al., 1997).The languages all have high-level 
oordination, represent a range of lan-guage and implementation alternatives and are three of the relativelyfew robust parallel fun
tional language implementations available. As-sessment is made on both language and performan
e levels. We 
omparethe language features available to express parallel 
oordination, in par-ti
ular we fo
us on how parallel tasks are identi�ed and 
reated. In the
ase of Eden (Breitinger et al., 1997b), task identi�
ation and 
reation� This work is primarily supported by the Austrian A
ademy of S
ien
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tional Languages: Programming and Performan
e 3are expli
it. In the 
ase of GpH (Trinder et al., 1996), potential paral-lelism is identi�ed through new language primitives, with tasks 
reatedautomati
ally during program exe
ution on the basis of load. In the
ase of PMLS (Mi
haelson et al., 2001), parallel tasks are identi�ed byautomati
ally dete
ting instantiations of 
ertain higher-order fun
tiontemplates, skeletons. On the performan
e level we use three repre-sentative symboli
 appli
ations that have also been widely studied inthe general parallel programming 
ommunity: a matrix multipli
ationalgorithm, an exa
t linear system solver, and a simple ray-tra
er.The remainder of this paper is stru
tured as follows: Se
tion 2 dis-
usses general 
on
epts of parallel programming and their importan
ein the 
ontext of a fun
tional language. Se
tion 3 presents a detailed
omparison of the three languages we are 
onsidering. This se
tion sepa-rates the user-visible language 
onstru
ts that are needed for expressingparallelism from the implementation of these 
onstru
ts. Se
tion 4presents measurements of all three systems for the three example pro-grams mentioned above. We dis
uss the ease of implementing theseprograms, the support for performan
e tuning, and the overall perfor-man
e a
hieved on a 32-node Beowulf 
luster. Se
tion 5 relates ourlanguages to other parallel fun
tional programming languages. Finally,Se
tion 6 
on
ludes.2. Parallel Fun
tional Programming2.1. Why Parallel Fun
tional Programming?Parallel programming is inherently harder than sequential program-ming. Traditionally the programmer must not only des
ribe what to
ompute, i.e. a 
orre
t algorithm, but also how to organise the sub
om-putations on the target ar
hite
ture, i.e. e�e
tive parallel 
oordination.Contemporary fun
tional languages have three key properties thatmake them attra
tive for parallel programming: they have powerfulme
hanisms for abstra
ting over both 
omputation and 
oordination;they eliminate unne
essary dependen
ies; and their high-level 
oordi-nation a
hieves a largely ar
hite
ture-independent style of parallelism.2.1.1. Abstra
tion.Fun
tional languages have ex
ellent abstra
tion me
hanisms that 
anbe applied to both 
omputation and 
oordination (Hughes, 1989).Two important abstra
tion me
hanisms are fun
tion 
omposition andhigher-order fun
tions. Fun
tion 
omposition allows 
omplex problemsto be de
omposed into simpler sub-fun
tions. Higher-order fun
tions,
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4 Loidl et al.ones that manipulate other fun
tions, allow new 
ontrol 
onstru
tsto be de�ned as required. Through use of powerful me
hanisms su
has these, fun
tional programs are typi
ally mu
h shorter than theirimperative or obje
t-oriented equivalents.The prin
iple of abstra
tion 
an be 
arried through to parallel pro-gramming, where higher-order fun
tions may be used to form the basisof new parallel programming 
onstru
ts. Typi
ally, parallel fun
tionalprograms will abstra
t over details su
h as pro
ess pla
ement, the tim-ing and volume of 
ommuni
ation, and syn
hronisation issues. Moree�ort 
an thus be devoted to improving parallel algorithms. High levelabstra
tion of parallel 
onstru
ts en
ourages experimentation with al-ternative parallelisations, whi
h often leads to improved solutions fornovel parallel problems.2.1.2. Elimination of unne
essary dependen
ies.The absen
e of side-e�e
ts makes it relatively straightforward toidentify potential parallelism. Sin
e the natural method of program
onstru
tion is by 
omposing fun
tions to the depth required ratherthan by sequential 
omposition, a

idental sequential dependen
ies arenot introdu
ed into the sour
e program. The only sour
e of sequentialdependen
y is that the arguments to a fun
tion must be evaluatedbefore they 
an be used. That is, dependen
ies are identi�ed solelyon the basis of use. Sin
e values do not 
hange on
e they have been
omputed, data
ow analysis is not needed to determine usage patterns,even at an inter-pro
edural level.2.1.3. Ar
hite
ture-independen
e.Good parallel abstra
tions en
ourage high-level portability by abstra
t-ing over lower level issues. In extreme 
ases, this abstra
tion mayhide all details of the parallel implementation yielding a model ofimpli
it parallelism. As the low level issues often depend on proper-ties of a spe
i�
 ar
hite
ture, a high-level approa
h is signi�
antly lessar
hite
ture-dependent than lower-level approa
hes. The ar
hite
ture-independen
e is bought at the pri
e of elaborate language pro
essors:either the 
ompiler or the runtime system or a 
ombination of bothmust adapt the high-level parallelism for the underlying ar
hite
ture.By using, at the runtime-system level, standards like PVM (PVM,1993) or MPI (MPI, 1997), languages 
an abstra
t over ar
hite
ture
hara
teristi
s. Unlike imperative languages, fun
tional languages en-able a high degree of abstra
tion over su
h standards through higherorder fun
tions and polymorphism.
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tional Languages: Programming and Performan
e 52.2. Tasks, Pro
esses and Threads.Parallel programming involves the identi�
ation and 
reation of sub-tasks that 
olle
tively perform the overall task of the program. Thesesub-tasks must be allo
ated to (pla
ed on) pro
essors that will exe
utethem in some order. Depending on the system, load balan
ing mayo

ur by migrating sub-tasks between pro
essors at exe
ution time.In this paper, we will distinguish two levels of parallel tasks: pro-
esses, relatively heavyweight tasks whose behaviour is often revealedto the programmer; and threads, whi
h are impli
it, and whi
h formpart of a pro
ess.Task Identi�
ation and Granularity. Tasks may be identi�ed eitherexpli
itly by the programmer using some language 
onstru
t, or impli
-itly by the system identifying potentially parallel parts of the program.In some 
ases, the identi�
ation may be assisted by the use of anno-tations: programmer instru
tions that may or may not be exploitedby the language implementation. The granularity, i.e. the size of the
omputation, of tasks may thus be determined by the programmer, the
ompiler, the runtime system or a 
ombination of these.Task Creation. Tasks may be 
reated either stati
ally at initialisationor dynami
ally during exe
ution of the program. In the latter 
ase,they may be 
reated either immediately they are identi�ed (eager task
reation) or delayed until they are deemed to be required by the runtimesystem (lazy task 
reation). When a task is 
reated, it is allo
atedresour
es that allow it to exe
ute independently on some parallel pro-
essor. In some 
ases a task may return resour
es to the system whilebeing suspended, i.e. while it waits for the availability of required data.Task Pla
ement. When a task is 
reated, it is pla
ed on a pro
essorthat will exe
ute it. This pla
ement may either be on the basis ofstati
 information determined before exe
ution by the 
ompiler, ordynami
ally, perhaps in response to load information. Stati
 pla
ementusually gives a good balan
e for regular task stru
tures, in 
ases wherethe 
ommuni
ation pattern 
an be determined in advan
e. Dynami
pla
ement is more appropriate in situations where the task stru
tureis irregular, 
annot be pre-determined, or where the stru
ture 
hangesduring program exe
ution.S
heduling and Load Management. S
heduling is needed to managethe exe
ution of multiple tasks on a single pro
essor. Su
h s
hedulingmay be required to be fair, i.e. guaranteed to exe
ute every available
main.tex; 6/12/2002; 16:42; p.5



6 Loidl et al.thread eventually. Dynami
 rebalan
ing of workload may also be re-quired, espe
ially for irregular task stru
tures on high-laten
y systems.Rebalan
ing is usually a
hieved by migrating tasks, but alternativesare to employ task subsumption, in whi
h smaller tasks are merged intolarger ones, or to maintain a work-pool of potential tasks, whi
h 
an be
ommuni
ated between pro
essors at lower 
ost than tasks whi
h arealready exe
uting. Rebalan
ing may o

ur as a result of 
reating ex
esswork on a single pro
essor, or as a 
onsequen
e of starvation on somepro
essors, in whi
h 
ase a task stealing me
hanism may be used.2.3. Communi
ationCommuni
ation is fundamental to exe
uting parallel tasks. In tradi-tional parallel programming, 
ommuni
ation is expli
it: the program-mer uses expli
it message-passing primitives, or 
ommuni
ates throughexpli
itly shared variables, whi
h must normally be prote
ted against
on
urrent modi�
ations. In the more impli
it approa
hes advo
atedhere, 
ommuni
ation o

urs as a 
onsequen
e of shared data depen-den
ies between tasks. The systems use either message passing orshared-memory, as appropriate, and automati
ally prote
t the dataagainst 
on
urrent modi�
ations, as required.Code or Data. Traditional parallel systems usually only support datatransmission. In a fun
tional setting, it is natural for fun
tions to betransmitted between parallel tasks, and in a non-stri
t setting, thismay extend to partially evaluated or 
ompletely unevaluated forms.Although this is no 
on
eptual limitation, the parallel systems dis
ussedhere do not perform 
ode migration. Only 
ode pointers are transmit-ted, as the whole 
ode is usually supposed to reside in all pro
essors.This is sometimes 
hara
terised as an SPMD, single program multipledata, approa
h.Push or Pull. Data may be transmitted either on demand (a pullme
hanism) or when produ
ed (a push me
hanism). Pulling has theadvantage of transmitting only the data that is required, but pushingwill require fewer pa
kets to be 
ommuni
ated if most of the data thatis transmitted is required, and will redu
e the amount of syn
hroni-sation that is needed. In some 
ases, however, large data stru
turesmay be transmitted unne
essarily. This leads to spe
ulative work, sin
enot all of the data stru
ture may be needed to 
ompute the resultvalue. The optimal approa
h is appli
ation-dependent, but in generala 
ombination of push and pull appears to be ideal.
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e 7Communi
ation Topology. In the more impli
it approa
hes the topol-ogy of pro
esses 
hanges dynami
ally in response to load balan
ingdemands. In this 
ase, the topology is transparent to the program-mer, and it might di�er between identi
al program exe
utions. Inmore expli
it approa
hes, the programmer 
an 
ontrol the topologyby 
onne
ting pro
esses in the desired way. Topologies su
h as ringsor tori 
an be expli
itly programmed. In 
ontrast to su
h dynami
approa
hes some systems use a stati
 topology with the exa
t numberof pro
esses �xed at 
ompile time. Su
h a stati
 approa
h is 
ommonwith libraries for parallel programming or skeletons (see Se
tion 5.1).Note that we make no attempt at mat
hing the topology of the ar
hi-te
ture to the topology of the pro
esses, sin
e this would introdu
e anar
hite
ture-dependent aspe
t to program development.Data Marshalling. Sophisti
ated data marshalling te
hniques are em-ployed to automati
ally pa
k 
omplex data stru
tures. In some 
ases,this marshalling extends to graphs as well as hierar
hi
al data stru
-tures, and may involve the pa
king of unevaluated as well as fullyevaluated forms (see Se
tion 4.2.4).Syn
hronisation. Most systems also employ impli
it task syn
hroni-sation, when values produ
ed by one task are required by another.A task that requires an un
omputed value may suspend exe
utionawaiting delivery of that value. The task is resumed when the valuebe
omes available. Unlike 
onventional language approa
hes, su
h syn-
hronisation is entirely transparent to the fun
tional programmer, andis handled internally by the runtime system. That is, no expli
it
ommuni
ation is required, and no other a
tion is required from theprogrammer. 3. Language ComparisonThis se
tion 
ompares the three parallel fun
tional languages PMLS,GpH, and Eden, a 
omparison of a wider range of fun
tional languages
an be found at Loogen (1999). The three languages have been 
hosenfor the following reasons. Firstly to be 
onsistent with a high-level
omputation language we sele
t languages with high-level 
oordinationand ex
lude languages with imperative or low-level 
oordination. Se
-ondly the languages represent a range of language designs, e.g. botheager and lazy languages, and with 
oordination ranging from almostentirely impli
it (PMLS) to a language (Eden) in whi
h pro
esses 
anbe manipulated by the programmer. Thirdly, the languages represent
main.tex; 6/12/2002; 16:42; p.7



8 Loidl et al.a range of implementation designs, e.g. both those with predominantlystati
 
oordination (PMLS) and those with predominantly dynami

oordination (GpH). Finally we have sele
ted three of the relativelyfew robust parallel fun
tional languages available.In this se
tion we introdu
e the underlying notions of skeleton-thread- and pro
ess-based approa
hes to parallelism, 
lassify our lan-guages, dis
uss the user-visible language 
onstru
ts and the implemen-tations of these languages.3.1. LanguageIn this se
tion we introdu
e the parallelism 
onstru
ts in ea
h languageand 
ompare them in terms of expressiveness and paradigm.3.1.1. PMLSParallel ML with Skeletons (PMLS) is a parallelising 
ompiler for stri
tStandardML, that realises parallelism in higher order fun
tions (HOFs)as algorithmi
 skeletons. The PMLS system is based on a purist inter-pretation of the skeletons \
redo", seeking to minimise programmerinvolvement in identifying and exploiting parallelism.Skeleton-based approa
hes de�ne a set of parallel templates or skele-tons (Cole, 1989). The programmer writes the program using theseskeletons as appropriate. A parallelising 
ompiler 
an then exploit therules provided for ea
h skeleton in order to produ
e an eÆ
ient parallelimplementation of the program on the target ar
hite
ture.From the fun
tional programmer's perspe
tive, a skeleton is simplya normal higher-order fun
tion (HOF). Ea
h HOF is mapped to adi�erent abstra
t parallel pro
ess topology, with parameters spe
ifyingdetails of the tasks that are to be performed.Sin
e the only parallel 
onstru
tions that are available to the pro-grammer are the HOFs that have been provided by the language,programmers must design parallel algorithms by adapting the sequen-tial sour
e to these HOFs. The 
ompiler and runtime system are jointlyresponsible for setting up the 
orresponding pro
ess topologies, and formapping pro
esses to pro
essors in the best possible way.HOFs may be given di�erent behavioural interpretations when 
om-piling for di�erent target ar
hite
tures. This allows a single HOF toabstra
t over a range of possible parallel behaviours, whi
h are se-le
ted on the basis of 
on
rete details su
h as 
ommuni
ation laten
y,or the granularity of the tasks to whi
h the HOF is applied. In essen
e,skeletons modify behaviours but not values.As an example Figure 1 shows an implementation of the 
ommonhigher order fun
tion map in PMLS. It applies the fun
tion f to all
main.tex; 6/12/2002; 16:42; p.8
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e 9
fun map f [] = [] |
    map f (h::t) = f h::map f t
val map = fn : (’a -> ’b) -> ’a list -> ’b listFigure 1. Parallel map in PMLSthe elements of the list (h::t). If f 
onverts something of type 'a totype 'b then map f 
onverts an 'a list to a 'b list. If we unfoldmap f a
ross a list [e1,e2...eN℄, the e�e
t is the evaluation of [fe1,f e2,...,f eN℄. There is no intera
tion between the evaluation ofea
h element, so in prin
iple these evaluations may be 
arried out inarbitrary order, in parti
ular in parallel.A 
ommon approa
h to parallelising map is to 
onstru
t a task farmskeleton 
onsisting of a farmer pro
essor 
ontrolling worker pro
essorspre-loaded with f. Given an initial list, the farmer:� re
ords all workers as free;� repeatedly:� sends an unpro
essed list element to a free worker and re
ordsit as busy;� re
eives a pro
essed list element from a busy worker andre
ords it as free;� until all list elements have been pro
essed;� assembles the pro
essed list in the appropriate order.This approa
h is self-balan
ing: no workers sit idle so long as thereare more list elements to be pro
essed, and variations in the times topro
ess di�erent elements have minimal impa
t.There are various topologies for task farms, for example the linear
hain where ea
h pro
essor has a bi-dire
tional 
onne
tion to its pre-de
essor and su

essor. The farmer passes unpro
essed data down the
hain of busy workers to the �rst free worker, and pro
essed data ispassed ba
k up the 
hain to the farmer. Here, the farmer need notkeep tra
k of free and busy workers, and may assemble the �nal list aspro
essed elements be
ome available.Constru
ts. The PMLS 
ompiler generates parallel 
ode solely from
alls to map and fold. No other SML 
onstru
ts are provided or ex-ploited for parallelism. However, the system enables the introdu
tionof new HOFs with new skeletons. In some 
ases, like fold, a proof
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10 Loidl et al.obligation is put on the programmer to ensure 
orre
tness of the parallel
ode: in the 
ase of fold the binary operation must be asso
iative.Methodology. The programmer need have no 
on
eption of parallelism.The 
ompiler will try to exploit parallelism in expli
it uses of map andfold.
(* original function *)
fun inc [] = [] |
    inc (h::t) = h+1::inc t

(* first synthesised function, using map *)
val inc1 = map (fn h => h+1)

(* second synthesised function, using foldr *)
val inc2 = foldr (fn h => fn t => h+1::t) []Figure 2. Program Synthesis in PMLSA pre-pro
essor may also be used to synthesise higher-order fun
-tions in programs that la
k them, using proof planning driven by middleout reasoning (Cook, 2001). For example Figure 2 shows how, given thefun
tion in
, this pre-pro
essor 
an synthesise both in
1, de�ning in
in terms of map, and in
2, de�ning in
 in terms of fold.3.1.2. GpHGpH (Trinder et al., 1998) is a modest 
onservative extension ofHaskell98 (Peyton Jones and Hughes, 1999) realising a thread-basedapproa
h to parallelism. Thread-based approa
hes to parallelism al-low parallel threads to be 
reated, but do not provide me
hanismsto 
ontrol those threads. Threads are thus managed entirely underruntime-system 
ontrol. By 
ombining simple thread primitives withhigher-order fun
tions, high-level abstra
tions 
an be 
onstru
ted, su
has the evaluation strategy approa
h (Trinder et al., 1998).Constru
ts. GpH provides parallel (par) and sequential (seq) 
ompo-sition as 
oordination primitives (see Figure 3). Denotationally, both
ompositions are proje
tions onto the se
ond argument. Operationallyseq 
auses the �rst argument to be evaluated before the se
ond and parindi
ates that the �rst argument may be exe
uted in parallel. The latteroperation is 
alled the \sparking" of parallelism and is used in di�erentvariants in many parallel languages. The runtime-system, however, isfree to ignore any available parallelism. In this model the programmeronly has to expose expressions in the program that 
an usefully beevaluated in parallel. The runtime-system manages the details of theparallel exe
ution su
h as thread 
reation, 
ommuni
ation et
.

main.tex; 6/12/2002; 16:42; p.10



Comparing Parallel Fun
tional Languages: Programming and Performan
e 11
-- basic constructs
par :: a -> b -> b             -- parallel composition
seq :: a -> b -> b             -- sequential composition

type Strategy a = a -> ()      -- type of evaluation strategy

using :: a -> Strategy a -> a  -- strategy application
using x s = s x ‘seq‘ x 

rwhnf :: Strategy a            -- reduction to weak head normal form 
rwhnf x = x ‘seq‘ () 

class NFData a where           -- class of reducible types 
      rnf :: Strategy a        -- reduction to normal formFigure 3. Basi
 Coordination Constru
ts in GpHExperien
e of implementing non-trivial programs inGpH shows thatthe unstru
tured use of par and seq 
an lead to rather obs
ure pro-grams. This problem 
an be over
ome with evaluation strategies: lazy,polymorphi
, higher-order fun
tions 
ontrolling the evaluation degreeand the parallelism of a Haskell expression. Evaluation strategies pro-vide a 
lean separation between 
oordination and 
omputation. Thedriving philosophy is that it should be possible to understand the 
om-putation spe
i�ed by a fun
tion without 
onsidering its 
oordination.Figure 3 shows the basi
 operations over strategies. A strategy on avalue of type a is a fun
tion from a to the nullary value () exe
utedpurely for e�e
t, and the null value is returned to indi
ate 
ompletion.The using 
onstru
t applies a strategy to a Haskell expression. Thebasi
 strategy rwhnf redu
es an expression to weak head normal form(WHNF), the default in Haskell. The overloaded strategy rnf redu
esan expression to normal form (NF), i.e. 
ontaining no redu
tions. Asthere are types that are not redu
ed to normal form in Haskell, e.g.fun
tion types, rnf is restri
ted to types that are redu
ed to normalform by the NFData 
lass whi
h is instantiated for all major types.Be
ause strategies are simply fun
tions they 
an be 
ombined, or passedas parameters using standard language 
apabilities.For example the parList strategy in Figure 4 is higher-order, apply-ing the argument strategy strat to every element of a list in parallel.This strategy is then used in the GpH implementation of parallel map(parMap). Note how the algorithmi
 
ode is 
leanly separated fromthe strategy, using the sequential 
ode of map f xs unmodi�ed whenintrodu
ing parallelism.Methodology. GpH programs are developed with an integrated suiteof sequential and parallel software tools, based on the Glasgow HaskellCompiler (GHC) (Peyton Jones et al., 1993). The tools for sequential
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12 Loidl et al.
parList :: Strategy a -> Strategy [a]
parList strat []     = ()
parList strat (x:xs) = strat x ‘par‘ (parList strat xs)

parMap :: Strategy b -> (a -> b) -> [a] -> [b]
parMap strat f xs = map f xs ‘using‘ parList stratFigure 4. Parallel map in GpHsoftware development in
lude: the Hugs interpreter, for fast develop-ment, the GHC 
ompiler and sequential runtime system for optimising
ompilation to sequential 
ode; and sequential time and spa
e pro�lersintegrated into GHC (Sansom and Peyton Jones, 1995). The tools forparallel software development in
lude: the GranSim parameterisableparallel simulator (Hammond et al., 1995) for 
exible and a

uratesimulation of the parallel behaviour on a range of parallel ma
hines; theGHC 
ompiler and GUM parallel runtime system for parallel exe
utionon multipro
essors; a set of visualisation tools for both GranSim andGUM, visualising the a
tivity of a parallel ma
hine in several levels ofdetail; prototypes of more detailed parallel pro�lers (King et al., 1998).3.1.3. EdenEden (Breitinger et al., 1997b) extends the lazy fun
tional languageHaskell by synta
ti
 
onstru
ts to expli
itly de�ne and instantiate pro-
esses. In 
ontrast to the previous te
hniques, pro
ess-based approa
heslike Eden expose parallel tasks at the language level. The programmermust then manage the tasks using the 
ontrol me
hanisms providedin the language. Eden is expli
it about pro
ess 
reation and about the
ommuni
ation topology, but impli
it about other 
ontrol issues su
h assending and re
eiving messages, and pro
ess pla
ement. Granularity isunder the programmer's 
ontrol be
ause he/she de
ides whi
h expres-sions must be evaluated as parallel pro
esses, and also some 
ontrol ofthe load balan
ing is possible at the programmer's level.Constru
ts. Eden provides pro
ess abstra
tions and pro
ess instan-tiations for 
oordination as shown in Figure 5. The new expressionpro
ess x -> e of a prede�ned polymorphi
 type Pro
ess a b de-�nes a pro
ess abstra
tion having formal parameter x::a as input andexpression e::b as output. Pro
ess abstra
tions of type Pro
ess ab 
an be 
ompared to fun
tions of type a -> b, the main di�eren
ebeing that the former, when instantiated, are exe
uted in parallel.Additionally, when the output or input expression is a tuple, a separate
on
urrent thread is 
reated for the evaluation of ea
h tuple element.We will refer to ea
h of them as a 
hannel.
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newtype Process a b = ...

-- process abstraction (language construct) 
process x -> e :: Process a b

-- process instantiation
(#) :: (Transmissible a, Transmissible b) => Process a b  -> a -> b

-- non-deterministic merge process
merge :: Process [[a]] [a]Figure 5. Basi
 Coordination Constru
ts in EdenA pro
ess instantiation is a
hieved by using the prede�ned in�x op-erator (#). The 
ontext Transmissible is needed to guarantee that theelements 
an be sent through the 
hannels. Ea
h time an expression e1# e2 is evaluated, a new pro
ess is 
reated to evaluate the appli
ationof e1 to e2. We will refer to the latter as the 
hild pro
ess, and tothe owner of the instantiation expression as the parent pro
ess. Theinstantiation semanti
s spe
i�es in whi
h pro
esses these expressionsshall be evaluated: (1) Expression e1 together with its whole environ-ment is 
opied in the 
urrent evaluation state to a new pro
essor, andthe 
hild pro
ess is 
reated there to evaluate the appli
ation of e1 toe2, where e2 must be remotely re
eived. (2) Expression e2 is eagerlyevaluated in the parent pro
ess. The resulting full normal form data is
ommuni
ated to the 
hild pro
ess as its input argument.On
e pro
esses are running, only fully evaluated data obje
ts are
ommuni
ated. The only ex
eption are lists: they are transmitted in astream-like fashion, i.e. element by element. Ea
h list element is �rstevaluated to full normal form and then transmitted. Pro
esses tryingto a

ess input not yet available are temporarily suspended. This is theonly syn
hronising me
hanism in Eden.Figure 6 presents a simple parallel map skeleton in Eden, in whi
h adi�erent pro
ess is 
reated for every element of the input list. Strategiesare used in Eden to in
uen
e the evaluation order. In this example, thespine strategy is used to eagerly evaluate the spine of the pro
ess in-stantiation list. In this way all pro
esses are immediately 
reated. Moresophisti
ated parallel implementations of map have been developed inEden (Klusik et al., 2002; Klusik et al., 2000) and some will be dis
ussedin Se
tion 4.Methodology. Like GpH, Eden is based on the Glasgow Haskell Com-piler, and 
an use the same sequential pro�ling utilities. For parallelpro�ling Eden provides a simulator 
alled Paradise (Hern�andez et al.,
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14 Loidl et al.
map_par :: (Transmissible a, Transmissible b) => 
           (a -> b) -> [a] -> [b]
map_par f xs = [pf # x | x <- xs] ‘using‘ spine     
               where pf = process x -> f x

spine :: Strategy [b]
spine []     = ()
spine (_:xs) = spine xs                 Figure 6. Parallel map in Eden2000) whi
h is based on GranSim, so that tuning the performan
e ofan Eden program is a similar pro
ess to that in GpH.Parallel programming in Eden 
an be done by expli
itly de�ning andinstantiating a pro
ess topology. This would be equivalent to sequen-tial fun
tional programming with expli
it re
ursion. Sometimes this isappropriate, but an experien
ed fun
tional programmer will try to usehigher-order fun
tions, i.e. skeletons, as mu
h as possible in order toredu
e the amount of work and the possibility of making mistakes. In a
omplex appli
ation both methods may be simultaneously needed. Themain di�eren
e between Eden and more traditional skeleton-based lan-guages, su
h as PMLS, is the fa
t that skeletons 
an be spe
i�ed withinEden itself. Thus, Eden serves both as a 
omputation and 
oordinationlanguage, yielding a high degree of 
exibility for the programmer.3.2. ImplementationIn this se
tion we 
ompare the implementations of the languages onarbitrary parallel ar
hite
tures.3.2.1. PMLSThe PMLS approa
h is based on:� maximising 
ompile-time a
tivity to minimise run-time overheads;� 
on�guring the virtual topology of the target system to re
e
t
losely the HOF hierar
hy in the sour
e program.While this is relatively in
exible, for example making exploitation ofparallelism a
ross 
ondition bran
hes diÆ
ult, it often results in veryeÆ
ient 
ode.Compile Time. The PMLS 
ompiler front end parses, elaborates andtype 
he
ks SML to produ
e an abstra
t syntax tree (AST). The MLKit is used as the front end. The AST is traversed to extra
t an abstra
tnetwork showing the nesting hierar
hy of HOFs. Free variable lifting,
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e 15or defun
tionalisation, is performed to simplify passing free variablebindings to skeletons, and to avoid runtime transmission of 
losures.The AST and abstra
t network are traversed to identify HOFs to berealised as skeletons and to generate skeleton network 
ode and MPIregistration in C. The resulting AST is �nally translated into Obje
-tive Caml for linkage by the OCaml and GNU C 
ompilers with theappropriate skeletons, and skeleton network and MPI registration 
ode.PMLS skeletons are written in C with MPI. The map fun
tion isimplemented as a task farm and fold as a divide-and-
onquer network.The skeletons are hybrid and may be run either in parallel or sequen-tially. Skeletons are 
oordinated at runtime by generi
 \Pskel" nodeswhi
h 
an swit
h their hybrid modes. Otherwise, skeletons are linkedstati
ally with no runtime 
hange of topology. Adopting an SPMDapproa
h, all pro
essors are pre-loaded with all skeletons and fun
tions.The use of Obje
tive Caml and GNU C to generate native 
odeenables a high degree of portability. PMLS has been ported to a FujitsuAP3000, IBM SP/2, Cray T3E, networks of UltraSpar
 workstations,SUN Enterprise and Beowulf, displaying 
onsistent performan
e a
rossall platforms. For further details see S
aife et al. (2001).Run Time. PMLS generates 
ode to link stati
 skeletons through Pskelnodes. The Obje
tive Caml run-time environment provides garbage
olle
tion and appropriate libraries. At run-time, the Pskel nodes atea
h level determine their behaviour from the skeleton network. In par-ti
ular, intermediate Pskel nodes in the hierar
hy will swit
h betweenparent and 
hild operation if initiated in parallel mode. There is nomovement of 
ode or 
losures at runtime. For further details of the
ompiler design and implementation see Mi
haelson et al. (2001).The single pro
essor eÆ
ien
y of PMLS has been measured forthe raytra
er as 86% on our Beowulf 
luster. The main sour
es ofoverhead are slight ineÆ
ien
ies introdu
ed in program transformationstages, su
h as extra fun
tion 
alls, and the need to propagate addi-tional information that is used as arguments to the skeletons used forexploiting the parallelism. In a multi-pro
essor setup the worker nodesof the skeleton used in linSolv exhibit an eÆ
ien
y of 84%. In this 
asethe main sour
e of overhead is some idle time introdu
ed by blo
king
ommuni
ations between nodes in this skeleton. An implementation ofa more eÆ
ient version, using non-blo
king 
ommuni
ation whereverpossible, is 
urrently in development.Early versions of PMLS were hampered by ineÆ
ien
ies in thetranslation pro
ess from SML to Obje
tive Caml. More re
ent versionsemploy a set of optimising transformations allowing fairly similar per-forman
e between the output from PMLS and hand-
oded Obje
tive
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16 Loidl et al.Caml. For example, the ray tra
er has also been implemented in Obje
-tive Caml and gives a sequential runtime of 195 se
onds on similar datato that used in this paper. The output of the PMLS 
ompiler takes 241se
onds on the same data. A slowdown of around 20% is a

eptable andis attributable to the remaining ineÆ
ien
ies in the translation pro
ess.3.2.2. GpHCompile Time. The two additional language 
onstru
ts of GpH, parand seq, are treated as built-in fun
tions by the 
ompiler. They areimplemented as system-
alls in the GUM runtime-system. GpH pro-grams are 
ompiled using almost all of the sequential optimisations inGHC, although 
are must be taken to preserve par and seq.Run Time. The GUM runtime-system for GpH realises a parallelgraph-redu
tion ma
hine built on top of GHC's sequential STG-ma
hine. To syn
hronise multiple threads, a thread lo
ks the node ofthe graph when starting its evaluation, and other threads requestingthat data will be added to a blo
king queue atta
hed to the lo
ked
losure. A

ess to remote 
losures is managed by new Fet
hMe nodes,representing global indire
tion. On requesting the 
ontents of su
h anode a message will be sent to the target pro
essor and the requestingthread will be added to a blo
king queue. The details of these syn-
hronistation and 
ommuni
ation me
hanisms are dis
ussed in Loidl(1998)[Chapter 2℄.Being integrated into GHC, GUM makes use of existing analysesand optimisations for eÆ
ient sequential exe
ution. A dis
ussion of thedesign and implementation of GUM is given in Trinder et al. (1996).In summary, the additional features to enable parallel exe
ution are:� sparking of threads, i.e. identi�ed program expressions may beevaluated as independent threads or they may be inlined by otherthreads, a
hieving dynami
 granularity 
ontrol as in the lazy task
reation me
hanism (Mohr et al., 1991);� multi-threading, i.e. independent threads of 
ontrol are exe
uted inan interleaved fashion thereby enabling an overlap of 
omputationand 
ommuni
ation on ea
h pro
essor;� virtual shared heap, i.e. the physi
ally distributed heap is treatedas a shared heap with global pointers to remote pro
essors, withtransparent 
ommuni
ation on a

ess of non-lo
al data;� automati
 marshalling of data and work, i.e. when data or workis needed on another pro
essor, a graph stru
ture is automati
ally
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e 17serialised, sent to another pro
essor, and again unpa
ked into agraph stru
ture;� distributed garbage 
olle
tion, i.e. weighted referen
e 
ounting isused to garbage 
olle
t global pointers that are not used any more.In order to assess the overheads of the di�erent systems we have mea-sured key parameters of the runtime-system. One important parameteris the single-pro
essor eÆ
ien
y, i.e. the sequential runtime dividedby 1 PE runtime in per
ent. For GUM we have previously measured80%{93% on simple programs (Trinder et al., 1996), and now 77% onlinSolv as used in Se
tion 4.3. In a multi-pro
essor exe
ution it turnsout that maintaining a virtual shared heap on a distributed memoryma
hine is most expensive. In parti
ular the management of a hashtable mapping lo
al heap addresses to global heap address a

ounts forup to 3.8% of the total exe
ution time, in earlier version, pre-datingre
ent improvements in GUM even up to 8%. In 
omparison, the 
ostsfor pa
king graph stru
tures and 
ommuni
ation play only a minorrole in the total runtime: less than 1% for this program. The 
osts for
reating parallelism are, by design, very small: 
reating a spark requiresonly adding a pointer to an array, and threads are very light (14 bytesfor the thread des
riptor) with initially small, tunable sta
ks (1kB).A detailed dis
ussion of these overheads inGpH is presented in Loidl(2002). This paper separates the overhead into that indu
ed by thethread management, memory management and 
ommuni
ation subsys-tems of GUM. It then fo
uses on virtual shared memory management,whi
h turns out to be the most expensive part, and uses both linSolvand raytra
er as example programs. Several improvements of the ba-si
 load balan
ing me
hanism, that we exploit in these measurements,are presented in Loidl (2001).3.2.3. EdenCompile Time. Eden extends the optimising Glasgow Haskell Com-piler with a few modi�
ations. In Eden, lazy evaluation is 
hanged toeager evaluation in two 
ases. Firstly, pro
esses are eagerly instantiatedwhen the expression under evaluation demands the 
reation of a 
lo-sure of the form o = e1 # e2. Se
ondly, instantiated pro
esses eagerlyprodu
e their output expressions and 
ommuni
ate them on 
hannels.These modi�
ations of the standard Haskell semanti
s are aimed at in-
reasing the degree of parallelism and at speeding up the distribution ofthe 
omputation, and they are implemented by 
ompile-time providedby Eden, i.e. pro
ess abstra
tions, pro
ess instantiations, dynami

hannels and merge instantiations, are translated into runtime-system
alls.
main.tex; 6/12/2002; 16:42; p.17



18 Loidl et al.Run Time. The design of DREAM (Breitinger et al., 1997a), the par-allel abstra
t graph-redu
tion ma
hine implementing Eden, is largelysimilar to GUM. We fo
us on the di�eren
es to GUM:� In DREAM, the 
on
ept of a virtual shared heap does not exist.Ea
h pro
ess evaluates its outputs autonomously with respe
t toother pro
esses. The entire graph needed by a newly instantiatedpro
ess is 
opied into its heap before it starts running. In some
ases, this 
an even lead to some dupli
ation of work, but it re-du
es the 
ommuni
ation overhead of DREAM. Moreover, globalgarbage 
olle
tion redu
es to the sending of terminate messages topro
esses whose output has been dete
ted to be garbage during alo
al garbage 
olle
tion.� In 
ontrast to GpH, Eden threads are mandatory. Pro
esses inDREAM and threads in GUM are related as follows: A pro
essin DREAM is implemented by several threads, whi
h dire
tly 
or-respond to threads in GUM. These threads run 
on
urrently onthe same pro
essor, so that di�erent output values 
an be inde-pendently produ
ed. Threads syn
hronize on shared graph nodesas in GpH. In addition, spe
ial queue-me 
losures represent inputfrom remote pro
esses whi
h is not available yet. On requestingthe 
ontents of su
h a 
losure a thread will blo
ked until the inputarrives.� Pro
ess pla
ement in Eden is 
ontrolled by the runtime-system intwo di�erent modes that 
an be set-up at the beginning of the ex-e
ution: (1) round-robin mode, in whi
h pro
esses are instantiatedin 
onse
utively numbered pro
essors, or (2) random mode, wherepro
esses are instantiated in randomly 
hosen pro
essors.As Eden shares parts of GUM's thread management and 
ommuni-
ation subsystem, the runtime-system overheads are similar. However,Eden overheads are smaller, as it is not ne
essary to maintain a virtualshared graph. The single pro
essor performan
e for linSolv as used inSe
tion 4.3 has been 89%. In general, the main bottlene
ks in Edenare due to the pa
king and unpa
king routines, whi
h are not yetoptimized. For instan
e, pa
king a 600 � 600 matrix of integers takes1% of the time required for multipying it. Moreover, as there are notyet multi
asting fa
ilities in Eden, on
e a pa
ket has been sent to apro
ess, it 
annot be reused the pa
king e�ort in order to send thesame pa
ket to other pro
ess. See Rubio (2001) for a more detaileddes
ription of Eden overheads.
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e 19Table I. Language ComparisonEden GpH PMLSLanguageApproa
h pro
ess-based thread-based skeleton-basedConstru
ts pro
. abstra
tion par/seq HOFspro
. instantiationProgramming skeletons eval. strats |Abstra
tionMethodology de�ne topology simulate, |and/or skeletons, exe
ute,simulation visualiseImplementationCompile-time for
e stri
t | synthesise HOFs,support evaluation of pro
ess network,
hannel data link skeletonsRun-time graph-red. over graph-red. over skeleton library oversupport distributed heap shared heap distributed heap3.3. SummaryTable I summarises the language and implementation features of thePMLS, GpH, and Eden. On the language level it shows the higher levelof abstra
tion for PMLS, using a skeleton-based approa
h, whi
h doesnot require language extensions for parallelism at all, whereas GpHadds 
ombinators to expose parallelism and Eden adds a 
onstru
t forexpli
it pro
ess 
reation. On the implementation level PMLS performssophisti
ated stati
 analysis and program synthesis in order to generatea suÆ
ient amount of parallelism. Both GpH and Eden rely mostly ona sophisti
ated runtime-system with dynami
 resour
e management.To a
hieve good single pro
essor performan
e all systems use state-of-the-art sequential 
ompilers for fun
tional languages:GpH and Edenuse GHC, and PMLS uses OCaml. Using linSolv (Se
tion 4.3) asben
hmark we a
hieve single pro
essor eÆ
ien
ies of 77% for GpH,mainly due to using a two-spa
e garbage 
olle
tor in the 
urrent imple-mentation, 89% for Eden (using a better garbage 
olle
tor), and 84%
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20 Loidl et al.for PMLS whi
h uses a two-generation garbage 
olle
tor. In measuringthe overheads in multi-pro
essor exe
utions we identi�ed in GpH themaintenan
e of hash tables in the virtual shared memory management,and in PMLS the usage of blo
king 
ommuni
ation at 
ertain stages andthe single-master, multiple-worker parallel model to be the most 
ostly
omponents. The details of these runtime-system measurements forGpH and PMLS, in
luding data obtained from Beowulf and SunSMPma
hines, will be published in separate paper (Loidl et al., 2002).4. Experimental ResultsThis se
tion des
ribes the results we have obtained using three pro-grams: matMult, a matrix multipli
ation algorithm, linSolv, an exa
tlinear system solver, and raytra
er, a simple ray tra
er. The parallelalgorithms themselves have been explained in more detail in previouspapers. In this se
tion we fo
us on a 
omparison of the implementationsin and the performan
es a
hieved with PMLS, GpH, and Eden.Although rather simple in nature, these programs represent a rangeof appli
ations we are interested in. In previous studies on developingparallel appli
ations in GpH (Loidl et al., 1999) we have identi�edthe 
lass of symboli
 appli
ations, with 
omplex data stru
tures andirregular parallelism, as the most interesting appli
ation domain. Forpragmati
 reasons we had to keep the program size down: ensuringthat all three versions implement the same algorithm and produ
e
omparable dynami
 stru
tures was the main engineering 
onstraint.Of the 3 programs in this se
tion the linear system solver, with itsmultiple homomorphi
 images approa
h, �ts these 
hara
teristi
s best,with the other programs fo
ussing on di�erent aspe
ts of the exe
ution.More spe
i�
ally, matrix multipli
ation is a well-studied parallel pro-gram and serves to relate our approa
h to that of imperative languages(with 
on
rete language and performan
e 
omparison in Se
tion 6). Thelinear equation solver exhibits a stru
ture typi
al for a 
lass of symboli
appli
ations, whi
h is quite di�erent from 
onventional iteration-basedte
hiques. It also performs a high amount of heap 
onsumption and 
re-ates less regular parallelism, and is therefore 
losest to typi
al symboli
appli
ations. The ray tra
er is an example of a data-parallel appli
ation,and issues of task and 
omputation granularity be
ome important inthis 
ontext.
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Comparing Parallel Fun
tional Languages: Programming and Performan
e 214.1. Experimental FrameworkAll measurements have been performed on a 32-node Beowulf 
lus-ter (Ridge et al., 1997) at Heriot-Watt University, 
onsisting of LinuxRedHat 6.2 workstations with a 533MHz Celeron pro
essor, 128kB
a
he, 128MB of DRAM and 5.7GB of IDE disk. The workstationsare 
onne
ted through a 100Mb/s fast Ethernet swit
h with a laten
yof 142�s, measured under PVM 3.4.2.4.2. Matrix Multipli
ation4.2.1. Problem Des
riptionGiven two square matri
es of arbitrary pre
ision integers A;B 2Zn�n; n 2 N �nd their produ
t, i.e. a matrix C 2 Zn�n su
h thatCi;j =Pnk=1Ai;k � Bk;j.4.2.2. Parallel AlgorithmsWe start with a sequential algorithm dire
tly implementing the abovespe
i�
ation of matrix multipli
ation, shown in Figure 7. By using analgebrai
 datatype Matrix a to represent matri
es as lists of lists we
an overload standard arithmeti
 operations su
h as multipli
ation.The main fun
tion is multMatT, whi
h takes A and BT , i.e. the trans-posed matrix B as input. It 
omputes A � B in a double nested list
omprehension, 
omputing the rows of the result matrix in the outer
omprehension and the elements of a row in the inner 
omprehension.The fun
tion multVe
 
omputes the sum in the spe
i�
ation above fortwo ve
tors of length n.
data (Num a) => Matrix a = M [[a]]

multMat :: (Num a) => Matrix a -> Matrix a -> Matrix a
multMat (M m1) (M m2) = M (multMatT m1 (transpose m2))

multMatT :: (Num a) => [[a]] -> [[a]] -> [[a]]
multMatT m1 m2T = [ [multVec row col | col <- m2T] | row <- m1]

multVec :: (Num a) => [a] -> [a] -> a
multVec v1 v2 = sum (zipWith (*) v1 v2)Figure 7. Sequential matMult (Haskell version)4.2.2.1. Naive data parallelism: Sin
e ea
h element of the result ma-trix 
an be 
omputed independently, we 
an exploit data parallelismby generating one parallel task for ea
h element in the result matrix.However, the ex
essive number of small 
omputations leads to a verypoor performan
e in general. For example, the GpH implementation
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22 Loidl et al.of this naive data parallel version yields a speedup of about one up to16 pro
essors. We do not 
onsider this version any further.4.2.2.2. Row 
lustering: The granularity of the naive parallel algo-rithm 
an be in
reased by 
omputing an entire row of the result matrixby one task. Assuming square matri
es of size n � n with integers ofaverage size l in its internal representation, and assuming that inte-gers are multiplied by using the algorithm of Karatsuba and Ofman(1962), the 
omputational 
omplexity for ea
h task is O(n2 � llog23),while the total 
ommuni
ation 
omplexity, i.e. the amount of data (inma
hine words) to be sent, is O(n3 � l). The latter 
omplexity is due tothe fa
t that ea
h task requires the whole se
ond matrix to 
omputeone �nal row, and n tasks are 
reated. In order to e�e
tively improveparallel performan
e, the granularity of the tasks has to be in
reasedby 
omputing as many elements as possible inside ea
h task and the
ommuni
ation has to be minimised.We 
an improve the granularity further by 
omputing many rowsof the resulting matrix by ea
h task. With perfe
t load distribution,if p pro
essors are available, p tasks should be 
reated, ea
h oneevaluating n=p rows of the resulting matrix. Using su
h a row 
lus-tering approa
h the 
ommuni
ation 
omplexity of the main pro
ess isO(n2 � p � l) whereas the 
omputational 
omplexity of ea
h pro
ess isO(n3 � llog23=p). For large values of n better speedups 
an be expe
ted,sin
e the 
omputation-
ommuni
ation ratio in
reases.4.2.2.3. Blo
k 
lustering: An alternative form of 
lustering the data isto partition the input matri
es into blo
ks, performing blo
k-
lustering,and then perform the basi
 arithmeti
 over these blo
ks rather thanover simple integer values. Figure 8 depi
ts this partitioning, and indi-
ates that for the 
omputation of one blo
k in the result matrix, onlyone row of the partitioned matrix A and one 
olumn of the partitionedmatrix B is needed. In this version the 
omputational 
omplexity ofea
h pro
ess is still O(n3 � llog23=p) but its 
ommuni
ation 
omplexityis only O(n2 � l=pp) as the pro
essors do not require the whole se
ondmatrix.4.2.2.4. Torus topology: All parallel versions so far rely on a broad
astof all data at the beginning of the 
omputation with a 
ommuni
ation
omplexity of O(n2 � l � pp). Therefore, the main pro
ess tends tobe
ome a bottlene
k espe
ially for large numbers of pro
essors. To avoidsu
h a bottlene
k we 
an use a torus topology as depi
ted in Figure 11.Initially ea
h pro
ess in the torus re
eives only its own blo
ks frommatri
es A and B. In ea
h step the pro
essor 
omputes the produ
t of
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Figure 8. Stru
ture of blo
k-
lustering matMultboth blo
ks, adds the produ
t to the intermediate result 
omputed sofar, and then obtains the next blo
ks from its neighbours. As shownin Figure 11 the blo
ks of the �rst matrix are transmitted from leftto right in the torus, while those of the se
ond matrix are transmittedtop down. This algorithm is well-known in the literature as Gentleman'salgorithm (Quinn, 1994). In this version the 
ommuni
ation 
omplexityof the main pro
ess is O(n2 � l), i.e. it does not depend on the numberof pro
essors, and the 
ommuni
ation between the pro
essors is spreadover the entire exe
ution of the program. The main drawba
k of thisapproa
h is that it requires a perfe
t square number of pro
esses toform a torus topology.4.2.3. Implementations
multMatTParRow :: (Num a,Transmissible a) => 
                  Matrix a -> Matrix a -> Matrix a
multMatTParRow (M m1) (M m2) = M (concat result)
 where result = map_par multMatT (zip (splitIntoN noPe m1) (repeat m2))Figure 9. Row-
lustering matMult (Eden Version)4.2.3.1. Eden: The row-
lustering version in Eden 
reates as manypro
esses as pro
essors available with ea
h of them 
omputing np rowsof the produ
t matrix. This version, as shown in Figure 9, uses thebuilt-in variable noPe, representing the number of available pro
essors.The fun
tion splitIntoN n xs splits the list xs into n nearly equal sizesublists (see Appendix A for the de�nition of splitIntoN and otherauxiliary fun
tions used in this se
tion).The blo
k-
lustering version 
reates size�size pro
esses, ea
h ofthem 
omputing a blo
k of the produ
t matrix. In order to redu
ethe total amount of 
ommuni
ation, the typi
al value of size will bebpnoPe
. The main di�eren
e to the row-
lustering version is the way
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multMatTParBlock :: (Num a, Transmissible a) => 
                    Int -> Matrix a -> Matrix a -> Matrix a
multMatTParBlock size m1 m2 = decluster size result
  where result = map_par multMatT (zip (clusterLeft size m1) 
                                       (clusterRight size m2))Figure 10. Blo
k-
lustering matMult (Eden Version)

15 15 15 15
15 15 15 15
15 15 15 15
15 15 15 15Figure 11. Pro
ess topology generated using a torusin whi
h the matri
es are split, whi
h is en
oded in the 
lusterLeftand 
lusterRight fun
tions. The �rst fun
tion splits matrix A into alist of rows, the se
ond fun
tion splits matrix B into a list of 
olumns.The torus version of the algorithm 
an be expressed in Eden interms of its general torus skeleton (Pe~na and Rubio, 2001). The mainargument of the torus skeleton is the fun
tion to be performed by ea
hnode in the torus topology (see Figure 11). Ea
h node has three inputparameters: one from the parent; one from the left neighbour; and onefrom the top neighbour. It produ
es three values: one to the parent;one to the right neighbour; and one to the neighbour below.With this torus skeleton, the matrix multipli
ation algorithmmultMatPar shown in Figure 12 takes the size of the torus, torusSize,splits the matri
es m1 and m2 into blo
ks m1ss and m2ss, respe
tively,thereby pairing them appropriately, and 
alls the torus skeleton toruswith the fun
tion multMatPar' to be applied by the node pro
essesof the torus. The per-node fun
tion performs a list of matrix multipli-
ations sms | one for ea
h pair of blo
ks it re
eives | and sums all
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torus :: (Transmissible a,Transmissible b,Transmissible c,Transmissible d) =>
             ((c,a,b)->(d,a,b)) -- Main function in each process
             [[c]] ->           -- Inputs from parent to children
             [[d]]              -- Outputs from children to parent
torus f m = ...

multMatPar :: (Num a, Transmissible a) => 
              Int -> Matrix a -> Matrix a -> Matrix a
multMatPar torusSize m1 m2 = combine results
 where results = torus (multMatPar’ torusSize) (zipWith zip m1ss m2ss)
       m1ss    = splitMatrix1 torusSize m1 
       m2ss    = splitMatrix2 torusSize m2

-- Function performed by each worker         
multMatPar’ :: (Num a, Transmissible a) => Int -> 
               ((Matrix a, Matrix a), [Matrix a], [Matrix a]) -> 
               (Matrix a, [Matrix a], [Matrix a])
multMatPar’ size ((sm1,sm2),sm1s,sm2s) = (result,toRight,toBottom)
  where toRight  = take (size-1) (sm1:sm1s)
        toBottom = take (size-1) (sm2’:sm2s)
        sm2’     = transpose sm2
        sms      = zipWith (curry multMat2) (sm1:sm1s) (sm2’:sm2s)
        result   = foldl1’ addMatrices sms Figure 12. Torus version of matMult in Edenprodu
ts to obtain the result whi
h is returned to the parent. Notethat the �rst pair, (sm1,sm2), is re
eived dire
tly from the parent,whereas the other pairs are re
eived from the left and right neighboursas part of sm1s and sm2s, respe
tively.4.2.3.2. GpH: Figure 13 shows a row-wise 
lustering version ofmultMatPar in GpH. This version uses the sequential matrix multipli-
ation, multMat, as shown in Figure 7 without 
hange. All parallelism isde�ned by a strategy atta
hed to multMat. The strategy �rst evaluatesboth input matri
es, in order to avoid 
ompetition for unevaluateddata during the evaluation, and then uses the prede�ned strategyparListChunk z rnf m to fully evaluate 
hunks of z elements in thematrix m in parallel.
multMatPar :: (Num a, NFData a) => Int -> Matrix a -> Matrix a -> Matrix a
multMatPar z m1 m2 = multMat m1 m2 
                     ‘using‘ \ (M m) -> rnf m1 ‘seq‘ 
                                        rnf m2 ‘seq‘ 
                                        parListChunk z rnf mFigure 13. Row-
lustering matMult (GpH version)The blo
k-wise 
lustering GpH version in Figure 14 implementsthe algorithm sket
hed in Figure 8. In 
ontrast to the purely strate-gi
 row-
lustering version, it uses expli
it fun
tions for 
lustering andde
lustering the input and result matri
es. Note that the 
ode used
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26 Loidl et al.to multiply the 
lustered matri
es, multMatT, is the sequential matrixmultipli
ation overloaded to work on matri
es of matri
es. The strategyatta
hed to the 
lustered result matrix, guarantees that every blo
k inthe 
lustered result matrix is evaluated in parallel. Su
h separationof data-layout from 
omputation and reuse of sequential 
ode greatlyimproves the produ
tivity in our languages, and is in 
ontrast to sophis-ti
ated C-based blo
k-
lusterings, where extensive 
ode restru
turingis needed to obtain very eÆ
ient parallel programs (Frens and Wise,1997).Based on experien
es with di�erent 
luster fun
tions, we have de-veloped a generi
 me
hanism for 
lustering arbitrary user-de�ned datastru
tures, using formal program transformation to derive data parallel
ode su
h as this from the sequential 
ode (Loidl et al., 2001).
multMatPar :: (Num a, NFData a) => Int -> Matrix a -> Matrix a -> Matrix a
multMatPar z m1 m2 = 
  decluster (multMatT (cluster z m1) (cluster z (transposeMat m2))
             ‘using‘ \ (M m) -> rnf m1 ‘seq‘
                                rnf m2 ‘seq‘
                                parList (parList rnf) m )Figure 14. Blo
k-
lustering matMult (GpH version)4.2.3.3. PMLS: The PMLS implementation uses nested lists for rep-resenting matri
es, and Obje
tive Caml's arbitrary-pre
ision integerarithmeti
 library for the operations over the matrix elements. Thereis no general overloading of the basi
 arithmeti
 fun
tions for matri
esas in Haskell.
(* vector product call *)
fun inner row col = multVec row col

(* inner map - parallel *)
fun outer BT row = map (inner row) BT

(* outer map - parallel *)
fun multMat A B = map (outer (transpose B)) AFigure 15. Row-
lustering matMult (PMLS version)A straightforward sequential SML algorithm, that uses map instan
esinstead of Haskell's list 
omprehensions, is shown in Figure 15. Sin
ethis 
ode uses one of the HOFs that is implemented as a parallel skele-ton, it 
an be dire
tly parallelised by the PMLS 
ompiler resulting in apair of nested map skeletons. The outermost map in multMap 
omputes alist of matrix-ve
tor produ
ts by mapping the matrix-ve
tor operation,
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alled outer, over the rows of matrix A. The outer fun
tion 
omputes alist of dot produ
ts by mapping the multVe
 fun
tion over the 
olumnsof matrix B. Note that the entire matrix B is free in multMat. The
ompiler's free-value analysis phase dete
ts this property and generates
ode to transmit B to the workers prior to running the outer farm.The parallel map skeleton has 
lustering of data built into it. The
lustering size is global to the whole program and set manually, atpresent. With a 
lustering parameter of one this algorithm 
orrespondsto the naive data parallel version mentioned above. In non-nested mode,with 
lustering set to a suitable value, the behaviour is identi
al tothe row-wise 
lustering version. In nested mode, with both map skele-tons implemented in parallel, the matrix B is only transmitted to theintermediate pro
essors.
(* Block map over outer product *)
fun BMmult (A,B) =
  let
    val rows = length A
    val outerAB = outer_product (A,transpose B)
    val AB = map Mdotprod outerAB
  in
    split rows AB
  endFigure 16. Blo
k-
lustering matMult (PMLS version)Figure 16 shows an approximation of a blo
k-wise 
lustering version.The blo
ks are generated by the map's impli
it 
lustering me
hanism.Sin
e PMLS does not provide a user-level me
hanism for enfor
ingabsolute pla
ement of data, the quality of the 
ode depends on theratio of pro
essors to blo
ks. The best results are a
hieved if thenumber of blo
ks is a multiple of the number of pro
essors. Overall,this method is slightly less 
ommuni
ations-bound than the row-wise
lustering method sin
e the entire matrix B is not transmitted to allthe pro
essors.4.2.4. Performan
e ResultsThe measurements presented in this se
tion are based on two 200�200matri
es of arbitrary pre
ision integers, none of whi
h is larger than216 � 1, i.e. one ma
hine word. For the row- and blo
k-
lusteringversions Eden uses as many blo
ks as pro
essors, whereas GpH uses a
hunk size of 40. For the row-
lustered version PMLS uses blo
ks of 3rows, while for the blo
k-
lustered version it uses blo
ks of size 40�40.The results presented here will be related to the performan
e ofparallel versions implemented in C with PVM and GMP in Se
tion 4.2.5and in the 
on
lusions (Se
tion 6.2).
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Figure 17. Runtimes of matMult on the Beowulf (in se
onds)Figure 17 summarises the runtimes and Figure 18 the speedupsof all versions on our Beowulf 
luster. The sequential performan
e ofthe stri
t language, PMLS, is noti
eably better than that of the lazylanguages, Eden and GpH, with variations of about 26% between theversions of the latter languages.For all versions the performan
e tails o� fairly early with an in
reas-ing number of pro
essors. In general, this is due to the high ratio of
ommuni
ation to 
omputation as elaborated in Se
tion 4.2.2. In Edenthe torus topology behaves better than the blo
k 
lustering version,whi
h in turn is better than row 
lustering. The torus version shows asmall in
rease in performan
e even for large numbers of PEs. This isin 
ontrast to e.g. the blo
k-
lustering GpH version, whi
h shows goodspeedups up to 4 PEs but tails o� after that. In PMLS the di�eren
e inperforman
e between the simple row-
lustered and the re�ned blo
k-
lustered version, due to redu
ed 
ommuni
ation, is most pronoun
ed.The amount of 
ommuni
ation 
an be dire
tly linked to the free o
-
urren
e of B in the row- (Figure 15) but not in the blo
k-
lusteredversion (Figure 16). Furthermore, PMLS uses a task farm skeleton, aspresented in Se
tion 3.1.1, for implementing map in parallel. This modela
hieves a good load balan
e but limits the s
alability of the systembe
ause the master pro
ess be
omes a 
ommuni
ation bottlene
k forlarge numbers of pro
essors.
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Figure 18. Speedups of matMult on the Beowulf
One important di�eren
e between the implementations of the threelanguages is the way that data items are pa
ked in order to send themto other pro
essors. In PMLS a generi
 serialisation routine is used,whereasGpH implements its own graph pa
king algorithm. As a result,the PMLS version is more portable, but the GpH and Eden versionsare in general more eÆ
ient. Graph pa
king 
ould be improved evenfurther by developing spe
ialised pa
king routines for 
ommonly useddata stru
tures, su
h as lists, thereby redu
ing pa
ket size and pa
k-ing time. On a high-laten
y ar
hite
ture su
h as the Beowulf and for
ommuni
ations-bound algorithms su
h as matMult this should yieldsigni�
ant performan
e improvements.In summary this example shows how Eden's ri
her 
oordination 
on-stru
ts, 
ompared to GpH and PMLS, 
an be used to improve parallelperforman
e, without having to resort to me
hanisms of expli
it syn-
hronisation. The higher level of abstra
tion inGpH and PMLS redu
esprogramming e�ort for the initial version, but also redu
es the amountof programmer 
ontrol. Although we des
ribe Eden as having the mostexpli
it 
oordination in this 
omparison, it must be emphasised thatit is far more impli
it than most 
onventional parallel programminglanguages.
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30 Loidl et al.Table II. Performan
e Results for C+PVM matmult pro-grams on the Beowulf (runtimes in se
onds)row-parallel blo
k-parallel torus-parallel# PEs RT Spdup RT Spdup RT Spdup1 5.75 1 5.75 1 5.75 14 2.00 2.87 2.00 2.87 1.93 2.989 1.36 4.23 1.18 4.87 1.08 5.3216 1.34 4.29 1.03 5.58 0.79 7.2825 1.83 3.14 0.97 5.93 0.68 8.46
4.2.5. Comparison with CThe three parallel matrix multipli
ation algorithms have also been im-plemented in C+PVM using the GMP (Gnu Multi-Pre
ision) libraryto 
ope with arbitrary sized integers. The program sizes di�er substan-tially from the parallel fun
tional programs. The sequential C matrixmultipli
ation program using the GMP library 
onsists of 156 lines of
ode (ex
luding blank lines and 
omments), while the parallel programs
omprise 378 lines of 
ode for the row-parallel algorithm, 436 lines forthe blo
k-parallel version and 457 lines for the torus algorithm. Theparallel C+PVM programs are a fa
tor of 4 to 6 longer than our parallelfun
tional programs. Table II shows some runtimes and speedups of thedi�erent parallel C+PVM programs for 200�200 matri
es of arbitrarypre
ision integers.The most involved torus-parallel program yields the best parallelruntimes and speedups. While the sequential runtime is a fa
tor of 4to 6 better, the speedup values progress in a similar way as for thefun
tional programs.4.3. LinSolv4.3.1. Problem Des
riptionThe linSolv algorithm dis
ussed in this se
tion �nds an exa
t so-lution of a linear system of equations of the form Ax = b whereA 2 Zn�n; b 2 Zn; n 2 N. In 
ontrast to more 
ommon numeri
alalgorithms, whi
h usually produ
e an approximate solution over 
oat-ing point numbers for a given a

ura
y, the algorithm presented here�nds an exa
t solution and works over arbitrary pre
ision integers.
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tional Languages: Programming and Performan
e 314.3.2. Parallel AlgorithmTo �nd an exa
t solution for a given system of equations, linSolvuses a multiple homomorphi
 images approa
h (Lauer, 1982). This is a
ommon 
omputer algebra approa
h and 
onsists of the following threestages:1. map the input data into several homomorphi
 images,2. 
ompute the solution in ea
h of these images, and3. 
ombine the results of all images to a result in the original domain.Figure 19 depi
ts this stru
ture for the implementation of linSolv.This stru
ture is parti
ularly useful for operations on arbitrary pre-
ision integers. In this 
ase the original domain is Z, the set of allinteger values, and the homomorphi
 images are Z modulo p, writtenZp, with p being a prime number. If the input numbers are very bigand ea
h prime number �ts into one ma
hine word the basi
 arithmeti
in the homomorphi
 images is 
heap �xed pre
ision arithmeti
. Only inthe 
ombination phase, when applying a fold-based Chinese RemainderAlgorithm (CRA) (see Lipson (1971)), expensive arbitrary pre
isionarithmeti
 has to be used to 
onstru
t the result values. A detaileddis
ussion of several variants of this algorithm is given in Loidl (1997).The basi
 parallel stru
ture of the algorithm is one of performingall 
omputations in the homomorphi
 images in parallel. The Haskell
ode for the top-level fun
tion, whi
h is un
hanged for the parallelGpH version, is shown in Figure 20. It uses LU-de
omposition followedby forward and ba
ksubstitution to 
ompute the solution pmx in thehomomorphi
 image (Press et al., 1992). The main diÆ
ulties in theparallel algorithm are two-fold. Firstly, we have to make sure that newresults are 
omputed if primes turn out to be \unlu
ky", i.e. if thedeterminant of the input matrix A in the homomorphi
 image gen-erated by this prime number is zero. This 
an be done either usingdemand-driven evaluation (GpH) or adding expli
it 
ode to handlethat 
ase (Eden, PMLS). Se
ondly, we have to avoid a sequential bot-tlene
k in the 
ombination phase at the end. In earlier papers we haveexperimented with a tree-based CRA routine to redu
e this bottlene
k.However, an analysis of the CRA 
ode (Loidl, 1997) reveals that a tree-based CRA algorithm performs mu
h more total 
omputation than alist-based one, due to the more expensive 
omputations at ea
h nodeof the tree, and we use a list-based CRA in the parallel algorithm.4.3.3. Implementations4.3.3.1. GpH: The parallelGpH version atta
hes the strategy shownin Figure 21 to the top level expression of the sequential 
ode in the last
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Figure 19. Stru
ture of the linSolv algorithmline of Figure 20. We use an in�nite list xList representing the resultsof all homomorphi
 images together with the prime number, as the basisof the image, and the value of the determinant of A in that image.The strategy guesses the number of primes needed to 
ompute theoverall result (noOfPrimes) and uses a parListN strategy to generatedata parallelism over that segment of xList. Using parList insidethe par sol strat strategy, whi
h is applied to the solution in everyimage, 
auses ea
h 
omponent of the result to be evaluated in parallel.We need to 
he
k whether the determinant is zero to avoid redundant
omputation. This 
he
k is done here, rather than when 
omputingnoOfPrimes to minimise data dependen
ies in the algorithm. If someprime numbers turn out to be unlu
ky the list 
ra will evaluate theadditional results by demanding as-yet-unevaluated list elements. The�nal strategy appli
ation parList rnf x spe
i�es that all elements ofthe result should be 
ombined in parallel.4.3.3.2. Eden: Even though 
omputation in Eden is lazy, 
ommu-ni
ation is eager, ex
ept for stream-like lists. Thus, 
are has to betaken not to send the whole list. To ensure a demand-driven eval-uation of homomorphi
 solutions we use a task farm skeleton asoutlined in Se
tion 3.1.1. More spe
i�
ally, we use the repli
ated work-
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linSolv :: SqMatrix Integer ->                -- nxn matrix A
           Vector Integer ->                  -- n vector b
           (Vector Integer, Integer, Integer) -- n vector x s.t. A*x=b
linSolv a b = 
  let 
   {- Step1: forward mapping -}
    ...
   {- Step2: Computation of solutions in Z/p -}
    ...
    -- Infinite list of hom. solutions of a*x=b in Z_p
    xList = map get_homSol primes
    
    get_homSol :: Integer -> [Integer]
    get_homSol p  = 
      let 
        b0 = toHom p b
        a0 = toHom p a
        modDet = toHom p (determinant a0)
        pmx = -- inlined version of: homsolv0 p a0 b0
              let
                lua = lu p a0
                (l,u) = split_lu p lua
                y = fwd_subst p l b0
                x = bwd_subst p u y
              in 
              x
      in
      p : modDet : pmx  

   {- Step3: lifting via list-based CRA -}
    ...
    primeList = projection 0 xList -- primes (bases for the hom ims)
    detList   = projection 1 xList -- dets in all hom ims
    det       = snd (list_cra pBound primeList detList detList)
    x_i i     = snd (list_cra pBound primeList x_i_List detList)
                where x_i_List = projection (i+2) xList
    -- overall solution:
    x = vector (map x_i [0..n-1])
    ...
  in 
  x ‘using‘ stratFigure 20. Top level 
ode of the sequential linSolv algorithm (Haskell version)ers paradigm (Lester, 1993). A manager and a set of worker pro
essesare 
reated, and two tasks are initially released to ea
h of the workers.As soon as any worker �nishes a task, it sends the result to the manager,and a new task is delivered to the worker. The 
omputation in themanager is demand-driven and triggered by the availability of resultvalues. As soon as the manager has all the needed results it terminatesall the worker pro
esses. Noti
e that in this spe
ulative version theworkers may be working spe
ulatively on useless tasks, but only whenthe useful tasks have already been 
onsumed and hen
e the degree ofspe
ulation is tightly limited. More details about the repli
ated workersskeleton 
an be found in Klusik et al. (2002). Figure 22 shows the Eden
ode for the spe
ulative version of linSolv. The only modi�
ation
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strat = 
 \ res -> 
   rnf noOfPrimes                                      ‘seq‘
   parListN noOfPrimes par_sol_strat xList             ‘par‘
   parList rnf x
   where par_sol_strat :: Strategy [Integer]
         par_sol_strat = \ (p:modDet:pmx) -> rnf modDet ‘seq‘ 
                                             if modDet /= 0
                                               then parList rnf pmx 
                                               else ()Figure 21. Parallel strategy for linSolv (GpH version)
xList_all = map_rw get_homSol primes

xList = filter lucky xList_allFigure 22. Parallel linSolv (Eden spe
ulative version)to the sequential 
ode is the use of a parallel repli
ated workers mapmap rw instead of a sequential map over the in�nite list of primes.To avoid the potential waste of resour
es due to spe
ulation we
an implement a 
onservative version as shown in Figure 23. In thisversion the prime numbers are divided into those known to be needed(p needed) and those whi
h are only needed if some of the earlierprimes are unlu
ky (p spe
). The fun
tion additional adds for ea
hunlu
ky prime a new prime number to the task list primes'. Note inthe de�nition of additional that due to the demand-driven evaluationthe availability of unlu
ky primes in xs triggers the generation of oneresult element in ys.4.3.3.3. PMLS: The PMLS implementation has been developed fromthe sequential Haskell implementation. Arbitrary length integers areprovided by Obje
tive Caml's num library, whereas GpH and Eden usethe GNU gmp library. Repla
ing the default arithmeti
 for SML withthese arbitrary pre
ision routines exposes some limitations of SML'soverloading s
heme. In dire
t 
omparison this step was easier in Haskell.The main problem in the PMLS implementation, shown in Figure 24,is the handling of unlu
ky primes. Be
ause SML is stri
t, new primes
annot simply be demanded during the evaluation of the map skeleton.There are two possible solutions to this problem. Either the homo-morphi
 solution fun
tion 
ould generate a new prime upon dete
tingan unlu
ky one, as it is done in the 
onservative Eden version, or theforward-mapping phase 
ould be made iterative with the number ofvalid solution ve
tors as a 
onvergent. The se
ond of these was imple-mented sin
e there are problems with generating unique primes within
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xList_all = map_rw get_homSol primes

xList = filter lucky xList_all
xList_unlucky = filter (not.lucky) xList_all

(p_needed, p_spec) = splitAt ( 1 + toInt noOfPrimes) primes
primes’ = p_needed ++ (additional xList_unlucky p_spec)

additional :: [Integer] -> [Integer] -> [Integer]
additional xs ys = zipWith (\ x y -> y) xs ysFigure 23. Parallel linSolv (Eden 
onservative version)the map instan
e fun
tion. Unfortunately this solution to the problemof unlu
ky primes results in less eÆ
ient parallelism for two reasons.Firstly, in the iterative solution we introdu
e sequential syn
hroni-sation points at the end of ea
h iteration to ex
hange data between thepro
essors. This is required to guarantee that all pro
essors, 
omputingan element of the result ve
tor, terminate on the same iteration. Thisnesting of parallelism inside an iterative stru
ture is a general problemwith our methodology. To over
ome this problem it would be possibleto either broad
ast the 
onvergent, introdu
ing additional 
ommuni-
ation, or to de�ne a spe
ial iterative skeleton, as it is done in theSkipper system (Serot, 2001). However, we 
hoose a solution that ismore general albeit also more 
ostly.Se
ondly, the amount of parallelism is drasti
ally redu
ed by themap 
all during the �rst iteration of the getSols fun
tion. Usually, onlyone or two unlu
ky primes are found for modest sizes of problems. Ifthe number of unlu
ky primes is a multiple of the number of pro
essors(in
luding zero) then there is no parallel performan
e penalty, otherwisethere is a minimum of one homomorphi
 solution time as an overhead.Additionally, the optimal granularity of the map 
all will be di�erentbetween the iterations, the �rst phase more eÆ
ient with 
oarser gran-ularity (sin
e there will be the total number of estimated primes tode
ompose over), the latter with minimal granularity (sin
e there willonly be a small number of unlu
ky primes). We 
an set the granularityat runtime but this, 
urrently, requires expli
it programmer input. Analternative would be to have dynami
 behaviour in our skeletons.4.3.4. Performan
e ResultsAs inputs for the performan
e measurements we use a dense 62 � 62matrix of arbitrary pre
ision integers. No element in the matrix islarger than 216 � 1 and the density of the matrix is higher than 90%.The sequential runtimes show PMLS to a
hieve best single pro
essorperforman
e with 190.8s, followed by GpH with 381.8s, and Eden with491.7s. We attribute this fairly large di�eren
e mainly to algorithmi
di�eren
es in the 
ode: The PMLS version uses a more eÆ
ient for-
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(* Solve ax = b modulo p *)
fun gen_xList a b p =
  let 
    val (a0,b0) = (matHom p a,vecHom p b)
    val modDet = modHom p (determinant a0)
    val ((iLo,jLo),(iHi,jHi)) = matBounds a
    val pmx =
      fxlist jLo (jHi-jLo+L1)
        (fn j => modHom p (determinant (replaceColumn j a0 b0)))
  in
    p::modDet::pmx
  end

(* Iterative forward mapping phase *)
fun getSols xList [] = xList
  | getSols xList primes =
  let
    val xList’ = map (gen_xList aN bN) primes
    val noUnlucky = countUnlucky xList’
    val xList’ = filter (not o isUnlucky) xList’
    val primes’ = additionalprimes primes noUnlucky
  in
    getSols (xList@xList’) primes’
  end
val xList = getSols [] (primesuptomaxprod pBound)

(* Combination via CRA *)
val detList = projection 1 xList
val det = list_cra pBound primes detList detList
fun x_i i =
  let
    val x_i_List = projection (i+2) xList
  in
    list_cra pBound primes x_i_List detList
  end
val x = seqmap x_i (fxlist 0 n (fn x => x))Figure 24. Parallel linSolv (PMLS version)ward substitution after LU de
omposition in the homomorphi
 solutionphase. This di�eren
e, in 
ombination with the lazy evaluation me
h-anism used in GpH and Eden, leads to a higher heap 
onsumptionresulting in higher overall runtime. Furthermore, due to implementationlimitations GpH 
urrently has to use a two-spa
e garbage 
olle
tor,whi
h is known to be less eÆ
ient than the generational garbage 
ol-le
tor used by GHC for sequential exe
ution (see below). Finally, thedi�eren
e between Eden and GpH is due to the fa
t that Eden uses anolder version of GHC.Figure 25 shows the runtimes and Figure 26 shows the relativespeedups for the Eden, GpH, and PMLS implementations of linSolvfor up to 16 PEs on the Beowulf 
luster. For the input data used inthese measurements a suÆ
ient number of lu
ky primes are generatedto utilise all pro
essors in the ma
hine. Sin
e these top-level threads
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Figure 25. Runtimes of linSolv on the Beowulf
an 
ompute their results independently, they perform relatively little
ommuni
ation and the parallel overhead is relatively small giving goodparallel eÆ
ien
y.A dire
t 
omparison of the di�erent languages shows that Edena
hieves the best overall speedup on 16 PEs: 14.0, 
ompared to bothPMLS and GpH at 11.9. However, sin
e Eden has far higher sequen-tial exe
ution time, the PMLS version is the fastest one on 16 PEs.An examination of the a
tivitiy pro�les reveals that PMLS's skeletonmaintains more parallelism while 
olle
ting the data, whereas in GpHthis �nal stage is mostly sequential.The Eden measurements use the spe
ulative version with the repli-
ated workers skeleton that dynami
ally sends work to pro
esses. Thisapproa
h a
hieves dynami
 load distribution without relying on a po-tentially expensive implementation of a virtual shared heap, as used inGpH, and the measurements show good speedups even beyond 16 PEs.In examining the dynami
 memory management of all systems, weobserve that the total heap allo
ation on all PEs is highest for PMLS:1052MB, whereas GpH allo
ates only 618MB. However, due to highermaximal heap residen
y in GpH, pro
essors spend on average 19.0% ofthe total exe
ution time on garbage 
olle
tion, whereas in PMLS thisper
entage is only 11.2%. Measuring the heap fragmentation of bothsystems as the standard deviation of allo
ation on ea
h pro
essor weobtain similar values for both systems, 147MB for PMLS and 157MB
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Figure 26. Speedups of linSolv on the Beowulffor GpH. This indi
ates that in linSolv, GpH's dynami
 memorymanagement does not dramati
ally in
rease heap fragmentation.As these numbers indi
ate, GpH's garbage 
olle
tor seems to gen-erate higher overheads than that in PMLS. The main reason is the
urrent usage of a one-generation 
opying 
olle
tor, rather than a realgenerational 
olle
tor as supported by GHC for sequential 
ompila-tion (Sansom and Peyton Jones, 1993). Furthermore, Obje
tive Caml'stwo-generation 
olle
tor, as used by PMLS, provides 
heap in
remental
olle
tion for the young generation, whi
h better exploits the addi-tional heap spa
e provided by multiple PEs. The implementation ofa mark-and-sweep 
olle
tor for the older generations is known to bevery eÆ
ient, too (Doligez and Leroy, 1993). Another potential reasonfor this overhead is the weighted referen
e 
ounting on global pointersin GpH, although this overhead allows PEs to 
olle
t lo
al garbageindependently, avoiding global syn
hronisation.In summary the linSolv example demonstrates that for some appli-
ations lazy evaluation 
an redu
e the amount of 
oordination required.Both the 
onservative Eden and the PMLS versions had to introdu
eadditional 
oordination to model GpH's demand-driven generation ofparallelism and to handle unlu
ky prime numbers. In Eden the spe
-ulative version proved to be faster than the 
onservative version, butin general su
h an approa
h bears the danger of wasting resour
es.Although the stati
 partitioning and mapping of PMLS is generally
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e 39less 
exible than the approa
h taken in GpH, the re-use of well-tunedparallel skeletons 
an 
ompensate for the loss in 
exibility in this 
ase.It also indu
es smaller runtime-overheads e.g. for garbage 
olle
tion.In terms of speedup the skeleton-based versions in Eden and PMLSare more eÆ
ient in 
olle
ting the results and a
hieve the followingspeedups on 16 PEs: 14.0 (Eden), 11.9 (PMLS), 11.9 (GpH), withPMLS having the fastest seuqential exe
ution.4.4. Ray Tra
er4.4.1. Problem Des
riptionThe raytra
er program 
al
ulates a 2D image of a s
ene of 3D obje
tsby tra
ing all rays in a grid, or window. In tra
ing a ray, the interse
-tions with the obje
ts are 
omputed. When an interse
tion is found,the ray is re
e
ted and the 
olour of the interse
tion point is 
omputedbased on the strength of the ray and on the texture of the obje
t'smaterial. The 
ode is based on the Id version that was published as apart of the Impala suite (Impala, 2001) of parallel ben
hmark programs.4.4.2. Parallel AlgorithmFigure 27 shows the top-level fun
tion of the sequential Haskell al-gorithm. The fun
tion ray takes the size of the window in x and ydimension and the world, represented as a list of spheres, as input.The 
omputation pro
eeds as two nested maps, with the outer mapoperating over the lines of the grid and the inner map, do line, apply-ing the tra
epixel fun
tion to every point in the grid, represented bythe 
oordinates (i,j), returning a ve
tor representing the 
olour.
ray :: Int -> Int -> [Sphere] -> [[((Int, Int), Vector)]]
ray x y world = map do_line sizes_y
    where do_line :: Int -> [((Int,Int), Vector)]
          do_line i = map (\ j -> ((i,j), f i j)) sizes_x
          sizes_x = [0..x-1]
          sizes_y = [0..y-1]
          f i j = tracepixel world lights i j firstray scrnx scrny
          (firstray, scrnx, scrny) = camparams x yFigure 27. Sequential raytra
er (Haskell version)We 
onsider two parallel versions of this program. Both versionsexploit data parallelism but di�er slightly in the way the data is initiallydistributed.4.4.2.1. Parallel map: Be
ause the 
omputation to be performed onea
h pixel, tra
epixel, is fairly 
heap, we do not exploit parallelismin the inner map but instead exe
ute only the outer map in parallel.
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40 Loidl et al.To a
hieve good granularity in the outer loop, the 
omputation overseveral lines are 
olle
ted into 
hunks and pro
essed together.4.4.2.2. Dire
t map: The dire
t map version exploits the same kindof data parallelism but di�ers in its initial distribution of data. Ea
hpro
ess is given all ne
essary data and extra
ts its own portion ofthe data by sele
ting lines in the grid. To improve the granularity ofthe 
ommuni
ation, sub-sequen
es of pixels are 
olle
ted into pa
kets.Typi
ally as many tasks as available pro
essors (noPe) are generated.To improve the load-balan
e, task i (0 � i � noPe-1) 
omputes allresult lines i+j*noPe with j � 0. Note that in this version no dynami
distribution of tasks is required after the startup phase. Compared tothe parallel map version this should a
hieve a faster startup of theparallel pro
esses and a better load distribution.4.4.3. Implementations4.4.3.1. PMLS. The PMLS implementation in Figure 28 uses a par-allel map and has been developed from the sequential Haskell versionin Figure 27.
fun ray x y world =
  let
    val (firstray, scrnx, scrny) = camparams x y
    fun do_pixel ij =
      let
        val (i,j) = (ij div 1000,ij mod 1000)
      in
        ((i,j),tracepixel world lights (real i) (real j) firstray scrnx scrny)
      end
    val ind = indxs 0 (x - 1) 0 (y - 1)
  in
    map (map do_pixel) ind
  endFigure 28. Parallel raytra
er (PMLS version)The fun
tion do pixel initiates ray tra
ing at pixel 
o-ordinate(i,j) and is mapped over the index image ind. The same 
onsid-erations regarding granularity 
ontrol apply to PMLS. However, the
hoi
e whether to do the outer or inner map in parallel is determined bythe 
hara
teristi
s of the PMLS runtime-system. When two skeletonsare dire
t arguments to ea
h other, as in the example here (map (mapdo pixel)), there is no advantage in nested implementation sin
e gran-ularity 
ontrol is performed automati
ally inside the map skeleton. Inaddition, the PMLS 
ompiler requires all free variables in the fun
tionposition of a map, in this 
ase do pixel, to be sent to the individualpro
essors when initialising the skeleton instan
e. Sin
e the inner map
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tional Languages: Programming and Performan
e 41has free values whi
h 
ould (potentially) 
hange between su

essive
alls they have to be re-transmitted upon ea
h 
all. This means thatthe total amount of data transmitted is signi�
antly less if the outermap is implemented in parallel.
ray :: Int -> Int -> Int -> [Sphere] -> [[((Int, Int), Vector)]]
ray chunk x y world = map do_line sizes_y
                      ‘using‘ parListChunk chunk rnfFigure 29. Parallel raytra
er (GpH version)4.4.3.2. GpH. TheGpH implementation is based on the parallel mapversion and uses an additional expli
it parameter 
hunk to 
ontrol thesize of the 
hunks. The 
ode in Figure 29 shows the body of the fun
tionray (the lo
al de�nitions are un
hanged), with an evaluation strat-egy implementing granularity 
ontrol via 
lustering. We use the sameparListChunk strategy as in the row-
lustered matrix multipli
ation.
ray :: Int -> Int -> [Sphere] -> [[((Int, Int), Vector)]]
ray x y scene = shuffleN outps 
    where outps = [ (process i -> f_dm i) # void | i <- [0..noPe-1]] 
                      ‘using‘ seqList r0
          f_dm n _  = map do_line (takeEach noPe (drop n sizes_y))Figure 30. Parallel dire
t map version of raytra
er (Eden version)4.4.3.3. Eden. The Eden implementation uses the dire
t-map versionand is shown in Figure 30. The fun
tion f dm represents the work tobe exe
uted by one pro
ess. In the dire
t-map version this in
ludes theextra
tion of its own portion of the input data using the takeEa
hfun
tion to 
ombine every n-th line of the grid into one 
hunk.The pro
esses are 
reated in a list of pro
ess instantiations (outps).The sequential strategy seqList r0 is used to drive an eager pro
ess
reation, 
reating the pro
esses before the outport values are needed.4.4.4. Performan
e ResultsThe measurements in Figures 31 and 32 use a 350 � 350 image witha 
hunk size of 10 and a s
ene 
onsisting of 640 spheres as input. Thesequential runtimes are: 176.99s for Eden, 163.31s forGpH, and 172.10sfor PMLS. For this appli
ation the sequential performan
e of all threeversions is fairly similar with a variation of less than 10%. This is mainlydue to the fa
t that raytra
er does not make use of the laziness in thelanguage: all parts of the pi
ture are indeed 
omputed and sin
e there
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Figure 31. Runtimes for raytra
er on the Beowulf (in se
onds)is no intera
tion they 
an be 
omputed eagerly. This dynami
 program
hara
teristi
 manifests itself in similar garbage 
olle
tion overheadsfor PMLS and GpH: 3.3% and 3.1% as mean over all pro
essors.For PMLS initial sequential results showed signi�
antly poorer per-forman
e than the GpH and Eden versions. This is due to a knownlimitation of the PMLS 
ompiler. The results reported here requiredsome minimal user intera
tion during the 
ompilation pro
ess. ThePMLS group is 
urrently adding an appropriate sequential optimisationstep to the 
ompiler.The rather simple and regular stru
ture of the 
omputation lendsitself to a stati
 approa
h su
h as the stati
 task farm in PMLS or thedire
t-map in Eden. The partitioning of the program 
an be a
hievedstati
ally and the distribution of work is 
arried out only on
e at thebeginning of the program. Sin
e the work is fairly evenly distributed,no sophisti
ated dynami
 load balan
ing is ne
essary. On the otherhand enfor
ing a �xed data distribution is easier in Eden than in GpH.In general, the more dynami
 fa
ilities of GpH are not used in thisappli
ation. We have experimented with GpH versions that model theEden approa
h more 
losely, but they did not yield any signi�
antperforman
e improvements.Not surprisingly for an appli
ation with a fairly regular stru
tureof parallelism, PMLS performs best in terms of speedup as well asabsolute runtime. On 16 pro
essors the runtime is 11.4s, 
orresponding
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Figure 32. Speedups for raytra
er on the Beowulfto a relative speedup of 15.2. The results for Eden, with its slightlymore dynami
 resour
e management, are similar: parallel runtime of13.4s with a speedup of 13.3. GpH pays a higher 
ost for its dynami
resour
e management, resulting in a 
omparatively poor speedup of 6.8on 16 pro
essors and a parallel runtime of 24.1s.Another problem we have observed in the GpH version is a poten-tially poor load distribution where few pro
essors monopolise the entireavailable parallelism. This is due to a 
ombination of fa
tors: in thisprogram all parallelism is generated on the main pro
essor at the be-ginning of the 
omputation, and on the Beowulf start-up times betweenPEs may vary signi�
antly, moreover the GPH runtime-system does not
urrently allow tasks to migrate from a loaded PE to an idle PE. Hen
ethe fastest pro
essor(s) sometimes obtain all available work before theslower pro
essors have a 
han
e to send their �rst work requests. It ispossible to 
rudely 
ontrol the work distribution by imposing an upperlimit on the number of threads that may be alive on one PE, and thatis what we used in these measurements.In 
ontrast, for PMLS load-balan
ing is assumed to be a propertyof the skeleton implementation. The parallel map skeleton used byall appli
ations has a degree of impli
it load-balan
ing as a result ofthe pro
essor farming model. This works well in 
ases like raytra
erbut requires manual tuning for parti
ular instan
es whi
h 
an 
hangeas exe
ution pro
eeeds (for example in linSolv di�erent balan
ing
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44 Loidl et al.strategies are used for the initial and the additional results). Eden'srepli
ated worker skeleton map rw as used in the linSolv exampleprovides impli
it dynami
 load balan
ing based on the master workerparadigm. Surprisingly, this skeleton is outperformed for the raytra
erby a stati
 work distribution where the work list is sent to all pro
essorsand the work pa
kages are sele
ted lo
ally within ea
h pro
ess.In summary, the results for raytra
er underline a general trendin these measurements for Eden and GpH, namely the impa
t of dy-nami
 resour
e management overheads on s
alability. Eden, whi
h hasa lower overhead, performs almost as well as PMLS. However GpHhas to maintain a virtual shared heap, and this diminishes parallelperforman
e for larger numbers of pro
essors. In some 
ases we haveobserved an overhead of up to 16% of the total exe
ution time, althoughtypi
al per
entages are 3-8% (Loidl, 2002). We are also investigatingre�ned load balan
ing me
hanisms, whi
h show better performan
e.5. Related WorkFor 
omprehensive overviews on parallel fun
tional programming werefer to Hammond and Mi
haelson (1999) and Trinder et al. (2002).In this se
tion we fo
us on 
omparing our approa
hes with other im-plemented systems. Only few implementations have over
ome a purelyexperimental status and 
on
rete head-to-head 
omparisons of di�erentlanguages on the same ar
hite
ture are even rarer. To our knowledgethis paper is the �rst su
h systemati
 
omparison.5.1. Skeleton-based Approa
hesThe prospe
t of impli
it parallelism with the use of skeletons hasspurred the development of several skeletons-based systems. HDC (Her-rmann, 2000) is a stri
tly-evaluated subset of Haskell with skeleton-based 
oordination, in parti
ular support for fold and map, and severalforms of divide-and-
onquer. For the Karatsuba algorithm for polyno-mial multipli
ation HDC a
hieves a relative speedup of 363 on 729pro
essors of a 1024-pro
essor transputer-based Parsyte
 ma
hine.A system 
losely related to GpH is Caliban (Kelly, 1989; Taylor,1996) in whi
h moreover 
lauses, similar to GpH's using, 
an beatta
hed to sequential program sour
e in order to spe
ify parallel be-haviours. Expressions are annotated to indi
ate tasks to be 
reated,and the linkage between the tasks 
an be spe
i�ed using normal fun
-tions. In the 
urrent implementation, the pro
ess network is stati
,with moreover 
lauses being resolved at 
ompile-time and pro
esses
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e 45being stati
ally mapped to the target topology. A simple raytra
er,introdu
ed by Kelly (1989), has been measured on a 128 pro
essorFujitsu AP1000, a
hieving speedups of up to 24 on 35 pro
essors.Other prominent skeleton-based systems are SCL (Darlington et al.,1996a) and P3L (Ba

i et al., 1995). Both use separate 
oordination lan-guages with small sets of basi
 skeletons that 
an be freely nested. Themost mature implementation of SCL, SPF, uses Fortran as 
omputationlanguage. Substantial appli
ations su
h as a Barnes-Hut algorithm havebeen implemented in SPF (Darlington et al., 1996b) and measured on aFujitsu AP1000. Pelagatti (2002) presents performan
e results for P3Lon four appli
ations, in
luding a parallel raytra
er, obtained with theSkIE prototype environment for P3L on a 24-node Meiko CS-2 and an8-PC Linux 
luster.An a
tive resear
h area in the skeletons 
ommunity is the nesting ofskeletons (Hamdan, 2000). In parti
ular, with support for nesting it ispossible to 
onstru
t 
omplex parallel appli
ations by 
omposing andtransforming skeletons using given transformation rules and 
omposi-tional 
ost models for performan
e predi
tion as developed by Pepper(1993) and Ba

i et al. (1999).5.2. Thread- and Pro
ess-based Approa
hesPara-fun
tional programming, as introdu
ed by Hudak (1986), is thegeneral approa
h of adding 
ontrol dire
tives to a fun
tional programin order to spe
ify parallel exe
ution. These 
ontrol dire
tives allowthe programmer to des
ribe detailed s
hedules of the exe
ution as wellas a parti
ular mapping of threads to pro
essors. First-
lass s
hed-ules (Mirani and Hudak, 1995) extend para-fun
tional programming toHaskell, using monads to separate expressions and 
ontrol dire
tives.These annotations usually des
ribe potential parallelism, in the senseof GpH's par, and therefore represent a thread-based approa
h. Itsimplementation builds on the 
on
ept of futures, as used in Multi-Lisp (Halstead, 1985). First-
lass s
hedules have been implementedby 
ompiling Haskell to the MultiLisp-based operating system Sting.Preliminary performan
e results on a 16 pro
essor Sili
on Graphi
sChallenge shared-memory ma
hine show good speedups for a parallelBarnes-Hut algorithm for solving the n-body problem (Mirani, 1996).ALFL (Goldberg, 1988) is an LML-like, lazy, impli
itly-parallel fun
-tional language, implemented on a distributed-memory Intel Hyper
ubeas well as on a shared-memory En
ore ma
hine, with performan
e
omparisons between the two ar
hite
tures.Con
urrent Clean (Plasmeijer et al., 1999; N�o
ker et al., 1991) is alazy language with parallelism annotations. In his PhD thesis Kesseler
main.tex; 6/12/2002; 16:42; p.45



46 Loidl et al.(1996) quotes performan
e results for three systems: Con
urrent Cleanon the ZAPP abstra
t ma
hine; Con
urrent Clean on the PABC ab-stra
t ma
hine; and a Miranda-like, impli
itly-parallel, lazy language,implemented on the abstra
t HDG ma
hine (Kingdon et al., 1991).All measurements have been performed on (di�erent) transputer net-works. In 
ontrast to this paper, no detailed 
omparison of languagesor systems is given. Kesseler (1996) reports good speedups for smallprograms su
h as nqueens (5.6 on 8 pro
essors) but poorer results fora raytra
er (3.9 on 16 pro
essors) in his implementation.5.3. Other Approa
hesOne of the most su

essful data parallel fun
tional languages is NESL(Blello
h, 1996). NESL is a stri
t, strongly-typed, data-parallel lan-guage with impli
it parallelism and impli
it thread intera
tion. It hasbeen implemented on a range of parallel ar
hite
tures, in
luding ve
-tor ma
hines. A wide range of algorithms have been parallelised inNESL, in
luding a Delaunay algorithm for triangularisation (Blello
het al., 1996), several algorithms for the n-body problem (Blello
h andNarlikar, 1997), and several graph algorithms. The fo
us in these pa-pers, however, is on the 
omparison and improvement of algorithmsrather than speedup measurements or a 
omparison with other lan-guages. Two data-parallel extensions of Haskell have been partiallyimplemented: Data Field Haskell (Holmerin and Lisper, 2000) andNepal (Chakravarty et al., 2001). No performan
e results are available.SISAL (Cann, 1992) is a �rst-order, stri
t fun
tional language withimpli
it parallelism and impli
it thread intera
tion. Its implementationis based on a data
ow model and it has been ported to a range ofparallel ar
hite
tures. Good absolute performan
e in 
omparison toFortran 
ode is quoted in LANL (2001).The pHLuid system (Flanagan and Nikhil, 1996) is a parallel imple-mentation of Id on networks of workstations. It uses a data
ow model of
omputation in order to a
hieve impli
it parallelism. Id is polymorphi
,higher-order and has a non-stri
t semanti
s, implemented via lenient orparallel eager evaluation. A fusion of Id and Haskell, 
alled pH, has beenproposed (Nikhil and Arvind, 2001) but no implementation is available,yet. Flanagan and Nikhil (1996) report near-linear (relative) speedupson a workstation 
luster for simple programs su
h as nqueens andmatrix multipli
ation. Hammes et al. (1995) present a rare languageand performan
e 
omparison of impli
itly parallel Id with sequentialHaskell on a realisti
 ben
hmark program.
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Comparing Parallel Fun
tional Languages: Programming and Performan
e 476. Con
lusionsWe have 
ompared three state-of-the-art parallel fun
tional program-ming systems (PMLS, GpH, and Eden) and evaluated their perfor-man
e on a Beowulf ar
hite
ture using three symboli
 appli
ations:several matrix multipli
ation algorithms using arbitrary pre
ision arith-meti
 (matMult); an exa
t linear system solver (linSolv); and a simpleray-tra
er (raytra
er).PMLS, GpH and Eden all aim to support parallel symboli
 
ompu-tations at low programmer 
ost. While it is relatively straightforwardto a
hieve good (often linear) speedups for regular, numeri
al parallel
omputations, it 
an be mu
h harder, or even impossible, to a
hievethe same results for irregular, symboli
 
omputations, espe
ially thosewith 
omplex data stru
tures or irregular task stru
tures (Loidl et al.,1999). Relatively small performan
e improvements may thus be of mu
hgreater signi�
an
e to users of su
h systems. At the same time, sym-boli
 appli
ation programmers are usually domain experts rather than
omputer s
ientists, and are often unwilling or unable to invest majore�ort in re
oding for parallelism. In this se
tion, we will evaluate thethree systems in terms of language features, performan
e, and produ
-tivity. We will 
onsider them in order of anti
ipated programmer e�ort:namely PMLS, GpH, and Eden.6.1. Summary Language ComparisonAll three fun
tional languages aim to provide higher-level models ofparallelism, with the obje
tive of redu
ing programmer overhead. Allthree abstra
t over low-level details of 
ommuni
ation timing, datastru
ture marshaling (in
luding 
y
li
 graph stru
tures) and syn
hro-nisation that must be spe
i�ed in e.g. C+PVM. Moreover, in all threelanguages, details of task/thread 
reation and program de
ompositionare delegated to the 
ompilation system.PMLS provides a 
onvenient model of impli
it parallelism usingskeletons | a set of pre-de�ned higher-order fun
tions with asso
i-ated parallel behaviours. Sin
e skeletons are partitioned into parallel
omponents and mapped to pro
essing units stati
ally, this approa
hhas the lowest runtime overhead of the three 
onsidered here, and wherethe appli
ation stru
ture �ts the pre-de�ned skeletons perfe
tly, it willalso have the lowest programmer overhead. However, su
h an approa
his less 
exible than the dynami
 approa
hes taken by Eden and GpH.This is apparent in less regular or longer-running appli
ations, su
h aslinSolv, where a regular stati
 stru
ture 
annot be determined fromthe program sour
e.
main.tex; 6/12/2002; 16:42; p.47



48 Loidl et al.GpH has a similar philosophy to that of PMLS, aiming to requireminimal programmer input in order to a
hieve a

eptable parallelperforman
e. However, it provides more 
ontrol (if required) overevaluation order, stri
tness and parallelism, allowing programmableevaluation strategies to be developed. This approa
h trades low pro-grammer overhead for a variety of programming styles for a potentiallyhigh dynami
 overhead. This 
ost is most apparent in regular appli-
ations, where a simple stati
 pro
ess to pro
essor mapping 
ould bedetermined either manually or automati
ally. In su
h a 
ase, manualtuning may be needed to extra
t good parallel performan
e for GpH,where PMLS might automati
ally �nd su
h a mapping, or it might bestraightforward to program su
h a mapping in Eden. raytra
er is anexample of su
h simple stati
 mapping.Finally, of the three languages studied here, Eden provides the great-est 
ontrol over parallelism, and thus requires the greatest programmere�ort. Control is provided over task de
omposition, allo
ation to virtualpro
essors and 
ommuni
ation 
hannels. Given suÆ
ient tuning e�ort,it is possible to develop more sophisti
ated parallel algorithms, as withthe torus version of matMult (Se
tion 4.2.2). As with GpH, all PMLSskeletons 
an be easily repli
ated (Klusik et al., 2000; Pe~na and Rubio,2001), with a similar mapping e�e
t. Sin
e all load management detailsmust be expli
itly programmed, however, and there is no support forlazy 
ommuni
ation there will be situations where GpH me
hanisms
annot be easily repli
ated, su
h as using a potentially in�nite numberof homomorphi
 images in linSolv.Re
ognising the value of the skeletons approa
h for suitable appli-
ations, all three languages provide support for su
h a style. PMLSnaturally provides the most dire
t support, with stati
 pro
ess mappingand 
ost modeling as part of the 
ompilation pro
ess. GpH providesa full set of standard skeletons written in Haskell, and using a dy-nami
 
ost model and mapping (Hammond and Rebon Portillo, 1999).Haskell's 
onstru
tor 
lasses are used to abstra
t over ma
hine modelsand alternative data stru
tures. Finally, a ri
h set of skeletons, in
lud-ing some novel bran
h-and-bound skeletons, has been developed usingEden 
onstru
ts and used on several parallel ma
hines (Klusik et al.,2000; Pe~na and Rubio, 2001; Du Bois et al., 2002).6.2. Performan
e ComparisonIt is re
eived wisdom that eager evaluation (used for stri
t fun
tion
alls) will outperform lazy evaluation (used for non-stri
t fun
tion 
alls)due to the overhead of re
ording partial results in the latter 
ase. It fol-lows that fully stri
t languages should outperform non-stri
t languages
main.tex; 6/12/2002; 16:42; p.48



Comparing Parallel Fun
tional Languages: Programming and Performan
e 49Table III. Comparative Performan
e (Seq RT: runtime on a 1 PE parallel ma
hine;Par RT: runtime on a 16 PE parallel ma
hine; Spdup: Speedup on 16 PEs 
al
ulatedas Seq RTPar RT) Eden GpH PMLSSeq Par Spdup Seq Par Spdup Seq Par SpdupRT RT RT RT RT RTmatMult 38.5s 13.2s 2.9 30.3s 8.9s 3.4 22.8s 4.3s 5.2linSolv 491.7s 35.1s 14.0 307.9s 25.9s 11.9 190.8s 16.1s 11.9raytra
er 177.4s 13.4s 13.3 163.3s 24.1s 6.8 172.1s 11.4s 15.2(experimental results suggest that this 
an be over a fa
tor of 10 in theworst ben
hmark 
ases (Hartel et al., 1996)).Similarly, it is argued that full 
ommuni
ation should outperformlazy 
ommuni
ation, sin
e fewer messages are required in the former
ase if an entire data stru
ture is 
ommuni
ated. Given that PMLS isfully stri
t, with stri
t 
ommuni
ation, Eden is non-stri
t, with stri
t
ommuni
ation and GpH is non-stri
t with lazy 
ommuni
ation, wewould 
onsequently expe
t PMLS to outperform Eden whi
h shouldoutperformGpH1. We would also expe
t the same ordering on the basisof runtime overheads, but with the possibility of similar overheads forEden and PMLS. The performan
e results summarised in Table III aretherefore somewhat surprising.For all three ben
hmarks PMLS a
hieves the smallest exe
utiontimes. In the 
ase of linSolv, Eden's speedup is higher but sequentialexe
ution time is higher, too. GpH a
hieves similar speedup as PMLSwith sequential time between the other two versions. In the 
ase ofthe raytra
er (the most regular of the three ben
hmarks we have
onsidered) PMLS shows even better speedups than Eden or GpH.While mirroring earlier results almost exa
tly (Hammond and RebonPortillo, 1999), the GpH performan
e for the raytra
er is distin
tlydisappointing. This has subsequently led us to improve the GpH loaddistribution me
hanism (Loidl, 2001).For 
omparison, we have re-implemented the matMult ben
hmark inC+PVM using the Gnu Multi-Pre
ision library for arbitrary pre
isionarithmeti
 (Table IV) and the GNU C 
ompiler on the same parallelma
hine. For the blo
k-parallel version (the only one implemented inall four systems), the speedup results using full C optimisation (-O2)1 This does dis
ount the maturity of the optimising Glasgow Haskell Compiler,whi
h forms the basis for the Eden and GpH implementations.
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50 Loidl et al.Table IV. Comparative Performan
e of Matrix Multipli
ation in C (Seq RT: runtime ona 1 PE parallel ma
hine; Par RT: runtime on a 16 PE parallel ma
hine; Spdup: Speedupon 16 PEs 
al
ulated as Seq RTPar RT)C Eden GpH PMLSSeq Par Spdup Seq Spdup Seq Spdup Seq SpdupRT RT RT RT RTmatMult(rows) 5.75s 1.34s 4.3 34.3s 1.7 { { 19.5s 3.3matMult(blo
k) 5.75s 1.03s 5.6 32.9s 2.1 30.3s 3.4 22.8s 5.3matMult(torus) 5.75s 0.79s 7.3 38.5s 2.9 { { { {are 
omparable with those for PMLS: 5.6 on 16 pro
essors. The basesequential performan
e is, however, a fa
tor of 3-6 better than for thefun
tional languages. This is a smaller fa
tor than might have beenexpe
ted for fun
tional versus imperative 
ode, espe
ially given the useof list stru
tures rather than in-pla
e arrays in the fun
tional versions.We anti
ipate that the di�eren
e 
ould be further redu
ed by using e.g.monadi
 te
hniques to allow in-pla
e array updates, but at some 
ostin sour
e 
ode legibility/programmer time.6.3. Produ
tivity ComparisonMeasuring programmer produ
tivity is notoriously diÆ
ult, due todi�eren
es in individual ability, prototyping e�e
ts, et
. We have there-fore 
hosen to use lines of 
ode as a reasonable approximation2. Itis a

epted that the number of lines of 
ode produ
ed by any giventrained programmer is roughly 
onstant regardless of the programminglanguage used or the general ability of the programmer. Whilst notwishing to overstate our �ndings and a

epting that small variationsmay not be signi�
ant, we therefore believe that this provides a fairassessment of expe
ted produ
tivity for the appli
ations studied.Table V gives the number of lines of 
ode for ea
h of the threeprograms that have been studied here, plus 
orresponding �gures for2 We were unable to satisfa
torily separate appli
ation development time fromexperimentation and system development, as we would have liked, so have omittedthese �gures. Even with pro�ling and tuning (whi
h, as we have shown is essentialto a
hieving good performan
e), it is unlikely that these would ex
eed 1-2 dayse�ort for ea
h of the fun
tional programs. In 
omparison, the development time forthe (very simple) parallel C program was more than 1 week, without undertakingperforman
e tuning or optimisation, and with the bene�t both of prototyping fromthe fun
tional 
ode and of 
ode reuse from other parallel appli
ations.
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Comparing Parallel Fun
tional Languages: Programming and Performan
e 51Table V. Produ
tivity Comparison (in lines-of-
ode)Eden GpH PMLS CSeq Par Seq Par Seq Par Seq ParSize Size Size Size Size Size Size SizematMult 68 34 68 5 85 25 156 301(10) (3)linSolv 473 8 473 10 751 13 | |raytra
er 453 10 453 7 410 3 | |
the arbitrary pre
ision matrix multipli
ation program in C+PVM. The
ounts ex
lude 
omments and white spa
e. The parallel 
ode size repre-sents the number of lines that were either 
hanged in or newly writtenfor the parallel version. As expe
ted, these 
hanges are highly signi�
antfor the C program (representing some 65% of the total 
ode size), butare generally insigni�
ant for the fun
tional programs (in the worst
ase, representing 33% of the total 
ode size, for a highly tuned ver-sion of the matrix multipli
ation algorithm). The sequential fun
tionalprograms are a fa
tor of 2-3 times shorter than the C equivalent, withthe parallel programs being 4 to 6 times shorter. Clearly, a 
ertainamount of the C 
ode 
ould be reused for other appli
ations, but thereis equally 
learly a very high entry pri
e to parallel programming inC, espe
ially when 
omplex data stru
tures must be 
ommuni
ated.The fun
tional 
ode des
ribing su
h 
omplex dynami
 parallel programstru
tures is very 
on
ise. Although not a major di�eren
e, the se-quential Haskell 
ode is generally slightly shorter than the SML 
ode.This is mainly a 
onsequen
e of better standard library support forHaskell, though high-level language features su
h as overloading andlist 
omprehensions have also been exploited.Sin
e PMLS is the most impli
it approa
h of the three languagesstudied, and Eden the most expli
it, we would anti
ipate that PMLSshould require least 
hanges with Eden requiring the most 
hanges.While this is generally true, the �gures are distorted to some extentby the performan
e tuning that has been 
arried out. Although theinitial version of the matMult in PMLS required only 3 lines, the �naltuned version required 25. The 
orresponding Eden �gures are 10 linesand 34 lines, respe
tively. The GpH 
ode was not tuned, however, andtherefore only 5 lines in total were 
hanged. The linSolv appli
ationshowed a reversal of the general result, with Eden requiring fewest
hanges. This may re
e
t the poor mat
h between the irregular parallel
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52 Loidl et al.stru
ture of this appli
ation and the standard skeletons/strategies usedby the other two systems. It is worth noting that the total numberof 
hanged lines is generally small, and that our 
omparisons musttherefore be 
orrespondingly tentative.We 
on
lude that while C may o�er better performan
e than unop-timised fun
tional 
ode, the di�eren
e is less than might be expe
ted.Moreover, the high level features available in fun
tional 
ode mean thatprogrammer produ
tivity is likely to be mu
h greater than in C.6.4. Maturity and UsabilityAll three fun
tional language systems dis
ussed here 
an be rated asmature resear
h systems, running a range of parallel ben
hmark appli-
ations on a variety of parallel ar
hite
tures. Work on GpH began in1994, and it sin
e has been applied to numerous programs, in
ludingthe 40,000 line Lolita natural language engineering system (Loidl et al.,1997). To assist program development, it o�ers a sophisti
ated set ofpro�ling tools (Hammond et al., 2000), in
luding ideal and realisti
simulation. GpH is publi
ly available in OpenSour
e form as part ofthe GHC 
ompiler proje
t (WWW-GPH, 2001).The Eden system is a later development, sharing underlying paral-lel s
heduling and 
ommuni
ation infrastru
ture with the earlier GpHsystem. It has been tested on a variety of small and medium ben
hmarkappli
ations, but has not yet been applied to large-s
ale appli
ations,su
h as Lolita. Both GpH and Eden provide low-level portability by
ompiling through either C+PVM or C+MPI.In 
ontrast to the two GHC-based systems, the PMLS systemhas a more heterogeneous stru
ture, exploiting state-of-the-art imple-mentation te
hnology from several sour
es. The 
ore system uses theObje
tive Caml 
ompiler for sequential 
ompilation and 
alls C+MPIroutines for implementing the parallel skeletons. Up-to-date versions ofEden and PMLS are available from the developers on request.7. Future WorkAll three systems are under a
tive development. For PMLS the 
ur-rent obje
tives are to provide a more expressive set of algorithmi
skeletons, to optimise the performan
e of the existing skeletons andto automati
ally identify skeleton stru
tures in arbitrary 
ode. Thiswork will exploit both dynami
 pro�ling-based performan
e predi
tion(whi
h has been found to give good predi
tions within a narrow rangeof program 
hara
teristi
s) and automati
 program transformationte
hniques.
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Comparing Parallel Fun
tional Languages: Programming and Performan
e 53The main resear
h dire
tion for GpH is to improve ar
hite
ture-independen
e by re�ning the me
hanisms for load balan
ing and datadistribution in order to deal with high-laten
y ma
hines su
h as Be-owulf 
lusters. Based on these re�nements, resear
h will fo
us on thedevelopment of an adaptive runtime-system 
apable of automati
allytuning its behaviour to suit the 
hara
teristi
s of the parallel ma
hine.Finally, following the upgrade to 
onform to the latest sequentialGHC 
ompiler, work in Eden will fo
us on optimisations to redu
e
ommuni
ation 
osts. A
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.uk/~dsg/gph/>.AppendixA. Auxiliary Fun
tionsThis appendix summarises auxiliary fun
tions we have used in the bodyof the paper. Most of these fun
tions modify a data stru
ture so as tode�ne parallelism over this modi�ed data stru
ture. The 
ode itself,however, is sequential.Figure 33 presents the 
ode for some prede�ned strategies used inthe body of the paper. The strategy parListChunk 
 s xs spe
i�esthe evaluation of segments of size 
 of the list xs in parallel, applyingthe strategy s to every list element.
-- sequentially applies a strategy to the first n elements of a list
seqListN :: (Integral a) => a -> Strategy b -> Strategy [b]
seqListN n strat []     = ()
seqListN 0 strat xs     = ()
seqListN n strat (x:xs) = strat x ‘seq‘ (seqListN (n-1) strat xs)

-- applies a strategy to (sequential) chunks of a list in parallel
parListChunk :: Int -> Strategy a -> Strategy [a]
parListChunk n strat [] = ()
parListChunk n strat xs = seqListN n strat xs ‘par‘ 
                          parListChunk n strat (drop n xs)Figure 33. Prede�ned evaluation strategies
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e 59Figure 34 summarises the fun
tions for splitting lists into segmentsof (almost) equal size and merging them again. This is used by thematMult and raytra
er examples to a
hieve \data 
lustering". Thefun
tion splitIntoN n xs splits the list xs into n segments of the samesize, whereas the fun
tion splitAtN n xs splits a list into segments ofthe size n. The fun
tion takeEa
h extra
ts ea
h n-th element from agiven list. It is used in unshuffleN to produ
e a list of lists of everyn-th element, starting with 0-th, 1-st, et
 element. Thus, unshuffleNis an alternative form of 
lustering, observing the following identity forall n that divide the length of the input list:shuffleN : (unshuffleN n) == id
-- Auxiliary functions for splitting and merging lists
bresenham :: Int -> Int -> [Int]
bresenham n p = take p (bresenham1 n)
                where bresenham1 m = (m‘div‘p):bresenham1 ((m‘mod‘p)+n)

-- split list into n sublists of (almost) same size
splitIntoN :: Int -> [a] -> [[a]]
splitIntoN n xs = f bh xs
                  where bh = bresenham (length xs) n
                        f [] [] = []
                        f (t:ts) xs = hs : (f ts rest)
                                      where (hs,rest) = splitAt t xs 

-- split list into blocks of size n
splitAtN :: Int -> [a] -> [[a]]
splitAtN n [] = []
splitAtN n xs = ys : splitAtN n zs
                where (ys,zs) = splitAt n xs

-- pick every n-th element from a list, starting from 0th elem
takeEach :: Int -> [a] -> [a]
takeEach n [] = []
takeEach n (x:xs) = x : (takeEach n (drop (n-1) xs))

-- list of lists of every n-th element, starting from 0th, 1st, ...
unshuffleN :: Int -> [a] -> [[a]]
unshuffleN n xs = [takeEach n (drop i xs) | i <- [0..n-1]]

-- combine a list of lists generated by unshuffleN
shuffleN :: [[b]] -> [b]
shuffleN ([]:_)  = []
shuffleN xss     = map head xss ++ shuffleN (map tail xss)Figure 34. Fun
tions for splitting and merging lists
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