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Abstract
High performance architectures are increasingly heterogeneous
with shared and distributed memory components. Programming
such architectures is complicated and performance portability is a
major issue as the architectures evolve.

This paper proposes a new architectural cost model that ac-
counts for cache size and improves on heterogeneous architec-
tures, and demonstrates a skeleton-based programming model that
simplifies programming heterogeneous architectures. We further
demonstrate that the cost model can be exploited by skeletons
to improve load balancing on heterogeneous architectures. The
heterogeneous skeleton model facilitates performance portability,
using the architectural cost model to automatically balance load
across heterogeneous components of the architecture. For both a
data parallel benchmark, and realistic image processing program
we obtain good performance for the heterogeneous skeleton on ho-
mogeneous shared and distributed memory architectures, and on
three heterogeneous architectures. We also show that taking cache
size into account in the model leads to improved balance and per-
formance.
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1. Introduction
With the advent of multicores, many high performance architec-
tures are heterogeneous, that is they comprise clusters of multicore
nodes. Load balancing is a major issue of such architectures where
the optimisation of overall processing time depends on how to bal-
ance load across the nodes of these architectures. Hybrid parallel
programming models like [19, 25, 29, 31] are used to exploit such
architectures. These models are relatively complex as they typi-
cally combine a distributed-memory message-passing model like
MPI [32] and a shared-memory model like OpenMP [9]. More-
over, performance portability becomes a major issue as programs
must be rewritten as the shared and distributed memory character-
istics of the heterogeneous architectures evolve, e.g. as the number
of shared-memory cores skyrockets.

This paper proposes a new architectural cost model for load bal-
ance on heterogeneous architectures and demonstrates a skeleton-
based programming model for programming heterogeneous archi-
tectures. The paper makes the following research contributions
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• We present a new architectural cost model for heterogeneous
architectures that characterise components of the architecture
by number of cores, clock speed, and crucially the size of the
L2 cache (Section 3).

• The heterogeneous skeleton model facilitates performance
portability. The skeletons use the new cost model to automat-
ically balance load across heterogeneous components of the
architecture.

• We present the implementation of a data parallel heterogeneous
skeletons, that are novel in supporting execution on heteroge-
neous architectures. The heterogeneous skeleton model simpli-
fies parallel programming on heterogeneous architectures. The
programmer has a single model, that of composing and param-
eterising skeletons rather than two models (Section 5).

• We demonstrate the performance portability by showing that
the heterogeneous skeletons deliver good performance on
shared memory, distributed memory, and four heterogeneous
architectures (Section 6).

2. Background
Structured parallel programming (or algorithmic skeletons ) was
first introduced by Cole in [10]. Simply, algorithm skeletons are
high-level parallel programming model that used to ease parallel
programs development process by concealing most parallel coordi-
nation from the users(programmers). Much work [17, 21, 28, 30]
has been done in the area of skeletal programming under various
names, and for different parallel architectures. Different research
groups have provided skeleton implementations. Some of the skele-
ton frameworks come as a library and others are provided as lan-
guage constructs. Since the organisation of parallelism in skele-
tal programming is up to the skeleton implementation, algorithm
skeletons can be classified either as distributed- or shared memory
architecture. Many frameworks are provided as libraries that sup-
port distributed parallel computations which are implemented on
distributed parallel architectures.

eSkel [5, 6, 11] is a library of C with MPI functions offering
data parallel and task parallel skeletons. eSkel is used in distributed
environments such as clusters and grids. SkeTo [27] is also using
MPI to achieve parallel distributed computations on distributed par-
allel architectures. It is provided as a C++ library. Muesli [20] pro-
vides data parallel and task parallel skeletons as a C++ library. It
works using MPI to achieve parallelism on distributed parallel ar-
chitectures. Google’s MapReduce [14] is a parallel programming
model for distributed-memory environments developed by Google.
It is proposed as library that can be implemented in C++. Google’s
MapReduce is designed to take advantage of large clusters by pro-
viding high-level abstractions for parallel algorithms. These ab-
straction are based on the concept of map and reduce primitives
present in functional languages, where the map function processes



the input data and produces a set of intermediate key/value pairs
and the reduce function merges the intermediate values that have
the same key. Apache Hadoop [1] is a Java framework for process-
ing large data set on large clusters. It provides a distributed file
system(HDFS) that can store data on nodes in the cluster and im-
plements the MapReduce paradigm.

One of the recent skeleton libraries that supports shared-
memory architectures(Multi-core systems) is Skandium [3].
Skandium [22] is a Java library of shared memory algorithm skele-
tons. It was designed to works using the Fork/Join framework in
Java to achieve parallelism in shared memory environments. Other
frameworks such as TBB [2] provide high level parallel abstrac-
tions. TBB is a C++ library which provides various templates for
parallel programming such as parallel for, parallel reduce, paral-
lel scan, and parallel pipeline.

Many cost performance models [16] have been developed for
parallel algorithmic skeletons on homogeneous architectures. Dar-
lington [13] developed a cost model for a divide and conquer (DC)
skeleton. This cost model calculates the execution time using the
communication time between processors, the time needed to split
the problem into two subproblem, and the time to solve the problem
in one processor. Sreekantaswamy [33] developed a cost model for
a farm skeleton. In this model three hardware parameters are used
to describe the performance of parallel architectures: 1) communi-
cation time 2) computation time 3) the start up time for the skeleton.

Modern CPUs have multi-level memory which significantly af-
fects performance. As discussed below, we think that cache size
will be the dominating property. Compared with these cost per-
formance models, we have developed a new cost model to opti-
mise overall processing time for heterogeneous algorithmic skele-
ton on heterogeneous systems(multi-core clusters etc). The cost
model uses three hardware properties to balance load across het-
erogeneous components of the architectures: 1) number of cores 2)
CPU speed 3) size of L2 cache.

To experiment our cost model we developed a new skeleton
library for heterogeneous systems. Our work is motivated by the
development of eSkel in using MPI routines to achieve parallelism
on distributed systems. Therefore our work takes advantage of
MPI and OpenMP to provide a skeleton library named HWSkel for
heterogeneous systems. HWSkel is a library of C functions running
on top of MPI and OpenMP to achieve distributed- and shared
parallelism respectively.

3. Cost Model
3.1 Related Cost Models
Several parallel computational models have been developed for
parallel distributed systems[4, 12, 15, 34]. A good general survey
of early research is given in [26]. In this section we discus the cost
models that proposed for heterogeneous clusters and related to our
cost model. HiHCoHP model[8] is realistic communication model
for hypercluster with heterogeneous processors. It uses several
parameters that reflect the heterogeneity of hyperclusters, such as
latencies, link-bandwidth, capacities of network and processor,s
message-processing time. An extension of logGP[4], HLogGP[7],
has been proposed for heterogeneous clusters. It includes a number
of parameters that capture the computational and network features
namely latency, overhead, gap between message, gap per byte and
computational power.

In contrast to the frameworks described above, our cost model
provides the following features:

Complexity. As the degree of model complexity depends on num-
bers of parameters that need to be estimated, we are content with a
simple model, with small numbers parameters.

Target Architectures. HiHCoHP and HLogGP models are de-
signed for heterogeneous clusters in which both processors and
network are heterogeneous. Nevertheless, our cost model targets
homogeneous networked cluster where the nodes are heteroge-
neous. We focus on the optimisation of processing time that can be
affected by the computational features of the nodes as discussed in
section 3.

Skeleton-based Approach. The idea of associating cost models
with algorithmic skeletons is not new. However, we integrate an
architural cost model that accounts for cache size for load balance
on heterogeneous clusters into a skeleton library for parallel imple-
mentations. Moreover, the cost model is used implicitly to guide
the development and implementation of parallel programs.

3.2 Methodology
We wish to develop a cost model to optimise overall processing
time for our skeleton on a heterogeneous system composed of
networks of arbitrary numbers of nodes, each with an arbitrary
number of cores sharing arbitrary amounts of memory. From our
model, we seek relative measures of processing power to guide data
distribution rather than absolute predictions of processing time.
Thus, we are content with a simple model, with small numbers of
easily instantiable parameters.

In constructing our model, we assume that:

• inter-node communication time is uniform;
• on an individual node, all the cores have the same processor

characteristics;
• each core processes a distinct single chunk of data, without

interruption, using the same algorithm as the other cores;

Hence, we focus the optimisation of processing time on distributing
appropriately sized chunks of data to cores to balance processing.

For a first cut, we might base this distribution on the number of
nodes, and for, each node, the speed of each core. Suppose node i
has Ci cores each of speed Si. Then, the total available processing
power for n nodes is:

i=nX
i=1

Ci ∗ Si

Each node i might receive:

Ci ∗ Si/

i=nX
i=1

Ci ∗ Si

of the data, so each core of node i might receive:

Si/

i=nX
i=1

Ci ∗ Si

Now, all processors have some memory hierarchy, from regis-
ters, via various levels of cache, to RAM and beyond. We assume
that registers and on-core caches are private and operate at CPU
speed. Shared cache, typically L2 or L3, is usually many orders
of magnitude smaller than shared RAM, and, for many problems,
RAM is sufficiently large for paging to be absent. Thus, we identify
the size of top level shared cache as the most significant memory
factor affecting overall performance.

We have assumed that all cores are running the same algo-
rithm, which implies that they will have similar patterns of access
to shared memory. In particular, each core will incur similar se-
quences of cache faults. Then, the number of cache faults will be
determined by the size of the cache: for a larger cache it is more



likely that a required portion of the address space is already resi-
dent.

Thus, we refine our model to take into account the size of the
cache, which we denote as L2i on node i, with a larger cache
implying that a node should receive larger size data chunks. Then,
the strength of a core on node i is given by:

Ci ∗ Si ∗ L2i

The overall power P of the system is given by:

P =

i=nX
i=1

Ci ∗ Si ∗ L2i

For data size D, the chunk size for node i is:

(Ci ∗ Si ∗ L2i/P ) ∗ D

and each core processes:

(Si ∗ L2i/P ) ∗ D

For a heterogeneous system, it is necessary to normalise the
overall system power in order to predict maximum speedup and
determine whether that has been achieved. We think it most princi-
pled to do so using the core with the greatest power.

So, to predict maximum speedup we:

• find the power of each core Pi and choose the greatest PL:
• find the maximum predicted speedup by dividing the overall

power by the greatest core power: P/Pl.

Then, to assess achieved speedup we:

• initially, measure the program on one core with that greatest
power to provide a base line;

• subsequently, measure speedup relative to that base line mea-
surement.

4. An Overview of HWSkel
The main design idea of the HWSkel library is to provide high-level
parallel programming models(skeletons) that capture common par-
allel patterns, and execute them on heterogeneous systems, in par-
ticular on clusters of multi-core. In other words HWSkel is designed
to abstract all the parallelism and communication involved in a pro-
gram that will be executed on a multi-core cluster. The skeletons
in HWSkel are implemented using a hybrid OpenMP/MPI model.
This design is adaptable and hence HWSkel skeletons can be used
for distributed-memory systems, shared-memory systems or both
systems together as heterogeneous systems. For instance if the un-
derlying system is distributed memory, the distributed parallel pro-
gramming model will be automatically adopted. The HWSkel li-
brary has the following characteristics:

• The recent trend of designing algorithm skeletons is to present
them as libraries to avoid adding any new syntax. Therefore,
HWSkel is provided as a library of C that works using MPI
and OpenMP to achieve the parallelisation on heterogeneous
systems.

• HWSkel supports parallelism on heterogeneous architectures,
and flexible parallelism on either shared or distributed memory
architectures.

• Lower-level details of parallel programming are concealed from
the users by our skeleton. Furthermore, the interaction between
MPI and OpenMP introduces new communication such as data
flow between theses models. These communication is implicitly
defined by skeleton composition. Therefore, our skeleton can be
used to develop parallel programs in a sequential fashion.

• To ensure a good load balance we integrate an efficient cost
model for data-load distribution into our system. The cost
model uses specific hardware properties to distribute work be-
tween processors.

4.1 Using The Cost Model in HWSkel Library
In the HWSkel library, the cost model is integrated in the skele-
tons to improve its parallel performance on heterogeneous multi-
core clusters. In the hybrid programming model, load balance can
be more easily achieved in the shared-memory model(OpenMP)
than the distributed-memory model(MPI), hence the load balance
is dependent on MPI distribution not on OpenMP[18]. Since the
hMapReduce and hMapReduceAll skeletons are based on a hybrid
programming model where we assume that all cores on the node
have the same characteristics, we used the cost model only for
data-load distribution over the cluster nodes. Since both skeletons
use the SPMD model for distributed memory parallelism, therefore
the master PE is responsible for applying the cost model. At the
beginning of skeleton execution, the master PE collects and reg-
isters the hardware information for each PE that is needed by the
cost model. This information is collected from the local system file
”/proc/cpuInfo“ of each PE in the cluster. After collecting the hard-
ware information the master PE applies the cost model to distribute
the data over the cluster.

5. Using HWSkel Skeletons
The prototype of the HWSkel library is implemented in C with MPI
and OpenMP. Our framework enables the programmer to develop
parallel programs in C in a sequential manner, where the skeleton
can be written as a sequential function call in the program. The
current specification of HWSkel defines a set of skeletons for data
parallelisation. In this paper two skeletons are used:

• The hMapReduce skeleton that supports data parallel compu-
tation on a heterogeneous multi-core cluster, where the pro-
grammer must specify the input data and the operations(worker
operation, reduction operation) that will be performed by the
workers.

void* hMapReduce(void* dataList,int size,
enum DataType dType, void* funcName,
enum DataType rType,enum CombinOP opType);

where:

dataList Specifies the starting address of the data.
size Indicates the length of the data.
dType Denotes the datatype of input data.
funcName Specifies map function.
rType Denotes the datatype of output data.
opType Specifies the reduction operation.

• The hMapReduceAll skeleton that behaves like hMapReduce.
The difference is that instead of splitting the data among the
workers, all data are sent to all workers.

void* hMapReduceAll(void* dataList,int size,
enum DataType dType, void* funcName,
enum DataType rType,enum CombinOP opType);

5.1 sum-Euler Example
As an example program, sum-Euler calculates the sum of the to-
tients between a lower and an upper limit, where the totient function
of an integer (n) gives number of positive integers less than or equal



to (n) that are relatively prime to (n).

sumEuler =

upperX
n=lower

∅(n) ∅(n) =

nX
i=1

euler(n)

Figure 1 presents the sequential sumTotient function that receives
a list of integers.

int sumTotient(nt *datalist, int length)
{ int i,j,k;

int sum = 0;
for(i=0;i<length;i++)

sum = sum+euler(datalist[i]);
return sum;

}

Figure 1: Code for sumTotient function

int euler(int n)
{ int i, length=0;

for(i=1;i<n;i++)
if(relprime(n,i))
length++;

return length;
}

Figure 2: Code for euler function

Figure 2 shows the euler function that applies the Euler totient
function to each element in the list, then the results are summed
for all elements. In the parallel version, the list of integers is split
into chunks using a split function which employs the cost model of
load distribution, and then the euler function is mapped in parallel
across each chunk. Finally, the results are summed sequentially for
all elements in the main function(sumTotient).

Figure 3 presents the main sum-Euler program that uses the
hMapReduce skeleton. The parameters of hMapReduce skeleton
are sumTotient as the map function and the plus from Figure 4
as the reduction function.

int main(int argc, char **argv)
{ Init_HWSkel(argc,argv);
result=hMapReduce(data,length,INT

,sumTotient,INT,plus);
Terminate_HWSkel();

}

Figure 3: Main program for sum-Euler

int plus(int *arr,int size)
{ int i, result=0;
for(i=0;i<size;i++)

result+=arr[i];
return result;

}

Figure 4: Code for plus function

5.2 Image Matching Example
Image Matching is fundamental aspect of many problems in com-
puter vision including object recognition. Matching different im-
ages of object requires local image features that are unaffected by
nearby clutter or partial occlusion [23]. The Scale Invariant Feature
Transform (SIFT) is an approach used to transform image data into
scale invariant coordinates relative to local features which has prop-
erties that make it suitable for image matching and recognition [24].
Therefore, image matching is performed by first extracting local
features from the input image using SIFT algorithm and then these
features are individually matched to sift features obtained from
training images by using nearest-neighbour algorithm. In addition,
to avoid expensive search that required for nearest-neighbour al-
gorithm a modification of k-d tree algorithm called best-bin-first
method is used [23].

We port the sequential program of object recognition applica-
tion that was introduced by David Lowe at University of British
Columbia. This application cosist of 26 C code files which approx-
imately contains 9446 lines in aggregate. Basically, the sequetial al-
gorithm of object recognition application is divided into two stages,
first stages is SIFT keypoints detecting and secondly SIFT key-
points matching stage. The activity diagram in Figure 5 illustrate
the original sequential algorithm of object recognition application.

Figure 5: Activity Diagram of Sequential Image Matching Algo-
rithm

In the parallel version, we parallelised the second stage (most
time consumptive) of the application using hMapReduceAll skele-
ton. Therefore, the sequential algorithm of the entire application is
parallelised by scheduling the sift keypoints to the processing ele-
ments and each processing element applies the BBF algorithm [24]
in order to performs matching operation.

Figure 6 presents the main Image Matching program using the
hMapReduceAll skeleton where the matchKeys is map function and
the reduction function is gatheringKeys.

6. Evaluation
In this experiment we investigate the performance impact of
both hMapReduce and hMapReduceAll skeletons on homogeneous
shared memory architectures, and on different combinations of het-
erogeneous architectures using the cost model of load distribution.
Moreover, we use this experiment to study the contribution of each
hardware property that is used in the cost model. For our experi-
ments, we have matched two input images, the size and the number
of SIFT keypoints for each image are shown in Table 1. Since



int main(int argc, char **argv)
{ Init_HWSkel(argc,argv);
// generating keypoints
list=hMapReduceAll(listOfKeys,keysCount,

ARRAY_LIST,matchKeys,ARRAY_LIST,gatheringKeys);
Terminate_HWSkel();

}

Figure 6: Main program for Image Matching

the original sequential sum-Euler program generates irregular data
granularity, for simplicity we assume that all the elements in the list
have the same value by calculating the sum of the totients between
1 and 2,000,000 of an integer with fixed value of 10,000.

Size Keys
img1 1600x1200 (239,616) 71791
img2 1600x1200 (1,205,862) 12378

Table 1: Input Images for Image Matching Application.

6.1 Platform
We conduct our experiments on a heterogeneous cluster of five dif-
ferent parallel architectures located at Heriot-Watt University (Ta-
ble 2): i)four 2-core (linux)machines consisting of Linux RedHat
4.1.2 workstations with a 2.4GHz Intel processor, using 2GB RAM
and 2048KB L2 cache. ii) two 8-core Dell PowerEdge 2950 (lx-
para) machines constructed from two quad-core Intel Xeon 5410
processors running Linux RedHat 5.5 at 2.3GHz with 6144 KB
L2 cache and using 16GB RAM. iii) a 4-core (amaterasu) ma-
chine running Linux RedHat 4.1.2 at 2.93GHz with 8192 KB L2
cache and using 16GB RAM. iv) a 4-core (brahma) machine run-
ning Linux RedHat 4.1.2 at 3.06GHz with 512 KB L2 cache and
using 4GB RAM. v) a 8-core (jove) machine running Linux Red-
Hat 4.1.2 at 2.80GHz with 8192 KB L2 cache and using 16GB
RAM. Throughout the evaluation section, they will be cited as
(speed/cache).

6.2 Heterogeneous Architectures
On homogeneous architectures both skeletons deliver linear speedup
for sum-Euler and Image Matching programs.

On heterogeneous architectures, we run our skeletons on three
different combinations of the architectures that are described in
Section 6.1.

Firstly, Figure 7 plots two different speedup curves for our
testbed parallel programs on case1 (lxpara, brahma, amaterasu,
jove and 2xlinux).

The results show that the implementation of HWSkel library
without the cost model delivered worse scalability, where we
achieved good speedup on the first fast machine (lxpara). The
lower speedup curve falls as soon as we introduce heterogeneity by
adding the slow machines. This is due to the naive load balancing
mechanism which is based on naive technique that distribute load
equally between the machines. The upper speedup curve shows the
improved performance results for using a load distribution based
on the cost model in Section 3. As anticipated, our results show
better scalability for our skeletons with the cost model.

Secondly, we combine two 8-core shared-memory machine lx-
para with 4-core shared-memory machine brahma, 4-core shared-
memory machine amaterasu and two 2-core shared-memory ma-
chine linux (case2). The results show that in the first two machine
(lxpara1 and lxpara2 ) the performance of our implementations on
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Figure 7: hMapReduce sum-Euler & hMapReduceAll image-
matching Speedup with/without Cost Model on (Case1)

Predicted
Speedup

Experimental-Speedup Relative Error

Img-Match Sum-Euler Img-Match Sum-Euler
8 7.99 7.99 0.125 % 0.125 %
8.51 8.694 8.492 -2.162 % 0.211 %
14.946 14.28 14.89 4.456 % 0.374 %
21.38 17.949 21.25 16.047 % 0.608 %
21.782 17.371 21.649 20.250 % 0.610 %
22.58 17.815 22.44 21.107 % 0.620 %

Table 3: Experimental Speedup and Predicted Maximum Speedup
(Case1).

both hMapReduce and hMapReduceAll skeletons are slightly im-
proved by using the cost model. This is due to the architectural
similarity of these machines. As discused in the first combination,
adding slow machines leads to poor performance due to the data-
load distribution mechanism, again Figure 8 prove that the perfor-
mance of our skeletons can be improved using the cost model.



Machine name Architecture CPU
Cores MHz L2 Cache Case1 Case2 Case3

lxpara1 Xeon 4510 8 1998 6144KB
√ √ √

lxpara2 Xeon 4510 8 1998 6144KB
√

brahma Xeon(TM) 4 3065 512KB
√ √ √

amaterasu Core(TM) i7 4 1199 8192KB
√ √ √

jove Core(TM)i7 8 1200 8192KB
√

linux01 2 Duo CPU 2 1200 2048KB
√ √ √

linux02 2 Duo CPU 2 1200 2048KB
√ √ √

linux03 2 Duo CPU 2 1200 2048KB
√

linux04 2 Duo CPU 2 1200 2048KB
√

Table 2: Experimental Architectures and Predicted Maximum Speedup.

Predicted
Speedup

Experimental-Speedup Relative Error

Img-Match Sum-Euler Img-Match Sum-Euler
8 8 7.981 0 % 0.238 %
16 15.507 15.955 3.081 % 0.281 %
16.522 15.64 16.467 5.338 % 0.332 %
22.95 18.549 22.84 19.176 % 0.479 %
23.353 18.794 23.236 19.522 % 0.501 %
24.157 19.304 24.033 20.089 % 0.513 %

Table 4: Experimental Speedup and Predicted Maximum Speedup
(Case2).

Predicted
Speedup

Experimental-Speedup Relative Error

Img-Match Sum-Euler Img-Match Sum-Euler
8 8 7.981 0 % 0.237 %
8.51 8.694 8.492 -2.162 % 0.211 %
14.946 14.244 14.87 4.696 % 0.508 %
15.348 13.923 15.669 9.284 % -2.091 %
16.153 13.967 16.067 13.533 % 0.532 %
16.957 15.495 16.864 8.621 % 0.548 %
17.762 13.152 17.661 25.954 % 0.568 %

Table 5: Experimental Speedup and Predicted Maximum Speedup
(Case3).

Thirdly, Figure 9 shows the speedups for sum-Euler and Im-
age Matching programs on a different heterogeneous architecture
(case3) comprising (lxpara, brahma, amaterasu, and 4xlinux). For
this combination, the result looks similar to the first combination
that shown in Figure 7. It shows that the performance of our skele-
ton is improved by using the cost performance model.

Finally, in order to assess the effectiveness and accuracy of the
proposed cost model for our skeletons, we calculate the predicted
maximum speedup as described in section 3.2 and compared with
the experimental speedup for both programs. Tables [3,4,5] lists
the predicted speedup, experimental speedup and the relative error
on the given system configurations. In the three cases, the relative
error for Sum-Euler program is very low where the experimental
speedup is close to the maximum theoretical speedup limited by our

cost model. However, as expected in the Image-Matching program
the relative error is higher. Observe that the error is around 25.956
percent in the worst case. This is due to the characteristics of
this program which suffers high overheads because of frequent
communications. Figures 7, 8 and 9 plot the predicted maximum
speedup for Sum-Euler and Image-Matching programs. Observe
that the predicted and experimental speedup curves for Sum-Euler
are identical.

6.3 Alternative Cost Models
Figure 10 shows different speedup results for the implementa-
tions of HWSkel library on case3 (lxpara, brahma, amaterasu, and
4xlinux) using the cost model with different architecture properties
which includes number of cores, CPU speed, and cache size. Al-
though, the best result is achieved by using all CPU properties in
the cost model, we can see that the cache size property has the most
significant impact on the cost model performance.

Therefore, we conclude that our skeletons can deliver good par-
allel performance and scalability on heterogeneous architectures
using the static load-balancing mechanism based on architecture
properties. On the architectures that are likely to be more heteroge-
neous the communication cost needs to be added to the cost model.

7. Conclusions and Future Work
We propose a new architectural cost model for heterogeneous ar-
chitectures.The cost model is used to determine the data-chunk size
according to the number of cores, clock speed and crucially the
cache size for each node over the cluster.

In addition, we present a new parallel skeleton library(HWSkel)
for heterogeneous multi-core cluster architectures. This library is
implemented in C on the top of MPI as a distributed-memory
programming model and OpenMP for shared-memory parallelism.
This means that the skeleton can take straightforward advantage
of our cost model to be executed on distributed-memory systems,
shared-memory systems or distributed shared memory systems.
In particular, it provides data parallel skeletons hMapReduce and
hMapReduceAll. These skeletons are similar to Google’s MapRe-
duce model. Moreover, since our skeletons need to be invoked
within an MPI initialisation, the HWSkel library provides wrapper
functions for some MPI routines to keep the user (programmer)
away from using a new programming language within the skeletal
programs.

Since the naive implementation of our skeletons on heteroge-
neous multi-core cluster deliver poor performance due to the dif-
ference of the nodes capability, we show that it is possible to obtain
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Figure 8: hMapReduce sum-Euler & hMapReduceAll image-
matching Speedup with/without Cost Model on (Case2)

good performance using our cost model for data-load distribution.
Our experiments show that the cache size has the most significant
impact on the data-load distribution mechanism.

Finally, we anticipate delivering good parallel performance with
our cost model in other data parallel skeletons as well as for task
parallel skeletons.

In ongoing and future work, the HWSkel library will be extended
to cover a wide variety of data parallel computations as well as
task parallel computations. We anticipate improving the parallel
performance of our skeletons by adding the network cost to our
cost model.
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