
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 0000; 00:1–33
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

HPC-GAP:
Engineering a 21st-Century

High-Performance Computer Algebra System

Reimer Behrends1, Kevin Hammond2, Vladimir Janjic2, Alex Konovalov2,
Steve Linton2, Hans-Wolfgang Loidl3, Patrick Maier4 and Phil Trinder4∗

1Department of Mathematics, University of Kaiserslautern, Germany
2School of Computer Science, University of St Andrews, UK

3School of Mathematical and Computer Sciences, Heriot-Watt University, UK
4School of Computing Science, University of Glasgow, UK

SUMMARY

Symbolic computation has underpinned a number of key advances in Mathematics and Computer Science.
Applications are typically large and potentially highly parallel, making them good candidates for parallel
execution at a variety of scales from multi-core to high-performance computing systems. However, much
existing work on parallel computing is based around numeric rather than symbolic computations. In
particular, symbolic computing presents particular problems in terms of varying granularity and irregular
task sizes that do not match conventional approaches to parallelisation. It also presents problems in terms of
the structure of the algorithms and data.
This paper describes a new implementation of the free open-source GAP computational algebra system that
places parallelism at the heart of the design, dealing with the key scalability and cross-platform portability
problems. We provide three system layers that deal with the three most important classes of hardware:
individual shared memory multi-core nodes, mid-scale distributed clusters of (multi-core) nodes, and full-
blown HPC systems, comprising large-scale tightly-connected networks of multi-core nodes. This requires
us to develop new cross-layer programming abstractions in the form of new domain-specific skeletons that
allow us to seamlessly target different hardware levels. Our results show that, using our approach, we can
achieve good scalability and speedups for two realistic exemplars, on high-performance systems comprising
up to 32,000 cores, as well as on ubiquitous multi-core systems and distributed clusters. The work reported
here paves the way towards full scale exploitation of symbolic computation by high-performance computing
systems, and we demonstrate the potential with two major case studies. Copyright c© 0000 John Wiley &
Sons, Ltd.

Received . . .

KEY WORDS: Parallelism, Multicore, High-Performance Computing, Computational Algebra.

1. INTRODUCTION

This paper considers how parallelism can be provided in a production symbolic computation system,
GAP (Groups, Algorithms, Programming [1]), to meet the demands of a variety of users. Symbolic
computation has underpinned several key advances in Mathematics and Computer Science, for
example in number theory, cryptography, and coding theory. Computational algebra is an important
class of symbolic computation, where applications are typically characterised by complex and

∗Correspondence to: Prof. Phil Trinder, School of Computing Science, University of Glasgow, G12 8QQ, UK. Email:
Phil.Trinder@glasgow.ac.uk

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 R. BEHRENDS ET AL

expensive computations. Many symbolic problems are extremely large, and the algorithms often
exhibit a high degree of potential parallelism. This makes them good candidates for execution
on both large and small scale parallel systems, including High Performance Computing (HPC)
systems. With the widespread availability of multi-core systems, there is an increasing need to
provide effective support for symbolic computation on small shared-memory computers. The size
and complexity of the problems that are being tackled means, however, that there is also significant
demand for symbolic computation on clusters of distributed-memory systems, and potentially for
full-blown HPC systems. The HPC-GAP systems described in this paper aim to meet those diverse
needs in a way that is idiomatic for the GAP programmer, and easy for the domain specialist to
exploit.

There are, however, numerous practical challenges that must be overcome if the parallelism
potential is to be exploited. Firstly, symbolic algorithms tend to employ complex data and control
structures that are not generally studied by the parallel programming community. Secondly, the
parallelism that is present is often both dynamically generated and highly irregular, e. g. the number
and sizes of subtasks may vary by several orders of magnitude. These properties present significant
challenges to conventional parallelisation techniques. Finally, the developers of symbolic computing
applications are not parallelism experts: they are typically mathematicians or other domain experts,
who usually do not possess a background in computer science and who have limited time and
inclination to learn complex system interfaces. What is needed is a simple, but highly scalable, way
to deal with massive parallelism in symbolic computing systems, that is consistent with existing
symbolic programming approaches.

This paper studies how these challenges may be overcome in the context of the widely-used GAP
computational algebra system. Our work establishes symbolic computation as a new and exciting
application domain for high-performance computing. It also provides a vade mecum for the process
of producing effective high-performance versions of large legacy systems. The primary research
contributions of this paper are:

1. The systematic description of HPC-GAP as an integrated suite of new language extensions
and libraries for parallel symbolic computation. These are a thread-safe multi-core
implementation, GAP5 (Section 2); an MPI binding to exploit clusters (Section 3); and
the SymGridPar2 framework that provides symbolic computation at HPC scale (Section 4).
Collectively, these allow us to address scalability at multiple levels of abstraction up to large-
scale HPC systems (Section 5).

2. We provide two substantial case studies to demonstrate the effectiveness of the language
mechanisms for irregular symbolic computations. Specifically, we consider Orbit calculations
and a Hecke Algebra representation theory calculation on the HECToR HPC system. The
datasets for these, and other experiments in the paper, are available at [2] (Section 6).

3. SymGridPar2 re-establishes symbolic computation as an application domain for HPC for the
first time in 20 years (Sections 4, 5.3 and 6).

Novelty: We provide the first complete and systematic description of HPC-GAP. Many of the
individual components of HPC-GAP and associated case studies have been previously reported
piecemeal: with descriptions of GAP5 [3], SymGridPar2 [4], the MPI-GAP case study [5], and the
SymGridPar2 case study [6]. A key part of the systematic presentation of the HPC-GAP components
is to provide a common SumEuler benchmark to facilitate comparison of the programming models
and performance at different scales. Moreover some key aspects of the components are presented for
the first time, e.g. Section 4.2 describing the interface between GAP and SymGridPar2. Section 5
that uses SumEuler as a basis for a performance evaluation of the HPC-GAP components, and
discusses their interworking, is almost entirely new.

1.1. Computational Algebra and the GAP System

GAP (“Groups, Algorithms and Programming” [1]) is the leading open source system for
computational discrete algebra. GAP supports very efficient linear algebra over small finite fields,
multiple representations of groups, subgroups, cosets and different types of group elements, and

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 3

backtrack search algorithms for permutation groups. The GAP system and extension packages now
comprise 360K lines of C and 900K lines of GAP code that is distributed under the GNU Public
License (GPL). To date, GAP has been installed at over 2000 sites and is cited in more than 1000
publications. GAP has been used in such landmark computations as the “Millennium Project” to
classify all finite groups of order up to 2000 [7]. From its inception, GAP was designed to be:
natural to use for mathematicians; powerful and flexible for expert users; and freely extensible so
that it can encompass new areas of mathematics as needed. All three objectives have been met
comprehensively. Our achievements were recently recognised by the award of the ACM/SIGSAM
Richard D. Jenks Memorial Prize for Excellence in Software Engineering applied to Computer
Algebra.

GAP fills an important need in the computer algebra community. Unlike GAP, general “computer
algebra systems” such as Maple [8], Mathematica [9] or Matlab [10] simply do not address
computation in abstract algebra in any serious way. Maple, for example, can compute with some
finite permutation groups, but is many orders of magnitude slower than GAP and can handle only
“toy” examples. Only MAGMA [11] and Sage [12] have any significant overlap with GAP in
its core areas of computational algebra and discrete mathematics. MAGMA has a strong focus
on number theory and cryptography, and unlike GAP is closed-source, monolithic and difficult
to extend. Sage [12] incorporates and derives much of its algebraic functionality from GAP, as
permitted by the GPL. Neither of these systems supports parallelism well: Sage has limited support
for client-server style distributed computing, but does not support large-scale parallel computing;
and MAGMA currently has no support for parallelism.

1.2. Parallelism and High-Performance Computing

With the widespread adoption of multi-core processors, parallelism has become mainstream. While
most laptops, desktops and even mobile platforms comprise single multi-core systems, higher-
performance systems will cluster several multi-cores into a single coherent system, connected either
by a high-speed network or by a shared memory bus. HPC systems provide a further level of
hierarchy, connecting multiple clusters into a coherent, highly parallel supercomputing platform.
While the general problems of identifying and controlling parallelism are similar at each level, the
increasing scale and complexity of larger systems means more powerful programming models are
needed to deal with them effectively. These models should abstract over low-level architectures, in
order to provide scalable parallelism up to HPC-size architectures.

While low-level programming models are still dominant for HPC applications, this low level
of abstraction is in stark contrast to the high level of abstraction sought for in the domain of
symbolic computation. A typical user of a computational algebra system will naturally aim to
develop theories and programs in a style close to mathematical notations and therefore refrain from
(prematurely) constraining how the theories are executed. In fact, the bigger gap between model
and implementation found in symbolic computation makes parallel realisation of these problems
relatively rare, and some exceptions are discussed in [13].

While there are instances of explicit coordination infrastructures in this domain, and we discuss
them in the following sections, the most natural combination of technology and domain is a mostly
declarative programming style, and the main part of our survey here focuses on such systems.

Threading and Message-Passing Approaches: The most commonly used technologies on today’s
HPC systems start from established, if not dated, sequential host languages, such as Fortran or C,
and provide added functionality for parallelism in the form of libraries or compiler annotations.
Different technologies are often combined reflecting the underlying architecture, for example using
an explicit message passing library (e. g. MPI) between nodes combined with a dedicated shared
memory model (e. g. OpenMP in the form of compiler annotations) within a multi-core node. This
combination aims to use the most efficient technology on each level, but necessarily complicates
software design. This development is aggravated by the heavy use of GPGPUs and many-core co-
processors, such as Xeon Phis, on the latest generation of supercomputers.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 R. BEHRENDS ET AL

In contrast to the mixed paradigm approach common in HPC codes, we advocate a unified,
high-level approach. Such an approach abstracts over low-level machine details, reducing the
complexity of the parallel programming task, while still enabling the tuning of key parallel execution
characteristics, such as the size of the parallel tasks and the distribution of the application data.
The latter is becoming increasingly important with modern applications often being extremely data
intensive, and the memory-per-core ratio falling. In this aspect, symbolic computation software
technology is ahead of main-stream HPC, because symbolic applications often require enormous
and complex intermediate data structures. Hence bespoke libraries for dealing with huge data
structures efficiently have been developed, e.g. the Roomy library discussed in Section 1.3. Hence
control of data, in addition to control of tasks, features prominently in the design of HPC-GAP.

Parallel Patterns and Skeletons Parallel pattern that abstract and re-use common parallelism
idioms are an increasingly important technology [14]. Algorithmic Skeletons [15] provide specific
implementations of patterns in the form of functions that have effective parallel implementations,
and that are instantiated with concrete parameters to specify functionality and behaviour. The
practical relevance of such approaches is underlined by recent practitioner oriented textbooks on
parallel patterns [16,17] and by high levels of activity in projects such as Google’s MapReduce [18]
and Apache’s Hadoop [19]. Well-known skeleton systems include P 3L [20], Skil [21], and the SCL
coordination language [22], which are all based on a functional coordination language. Moreover
numerous skeleton libraries provide skeletons that can be used from a mainstream sequential host
language, e. g. SkePU [23], Müsli [24] and eSkel [25], which are all embedded in C/C++.

While general purpose skeleton libraries like those above can be used across domains, some
packages encode domain specific patterns. One such example is the LinBox [26] exact linear
algebra library, which provides a wide selection of linear algebra operations operating over arbitrary
precision numbers. Another example is our work on the Orbit pattern [5], a commonly occurring
pattern in symbolic computation applications used as a case study in Section 6.1.

An important development in the area of programming languages for HPC systems is the
emergence of partitioned global address space (PGAS) languages as a new model of high-level
parallel programming. The basic idea in these languages is to provide language support for
distributing large data structures, typically flat arrays, over a collection of distributed memory nodes.
Parallelism is then expressed in the form of data parallelism, with constructs to place a computation
on the machine that holds the relevant segment of the data structure, and synchronisation and
communication become implicit. While the focus is on data parallel constructs, general fork-and-
join parallelism is also available, although less frequently used. First generation PGAS languages
that defined these concepts have been developed by major HPC vendors: Chapel [27] by Cray,
X10 [28] by IBM and Fortress [29] by Sun/Oracle. More recently, PGAS constructs have been
integrated into mainstream languages: Unified Parallel C (UPC) [30] and Coarray Fortran [31].

1.3. Parallel Computational Algebra

Several computer algebra systems offer dedicated support for parallelism and/or distribution
(see [32, Sec 2.18] and [33]). Early systems focused on shared-memory architectures and some
prominent examples are Aldor [34], PARSAC2 [35] and PACLIB [36]. Since our focus is on
distributed memory systems, we don’t discuss these further.

Distributed Maple [37] provides a portable Java-based communication layer to permit interaction
of Maple instances over a network. It uses future-based language constructs for synchronisation and
communication, and has been used to parallelise several computational geometry algorithms. Unlike
our system, it does not provide specific multi-core or HPC support, however. The Sugarbush [38]
system is another distributed memory extension of Maple, which uses Linda as a coordination
language. The GAPMPI [39] package is a distributed-memory parallel extension to GAP, which
provides access to the MPI interface from within GAP. Unlike our work no higher level abstractions
are provided to the programmer.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 5

The TOP-C system provides task-oriented parallelism on top of a distributed shared memory
system [40], implementing several symbolic applications, including parallel computations over
Hecke algebras [41] on networks of SPARC workstations.

The Roomy system [42] takes a data-centric view of parallel symbolic computation, recognising
that many applications in the domain manipulate enormous data structures. Roomy provides a
library for the distribution of data structures and transparent access to its components, implemented
on top of the MPI message passing library. Example applications implemented on top of Roomy
include a determinisation algorithm for non-deterministic finite state automata.

Two decades ago there were several projects that parallelised algebraic computations, but there
has been little work in this area since. Sibert et al [43] describe the implementation of basic
arithmetic over finite fields on a Connection Machine. Roch et al [44] discuss the implementation of
the parallel computer algebra system PAC on the Floating Point System hypercube Tesseract 20 and
study the performance of a parallel Gröbner Basis algorithm on up to 16 nodes. Another parallel
Gröbner Basis algorithm is implemented on a Cray Y-MP by Neun and Melenek [45] and later on a
Connection Machine by Loustaunau and Wang [46]. We are not aware of any other work within the
last 20 years that targets HPC for computational algebra.

More recently main-stream computer algebra systems have developed interfaces for large-scale
distribution, aiming to exploit Grid infrastructures [47]. The community effort of defining the
SCSCP protocol for symbolic data exchange on such infrastructures supports distributed execution
and interchange between different computer algebra systems [48]. In contrast to these Grid-based
infrastructures, our SymGridPar2 framework targets massively parallel supercomputers.

2. PARALLELISM SUPPORT IN GAP 5

GAP 5 reimplements the latest version of GAP (GAP4) to include support for parallelism at a
number of levels [3]. This has a number of implications for the language design and implementation.
Distributed memory implementations of memory hungry symbolic computations can duplicate large
data structures and may even lead to memory exhaustion. For example, the standard GAP library
already requires several 100 MB of memory per process, much of which is data stored in read-
only tables; a multi-threaded implementation can provide access to that data to multiple threads
concurrently without replicating it for each thread. This is why it is crucial to use shared memory
to achieve efficient fine-grained parallelisation of GAP applications. Secondly, we need to maintain
consistency with the previous version of the GAP system, refactoring it to make it thread-safe.
Achieving this has involved rewriting significant amounts of legacy code to eliminate common, but
unsafe, practices such as using global variables to store parameters, having mutable data structures
which appear to be immutable to the programmer, etc.

The overall GAP5 system architecture aims to expose an interface to the programmer that is as
close to the existing GAP4 implementation as possible in order to facilitate the porting of algorithms
and libraries. The two primary new concepts that a GAP5 programmer may need to understand is
that of tasks (an implementation of futures [49]) and regions, a GAP-level abstraction for areas
of shared memory. Existing sequential code will run largely unchanged and sequential code can
also use parallelised libraries transparently. Only code that exploits GAP5 concurrency or kernel
functionality needs to be adapted to the new programming model.

2.1. Task Introduction and Management

GAP 5 adopts a future-based task model [49], identifying tasks using the RunTask primitive:

td := RunTask(f, x1, ... xn);

Here f is a GAP function and the xi are the arguments to be passed to that function. A call to
RunTask introduces a future into the runtime system, that will eventually yield a parallel task
executing f(x1, . . . , xn). RunTask returns a task descriptor, td, which can be used to further
control or observe the task behaviour. In particular, the result of a task can be obtained using a

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6 R. BEHRENDS ET AL

1 SumEulerSeq := function(n1, n2)
2 return Sum(List([n1..n2], Phi));
3 end;
4
5 SumEulerPar := function(n1, n2)
6 local tasks;
7 tasks := List([n1..n2], x → RunTask(Phi, x));
8 return Sum(List(tasks, TaskResult));
9 end;

10
11 SumEulerParAux := function(n1, n2, step)
12 local i, tasks;
13 tasks := [];
14 i := n1;
15 while i ≤ n2 do
16 Add(tasks, RunTask(SumEulerSeq, i, Minimum(i + step - 1, n2)));
17 i := i + step;
18 od;
19 return Sum(List(tasks, TaskResult));
20 end;
21
22 SumEulerPar2 := function(n1, n2)
23 return SumEulerParAux(n1, n2, 100);
24 end;

Figure 1. SumEuler in GAP 5

blocking call to the TaskResult primitive; WaitAnyTask can be used to block until one of
a number of tasks has completed; and ScheduleTask is a variant of RunTask that allows the
creation of a task at some future point when the specified condition becomes true.

result := TaskResult(td);
...
td1 := ScheduleTask(cond, f, x1, ..., xn);
...
tdx := WaitAnyTask(td1, td2, td3);

The return value of TaskResult is the value returned by the task. The return value of
ScheduleTask is a task descriptor. WaitAnyTask returns a positive integer that denotes which
of the tasks passed as arguments (via their descriptors) completed first, starting with 1 for the first
argument. In the above example, tdx would be 1 if td1 completes first, 2 if td2 completes first,
or 3 if td3 completes first.

2.2. SumEuler in GAP 5

We use the SumEuler computation as a common example to demonstrate the GAP 5, MPI-GAP
and SymGridPar2 components of HPC-GAP. SumEuler is a symbolic computation that computes
the sum of Euler’s totient function over an integer interval. The computation is a fold (the sum) of
a map (of the totient function). The computation is irregular as the time required to compute the
totient of a large integer is greater than for a small integer. We use chunked data parallel versions
here. That is, the time to compute the totient of a single integer is small, so tasks typically compute
the totients for a ’chunk’ or interval of integers.

Figure 1 illustrates how to express SumEuler in GAP5, the source cade for this, and all other
examples is available at [2]. SumEulerSeq is a simple sequential implementation, using the
standard GAP implementation of the totient function, Phi. The GAP List function implements a
functional map operation: taking a list as its first argument and a function or closure as its second,
applying that function to each element in the list and returning the resulting list. SumEulerPar
is a very simple parallelisation of the same code. It starts a task for each number in the range

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 7

n1 through n2, then collects the results of those tasks. While simple, this is also inefficient
since most computations of Phi(x) will be very short and the overhead will therefore be high.
SumEulerPar2 is a more efficient implementation that reduces the overhead by aggregating the
data into intervals of size 100.

2.3. Shared Regions in GAP 5

Safe mutable state in GAP 5 is handled through the concept of shared regions. A region is a set
of GAP objects; each object in GAP 5 belongs to exactly one region, and each region has exactly
one associated read-write lock. The GAP 5 runtime ensures that an object is only accessed by a
thread that has either a read or write lock on the region containing the object. Each thread has an
associated thread-local region, on which it has a permanent write lock. By default, newly created
GAP objects are created in the thread-local region of the current thread. The goal of thread-local
regions (in particular, the thread-local region of the main thread) is to present programmers with a
quasi-sequential environment. This environment is protected against unexpected interference from
other threads, since only the thread associated with the thread-local region can ever access it, thus
allowing programmers controlled use of concurrency features.

A programmer can create any number of shared regions. The ShareObj(ob) primitive takes
a GAP object as an argument, creates a new shared region, and migrates the object and all its sub-
objects to the shared region. The ShareSingleObj(ob) variant migrates only ob and not any
sub-objects. Objects in a shared region must be accessed using the GAP 5 atomic statement, as
shown below.

1 SharedList := ShareObj([]);
2
3 AddShared := function(x)
4 atomic readwrite SharedList do
5 Add(SharedList, x);
6 od;
7 end;
8
9 LastShared := function()

10 atomic readonly SharedList do
11 return SharedList[Length(SharedList)];
12 od;
13 end;

Note that we never operate on a region directly. The atomic statement operates on GAP objects,
and the corresponding region is inferred by the runtime system. The atomic statement also allows
the simultaneous locking of multiple regions by providing multiple arguments. These regions are
then guaranteed to be acquired atomically and without causing deadlock. The following code
fragment illustrates this usage of atomic.

1 atomic ob1, ob2 do
2 DoSomethingWith(ob1, ob2);
3 od;

A special case of a shared region is the read-only region. Every thread holds a permanent read-
lock for that region and objects can be migrated to it using the MakeReadOnly primitive. This
is primarily intended for the convenient storage of large, constant tables in order to access them
without the overhead and inconvenience of an atomic statement.

Objects can be migrated between shared regions or between the current thread-local region and a
shared region. Unlike copying, migration is generally a cheap operation that only changes the region
descriptor of the underlying GAP object (a single word). As already mentioned, ShareObj(ob)
implicitly migrates its argument to the new region. More generally, MigrateObj(ob1, ob2)
migrates ob1 and any sub-objects to the region containing ob2. For this to succeed, the current
thread must have a write lock on both regions. The AdoptObj(ob) primitive is a special case of
MigrateObj which migrates ob and any sub-objects to the current thread-local region.

Figure 2 shows how this works in practice for the parallel multiplication of two square thread-
local matrices. ParMatrixMultiplyRow is the usual GAP code to multiply the i-th row vector

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8 R. BEHRENDS ET AL

1 ParMatrixMultiplyRow :=
2 atomic function(readonly m1, readonly m2, i)
3 local result, j, k, n, s;
4 result := [];
5 n := Length(m1);
6 for j in [1..n] do
7 s := 0;
8 for k in [1..n] do
9 s := s + m1[i][k] ∗ m2[k][j];

10 od;
11 result[j] := s;
12 od;
13 return result;
14 end;
15
16 ParMatrixMultiply := function(m1, m2)
17 local tasks, result;
18 ShareObj(m1);
19 ShareObj(m2);
20 atomic readonly m1, readonly m2 do
21 tasks :=
22 List([1..Length(m1)],
23 i → RunTask(ParMatrixMultiplyRow, m1, m2, i));
24 result := List(tasks, TaskResult);
25 od;
26 atomic m1, m2 do
27 AdoptObj(m1);
28 AdoptObj(m2);
29 od;
30 return result;
31 end;

Figure 2. Parallel Matrix Multiplication in GAP 5

of m1 with the matrix m2. It is identical to the sequential version except that it is declared to be
atomic and m1 and m2 are declared to be readonly. ParMatrixMultiply contains the actual
parallel matrix multiplication code. This extends the sequential version slightly. Firstly, in lines
18–19, m1 and m2 are placed in shared regions. Then, in lines 21–23, each row vector of m1 is
multiplied with m2 using its own GAP task. Line 24, collects the results. Finally, in lines 26–30, m1
and m2 are migrated to the current thread-local region using atomic calls to AdoptObj.

2.4. Comparison with other Parallel Computational Algebra Systems

SCSCP. The computational algebra community has defined a common protocol for combining
computer algebra systems, the Symbolic Computation Software Composability Protocol
(SCSCP) [48]. Essentially it is possible to make a remote procedure call from one system to
another, and both protocol messages and data are encoded in the OpenMath format. SCSCP
compliant components may be combined to solve scientific problems that cannot be solved within
a single CAS, or may be organised into a system for distributed parallel computations. The SCSCP
Protocol has become a de facto standard for mathematical software with implementations available
for seven CAS and libraries for C/C++, Java Haskell etc. On a single multicore GAP5 provides
higher performance by allowing direct functions manipulating GAP objects, rather than an SCSCP
RPC where the function and arguments are encoded as OpenMath XML objects. Moreover while
SCSCP’s explicit RPC mechanism is suitable for small scale parallel execution SymGridPar2 scales
onto HPCs.

GAP 4. The current stable release of GAP 4 provides two ways to run distributed memory parallel
computations: i) the ParGAP package that uses MPI; and ii) an SCSCP package. Both provide
basic implementations of the ParList skeleton plus low level tools to develop new parallel GAP

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 9

code. Both approaches are prone to limitations of the distributed memory approach concerning
serialisation etc. In particular, it may not be straightforward or may even be impossible to transmit
complex GAP objects from one node to another, limiting performance [50].

Sage has some rudimentary facilities for distributed memory parallel calculations, which are still
under development. The current design focuses on task parallelism and uses Python’s decorator
concept to add parallel execution functionality to existing methods. While this adds concurrency to
the programming model, it doesn’t provide means of explicit synchronisation or communication.
Another parallelism primitive is a parallel iterator. The implementation of parallelism is also
seriously hampered by the central scheduler lock in the Python runtime-system.

Maple supports multithreading on shared memory architectures through a task programming
model. While its kernel is thread-safe, work on a thread-safe library is still in progress. On
distributed memory architectures parallelism is supported by the Maple Grid Toolbox [47]. It is
implemented on top of MPI, and can be configured in either MPI (cluster) or HPC mode. The
latter allows for integration with batch job scheduling middleware, whereas the former is targeted
at dynamic, self-assembling Grid infrastructures. In terms of language support for parallelism, the
Maple Grid Toolbox mainly provides MPI-level primitives for synchronisation and communication.
Support for higher level primitives is rudimentary and at the moment restricted to a parallel map
operation. The older Distributed Maple [37] system, with its higher level coordination primitives,
has been discussed in Section 1.3.

Magma [11] is a single-threaded application which does not support parallelism. Distributed
memory computations could be emulated by e.g. interfacing multiple copies to Sage, or by using an
SCSCP wrapper for Magma [48].

TRIP [51] is dedicated to celestial mechanics, specialising in operations with polynomials.
Its single-core implementation is multithreaded, reporting good parallel performance on sparse
polynomial operations [52], and SCSCP can be used for small-scale distributed memory parallelism.

MATLAB. The Matlab parallel computing toolbox supports multicores, GPUs, and clusters using
a number of simple primitives to expose data parallelism and loop-parallelism, based on parallel
for-loops [10]. Support for heterogeneous devices is provided through a Cuda interface. Using the
MATLAB Distributed Computing Server, parallelism can be orchestrated on large-scale, distributed
memory configurations. The preferred programming mode is data parallelism over the pre-defined
data structure of distributed arrays. Additionally, a general map-reduce structure is available. On a
lower level, primitives for single-program multiple-data parallelism and explicit message passing are
also available. The current version of MATLAB’s symbolic computation toolbox, MuPAD, does not
support parallel computing. However, earlier versions of MuPAD provided master-work parallelism
on distributed systems in the form of “macro parallelism” [53].

Mathematica. Starting with Mathematica 7, the internal Wolfram Language also supports
parallel computation. The focus of the language support is on data-parallelism, with pre-
defined parallel map and combine operations. Parallel iterators are provided for common data
structures. Speculative parallelism is also supported, enabling the programmer to try several
approaches to solve a problem and pick up the first successful computation. More generally,
fork-and-join parallelism can be defined, using lower-level thread creation and synchronisation
primitives. However, the language design favours the usage of the higher-level primitives, in
particular for defining map-reduce-style computations. Support for heterogeneous devices is
provided through separate interfaces to Cuda and to OpenCL. In a distributed memory setting,
the parallelism generated by the primitives is managed by the gridMathematica system, originally
developed for large-scale Grid architectures [54]. This system automatically handles marshaling
and communication of data structures, as well as retrieving the results from a remote execution.
Through the usage of the higher-level parallelism primitives, the details of the architecture are
mostly hidden, although aspects such as communication latency need to be taken into account for
parallel performance tuning.

Reflection. Thus we see that the majority of existing computational algebra system only provide
support for (independent) distributed parallel calculations, or else have limited computational
algebra functionality. The work described in this paper considers a wider class of parallel

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10 R. BEHRENDS ET AL

computation, including shared-memory multicores, clusters and HPC system, as well as distributed
systems. Through the free GAP system, it makes the benefits of parallelism available to a much
wider, open source community. Achieving this, while obtaining significant real speedups, represents
a major technical challenge: GAP is a large dynamically-typed, interpreted system, with a complex
implementation that manipulates large and complex data structures.

3. MPI-GAP DESIGN AND IMPLEMENTATION

User	
 Applica,on	

Object	
 Marshalling	

MPI	
 Bindings	

Global	
 Object	
 Pointers	

Shared	
 Objects	

Distributed	
 Tasks	

Implicitly	
 Distributed	
 Data	

Skeletons	

MPI-­‐GAP	

Layer Supported primitives/operations
Distributed Tasks CreateTask, RunTask, TaskResult, SendTask...
Shared Objects RemoteCopyObj, RemoteCloneObj,

RemotePushObj, RemotePullObj
Global Object Pointers CreateHandleFromObj, SendHandle,

SetHandleObj, GetHandleObj
MPI Bindings MPI_Send, MPI_Isend, MPI_Recv, MPI_Probe,

MPI_Iprobe, . . .
Object Marhsalling SerializeToNativeString,

DeserializeNativeString, IO_Pickle,
IO_Unpickle

Figure 3. MPI-GAP Layers and the Associated Primitives/Operations

MPI-GAP is an extension of GAP 5 which targets distributed-memory systems by building on the
de facto standard MPI message passing library. MPI-GAP provides both a high-level programming
model that supports the same set of high-level parallel task constructs as the shared-memory version
of GAP 5, CreateTask, RunTask, TaskResult etc., and a low-level programming model that
offers more control of distributed task and data placement when required. MPI-GAP is implemented
in a layered manner (Figure 3), where each layer builds on the constructs provided by the layer below
to offer a higher level of abstraction.

Object Marshaling Layer. This layer consists of operations that transform GAP objects into
an equivalent binary representation that can be transmitted using MPI primitives. MPI-GAP
currently supports two classes of marshaling operations: native serialisation, implemented as
kernel operations, and IO pickling, implemented as GAP-level operations. Native serialisation
is much faster, but it is architecture-dependent and currently only allows certain GAP objects

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 11

1 DeclareGlobalFunction(‘‘Euler’’);
2 InstallGlobalFunction(Euler,
3 function(handle)
4 Open(handle);
5 inputList := GetHandleObj(handle);
6 resList := List (EulerPhi, inputList);
7 res := Sum(resList);
8 Close(handle);
9 return resList;

10 end
11);
12
13 SumEuler := function (n)
14 if processId = 0 then
15 chunkSize := n / commSize;
16 ts := [];
17 # send work to other nodes
18 for nodeId in [1..commSize] do
19 h := CreateHandleFromObj ([n∗chunkSize+1..(n+1)∗chunkSize])
20 SendHandle (h, nodeId);
21 RemotePushObj(h);
22 ts[nodeId] := CreateTask (‘‘Euler’’, h);
23 SendTask (t, nodeId);
24 od;
25 # do local calculation
26 result = Sum(Euler ([1..chunkSize]));
27 # fetch the results
28 for nodeId in [1..commSize] do
29 remoteResult = TaskResult(ts[nodeId]);
30 result := result + remoteResult;
31 od;
32 return result;
33 else
34 return -1; # only master process should call this function
35 fi;
36 end;

Figure 4. SumEuler in MPI-GAP

to be marshaled. IO pickling is significantly slower, but is architecture-independent and more
customisable – more data structures are supported, and programmers can provide functions to
marshal custom data structures. In general, if an application needs to transfer large amounts
of “simple” data (e.g. lists of simple objects, matrices) and the underlying data processing is
sufficiently fine-grained, native serialisation is preferred. Conversely, when transferring smaller
objects or when the underlying data processing is coarse-grained, IO pickling should be used.

MPI Binding Layer. This layer consists of GAP bindings to raw MPI functions to send and
receive messages, based largely on ParGAP [55]. Currently, only a small subset of MPI functions are
supported on the GAP side, including blocking and non-blocking MPI send and receive functions,
probing etc. Object marshalling primitives must be used to marshall GAP objects so that they can
be transmitted using these operations.

Global Object Pointer Layer. This layer supports operations on GAP objects (handles) that
represent pointers to other GAP objects that may live on remote computing nodes. Handles can
be copied between different GAP processes, and can then be used to access the same physical
GAP object from different nodes. Handles, and the underlying GAP objects, are managed in a
semi-automatic way – handles are created, opened, closed and destroyed manually, but a reference-
counting mechanism prevents unsafe operations, e.g. destroying a handle that exists on multiple
distributed nodes and, so, possibly garbage-collecting the underlying object. Handles are created
using the CreateHandleFromObj operation which takes a GAP object and returns a handle to
it. Depending on the required level of automatic control, handles can be read-only, read-write or

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12 R. BEHRENDS ET AL

volatile. Objects referred to by read-only handles can be freely copied between nodes, but cannot
be modified using SendHandle, GetHandleObj or SetHandleObj. Objects referred to by
read-write handles can be freely modified, but the underlying objects cannot be copied between
nodes. They can, however, be migrated. Finally, volatile handles are unrestricted, i.e. a programmer
has full control and is responsible for handling consistency of cached copies etc. Handles can be
transferred between nodes using the SendHandle operation. They can be read and modified using
the GetHandleObj and SetHandleObj operations.

Shared Object Layer. This layer supports operations on objects that are shared between multiple
distributed nodes and accessed via handles from the global object pointer layer. Objects can be
copied using the RemoteCopyObj or RemoteCloneObj operations and migrated using the
RemotePushObj and RemotePullObj operations, where, in each case, the first version is used
by the sender and the second by the recipient. Depending on the handle type, certain operations
might be prohibited for safety reasons, e.g. RemoteCopyObj is prohibited on read-write handles.

Distributed Task Layer. This layer supports the same task creation and management operations
as shared-memory GAP 5, e.g. CreateTask, RunTask and TaskResult. In addition, it also
supports explicit task placement using the SendTask operation. Task distribution between nodes
in MPI-GAP uses a random work stealing work stealing approach, that has been shown to perform
well in low-latency settings. Tasks that are not yet executed are kept in node-local task pools. Each
node apart from the master starts in the idle mode and requests work from another randomly chosen
node. If a node that has more than one task receives a message requesting work, it offloads one of
its tasks. This distributes tasks among the nodes on an as-needed basis.

3.1. SumEuler in MPI-GAP

Figure 4 shows the implementation of SumEuler in MPI-GAP. Line 1 declares a global function to
map the Euler totient function over a list of values and sum the results. In lines 2–11, we implement
this function, passing it a handle to a list of positive integers. We first open the handle (line 4), in
order to inform the reference-counting mechanism that the handle is in use by the current thread.
We then read the list that the handle points to (line 5). After applying the EulerPhi function to all
of the elements of the list, to produce a list of results resList (line 6), we close the handle (line 8)
to inform the reference-counting mechanism that the current thread has finished using the handle.

The main function, SumEuler (lines 12–35), is only called by a master GAP process (i.e. the GAP
instance that controls the execution). We first determine the sizes of the chunks of work that will be
sent to each worker GAP process (line 15) and initialise a list of tasks (line 16). For each worker
process, we create a handle to a list of positive integers (line 19), send the handle to the worker
process (line 20), migrate the actual list (line 21), create a task that calls the Euler function on the
handle (line 22) and finally send the task.

The program implements eager work distribution by explicitly assigning tasks to the processes.
After sending work to each worker process, the master process does its own chunk of work (line
26), and then fetches and sums the results of the tasks (lines 28–31).

4. THE DESIGN AND IMPLEMENTATION OF SYMGRIDPAR2

SymGridPar2 (SGP2) is middleware for coordinating large-scale task-parallel computations
distributed over many networked GAP instances. SymGridPar2 inherits its architecture, and
specifically its skeleton-based programming model, from SymGridPar [56]. The key new feature
is the use of HdpH (Haskell distributed parallel Haskell), a novel domain-specific language
(DSL) for task-parallel programming on large-scale networks, including HPC platforms. The SGP2
middleware comprises three layers:

1. the HdpH DSL for parallel coordination, embedded into Haskell (Section 4.1);
2. a Haskell binding for GAP (Section 4.2); and
3. a set of algorithmic skeletons, written in HdpH and calling into GAP (Section 4.3).

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 13

skeleton library

HdpH runtime system

GAP binding SGP2
1 core

coresn
1

GAP

n
k

cores

GAP

1
n n

k

user application

...

Host

Unix IPC

skeleton library

HdpH runtime system

GAP binding SGP2
1 core

coresn
1

GAP

n
k

cores

GAP

1
n n

k

user application

...

Host

Unix IPC

MPI

>= 1 + + ... + cores >= 1 + + ... + cores

Figure 5. SymGridPar2 Architecture.

Figure 5 illustrates the SGP2 architecture and its interaction with GAP. In the figure the outer dotted
rectangles represent a host, possibly multi-core, and while two instances are shown there may be
an arbitrary number. The solid rectangles represent operating system processes, and the arrows
represent communication.

The intention is that a GAP program invokes appropriate skeletons, essentially GAP functions
with parallel semantics, e.g. parList([40..60], fibonacci) may create 21 tasks to
compute the Fibonacci function of the integers between 40 and 60. The GAP skeleton corresponds
to an HdpH skeleton that distributes the subproblems to multiple hosts where they are passed to
local GAP instances to be solved, and the solutions are returned to the caller.

As the GAP skeleton library has not yet been constructed SGP2 applications are HdpH programs.
While this section presents some key Haskell code it is intended to be comprehensible without
knowledge of Haskell. The skeletons generate tasks, which are distributed and executed by the
HdpH runtime; HdpH provides sophisticated distributed work stealing built on top of an MPI
communication layer. Tasks will typically call GAP functions through the GAP binding. Each
SGP2 instance can transparently coordinate a pool of several GAP4 or GAP5 servers running
on the same host. Communication between SGP2 and these GAP servers is via Unix IPC. SGP2
requires one dedicated core per host, the remaining cores can be used by GAP servers. On an n-
core host, one SGP2 instance will typically coordinate n− 1 GAP4 instances or a single GAP5
instance running n− 1 threads. To reduce memory bus contention on large NUMA servers, it is
also possible to coordinate several multi-threaded GAP5 instances, each bound to its own NUMA
region. Section 5.4 contains some example deployments.

4.1. Coordination DSL

SGP2 exposes parallel patterns to the programmer as algorithmic skeletons [15], implemented in
HdpH. HdpH is described in detail elsewhere [57,58], and here we discuss only the small part of the
API that users of the SGP2 skeleton library are exposed to, as outlined in Figure 6. As is customary
in functional programming languages, the HdpH DSL is embedded into the host language, Haskell,
by wrapping DSL computations in a special computation type. In HdpH, this is done by the Par
type constructor, which forms a monad, the standard Haskell construct for effectful computations.
Almost all HdpH and SGP2 primitives create or transform Par computations; ultimately an SGP2

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14 R. BEHRENDS ET AL

-- Computations
data Par a -- data type of computations returning type ’a’
runParIO :: Par a → IO a -- run parallel computation

-- Communication of results
data IVar a -- data type of futures of type ’a’
get :: IVar a → Par a -- blocking read on a future

-- Locations
data Node -- data type representing hosts running SGP2
myNode :: Par Node -- current host
allNodes :: Par [Node] -- list of all hosts

Figure 6. Type Signatures of Minimal HdpH API.

program is one large Par computation. The primitive runParIO takes such a computation and
executes it on the HdpH runtime system.

In HdpH parallel computations return results asynchronously through futures. These are
represented by the type constructor IVar. Futures are created by a number of skeletons as well
as by the GAP binding. A user may read the value stored in a future by calling the primitive get,
that blocks the caller until the value is available.

As a distributed DSL HdpH exposes locations (i. e. hosts) as values of type Node. SGP2 programs
can query the current node and obtain a list of all nodes by calling the primitives myNode and
allNodes, respectively. Crucially the API in figure 6 does not list any primitives for creating or
distributing parallel tasks. This functionality is hidden in the skeletons discussed in Section 4.3.

4.2. GAP binding

HdpH is a DSL for coordinating task-parallel computations. Ordinarily, HdpH tasks evaluate
function calls in Haskell. To coordinate computations in GAP, SGP2 has to provide a way to call
from HdpH into GAP. This is done by providing a GAP binding, i. e. a library of Haskell functions
to call GAP functions, including marshalling arguments from Haskell to GAP and results from GAP
to Haskell.

Additionally, the GAP binding also provides functions for starting and stopping GAP servers.
Each HdpH node can launch one or more GAP servers, running as independent operating system
processes on the same host as the HdpH node, and communicating via pipes. The API distinguishes
between stateful GAP servers, each with a distinct identity, and stateless GAP servers, which are
anonymous and interchangeable.

4.2.1. Controlling stateful GAP servers. Figure 7 shows the HdpH API for controlling GAP
servers; primitives ending in ST are concerned with stateful servers. HdpH can start a GAP server by
calling startST, which expects information how to call GAP and a list of GAP function calls used
to initialise the server. The primitive startST immediately returns a future that will eventually
provide a handle to the GAP server, once the server is up and running. The primitive barrierST
takes a server handle and blocks until the server is idle, i. e. no longer busy executing a previous
function call. Similarly, stopST blocks until the server is idle and then terminates the server (after
which the handle is void). Finally, the primitive callST posts a function call to the given server.
It blocks until the server is idle and then immediately returns a future that will eventually yield
either an error or the result of the call. GAP function calls (type GAPCall) are simply strings. For
convenience, they can be constructed by applying a GAP function name (type GAPFunction) to a
list of encoded GAP objects using the function mkGAPCallFuncList; the encoding is discussed
in Section 4.2.3.

Note that all primitives operate on stateful GAP servers running on the same host as the calling
HdpH node; calls to distributed stateful GAP servers are provided by the higher-level skeletons
discussed in Section 4.3. More precisely, any stateful GAP server can only be controlled by the

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 15

-- Types
data GAP -- Parameters to start GAP (path, flags,...)
data GAPHandleST -- Handle to stateful GAP server
data GAPObj -- Encoded GAP object
data GAPError -- Encoded GAP error
type GAPFunction -- GAP function name
type GAPCall -- GAP function call

-- Constructing GAP function calls
mkGAPCallFuncList :: GAPFunction → [GAPObj] → GAPCall

-- Calling individual stateful GAP server; blocking if not idle
callST :: GAPHandleST → GAPCall → Par (IVar (Either GAPError GAPObj))

-- Starting and stopping individual stateful GAP servers (on current node)
startST :: GAP → [GAPCall] → Par (IVar GAPHandleST) -- non-blocking
barrierST :: GAPHandleST → Par () -- blocking
stopST :: GAPHandleST → Par () -- blocking

-- Querying the node of a stateful GAP server
atST :: GAPHandleST → Node

-- Calling any stateless GAP server; blocking if none idle
call :: GAPCall → Par (IVar (Either GAPError GAPObj))

-- Starting and stopping a pool of stateless GAP servers
start :: GAP → [GAPCall] → Int → Par () -- non-blocking
barrier :: Par () -- blocking
stop :: Par () -- blocking

-- Testers for GAP type of given GAP object
isGAPFail, isGAPBool, isGAPInt, isGAPRat,
isGAPList, isGAPNull, isGAPString, isGAPOpaque :: GAPObj → Bool

-- Class of Haskell types that can be marshalled to/from GAP.
class GAPEnc a where
toGAP :: a → GAPObj
fromGAP :: GAPObj → a

Figure 7. Primitives for controlling GAP servers.

HdpH node that started it, as identified by the primitive atST, and a GAP handle is only valid on
the node indicated by atST.

4.2.2. Controlling stateless GAP servers. Many SGP2 applications interact with GAP in a stateless
fashion, i. e. GAP calls are proper function calls that do not manipulate hidden state on the server.
For this case, HdpH offers primitives to coordinate a pool of stateless GAP servers.

The stateless primitives mirror the stateful ones, see Figure 7. The start primitive takes the
same information about calling and initialising GAP. Of course the GAP calls used to initialise
a stateless GAP server, like startST, change the system state, i.e. are themselves stateful. The
start function takes an additional pool size argument and returns nothing. The choice of pool size
is critical for performance, e.g. performance suffers if the pool size exceeds the number of physical
cores. Since stateless servers are interchangeable they can be anonymous, so there is no need to
return a handle. The primitives barrier and stop behave like their stateful counterparts, except
that they block until the whole pool of servers is idle, and terminate the whole pool.

The primitive call posts a function call to any stateless server. It blocks until a server is idle
and then immediately returns an IVar that will eventually yield either an error or the result of the
call. Note that the GAP function call is expected to be stateless in the sense that any side effects on
the GAP server do not affect subsequent calls. Violating this restriction may result in unpredictable
behaviour.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16 R. BEHRENDS ET AL

-- Start a stateful GAP server on given (remote) node; returns a future which
-- will yielding a server handle once the server is up and running.
startGAP :: GAP → [GAPCall] → Node → Par (IVar GAPHandleST)

-- Start pools of stateless GAP servers on all nodes;
-- blocks until all servers are up and running.
startGAPEverywhere :: GAP → [GAPCall] → Int → Par ()

-- Stop given (remote) stateful GAP server; blocks until server has died.
stopGAP :: GAPHandleST → Par ()

-- Terminate all stateless GAP servers; blocks until all servers have died.
stopGAPEverywhere :: Par ()

-- Post GAP call to given (remote) stateful GAP server; returns a future
-- which will eventually yield the result.
pushGAPCall :: GAPHandleST → GAPCall → Par (IVar (Either GAPError GAPObj))

-- Process list of stateless GAP calls in parallel using work stealing;
-- returns [] if any GAP call caused an error.
parGAPCalls :: [GAPCall] → Par [GAPObj]

Figure 8. Example SGP2 skeletons and GAP Interface.

4.2.3. Marshalling data to and from GAP. Marshalling data between GAP and HdpH requires an
encoding and a Haskell representation of encoded GAP objects; the latter is provided by the data
type GAPObj. A GAPObj can represent the GAP constant Fail, GAP Booleans, GAP integers,
GAP rationals, lists of GAP objects, the empty GAP list [], GAP strings, or opaque GAP objects;
opaque objects are all those that aren’t explicitly listed in the above enumeration. The encoding
assumes that GAP can print the object to be marshalled into a string that can be parsed back later;
objects that do not support this need to be explicitly pickled to a GAP string prior to marshalling.

The bottom of Figure 7 displays the API for accessing GAPObjs. There are a number of functions
testing which GAP type the encoded GAPObj represents. And there are two overloaded functions
toGAP and fromGAP, defined on types instantiating class GAPEnc, for encoding to and decoding
from GAPObj. The Haskell types which are instances of GAPEnc, are the standard base types
(), Bool, Integer and Rational, as well as ByteString (which encodes GAP strings).
Standard list, pair and Maybe data types can also be encoded, provided their components are
encodable.

Opaque GAP objects cannot be decoded and remain opaque as there is no instance of class
GAPEnc that they can be decoded to. This is justified because, as a coordination layer, SGP2 mainly
needs to decode containers (lists or tuples) and numbers; other GAP objects are simply passed as-is
from one GAP server to another.

4.3. The SymGridPar2 Programming Model.

SGP2 exposes parallel patterns to the programmer as algorithmic skeletons [15] where the
computations coordinated are GAP functions. Figure 8 lists some basic SGP2 skeletons for starting,
stopping and calling stateful and stateless GAP servers. These skeletons use the coordination
features of HdpH to extend the scope of the GAP binding in that they transparently control GAP
servers beyond the current node.

The startGAP skeleton initiates starting a stateful GAP server on a remote node (using the
primitive startST); it returns a future which will eventually, when the server is up and running,
yield a handle. The startGAPEverywhere skeleton starts pools of stateless GAP servers on all
nodes (using the primitive start). However, unlike startGAP, this skeleton blocks until all GAP
servers are up and running, and then returns nothing. The started GAP servers can be terminated
by stopGAP and stopGAPEverywhere; both skeletons block until the servers in question have
actually quit.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 17

-- Define SumEuler function in GAP.
defSumEuler :: GAPCall
defSumEuler = pack $ unlines [
"SumEuler := function (lower, upper)",
" return Sum ([lower..upper], x → Phi(x));",
"end;;"]

funSumEuler :: GAPFunction
funSumEuler = pack "SumEuler"

mkIntervals :: Integer → Integer → Integer → [(Integer, Integer)]
mkIntervals lower upper chunksize = go lower
where
go lb | lb > upper = []

| otherwise = (lb, ub) : go lb’
where
lb’ = lb + chunksize
ub = min upper (lb’ - 1)

-- Start ’n’ stateless GAP servers everywhere, compute the sum of Euler’s
-- totient function on the integral interval (’lower’,’upper’), evaluating
-- sub-interval of length ’chunksize’ in parallel.
parSumEuler :: Int → GAP → Integer → Integer → Integer → Par Integer
parSumEuler n gap lower upper chunksize = do
startGAPEverywhere gap [defSumEuler] n
let calls = [mkGAPCallFuncList funSumEuler [toGAP l, toGAP u] |

(l,u) ← mkIntervals lower upper chunksize]
gapObjs ← parGAPCalls calls
let result = sum (map fromGAP gapObjs)
stopGAPEverywhere
return result

Figure 9. SumEuler in SGP2.

The pushGAPCall skeleton is a generalisation of the primitive callST for calling a stateful
GAP server on any node, transparently marshalling call and result across the network. The skeleton
returns a future which will eventually hold the result of the call. In contrast, the parGAPCalls
skeleton is a generalisation of the call primitive for calling stateless GAP servers, handling both
lists of calls as well as balancing load between all GAP servers in the system (relying on HdpH
random work stealing). Unlike pushGAPCall, the parGAPCalls skeleton blocks and only
returns the list of results after the last result has come in; the skeleton will return the empty list
if any of the GAP calls failed.

4.3.1. SumEuler in SymGridPar2. Figure 9 shows the implementation of the SumEuler example in
SGP2. The parSumEuler starts a number of GAP servers before computing the sum of Euler’s
totients in parallel. The computation divides the input interval into smaller chunks and then proceeds
by using the skeleton parGAPCalls, converting its results (GAPObjs encoding integers) into
Haskell integers, and summing up. Incidentally starting GAP servers may take several seconds and
hence is usually done at the start of an application rather than immediately before parGAPCalls
as here.

The list of GAP calls passed to parGAPCalls consists of calls to the GAP function SumEuler,
the definition of which is passed to every GAP server during the start up phase coordinated by
startGAPEverywhere. In Haskell, this function definition is a literal string embedded into the
Haskell code. Alternatively, the definition can be read from a file.

4.4. Advanced Features

The capabilities of SymGridPar2 described so far match largely those of SymGridPar. SGP2 goes
beyond SGP in its support for large architectures. Where SGP assumes a uniform communication

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

18 R. BEHRENDS ET AL

latency between any two cores, SGP2’s scheduling algorithm can take into account a non-uniform
hierarchy of latencies; such latency hierarchies are common in large compute clusters.

Abstract model of hierarchical distances. The coordination DSL HdpH exposes node-to-node
latencies abstractly to the programmer as distances in a metric space. More precisely, the distance
between nodes is a real-valued binary function satisfying the axioms of ultrametric spaces. As a
result, the programmer need not be concerned with actual latencies and can instead express task
scheduling constraints in terms of relative distances like here, close by or far away. We refer the
reader to [58] for more detail about ultrametric distances in HdpH.

Task scheduling. HdpH offers two modes of work distribution: on-demand implicit task
placement, and eager explicit task placement.

On-demand implicit task placement is realised by a distributed work stealing algorithm. Upon
creation, a task is stored in the creating node’s local task pool. Stored with the task is its radius,
as chosen by the programmer. The task radius is the maximum distance the task may travel away
from its originating node. HdpH’s work stealing algorithm is based on random stealing and has
two properties relating to radii: the task radius is a strict bound on the distance between victim
and thief; thieves prefer to steal tasks within small radii. The radius can be viewed as expressing a
size constraint on a task, where larger radii mean bigger tasks. Adopting this view, HdpH’s work
stealing algorithm prefers to keep small tasks near their originating nodes, similar to [59], in the
hope of minimising communication overheads related to work stealing.

Many basic SGP2 skeletons, for instance parGAPCalls, rely on HdpH work stealing, typically
without imposing constraints on work stealing distances; we refer to [4] for examples of SGP2
skeletons that make use of radii for bounding work stealing.

On-demand random task placement performs well with irregular parallelism. However, it tends to
under-utilise large scale architectures at the beginning of the computation. To combat this drawback,
HdpH offers eager explicit task placement as a complementary placement mode. Explicit placement
ships tasks to selected nodes, where they are executed immediately, taking priority over any
implicitly placed tasks. Eager execution implies that these tasks are meant to perform coordination,
e. g. create further tasks, rather than actual computation.

The downside of explicit placement is that the programmer has to select target nodes, which may
jeopardise portability. Fortunately, HdpH’s abstract ultrametric distances offer some help for the
purpose of flooding large architectures with work. More precisely, the HdpH runtime identifies an
equidistant basis, i. e. a maximal set of nodes such that any two basis nodes are maximally far apart.
At the beginning of a parallel computation, the programmer can explicitly place large tasks at the
basis nodes, where each will generate smaller tasks that can be stolen quickly by nearby nodes;
stealing may or may not be bounded, depending on the irregularity of the small tasks.

SGP2 offers a number of skeletons implementing such a two-level task distribution, e. g. the
parMap2Level and parMap2LevelRelaxed skeletons used in Section 5.3, and detailed
in [4].

Reliability. The coordination DSL HdpH is designed for transparent fault tolerance, and [60]
presents an alternative work stealing scheduler that monitors nodes and pessimistically replicates
tasks that may have been lost to node failure. The fault tolerant work stealing is shown to have low
runtime overheads. The fault tolerance properties of HdpH are, however, not yet inherited by SGP2
because the current GAP binding is not fault tolerant.

5. PERFORMANCE EVALUATION

This section reports a performance and interworking evaluation of the HPC-GAP components. The
primary comparators are the SumEuler benchmark implementations from the preceding sections,
although we investigate some GAP 5 concurrency overheads using microbenchmarks. We measure

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 19

1 benchmark_base := function()
2 local i;
3 for i in [1..10ˆ9] do
4 od;
5 end;
6
7 benchmark_inc := function()
8 local i, s;
9 s := 0;

10 for i in [1..10ˆ9] do
11 s := s + 1;
12 od;
13 end;
14
15 benchmark_index := function()
16 local i, s;
17 s := [0];
18 for i in [1..10ˆ9] do
19 s[1] := s[1] + 1;
20 od;
21 end;

Figure 10. Microbenchmarks to Measure GAP 5 Instrumentation Overheads.

strong scaling, i.e. speedups and runtimes, for GAP 5 on a multicore (Section 5.1), and for MPI-
GAP and SymGridPar2 (Sections 5.2 and 5.4) on Beowulf clusters. Only weak scaling is appropriate
for large architectures and we measure SymGridPar2 on up to 32K cores of the HECToR HPC
(Section 5.3).

Section 5.2 demonstrates the interworking MPI-GAP and GAP4, and Section 5.4 demonstrates
the interworking SymGridPar2 with both GAP 4 and GAP 5.

5.1. GAP 5 Evaluation

We consider both the overheads on sequential programs introduced by managing concurrency in
GAP 5 and demonstrate the performance gains that can be obtained through parallelisation.

5.1.1. Sources of Concurrency Overheads GAP 5 exposes essentially the same programming
language and libraries as GAP 4, augmented with the task and region features described in Section 2.
However supporting multithreading requires many, and often significant, changes even where the
functionality is unchanged. While these changes should be transparent to GAP programmers, they
affect the performance of purely sequential code. These performance differences can be attributed
to one or more of the following factors.

1. Whereas GAP 4 has a sequential, generational, compacting garbage collector, GAP 5 has a
concurrent, non-generational, non-compacting garbage collector. Depending on the workload,
either GAP 4 or GAP 5 can perform better; GAP 4 where the generational collection wins out,
GAP 5 where concurrent collection (with a sufficient number of processors) makes it faster.
Generational collection generally wins out when a program allocates a large number of short-
lived objects.

2. Memory allocation in GAP 4 occurs through a very fast bump allocator made possible by
the compacting garbage collector. Memory allocation in GAP 5 is more complicated in that
it has to support concurrent allocation, which incurs a small, but non-zero overhead. Most
allocations occur through the thread-local allocator, which is nearly as fast as the GAP 4
bump allocator, but larger chunks of memory cannot be handled this way and require that
their allocation be serialised.

3. To ensure memory safety the GAP 5 kernel code had to be instrumented with checks that
no GAP object is being accessed without the corresponding lock being held. Like bound
checks for arrays, this incurs an unavoidable overhead. While this instrumentation can be

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

20 R. BEHRENDS ET AL

GAP 5 GAP 5 Overhead
(no checks) (checks)

benchmark_base 3.4s 3.4s 0%
benchmark_inc 12.8s 13.7s 7%
benchmark_index 50.7s 66.5s 31%

Table I. GAP 5 Instrumentation Runtime Overheads.

disabled if speed is essential, it is generally assumed that users want these checks to be
enabled when running parallel code. The instrumentation is currently done (almost) fully
automatically by a separate tool as part of the build process that performs dataflow analysis
and attempts to optimise the instrumentation (such as hoisting checks out of loops). This
automated instrumentation can be manually overridden where the optimiser fails to correctly
identify such possibilities, though so far we make very little use of that.

4. The current GAP 5 implementation does not yet fully support GAP-to-C compilation for all
new features. As a result, some core GAP modules that are compiled in GAP 4 are still being
interpreted in GAP 5.

5. A few internal data structures of the GAP kernel had to be redesigned in order to make them
thread-safe. One example is the implementation of global variables in GAP, which required
non-trivial changes to ensure that multiple threads can access them concurrently, even where
they, and their contents, are immutable.

The overhead varies from program to program, and the combined effect of the concurrency
overheads is that sequential code typically executes between 10%-40% more slowly in GAP 5
than in GAP 4, based on our observations with various synthetic benchmarks and existing GAP
code. Sections 5.1.3 and 5.3 report the overheads for specific programs, and it is reassuring to see
that the overheads fall as the parallel system scales. We also expect to be able to eliminate the
remaining avoidable overheads in the medium term. Nevertheless, our plans for GAP 5 include a
purely sequential build option for code that cannot effectively exploit parallelism.

5.1.2. Quantifying Concurrency Overheads The first GAP 5 concurrency overhead we investigate
is that of instrumenting the GAP 5 kernel with guards against race conditions. We execute the micro-
benchmarks in Figure 10 with and without instrumentation, taking the median value over five runs.
All of the micro-benchmarks allocate only a small and fixed amount of memory and do not access
global variables, so neither garbage collection nor global variable access has a measurable effect on
their performance. Measurements in this section are performed on a 64-core machine with AMD
Opteron 6376 processors.

The benchmark_base result shows that there is almost no overhead for a basic for loop.
The benchmark_inc result shows that there is a small amount of overhead for performing local
variable increments. The benchmark_index result shows that there is around a 33% overhead
(after subtracting the time for the for loop) for performing increments on an array element. In fact
there are no checks in the C code that performs local variable increments, so the performance
differences for benchmark_inc are probably due to other effects, such as changes in memory
locality as a side effect of instrumentation.

The overhead for benchmark_index is not surprising, because for each iteration, three checks
are performed. This is suboptimal as our tool inserts two checks for the assignment (one before
checking that the length of the list is at least 1, another before performing the assignment) where
one would suffice. So the overhead could be reduced by a third.

Garbage collection overhead can vary greatly by workload. Allocating many short-lived objects
can result in an overhead of 30% or more; more typical for GAP applications is an overhead in the
range of 10%–20%. In cases where allocations of long-lived objects dominate, the GAP 5 garbage
collector can also be faster than the GAP 4 garbage collector, as it can parallelise its work, while the
GAP 4 garbage collector gains little from its generational features.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 21

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16

S
ec

on
ds

/F
ac

to
r

Number of Cores

Runtime

Speedup

Figure 11. GAP 5 SumEuler Runtimes and Speedups (Multicore).

5.1.3. SumEuler Performance We investigate the performance of the GAP 5 version of SumEuler
outlined in Section 2.2 (page 6). GAP’s standard implementation of Euler’s totient function relies
heavily on cache-based implementation of factorisation routines. This can have unpredictable effects
on performance, depending on how number ranges are being broken into chunks and how these
chunks are assigned to threads. In order to obtain reproducible results, we therefore use a cache-less
implementation of the totient function for this benchmark.

Figure 11 shows the runtime and relative speedup of the GAP 5 SumEuler up to 16 cores, taking
the median value of three successive runs. The sequential SumEuler runs in 16.5s on GAP 4, so
GAP 5 (22.0s) is 33% slower.

5.2. MPI-GAP Evaluation

We investigate the performance of the MPI-GAP version of SumEuler outlined in Section 3.1
(page 12). The evaluation was conducted on a 32-node Beowulf cluster, with each node having
8-core Intel Xeon E5504 2GHz processor with 16GB RAM. One node was designated as a master
node, and it distributes chunks of work to the slave nodes, who then execute them on a a single-
threaded GAP 4 instance. To exercise a cluster the input is larger than for a single GAP5 instance in
Section 5.1.3.

The runtime for a single-threaded GAP 4 SumEuler computation is 211.7s, and for the MPI-
GAP version on one node is 217.3s. So the overhead incured by the MPI-GAP on a single node is
approximately 3% for this benchmark. The MPI-GAP runtime on 32-nodes is 9.9s. These runtimes
are reflected in the speedup graph in Figure 12, that shows near-linear sppedups up to a maximum
of 22 on 32 cores.

5.3. SGP2 Evaluation

We investigate the performance of the SymGridPar2 version of SumEuler outlined in Section 4.3.1
(page 17) on the HECToR supercomputer. At the time (2013) HECToR was the UK’s largest public
HPC with approximately 90,000 cores [61]. Figure 13 studies weak scaling of two variants of the

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

22 R. BEHRENDS ET AL

1 4 8 12 16 20 24 28 32
0

10

20

30

Number of MPIGAP processes

Sp
ee

du
p

Figure 12. MPIGAP SumEuler Speedups (Beowulf Cluster).

 70

 75

 80

 85

 90

 95

 100

32 64 128 256 512 1K 2K 4K 8K 16K 32K
 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

e
st

im
a
te

d
 e
ffi

ci
e
n
cy

 [
%

]

S
u
m

E
u
le

r
ru

n
ti

m
e
 [

s]

number of cores

ideal time (estimated)
parMap2Level time

parMap2LevelRelaxed time
parMap2Level eff

parMap2LevelRelaxed eff

Figure 13. SymGridPar2 SumEuler Runtimes and Efficiency (Weak Scaling on HECToR HPC).

SumEuler benchmark from 1 to 1024 HECToR nodes (i. e. 32 to 32K cores). The two variants
differ only in their use of the underlying skeleton: One uses parMap2Level, and the other uses
parMap2LevelRelaxed both outlined in Section 4.4.

The benchmarks start with an input interval of 6.25 million integers on 32 cores, doubling the size
of the interval as the number of cores doubles, so that on 32K cores, for example, the interval is 6.4
billion integers long. Doubling the size of the input interval increases the amount of work by more

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 23

Seq. SGP2 GAP calls per GAP tasks per Mean GAP
Runtime tasks SGP2 task GAP call task runtime

SGP2/GAP 4 2160.0s 320 15 1 450ms
SGP2/GAP 5 2836.1s 400 1 300 24ms

Table II. SGP2 with GAP 4/GAP 5 Optimal Configurations and Runtimes.

than a factor of 2; by sampling the sequential runtime of small subintervals, we estimate a runtime
curve for ideal scaling.

The runtime graphs in Figure 13 show that the two benchmarks do not scale perfectly.
However, even on 32K cores their runtimes are still within 50% of the ideal. Efficiency is
calculated with respect to the estimated ideal scaling, and the curves show that efficiency
declines steadily, yet remains above 70% even on 32K cores. These graphs also show that
the parMap2LevelRelaxed skeleton offers a small efficiency advantage (of 3–4%) over
parMap2Level. This is probably because parMap2LevelRelaxed copes better with the
irregularity of the benchmark in the final stages of the computation, since unlike parMap2Level,
it can utilise nodes that have run out of work early.

5.4. HPC-GAP Interworking

Section 5.2 demonstrated MPI-GAP coordinating single-threaded GAP 4 servers, and this section
focuses on the performance implications of SymGridPar2 coordinating GAP 4 (version 4.7.6)
and multi-threaded GAP 5 (version alpha 2015 01 24) servers. We investigate the speedup
of SumEuler on the interval [1, 108] on a Beowulf cluster with 256 cores, distributed over 16
nodes (Intel Xeon CPUs, 2GHz, 64GB RAM per node). The input interval is subdivided evenly
into subintervals, and the SGP2 instances distribute the resulting SGP2 tasks by work stealing.
When co-ordinating GAP 4, each SGP2 instance further subdivides the current task interval and
distributes calls to function SumEulerSeq (see Figure 1) to 15 single-threaded GAP 4 servers.
When co-ordinating GAP 5, each SGP2 instance calls a single GAP 5 server (running on 15 cores)
which in turn subdivides the interval and uses the GAP 5 RunTask primitive to evaluate calls to
SumEulerSeq on subintervals in parallel.

Table II records optimal values for the numbers of SGP2 tasks, GAP calls per SGP2 task and
GAP tasks per GAP call. These optima are determined by exhaustive experiment. The table also
reports sequential runtimes for GAP 4 and GAP 5, from which the average runtime of a GAP task,
i. e. mean time to compute SumEulerSeq, is derived. Given the discussion of GAP 5 overheads
in Section 5.1 it is unsurprising that the sequential GAP 5 runtime is 24% greater than for GAP 4.

Figures 14 and 15 show log/log plots of runtime and absolute speedup for SGP2/GAP 4 and
SGP2/GAP 5. The numbers of SGP2 tasks, GAP calls and GAP tasks are fixed to the optimal values
from Table II, and the runtime data is the median over 11 runs. We find that variance, measured as
standard error, is consistently between 1% and 2%.

Figure 14 shows that while SGP2/GAP 4 has consistently lower runtime, the advantage falls from
about 24% on one core to 6% on one node to only about 2% on 16 nodes. The absolute speedups
in Figure 15 are computed with respect to the sequential runtime of the respective GAP version.
The curves show that both systems scale similarly, yet the speedup of SGP2/GAP 5 is consistently
about 25% greater than for SGP2/GAP 4. On 1 node, SGP2/GAP 5 achieves an absolute speedup
of 11.5, corresponding to 76% efficiency: ideal speedup is 15 since only 15 cores are available to
GAP while the 16th core is dedicated to SGP2. On 16 nodes, SGP2/GAP 5 efficiency drops to 71%,
corresponding to a speedup of 170.

Symbolic computations are memory hungry, and on large shared-memory architectures
SGP2/GAP 5 can use a small number of GAP processes (possibly just one), where SGP2/GAP 4
must use as many GAP 4 processes as there are cores. Sampling memory residency for SumEuler
(using Unix tools like ps) consistently shows a total per-node residency of SGP2/GAP 4 (i. e.
15 GAP 4 processes plus 1 SGP2 process) of about 2GB. In contrast the residency of SGP2/GAP 5

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

24 R. BEHRENDS ET AL

 16

 20

 30

 40

 60

 80

 120

 240

16 32 48 64 96 128 192 256

ru
n
ti

m
e
 [

s]

number of cores

SGP2/GAP5 runtime
SGP2/GAP4 runtime

Figure 14. SGP2 with GAP 4 and GAP 5 SumEuler Runtimes (Beowulf)

16 32 48 64 96 128 192 256

 10

 20

 40

 80

 160

a
b

so
lu

te
 s

p
e
e
d

u
p

number of cores

SGP2/GAP5 speedup
SGP2/GAP4 speedup

Figure 15. SGP2 with GAP 4 and GAP 5 SumEuler Speedups (Beowulf)

(1 GAP 5 process plus 1 SGP2 process) is only 240MB, or approximately 1/8th of the residency of
SGP2/GAP 4.

In conclusion, SGP2/GAP 5 is able to almost entirely eliminate the GAP 5 overheads by achieving
better speedups even on mid-scale parallel architectures. While we haven’t been able to demonstrate
SGP2/GAP 5 beating SGP2/GAP 4 on runtime, that may happen on larger architectures. A second
advantage of SGP2/GAP 5 over SGP2/GAP 4 is greatly reduced memory residency on large shared-
memory architectures.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 25

6. CASE STUDIES

We present two case studies to demonstrate the capability of the HPC-GAP components to deliver
good parallel performance for typically irregular algebraic computations on both NUMA and HPC
architectures.

6.1. Orbits in GAP5

Enumerating an orbit is a typical algebraic computation and can be described as follows.

Definition 1 (Orbit of an element)
Let X be a set of points, G a set of generators, f : X ×G→ X a function (where f(x, g) will be
denoted by x · g) and x0 ∈ X a point in X . The orbit of x0, denoted by OG(x0), is the smallest set
T ⊆ X such that

1. x0 ∈ T
2. for all y ∈ T and all g ∈ G we have y · g ∈ T .

Often the set X can be very large and is not given a-priori.
The sequential orbit algorithm in Figure 16 maintains a hash table T of orbit points discovered

so far, and a list U of unprocessed points. The hash table facilitates a fast duplicate test (line 6).
Initially both T and U contain only x0, and thereafter we iterate, in each step removing the first
point x from U , applying all generators g ∈ G to x and adding any new points to both to T and U .
The computation terminates when there are no unprocessed points (line 2).

Data: x0 ∈ X, g1, g2, . . . , gk : G
Result: A hash table T containing the orbit of the element x0

1 T := {x0} (a hash table); U = [x0] (a list);
2 while U is not empty do
3 x := head of U ; Remove x from U ;
4 for i← 1 to k do
5 y := x · gi;
6 if y /∈ T then
7 Add y to T ;
8 Append y to the end of U ;

Figure 16. Sequential Orbit Pseudocode

As an example of how the algorithm works, let X = {1, 2, 3, 4, 5}, x0 = 2, G = {g1, g2} and f
be given by the following table:

x 1 2 3 4 5
x · g1 1 3 2 4 5
x · g2 5 2 4 3 1

The following table shows the steps in evaluating the orbit T of x0:

Step 1 2 3 4
T {2} {2, 3} {2, 3, 4} {2, 3, 4}
U [2] [3] [4] ∅

6.1.1. The Parallel Orbit Skeleton. At first glance, it may seem that the sequential Orbit
algorithm can be parallelised by carrying out step 5 for all generators and all points in U
independently. However synchronisation is required to avoid duplicates (steps 6–8), and this requires
communication among the tasks that apply generators to different elements of U . Our Parallel Orbit
skeleton uses two different kinds of threads:

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

26 R. BEHRENDS ET AL

Data: the set G, the action function X ×G→ X , the number h of hash servers and a
distribution hash function f : X → {1, . . . , h}

1 while true do
2 get a chunk C of points ;
3 R := a list of length h of empty lists;
4 for x ∈ C do
5 for g ∈ G do
6 y := x · g;
7 append y to R[f(y)];
8 for j ∈ {1, . . . , h} do
9 schedule sending R[j] to hash server j;

Figure 17. Parallel Orbit Worker Pseudocode

Data: A chunk size s
1 initialise a hash table T ;
2 while true do
3 get a chunk C of points from our input queue;
4 for x ∈ C do
5 if x /∈ T then
6 add x to T ;
7 if at least s points in T are unscheduled then
8 schedule a chunk of size s points for some worker;
9 if there are unscheduled points in T then

10 schedule a chunk of size < s points for some worker;

Figure 18. Parallel Orbit Hash Server Pseudocode

• Hash server threads, that use hash tables to determine which points are duplicates; and
• Worker threads that obtain chunks of points from hash servers and apply generators to them,

so producing new points.

This means that we have explicit two-way communication between each hash server and each
worker, but no communication between different hash servers or different workers. Where there are
multiple hash servers, we use a distribution hash function to decide which hash server is responsible
for storing each point. Figures 17 and 18 show the pseudocode for a worker thread and a hash server
thread respectively. Initially, all hash servers and input queues are empty and all workers are idle.
We first feed a single point into one of the hash servers, which immediately creates some work.
This hash server then sends this work to a worker which, in turn, produces more points that are
then sent to the corresponding hash servers, bootstrapping the computation. The number of points
in the system increases and, eventually, all input queues become completely full and the system
as a whole becomes busy. Towards the end of the computation, fewer new points are discovered.
Eventually all generators will have been applied to all points and the computation terminates. Now
all workers are idle again and the hash servers collectively know all the points in the orbit. In our
GAP implementation we maintain one channel for the input queue of each hash server. Any worker
can write to any of these channels. We also maintain a single shared channel for the work queue.
Due to the chunking mechanism, this is not a bottleneck.

6.1.2. Performance Results. This section presents a preliminary evaluation of our Parallel Orbit
skeleton on a shared-memory machine consisting of 4 AMD Opteron 6376 processors, each
comprising 16 cores (giving us a 64-core system). Each core runs at 1.4GHz and has 16Kb of
private L1 data cache. In addition, each processor has 8x64Kb of L1 instruction caches and 8x2Mb

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 27

of L2 caches (shared between two cores), and 2x8Mb of L3 caches (shared between 8 cores). As
an instance of an Orbit enumeration, we consider the sporadic finite simple Harada-Norton group
in its 760-dimensional representation over the field with 2 elements, acting on vectors. The set X of
all possible points consists of about 10228 elements. The size of the orbit is 1.4 million points, and
we are using 10 random generators. On each figure, we consider mean speedups over 5 runs of the
same instance. We have also added error bars in the cases where error margin was notable.

The sequential runtime of this orbit calculation on our test machine was 250s. Additional
experiments with larger instances and a sequential runtime of 1514s produced similar runtimes
and speedups. Figure 19 shows the absolute speedups over the sequential Orbit algorithm that we
have obtained with 1 to 4 hash server threads, and 1 to 32 worker threads. We can observe good
speedups, up to 23 with 4 hash servers and 28 worker threads (so, using 32 cores in total). We can
also observe that about 7 workers produce enough points to fully load one hash server. Also, for a
fixed number of hash servers h, the speedups grow almost linearly with the increase in the number
of workers. Once the number of workers reaches 7h, we do not observe further increase in speedups.
Note further that, on our testbed, it is not possible to obtain linear speedups, due to frequency scaling
of cores when multiple cores are used at the same time. Therefore, the figure also shows the ideal
speedups that could be obtained. The ideal speedup on n cores was estimated by taking the runtime
of the sequential Orbit algorithm in one thread† and then dividing it by n. We obtain similar results
on other shared-memory architectures [5].

To test the scalability further, Figure 20 shows the speedups obtained on the same machine with
7 and 8 hash servers, and up to 57 workers, therefore using all 64 cores in the system. The speedups
steadily increase in both cases from 18 to 35 (with 7 hash servers) and 36 (with 8 hash servers). The
fact that the speedup obtained is suboptimal can be attributed both to the problem itself, since in
these cases the bootstrapping and finishing phases (where not enough points are available to utilise
all workers) become dominant, and to the hardware, since there are only 16 memory channels, which
limits the memory access when more hash servers and workers are used.

6.2. Hecke Algebras in SGP2

SGP2 has been used to compute matrices of invariant bilinear forms in the representation theory
of Hecke algebras. In the following, we will only sketch this case study and present the main
performance results; the reader is referred to [6] for a detailed report and to [62] for background
on the problem.

6.2.1. Problem: Finding Invariant Bilinear Forms. We consider Hecke algebras H of exceptional
type Em (m = 6, 7, 8), generated by m generators T1, . . . , Tm.

An n-dimensional representation ρ of H is an R-algebra homomorphism from H to Mn(R), the
R-algebra of n× n matrices over R = Z[x, x−1], the ring of Laurent polynomials in indeterminate
x. Being a homomorphism, ρ is uniquely determined by the images of the generators T1, . . . , Tm.
Thus each n-dimensional representation ρ can be succinctly expressed by n× n matrices
ρ(T1), . . . , ρ(Tm) of polynomials; in a slight abuse of terminology we call the ρ(Ti) generators.

For any given ρ there exists a non-trivial symmetric matrix Q ∈Mn(R) such that

Q · ρ(Ti) = ρ(Ti)
T ·Q (1)

for all generators ρ(Ti). We call Q the matrix of an invariant bilinear form. It suffices to compute Q
for so-called cell representations ρ, of which there are only finitely many. Depending on ρ, finding
the invariant bilinear form Q may require substantial computation. For each algebra type, the table
below lists the number of cell representations ρ, the range of dimensions of ρ and the range of degree
bounds of Laurent polynomials in Q. These numbers, and hence the difficulty of the problem, vary
by several orders of magnitude reflecting the extreme irregularity of symbolic computations.

†With n− 1 parallel threads executing a dummy spin locking function that does not use any memory, to scale down the
frequency.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

28 R. BEHRENDS ET AL

1 5 9 13 17 21 25 29 32
0

10

20

30

Number of workers

Sp
ee

du
p

1 Hash Server
Ideal

(a) 1 Hash Server

1 5 9 13 17 21 25 29 32
0

10

20

30

Number of workers

Sp
ee

du
p

2 Hash Servers
Ideal Speedup

(b) 2 Hash Servers

1 5 9 13 17 21 25 29 32
0

10

20

30

Number of workers

Sp
ee

du
p

3 Hash Servers
Ideal

(c) 3 Hash Servers

1 5 9 13 17 21 25 29 32
0

10

20

30

Number of workers

Sp
ee

du
p

4 Hash Servers
Ideal Speedup

(d) 4 Hash Servers

Figure 19. GAP5 Harada-Norton Orbit Speedups (NUMA)

20 23 26 29 32 35 38 41 44 47 50 53 57
0

10

20

30

40

50

Number of workers

Sp
ee

du
p

7 Hash Servers
Ideal

(a) 7 Hash Servers

20 23 26 29 32 35 38 41 44 47 50 53 57
0

10

20

30

40

50

Number of workers

Sp
ee

du
p

8 Hash Servers
Ideal Speedup

(b) 8 Hash Servers

Figure 20. GAP5 Harada-Norton Orbit Speedups with 7 or 8 Hash Servers (NUMA)

Hecke algebra type E6 E7 E8

cell representations 25 60 112
dimension of reps 6–90 7–512 8–7168
degree of Laurent polys 29–54 45–95 65–185

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 29

polynomial matrix mult

m tasks

rational linear solve

<= (n+1)*n/2 tasks

GENERATE CHECKREDUCE

|P|*(u−l+1) tasks

modular basis spin

filter duplicates
Chinese remainder;

Figure 21. Structure of parallel algorithm for computing Q.

6.2.2. Sequential Algorithm. In principle, Q can be computed by viewing Equation (1) as a system
of linear equations and solving for the entries of Q. However, solving linear systems over Z[x, x−1]
is too expensive to obtain solutions for high dimensional representations. Instead, we solve the
problem by interpolation. We view each entry ofQ as a Laurent polynomial with u− l + 1 unknown
coefficients, where l and u are the lower and upper degree bounds of polynomials in Q. Solving
Equation (1) at u− l + 1 data points will provide enough information to compute the unknown
coefficients by solving linear systems over the rationals instead of Z[x, x−1]. To avoid computing
with very large rational numbers (due to polynomials of high degree), we solve homomorphic
images of Equation (1) modulo small primes and use the Chinese Remainder Theorem to recover the
rational values. The algorithm takes as input m generators ρ(Ti) of dimension n, lower and upper
degree bounds l and u, and a finite set of small primes P . From the degree bounds, we construct a
set Vlu of u− l + 1 small integers to be used as data points for interpolation. The algorithm runs in
three phases:

1. For all p ∈ P and v ∈ Vlu, GENERATE a modular interpolated solution Qvp of (1) by
instantiating the unknown x with v and solving the resulting system modulo p.

2. REDUCE the modular matrices Qvp to a matrix of Laurent polynomials Q as follows. First,
for all v ∈ Vlu, construct a rational interpolated solution Qv of (1) by Chinese remaindering.
Second, construct each Laurent polynomial qij in Q by gathering the (i, j)-entries of all Qv

and solving a rational linear system for the coefficients qij . Since Q is symmetric, there are
(n+ 1)n/2 such systems, each of dimension u− l + 1.

3. For all generators ρ(Ti), CHECK that the resulting Q satisfies (1) over Z[x, x−1].

The theory of Hecke algebras admits a particularly efficient way to GENERATE Qvp. Instead of
solving a linear system, the rows of Qvp can be computed by spinning a basis (i. e. multiplying a
basis vector with certain matrix products).

6.2.3. Parallel Algorithm. Each of the three phases of the sequential algorithm to compute Q
contains significant amounts of parallelism. Figure 21 shows the parallel structure, where n is the
dimension of Q and the m generators ρ(Ti), l and u are lower and upper degree bounds of the
Laurent polynomials, and P is the set of primes used in the GENERATE phase. Note that there is a
sequential duplicate filtering phase at the beginning of the REDUCE phase.

6.2.4. Evaluation. A systematic evaluation of the SymGridPar2 implementation on all cell
representations of E6, E7 and the smallest 16 representations of E8 is reported in [6]. Here we
present performance results for E8 on two different architectures: a 48 core NUMA server (Cantor),
and 1024 cores (distributed over 32 nodes) of the HECToR supercomputer [61].
Runtime. Figure 22 plots the runtime of SGP2 with 40 GAP workers on Cantor. It also plots the
total work, i. e. the cumulative runtime of all tasks, and the time spent in the sequential part of the
REDUCE phase. The reported times reflect single experiments as a statistically significant number of
repetitions would be prohibitively expensive. We observe that the amount of (total and sequential)
work and the parallel runtime appear to be correlated, yet oscillate noisily between representations.
This is due to the high degree of irregularity in the number of REDUCE tasks.

Speedup. Figure 23 plots the estimated speedup, computed as total work divided by parallel
runtime, on Cantor and on two configurations of HECToR (for representations 11 to 15). On Cantor,

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

30 R. BEHRENDS ET AL

 3 5 7 9 11 13 15 16
 1

 3

 10

 30

 100

 300

 1000

 3000

 10000

 30000

 100000

 300000

 1e+06

se
co

n
d

s
(l

o
g

 s
ca

le
)

representation

sum of all work
sequential work

40 GAPs (cantor, 1 node)

Figure 22. SymGridPar2 Computing Hecke Algebra Q Runtimes (NUMA)

 3 5 7 9 11 13 15 16

 10

 20

 40

 80

 160

 320

 640

sp
e
e
d

u
p

 w
rt

.
to

ta
l
w

o
rk

 (
lo

g
 s

ca
le

)

representation

40 GAPs (cantor, 1 node)
115 GAPs (hector, 4 nodes)

992 GAPs (hector, 32 nodes)

Figure 23. SymGridPar2 Computing Hecke Algebra Q Speedups (NUMA and HPC)

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 31

speedups stabilise just below 40, which is the maximum expected with 40 GAP workers. With
HECToR’s 4 node configuration (128 cores, running 115 GAP workers), SGP2 achieves speedups
of around 80; yet with the 32 node configuration (1024 cores, 992 GAP workers) speedup hovers
around 160; representation 11 is the exception achieving a speedup of 548.

7. CONCLUSION

We have provided a systematic description of HPC-GAP, a thorough re-engineering of the
GAP computational algebra system for the 21st Century, that incorporates mechanisms to deal
with parallelism at the multicore, distributed cluster, and high-performance computing levels.
At the GAP 5 base level, this has involved major work to remove single-threaded assumptions
in the runtime system and libraries. We have developed MPIGAP to exploit ubiquitous small
clusters and designed and implemented a highly sophisticated coordination system for high-
performance computing systems, SymGridPar2, that uses parallel Haskell to coordinate large-scale
GAP computations. The result is the most advanced, free and open source, computational algebra
system currently in existence.

We evaluate the scalability and performance of the HPC-GAP components using a common
SumEuler benchmark on a range of systems from small-scale multicores to HPC platforms. Key
results include showing that while the GAP 5 concurrency overheads are typically between 10%
and 40% (Section 5.1), these overheads are almost completely ameliorated on medium-scale
architectures (Section 5.4); we demonstrate good weak scaling to 32K cores on the HECToR HPC
(Section 5.3). The Orbit and Hecke Algebra case studies convincingly demonstrate the capability of
HPC-GAP to manage large and highly-irregular algebraic computations, e.g. achieving a maximum
speedup of 548 using 992 GAP instances on 1024 cores of the HECToR HPC (Section 6). The
datasets for these experiments are available at [2].

There is enormous potential for further exploitation of this work. GAP 5 is gaining widespread
adoption in the algebraic computation community. We are exploring alternate parallelism options for
GAP, like a Partitioned Global Address Space (PGAS) model with UPC-GAP. Moreover reliability
is increasingly an issue at HPC scale, and here the statelessness of many algebraic computations
means failed computations can be safely recomputed. The HdpH-RS extension tracks the location
of computations, and reinstates any that may have failed [60, 63].

ACKNOWLEDGEMENT

This work has been partially supported by EPSRC grants HPC-GAP (EP/G05553X), and AJITPar
(EP/L000687/1), and by EU grants ICT-288570 (ParaPhrase), ICT 287510 (RELEASE), ICT-644235
(RePhrase), by the EU COST Action IC1202: Timing Analysis On Code-Level (TACLe).

REFERENCES

1. GAP Group. GAP – Groups, Algorithms, and Programming 2007. URL http://www.gap-system.org,
(accessed October 2015).

2. Behrends R, Maier P, Janjic V. HPC-GAP Open Access repository 2015, doi:10.5281/zenodo.34012.
3. Behrends R, Konovalov A, Linton S, Lübeck F, Neunhöffer M. Parallelising the computational algebra system

GAP. Proceedings of the 4th International Workshop on Parallel Symbolic Computation, PASCO 2010, July 21-23,
2010, Grenoble, France, 2010; 177–178, doi:10.1145/1837210.1837239.

4. Maier P, Stewart R, Trinder PW. Reliable scalable symbolic computation: The design of SymGridPar2. Computer
Languages, Systems & Structures 2014; 40(1):19–35, doi:10.1016/j.cl.2014.03.001.

5. Janjic V, et al. Space exploration using parallel orbits. ParCo 2013: Parallel Computing, Advances in Parallel
Computing, vol. 25, IOS Press: Munich, Germany, 2014; 225–232, doi:10.3233/978-1-61499-381-0-225.

6. Maier P, Livesey D, Loidl HW, Trinder P. High-performance computer algebra: A Hecke algebra case study. Euro-
Par 2014, Porto, Portugal, Springer, 2014; 415–426, doi:10.1007/978-3-319-09873-9 35.

7. Besche HU, Eick B, O’Brien EA. A millennium project: constructing small groups. International Journal of
Algebra and Computation 2002; 12(5):623–644, doi:10.1142/S0218196702001115.

8. Maplesoft. Maple 2015. URL http://www.maplesoft.com/products/Maple/academic/, (accessed
October 2015).

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.gap-system.org
http://www.maplesoft.com/products/Maple/academic/

32 R. BEHRENDS ET AL

9. Wolfram Research. Mathematica 2015. URL http://www.wolfram.com/mathematica/, (accessed
October 2015).

10. Mathworks. Matlab 2015. URL http://uk.mathworks.com/products/matlab/, (accessed October
2015).

11. Computational Algebra Group SoM, Statistics UoS. MAGMA computational algebra system. URL http://
magma.maths.usyd.edu.au/magma/, (accessed October 2015).

12. System SMS. Sage 2015. URL http://www.sagemath.org/, (accessed October 2015).
13. Kaltofen EL. Fifteen years after DSC and WLSS2: What parallel computations I do today. PASCO 2010: Intl.

Workshop on Parallel Symbolic Computation, ACM Press: Grenoble, France, 2010; 10–17, doi:10.1145/1837210.
1837213.

14. Mattson TG, Sanders BA, Massingill BL. Patterns for Parallel Programming. First edn., Addison-Wesley, 2004.
ISBN 0321940784.

15. Cole MI. Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press, 1989. ISBN 0-262-
53086-4.

16. McCool M, Reinders J, Robison A. Structured Parallel Programming. Morgan Kaufmann, 2012. ISBN
0124159931.

17. Campbell C, Johnson R, Miller A, Toub S. Parallel Programming with Microsoft .NET — Design Patterns
for Decomposition and Coordination on Multicore Architectures. Microsoft, 2010. URL http://msdn.
microsoft.com/en-us/library/ff963553.aspx, (accessed October 2015).

18. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun. ACM 2008; 51(1):107–
113, doi:10.1145/1327452.1327492.

19. Apache Hadoop NextGen MapReduce (YARN) Oct 2013. URL http://hadoop.apache.org/docs/
current2/hadoop-yarn/hadoop-yarn-site/YARN.html, (accessed 10.2.2014).

20. Bacci B, Danelutto M, Orlando S, Pelagatti S, Vanneschi M. P 3L: A structured high-level parallel language,
and its structured support. Concurrency — Practice and Experience May 1995; 7(3):225–255, doi:10.1002/cpe.
4330070305.

21. Botorog GH, Kuchen H. Efficient parallel programming with algorithmic skeletons. Euro-Par ’96: Proceedings of
the Second International Euro-Par Conference on Parallel Processing, Lyon, France, LNCS 1123, Springer, 1996;
718–731, doi:10.1007/3-540-61626-8 95.

22. Darlington J, Field AJ, Harrison PG, Kelly PHJ, Sharp DWN, Wu Q. Parallel programming using skeleton functions.
PARLE ’93: Proceedings of the 5th International PARLE Conference on Parallel Architectures and Languages
Europe, Springer: London, UK, 1993; 146–160.

23. Enmyren J, Kessler CW. SkePU: A multi-backend skeleton programming library for multi-GPU systems.
Proceedings of the Fourth International Workshop on High-level Parallel Programming and Applications,
HLPP ’10, ACM: New York, NY, USA, 2010; 5–14, doi:10.1145/1863482.1863487. URL http://doi.acm.
org/10.1145/1863482.1863487.

24. Ciechanowicz P, Poldner M, Kuchen H. The Münster skeleton library Muesli — a comprehensive overview. Ercis
working paper no. 7 ISSN 1614-7448, European Research Center for Information Systems, Münster, Germany
2009. URL http://www.ercis.org/sites/default/files/publications/2012/ercis_wp_
no_7.pdf.

25. Benoit A, Cole M, Gilmore S, Hillston J. Flexible skeletal programming with Eskel. Proceedings of the 11th
International Euro-Par Conference on Parallel Processing, Euro-Par’05, Springer: Berlin, Heidelberg, 2005; 761–
770, doi:10.1007/11549468 83.

26. Dumas JG, Gautier T, Pernet C, Saunders B. LinBox founding scope allocation, parallel building blocks, and
separate compilation. ICMS’2010: Mathematical Software, LNCS 6327, Springer, 2010; 77–83, doi:10.1007/
978-3-642-15582-6 16.

27. Chamberlain B, Callahan D, Zima H. Parallel programmability and the chapel language. International Journal
of High Performance Computing Applications Aug 2007; 21(3):291–312, doi:10.1177/1094342007078442. URL
http://dx.doi.org/10.1177/1094342007078442.

28. Charles P, Grothoff C, Saraswat VA, Donawa C, Kielstra A, Ebcioglu K, von Praun C, Sarkar V. X10: An object-
oriented approach to non-uniform cluster computing. OOPSLA 2005: Conference on Object-oriented Programming,
Systems, Languages, and Applications, San Diego, USA, ACM Press, 2005; 519–538, doi:10.1145/1094811.
1094852.

29. Allen E, Chase D, Hallett J, Luchangco V, Maessen JW, Ryu S, Steele Jr GL, Tobin-Hochstadt S. The Fortress
language specification version 1.0. Technical Report, Sun Microsystems, Inc. March 2008. URL http://www.
ccs.neu.edu/home/samth/fortress-spec.pdf.

30. UPC Consortium. Unified Parallel C language spec. v1.3. Technical Report, Lawrence Berkeley National Lab nov
2013. URL https://upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf.

31. Numrich RW, Reid J. Co-Array Fortran for parallel programming. ACM SIGPLAN Fortran Forum August 1998;
17(2):1–31, doi:10.1145/289918.289920.

32. Grabmeier J, Kaltofen E, Weispfenning V. Computer Algebra Handbook. Springer, 2003, doi:10.1007/
978-3-642-55826-9. ISBN 978-3-540-65466-7.

33. Roch JL, Villard G. Parallel computer algebra. Technical Report, IMAG, France 1997. URL http://perso.
ens-lyon.fr/gilles.villard/BIBLIOGRAPHIE/PDF/RoVi97.pdf, tutorial at ISSAC 1997: Inter-
national Symposium on Symbolic and Algebraic Computation.

34. Maza MM, Stephenson B, Watt SM, Xie Y. Multiprocessed parallelism support in ALDOR on SMPs and multicores.
International Workshop on Parallel Symbolic Computation, PASCO ’07, ACM Press: London, Ontario, Canada,
2007; 60–68, doi:10.1145/1278177.1278188. URL http://doi.acm.org/10.1145/1278177.1278188.

35. Küchlin W. PARSAC-2: A parallel SAC-2 based on threads. AAECC-8: Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, Tokyo, Japan, LNCS 508, Springer, 1991; 341–353, doi:10.1007/3-540-54195-0 63.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.wolfram.com/mathematica/
http://uk.mathworks.com/products/matlab/
http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/
http://www.sagemath.org/
http://msdn.microsoft.com/en-us/library/ff963553.aspx
http://msdn.microsoft.com/en-us/library/ff963553.aspx
http://hadoop.apache.org/docs/current2/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current2/hadoop-yarn/hadoop-yarn-site/YARN.html
http://doi.acm.org/10.1145/1863482.1863487
http://doi.acm.org/10.1145/1863482.1863487
http://www.ercis.org/sites/default/files/publications/2012/ercis_wp_no_7.pdf
http://www.ercis.org/sites/default/files/publications/2012/ercis_wp_no_7.pdf
http://dx.doi.org/10.1177/1094342007078442
http://www.ccs.neu.edu/home/samth/fortress-spec.pdf
http://www.ccs.neu.edu/home/samth/fortress-spec.pdf
https://upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf
http://perso.ens-lyon.fr/gilles.villard/BIBLIOGRAPHIE/PDF/RoVi97.pdf
http://perso.ens-lyon.fr/gilles.villard/BIBLIOGRAPHIE/PDF/RoVi97.pdf
http://doi.acm.org/10.1145/1278177.1278188

HPC-GAP — ENGINEERING A HIGH-PERFORMANCE COMPUTER ALGEBRA SYSTEM 33

36. Schreiner W, Neubacher A, Hong H. The design of the saclib/paclib kernels. J. Symb. Comput. 1995; 19(1–3):111–
132, doi:10.1006/jsco.1995.1007.

37. Schreiner W, Mittermaier C, Bosa K. Distributed Maple: parallel computer algebra in networked environments. J.
Symb. Comput. 2003; 35(3):305–347, doi:10.1016/S0747-7171(02)00137-2.

38. Char BW. Progress report on a system for general-purpose parallel symbolic algebraic computation. ISSAC 1990:
International Symposium on Symbolic and Algebraic Computation, Tokyo, Japan, ACM Press, 1990; 96–103, doi:
10.1145/96877.96902.

39. Cooperman G. GAP/MPI: Facilitating parallelism. Proc. of DIMACS Workshop on Groups and Computation
II 28, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, AMS, 1997. URL http:
//www.ccs.neu.edu/home/gene/papers/dimacs97a.pdf.

40. Cooperman G. TOP-C: Task-oriented parallel C for distributed and shared memory. Workshop on Wide Area
Networks and High Performance Computing, Essen, Germany, LNCS 249, Springer, 1999; 109–117, doi:10.1007/
BFb0110081.

41. Cooperman G, Tselman M. New sequential and parallel algorithms for generating high dimension Hecke algebras
using the condensation technique. ISSAC 1996: International Symposium on Symbolic and Algebraic Computation,
Zürich, Switzerland, ACM Press, 1996; 155–160, doi:10.1145/236869.236927.

42. Kunkle D, Slavici V, Cooperman G. Parallel disk-based computation for large, monolithic binary decision diagrams.
PASCO 2010: Intl. Workshop on Parallel Symbolic Computation, Grenoble, France, ACM Press, 2010; 63–72, doi:
10.1145/1837210.1837222.

43. Sibert EE, Mattson HF, Jackson P. Finite field arithmetic using the Connection Machine. CAP 1990: Intl.
Workshop on Computer Algebra and Parallellism, Ithaca, USA, LNCS 584, Springer, 1992; 51–61, doi:10.1007/
3-540-55328-2 4.

44. Roch JL, Sénéchaud P, Françoise Siebert-Roch F, Villard G. Computer algebra on MIMD machine. ISSAC 1998:
International Symposium on Symbolic and Algebraic Computation, Rome, Italy, LNCS 358, Springer, 1989; 423–
439, doi:10.1007/3-540-51084-2 40.

45. Neun W, Melenk H. Very large Gröbner basis calculations. Intl. Workshop on Computer Algebra and Parallellism,
CAP 1990, Ithaca, USA, LNCS 584, Springer, 1992; 89–99, doi:10.1007/3-540-55328-2 7.

46. Loustaunau P, Wang PY. Towards efficient parallelizations of a computer algebra algorithm. Frontiers of Massively
Parallel Computation, McLean, VA, USA, IEEE, 1992; 67–74, doi:10.1109/FMPC.1992.234903.

47. Maplesoft. Maple Grid Computing Toolbox. URL http://www.maplesoft.com/products/
toolboxes/GridComputing, (accessed October 2015).

48. Linton S, Hammond K, Konovalov A, Brown C, Trinder PW, Loidl HW, Horn P, Roozemond D. Easy composition
of symbolic computation software using SCSCP: A new Lingua Franca for symbolic computation. J. Symb. Comput.
2013; 49:95–19, doi:10.1016/j.jsc.2011.12.019.

49. Halstead Jr RH. Multilisp: A language for concurrent symbolic computation. ACM Trans. Program. Lang. Syst.
1985; 7(4):501–538, doi:10.1145/4472.4478.

50. Konovalov A, Linton S. Parallel computations in modular group algebras. PASCO 2010: Intl. Workshop on Parallel
Symbolic Computation, ACM Press: Grenoble, France, 2010; 141–149, doi:10.1145/1837210.1837231.

51. Gastineau M. TRIP home page. Web page. URL http://www.imcce.fr/Equipes/ASD/trip/trip.
php, (accessed October 2015).

52. Gastineau M, Laskar J. Development of TRIP: Fast sparse multivariate polynomial multiplication using burst tries.
ICCS 2006: Computational Science, vol. LNCS 3992, Springer, 2006; 446–453, doi:10.1007/11758525 60.

53. Metzner T, Radimersky M, Sorgatz A, Wehmeier S. User’s Guide to Macro Parallelism in MuPAD 1.4.1 1999.
54. GridMathematica. URL http://www.wolfram.com/gridmathematica/, (accessed October 2015).
55. Cooperman G. Parallel GAP: mature interactive parallel computing. Conference on Groups and Computation III,

De Gruyter: Columbus, OH, USA, 2001; 123–138.
56. Al Zain A, Hammond K, Trinder PW, Linton S, Loidl H, Constanti M. SymGrid-Par: Designing a framework for

executing computational algebra systems on computational grids. Intl. Conf on Computational Science, ICCS 2007,
Beijing, China, LNCS 4488, Springer, 2007; 617–624, doi:10.1007/978-3-540-72586-2 90.

57. Maier P, Trinder PW. Implementing a high-level distributed-memory parallel Haskell in Haskell. IFL 2011: Intl.
Symposium on Implementation and Application of Functional Languages, Lawrence, Kansas, USA, LNCS 7257,
Springer, 2012; 35–50, doi:10.1007/978-3-642-34407-7 3.

58. Maier P, Stewart R, Trinder PW. The HdpH DSLs for scalable reliable computation. Haskell 2014, Gothenburg,
Sweden, ACM Press, 2014; 65–76, doi:10.1145/2633357.2633363.

59. Janjic V, Hammond K. Granularity-aware work-stealing for computationally-uniform Grids. CCGrid 2010,
Melbourne, Australia, IEEE, 2010; 123–134, doi:10.1109/CCGRID.2010.49.

60. Stewart R. Reliable massively parallel symbolic computing: Fault tolerance for a distributed Haskell. PhD Thesis,
School of Mathematical and Computer Sciences, Heriot-Watt University 2013.

61. Edinburgh Parallel Computing Center (EPCC). HECToR National UK Super Computing Resource, Edinburgh
2013. https://www.hector.ac.uk.

62. Geck M. Hecke algebras of finite type are cellular. Invent. Math. 2007; 169:501–517.
63. Stewart R, Maier P, Trinder P. Transparent fault tolerance for scalable functional computation. J. Funct. Program.

2016; Accepted for publication.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://www.ccs.neu.edu/home/gene/papers/dimacs97a.pdf
http://www.ccs.neu.edu/home/gene/papers/dimacs97a.pdf
http://www.maplesoft.com/products/toolboxes/GridComputing
http://www.maplesoft.com/products/toolboxes/GridComputing
http://www.imcce.fr/Equipes/ASD/trip/trip.php
http://www.imcce.fr/Equipes/ASD/trip/trip.php
http://www.wolfram.com/gridmathematica/
https://www.hector.ac.uk

