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Abstract Multicore and NUMA architectures are becoming the dominant processor

technology and functional languages are theoretically well suited to exploit them. In

practice, however, implementing effective high level parallel functional languages is

extremely challenging.

This paper is a systematic programming and performance comparison of four paral-

lel Haskell implementations on a common multicore architecture. It provides a detailed

analysis of the performance, and contrasts the programming effort that each language

requires with the parallel performance delivered. The study uses 15 ’typical’ programs

to compare a ‘no pain’, i.e. entirely implicit, parallel implementation with three ‘low

pain’, i.e. semi-explicit, language implementations.

We report detailed studies comparing the parallel performance delivered. The com-

parative performance metric is speedup which normalises against sequential perfor-

mance. We ground the speedup comparisons by reporting both sequential and parallel

runtimes and efficiencies for three of the languages. To measure the programming effort

required by each language we record the number of programs improved and the relative

and absolute program changes required to coordinate the parallelism.

The results of the study are encouraging and, on occasion, surprising. We find

that fully implicit parallelism as implemented in FDIP cannot yet compete with semi-

explicit parallel approaches. Semi-explicit parallelism shows encouraging speedup for

many of the programs in the test suite. Languages with implementations designed for

distributed memory architectures perform surprisingly well given their high message-

passing costs. This leads us to speculate that, as the number of cores grow, imple-

mentations with some form of independent heap will outperform those with shared

heaps.
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1 Introduction

Physical limits of semiconductor technology and improved manufacturing technologies

are driving processor technology towards multi and many cores. This hardware trend

has engendered much interest in functional languages, as their statelessness makes them

well suited to exploit multi and many cores, and matching interest in the functional

community in developing technologies to exploit the new hardware, e.g. [8].

The key advantage of a referentially transparent language is that the implementa-

tion has considerable freedom of execution order while preserving program semantics.

The benefits of a functional paradigm for parallel evaluation have been recognised for

forty years, e.g. [42], and there has been sustained effort to realise this potential. A

good survey of the concepts and history of parallel functional programming is available

in [17], and a comprehensive survey of parallel Haskells in [41].

Typically a parallel functional program must not only specify the computation

i.e. a correct and efficient algorithm, it must also specify the coordination e.g. how the

program is partitioned, how parts of the program are placed on processors, or how they

communicate and synchronise. Most parallel functional languages aim to combine high

level coordination sublanguages with their high level computation language. A range

of high level coordination models have been used including data parallelism e.g. [9,

6], semi-explicit models e.g. [26,40], coordination languages e.g. [34], and algorithmic

skeletons e.g. [30,20]. The ultimate extreme is to make coordination entirely implicit,

typically using either profiling as in [19] or parallel iteration as in [16]. The slogan

associated with languages with high-level coordination is ‘Low Pain Parallelism’ and

with implicit languages is ‘No Pain Parallelism’. The challenge, then, is to produce

robust portable language implementations that deliver good parallel performance from

such high-level, or vanishing, coordination specifications.

This paper provides a snapshot of multicore functional programming by systemati-

cally comparing four parallel Haskell implementations on a common multicore architec-

ture. The comparison contrasts the programming effort required to specify coordination

with the parallel performance delivered in each language. The comparison uses 15 pro-

grams carefully selected, i.e. without regard for their inherent parallelism, from parts

of the nofib benchmark suite [32]. In consequence, the results reflect the multicore

performance that might be expected for a ‘typical’ set of Haskell programs (Section 4).

The parallel Haskells and associated implementations studied are depicted in Fig-

ure 1. We compare a ‘no pain’ approach, Feedback Directed Implicit Parallelism

(FDIP) [19], with three ‘low pain’, i.e. semi-explicit languages [24] (Section 2). The

semi-explicit Haskells are Eden [26] and two implementations of Glasgow parallel

Haskell (GpH) [40], namely GHC-SMP an optimised shared memory implementation

integrated in GHC from version 6.6 onwards [5], and GpH-GUM a message-passing

implementation designed for shared and distributed memory architectures [39] (Sec-

tion 3).

We articulate the experiment design in Section 4. Although the parallel Haskell

implementations all share the same optimising Glasgow Haskell Compiler technology

(GHC), each uses a different version, and hence the performance comparisons are based

on speedups, which normalise against different sequential performance. We establish

a baseline for the speedup comparisons by reporting sequential and parallel runtimes

and efficiencies for three of the languages (Section 5).

We report detailed parallel performance and programming effort studies focusing

on the number of programs improved, speedups delivered, and program changes re-
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Fig. 1 The Parallel Haskells and Implementations Studied

quired to coordinate parallel evaluation (Section 6). We make a study comparing the

scalability, the programming effort required, and the parallel performance achieved, in

each language (Section 7). We conclude by summarising the key results and discussing

their implications (Section 8).

This paper extends [2] as follows. It presents a more detailed language comparison

including coverage of recent parallel Haskells in Section 2. It presents a more detailed

language implementations comparison in Section 3. It presents additional sequential

and parallel performance results together with a more detailed analysis in Section 5.

2 Parallel Haskell Language Comparison

The parallel Haskells studied are depicted with their implementations in Figure 1. The

FDIP implicit approach we consider supports GHC Haskell, but as Haskell is well-

known this section focuses on GpH and Eden, the two semi-explicit Haskell extensions

that are compared in the remainder of the paper. The languages supported by the

GpH implementations have small differences, and we denote them as GpH-GUM and

GpH-SMP.

In fact FDIP supports the Concurrent Haskell [35] superset of Haskell, and both

Eden and GpH-SMP also support concurrency, i.e. multiple stateful (IO) threads, in

addition to the stateless parallel threads. More precisely, GpH-SMP is a superset of

Concurrent Haskell. However concurrency is not used in our study and so our language

comparison focuses on parallelism only.

FDIP, Eden, and both GpH implementations all rely on sophisticated runtime

support. In contrast a number of parallel Haskells have emerged very recently that lift

coordination aspects to the language level. These include the Par Monad [29], HdpH [27]

and Meta-Par [15]. Cloud Haskell [13] is similar in lifting distributed coordination to the

Haskell level. These languages are developing rapidly, and once the rate of development

slows a systematic study comparing the languages with built-in parallelism with those

with language-level parallelism would be worthwhile.

We illustrate the coordination extensions by using them to parallelise the Boyer

nofib program [32]. This is a Haskell version of the relatively naive “Boyer” theorem

proving benchmark. The program rewrites a given input term according to a given set

of lemmas in an attempt to produce the value True meaning that the original term

was a valid theorem. The Boyer benchmark typifies symbolic computations that are a

common Haskell application area. Figure 2 shows the key top-level function where, in

a simple extension to the original program, the input size n is passed as a parameter.
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test :: Int -> Bool

test n = all test0 (take n (repeat (Var X)))

Fig. 2 Haskell Top-level Boyer function

2.1 Glasgow parallel Haskell (GpH)

GpH [40] is a modest extension of Haskell98 with parallel (par) and sequential (pseq)

composition as coordination primitives (see Figure 3). Denotationally, both constructs

are projections onto the second argument. Operationally pseq causes the first argument

to be evaluated before the second and par indicates that the first argument may be

executed in parallel. The latter operation is called the “sparking” of parallelism and

is used in different variants in many parallel languages. The runtime-system, however,

is free to ignore any available parallelism. In this model the programmer only has

to expose expressions in the program that can usefully be evaluated in parallel. The

runtime-system manages the details of the parallel execution such as thread creation,

communication etc.

par :: a -> b -> b -- parallel composition

pseq :: a -> b -> b -- sequential composition

type Strategy a = a -> () -- type of evaluation strategies

using :: a -> Strategy a -> a -- strategy application

rwhnf :: Strategy a -- reduce to weak head normal form

class NFData a where -- class of reducible types

rnf :: Strategy a -- reduce to normal form

parList :: Strategy a -> Strategy [a]

-- Apply a strategy in parallel

-- to every element of a list

parList strat [] = ()

parList strat (x:xs) = strat x ‘par‘ (parList strat xs)

Fig. 3 Coordination in GpH: Evaluation Strategies

Experience of implementing non-trivial programs in GpH shows that the unstruc-

tured use of par and seq operators can lead to rather obscure programs. This problem

can be overcome with evaluation strategies: lazy, polymorphic, higher-order functions

controlling the evaluation degree and the parallelism of an expression. They provide a

clean separation between coordination and computation. The driving philosophy be-

hind evaluation strategies is that it should be possible to understand the computation

specified by a function without considering its coordination.

Figure 3 shows both basic, and composite original evaluation strategies. A new

formulation of evaluation strategies has recently been developed [28], but the programs
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here are parallelised using the original strategies. The using construct applies a strategy

to an expression. The basic strategy rwhnf reduces an expression to weak head normal

form (WHNF). The overloaded basic strategy rnf reduces an expression to normal form

(NF), and is instantiated for all major types. As functions, strategies can be combined

using the power of the language, e.g. composed or passed as arguments. For example

parList applies strategy strat to every element of a list in parallel.

test :: Int -> Int -> Bool

test n m = all (&& True) res

where xs = take n (repeat (Var X))

xs1 = splitAtN m xs

res = map (all test0) xs1 ‘using‘ parList rnf

splitAtN :: Int -> [a] -> [[a]]

splitAtN n [] = []

splitAtN n xs = ys : splitAtN n zs

where (ys,zs) = splitAt n xs

Fig. 4 GpH Top-level Boyer function

Figure 4 shows the GpH parallelisation of the top-level Boyer test function, and

works as follows. The input list is bound to a variable xs, and then split into d(n/m)e
chunks and bound to xs1. In the programs measured in the remainder of the paper

there are 8 chunks. Next the condition (all test0) is mapped over the chunks to

give a list of intermediate results res. It is this mapping that is parallelised (‘using‘

parList rnf). The final stage is to combine the intermediate results all (&& True)

res.

The parallelisation illustrates some interesting points. In this program, just 1 of

the 52 functions in the 300 line program changes. This is the case for many, but not

all, programs. Exceptions include Sphere and Hidden where parallelism is introduced

in more than one function. The parallel paradigm is chunked data parallelism. That is,

the parallelism is determined by the underlying data structure, and to obtain suitable

thread granularity, the program has been changed to aggregate the input. In other

programs it is possible to introduce parallelism without changing the algorithmic or

computational part of the program, e.g. [23].

2.2 Eden

Eden [26] extends Haskell with syntactic constructs to explicitly define and instantiate

processes. In contrast to the other languages, such direct Eden programming exposes

parallel tasks at the language level, and requires the programmer to manage them using

the control mechanisms provided in the language. In practise however, Eden provides

libraries of skeletons [26,3] and many programs, including all of the nofib suite here,

can be parallelised using them.

Eden supports a distributed memory parallel paradigm. That is, processes share no

values, and communicate only by messages. It might be thought that such a paradigm
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newtype Process a b = ...

-- process abstraction (language construct)

process :: (Trans a, Trans b) => (a->b) -> Process a b

-- process instantiation

(#) :: (Trans a, Trans b) => Process a b -> a -> b

-- operating on lists of process abstractions and input

spawn :: (Trans a, Trans b) => [Process a b] -> [a] -> [b]

-- non-deterministic merge process

merge :: Process [[a]] [a]

Fig. 5 Basic Coordination Constructs in Eden

would not be suitable for parallelism on shared-memory multicore architectures, how-

ever recent results have shown good performance [5], as indeed do the results in Sec-

tions 5, 6, 7. We return to this issue in Section 8.2.

In direct usage Eden is explicit about process creation and about the communi-

cation topology, but implicit about other control issues such as sending and receiving

messages, and process placement. Granularity is under the programmer’s control be-

cause he/she decides which expressions must be evaluated as parallel processes, and

also some control of the load balancing is possible at the program level.

Eden provides process abstraction and process instantiation for coordination as

shown in Figure 5. The expression process (\ x -> e) of type Process a b denotes

a process abstraction constructed from the function \ x -> e of type a -> b. A process

can be instantiated using the infix (#) operator. Each time an expression e1 # e2 is

evaluated, a new process is created to evaluate the application of the function e1 to

the argument e2. Once instantiated, the new process will be executed in parallel with

the instantiating caller. We refer to the new process as the child process, and to the

instantiating process as the parent.

Parent and child process do not share any data, they communicate by exchanging

messages through (implicit) communication channels created on process instantiation.

Therefore, the argument and result types of the function embedded in a process ab-

straction have to be instances of the type class Trans. This type class provides functions

for data transmission between parent and child process. If the argument or result of a

process is a tuple, several channels will be created – one for each element of the tuple.

The instantiation semantics specifies where each expression is evaluated, and the

communication pattern: (1) The process abstraction e1, together with its whole envi-

ronment, is copied in the current evaluation state to another processor, and the child

process is created there to evaluate the application of the function e1 to e2. The child

process will receive the argument e2 from the parent through a channel or several

channels if e2 is a tuple. (2) the argument expression e2 is eagerly evaluated in the

parent process. The resulting normal form data is communicated to the child process

through the channel(s) as its input argument. (3) The child process sends the result of

the function application to the parent process over the result channel(s).

Once a process has been created, only fully evaluated data objects are communi-

cated. The only exception are lists: they are transmitted in a stream-like fashion, i.e.
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element by element. Each list element is first evaluated to normal form and then trans-

mitted. Processes trying to access input not yet available are temporarily suspended.

This is the only synchronising mechanism in Eden.

To instantiate a whole set of processes on different input, a special spawn function is

provided, which is denotationally equivalent to zipWith (#), but creates all processes

at once, when the computation demands one of their results.

Algorithmic skeletons abstract common patterns of parallel evaluation into higher

order functions [10]. They simplify the development of parallel programs by hiding

coordination details from the programmer, and may provide ready-made parallel cost

models. Eden supports a range of skeletons [26,3], and some of these have been used

to parallelise the nofib programs. Appendix A presents and discusses the Eden imple-

mentation of a basic master-worker skeleton that is used to parallelise several of the

nofib suite, including Boyer.

test n m f = all (&& True) res

where

xs = take n (repeat (Var X))

xs1 = splitAtN m xs

res = parallelMap (all test0) xs1

parallelMap = mw np pf

np = noPe

pf = min 100 maxpf

maxpf = max 2 (n ‘div‘ (m*np*f)))

splitAtN :: Int -> [a] -> [[a]]

splitAtN n [] =... -- see earlier code

Fig. 6 Eden Top-level Boyer function

Figure 6 shows the Eden skeleton-based parallelisation of the top-level Boyer test

function, and works as follows. As before, the input list is chunked into xs1 and the

intermediate results combined by all (&& True) res in the final stage. The mapping

of (all test0) over the chunks is parallelised using a master worker skeleton mw, as

specified in Appendix A. The master worker skeleton has a master process that man-

ages the parallel evaluation, and a set of worker processes. The number of workers is

determined by np, the first skeleton parameter. The master distributes tasks, i.e. the

function applied to some chunk, to the workers and collects the results. To hide the

communications latency between completing a task, and the next task arriving from

the master, each worker prefetches a number of tasks, determined by pf the second

skeleton parameter.

In the Boyer test function the number of tasks to prefetch is specified by the f

parameter, calculated from the total number of tasks. That is, the number of tasks to

prefetch is set to 1
f th of the average number of tasks per worker, but at least 2 and

not more than 100 tasks. The average number of tasks is computed as list length (n)

divided by chunk size (m) and number of workers (np), that is
⌊

n
m·np·f

⌋
. As in GpH
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Language/ Haskell GpH Eden

Description (FDIP)

Classification Implicit Semi-explicit Semi-explicit

Evaluation Order Normal Order Normal or Mixed Mixed

Methodology FDIP Tools Evaluation Strategies Direct or Skeletons

Process Model Speculative Optional Explicit Processes,

& Creation Threads Threads Mandatory Creation

Thread Placement Implicit Implicit & Dynamic Implicit & Static

Communication Channels Implicit Implicit Implicit & Explicit

Table 1 Language-level Comparison of Parallel Haskells

the paradigm is chunked data parallelism, and just one out of 52 functions has been

parallelised, although this time an algorithmic skeleton is used.

2.3 Language Comparison

Table 1 summarises the language level differences in coordination specification in the

three parallel Haskells. Much of the table summarises aspects outlined above. However

a key distinction between the languages is that while FDIP preserves normal order

evaluation of pure expressions, GpH may not, and Eden does not. GpH preserves

normal order evaluation if every evaluation strategy added is no more strict than the

embedding function. However it is often useful to be more strict, e.g. speculatively

evaluating expressions in the anticipation that they will be used. While Eden processes

preserve some normal order evaluation, e.g. of expressions within the body of a process,

they are more strict than the corresponding function, e.g. they eagerly evaluate their

arguments.

As an entirely implicit implementation, FDIP provides the highest level of coor-

dination abstraction, GpH an intermediate level and Eden the lowest in direct usage.

That is, Eden is the most explicit about coordination behaviour, but as we shall see in

Section 7, the use of appropriate skeletons can raise the level of abstraction.

3 Parallel Haskell Implementation Comparison

The four parallel Haskell implementations studied are depicted in Figure 1. All of the

parallel Haskells support high-level coordination, and rely on sophisticated implemen-

tations to effectively manage a vast array of low-level coordination issues typically

including task placement, communication, synchronisation, and storage management.

All four implementations perform parallel graph reduction [36]. No simple models have

ever been constructed of such systems, and their performance is often extremely hard
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to analyse. Indeed this is why profiling tools are an essential aid to understand parallel

behaviour when tuning the parallel performance of programs written in this class of

language.

3.1 Feedback Directed Implicit Parallelism (FDIP)

FDIP supports the full Concurrent Haskell language compiled with traditional optimi-

sations and including I/O operations and synchronisation as well as pure computation.

Parallelism is introduced and controlled in FDIP in a four stage process [19] as follows.

Firstly an example execution of the program is profiled. Secondly the profile trace

is analysed as a dependency graph of computations to identify useful sources of par-

allelism. Given the large number of potential computations, or thunks, in almost any

Haskell program, the challenge is to identify thunks that are simultaneously indepen-

dent of other thunks, demanded by the program, and with large thread granularity.

The third stage is to recompile the program to automatically introduce parallelism at

the identified program sites. Finally sophisticated mechanisms are introduced into the

runtime system to manage the threads introduced at these sites. These include treating

the parallel threads as speculative, and managing load with work stealing.

A simulated limit study shows the potential of FDIP to produce substantial amounts

of parallelism for many programs, e.g. utilising at least 8 cores for 40%, and at least

2 cores for 80%, of the 20 nofib programs studied. However the multicore performance

is disappointing with only 5 programs out of 20 delivering a speedup of more than

10% [19].

3.2 GHC-SMP

Since 2004 the Glasgow Haskell Compiler (GHC) has supported a shared-memory im-

plementation of GpH, and we term this implementation GHC-SMP. The shared mem-

ory implementation is evolving rapidly, and the precise version we describe here and

measure in later Sections is based on GHC 6.10.1. The GHC runtime system imple-

ments Concurrent Haskell threads using a system of lightweight threads multiplexed

onto a small number of heavyweight OS threads in order to achieve real parallelism

on a multiprocessor, while still keeping overheads of concurrency low. The parallel

runtime system is built around the notion of capability. A capability represents the

resources for running a Haskell computation. The number of capabilities equates to the

number of Haskell threads that can be running simultaneously at any one time. GHC’s

capabilities correspond precisely to the Eden and GUM Processing Elements (PEs)

described below. It is the responsibility of the scheduler to allocate Haskell threads

to capabilities, and Haskell threads may migrate between capabilities at runtime de-

pending on the scheduling policy and runtime parameters. Although the GHC 6.10.1

implementation measured here distributes work eagerly, later unreleased versions gain

improved performance by adopting a lazy work stealing approach [5].

The capability holds all of the private state that a worker needs to execute Haskell

code. The capability has its own allocation area so allocation proceeds without expen-

sive per-object synchronisation [18]. GHC 6.10 supports both parallel and sequential

garbage collection, and the measurements in the following sections use the former. In
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this scheme, when memory is exhausted all cores cease reduction and perform garbage

collection in parallel.

GHC is under development and published performance results are sparse. Perfor-

mance results comparing adapted versions of GHC 6.10.1 on an 8-core machine are

reported in [5], together with the identification of a number of areas for improvement.

3.3 GUM

Graph-reduction on a Unified Machine-model (GUM) is a portable, parallel runtime

environment for GpH [39]. As the name suggests GUM is designed for both shared

and distributed memory architectures. It implements a Distributed Shared Memory

(DSM) [12] model of parallel graph reduction on a distributed, but virtually shared,

graph. Graph segments are communicated in a message passing architecture, using

standard communication libraries like PVM [37] or MPI [31], to provide an architecture

neutral and portable runtime environment.

The unit of computation in GUM is a lightweight thread, and each logical PE is an

operating system process that co-schedules multiple lightweight threads. Threads are

automatically synchronised using the graph structure, and each PE maintains a pool

of runnable threads. Parallelism is initiated by the par combinator: when an expression

x ’par’ e is evaluated, the heap object referred to by the variable x is sparked, and

then e is evaluated. By design, sparking a reducible expression (a thunk) is a relatively

cheap operation, and sparks may freely be discarded if they become too numerous. If

a PE is idle, a spark may be converted to a thread and executed. Threads are more

heavyweight than sparks as they must record the current execution state.

GUM uses dynamic, decentralised, and blind load management. The load distribu-

tion mechanism is designed for homogeneous architectures with uniform PE speed and

communication latency, and works as follows. If (and only if) a PE has no runnable

threads, it creates a thread to execute from a spark in its spark pool, if there is one.

If there are no local sparks, then the PE sends a FISH message to a PE chosen at

random seeking to steal work. If the PE that receives a FISH has a useful spark, it

sends a message to the PE that originated the FISH containing the sparked thunk

packaged with nearby graph. The originating PE unpacks the graph, and adds the

newly-acquired thunk to its local spark pool. To maintain the shared virtual graph, a

message is then sent to record a reference to the new location of the thunk.

GUM delivers good performance for a range of benchmark and real applications

on a variety of parallel architectures, including conventional shared and distributed-

memory architectures [23]. The results reported in Sections 5, 6.3, and 7 extend earlier

shared memory results with the first multicore performance results for GUM. GUM’s

performance is also comparable with other mature parallel functional languages and

with conventional parallel paradigms [22].

3.4 Eden Implementation

Similar to the GUM implementation of GpH, the Eden implementation uses coor-

dinated execution of multiple GHC runtime system instances and message passing

internally. No actual changes are made to the compiler front-end, but the runtime en-

vironment is extended substantially [4]. Each PE in a GUM or Eden system runs a
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sequential copy of the GHC runtime system. Multiple PEs communicate by message-

passing, and the communication layer has been designed to allow plug-in replacement

of different message-passing libraries, including PVM, MPI, or a custom implementa-

tion for shared memory. This paper considers an Eden implementation based on GHC

6.8 using PVM as a message passing library. A native shared-memory implementation

is available from version 7.4, but not considered here.

Eden implements explicit remote task creation mechanism and channel-based com-

munication mechanisms between PEs. Both are exposed to the Haskell level via primi-

tive operations. Eden language-level constructs are implemented as a Haskell module on

top of these more basic primitives [4]. To synchronise communication between the PEs,

placeholders in the heap are used, which will be replaced by arriving message data, i.e.

computation subgraph structures, serialised into one or more packets for transmission.

This is an important difference between the Eden implementation and both GHC-SMP

and FDIP: Eden processes construct and maintain completely independent sub-heaps,

whereas GUM maintains a virtual shared graph by maintaining references between

distributed heaps and reference counting for garbage collection.

Eden’s distributed memory parallel performance is widely reported and shows ex-

cellent runtimes, speedup and scaleup, e.g. [21,33,25]. Eden’s distributed memory per-

formance is also comparable with other mature parallel functional languages, and the

explicit process model gives performance advantages for applications with coarse thread

granularity [22]. The logical separation of heaps between Eden computation units (pro-

cesses) pays off on multicore platforms, showing competitive performance e.g. for co-

ordinating large symbolic computations [1], as reported in a direct comparison with an

optimised multi-threaded GHC 6.8 [5].

3.5 Implementation Comparison

Table 2 summarises the implementation level differences between the four parallel

Haskells. All four implementations perform parallel graph reduction. While an arbitrary

number of Eden processes can be dynamically created, each process is mandatory.

In contrast the other implementations support dynamic techniques including thread

subsumption, sparking, and the creation of optional or speculative threads. Eden also

uses eager work distribution: newly created processes are pushed out to available PEs,

while the other implementations are lazy and idle PEs steal work, i.e. thunks. FDIP

and GpH-GUM are both careful not to duplicate work by evaluating the same thunk

more than once, but work may be duplicated in GHC-SMP or Eden.

A key distinction between the implementations is the heap model: while FDIP

and GHC-SMP have shared heaps, GUM maintains a virtual shared heap, and Eden

supports distributed independent heaps, the latter two supported by message passing.

Message passing is essential for distributed systems but initially seems enormously

expensive compared with shared memory access. That is, subgraphs transmitted be-

tween heaps must be must be serialised into, and deserialised from, messages, and

computationally expensive message-passing libraries invoked.

However the independent heaps maintained by GUM and Eden convey four signif-

icant advantages for shared-memory systems like multicores. Firstly, while the cores in

shared heap implementations like FDIP and GHC-SMP must synchronise to garbage
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Description FDIP GHC-SMP GUM Eden Impl.

GHC Version GHC 6.6 GHC 6.10 GHC 4.06 GHC 6.8

Evaluation Parallel Graph Parallel Graph Parallel Graph Parallel Graph
Model Reduction Reduction Reduction Reduction

Granularity Dynamic Dynamic Dynamic Static
Control

Synch. Thunk Thunk Thunk Channel
Unit Locking Locking Locking Locking

Work Work Work Work Dynamic
Distribution Stealing Pushing Stealing Process

Placement

Work Not Possible Possible Not Possible Possible
Duplication

Heap Shared Shared Virtual Distr.
Heap Heap Shared Heap Heap

GC Synchronised & Synchronised & Independent & Independent &
Sequential Sequential/ Parallel Parallel

Parallel

Table 2 Implementation-level Comparison of Parallel Haskells

collect, GUM and Eden cores can collect independently and hence in parallel 1. Sec-

ondly, synchronisation is confined to limited shared memory areas, essentially the com-

munication buffers. Thirdly, synchronisation granularity is often large, i.e. on large mes-

sages, rather than on individual thunks or memory locations. Finally cache coherency

issues are reduced as tasks do not share caches [1]. We discuss the performance impli-

cations of the heap designs further in Section 8.2.

Although both FDIP and GHC-SMP use dependent stop-the-world GC, such a

design is not inherent. An implementation that maintains some form of thread-private

heap, e.g. [11], would enable independent garbage collection and offer many of the

advantages outlined above, without incurring the high communication costs of message

passing. Indeed we argue that some form of independent heaps will be essential as

multicores evolve towards many cores.

4 Experiment Design

We compare the performance of the four parallel Haskells using the 15 programs from

the ‘real’ and ‘spectral’ sections of the nofib benchmark suite [32] listed in the summary

Table 10. The ‘real’ and ‘spectral’ sections of the nofib suite are carefully designed to

be representative of small Haskell programs, i.e. around 300 source lines of code. The

programs are a substantial subset of the 20 multicore benchmarks used in [19] that

are in turn carefully selected to be representative. Of the five programs not measured,

two are not nofib benchmarks, and three (cacheprof, calendar and fibheaps) are too

1 Indeed, even the collection of references between GUM heaps is asynchronous.
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small to benefit from parallel execution, i.e. where the input cannot be sized to give

a runtime of 3s or more on current hardware. Crucially, other than to exclude short

programs, the programs are not selected a priori for having obvious parallel structure.

Hence our results reflect the multicore performance that might be expected for a set

of ‘typical’ small Haskell programs.

To parallelise the programs in Eden and GpH the programs were first time and space

profiled to identify computationally expensive functions, and these were parallelised.

A variety of parallelisations were investigated for each program and the best selected

for the given input, and hence input size. The same GpH program is evaluated under

GpH-SMP and GpH-GUM, and the Eden program introduces an appropriate skeleton.

Example GpH and Eden parallelisations of the Boyer benchmark are discussed in 2.

All programs are measured on the same input, and with the same heap size. We

follow the common practice of increasing input size in many cases to match improve-

ments in processor technology since the benchmarks were established in 1992. The best

parallel performance is reported for each system. For Eden, GpH-SMP and GpH-GUM

the best performance is obtained on 8 cores, but for FDIP it is obtained on 4 cores as

discussed in Section 7.2.

Parallel executions vary due to factors like non-deterministic scheduling, for ex-

ample in the presence of scheduling accidents the following runtimes (seconds) may

be observed: 35.5, 36.0, 72.8, 34.5, 38.7. With such noisy data many believe that the

median of 36.0 better represents the sample than the mean of 43.5. We follow this com-

mon practice and report measurements that are the median from three executions. To

summarise relative metrics like speedup and % program changes we report geometric

means, also following common practice.

The parallel implementations are all based on the GHC compiler, but use different

versions of it. The FDIP approach uses GHC 6.6, GpH-SMP uses GHC 6.10.1, GpH-

GUM uses GHC 4.06, and Eden uses GHC 6.8. As a research platform GHC evolves,

and typically the sequential execution time of programs is improved by later versions

of the compiler. To address the issue of varying sequential performance, the primary

comparative measure is the speedup relative to the corresponding optimised sequential

GHC compiler, e.g. GpH-SMP speedups are relative to GHC 6.10.1. This measure

substantially normalises against sequential performance and is grounded by runtime

measurements in Section 5.

The programs are all measured on common multicore architectures, namely eight

core machines comprising two quad-cores. The GpH-SMP, GpH and Eden measure-

ments are for Intel Xeon 5410 cores running at 2.33GHz, with a 1998 MHz front-side

bus 6144 KB and 8GB RAM running under Linux Fedora 7. The FDIP measurements

are for Intel Xeon X5350 running at 2.66GHz with 4GB RAM running under Windows

Server 2003 R2 x64 service pack 2.

5 Runtime Comparison

As the parallel implementations use different versions of the GHC compiler (Section 4),

this section provides a baseline for the speedup measurements in the following sections

by comparing the runtimes and efficiencies of the GpH-SMP, GpH-GUM and Eden

parallel implementations on 1, 2, 3, 4, 6, and 8 cores. FDIP is excluded from these

measurement as an implementation is not publicly available.
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Sequential 1 Core
Program GHC GHC GHC GpH GpH Eden

6.10 4.06 6.8 SMP GUM

Boyer 34.3 49.3 36.7 34.1 77.52 37.1
Clausify 31.1 51.2 29.1 30.4 78.7 29.3
Fft2 35.8 75.7 48.6 35.9 80.9 49.2
Rewrite 34.3 68.1 46.8 35.1 94.9 52.05
Geometric Mean 33.8 60.1 39.5 33.8 82.7 40.9

Table 3 Sequential Runtime Comparison (seconds).

Table 3 summarises the single core runtimes of 4 nofib programs that deliver good

speedup. Complete comparative results for all programs in all Haskells will be presented

and discussed later, e.g. in Figure 10 and Table 10. To facilitate comparison, the inputs

for the programs are sized to give sequential GHC 6.10 runtimes of approximately

35s. Columns 2–4 of the table report optimised sequential runtimes for the compiler

instances extended by the parallel Haskell implementations, and these form the basis

for the absolute speedup calculations in the remainder of the paper. The remaining

columns of the table report the 1 core parallel runtimes for each implementation. We

make the following observations.

– The sequential runtimes vary by as much as a factor of 2.1: Fft2 under GHC 6.10

takes 35.8s, and under GHC 4.06 takes 75.7s, but typical variation is less.

– The mean sequential runtimes show that GHC 4.06 is the slowest on a single core,

and 1.8 (60.1/33.8) times slower than GHC 6.10. This reflects recent GHC perfor-

mance improvements. GHC 6.8 is 17% (39.5/33.8) slower than GHC 6.10. Longer

runtimes for GHC 4.06 and GHC 6.8 give GpH-GUM, and to a lesser extent Eden,

an advantage in the following speedup measurements as the compute time is rela-

tively large compared with communication time.

– It is generally anticipated that a parallel language implementation will introduce

some sequential overhead compared with optimised sequential execution. The over-

head is termed sequential efficiency and represents the additional costs of parallel

execution, e.g. launching a single virtual PE and synchronising on closures. The

efficiency is a function of both the parallel program and the architecture, and is

typically around 80% [39].

Comparing columns 3 and 6, and columns 4 and 7, of Table 3 shows that this

expectation is met for GpH-GUM and Eden, with mean sequential efficiencies of

72% (60.1/83.0) and 97% (39.5/40.9) respectively. Surprisingly, comparing columns

2 and 5 shows that although GpH-SMP is slower than GHC 6.10 for two programs

(Fft2 and Rewrite) it is faster for the other two programs, and the mean runtimes

indicate a sequential efficiency of 100%. The GHC-SMP implementation of GpH-

SMP has been carefully designed for efficiency, and while a sequential efficiency of

95% is anticipated, we have yet to explain such exceptional performance.

Table 4 summarises the runtimes of the same 4 programs on 8 cores. We make the

following observations.

– On 8 cores the variation in runtimes is at most a factor of 4.1 (26.9/6.5), between

GpH-SMP and GpH-GUM Rewrite, but is typically rather less.
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SMP GUM Eden

Boyer 10.0 14.1 10.1
Clausify 4.7 11.5 5.1
Fft2 13.1 45.8 17.7
Rewrite 6.5 26.9 9.9
Geometric Mean 8.0 21.1 9.7

Table 4 8 Core Parallel Runtime Comparison (seconds).

– The mean 8-core runtimes show that, for this collection of programs, GpH-SMP

remains fastest, Eden is just 21% (9.7/8.0) slower, and GpH-GUM slowest by a

factor of 2.6 (21.1/8.0).

For comparative purposes Figures 7 and 8 show the runtimes and absolute speedups

of two of the programs from Table 3, namely Boyer and Rewrite. Boyer and Rewrite

are chosen as they give good performance in three of the languages. In Figures 7 and 8

the programs are measured on 1, 2, 3, 4, 6, and 8 cores, and we make the following

observations.

– For both programs the runtime curves are broadly similar for all implementations.

For GpH-SMP and Eden the curves are very similar, and while the Eden is a little

(< 36%) slower on 1 core, the 8 core results are very similar. This is reflected in

the speedup graphs where Eden has better 8-core speedups.

– For both programs in all three implementations scale, i.e. the runtimes fall as cores

are added. The only exceptions are for Boyer between 2 and 4 cores under GpH-

GUM and between 4 and 6 cores under GpH-SMP and Eden. This is in marked

contrast to FDIP, where the best performance may be achieved under 2, 3 or 4

cores [19], and we shall return to this point in Section 7.2.

– Reflecting the runtime curves, the speedup curves for both programs are broadly

similar, and for GpH-SMP and Eden very similar.

– The absolute speedup on a single core reflects the sequential efficiencies of the

implementations.

6 Programming Effort and Performance Results

This section investigates the parallel performance of the four parallel Haskells in con-

junction with the programming effort required to achieve that performance. Paral-

lel performance is measured as absolute speedup over optimised sequential execution

(GHC), i.e. not relative to the single core parallel execution. The programming effort

is measured using logical source lines of code (SLOC) [14], both as an absolute number

and as a percentage of program length. For our purposes SLOC has the advantages

of simplicity and relatively wide use. We discuss issues with measuring programming

effort, and alternative measures in Section 8.2. We also record the parallel paradigm

applied in GpH and Eden.

The following subsections report the programming effort and performance of each

language, and the absolute speedups achieved for all 15 programs in the four lan-

guages are depicted in Figure 10 and summarised in Table 10. Section 7 then makes a

comparison of the approaches.
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6.1 FDIP Multicore Performance

FDIP is entirely implicit, and so no programmer effort is expended other than in

profiling and using a special compiler. Similarly the programmer does not need to

identify and apply some parallel paradigm. The FDIP performance results reported

in this paper are based on the ICFP’07 paper [19], augmented with some additional

results from the authors. Where the other parallel Haskells are measured on 8 cores,

FDIP performs better on 4 cores than on 8 and hence Table 5 follows [19] in reporting

the programs that are improved on 4 cores. It shows that FDIP speeds up only 20%

(3/15) of the programs, with a mean speedup of 1.4, and maximum speedup of 1.8.

Program Speedup Lines
Name Of Code

Hidden 1.82 316
Atom 1.27 57
Simple 1.27 1053
Geometric Mean 1.4

Table 5 FDIP Programs Improved (4 Cores)

Automatically extracting good parallel performance is acknowledged to be a chal-

lenging problem. However some of the reasons for the relatively poor performance of

FDIP are that the implementation is immature compared with the other systems and

has some known technical problems [19]. Specifically, the profiling simulation ignores

several crucial aspects of parallel coordination, namely contention within the GHC run-

time system; the locking overheads; and finally the overheads of sparking work and the

cache effects of moving data from a ‘sparking’ core to one running work speculatively.

6.2 GpH-SMP Multicore Performance

Table 6 reports the programming effort and parallel performance of programs improved

by GpH-SMP on 8 cores. As a semi-explicit parallel language, GpH requires the pro-

grammer to identify a suitable parallel paradigm and introduce evaluation strategies

to apply it. Introducing the parallelism requires changing an average of just 9 lines in

each program, i.e. 3.2% of the code, and we discuss this further in Section 7.1.

The table shows that GpH-SMP improves more than half of the programs, i.e.

53% (8/15). The mean speedup is 2.9, with a best speedup of 6.6 for Clausify. It is

impressive that 3 of the programs achieve speedups of 4 or more on 8 cores, i.e. a

parallel efficiency of 50% or more.

6.3 GpH-GUM Multicore Performance

Table 7 reports the programming effort and parallel performance of programs improved

by GpH-GUM on 8 cores. Only 12 of the 15 programs are attempted for GpH-GUM

as Compress, Hidden and Primetest import modules not available in GHC 4.06.
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Program Spdup Lines Lines % Paradigm
Name Code Chgd Chgd

Clausify 6.6 101 6 6 Chunked Data
Parallelism

Rewrite 5.3 408 14 3 Chunked Data
Parallelism

Sphere 4.0 332 12 4 Nested Data
Parallelism

Boyer 3.4 295 9 3 Chunked Data
Parallelism

Fft2 2.7 705 13 2 Data Parallelism

Primetest 2.0 112 15 13 Chunked Data
Parallelism

Hidden 1.8 316 6 2 Nested Data
Parallelism

Para 1.2 274 3 1 Data Parallelism

Geometric Mean 2.9 9 3.2

Table 6 GpH-SMP Programs Improved (8 Cores)

As before, GpH requires the programmer to identify a suitable parallel paradigm

and apply it. Introducing the parallelism requires changing an average of just 10 lines of

each of these programs, i.e. 3.4% of the code, and we discuss this further in Section 7.1.

The table shows that GpH-GUM improves 42% (5/12) of the programs. The mean

speedup is 2.6, with a best speedup of 4.5 for Clausify.

6.4 Eden Multicore Performance

Table 8 reports the programming effort and parallel performance of programs improved

by Eden on 8 cores. Eden requires that the programmer identify a suitable parallel

paradigm and introduce an appropriately parameterised algorithmic skeleton to exploit

it. This set of programs all use the master-worker skeleton discussed in Section 2.2, but

some do so directly, while others like Boyer and Rewrite chunk the input to improve

thread granularity. Introducing the parallel coordination requires changing an average

of just 10 lines in each program, again just 3.6% of the program text.

The table shows that Eden improves a slightly smaller fraction, i.e. 40% (6/15),

of the programs than GpH-SMP. The maximum speedup of 6.2 is similar to GpH-

SMP (6.6), and the mean speedup is slightly greater, 3.1. It is impressive that 4 of the

programs achieve speedups of 3.7 or more on 8 cores, , i.e. a parallel efficiency of 46%

or more.
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Program Spdup Lines Lines % Paradigm
Name Code Chgd Chgd

Clausify 4.5 101 6 6 Chunked Data
Parallelism

Boyer 3.5 295 9 3 Chunked Data
Parallelism

Rewrite 2.5 408 14 3 Chunked Data
Parallelism

Sphere 1.8 332 12 4 Nested Data
Parallelism

Fft2 1.7 705 13 2 Data Parallelism

Geometric Mean 2.6 10 3.4

Table 7 GpH-GUM Programs Improved (8 Cores)

Program Spdup Lines Lines % Paradigm
Name Code Chgd Chgd

Clausify 6.2 101 7 7 Data Parallelism

Rewrite 4.7 408 15 4 Chunked Data
Parallelism

Boyer 3.7 295 14 5 Chunked Data
Parallelism

Fft2 3.7 705 11 2 Data Parallelism

Compress 1.6 109 3 2 Data Parallelism

Sphere 1.5 332 7 2 Data Parallelism

Geometric Mean 3.1 8 3.2

Table 8 Eden Programs Improved (8 Cores)

7 Comparative Study

This section compares the best parallel performance of the four Haskell languages and

the programming effort required to achieve that performance. Table 9 summarises the

key metrics from section 6.

7.1 Programming Effort Comparison

As a purely implicit approach, FDIP requires minimal programmer effort, simply the

execution of a profiling run. In contrast GpH and Eden both require programmer effort
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Description FDIP* GpH- GpH- Eden
SMP GUM

No. Programs Measured 15 15 12 15
No. Programs Improved 3 8 5 6
% Programs Improved 20% 53% 42% 40%
No. Lines Changed 0 9 10 8
% Code Changed 0 3.2% 3.4% 3.2%
Geometric Mean Speedup 1.4* 2.9 2.6 3.1
* Performance on 4 Cores

Table 9 Comparative Multicore Performance Summary

to time profile the program, to insert evaluation strategies or skeletons, and to tune

the parallel performance. Tables 6, 7, and 8 show that the scale of the program changes

is on average small in both absolute and relative terms, e.g. representing just 10 lines

or 3.4% of the program text in both languages. We conclude that, for these relatively

simple programs, using existing Eden skeletons represents a similar level of coordination

abstraction to evaluation strategies in GpH.

The results also illustrate that in both GpH and Eden some programs are easier to

parallelise than others. That is, the scale of program changes induced by parallelisation

may vary significantly in both absolute and relative terms. For example Table 6 shows

that in GpH the number of lines changed may vary from 3 to 15, and the percentage

of program text may vary from 1% to 13%. Similarly, Table 8 shows that in Eden the

number of lines changed may vary from 3 to 15, and the percentage of program text

may vary from 2% to 7%.

Although in absolute terms the changes required to parallelise the programs are

small, the Source Lines of Code (SLOC) metric does not reflect the programmer effort

expended on understanding the program, on sequential time/space profiling, and on in-

vestigating alternative parallelisations. While time/space profiling is a fast and routine

activity, the key intellectual challenge is to understand the computational structure of

a program written by another programmer. Some, like Clausify, are simple but others,

like SCS, are far more complex. The time to comprehend programs was not measured

systematically, but the mean time is roughly estimated at several days. Of course this

effort would be reduced if the programmer is parallelising a program he/she wrote. Once

the computational structure of the program is understood only half a working day is

required to introduce and tune the parallelism. We return to this issue in Section 8.2.

The parallel paradigms used in the improved programs are all forms of data par-

allelism, sometimes combined with chunking to increase thread granularity, or nesting

to introduce additional parallelism. Section 2 outlines the chunking data parallelism in

the Boyer program.

7.2 Scalability

A key property of a parallel implementation in scalability, i.e. whether performance

increases as processing elements are added. We have already seen the scalability of the

GpH-SMP, GpH-GUM and Eden implementations up to 8 cores in the discussion of

Figure 7.
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Fig. 9 Comparing the Performance Scalability of Parallel Haskells on 4 Cores.

Figure 9 provides a more detailed analysis for three programs (Boyer, FFT2 and

Simple) in each language implementation on 1, 2, 3 or 4 cores. Each program gives

good performance on at least one implementation. The figure shows that in GpH-SMP,

GpH-GUM and Eden the performance of programs that speedup, i.e. Boyer and FFT2,

improves steadily as cores are added. In contrast FDIP delivers the best speedup for

Simple on 3 cores. This is not an isolated result: the 5 programs delivering speedups

under FDIP reported in [19] deliver maximum speedup twice on 3 cores, and three

times on 4 cores.

Furthermore, FDIP ceases to scale beyond 4 cores [38], and this is illustrated by

the 4 core performances of Boyer, Simple and FFT2 in Figure 9, which are uniformly

better than the 8 core performances reported in Figure 10. The reasons for this have

not been established, but are likely to be either lock contention or low-level memory

effects, e.g. disrupting caches when transferring threads between cores.

7.3 Performance Comparison

A complete comparison of the 8 core absolute speedups achieved for all 15 programs in

the four language implementations is depicted in Figure 10 and summarised in Table 10.

The performance price of FDIP’s purely implicit approach is high, and it is the least

effective of the languages surveyed here. It improves the fewest number of programs:

3 out of 15 on 4 cores (Table 5), and 2 out of 15 on 8 cores (Figure 10). Moreover the

mean and maximum speedup are both relatively small at 1.4 and 1.8 respectively on 4

cores. However, a mean speedup of 1.4 on 4 cores shows parallel efficiency approaching
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Fig. 10 Performance Comparison of Parallel Haskells (8 cores)

that of the semi-explicit implementations, i.e. speedups of approximately 3.0 on 8

cores. However FDIP parallelism scales both irregularly, and only to a limited extent.

That is, FDIP does not deliver significant performance gains beyond 4 cores, and it is

hard to predict how many cores will deliver the maximum performance as outlined in

section 7.2.

The performance of GpH-SMP and Eden is broadly similar. The mean speedups

are similar: 2.9 for GpH-SMP and 3.1 for Eden, as are the maximum speedups: 6.6

for GpH-SMP and 6.2 for Eden. However Eden improves a smaller percentage of the

programs: 40% (6/15) compared with 53% (8/15) for GpH-SMP.

The performance of GpH-GUM is marginally worse than GpH-SMP and Eden

with mean speedup of 2.6 and maximum speedup of 4.5. GpH-GUM improves an

intermediate percentage of programs, i.e. 42% (5/12).

We analyse the implications of these relative performances in section 8.2.

8 Conclusion

8.1 Summary

The preceding sections report a systematic comparison of four functional multicore

technologies. The study reflects a snapshot of parallel Haskell technologies and com-

pares the programming effort each variant requires with the parallel performance de-

livered.

We contrast a ‘no pain’ approach with three ‘low pain’ approaches, and start by

outlining and comparing the approaches at both language (Section 2) and implementa-



24

tion (Section 3) levels. We present the design of an experiment that uses 15 programs

carefully selected from the representative parts of the nofib suite and hence our results

reflect the multicore performance that might be expected for a typical set of Haskell

programs (Section 4).

Although the parallel Haskell implementations all use GHC, they each use a differ-

ent version, and hence the primary performance comparison metric is speedup which

normalises against corresponding sequential performance. To ground the speedup com-

parisons we report sequential and parallel runtimes and efficiencies for three of the

languages. We find that sequential runtimes vary by as much as a factor of 2.1, and

8-core runtimes by as much as a factor of 4.1. On a single core GpH-SMP is fastest

and GpH-GUM slowest, and sequential efficiencies vary between 74% and 100%. Fi-

nally runtime and speedup graphs show that GpH-SMP, GpH-GUM and Eden parallel

performance scales, i.e. runtimes fall consistently as cores are added (Section 5).

We report detailed parallel performance and programming effort studies (Section 6),

and make a comparative study with the following key results (Section 7).

– FDIP’s purely implicit approach requires minimal programmer effort. In contrast

GpH and Eden both require programmer effort to understand the program’s com-

putational structure, to profile it, to insert parallel coordination, and to tune the

parallel performance. As the languages provide high levels of coordination abstrac-

tion the program changes are small, on average no more than 4.3% of the program

text in both languages. We conclude that Eden skeletons represent a similar high

level of coordination abstraction to evaluation strategies in GpH (Section 7.1).

– While GpH-SMP, GpH-GUM and Eden all scale consistently up to 8 cores, FDIP

does not scale beyond 4 cores and may deliver best performance on 3 or 4 cores

(Section 7.2).

– The performance price of FDIP’s purely implicit approach is high: it improves the

fewest number of programs (just 3 out of 15) and the mean and maximum speedup

are both relatively small at 1.4 and 1.8 respectively on 4 cores (Section 7.3).

– All three semi-explicit approaches improve approximately half of the programs, and

the performance of GpH-SMP and Eden is broadly similar with mean and maximum

speedups of approximately 3.5 and 6.5. GpH-GUM performance is marginally worse

with mean speedup of 2.6 and maximum speedup of 4.5. (Section 7.3).

8.2 Discussion

As multicores become the dominant processor technology it is crucial that functional

languages realise their theoretical potential to exploit them effectively. Our study re-

flects some of the technologies emerging to do so, namely four multicore Haskell im-

plementations, and the results have a number of implications for the field.

It is clear that purely implicit parallelism remains an elusive goal. The FDIP ap-

proach speeds up fewer programs, with smaller speedups, and doesn’t scale well. While

it is not clear that the scaling issues with FDIP are fundamental, the move towards

many cores will make scalability a crucial property for languages and implementations.

We have used Source Lines of Code (SLOC) to measure the “pain” inflicted by the

semi-explicit approaches, as discussed in Section 6. SLOC is a simple and not uncom-

mon measure of the effort to write, or convert a program from one form to another.

However it does not capture the cognitive effort in understanding the computational
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behaviour of the original program, and in the cycles of refactoring and testing required

to ensure semantic consistency, as outlined in Section 7.1. Measuring cognitive effort

is highly problematic, not least because it is deeply individual and subjective. Never-

theless it might be possible to capture more meaningful measures of program change,

for example by using a refactoring tool [7] to both profile programmer behaviour and

bound the number of refactoring steps. An alternative might be to prove the equiva-

lence of the original and refactored programs, and count the proof steps.

It might be seen as discouraging that, even in the low pain languages, only half of

the programs deliver good speedups (Table 10), and that the mean parallel efficiencies

are only around 45% (Tables 6, 7, and 8). However recall that these programs were

neither designed to be parallel, nor selected for their inherent parallelism. While some

algorithms will remain inherently sequential, it is likely with thoughtful design a far

higher percentage of programs can be effectively parallelised. Moreover the implemen-

tations are evolving fast and will deliver greater parallel efficiencies in the future.

Interestingly Eden, with an implementation designed for distributed memory archi-

tectures, performs fractionally better than GpH-SMP which is designed for multicores.

Similarly the mean speedups of GpH-GUM, with an architecture designed for both dis-

tributed and shared memory systems, are within 10% of the GpH-SMP results. These

implementations must have significant advantages to outweigh the massive communi-

cation and synchronisation overheads incurred by serialising heap, calling expensive

communication libraries, and deserialising heap.

We argue that the key reason for the good performance of Eden and GUM is the

maintainenance independent heaps using a message-passing architecture. Independent

heaps convey three significant advantages for shared-memory systems like multicores.

Independent heaps enable cores to garbage collect independently; they confine synchro-

nisation to both limited and large-grain memory areas, i.e. the message buffers; and

they simplify cache coherency issues (Section 3.5). We further predict that as multicore

scale to many cores the advantages of independent heaps will be greatly magnified, and

that some form of thread-private heap, e.g. [11], will be essential on these architectures.

There are many encouraging signs for parallel functional languages. The GpH and

Eden semi-explicit approaches deliver effective high level coordination, and hence re-

quire very small program changes, and perhaps only half a working day to introduce

and tune the parallelism for a known program. The level of interest in addressing the

challenges of parallelism is reflected not only in the 4 languages compared here, but

also in the rapid emergence and evolution of shared and distributed memory parallel

Haskells outlined in Section 2. Most of these languages, like Par Monad [29], HdpH [27],

Meta-Par [15] provide language-level, rather than built-in parallelism, and once they

are stable a systematic study comparing the languages with built-in parallelism with

those with language-level parallelism would be worthwhile.
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A Eden Master Worker Skeleton

Figure 11 shows the implementation of a relatively simple master worker skeleton as an il-
lustration of the Eden skeleton implementation discussed in Section 2.2. Without discussing
all details of this implementation, its essential workings are as that tasks are distributed to
n worker processes, which apply the worker function wf to each task and return a pair con-
sisting of the worker number and the result of the task evaluation to the master process, i.e.
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the process evaluating mw. The worker numbers are interpreted as requests for new tasks. The
master uses a function distribute to send tasks to the workers according to the (n*prefetch)
requests initially created and the ones received from the workers. The version shown here re-
turns results in a non-deterministic order, and should be used only in context of a subsequent
reduction with a commutative operation (like the logical and in the Boyer example).

mw :: (Trans t, Trans r) => Int -> Int -> (t -> r) -> [t] -> [r]
mw n prefetch wf tasks = ress
where (reqs, ress) = (unzip . merge) (spawn workers inputs)
-- workers :: [Process [t] [(Int,r)]]

workers = [process (zip [i,i..] . map wf) | i <- [0..n-1]]
inputs = distribute n tasks (initReqs ++ reqs)
initReqs = concat (replicate prefetch [0..n-1])

-- task distribution according to worker requests
distribute :: Int -> [t] -> [Int] -> [[t]]
distribute np tasks reqs = [taskList reqs tasks n | n<-[0..np-1]]
where taskList (r:rs) (t:ts) pe | pe == r = t:(taskList rs ts pe)

| otherwise = taskList rs ts pe
taskList _ _ _ = []

Fig. 11 Eden Master-Worker Skeleton (Static Task Pool)

B Comparative Absolute Speedups of Parallel Haskells

The following tables summarises the best absolute speedups obtained on 8 Cores for each of
the 15 programs in each of the four parallel Haskells, as visualised in Figure 10.

Program Name FDIP GpH-SMP GpH-GUM Eden
Atom 1.2 0.9 0.6 0.6
Boyer 0.8 3.4 3.5 3.7
Circsim 0.7 0.9 0.8 1.0
Clausify 1.0 6.6 4.5 6.2
Compress 0.4 0.6 Not tested 1.6
FFT2 0.8 2.7 1.7 3.7
Hidden 1.0 1.8 Not tested 1.0
Lcss 0.8 0.5 0.9 1.0
Multiplier 0.0 0.7 0.9 0.9
Para 0.8 1.2 0.9 1.0
Primetest 0.8 2.0 Not tested 1.0
Rewrite 0.0 5.3 2.5 4.7
Scs 0.0 0.9 1.0 1.0
Simple 1.1 0.3 0.9 1.0
Sphere 0.5 4.0 1.8 1.5

Table 10 Comparative Absolute Speedups of Parallel Haskells on 8 Cores.


