
Comparing Parallel Funtional Languages:Programming and Performane �H-W. Loidl1, F. Rubio2, N. Saife3, K. Hammond4, S. Horiguhi3, U.Klusik5, R. Loogen5, G.J. Mihaelson1, R. Pe~na2, S. Priebe5, �A.J.Reb�on Portillo4 and P.W. Trinder11Department of Computing and Eletrial EngineeringHeriot-Watt University, Edinburgh EH14 4AS, Sotland(fhwloidl,greg,trinderg�ee.hw.a.uk)2Dpto. Sistemas Inform�atios y Programai�on,Universidad Complutense de Madrid, 28040 Madrid, Spain(ffernando,riardog�sip.um.es)3Japan Advaned Institute for Siene and Tehnology,1/8 Asahidai, Tatsunokuhi, Nomigun, Ishikawa, 923-1211(fnorman,horig�jaist.a.jp)4Shool of Computer Siene,University of St Andrews, KY16 9SS, Sotland(fkh,alvarog�ds.st-and.a.uk)5Fahbereih Mathematik und InformatikPhilipps-Universit�at Marburg, D-35032 Marburg, Germany(fklusik,loogen,priebeg�mathematik.uni-marburg.de)Abstrat. This paper presents a pratial evaluation and omparison of three state-of-the-art parallel funtional languages. The evaluation is based on implementationsof three typial symboli omputation programs, with performane measured on aBeowulf-lass parallel arhiteture.We assess three mature parallel funtional languages: PMLS, a system for impli-itly parallel exeution of ML programs; GpH, a mainly impliit parallel extensionof Haskell; and Eden, a more expliit parallel extension of Haskell designed for bothdistributed and parallel exeution. While all three languages employ a ompletelyimpliit approah to ommuniation, eah language takes a di�erent approah tospeifying and ontrolling parallelism, ranging from expliit identi�ation of pro-esses as language onstruts (Eden) through annotation of potential parallelism(GpH) to automati detetion of parallel skeletons in sequential ode (PMLS).We present detailed performane measurements of all three systems on a widelyavailable parallel arhiteture: a Beowulf luster of low-ost ommodity worksta-tions. We use three representative symboli appliations: a matrix multipliationalgorithm, an exat linear system solver, and a simple ray-traer. Our results showhow moderate speedups an be ahieved with little or no hanges to the sequential 2002 Kluwer Aademi Publishers. Printed in the Netherlands.
main.tex; 6/12/2002; 16:42; p.1

2 Loidl et al.ode, and that parallel performane an be signi�antly improved even within ourhigh-level model of parallel funtional programming by ontrolling key aspets ofthe program suh as load distribution and thread granularity.Keywords: Parallel Computation, Funtional Programming, Skeletons, ImpliitParallelism, Automati Task Deomposition, Load Balaning, Haskell, ML.1. IntrodutionThe potential advantages of purely funtional programming languagesfor prototyping and developing parallel programs have long beenreognised (Burge, 1975). The high level of programming abstrationsimpli�es the task of programming, fosters ode reuse and failitatesthe development of substantially arhiteture-independent programs.The absene of side-e�ets avoids the unneessary serialisation whihis a feature of most onventional programs. A omprehensive disussionof these issues is given by Hammond and Mihaelson (1999).Realising this potential in an e�etive manner has proved an elu-sive goal, however. Reduing or eliminating programmer ontrol plaesonsiderable emphasis on sophistiated automati systems for detetingand ontrolling parallelism, making suh systems fairly rare and oftenonly available on a few parallel arhitetures. A omparison of di�erentimplementations of suh automati resoure management mehanisms,as presented in this paper, is even rarer | to our knowledge this is the�rst head-to-head performane omparison of several parallel funtionallanguages on the same parallel arhiteture.For this paper, �ve researh groups have ooperated to produe theomparisons. We assess three parallel funtional languages: Eden andGpH, both extensions of the standard non-strit funtional languageHaskell (Peyton Jones and Hughes, 1999), and PMLS, a parallel imple-mentation of the strit funtional language ML (Milner et al., 1997).The languages all have high-level oordination, represent a range of lan-guage and implementation alternatives and are three of the relativelyfew robust parallel funtional language implementations available. As-sessment is made on both language and performane levels. We omparethe language features available to express parallel oordination, in par-tiular we fous on how parallel tasks are identi�ed and reated. In thease of Eden (Breitinger et al., 1997b), task identi�ation and reation� This work is primarily supported by the Austrian Aademy of Sienes (APARTfellowship 624), the Japan Soiety for the Promotion of Siene (Postdotoral fellow-ship P00778), and UK's Engineering and Physial Sienes Researh Counil (grantnos. GR/L 93379, GR/M 32351 and GR/L 42889).
main.tex; 6/12/2002; 16:42; p.2

Comparing Parallel Funtional Languages: Programming and Performane 3are expliit. In the ase of GpH (Trinder et al., 1996), potential paral-lelism is identi�ed through new language primitives, with tasks reatedautomatially during program exeution on the basis of load. In thease of PMLS (Mihaelson et al., 2001), parallel tasks are identi�ed byautomatially deteting instantiations of ertain higher-order funtiontemplates, skeletons. On the performane level we use three repre-sentative symboli appliations that have also been widely studied inthe general parallel programming ommunity: a matrix multipliationalgorithm, an exat linear system solver, and a simple ray-traer.The remainder of this paper is strutured as follows: Setion 2 dis-usses general onepts of parallel programming and their importanein the ontext of a funtional language. Setion 3 presents a detailedomparison of the three languages we are onsidering. This setion sepa-rates the user-visible language onstruts that are needed for expressingparallelism from the implementation of these onstruts. Setion 4presents measurements of all three systems for the three example pro-grams mentioned above. We disuss the ease of implementing theseprograms, the support for performane tuning, and the overall perfor-mane ahieved on a 32-node Beowulf luster. Setion 5 relates ourlanguages to other parallel funtional programming languages. Finally,Setion 6 onludes.2. Parallel Funtional Programming2.1. Why Parallel Funtional Programming?Parallel programming is inherently harder than sequential program-ming. Traditionally the programmer must not only desribe what toompute, i.e. a orret algorithm, but also how to organise the subom-putations on the target arhiteture, i.e. e�etive parallel oordination.Contemporary funtional languages have three key properties thatmake them attrative for parallel programming: they have powerfulmehanisms for abstrating over both omputation and oordination;they eliminate unneessary dependenies; and their high-level oordi-nation ahieves a largely arhiteture-independent style of parallelism.2.1.1. Abstration.Funtional languages have exellent abstration mehanisms that anbe applied to both omputation and oordination (Hughes, 1989).Two important abstration mehanisms are funtion omposition andhigher-order funtions. Funtion omposition allows omplex problemsto be deomposed into simpler sub-funtions. Higher-order funtions,
main.tex; 6/12/2002; 16:42; p.3

4 Loidl et al.ones that manipulate other funtions, allow new ontrol onstrutsto be de�ned as required. Through use of powerful mehanisms suhas these, funtional programs are typially muh shorter than theirimperative or objet-oriented equivalents.The priniple of abstration an be arried through to parallel pro-gramming, where higher-order funtions may be used to form the basisof new parallel programming onstruts. Typially, parallel funtionalprograms will abstrat over details suh as proess plaement, the tim-ing and volume of ommuniation, and synhronisation issues. Moree�ort an thus be devoted to improving parallel algorithms. High levelabstration of parallel onstruts enourages experimentation with al-ternative parallelisations, whih often leads to improved solutions fornovel parallel problems.2.1.2. Elimination of unneessary dependenies.The absene of side-e�ets makes it relatively straightforward toidentify potential parallelism. Sine the natural method of programonstrution is by omposing funtions to the depth required ratherthan by sequential omposition, aidental sequential dependenies arenot introdued into the soure program. The only soure of sequentialdependeny is that the arguments to a funtion must be evaluatedbefore they an be used. That is, dependenies are identi�ed solelyon the basis of use. Sine values do not hange one they have beenomputed, dataow analysis is not needed to determine usage patterns,even at an inter-proedural level.2.1.3. Arhiteture-independene.Good parallel abstrations enourage high-level portability by abstrat-ing over lower level issues. In extreme ases, this abstration mayhide all details of the parallel implementation yielding a model ofimpliit parallelism. As the low level issues often depend on proper-ties of a spei� arhiteture, a high-level approah is signi�antly lessarhiteture-dependent than lower-level approahes. The arhiteture-independene is bought at the prie of elaborate language proessors:either the ompiler or the runtime system or a ombination of bothmust adapt the high-level parallelism for the underlying arhiteture.By using, at the runtime-system level, standards like PVM (PVM,1993) or MPI (MPI, 1997), languages an abstrat over arhitetureharateristis. Unlike imperative languages, funtional languages en-able a high degree of abstration over suh standards through higherorder funtions and polymorphism.
main.tex; 6/12/2002; 16:42; p.4

Comparing Parallel Funtional Languages: Programming and Performane 52.2. Tasks, Proesses and Threads.Parallel programming involves the identi�ation and reation of sub-tasks that olletively perform the overall task of the program. Thesesub-tasks must be alloated to (plaed on) proessors that will exeutethem in some order. Depending on the system, load balaning mayour by migrating sub-tasks between proessors at exeution time.In this paper, we will distinguish two levels of parallel tasks: pro-esses, relatively heavyweight tasks whose behaviour is often revealedto the programmer; and threads, whih are impliit, and whih formpart of a proess.Task Identi�ation and Granularity. Tasks may be identi�ed eitherexpliitly by the programmer using some language onstrut, or impli-itly by the system identifying potentially parallel parts of the program.In some ases, the identi�ation may be assisted by the use of anno-tations: programmer instrutions that may or may not be exploitedby the language implementation. The granularity, i.e. the size of theomputation, of tasks may thus be determined by the programmer, theompiler, the runtime system or a ombination of these.Task Creation. Tasks may be reated either statially at initialisationor dynamially during exeution of the program. In the latter ase,they may be reated either immediately they are identi�ed (eager taskreation) or delayed until they are deemed to be required by the runtimesystem (lazy task reation). When a task is reated, it is alloatedresoures that allow it to exeute independently on some parallel pro-essor. In some ases a task may return resoures to the system whilebeing suspended, i.e. while it waits for the availability of required data.Task Plaement. When a task is reated, it is plaed on a proessorthat will exeute it. This plaement may either be on the basis ofstati information determined before exeution by the ompiler, ordynamially, perhaps in response to load information. Stati plaementusually gives a good balane for regular task strutures, in ases wherethe ommuniation pattern an be determined in advane. Dynamiplaement is more appropriate in situations where the task strutureis irregular, annot be pre-determined, or where the struture hangesduring program exeution.Sheduling and Load Management. Sheduling is needed to managethe exeution of multiple tasks on a single proessor. Suh shedulingmay be required to be fair, i.e. guaranteed to exeute every available
main.tex; 6/12/2002; 16:42; p.5

6 Loidl et al.thread eventually. Dynami rebalaning of workload may also be re-quired, espeially for irregular task strutures on high-lateny systems.Rebalaning is usually ahieved by migrating tasks, but alternativesare to employ task subsumption, in whih smaller tasks are merged intolarger ones, or to maintain a work-pool of potential tasks, whih an beommuniated between proessors at lower ost than tasks whih arealready exeuting. Rebalaning may our as a result of reating exesswork on a single proessor, or as a onsequene of starvation on someproessors, in whih ase a task stealing mehanism may be used.2.3. CommuniationCommuniation is fundamental to exeuting parallel tasks. In tradi-tional parallel programming, ommuniation is expliit: the program-mer uses expliit message-passing primitives, or ommuniates throughexpliitly shared variables, whih must normally be proteted againstonurrent modi�ations. In the more impliit approahes advoatedhere, ommuniation ours as a onsequene of shared data depen-denies between tasks. The systems use either message passing orshared-memory, as appropriate, and automatially protet the dataagainst onurrent modi�ations, as required.Code or Data. Traditional parallel systems usually only support datatransmission. In a funtional setting, it is natural for funtions to betransmitted between parallel tasks, and in a non-strit setting, thismay extend to partially evaluated or ompletely unevaluated forms.Although this is no oneptual limitation, the parallel systems disussedhere do not perform ode migration. Only ode pointers are transmit-ted, as the whole ode is usually supposed to reside in all proessors.This is sometimes haraterised as an SPMD, single program multipledata, approah.Push or Pull. Data may be transmitted either on demand (a pullmehanism) or when produed (a push mehanism). Pulling has theadvantage of transmitting only the data that is required, but pushingwill require fewer pakets to be ommuniated if most of the data thatis transmitted is required, and will redue the amount of synhroni-sation that is needed. In some ases, however, large data struturesmay be transmitted unneessarily. This leads to speulative work, sinenot all of the data struture may be needed to ompute the resultvalue. The optimal approah is appliation-dependent, but in generala ombination of push and pull appears to be ideal.
main.tex; 6/12/2002; 16:42; p.6

Comparing Parallel Funtional Languages: Programming and Performane 7Communiation Topology. In the more impliit approahes the topol-ogy of proesses hanges dynamially in response to load balaningdemands. In this ase, the topology is transparent to the program-mer, and it might di�er between idential program exeutions. Inmore expliit approahes, the programmer an ontrol the topologyby onneting proesses in the desired way. Topologies suh as ringsor tori an be expliitly programmed. In ontrast to suh dynamiapproahes some systems use a stati topology with the exat numberof proesses �xed at ompile time. Suh a stati approah is ommonwith libraries for parallel programming or skeletons (see Setion 5.1).Note that we make no attempt at mathing the topology of the arhi-teture to the topology of the proesses, sine this would introdue anarhiteture-dependent aspet to program development.Data Marshalling. Sophistiated data marshalling tehniques are em-ployed to automatially pak omplex data strutures. In some ases,this marshalling extends to graphs as well as hierarhial data stru-tures, and may involve the paking of unevaluated as well as fullyevaluated forms (see Setion 4.2.4).Synhronisation. Most systems also employ impliit task synhroni-sation, when values produed by one task are required by another.A task that requires an unomputed value may suspend exeutionawaiting delivery of that value. The task is resumed when the valuebeomes available. Unlike onventional language approahes, suh syn-hronisation is entirely transparent to the funtional programmer, andis handled internally by the runtime system. That is, no expliitommuniation is required, and no other ation is required from theprogrammer. 3. Language ComparisonThis setion ompares the three parallel funtional languages PMLS,GpH, and Eden, a omparison of a wider range of funtional languagesan be found at Loogen (1999). The three languages have been hosenfor the following reasons. Firstly to be onsistent with a high-levelomputation language we selet languages with high-level oordinationand exlude languages with imperative or low-level oordination. Se-ondly the languages represent a range of language designs, e.g. botheager and lazy languages, and with oordination ranging from almostentirely impliit (PMLS) to a language (Eden) in whih proesses anbe manipulated by the programmer. Thirdly, the languages represent
main.tex; 6/12/2002; 16:42; p.7

8 Loidl et al.a range of implementation designs, e.g. both those with predominantlystati oordination (PMLS) and those with predominantly dynamioordination (GpH). Finally we have seleted three of the relativelyfew robust parallel funtional languages available.In this setion we introdue the underlying notions of skeleton-thread- and proess-based approahes to parallelism, lassify our lan-guages, disuss the user-visible language onstruts and the implemen-tations of these languages.3.1. LanguageIn this setion we introdue the parallelism onstruts in eah languageand ompare them in terms of expressiveness and paradigm.3.1.1. PMLSParallel ML with Skeletons (PMLS) is a parallelising ompiler for stritStandardML, that realises parallelism in higher order funtions (HOFs)as algorithmi skeletons. The PMLS system is based on a purist inter-pretation of the skeletons \redo", seeking to minimise programmerinvolvement in identifying and exploiting parallelism.Skeleton-based approahes de�ne a set of parallel templates or skele-tons (Cole, 1989). The programmer writes the program using theseskeletons as appropriate. A parallelising ompiler an then exploit therules provided for eah skeleton in order to produe an eÆient parallelimplementation of the program on the target arhiteture.From the funtional programmer's perspetive, a skeleton is simplya normal higher-order funtion (HOF). Eah HOF is mapped to adi�erent abstrat parallel proess topology, with parameters speifyingdetails of the tasks that are to be performed.Sine the only parallel onstrutions that are available to the pro-grammer are the HOFs that have been provided by the language,programmers must design parallel algorithms by adapting the sequen-tial soure to these HOFs. The ompiler and runtime system are jointlyresponsible for setting up the orresponding proess topologies, and formapping proesses to proessors in the best possible way.HOFs may be given di�erent behavioural interpretations when om-piling for di�erent target arhitetures. This allows a single HOF toabstrat over a range of possible parallel behaviours, whih are se-leted on the basis of onrete details suh as ommuniation lateny,or the granularity of the tasks to whih the HOF is applied. In essene,skeletons modify behaviours but not values.As an example Figure 1 shows an implementation of the ommonhigher order funtion map in PMLS. It applies the funtion f to all
main.tex; 6/12/2002; 16:42; p.8

Comparing Parallel Funtional Languages: Programming and Performane 9
fun map f [] = [] |
 map f (h::t) = f h::map f t
val map = fn : (’a -> ’b) -> ’a list -> ’b listFigure 1. Parallel map in PMLSthe elements of the list (h::t). If f onverts something of type 'a totype 'b then map f onverts an 'a list to a 'b list. If we unfoldmap f aross a list [e1,e2...eN℄, the e�et is the evaluation of [fe1,f e2,...,f eN℄. There is no interation between the evaluation ofeah element, so in priniple these evaluations may be arried out inarbitrary order, in partiular in parallel.A ommon approah to parallelising map is to onstrut a task farmskeleton onsisting of a farmer proessor ontrolling worker proessorspre-loaded with f. Given an initial list, the farmer:� reords all workers as free;� repeatedly:� sends an unproessed list element to a free worker and reordsit as busy;� reeives a proessed list element from a busy worker andreords it as free;� until all list elements have been proessed;� assembles the proessed list in the appropriate order.This approah is self-balaning: no workers sit idle so long as thereare more list elements to be proessed, and variations in the times toproess di�erent elements have minimal impat.There are various topologies for task farms, for example the linearhain where eah proessor has a bi-diretional onnetion to its pre-deessor and suessor. The farmer passes unproessed data down thehain of busy workers to the �rst free worker, and proessed data ispassed bak up the hain to the farmer. Here, the farmer need notkeep trak of free and busy workers, and may assemble the �nal list asproessed elements beome available.Construts. The PMLS ompiler generates parallel ode solely fromalls to map and fold. No other SML onstruts are provided or ex-ploited for parallelism. However, the system enables the introdutionof new HOFs with new skeletons. In some ases, like fold, a proof

main.tex; 6/12/2002; 16:42; p.9

10 Loidl et al.obligation is put on the programmer to ensure orretness of the parallelode: in the ase of fold the binary operation must be assoiative.Methodology. The programmer need have no oneption of parallelism.The ompiler will try to exploit parallelism in expliit uses of map andfold.
(* original function *)
fun inc [] = [] |
 inc (h::t) = h+1::inc t

(* first synthesised function, using map *)
val inc1 = map (fn h => h+1)

(* second synthesised function, using foldr *)
val inc2 = foldr (fn h => fn t => h+1::t) []Figure 2. Program Synthesis in PMLSA pre-proessor may also be used to synthesise higher-order fun-tions in programs that lak them, using proof planning driven by middleout reasoning (Cook, 2001). For example Figure 2 shows how, given thefuntion in, this pre-proessor an synthesise both in1, de�ning inin terms of map, and in2, de�ning in in terms of fold.3.1.2. GpHGpH (Trinder et al., 1998) is a modest onservative extension ofHaskell98 (Peyton Jones and Hughes, 1999) realising a thread-basedapproah to parallelism. Thread-based approahes to parallelism al-low parallel threads to be reated, but do not provide mehanismsto ontrol those threads. Threads are thus managed entirely underruntime-system ontrol. By ombining simple thread primitives withhigher-order funtions, high-level abstrations an be onstruted, suhas the evaluation strategy approah (Trinder et al., 1998).Construts. GpH provides parallel (par) and sequential (seq) ompo-sition as oordination primitives (see Figure 3). Denotationally, bothompositions are projetions onto the seond argument. Operationallyseq auses the �rst argument to be evaluated before the seond and parindiates that the �rst argument may be exeuted in parallel. The latteroperation is alled the \sparking" of parallelism and is used in di�erentvariants in many parallel languages. The runtime-system, however, isfree to ignore any available parallelism. In this model the programmeronly has to expose expressions in the program that an usefully beevaluated in parallel. The runtime-system manages the details of theparallel exeution suh as thread reation, ommuniation et.

main.tex; 6/12/2002; 16:42; p.10

Comparing Parallel Funtional Languages: Programming and Performane 11
-- basic constructs
par :: a -> b -> b -- parallel composition
seq :: a -> b -> b -- sequential composition

type Strategy a = a -> () -- type of evaluation strategy

using :: a -> Strategy a -> a -- strategy application
using x s = s x ‘seq‘ x

rwhnf :: Strategy a -- reduction to weak head normal form
rwhnf x = x ‘seq‘ ()

class NFData a where -- class of reducible types
 rnf :: Strategy a -- reduction to normal formFigure 3. Basi Coordination Construts in GpHExperiene of implementing non-trivial programs inGpH shows thatthe unstrutured use of par and seq an lead to rather obsure pro-grams. This problem an be overome with evaluation strategies: lazy,polymorphi, higher-order funtions ontrolling the evaluation degreeand the parallelism of a Haskell expression. Evaluation strategies pro-vide a lean separation between oordination and omputation. Thedriving philosophy is that it should be possible to understand the om-putation spei�ed by a funtion without onsidering its oordination.Figure 3 shows the basi operations over strategies. A strategy on avalue of type a is a funtion from a to the nullary value () exeutedpurely for e�et, and the null value is returned to indiate ompletion.The using onstrut applies a strategy to a Haskell expression. Thebasi strategy rwhnf redues an expression to weak head normal form(WHNF), the default in Haskell. The overloaded strategy rnf reduesan expression to normal form (NF), i.e. ontaining no redutions. Asthere are types that are not redued to normal form in Haskell, e.g.funtion types, rnf is restrited to types that are redued to normalform by the NFData lass whih is instantiated for all major types.Beause strategies are simply funtions they an be ombined, or passedas parameters using standard language apabilities.For example the parList strategy in Figure 4 is higher-order, apply-ing the argument strategy strat to every element of a list in parallel.This strategy is then used in the GpH implementation of parallel map(parMap). Note how the algorithmi ode is leanly separated fromthe strategy, using the sequential ode of map f xs unmodi�ed whenintroduing parallelism.Methodology. GpH programs are developed with an integrated suiteof sequential and parallel software tools, based on the Glasgow HaskellCompiler (GHC) (Peyton Jones et al., 1993). The tools for sequential

main.tex; 6/12/2002; 16:42; p.11

12 Loidl et al.
parList :: Strategy a -> Strategy [a]
parList strat [] = ()
parList strat (x:xs) = strat x ‘par‘ (parList strat xs)

parMap :: Strategy b -> (a -> b) -> [a] -> [b]
parMap strat f xs = map f xs ‘using‘ parList stratFigure 4. Parallel map in GpHsoftware development inlude: the Hugs interpreter, for fast develop-ment, the GHC ompiler and sequential runtime system for optimisingompilation to sequential ode; and sequential time and spae pro�lersintegrated into GHC (Sansom and Peyton Jones, 1995). The tools forparallel software development inlude: the GranSim parameterisableparallel simulator (Hammond et al., 1995) for exible and auratesimulation of the parallel behaviour on a range of parallel mahines; theGHC ompiler and GUM parallel runtime system for parallel exeutionon multiproessors; a set of visualisation tools for both GranSim andGUM, visualising the ativity of a parallel mahine in several levels ofdetail; prototypes of more detailed parallel pro�lers (King et al., 1998).3.1.3. EdenEden (Breitinger et al., 1997b) extends the lazy funtional languageHaskell by syntati onstruts to expliitly de�ne and instantiate pro-esses. In ontrast to the previous tehniques, proess-based approaheslike Eden expose parallel tasks at the language level. The programmermust then manage the tasks using the ontrol mehanisms providedin the language. Eden is expliit about proess reation and about theommuniation topology, but impliit about other ontrol issues suh assending and reeiving messages, and proess plaement. Granularity isunder the programmer's ontrol beause he/she deides whih expres-sions must be evaluated as parallel proesses, and also some ontrol ofthe load balaning is possible at the programmer's level.Construts. Eden provides proess abstrations and proess instan-tiations for oordination as shown in Figure 5. The new expressionproess x -> e of a prede�ned polymorphi type Proess a b de-�nes a proess abstration having formal parameter x::a as input andexpression e::b as output. Proess abstrations of type Proess ab an be ompared to funtions of type a -> b, the main di�erenebeing that the former, when instantiated, are exeuted in parallel.Additionally, when the output or input expression is a tuple, a separateonurrent thread is reated for the evaluation of eah tuple element.We will refer to eah of them as a hannel.

main.tex; 6/12/2002; 16:42; p.12

Comparing Parallel Funtional Languages: Programming and Performane 13
newtype Process a b = ...

-- process abstraction (language construct)
process x -> e :: Process a b

-- process instantiation
(#) :: (Transmissible a, Transmissible b) => Process a b -> a -> b

-- non-deterministic merge process
merge :: Process [[a]] [a]Figure 5. Basi Coordination Construts in EdenA proess instantiation is ahieved by using the prede�ned in�x op-erator (#). The ontext Transmissible is needed to guarantee that theelements an be sent through the hannels. Eah time an expression e1# e2 is evaluated, a new proess is reated to evaluate the appliationof e1 to e2. We will refer to the latter as the hild proess, and tothe owner of the instantiation expression as the parent proess. Theinstantiation semantis spei�es in whih proesses these expressionsshall be evaluated: (1) Expression e1 together with its whole environ-ment is opied in the urrent evaluation state to a new proessor, andthe hild proess is reated there to evaluate the appliation of e1 toe2, where e2 must be remotely reeived. (2) Expression e2 is eagerlyevaluated in the parent proess. The resulting full normal form data isommuniated to the hild proess as its input argument.One proesses are running, only fully evaluated data objets areommuniated. The only exeption are lists: they are transmitted in astream-like fashion, i.e. element by element. Eah list element is �rstevaluated to full normal form and then transmitted. Proesses tryingto aess input not yet available are temporarily suspended. This is theonly synhronising mehanism in Eden.Figure 6 presents a simple parallel map skeleton in Eden, in whih adi�erent proess is reated for every element of the input list. Strategiesare used in Eden to inuene the evaluation order. In this example, thespine strategy is used to eagerly evaluate the spine of the proess in-stantiation list. In this way all proesses are immediately reated. Moresophistiated parallel implementations of map have been developed inEden (Klusik et al., 2002; Klusik et al., 2000) and some will be disussedin Setion 4.Methodology. Like GpH, Eden is based on the Glasgow Haskell Com-piler, and an use the same sequential pro�ling utilities. For parallelpro�ling Eden provides a simulator alled Paradise (Hern�andez et al.,

main.tex; 6/12/2002; 16:42; p.13

14 Loidl et al.
map_par :: (Transmissible a, Transmissible b) =>
 (a -> b) -> [a] -> [b]
map_par f xs = [pf # x | x <- xs] ‘using‘ spine
 where pf = process x -> f x

spine :: Strategy [b]
spine [] = ()
spine (_:xs) = spine xs Figure 6. Parallel map in Eden2000) whih is based on GranSim, so that tuning the performane ofan Eden program is a similar proess to that in GpH.Parallel programming in Eden an be done by expliitly de�ning andinstantiating a proess topology. This would be equivalent to sequen-tial funtional programming with expliit reursion. Sometimes this isappropriate, but an experiened funtional programmer will try to usehigher-order funtions, i.e. skeletons, as muh as possible in order toredue the amount of work and the possibility of making mistakes. In aomplex appliation both methods may be simultaneously needed. Themain di�erene between Eden and more traditional skeleton-based lan-guages, suh as PMLS, is the fat that skeletons an be spei�ed withinEden itself. Thus, Eden serves both as a omputation and oordinationlanguage, yielding a high degree of exibility for the programmer.3.2. ImplementationIn this setion we ompare the implementations of the languages onarbitrary parallel arhitetures.3.2.1. PMLSThe PMLS approah is based on:� maximising ompile-time ativity to minimise run-time overheads;� on�guring the virtual topology of the target system to reetlosely the HOF hierarhy in the soure program.While this is relatively inexible, for example making exploitation ofparallelism aross ondition branhes diÆult, it often results in veryeÆient ode.Compile Time. The PMLS ompiler front end parses, elaborates andtype heks SML to produe an abstrat syntax tree (AST). The MLKit is used as the front end. The AST is traversed to extrat an abstratnetwork showing the nesting hierarhy of HOFs. Free variable lifting,

main.tex; 6/12/2002; 16:42; p.14

Comparing Parallel Funtional Languages: Programming and Performane 15or defuntionalisation, is performed to simplify passing free variablebindings to skeletons, and to avoid runtime transmission of losures.The AST and abstrat network are traversed to identify HOFs to berealised as skeletons and to generate skeleton network ode and MPIregistration in C. The resulting AST is �nally translated into Obje-tive Caml for linkage by the OCaml and GNU C ompilers with theappropriate skeletons, and skeleton network and MPI registration ode.PMLS skeletons are written in C with MPI. The map funtion isimplemented as a task farm and fold as a divide-and-onquer network.The skeletons are hybrid and may be run either in parallel or sequen-tially. Skeletons are oordinated at runtime by generi \Pskel" nodeswhih an swith their hybrid modes. Otherwise, skeletons are linkedstatially with no runtime hange of topology. Adopting an SPMDapproah, all proessors are pre-loaded with all skeletons and funtions.The use of Objetive Caml and GNU C to generate native odeenables a high degree of portability. PMLS has been ported to a FujitsuAP3000, IBM SP/2, Cray T3E, networks of UltraSpar workstations,SUN Enterprise and Beowulf, displaying onsistent performane arossall platforms. For further details see Saife et al. (2001).Run Time. PMLS generates ode to link stati skeletons through Pskelnodes. The Objetive Caml run-time environment provides garbageolletion and appropriate libraries. At run-time, the Pskel nodes ateah level determine their behaviour from the skeleton network. In par-tiular, intermediate Pskel nodes in the hierarhy will swith betweenparent and hild operation if initiated in parallel mode. There is nomovement of ode or losures at runtime. For further details of theompiler design and implementation see Mihaelson et al. (2001).The single proessor eÆieny of PMLS has been measured forthe raytraer as 86% on our Beowulf luster. The main soures ofoverhead are slight ineÆienies introdued in program transformationstages, suh as extra funtion alls, and the need to propagate addi-tional information that is used as arguments to the skeletons used forexploiting the parallelism. In a multi-proessor setup the worker nodesof the skeleton used in linSolv exhibit an eÆieny of 84%. In this asethe main soure of overhead is some idle time introdued by blokingommuniations between nodes in this skeleton. An implementation ofa more eÆient version, using non-bloking ommuniation whereverpossible, is urrently in development.Early versions of PMLS were hampered by ineÆienies in thetranslation proess from SML to Objetive Caml. More reent versionsemploy a set of optimising transformations allowing fairly similar per-formane between the output from PMLS and hand-oded Objetive
main.tex; 6/12/2002; 16:42; p.15

16 Loidl et al.Caml. For example, the ray traer has also been implemented in Obje-tive Caml and gives a sequential runtime of 195 seonds on similar datato that used in this paper. The output of the PMLS ompiler takes 241seonds on the same data. A slowdown of around 20% is aeptable andis attributable to the remaining ineÆienies in the translation proess.3.2.2. GpHCompile Time. The two additional language onstruts of GpH, parand seq, are treated as built-in funtions by the ompiler. They areimplemented as system-alls in the GUM runtime-system. GpH pro-grams are ompiled using almost all of the sequential optimisations inGHC, although are must be taken to preserve par and seq.Run Time. The GUM runtime-system for GpH realises a parallelgraph-redution mahine built on top of GHC's sequential STG-mahine. To synhronise multiple threads, a thread loks the node ofthe graph when starting its evaluation, and other threads requestingthat data will be added to a bloking queue attahed to the lokedlosure. Aess to remote losures is managed by new FethMe nodes,representing global indiretion. On requesting the ontents of suh anode a message will be sent to the target proessor and the requestingthread will be added to a bloking queue. The details of these syn-hronistation and ommuniation mehanisms are disussed in Loidl(1998)[Chapter 2℄.Being integrated into GHC, GUM makes use of existing analysesand optimisations for eÆient sequential exeution. A disussion of thedesign and implementation of GUM is given in Trinder et al. (1996).In summary, the additional features to enable parallel exeution are:� sparking of threads, i.e. identi�ed program expressions may beevaluated as independent threads or they may be inlined by otherthreads, ahieving dynami granularity ontrol as in the lazy taskreation mehanism (Mohr et al., 1991);� multi-threading, i.e. independent threads of ontrol are exeuted inan interleaved fashion thereby enabling an overlap of omputationand ommuniation on eah proessor;� virtual shared heap, i.e. the physially distributed heap is treatedas a shared heap with global pointers to remote proessors, withtransparent ommuniation on aess of non-loal data;� automati marshalling of data and work, i.e. when data or workis needed on another proessor, a graph struture is automatially
main.tex; 6/12/2002; 16:42; p.16

Comparing Parallel Funtional Languages: Programming and Performane 17serialised, sent to another proessor, and again unpaked into agraph struture;� distributed garbage olletion, i.e. weighted referene ounting isused to garbage ollet global pointers that are not used any more.In order to assess the overheads of the di�erent systems we have mea-sured key parameters of the runtime-system. One important parameteris the single-proessor eÆieny, i.e. the sequential runtime dividedby 1 PE runtime in perent. For GUM we have previously measured80%{93% on simple programs (Trinder et al., 1996), and now 77% onlinSolv as used in Setion 4.3. In a multi-proessor exeution it turnsout that maintaining a virtual shared heap on a distributed memorymahine is most expensive. In partiular the management of a hashtable mapping loal heap addresses to global heap address aounts forup to 3.8% of the total exeution time, in earlier version, pre-datingreent improvements in GUM even up to 8%. In omparison, the ostsfor paking graph strutures and ommuniation play only a minorrole in the total runtime: less than 1% for this program. The osts forreating parallelism are, by design, very small: reating a spark requiresonly adding a pointer to an array, and threads are very light (14 bytesfor the thread desriptor) with initially small, tunable staks (1kB).A detailed disussion of these overheads inGpH is presented in Loidl(2002). This paper separates the overhead into that indued by thethread management, memory management and ommuniation subsys-tems of GUM. It then fouses on virtual shared memory management,whih turns out to be the most expensive part, and uses both linSolvand raytraer as example programs. Several improvements of the ba-si load balaning mehanism, that we exploit in these measurements,are presented in Loidl (2001).3.2.3. EdenCompile Time. Eden extends the optimising Glasgow Haskell Com-piler with a few modi�ations. In Eden, lazy evaluation is hanged toeager evaluation in two ases. Firstly, proesses are eagerly instantiatedwhen the expression under evaluation demands the reation of a lo-sure of the form o = e1 # e2. Seondly, instantiated proesses eagerlyprodue their output expressions and ommuniate them on hannels.These modi�ations of the standard Haskell semantis are aimed at in-reasing the degree of parallelism and at speeding up the distribution ofthe omputation, and they are implemented by ompile-time providedby Eden, i.e. proess abstrations, proess instantiations, dynamihannels and merge instantiations, are translated into runtime-systemalls.
main.tex; 6/12/2002; 16:42; p.17

18 Loidl et al.Run Time. The design of DREAM (Breitinger et al., 1997a), the par-allel abstrat graph-redution mahine implementing Eden, is largelysimilar to GUM. We fous on the di�erenes to GUM:� In DREAM, the onept of a virtual shared heap does not exist.Eah proess evaluates its outputs autonomously with respet toother proesses. The entire graph needed by a newly instantiatedproess is opied into its heap before it starts running. In someases, this an even lead to some dupliation of work, but it re-dues the ommuniation overhead of DREAM. Moreover, globalgarbage olletion redues to the sending of terminate messages toproesses whose output has been deteted to be garbage during aloal garbage olletion.� In ontrast to GpH, Eden threads are mandatory. Proesses inDREAM and threads in GUM are related as follows: A proessin DREAM is implemented by several threads, whih diretly or-respond to threads in GUM. These threads run onurrently onthe same proessor, so that di�erent output values an be inde-pendently produed. Threads synhronize on shared graph nodesas in GpH. In addition, speial queue-me losures represent inputfrom remote proesses whih is not available yet. On requestingthe ontents of suh a losure a thread will bloked until the inputarrives.� Proess plaement in Eden is ontrolled by the runtime-system intwo di�erent modes that an be set-up at the beginning of the ex-eution: (1) round-robin mode, in whih proesses are instantiatedin onseutively numbered proessors, or (2) random mode, whereproesses are instantiated in randomly hosen proessors.As Eden shares parts of GUM's thread management and ommuni-ation subsystem, the runtime-system overheads are similar. However,Eden overheads are smaller, as it is not neessary to maintain a virtualshared graph. The single proessor performane for linSolv as used inSetion 4.3 has been 89%. In general, the main bottleneks in Edenare due to the paking and unpaking routines, whih are not yetoptimized. For instane, paking a 600 � 600 matrix of integers takes1% of the time required for multipying it. Moreover, as there are notyet multiasting failities in Eden, one a paket has been sent to aproess, it annot be reused the paking e�ort in order to send thesame paket to other proess. See Rubio (2001) for a more detaileddesription of Eden overheads.
main.tex; 6/12/2002; 16:42; p.18

Comparing Parallel Funtional Languages: Programming and Performane 19Table I. Language ComparisonEden GpH PMLSLanguageApproah proess-based thread-based skeleton-basedConstruts pro. abstration par/seq HOFspro. instantiationProgramming skeletons eval. strats |AbstrationMethodology de�ne topology simulate, |and/or skeletons, exeute,simulation visualiseImplementationCompile-time fore strit | synthesise HOFs,support evaluation of proess network,hannel data link skeletonsRun-time graph-red. over graph-red. over skeleton library oversupport distributed heap shared heap distributed heap3.3. SummaryTable I summarises the language and implementation features of thePMLS, GpH, and Eden. On the language level it shows the higher levelof abstration for PMLS, using a skeleton-based approah, whih doesnot require language extensions for parallelism at all, whereas GpHadds ombinators to expose parallelism and Eden adds a onstrut forexpliit proess reation. On the implementation level PMLS performssophistiated stati analysis and program synthesis in order to generatea suÆient amount of parallelism. Both GpH and Eden rely mostly ona sophistiated runtime-system with dynami resoure management.To ahieve good single proessor performane all systems use state-of-the-art sequential ompilers for funtional languages:GpH and Edenuse GHC, and PMLS uses OCaml. Using linSolv (Setion 4.3) asbenhmark we ahieve single proessor eÆienies of 77% for GpH,mainly due to using a two-spae garbage olletor in the urrent imple-mentation, 89% for Eden (using a better garbage olletor), and 84%
main.tex; 6/12/2002; 16:42; p.19

20 Loidl et al.for PMLS whih uses a two-generation garbage olletor. In measuringthe overheads in multi-proessor exeutions we identi�ed in GpH themaintenane of hash tables in the virtual shared memory management,and in PMLS the usage of bloking ommuniation at ertain stages andthe single-master, multiple-worker parallel model to be the most ostlyomponents. The details of these runtime-system measurements forGpH and PMLS, inluding data obtained from Beowulf and SunSMPmahines, will be published in separate paper (Loidl et al., 2002).4. Experimental ResultsThis setion desribes the results we have obtained using three pro-grams: matMult, a matrix multipliation algorithm, linSolv, an exatlinear system solver, and raytraer, a simple ray traer. The parallelalgorithms themselves have been explained in more detail in previouspapers. In this setion we fous on a omparison of the implementationsin and the performanes ahieved with PMLS, GpH, and Eden.Although rather simple in nature, these programs represent a rangeof appliations we are interested in. In previous studies on developingparallel appliations in GpH (Loidl et al., 1999) we have identi�edthe lass of symboli appliations, with omplex data strutures andirregular parallelism, as the most interesting appliation domain. Forpragmati reasons we had to keep the program size down: ensuringthat all three versions implement the same algorithm and produeomparable dynami strutures was the main engineering onstraint.Of the 3 programs in this setion the linear system solver, with itsmultiple homomorphi images approah, �ts these harateristis best,with the other programs foussing on di�erent aspets of the exeution.More spei�ally, matrix multipliation is a well-studied parallel pro-gram and serves to relate our approah to that of imperative languages(with onrete language and performane omparison in Setion 6). Thelinear equation solver exhibits a struture typial for a lass of symboliappliations, whih is quite di�erent from onventional iteration-basedtehiques. It also performs a high amount of heap onsumption and re-ates less regular parallelism, and is therefore losest to typial symboliappliations. The ray traer is an example of a data-parallel appliation,and issues of task and omputation granularity beome important inthis ontext.

main.tex; 6/12/2002; 16:42; p.20

Comparing Parallel Funtional Languages: Programming and Performane 214.1. Experimental FrameworkAll measurements have been performed on a 32-node Beowulf lus-ter (Ridge et al., 1997) at Heriot-Watt University, onsisting of LinuxRedHat 6.2 workstations with a 533MHz Celeron proessor, 128kBahe, 128MB of DRAM and 5.7GB of IDE disk. The workstationsare onneted through a 100Mb/s fast Ethernet swith with a latenyof 142�s, measured under PVM 3.4.2.4.2. Matrix Multipliation4.2.1. Problem DesriptionGiven two square matries of arbitrary preision integers A;B 2Zn�n; n 2 N �nd their produt, i.e. a matrix C 2 Zn�n suh thatCi;j =Pnk=1Ai;k � Bk;j.4.2.2. Parallel AlgorithmsWe start with a sequential algorithm diretly implementing the abovespei�ation of matrix multipliation, shown in Figure 7. By using analgebrai datatype Matrix a to represent matries as lists of lists wean overload standard arithmeti operations suh as multipliation.The main funtion is multMatT, whih takes A and BT , i.e. the trans-posed matrix B as input. It omputes A � B in a double nested listomprehension, omputing the rows of the result matrix in the outeromprehension and the elements of a row in the inner omprehension.The funtion multVe omputes the sum in the spei�ation above fortwo vetors of length n.
data (Num a) => Matrix a = M [[a]]

multMat :: (Num a) => Matrix a -> Matrix a -> Matrix a
multMat (M m1) (M m2) = M (multMatT m1 (transpose m2))

multMatT :: (Num a) => [[a]] -> [[a]] -> [[a]]
multMatT m1 m2T = [[multVec row col | col <- m2T] | row <- m1]

multVec :: (Num a) => [a] -> [a] -> a
multVec v1 v2 = sum (zipWith (*) v1 v2)Figure 7. Sequential matMult (Haskell version)4.2.2.1. Naive data parallelism: Sine eah element of the result ma-trix an be omputed independently, we an exploit data parallelismby generating one parallel task for eah element in the result matrix.However, the exessive number of small omputations leads to a verypoor performane in general. For example, the GpH implementation

main.tex; 6/12/2002; 16:42; p.21

22 Loidl et al.of this naive data parallel version yields a speedup of about one up to16 proessors. We do not onsider this version any further.4.2.2.2. Row lustering: The granularity of the naive parallel algo-rithm an be inreased by omputing an entire row of the result matrixby one task. Assuming square matries of size n � n with integers ofaverage size l in its internal representation, and assuming that inte-gers are multiplied by using the algorithm of Karatsuba and Ofman(1962), the omputational omplexity for eah task is O(n2 � llog23),while the total ommuniation omplexity, i.e. the amount of data (inmahine words) to be sent, is O(n3 � l). The latter omplexity is due tothe fat that eah task requires the whole seond matrix to omputeone �nal row, and n tasks are reated. In order to e�etively improveparallel performane, the granularity of the tasks has to be inreasedby omputing as many elements as possible inside eah task and theommuniation has to be minimised.We an improve the granularity further by omputing many rowsof the resulting matrix by eah task. With perfet load distribution,if p proessors are available, p tasks should be reated, eah oneevaluating n=p rows of the resulting matrix. Using suh a row lus-tering approah the ommuniation omplexity of the main proess isO(n2 � p � l) whereas the omputational omplexity of eah proess isO(n3 � llog23=p). For large values of n better speedups an be expeted,sine the omputation-ommuniation ratio inreases.4.2.2.3. Blok lustering: An alternative form of lustering the data isto partition the input matries into bloks, performing blok-lustering,and then perform the basi arithmeti over these bloks rather thanover simple integer values. Figure 8 depits this partitioning, and indi-ates that for the omputation of one blok in the result matrix, onlyone row of the partitioned matrix A and one olumn of the partitionedmatrix B is needed. In this version the omputational omplexity ofeah proess is still O(n3 � llog23=p) but its ommuniation omplexityis only O(n2 � l=pp) as the proessors do not require the whole seondmatrix.4.2.2.4. Torus topology: All parallel versions so far rely on a broadastof all data at the beginning of the omputation with a ommuniationomplexity of O(n2 � l � pp). Therefore, the main proess tends tobeome a bottlenek espeially for large numbers of proessors. To avoidsuh a bottlenek we an use a torus topology as depited in Figure 11.Initially eah proess in the torus reeives only its own bloks frommatries A and B. In eah step the proessor omputes the produt of
main.tex; 6/12/2002; 16:42; p.22

Comparing Parallel Funtional Languages: Programming and Performane 23

Figure 8. Struture of blok-lustering matMultboth bloks, adds the produt to the intermediate result omputed sofar, and then obtains the next bloks from its neighbours. As shownin Figure 11 the bloks of the �rst matrix are transmitted from leftto right in the torus, while those of the seond matrix are transmittedtop down. This algorithm is well-known in the literature as Gentleman'salgorithm (Quinn, 1994). In this version the ommuniation omplexityof the main proess is O(n2 � l), i.e. it does not depend on the numberof proessors, and the ommuniation between the proessors is spreadover the entire exeution of the program. The main drawbak of thisapproah is that it requires a perfet square number of proesses toform a torus topology.4.2.3. Implementations
multMatTParRow :: (Num a,Transmissible a) =>
 Matrix a -> Matrix a -> Matrix a
multMatTParRow (M m1) (M m2) = M (concat result)
 where result = map_par multMatT (zip (splitIntoN noPe m1) (repeat m2))Figure 9. Row-lustering matMult (Eden Version)4.2.3.1. Eden: The row-lustering version in Eden reates as manyproesses as proessors available with eah of them omputing np rowsof the produt matrix. This version, as shown in Figure 9, uses thebuilt-in variable noPe, representing the number of available proessors.The funtion splitIntoN n xs splits the list xs into n nearly equal sizesublists (see Appendix A for the de�nition of splitIntoN and otherauxiliary funtions used in this setion).The blok-lustering version reates size�size proesses, eah ofthem omputing a blok of the produt matrix. In order to reduethe total amount of ommuniation, the typial value of size will bebpnoPe. The main di�erene to the row-lustering version is the way

main.tex; 6/12/2002; 16:42; p.23

24 Loidl et al.
multMatTParBlock :: (Num a, Transmissible a) =>
 Int -> Matrix a -> Matrix a -> Matrix a
multMatTParBlock size m1 m2 = decluster size result
 where result = map_par multMatT (zip (clusterLeft size m1)
 (clusterRight size m2))Figure 10. Blok-lustering matMult (Eden Version)

15 15 15 15
15 15 15 15
15 15 15 15
15 15 15 15Figure 11. Proess topology generated using a torusin whih the matries are split, whih is enoded in the lusterLeftand lusterRight funtions. The �rst funtion splits matrix A into alist of rows, the seond funtion splits matrix B into a list of olumns.The torus version of the algorithm an be expressed in Eden interms of its general torus skeleton (Pe~na and Rubio, 2001). The mainargument of the torus skeleton is the funtion to be performed by eahnode in the torus topology (see Figure 11). Eah node has three inputparameters: one from the parent; one from the left neighbour; and onefrom the top neighbour. It produes three values: one to the parent;one to the right neighbour; and one to the neighbour below.With this torus skeleton, the matrix multipliation algorithmmultMatPar shown in Figure 12 takes the size of the torus, torusSize,splits the matries m1 and m2 into bloks m1ss and m2ss, respetively,thereby pairing them appropriately, and alls the torus skeleton toruswith the funtion multMatPar' to be applied by the node proessesof the torus. The per-node funtion performs a list of matrix multipli-ations sms | one for eah pair of bloks it reeives | and sums all

main.tex; 6/12/2002; 16:42; p.24

Comparing Parallel Funtional Languages: Programming and Performane 25
torus :: (Transmissible a,Transmissible b,Transmissible c,Transmissible d) =>
 ((c,a,b)->(d,a,b)) -- Main function in each process
 [[c]] -> -- Inputs from parent to children
 [[d]] -- Outputs from children to parent
torus f m = ...

multMatPar :: (Num a, Transmissible a) =>
 Int -> Matrix a -> Matrix a -> Matrix a
multMatPar torusSize m1 m2 = combine results
 where results = torus (multMatPar’ torusSize) (zipWith zip m1ss m2ss)
 m1ss = splitMatrix1 torusSize m1
 m2ss = splitMatrix2 torusSize m2

-- Function performed by each worker
multMatPar’ :: (Num a, Transmissible a) => Int ->
 ((Matrix a, Matrix a), [Matrix a], [Matrix a]) ->
 (Matrix a, [Matrix a], [Matrix a])
multMatPar’ size ((sm1,sm2),sm1s,sm2s) = (result,toRight,toBottom)
 where toRight = take (size-1) (sm1:sm1s)
 toBottom = take (size-1) (sm2’:sm2s)
 sm2’ = transpose sm2
 sms = zipWith (curry multMat2) (sm1:sm1s) (sm2’:sm2s)
 result = foldl1’ addMatrices sms Figure 12. Torus version of matMult in Edenproduts to obtain the result whih is returned to the parent. Notethat the �rst pair, (sm1,sm2), is reeived diretly from the parent,whereas the other pairs are reeived from the left and right neighboursas part of sm1s and sm2s, respetively.4.2.3.2. GpH: Figure 13 shows a row-wise lustering version ofmultMatPar in GpH. This version uses the sequential matrix multipli-ation, multMat, as shown in Figure 7 without hange. All parallelism isde�ned by a strategy attahed to multMat. The strategy �rst evaluatesboth input matries, in order to avoid ompetition for unevaluateddata during the evaluation, and then uses the prede�ned strategyparListChunk z rnf m to fully evaluate hunks of z elements in thematrix m in parallel.
multMatPar :: (Num a, NFData a) => Int -> Matrix a -> Matrix a -> Matrix a
multMatPar z m1 m2 = multMat m1 m2
 ‘using‘ \ (M m) -> rnf m1 ‘seq‘
 rnf m2 ‘seq‘
 parListChunk z rnf mFigure 13. Row-lustering matMult (GpH version)The blok-wise lustering GpH version in Figure 14 implementsthe algorithm skethed in Figure 8. In ontrast to the purely strate-gi row-lustering version, it uses expliit funtions for lustering anddelustering the input and result matries. Note that the ode used

main.tex; 6/12/2002; 16:42; p.25

26 Loidl et al.to multiply the lustered matries, multMatT, is the sequential matrixmultipliation overloaded to work on matries of matries. The strategyattahed to the lustered result matrix, guarantees that every blok inthe lustered result matrix is evaluated in parallel. Suh separationof data-layout from omputation and reuse of sequential ode greatlyimproves the produtivity in our languages, and is in ontrast to sophis-tiated C-based blok-lusterings, where extensive ode restruturingis needed to obtain very eÆient parallel programs (Frens and Wise,1997).Based on experienes with di�erent luster funtions, we have de-veloped a generi mehanism for lustering arbitrary user-de�ned datastrutures, using formal program transformation to derive data parallelode suh as this from the sequential ode (Loidl et al., 2001).
multMatPar :: (Num a, NFData a) => Int -> Matrix a -> Matrix a -> Matrix a
multMatPar z m1 m2 =
 decluster (multMatT (cluster z m1) (cluster z (transposeMat m2))
 ‘using‘ \ (M m) -> rnf m1 ‘seq‘
 rnf m2 ‘seq‘
 parList (parList rnf) m)Figure 14. Blok-lustering matMult (GpH version)4.2.3.3. PMLS: The PMLS implementation uses nested lists for rep-resenting matries, and Objetive Caml's arbitrary-preision integerarithmeti library for the operations over the matrix elements. Thereis no general overloading of the basi arithmeti funtions for matriesas in Haskell.
(* vector product call *)
fun inner row col = multVec row col

(* inner map - parallel *)
fun outer BT row = map (inner row) BT

(* outer map - parallel *)
fun multMat A B = map (outer (transpose B)) AFigure 15. Row-lustering matMult (PMLS version)A straightforward sequential SML algorithm, that uses map instanesinstead of Haskell's list omprehensions, is shown in Figure 15. Sinethis ode uses one of the HOFs that is implemented as a parallel skele-ton, it an be diretly parallelised by the PMLS ompiler resulting in apair of nested map skeletons. The outermost map in multMap omputes alist of matrix-vetor produts by mapping the matrix-vetor operation,

main.tex; 6/12/2002; 16:42; p.26

Comparing Parallel Funtional Languages: Programming and Performane 27alled outer, over the rows of matrix A. The outer funtion omputes alist of dot produts by mapping the multVe funtion over the olumnsof matrix B. Note that the entire matrix B is free in multMat. Theompiler's free-value analysis phase detets this property and generatesode to transmit B to the workers prior to running the outer farm.The parallel map skeleton has lustering of data built into it. Thelustering size is global to the whole program and set manually, atpresent. With a lustering parameter of one this algorithm orrespondsto the naive data parallel version mentioned above. In non-nested mode,with lustering set to a suitable value, the behaviour is idential tothe row-wise lustering version. In nested mode, with both map skele-tons implemented in parallel, the matrix B is only transmitted to theintermediate proessors.
(* Block map over outer product *)
fun BMmult (A,B) =
 let
 val rows = length A
 val outerAB = outer_product (A,transpose B)
 val AB = map Mdotprod outerAB
 in
 split rows AB
 endFigure 16. Blok-lustering matMult (PMLS version)Figure 16 shows an approximation of a blok-wise lustering version.The bloks are generated by the map's impliit lustering mehanism.Sine PMLS does not provide a user-level mehanism for enforingabsolute plaement of data, the quality of the ode depends on theratio of proessors to bloks. The best results are ahieved if thenumber of bloks is a multiple of the number of proessors. Overall,this method is slightly less ommuniations-bound than the row-wiselustering method sine the entire matrix B is not transmitted to allthe proessors.4.2.4. Performane ResultsThe measurements presented in this setion are based on two 200�200matries of arbitrary preision integers, none of whih is larger than216 � 1, i.e. one mahine word. For the row- and blok-lusteringversions Eden uses as many bloks as proessors, whereas GpH uses ahunk size of 40. For the row-lustered version PMLS uses bloks of 3rows, while for the blok-lustered version it uses bloks of size 40�40.The results presented here will be related to the performane ofparallel versions implemented in C with PVM and GMP in Setion 4.2.5and in the onlusions (Setion 6.2).

main.tex; 6/12/2002; 16:42; p.27

28 Loidl et al.

0

5

10

15

20

25

30

35

40

4 8 12 16

R
un

tim
e

Processors

Matrix Multiplication: Runtimes

Eden row-clustering
Eden block-clustering
Eden torus-clustering

GPH row-clustering
GPH block-clustering
PMLS row-clustering

PMLS block-clustering

Figure 17. Runtimes of matMult on the Beowulf (in seonds)Figure 17 summarises the runtimes and Figure 18 the speedupsof all versions on our Beowulf luster. The sequential performane ofthe strit language, PMLS, is notieably better than that of the lazylanguages, Eden and GpH, with variations of about 26% between theversions of the latter languages.For all versions the performane tails o� fairly early with an inreas-ing number of proessors. In general, this is due to the high ratio ofommuniation to omputation as elaborated in Setion 4.2.2. In Edenthe torus topology behaves better than the blok lustering version,whih in turn is better than row lustering. The torus version shows asmall inrease in performane even for large numbers of PEs. This isin ontrast to e.g. the blok-lustering GpH version, whih shows goodspeedups up to 4 PEs but tails o� after that. In PMLS the di�erene inperformane between the simple row-lustered and the re�ned blok-lustered version, due to redued ommuniation, is most pronouned.The amount of ommuniation an be diretly linked to the free o-urrene of B in the row- (Figure 15) but not in the blok-lusteredversion (Figure 16). Furthermore, PMLS uses a task farm skeleton, aspresented in Setion 3.1.1, for implementing map in parallel. This modelahieves a good load balane but limits the salability of the systembeause the master proess beomes a ommuniation bottlenek forlarge numbers of proessors.
main.tex; 6/12/2002; 16:42; p.28

Comparing Parallel Funtional Languages: Programming and Performane 29

0

2

4

6

8

10

4 8 12 16

S
pe

ed
up

Processors

Matrix Multiplication: Speedups

Eden row-clustering
Eden block-clustering
Eden torus-clustering

GPH row-clustering
GPH block-clustering
PMLS row-clustering

PMLS block-clustering

Figure 18. Speedups of matMult on the Beowulf
One important di�erene between the implementations of the threelanguages is the way that data items are paked in order to send themto other proessors. In PMLS a generi serialisation routine is used,whereasGpH implements its own graph paking algorithm. As a result,the PMLS version is more portable, but the GpH and Eden versionsare in general more eÆient. Graph paking ould be improved evenfurther by developing speialised paking routines for ommonly useddata strutures, suh as lists, thereby reduing paket size and pak-ing time. On a high-lateny arhiteture suh as the Beowulf and forommuniations-bound algorithms suh as matMult this should yieldsigni�ant performane improvements.In summary this example shows how Eden's riher oordination on-struts, ompared to GpH and PMLS, an be used to improve parallelperformane, without having to resort to mehanisms of expliit syn-hronisation. The higher level of abstration inGpH and PMLS reduesprogramming e�ort for the initial version, but also redues the amountof programmer ontrol. Although we desribe Eden as having the mostexpliit oordination in this omparison, it must be emphasised thatit is far more impliit than most onventional parallel programminglanguages.

main.tex; 6/12/2002; 16:42; p.29

30 Loidl et al.Table II. Performane Results for C+PVM matmult pro-grams on the Beowulf (runtimes in seonds)row-parallel blok-parallel torus-parallel# PEs RT Spdup RT Spdup RT Spdup1 5.75 1 5.75 1 5.75 14 2.00 2.87 2.00 2.87 1.93 2.989 1.36 4.23 1.18 4.87 1.08 5.3216 1.34 4.29 1.03 5.58 0.79 7.2825 1.83 3.14 0.97 5.93 0.68 8.46
4.2.5. Comparison with CThe three parallel matrix multipliation algorithms have also been im-plemented in C+PVM using the GMP (Gnu Multi-Preision) libraryto ope with arbitrary sized integers. The program sizes di�er substan-tially from the parallel funtional programs. The sequential C matrixmultipliation program using the GMP library onsists of 156 lines ofode (exluding blank lines and omments), while the parallel programsomprise 378 lines of ode for the row-parallel algorithm, 436 lines forthe blok-parallel version and 457 lines for the torus algorithm. Theparallel C+PVM programs are a fator of 4 to 6 longer than our parallelfuntional programs. Table II shows some runtimes and speedups of thedi�erent parallel C+PVM programs for 200�200 matries of arbitrarypreision integers.The most involved torus-parallel program yields the best parallelruntimes and speedups. While the sequential runtime is a fator of 4to 6 better, the speedup values progress in a similar way as for thefuntional programs.4.3. LinSolv4.3.1. Problem DesriptionThe linSolv algorithm disussed in this setion �nds an exat so-lution of a linear system of equations of the form Ax = b whereA 2 Zn�n; b 2 Zn; n 2 N. In ontrast to more ommon numerialalgorithms, whih usually produe an approximate solution over oat-ing point numbers for a given auray, the algorithm presented here�nds an exat solution and works over arbitrary preision integers.

main.tex; 6/12/2002; 16:42; p.30

Comparing Parallel Funtional Languages: Programming and Performane 314.3.2. Parallel AlgorithmTo �nd an exat solution for a given system of equations, linSolvuses a multiple homomorphi images approah (Lauer, 1982). This is aommon omputer algebra approah and onsists of the following threestages:1. map the input data into several homomorphi images,2. ompute the solution in eah of these images, and3. ombine the results of all images to a result in the original domain.Figure 19 depits this struture for the implementation of linSolv.This struture is partiularly useful for operations on arbitrary pre-ision integers. In this ase the original domain is Z, the set of allinteger values, and the homomorphi images are Z modulo p, writtenZp, with p being a prime number. If the input numbers are very bigand eah prime number �ts into one mahine word the basi arithmetiin the homomorphi images is heap �xed preision arithmeti. Only inthe ombination phase, when applying a fold-based Chinese RemainderAlgorithm (CRA) (see Lipson (1971)), expensive arbitrary preisionarithmeti has to be used to onstrut the result values. A detaileddisussion of several variants of this algorithm is given in Loidl (1997).The basi parallel struture of the algorithm is one of performingall omputations in the homomorphi images in parallel. The Haskellode for the top-level funtion, whih is unhanged for the parallelGpH version, is shown in Figure 20. It uses LU-deomposition followedby forward and baksubstitution to ompute the solution pmx in thehomomorphi image (Press et al., 1992). The main diÆulties in theparallel algorithm are two-fold. Firstly, we have to make sure that newresults are omputed if primes turn out to be \unluky", i.e. if thedeterminant of the input matrix A in the homomorphi image gen-erated by this prime number is zero. This an be done either usingdemand-driven evaluation (GpH) or adding expliit ode to handlethat ase (Eden, PMLS). Seondly, we have to avoid a sequential bot-tlenek in the ombination phase at the end. In earlier papers we haveexperimented with a tree-based CRA routine to redue this bottlenek.However, an analysis of the CRA ode (Loidl, 1997) reveals that a tree-based CRA algorithm performs muh more total omputation than alist-based one, due to the more expensive omputations at eah nodeof the tree, and we use a list-based CRA in the parallel algorithm.4.3.3. Implementations4.3.3.1. GpH: The parallelGpH version attahes the strategy shownin Figure 21 to the top level expression of the sequential ode in the last
main.tex; 6/12/2002; 16:42; p.31

32 Loidl et al.Z Z
..
�Æ �CRAZst

������) PPPPPPq
�����)? ?PPPPPq ?

ba pkp1
ststZp1 ZpkZp1Zp1 ZpkZpk

ap1 bp1 apk bpkxp1 xpk
x

Forward MappingLU-deomp and fwd/bwd substLifting
Figure 19. Struture of the linSolv algorithmline of Figure 20. We use an in�nite list xList representing the resultsof all homomorphi images together with the prime number, as the basisof the image, and the value of the determinant of A in that image.The strategy guesses the number of primes needed to ompute theoverall result (noOfPrimes) and uses a parListN strategy to generatedata parallelism over that segment of xList. Using parList insidethe par sol strat strategy, whih is applied to the solution in everyimage, auses eah omponent of the result to be evaluated in parallel.We need to hek whether the determinant is zero to avoid redundantomputation. This hek is done here, rather than when omputingnoOfPrimes to minimise data dependenies in the algorithm. If someprime numbers turn out to be unluky the list ra will evaluate theadditional results by demanding as-yet-unevaluated list elements. The�nal strategy appliation parList rnf x spei�es that all elements ofthe result should be ombined in parallel.4.3.3.2. Eden: Even though omputation in Eden is lazy, ommu-niation is eager, exept for stream-like lists. Thus, are has to betaken not to send the whole list. To ensure a demand-driven eval-uation of homomorphi solutions we use a task farm skeleton asoutlined in Setion 3.1.1. More spei�ally, we use the repliated work-

main.tex; 6/12/2002; 16:42; p.32

Comparing Parallel Funtional Languages: Programming and Performane 33
linSolv :: SqMatrix Integer -> -- nxn matrix A
 Vector Integer -> -- n vector b
 (Vector Integer, Integer, Integer) -- n vector x s.t. A*x=b
linSolv a b =
 let
 {- Step1: forward mapping -}
 ...
 {- Step2: Computation of solutions in Z/p -}
 ...
 -- Infinite list of hom. solutions of a*x=b in Z_p
 xList = map get_homSol primes

 get_homSol :: Integer -> [Integer]
 get_homSol p =
 let
 b0 = toHom p b
 a0 = toHom p a
 modDet = toHom p (determinant a0)
 pmx = -- inlined version of: homsolv0 p a0 b0
 let
 lua = lu p a0
 (l,u) = split_lu p lua
 y = fwd_subst p l b0
 x = bwd_subst p u y
 in
 x
 in
 p : modDet : pmx

 {- Step3: lifting via list-based CRA -}
 ...
 primeList = projection 0 xList -- primes (bases for the hom ims)
 detList = projection 1 xList -- dets in all hom ims
 det = snd (list_cra pBound primeList detList detList)
 x_i i = snd (list_cra pBound primeList x_i_List detList)
 where x_i_List = projection (i+2) xList
 -- overall solution:
 x = vector (map x_i [0..n-1])
 ...
 in
 x ‘using‘ stratFigure 20. Top level ode of the sequential linSolv algorithm (Haskell version)ers paradigm (Lester, 1993). A manager and a set of worker proessesare reated, and two tasks are initially released to eah of the workers.As soon as any worker �nishes a task, it sends the result to the manager,and a new task is delivered to the worker. The omputation in themanager is demand-driven and triggered by the availability of resultvalues. As soon as the manager has all the needed results it terminatesall the worker proesses. Notie that in this speulative version theworkers may be working speulatively on useless tasks, but only whenthe useful tasks have already been onsumed and hene the degree ofspeulation is tightly limited. More details about the repliated workersskeleton an be found in Klusik et al. (2002). Figure 22 shows the Edenode for the speulative version of linSolv. The only modi�ation

main.tex; 6/12/2002; 16:42; p.33

34 Loidl et al.
strat =
 \ res ->
 rnf noOfPrimes ‘seq‘
 parListN noOfPrimes par_sol_strat xList ‘par‘
 parList rnf x
 where par_sol_strat :: Strategy [Integer]
 par_sol_strat = \ (p:modDet:pmx) -> rnf modDet ‘seq‘
 if modDet /= 0
 then parList rnf pmx
 else ()Figure 21. Parallel strategy for linSolv (GpH version)
xList_all = map_rw get_homSol primes

xList = filter lucky xList_allFigure 22. Parallel linSolv (Eden speulative version)to the sequential ode is the use of a parallel repliated workers mapmap rw instead of a sequential map over the in�nite list of primes.To avoid the potential waste of resoures due to speulation wean implement a onservative version as shown in Figure 23. In thisversion the prime numbers are divided into those known to be needed(p needed) and those whih are only needed if some of the earlierprimes are unluky (p spe). The funtion additional adds for eahunluky prime a new prime number to the task list primes'. Note inthe de�nition of additional that due to the demand-driven evaluationthe availability of unluky primes in xs triggers the generation of oneresult element in ys.4.3.3.3. PMLS: The PMLS implementation has been developed fromthe sequential Haskell implementation. Arbitrary length integers areprovided by Objetive Caml's num library, whereas GpH and Eden usethe GNU gmp library. Replaing the default arithmeti for SML withthese arbitrary preision routines exposes some limitations of SML'soverloading sheme. In diret omparison this step was easier in Haskell.The main problem in the PMLS implementation, shown in Figure 24,is the handling of unluky primes. Beause SML is strit, new primesannot simply be demanded during the evaluation of the map skeleton.There are two possible solutions to this problem. Either the homo-morphi solution funtion ould generate a new prime upon detetingan unluky one, as it is done in the onservative Eden version, or theforward-mapping phase ould be made iterative with the number ofvalid solution vetors as a onvergent. The seond of these was imple-mented sine there are problems with generating unique primes within
main.tex; 6/12/2002; 16:42; p.34

Comparing Parallel Funtional Languages: Programming and Performane 35
xList_all = map_rw get_homSol primes

xList = filter lucky xList_all
xList_unlucky = filter (not.lucky) xList_all

(p_needed, p_spec) = splitAt (1 + toInt noOfPrimes) primes
primes’ = p_needed ++ (additional xList_unlucky p_spec)

additional :: [Integer] -> [Integer] -> [Integer]
additional xs ys = zipWith (\ x y -> y) xs ysFigure 23. Parallel linSolv (Eden onservative version)the map instane funtion. Unfortunately this solution to the problemof unluky primes results in less eÆient parallelism for two reasons.Firstly, in the iterative solution we introdue sequential synhroni-sation points at the end of eah iteration to exhange data between theproessors. This is required to guarantee that all proessors, omputingan element of the result vetor, terminate on the same iteration. Thisnesting of parallelism inside an iterative struture is a general problemwith our methodology. To overome this problem it would be possibleto either broadast the onvergent, introduing additional ommuni-ation, or to de�ne a speial iterative skeleton, as it is done in theSkipper system (Serot, 2001). However, we hoose a solution that ismore general albeit also more ostly.Seondly, the amount of parallelism is drastially redued by themap all during the �rst iteration of the getSols funtion. Usually, onlyone or two unluky primes are found for modest sizes of problems. Ifthe number of unluky primes is a multiple of the number of proessors(inluding zero) then there is no parallel performane penalty, otherwisethere is a minimum of one homomorphi solution time as an overhead.Additionally, the optimal granularity of the map all will be di�erentbetween the iterations, the �rst phase more eÆient with oarser gran-ularity (sine there will be the total number of estimated primes todeompose over), the latter with minimal granularity (sine there willonly be a small number of unluky primes). We an set the granularityat runtime but this, urrently, requires expliit programmer input. Analternative would be to have dynami behaviour in our skeletons.4.3.4. Performane ResultsAs inputs for the performane measurements we use a dense 62 � 62matrix of arbitrary preision integers. No element in the matrix islarger than 216 � 1 and the density of the matrix is higher than 90%.The sequential runtimes show PMLS to ahieve best single proessorperformane with 190.8s, followed by GpH with 381.8s, and Eden with491.7s. We attribute this fairly large di�erene mainly to algorithmidi�erenes in the ode: The PMLS version uses a more eÆient for-

main.tex; 6/12/2002; 16:42; p.35

36 Loidl et al.
(* Solve ax = b modulo p *)
fun gen_xList a b p =
 let
 val (a0,b0) = (matHom p a,vecHom p b)
 val modDet = modHom p (determinant a0)
 val ((iLo,jLo),(iHi,jHi)) = matBounds a
 val pmx =
 fxlist jLo (jHi-jLo+L1)
 (fn j => modHom p (determinant (replaceColumn j a0 b0)))
 in
 p::modDet::pmx
 end

(* Iterative forward mapping phase *)
fun getSols xList [] = xList
 | getSols xList primes =
 let
 val xList’ = map (gen_xList aN bN) primes
 val noUnlucky = countUnlucky xList’
 val xList’ = filter (not o isUnlucky) xList’
 val primes’ = additionalprimes primes noUnlucky
 in
 getSols (xList@xList’) primes’
 end
val xList = getSols [] (primesuptomaxprod pBound)

(* Combination via CRA *)
val detList = projection 1 xList
val det = list_cra pBound primes detList detList
fun x_i i =
 let
 val x_i_List = projection (i+2) xList
 in
 list_cra pBound primes x_i_List detList
 end
val x = seqmap x_i (fxlist 0 n (fn x => x))Figure 24. Parallel linSolv (PMLS version)ward substitution after LU deomposition in the homomorphi solutionphase. This di�erene, in ombination with the lazy evaluation meh-anism used in GpH and Eden, leads to a higher heap onsumptionresulting in higher overall runtime. Furthermore, due to implementationlimitations GpH urrently has to use a two-spae garbage olletor,whih is known to be less eÆient than the generational garbage ol-letor used by GHC for sequential exeution (see below). Finally, thedi�erene between Eden and GpH is due to the fat that Eden uses anolder version of GHC.Figure 25 shows the runtimes and Figure 26 shows the relativespeedups for the Eden, GpH, and PMLS implementations of linSolvfor up to 16 PEs on the Beowulf luster. For the input data used inthese measurements a suÆient number of luky primes are generatedto utilise all proessors in the mahine. Sine these top-level threads

main.tex; 6/12/2002; 16:42; p.36

Comparing Parallel Funtional Languages: Programming and Performane 37

0

50

100

150

200

250

300

350

400

450

500

2 4 6 8 10 12 14 16

R
un

tim
e

Processors

LinSolv: Runtimes

Eden
GpH

PMLS

Figure 25. Runtimes of linSolv on the Beowulfan ompute their results independently, they perform relatively littleommuniation and the parallel overhead is relatively small giving goodparallel eÆieny.A diret omparison of the di�erent languages shows that Edenahieves the best overall speedup on 16 PEs: 14.0, ompared to bothPMLS and GpH at 11.9. However, sine Eden has far higher sequen-tial exeution time, the PMLS version is the fastest one on 16 PEs.An examination of the ativitiy pro�les reveals that PMLS's skeletonmaintains more parallelism while olleting the data, whereas in GpHthis �nal stage is mostly sequential.The Eden measurements use the speulative version with the repli-ated workers skeleton that dynamially sends work to proesses. Thisapproah ahieves dynami load distribution without relying on a po-tentially expensive implementation of a virtual shared heap, as used inGpH, and the measurements show good speedups even beyond 16 PEs.In examining the dynami memory management of all systems, weobserve that the total heap alloation on all PEs is highest for PMLS:1052MB, whereas GpH alloates only 618MB. However, due to highermaximal heap resideny in GpH, proessors spend on average 19.0% ofthe total exeution time on garbage olletion, whereas in PMLS thisperentage is only 11.2%. Measuring the heap fragmentation of bothsystems as the standard deviation of alloation on eah proessor weobtain similar values for both systems, 147MB for PMLS and 157MB
main.tex; 6/12/2002; 16:42; p.37

38 Loidl et al.

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

LinSolv: Speedups

Eden
GpH

PMLS
Linear

Figure 26. Speedups of linSolv on the Beowulffor GpH. This indiates that in linSolv, GpH's dynami memorymanagement does not dramatially inrease heap fragmentation.As these numbers indiate, GpH's garbage olletor seems to gen-erate higher overheads than that in PMLS. The main reason is theurrent usage of a one-generation opying olletor, rather than a realgenerational olletor as supported by GHC for sequential ompila-tion (Sansom and Peyton Jones, 1993). Furthermore, Objetive Caml'stwo-generation olletor, as used by PMLS, provides heap inrementalolletion for the young generation, whih better exploits the addi-tional heap spae provided by multiple PEs. The implementation ofa mark-and-sweep olletor for the older generations is known to bevery eÆient, too (Doligez and Leroy, 1993). Another potential reasonfor this overhead is the weighted referene ounting on global pointersin GpH, although this overhead allows PEs to ollet loal garbageindependently, avoiding global synhronisation.In summary the linSolv example demonstrates that for some appli-ations lazy evaluation an redue the amount of oordination required.Both the onservative Eden and the PMLS versions had to introdueadditional oordination to model GpH's demand-driven generation ofparallelism and to handle unluky prime numbers. In Eden the spe-ulative version proved to be faster than the onservative version, butin general suh an approah bears the danger of wasting resoures.Although the stati partitioning and mapping of PMLS is generally
main.tex; 6/12/2002; 16:42; p.38

Comparing Parallel Funtional Languages: Programming and Performane 39less exible than the approah taken in GpH, the re-use of well-tunedparallel skeletons an ompensate for the loss in exibility in this ase.It also indues smaller runtime-overheads e.g. for garbage olletion.In terms of speedup the skeleton-based versions in Eden and PMLSare more eÆient in olleting the results and ahieve the followingspeedups on 16 PEs: 14.0 (Eden), 11.9 (PMLS), 11.9 (GpH), withPMLS having the fastest seuqential exeution.4.4. Ray Traer4.4.1. Problem DesriptionThe raytraer program alulates a 2D image of a sene of 3D objetsby traing all rays in a grid, or window. In traing a ray, the interse-tions with the objets are omputed. When an intersetion is found,the ray is reeted and the olour of the intersetion point is omputedbased on the strength of the ray and on the texture of the objet'smaterial. The ode is based on the Id version that was published as apart of the Impala suite (Impala, 2001) of parallel benhmark programs.4.4.2. Parallel AlgorithmFigure 27 shows the top-level funtion of the sequential Haskell al-gorithm. The funtion ray takes the size of the window in x and ydimension and the world, represented as a list of spheres, as input.The omputation proeeds as two nested maps, with the outer mapoperating over the lines of the grid and the inner map, do line, apply-ing the traepixel funtion to every point in the grid, represented bythe oordinates (i,j), returning a vetor representing the olour.
ray :: Int -> Int -> [Sphere] -> [[((Int, Int), Vector)]]
ray x y world = map do_line sizes_y
 where do_line :: Int -> [((Int,Int), Vector)]
 do_line i = map (\ j -> ((i,j), f i j)) sizes_x
 sizes_x = [0..x-1]
 sizes_y = [0..y-1]
 f i j = tracepixel world lights i j firstray scrnx scrny
 (firstray, scrnx, scrny) = camparams x yFigure 27. Sequential raytraer (Haskell version)We onsider two parallel versions of this program. Both versionsexploit data parallelism but di�er slightly in the way the data is initiallydistributed.4.4.2.1. Parallel map: Beause the omputation to be performed oneah pixel, traepixel, is fairly heap, we do not exploit parallelismin the inner map but instead exeute only the outer map in parallel.

main.tex; 6/12/2002; 16:42; p.39

40 Loidl et al.To ahieve good granularity in the outer loop, the omputation overseveral lines are olleted into hunks and proessed together.4.4.2.2. Diret map: The diret map version exploits the same kindof data parallelism but di�ers in its initial distribution of data. Eahproess is given all neessary data and extrats its own portion ofthe data by seleting lines in the grid. To improve the granularity ofthe ommuniation, sub-sequenes of pixels are olleted into pakets.Typially as many tasks as available proessors (noPe) are generated.To improve the load-balane, task i (0 � i � noPe-1) omputes allresult lines i+j*noPe with j � 0. Note that in this version no dynamidistribution of tasks is required after the startup phase. Compared tothe parallel map version this should ahieve a faster startup of theparallel proesses and a better load distribution.4.4.3. Implementations4.4.3.1. PMLS. The PMLS implementation in Figure 28 uses a par-allel map and has been developed from the sequential Haskell versionin Figure 27.
fun ray x y world =
 let
 val (firstray, scrnx, scrny) = camparams x y
 fun do_pixel ij =
 let
 val (i,j) = (ij div 1000,ij mod 1000)
 in
 ((i,j),tracepixel world lights (real i) (real j) firstray scrnx scrny)
 end
 val ind = indxs 0 (x - 1) 0 (y - 1)
 in
 map (map do_pixel) ind
 endFigure 28. Parallel raytraer (PMLS version)The funtion do pixel initiates ray traing at pixel o-ordinate(i,j) and is mapped over the index image ind. The same onsid-erations regarding granularity ontrol apply to PMLS. However, thehoie whether to do the outer or inner map in parallel is determined bythe harateristis of the PMLS runtime-system. When two skeletonsare diret arguments to eah other, as in the example here (map (mapdo pixel)), there is no advantage in nested implementation sine gran-ularity ontrol is performed automatially inside the map skeleton. Inaddition, the PMLS ompiler requires all free variables in the funtionposition of a map, in this ase do pixel, to be sent to the individualproessors when initialising the skeleton instane. Sine the inner map

main.tex; 6/12/2002; 16:42; p.40

Comparing Parallel Funtional Languages: Programming and Performane 41has free values whih ould (potentially) hange between suessivealls they have to be re-transmitted upon eah all. This means thatthe total amount of data transmitted is signi�antly less if the outermap is implemented in parallel.
ray :: Int -> Int -> Int -> [Sphere] -> [[((Int, Int), Vector)]]
ray chunk x y world = map do_line sizes_y
 ‘using‘ parListChunk chunk rnfFigure 29. Parallel raytraer (GpH version)4.4.3.2. GpH. TheGpH implementation is based on the parallel mapversion and uses an additional expliit parameter hunk to ontrol thesize of the hunks. The ode in Figure 29 shows the body of the funtionray (the loal de�nitions are unhanged), with an evaluation strat-egy implementing granularity ontrol via lustering. We use the sameparListChunk strategy as in the row-lustered matrix multipliation.
ray :: Int -> Int -> [Sphere] -> [[((Int, Int), Vector)]]
ray x y scene = shuffleN outps
 where outps = [(process i -> f_dm i) # void | i <- [0..noPe-1]]
 ‘using‘ seqList r0
 f_dm n _ = map do_line (takeEach noPe (drop n sizes_y))Figure 30. Parallel diret map version of raytraer (Eden version)4.4.3.3. Eden. The Eden implementation uses the diret-map versionand is shown in Figure 30. The funtion f dm represents the work tobe exeuted by one proess. In the diret-map version this inludes theextration of its own portion of the input data using the takeEahfuntion to ombine every n-th line of the grid into one hunk.The proesses are reated in a list of proess instantiations (outps).The sequential strategy seqList r0 is used to drive an eager proessreation, reating the proesses before the outport values are needed.4.4.4. Performane ResultsThe measurements in Figures 31 and 32 use a 350 � 350 image witha hunk size of 10 and a sene onsisting of 640 spheres as input. Thesequential runtimes are: 176.99s for Eden, 163.31s forGpH, and 172.10sfor PMLS. For this appliation the sequential performane of all threeversions is fairly similar with a variation of less than 10%. This is mainlydue to the fat that raytraer does not make use of the laziness in thelanguage: all parts of the piture are indeed omputed and sine there

main.tex; 6/12/2002; 16:42; p.41

42 Loidl et al.

0

20

40

60

80

100

120

140

160

180

4 8 12 16

R
un

tim
e

Processors

Raytracer: Runtimes

Eden direct map
GpH parallel map

PMLS parallel map

Figure 31. Runtimes for raytraer on the Beowulf (in seonds)is no interation they an be omputed eagerly. This dynami programharateristi manifests itself in similar garbage olletion overheadsfor PMLS and GpH: 3.3% and 3.1% as mean over all proessors.For PMLS initial sequential results showed signi�antly poorer per-formane than the GpH and Eden versions. This is due to a knownlimitation of the PMLS ompiler. The results reported here requiredsome minimal user interation during the ompilation proess. ThePMLS group is urrently adding an appropriate sequential optimisationstep to the ompiler.The rather simple and regular struture of the omputation lendsitself to a stati approah suh as the stati task farm in PMLS or thediret-map in Eden. The partitioning of the program an be ahievedstatially and the distribution of work is arried out only one at thebeginning of the program. Sine the work is fairly evenly distributed,no sophistiated dynami load balaning is neessary. On the otherhand enforing a �xed data distribution is easier in Eden than in GpH.In general, the more dynami failities of GpH are not used in thisappliation. We have experimented with GpH versions that model theEden approah more losely, but they did not yield any signi�antperformane improvements.Not surprisingly for an appliation with a fairly regular strutureof parallelism, PMLS performs best in terms of speedup as well asabsolute runtime. On 16 proessors the runtime is 11.4s, orresponding
main.tex; 6/12/2002; 16:42; p.42

Comparing Parallel Funtional Languages: Programming and Performane 43

0

2

4

6

8

10

12

14

16

4 8 12 16

S
pe

ed
up

Processors

Raytracer: Speedups

Eden direct map
GpH parallel map

PMLS parallel map
linear speedup

Figure 32. Speedups for raytraer on the Beowulfto a relative speedup of 15.2. The results for Eden, with its slightlymore dynami resoure management, are similar: parallel runtime of13.4s with a speedup of 13.3. GpH pays a higher ost for its dynamiresoure management, resulting in a omparatively poor speedup of 6.8on 16 proessors and a parallel runtime of 24.1s.Another problem we have observed in the GpH version is a poten-tially poor load distribution where few proessors monopolise the entireavailable parallelism. This is due to a ombination of fators: in thisprogram all parallelism is generated on the main proessor at the be-ginning of the omputation, and on the Beowulf start-up times betweenPEs may vary signi�antly, moreover the GPH runtime-system does noturrently allow tasks to migrate from a loaded PE to an idle PE. Henethe fastest proessor(s) sometimes obtain all available work before theslower proessors have a hane to send their �rst work requests. It ispossible to rudely ontrol the work distribution by imposing an upperlimit on the number of threads that may be alive on one PE, and thatis what we used in these measurements.In ontrast, for PMLS load-balaning is assumed to be a propertyof the skeleton implementation. The parallel map skeleton used byall appliations has a degree of impliit load-balaning as a result ofthe proessor farming model. This works well in ases like raytraerbut requires manual tuning for partiular instanes whih an hangeas exeution proeeeds (for example in linSolv di�erent balaning
main.tex; 6/12/2002; 16:42; p.43

44 Loidl et al.strategies are used for the initial and the additional results). Eden'srepliated worker skeleton map rw as used in the linSolv exampleprovides impliit dynami load balaning based on the master workerparadigm. Surprisingly, this skeleton is outperformed for the raytraerby a stati work distribution where the work list is sent to all proessorsand the work pakages are seleted loally within eah proess.In summary, the results for raytraer underline a general trendin these measurements for Eden and GpH, namely the impat of dy-nami resoure management overheads on salability. Eden, whih hasa lower overhead, performs almost as well as PMLS. However GpHhas to maintain a virtual shared heap, and this diminishes parallelperformane for larger numbers of proessors. In some ases we haveobserved an overhead of up to 16% of the total exeution time, althoughtypial perentages are 3-8% (Loidl, 2002). We are also investigatingre�ned load balaning mehanisms, whih show better performane.5. Related WorkFor omprehensive overviews on parallel funtional programming werefer to Hammond and Mihaelson (1999) and Trinder et al. (2002).In this setion we fous on omparing our approahes with other im-plemented systems. Only few implementations have overome a purelyexperimental status and onrete head-to-head omparisons of di�erentlanguages on the same arhiteture are even rarer. To our knowledgethis paper is the �rst suh systemati omparison.5.1. Skeleton-based ApproahesThe prospet of impliit parallelism with the use of skeletons hasspurred the development of several skeletons-based systems. HDC (Her-rmann, 2000) is a stritly-evaluated subset of Haskell with skeleton-based oordination, in partiular support for fold and map, and severalforms of divide-and-onquer. For the Karatsuba algorithm for polyno-mial multipliation HDC ahieves a relative speedup of 363 on 729proessors of a 1024-proessor transputer-based Parsyte mahine.A system losely related to GpH is Caliban (Kelly, 1989; Taylor,1996) in whih moreover lauses, similar to GpH's using, an beattahed to sequential program soure in order to speify parallel be-haviours. Expressions are annotated to indiate tasks to be reated,and the linkage between the tasks an be spei�ed using normal fun-tions. In the urrent implementation, the proess network is stati,with moreover lauses being resolved at ompile-time and proesses
main.tex; 6/12/2002; 16:42; p.44

Comparing Parallel Funtional Languages: Programming and Performane 45being statially mapped to the target topology. A simple raytraer,introdued by Kelly (1989), has been measured on a 128 proessorFujitsu AP1000, ahieving speedups of up to 24 on 35 proessors.Other prominent skeleton-based systems are SCL (Darlington et al.,1996a) and P3L (Bai et al., 1995). Both use separate oordination lan-guages with small sets of basi skeletons that an be freely nested. Themost mature implementation of SCL, SPF, uses Fortran as omputationlanguage. Substantial appliations suh as a Barnes-Hut algorithm havebeen implemented in SPF (Darlington et al., 1996b) and measured on aFujitsu AP1000. Pelagatti (2002) presents performane results for P3Lon four appliations, inluding a parallel raytraer, obtained with theSkIE prototype environment for P3L on a 24-node Meiko CS-2 and an8-PC Linux luster.An ative researh area in the skeletons ommunity is the nesting ofskeletons (Hamdan, 2000). In partiular, with support for nesting it ispossible to onstrut omplex parallel appliations by omposing andtransforming skeletons using given transformation rules and omposi-tional ost models for performane predition as developed by Pepper(1993) and Bai et al. (1999).5.2. Thread- and Proess-based ApproahesPara-funtional programming, as introdued by Hudak (1986), is thegeneral approah of adding ontrol diretives to a funtional programin order to speify parallel exeution. These ontrol diretives allowthe programmer to desribe detailed shedules of the exeution as wellas a partiular mapping of threads to proessors. First-lass shed-ules (Mirani and Hudak, 1995) extend para-funtional programming toHaskell, using monads to separate expressions and ontrol diretives.These annotations usually desribe potential parallelism, in the senseof GpH's par, and therefore represent a thread-based approah. Itsimplementation builds on the onept of futures, as used in Multi-Lisp (Halstead, 1985). First-lass shedules have been implementedby ompiling Haskell to the MultiLisp-based operating system Sting.Preliminary performane results on a 16 proessor Silion GraphisChallenge shared-memory mahine show good speedups for a parallelBarnes-Hut algorithm for solving the n-body problem (Mirani, 1996).ALFL (Goldberg, 1988) is an LML-like, lazy, impliitly-parallel fun-tional language, implemented on a distributed-memory Intel Hyperubeas well as on a shared-memory Enore mahine, with performaneomparisons between the two arhitetures.Conurrent Clean (Plasmeijer et al., 1999; N�oker et al., 1991) is alazy language with parallelism annotations. In his PhD thesis Kesseler
main.tex; 6/12/2002; 16:42; p.45

46 Loidl et al.(1996) quotes performane results for three systems: Conurrent Cleanon the ZAPP abstrat mahine; Conurrent Clean on the PABC ab-strat mahine; and a Miranda-like, impliitly-parallel, lazy language,implemented on the abstrat HDG mahine (Kingdon et al., 1991).All measurements have been performed on (di�erent) transputer net-works. In ontrast to this paper, no detailed omparison of languagesor systems is given. Kesseler (1996) reports good speedups for smallprograms suh as nqueens (5.6 on 8 proessors) but poorer results fora raytraer (3.9 on 16 proessors) in his implementation.5.3. Other ApproahesOne of the most suessful data parallel funtional languages is NESL(Blelloh, 1996). NESL is a strit, strongly-typed, data-parallel lan-guage with impliit parallelism and impliit thread interation. It hasbeen implemented on a range of parallel arhitetures, inluding ve-tor mahines. A wide range of algorithms have been parallelised inNESL, inluding a Delaunay algorithm for triangularisation (Blellohet al., 1996), several algorithms for the n-body problem (Blelloh andNarlikar, 1997), and several graph algorithms. The fous in these pa-pers, however, is on the omparison and improvement of algorithmsrather than speedup measurements or a omparison with other lan-guages. Two data-parallel extensions of Haskell have been partiallyimplemented: Data Field Haskell (Holmerin and Lisper, 2000) andNepal (Chakravarty et al., 2001). No performane results are available.SISAL (Cann, 1992) is a �rst-order, strit funtional language withimpliit parallelism and impliit thread interation. Its implementationis based on a dataow model and it has been ported to a range ofparallel arhitetures. Good absolute performane in omparison toFortran ode is quoted in LANL (2001).The pHLuid system (Flanagan and Nikhil, 1996) is a parallel imple-mentation of Id on networks of workstations. It uses a dataow model ofomputation in order to ahieve impliit parallelism. Id is polymorphi,higher-order and has a non-strit semantis, implemented via lenient orparallel eager evaluation. A fusion of Id and Haskell, alled pH, has beenproposed (Nikhil and Arvind, 2001) but no implementation is available,yet. Flanagan and Nikhil (1996) report near-linear (relative) speedupson a workstation luster for simple programs suh as nqueens andmatrix multipliation. Hammes et al. (1995) present a rare languageand performane omparison of impliitly parallel Id with sequentialHaskell on a realisti benhmark program.
main.tex; 6/12/2002; 16:42; p.46

Comparing Parallel Funtional Languages: Programming and Performane 476. ConlusionsWe have ompared three state-of-the-art parallel funtional program-ming systems (PMLS, GpH, and Eden) and evaluated their perfor-mane on a Beowulf arhiteture using three symboli appliations:several matrix multipliation algorithms using arbitrary preision arith-meti (matMult); an exat linear system solver (linSolv); and a simpleray-traer (raytraer).PMLS, GpH and Eden all aim to support parallel symboli ompu-tations at low programmer ost. While it is relatively straightforwardto ahieve good (often linear) speedups for regular, numerial parallelomputations, it an be muh harder, or even impossible, to ahievethe same results for irregular, symboli omputations, espeially thosewith omplex data strutures or irregular task strutures (Loidl et al.,1999). Relatively small performane improvements may thus be of muhgreater signi�ane to users of suh systems. At the same time, sym-boli appliation programmers are usually domain experts rather thanomputer sientists, and are often unwilling or unable to invest majore�ort in reoding for parallelism. In this setion, we will evaluate thethree systems in terms of language features, performane, and produ-tivity. We will onsider them in order of antiipated programmer e�ort:namely PMLS, GpH, and Eden.6.1. Summary Language ComparisonAll three funtional languages aim to provide higher-level models ofparallelism, with the objetive of reduing programmer overhead. Allthree abstrat over low-level details of ommuniation timing, datastruture marshaling (inluding yli graph strutures) and synhro-nisation that must be spei�ed in e.g. C+PVM. Moreover, in all threelanguages, details of task/thread reation and program deompositionare delegated to the ompilation system.PMLS provides a onvenient model of impliit parallelism usingskeletons | a set of pre-de�ned higher-order funtions with assoi-ated parallel behaviours. Sine skeletons are partitioned into parallelomponents and mapped to proessing units statially, this approahhas the lowest runtime overhead of the three onsidered here, and wherethe appliation struture �ts the pre-de�ned skeletons perfetly, it willalso have the lowest programmer overhead. However, suh an approahis less exible than the dynami approahes taken by Eden and GpH.This is apparent in less regular or longer-running appliations, suh aslinSolv, where a regular stati struture annot be determined fromthe program soure.
main.tex; 6/12/2002; 16:42; p.47

48 Loidl et al.GpH has a similar philosophy to that of PMLS, aiming to requireminimal programmer input in order to ahieve aeptable parallelperformane. However, it provides more ontrol (if required) overevaluation order, stritness and parallelism, allowing programmableevaluation strategies to be developed. This approah trades low pro-grammer overhead for a variety of programming styles for a potentiallyhigh dynami overhead. This ost is most apparent in regular appli-ations, where a simple stati proess to proessor mapping ould bedetermined either manually or automatially. In suh a ase, manualtuning may be needed to extrat good parallel performane for GpH,where PMLS might automatially �nd suh a mapping, or it might bestraightforward to program suh a mapping in Eden. raytraer is anexample of suh simple stati mapping.Finally, of the three languages studied here, Eden provides the great-est ontrol over parallelism, and thus requires the greatest programmere�ort. Control is provided over task deomposition, alloation to virtualproessors and ommuniation hannels. Given suÆient tuning e�ort,it is possible to develop more sophistiated parallel algorithms, as withthe torus version of matMult (Setion 4.2.2). As with GpH, all PMLSskeletons an be easily repliated (Klusik et al., 2000; Pe~na and Rubio,2001), with a similar mapping e�et. Sine all load management detailsmust be expliitly programmed, however, and there is no support forlazy ommuniation there will be situations where GpH mehanismsannot be easily repliated, suh as using a potentially in�nite numberof homomorphi images in linSolv.Reognising the value of the skeletons approah for suitable appli-ations, all three languages provide support for suh a style. PMLSnaturally provides the most diret support, with stati proess mappingand ost modeling as part of the ompilation proess. GpH providesa full set of standard skeletons written in Haskell, and using a dy-nami ost model and mapping (Hammond and Rebon Portillo, 1999).Haskell's onstrutor lasses are used to abstrat over mahine modelsand alternative data strutures. Finally, a rih set of skeletons, inlud-ing some novel branh-and-bound skeletons, has been developed usingEden onstruts and used on several parallel mahines (Klusik et al.,2000; Pe~na and Rubio, 2001; Du Bois et al., 2002).6.2. Performane ComparisonIt is reeived wisdom that eager evaluation (used for strit funtionalls) will outperform lazy evaluation (used for non-strit funtion alls)due to the overhead of reording partial results in the latter ase. It fol-lows that fully strit languages should outperform non-strit languages
main.tex; 6/12/2002; 16:42; p.48

Comparing Parallel Funtional Languages: Programming and Performane 49Table III. Comparative Performane (Seq RT: runtime on a 1 PE parallel mahine;Par RT: runtime on a 16 PE parallel mahine; Spdup: Speedup on 16 PEs alulatedas Seq RTPar RT) Eden GpH PMLSSeq Par Spdup Seq Par Spdup Seq Par SpdupRT RT RT RT RT RTmatMult 38.5s 13.2s 2.9 30.3s 8.9s 3.4 22.8s 4.3s 5.2linSolv 491.7s 35.1s 14.0 307.9s 25.9s 11.9 190.8s 16.1s 11.9raytraer 177.4s 13.4s 13.3 163.3s 24.1s 6.8 172.1s 11.4s 15.2(experimental results suggest that this an be over a fator of 10 in theworst benhmark ases (Hartel et al., 1996)).Similarly, it is argued that full ommuniation should outperformlazy ommuniation, sine fewer messages are required in the formerase if an entire data struture is ommuniated. Given that PMLS isfully strit, with strit ommuniation, Eden is non-strit, with stritommuniation and GpH is non-strit with lazy ommuniation, wewould onsequently expet PMLS to outperform Eden whih shouldoutperformGpH1. We would also expet the same ordering on the basisof runtime overheads, but with the possibility of similar overheads forEden and PMLS. The performane results summarised in Table III aretherefore somewhat surprising.For all three benhmarks PMLS ahieves the smallest exeutiontimes. In the ase of linSolv, Eden's speedup is higher but sequentialexeution time is higher, too. GpH ahieves similar speedup as PMLSwith sequential time between the other two versions. In the ase ofthe raytraer (the most regular of the three benhmarks we haveonsidered) PMLS shows even better speedups than Eden or GpH.While mirroring earlier results almost exatly (Hammond and RebonPortillo, 1999), the GpH performane for the raytraer is distintlydisappointing. This has subsequently led us to improve the GpH loaddistribution mehanism (Loidl, 2001).For omparison, we have re-implemented the matMult benhmark inC+PVM using the Gnu Multi-Preision library for arbitrary preisionarithmeti (Table IV) and the GNU C ompiler on the same parallelmahine. For the blok-parallel version (the only one implemented inall four systems), the speedup results using full C optimisation (-O2)1 This does disount the maturity of the optimising Glasgow Haskell Compiler,whih forms the basis for the Eden and GpH implementations.
main.tex; 6/12/2002; 16:42; p.49

50 Loidl et al.Table IV. Comparative Performane of Matrix Multipliation in C (Seq RT: runtime ona 1 PE parallel mahine; Par RT: runtime on a 16 PE parallel mahine; Spdup: Speedupon 16 PEs alulated as Seq RTPar RT)C Eden GpH PMLSSeq Par Spdup Seq Spdup Seq Spdup Seq SpdupRT RT RT RT RTmatMult(rows) 5.75s 1.34s 4.3 34.3s 1.7 { { 19.5s 3.3matMult(blok) 5.75s 1.03s 5.6 32.9s 2.1 30.3s 3.4 22.8s 5.3matMult(torus) 5.75s 0.79s 7.3 38.5s 2.9 { { { {are omparable with those for PMLS: 5.6 on 16 proessors. The basesequential performane is, however, a fator of 3-6 better than for thefuntional languages. This is a smaller fator than might have beenexpeted for funtional versus imperative ode, espeially given the useof list strutures rather than in-plae arrays in the funtional versions.We antiipate that the di�erene ould be further redued by using e.g.monadi tehniques to allow in-plae array updates, but at some ostin soure ode legibility/programmer time.6.3. Produtivity ComparisonMeasuring programmer produtivity is notoriously diÆult, due todi�erenes in individual ability, prototyping e�ets, et. We have there-fore hosen to use lines of ode as a reasonable approximation2. Itis aepted that the number of lines of ode produed by any giventrained programmer is roughly onstant regardless of the programminglanguage used or the general ability of the programmer. Whilst notwishing to overstate our �ndings and aepting that small variationsmay not be signi�ant, we therefore believe that this provides a fairassessment of expeted produtivity for the appliations studied.Table V gives the number of lines of ode for eah of the threeprograms that have been studied here, plus orresponding �gures for2 We were unable to satisfatorily separate appliation development time fromexperimentation and system development, as we would have liked, so have omittedthese �gures. Even with pro�ling and tuning (whih, as we have shown is essentialto ahieving good performane), it is unlikely that these would exeed 1-2 dayse�ort for eah of the funtional programs. In omparison, the development time forthe (very simple) parallel C program was more than 1 week, without undertakingperformane tuning or optimisation, and with the bene�t both of prototyping fromthe funtional ode and of ode reuse from other parallel appliations.
main.tex; 6/12/2002; 16:42; p.50

Comparing Parallel Funtional Languages: Programming and Performane 51Table V. Produtivity Comparison (in lines-of-ode)Eden GpH PMLS CSeq Par Seq Par Seq Par Seq ParSize Size Size Size Size Size Size SizematMult 68 34 68 5 85 25 156 301(10) (3)linSolv 473 8 473 10 751 13 | |raytraer 453 10 453 7 410 3 | |
the arbitrary preision matrix multipliation program in C+PVM. Theounts exlude omments and white spae. The parallel ode size repre-sents the number of lines that were either hanged in or newly writtenfor the parallel version. As expeted, these hanges are highly signi�antfor the C program (representing some 65% of the total ode size), butare generally insigni�ant for the funtional programs (in the worstase, representing 33% of the total ode size, for a highly tuned ver-sion of the matrix multipliation algorithm). The sequential funtionalprograms are a fator of 2-3 times shorter than the C equivalent, withthe parallel programs being 4 to 6 times shorter. Clearly, a ertainamount of the C ode ould be reused for other appliations, but thereis equally learly a very high entry prie to parallel programming inC, espeially when omplex data strutures must be ommuniated.The funtional ode desribing suh omplex dynami parallel programstrutures is very onise. Although not a major di�erene, the se-quential Haskell ode is generally slightly shorter than the SML ode.This is mainly a onsequene of better standard library support forHaskell, though high-level language features suh as overloading andlist omprehensions have also been exploited.Sine PMLS is the most impliit approah of the three languagesstudied, and Eden the most expliit, we would antiipate that PMLSshould require least hanges with Eden requiring the most hanges.While this is generally true, the �gures are distorted to some extentby the performane tuning that has been arried out. Although theinitial version of the matMult in PMLS required only 3 lines, the �naltuned version required 25. The orresponding Eden �gures are 10 linesand 34 lines, respetively. The GpH ode was not tuned, however, andtherefore only 5 lines in total were hanged. The linSolv appliationshowed a reversal of the general result, with Eden requiring fewesthanges. This may reet the poor math between the irregular parallel

main.tex; 6/12/2002; 16:42; p.51

52 Loidl et al.struture of this appliation and the standard skeletons/strategies usedby the other two systems. It is worth noting that the total numberof hanged lines is generally small, and that our omparisons musttherefore be orrespondingly tentative.We onlude that while C may o�er better performane than unop-timised funtional ode, the di�erene is less than might be expeted.Moreover, the high level features available in funtional ode mean thatprogrammer produtivity is likely to be muh greater than in C.6.4. Maturity and UsabilityAll three funtional language systems disussed here an be rated asmature researh systems, running a range of parallel benhmark appli-ations on a variety of parallel arhitetures. Work on GpH began in1994, and it sine has been applied to numerous programs, inludingthe 40,000 line Lolita natural language engineering system (Loidl et al.,1997). To assist program development, it o�ers a sophistiated set ofpro�ling tools (Hammond et al., 2000), inluding ideal and realistisimulation. GpH is publily available in OpenSoure form as part ofthe GHC ompiler projet (WWW-GPH, 2001).The Eden system is a later development, sharing underlying paral-lel sheduling and ommuniation infrastruture with the earlier GpHsystem. It has been tested on a variety of small and medium benhmarkappliations, but has not yet been applied to large-sale appliations,suh as Lolita. Both GpH and Eden provide low-level portability byompiling through either C+PVM or C+MPI.In ontrast to the two GHC-based systems, the PMLS systemhas a more heterogeneous struture, exploiting state-of-the-art imple-mentation tehnology from several soures. The ore system uses theObjetive Caml ompiler for sequential ompilation and alls C+MPIroutines for implementing the parallel skeletons. Up-to-date versions ofEden and PMLS are available from the developers on request.7. Future WorkAll three systems are under ative development. For PMLS the ur-rent objetives are to provide a more expressive set of algorithmiskeletons, to optimise the performane of the existing skeletons andto automatially identify skeleton strutures in arbitrary ode. Thiswork will exploit both dynami pro�ling-based performane predition(whih has been found to give good preditions within a narrow rangeof program harateristis) and automati program transformationtehniques.
main.tex; 6/12/2002; 16:42; p.52

Comparing Parallel Funtional Languages: Programming and Performane 53The main researh diretion for GpH is to improve arhiteture-independene by re�ning the mehanisms for load balaning and datadistribution in order to deal with high-lateny mahines suh as Be-owulf lusters. Based on these re�nements, researh will fous on thedevelopment of an adaptive runtime-system apable of automatiallytuning its behaviour to suit the harateristis of the parallel mahine.Finally, following the upgrade to onform to the latest sequentialGHC ompiler, work in Eden will fous on optimisations to redueommuniation osts. AknowledgementsThe authors would like to thank the following organisations for fundingthe work presented here: the Austrian Aademy of Sienes (APARTfellowship 624), the Japan Soiety for the Promotion of Siene (Post-dotoral fellowship P00778), the Spanish Projet TIC2000-0738, andUK's Engineering and Physial Sienes Researh Counil (grants EP-SRC GR/L 93379, EPSRC GR/M 32351 and EPSRC GR/L42889).Our ooperative work would not have been possible without the travelfunding from the following organisations: the British Counil andthe DAAD (grant 1097), and the Spanish-British Ai�on IntegradaHB 1999-0102. ReferenesBai, B., M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneshi: 1995, `P3L:A Strutured High Level Programming Language and its Strutured Support'.Conurreny | Pratie and Experiene 7(3), 225{255.Bai, B., S. Gorlath, C. Lengauer, and S. Pelagatti: 1999, `Skeletons and Trans-formations in an Integrated Parallel Programming Environment'. In: PACT'99| Intl. Conf. on Parallel Arhiteture and Compilations Tehniques, Vol.LNCS 1662. pp. 13{27, Springer.Blelloh, G.: 1996, `Programming Parallel Algorithms'. Communiations of the ACM39(3), 85{97.Blelloh, G., G. Miller, and D. Talmor: 1996, `Developing a Pratial Projetion-Based Parallel Delaunay Algorithm'. In: Symp. on Computational Geometry.Philadelphia, PA, May 24{26, pp. 186{195, ACM.Blelloh, G. and G. Narlikar: 1997, `A Pratial Comparison of N -Body Algorithms'.In: Parallel Algorithms, Vol. 30 of Series in Disrete Mathematis and TheoretialComputer Siene. Amerian Mathematial Soiety.Breitinger, S., U. Klusik, R. Loogen, Y. Ortega Mall�en, and R. Pe~na Mar��: 1997a,`DREAM - the DistRibuted Eden Abstrat Mahine'. In: IFL '97 | Intl.Workshop on the Implementation of Funtional Languages 1997, Vol. 1467 ofLNCS. Univ of St Andrews, Sotland, pp. 250{269, Springer.
main.tex; 6/12/2002; 16:42; p.53

54 Loidl et al.Breitinger, S., R. Loogen, Y. Ortega Mall�en, and R. Pe~na Mar��: 1997b, `The EdenCoordination Model for Distributed Memory Systems'. In: HIPS'97 | Workshopon High-level Parallel Programming Models. Geneva, Switzerland, pp. 120{124,IEEE Computer Siene Press.Burge, W.: 1975, Reursive Programming Tehniques. Addison-Wesley.Cann, D.: 1992, `Retire Fortran? A Debate Rekindled'. Communiations of the ACM35(8), 81{89.Chakravarty, M., G. Keller, R. Lehthinsky, and W. Pfannenstiel: 2001, `Nepal| Nested Data-Parallelism in Haskell'. In: EuroPar'01 | European Conf. onParallel Proessing, Vol. 2150 of LNCS. August 28{31, Manhester, U.K., pp.524{534, Springer.Cole, M. I.: 1989, Algorithmi Skeletons: Strutured Management of ParallelComputation, Researh Monographs in Parallel and Distributed Computing.Cambridge, MA: The MIT Press.Cook, A.: 2001, `Transformation and Proof in a Parallelising Compiler'. Ph.D. thesis,Dept. of Computing and Eletrial Engineering, Heriot-Watt University.Darlington, J., Y. Guo, and H. To: 1996a, `Strutured Parallel Programming: The-ory Meets Pratie'. In: R. Milner and I. Wand (eds.): Researh Diretions inComputer Siene. Cambridge University Press.Darlington, J., Y. Guo, H. To, and J. Yang: 1996b, `SPF: Strutured ParallelFortran'. In: PCW'96 | Intl. Parallel Computing Workshop. Kawasaki, Japan.Doligez, D. and X. Leroy: 1993, `A onurrent, generational garbage olletor for amultithreaded implementation of ML'. In: POPL'93 | Symposium on Priniplesof Programming Languages. pp. 113{123, ACM Press.Du Bois, A., R. Pointon, H.-W. Loidl, and P. Trinder: 2002, `A Delarative Par-allel Bottom-Avoiding Choie'. In: SBAC-PAD 2002 | Symp on ComputerArhiteture and High Performane Computing. Vitoria, Brazil. Submitted forpubliation.Flanagan, C. and R. Nikhil: 1996, `pHluid: The Design of a Parallel FuntionalLanguage Implementation on Workstations'. In: ICFP'96 | Intl. Conf. onFuntional Programming. Philadelphia, Pennsylvania, pp. 169{179, ACM Press.Frens, J. and D. Wise: 1997, `Auto-bloking matrix multipliation, or trakingBLAS3 performane from soure ode'. PPoPP'97 | Symp on Priniples andPratie of Parallel Programming 32(7), 206{216.Goldberg, B.: 1988, `Multiproessor Exeution of Funtional Programs'. Intl. J. ofParallel Programming 17(5), 425{473.Halstead, R.: 1985, `Multilisp: A Language for Conurrent Symboli Computation'.ACM Transations on Programming Languages and Systems 7(4), 106{117.Hamdan, M.: 2000, `A Combinational Framework for Parallel Programming Us-ing Algorithmi Skeletons'. Ph.D. thesis, Dept. of Computing and EletrialEngineering, Heriot-Watt University.Hammes, J., O. Lubek, and W. B�ohm: 1995, `Comparing Id and Haskell in aMonte Carlo Photon Transport Code'. J. of Funtional Programming 5(3),283{316.<URL:http://www.s.olostate.edu/~hammes/douments/final1.ps.Z>.Hammond, K., D. King, H.-W. Loidl, A. Reb�on Portillo, and P. Trinder: 2000, `TheHasPar Performane Evaluation Suite for GpH: a Parallel Non-Strit FuntionalLanguage'. Software { Pratie and Experiene.<URL:http://www.ee.hw.a.uk/~dsg/gph/papers/ps/spe.ps.gz>.Hammond, K., H.-W. Loidl, and A. Partridge: 1995, `Visualising Granularity inParallel Programs: A Graphial Winnowing System for Haskell'. In: HPFC'95
main.tex; 6/12/2002; 16:42; p.54

Comparing Parallel Funtional Languages: Programming and Performane 55| Conf. on High Performane Funtional Computing. Denver, CO, pp. 208{221.<URL:http://www.ee.hw.a.uk/~hwloidl/publiations/Glasgow/HPFC95.ps.gz>.Hammond, K. and G. Mihaelson (eds.): 1999, Researh Diretions in ParallelFuntional Programming. Springer.Hammond, K. and A. J. Rebon Portillo: 1999, `HaskSkel: Algorithmi Skeletonsfor Haskell'. In: IFL'99 | Intl. Workshop on the Implementation of FuntionalLanguages, Vol. 1868 of LNCS. Lohem, The Netherlands, Springer.<URL:http://www-fp.ds.st-and.a.uk/publiations/1999/haskskel.ps.gz>.Hartel, P., M. Feeley, M. Alt, L. Augustsson, P. Baumann, M. Beemster, E. Chail-loux, C. Flood, W. Grieskamp, J. van Groningen, K. Hammond, B. Hausman,M. Ivory, R. Jones, J. Kamperman, P. Lee, X. Leroy, R. Lins, S. Loosemore, N.R�ojemo, M. Serrano, J.-P. Talpin, J. Thakray, S. Thomas, P. Walters, P. Weis,and P. Wentworth: 1996, `Benhmarking Implementations of Funtional Lan-guages with \Pseudoknot", a Float-Intensive Benhmark'. Journal of FuntionalProgramming 6(4).Hern�andez, F., R. Pe~na, and F. Rubio: 2000, `From GranSim to Paradise'. In:SFP'00 | Sottish Funtional Programming Workshop. pp. 11{19, Intellet.Herrmann, C.: 2000, `The Skeleton-Based Parallelization of Divide-and-ConquerReursions'. Ph.D. thesis, University of Passau.Holmerin, J. and B. Lisper: 2000, `Development of Parallel Algorithms in Data FieldHaskell'. In: EuroPar'00 | European Conf. on Parallel Proessing. Munih,Germany, pp. 762{766, Springer.Hudak, P.: 1986, `Para-Funtional Programming'. IEEE Computer 19(8), 60{70.Hughes, R.: 1989, `Why Funtional Programming Matters'. The Computer Journal32(2), 98{107.<URL:http://www.s.halmers.se/~rjmh/Papers/whyfp.ps>.Impala: 2001, `Impala { (IMpliitly PArallel LAnguage Appliation Suite)'.<URL:http://www.sg.ls.mit.edu/impala/>.Karatsuba, A. and Y. Ofman: 1962, `Multipliation of Multi-digit Numbers onAutomata'. Soviet. Phys. Dokl. (7), 595{596.Kelly, P.: 1989, Funtional Programming for Loosely-Coupled Multiproessors,Researh Monographs in Parallel and Distributed Computing. MIT Press.Kesseler, M.: 1996, `The Implementation of Funtional Languages on ParallelMahines with Distributed Memory'. Ph.D. thesis, University of Nijmegen.King, D., J. Hall, and P. Trinder: 1998, `A Strategi Pro�ler for Glasgow ParallelHaskell'. In: IFL'98 | Intl. Workshop on the Implementation of FuntionalLanguages, Vol. 1595 of LNCS. University College London, UK, pp. 88{102.Kingdon, H., D. Lester, and G. Burn: 1991, `The HDG-mahine: a Highly DistributedGraph-Reduer for a Transputer Network'. Computer Journal 34(4), 290{301.Klusik, U., R. Loogen, S. Priebe, and F. Rubio: 2000, `Implementation Skeletons inEden | Low-E�ort Parallel Programming'. In: IFL'00 | Intl. Workshop on theImplementation of Funtional Languages, Vol. 2011 of LNCS. Aahen, Germany,pp. 71{88, Springer.Klusik, U., R. Pe~na, and F. Rubio: 2002, `Repliated Workers in Eden'. In: CMPP'00| Construtive Methods for Parallel Programming. Ponte di Lima, Portugal,Nova Siene Books and Journals. To appear.LANL: 2001, `Sisal Performane Data'. WWW page.<URL:http://www.llnl.gov/sisal/PerformaneData.html>.Lauer, M.: 1982, `Computing by Homomorphi Images'. In: B. Buhberger, G. E.Collins, R. Loos, and R. Albreht (eds.): Computer Algebra | Symboli andAlgebrai Computation. Springer, pp. 139{168.
main.tex; 6/12/2002; 16:42; p.55

56 Loidl et al.Lester, B.: 1993, The Art of Parallel Programming. Prentie-Hall.Lipson, J. D.: 1971, `Chinese Remainder and Interpolation Algorithms'. In:SYMSAM'71 | Symp. on Symboli and Algebrai Manipulation. pp. 372{391,Aademi Press.Loidl, H.-W.: 1997, `LinSolv: a Case Study in Strategi Parallelism'. In: J.O'Donnell (ed.): Glasgow Workshop on Funtional Programming. Ullapool, Sot-land, September 15{17.<URL:http://www.ds.gla.a.uk/fp/workshops/fpw97/Loidl.ps>.Loidl, H.-W.: 1998, `Granularity in Large-Sale Parallel Funtional Programming'.Ph.D. thesis, Department of Computing Siene, University of Glasgow.<URL:http://www.ee.hw.a.uk/~hwloidl/publiations/Glasgow/PhD.ps.gz>.Loidl, H.-W.: 2001, `Load Balaning in a Parallel Graph Reduer'. In: K. Hammondand S. Curtis (eds.): SFP'01 | Sottish Funtional Programming Workshop,Vol. 3 of Trends in Funtional Programming. Bristol, UK, pp. 63{74, Intellet.<URL:http://www.ee.hw.a.uk/~dsg/gph/papers/drafts/sfp01-gum.ps.gz>.Loidl, H.-W.: 2002, `The Virtual Shared Memory Performane of a Parallel GraphReduer'. In: H. Bal, K.-P. L�ohr, and A. Reinefeld (eds.): CCGrid 2002 |International Symposium on Cluster Computing and the Grid. Berlin, Germany,pp. 311{318, IEEE Press.<URL:http://www.ee.hw.a.uk/~dsg/gph/papers/ps/dsm02.ps.gz>.Loidl, H.-W., R. Morgan, P. W. Trinder, S. Poria, C. Cooper, S. L. Peyton Jones,and R. Garigliano: 1997, `Parallelising a Large Funtional Program Or: KeepingLOLITA Busy'. In: IFL '97 | 9th Intl. Workshop on the Implementation ofFuntional Languages 1997, Vol. 1467 of LNCS. Univ of St Andrews, Sotland,pp. 198{213, Springer.<URL:http://www.ee.hw.a.uk/~dsg/gph/papers/ps/lolita.ps.gz>.Loidl, H.-W., N. Saife, G. Mihaelson, and P. Trinder: 2002, `Design Deisions inImplementing Parallel Funtional Languages'. In: IFL'02 | Intl Workshop onthe Implementation of Funtional Languages. Madrid, Spain, September 16{18.In preparation.Loidl, H.-W., P. Trinder, and C. Butz: 2001, `Tuning Task Granularity and DataLoality of Data Parallel GpH Programs'. Parallel Proessing Letters 11(4),471{486.<URL:http://www.ee.hw.a.uk/~dsg/gph/papers/ps/hlpp01.ps.gz>.Loidl, H.-W., P. Trinder, K. Hammond, S. Junaidu, R. Morgan, and S. PeytonJones: 1999, `Engineering Parallel Symboli Programs in GPH'. Conurreny |Pratie and Experiene 11, 701{752.<URL:http://www.ee.hw.a.uk/~dsg/gph/papers/ps/pe.ps.gz>.Loogen, R.: 1999, `Programming Language Construts'. In: K. Hammond andG. Mihaelson (eds.): Researh Diretions in Parallel Funtional Programming.Springer, pp. 63{91.Mihaelson, G., N. Saife, P. Bristow, and P. King: 2001, `Nested AlgorithmiSkeletons from Higher Order Funtions'. Parallel Algorithms and Appliations16, 181{206. Speial Issue on High Level Models and Languages for ParallelProessing.Milner, R., M. Tofte, R. Harper, and D. MaQueen: 1997, The De�nition of StandardML (Revised). Cambridge, MA: MIT Press.Mirani, R.: 1996, `High-level Abstrations for Parallel Funtional Programming'.Ph.D. thesis, Yale University.
main.tex; 6/12/2002; 16:42; p.56

Comparing Parallel Funtional Languages: Programming and Performane 57Mirani, R. and P. Hudak: 1995, `First-Class Shedules and Virtual Maps'. In:FPCA'95 | Conf. on Funtional Programming Languages and ComputerArhiteture. La Jolla, California, pp. 78{85, ACM Press.Mohr, E., D. Kranz, and R. Halstead Jr.: 1991, `Lazy Task Creation: A Tehnique forInreasing the Granularity of Parallel Programs'. IEEE Transations on Paralleland Distributed Systems 2(3), 264{280.MPI: 1997, `MPI-2: Extensions to the Message-Passing Interfae'. Tehnial report,University of Tennessee, Knoxville.Nikhil, R. and Arvind: 2001, Impliit Parallel Programming in pH. MorganKaufmann Publishers. ISBN 1-55860-644-0.N�oker, E., J. Smetsers, M. van Eekelen, and M. Plasmeijer: 1991, `Conur-rent Clean'. In: PARLE'91 | Parallel Arhitetures and Languages Europe.Veldhoven, The Netherlands, pp. 202{219, Springer.Pelagatti, S.: 2002, `Task and Data Parallelism in P3L'. In: F. Rabhi and S. Gorlath(eds.): Patterns and Skeletons for Parallel and Distributed Computing. Springer.To appear.Pe~na, R. and F. Rubio: 2001, `Parallel Funtional Programming at Two Levels of Ab-stration'. In: PPDP'01 | Intl. Conf. on Priniples and Pratie of DelarativeProgramming. Firenze, Italy, September 5{7, pp. 187{198.Pepper, P.: 1993, `Dedutive Derivation of Parallel Programs'. In: R. Paige,J. Reif, and R. Wahter (eds.): Parallel Algorithm Derivation and ProgramTransformation. Kluwer Aademi Publishers, pp. 1{53.<URL:http://uebb.s.tu-berlin.de/papers/published/TR92-23.ps.gz>.Peyton Jones, S., C. Hall, K. Hammond, W. Partain, and P. Wadler: 1993, `TheGlasgow Haskell Compiler: a Tehnial Overview'. In: Joint Framework forInformation Tehnology Tehnial Conferene. Keele, U.K., pp. 249{257.<URL:http://www.ds.gla.a.uk/fp/papers/grasp-jfit.ps.Z>.Peyton Jones, S. and J. Hughes: 1999, `Haskell 98: A Non-strit, Purely FuntionalLanguage'. Available at http://www.haskell.org/.Plasmeijer, R., M. van Eekelen, M. Pil, and P. Serrarens: 1999, `Parallel andDistributed Programming in Conurrent Clean'. In: K. Hammond and G.Mihaelson (eds.): Researh Diretions in Parallel Funtional Programming.Springer, pp. 323{338.Press, W., S. Teukolsky, W. Vetterling, and B. Flannery: 1992, Numerial Reipesin C: The Art of Sienti� Computing, Chapt. LU Deomposition and ItsAppliations. Cambridge University Press, 2nd edition. ISBN 0-521-43108-5.PVM: 1993, `Parallel Virtual Mahine Referene Manual, Version 3.2'. Universityof Tennessee.Quinn, M.: 1994, Parallel Computing. MGraw-Hill.Ridge, D., D. Beker, P. Merkey, and T. Sterling: 1997, `Beowulf: Harnessing thePower of Parallelism in a Pile-of-PCs'. In: IEEE Aerospae Conferene. pp. 79{91.<URL:http://www.beowulf.org/papers/AA97/aa97.ps>.Rubio, F.: 2001, `Programai�on Funional Paralela E�iente en Eden'. Ph.D. thesis,Universidad Complutense de Madrid (Spain). In Spanish.Sansom, P. and S. Peyton Jones: 1993, `Generational Garbage Colletion for Haskell'.In: FPCA'93 | Funtional Programming Languages and Computer Arhiteture.Copenhagen, Denmark, pp. 106{116, ACM.Sansom, P. and S. Peyton Jones: 1995, `Time and Spae Pro�ling for Non-Strit,Higher-Order Funtional Languages'. In: POPL'95 | Symp. on Priniples ofProgramming Languages. pp. 355{366, ACM.
main.tex; 6/12/2002; 16:42; p.57

58 Loidl et al.Saife, N., G. Mihaelson, and S. Horiguhi: 2001, `Comparative Cross-PlatformPerformane Results from a Parallelizing SML Compiler'. In: IFL'01 | Intl.Workshop on the Implementation of Funtional Languages, Vol. 2312 of LNCS.Stokholm, Sweden, Sep 24{26, pp. 138{154.Serot, J.: 2001, `Tagged-token Data-ow for Skeletons'. Parallel Proessing Letters11(4), 377{392.Taylor, F. S.: 1996, `Parallel Funtional Programming by Partitioning'. Ph.D. thesis,University of London.Trinder, P., K. Hammond, H.-W. Loidl, and S. Peyton Jones: 1998, `Algorithm +Strategy = Parallelism'. J. of Funtional Programming 8(1), 23{60.<URL:http://www.ee.hw.a.uk/~dsg/gph/papers/ps/strategies.ps.gz>.Trinder, P., K. Hammond, J. Mattson Jr., A. Partridge, and S. Peyton Jones: 1996,`GUM: a Portable Implementation of Haskell'. In: PLDI'96 | Programming Lan-guage Design and Implementation. Philadephia, USA, pp. 78{88, ACM Press.<URL:http://www.ee.hw.a.uk/~dsg/gph/papers/ps/gum.ps.gz>.Trinder, P., H.-W. Loidl, and R. Pointon: 2002, `Parallel and Distributed Haskells'.Journal of Funtional Programming 12(4{5), 469{510.<URL:http://www.ee.hw.a.uk/~dsg/gph/papers/ps/jfp01.ps.gz>.WWW-GPH: 2001, `Glasgow Parallel Haskell'. WWW page.<URL:http://www.ee.hw.a.uk/~dsg/gph/>.AppendixA. Auxiliary FuntionsThis appendix summarises auxiliary funtions we have used in the bodyof the paper. Most of these funtions modify a data struture so as tode�ne parallelism over this modi�ed data struture. The ode itself,however, is sequential.Figure 33 presents the ode for some prede�ned strategies used inthe body of the paper. The strategy parListChunk s xs spei�esthe evaluation of segments of size of the list xs in parallel, applyingthe strategy s to every list element.
-- sequentially applies a strategy to the first n elements of a list
seqListN :: (Integral a) => a -> Strategy b -> Strategy [b]
seqListN n strat [] = ()
seqListN 0 strat xs = ()
seqListN n strat (x:xs) = strat x ‘seq‘ (seqListN (n-1) strat xs)

-- applies a strategy to (sequential) chunks of a list in parallel
parListChunk :: Int -> Strategy a -> Strategy [a]
parListChunk n strat [] = ()
parListChunk n strat xs = seqListN n strat xs ‘par‘
 parListChunk n strat (drop n xs)Figure 33. Prede�ned evaluation strategies

main.tex; 6/12/2002; 16:42; p.58

Comparing Parallel Funtional Languages: Programming and Performane 59Figure 34 summarises the funtions for splitting lists into segmentsof (almost) equal size and merging them again. This is used by thematMult and raytraer examples to ahieve \data lustering". Thefuntion splitIntoN n xs splits the list xs into n segments of the samesize, whereas the funtion splitAtN n xs splits a list into segments ofthe size n. The funtion takeEah extrats eah n-th element from agiven list. It is used in unshuffleN to produe a list of lists of everyn-th element, starting with 0-th, 1-st, et element. Thus, unshuffleNis an alternative form of lustering, observing the following identity forall n that divide the length of the input list:shuffleN : (unshuffleN n) == id
-- Auxiliary functions for splitting and merging lists
bresenham :: Int -> Int -> [Int]
bresenham n p = take p (bresenham1 n)
 where bresenham1 m = (m‘div‘p):bresenham1 ((m‘mod‘p)+n)

-- split list into n sublists of (almost) same size
splitIntoN :: Int -> [a] -> [[a]]
splitIntoN n xs = f bh xs
 where bh = bresenham (length xs) n
 f [] [] = []
 f (t:ts) xs = hs : (f ts rest)
 where (hs,rest) = splitAt t xs

-- split list into blocks of size n
splitAtN :: Int -> [a] -> [[a]]
splitAtN n [] = []
splitAtN n xs = ys : splitAtN n zs
 where (ys,zs) = splitAt n xs

-- pick every n-th element from a list, starting from 0th elem
takeEach :: Int -> [a] -> [a]
takeEach n [] = []
takeEach n (x:xs) = x : (takeEach n (drop (n-1) xs))

-- list of lists of every n-th element, starting from 0th, 1st, ...
unshuffleN :: Int -> [a] -> [[a]]
unshuffleN n xs = [takeEach n (drop i xs) | i <- [0..n-1]]

-- combine a list of lists generated by unshuffleN
shuffleN :: [[b]] -> [b]
shuffleN ([]:_) = []
shuffleN xss = map head xss ++ shuffleN (map tail xss)Figure 34. Funtions for splitting and merging lists

main.tex; 6/12/2002; 16:42; p.59

main.tex; 6/12/2002; 16:42; p.60

