
Submitted to ICFP’07

Evaluating High-Level Distributed Language Constructs

Abstract
The paper investigates the impact of high level distributed pro-
gramming language constructs on the engineering of realistic soft-
ware components. Based on reengineering two non-trivial telecoms
components, we compare two high-level distributed functional lan-
guages, ERLANG and GdH, with conventional distributed technolo-
gies C++/CORBA and C++/UDP.

We investigate several aspects of high-level distributed lan-
guages including the impact on code size of high-level constructs.
We identify three language constructs that primarily contribute to
the reduction in application size and quantify their impact. We pro-
vide the first evidence based on analysis of a substantial system to
support the widely-held supposition that high-level constructs re-
duce programming effort associated with specifying distributed co-
ordination. We investigate whether a language with sophisticated
high-level fault tolerance can produce suitably robust components,
and both measure and analyse the additional programming effort to
introduce robustness. Finally, we investigate some implications of
a range of type systems for engineering distributed software.

General Terms Distributed Functional Languages, Industrial Ap-
plications

1. Introduction
There has been sustained interest in constructing high-level dis-
tributed languages, e.g. Kali Scheme [3], Facile [6], OZ [9], ER-
LANG [1] and Glasgow distributed Haskell (GdH) [22]. Like other
language designers, distributed language designers propose new
constructs and demonstrate them on small exemplars. However a
realistic assessment of a construct, and especially one intended for
large scale distribution, must be based on substantial realistic ex-
emplars.

This paper investigates the impact of high level distributed lan-
guage constructs on the engineering of realistic software. Unlike
the numerous programming language comparisons based on se-
quential kernel benchmarks, e.g. [4, 19], we base our evaluation
on two distributed components, where distributed coordination, and
especially robustness, is a key aspect. Moreover, rather than being
benchmark kernels, the components are substantial and form part
of telecom products.

Earlier work has compared ERLANG and C++/CORBA for dis-
tributed telecoms software, focusing on distributed software re-
quirements: robustness, productivity, performance, functionality,
interoperability and practicality [17]. The results demonstrate that

[Copyright notice will appear here once ’preprint’ option is removed.]

the high level ERLANG components meet the functional require-
ments, and hence can be reasonably compared with the existing
C++ based implementations.

Here we focus on the impact of high-level programming lan-
guage constructs on the construction of realistic distributed soft-
ware. The high-level languages are ERLANG, an industrial-strength
language with high-level distributed coordination and advanced
fault tolerance mechanisms [1], and Glasgow distributed Haskell
(GdH) a research language with very high-level distributed coor-
dination [22]. Our research strategy is to reengineer two telecoms
components in ERLANG and GdH and make comparative measure-
ments with the existing implementations using conventional dis-
tributed technology, i.e. C++ combined with CORBA and with
communication libraries. The first component is a medium-scale
(15K line) Dispatch Call Controller (DCC) [15] (Section 4.2). The
second is a smaller (3K line) Data Mobility (DM) component that
is closely integrated with five other components of a base radio net-
work (Section 4.3).

We investigate the following research questions.

Q1 Do high-level distributed language constructs reduce appli-
cation size? Software size is crucial as shorter programs are
faster to produce and easier to maintain. Our investigation com-
pares the sizes and functionalities of implementations of two
telecoms components in the high-level GdH and ERLANG with
conventional implementations in C++/CORBA and C++/UDP
(Section 5).

Q2 What high-level distributed language constructs impact ap-
plication size? Our investigation quantifies the impact of lan-
guage constructs such as garbage collection, high-level commu-
nication and advanced fault tolerance on code size (Section 6).

Q3 What is the impact of high-level coordination? In theory
a language with high-level coordination reduces the program-
ming effort of specifying coordination. We report what we be-
lieve is the first investigation of this hypothesis in the context of
realistic distributed components, and cover both ERLANG and
GdH (Section 7).

Q4 What is the impact of sophisticated fault tolerance con-
structs, and what are the costs of introducing robustness?
We investigate how readily ERLANG, a language with advanced
high-level fault tolerance, can produce suitably robust compo-
nents. We further measure the cost of introducing robustness
in the context of realistic distributed components by measuring
both the DM and two versions of the DCC, one with, and one
without, fault tolerance (Section 8).

Q5 What are some of the impacts of the type systems on dis-
tributed software engineering? The languages in our study
have very different type systems: ERLANG is dynamically
typed, C++ is weakly typed with parametric and subtyping
polymorphism, and GdH is strongly typed with Hindley-Milner
and parametric polymorphism. We investigate the some of the
implications of these type systems on the construction of a
substantial distributed component, measuring the numbers of

Evaluating High-Level Distributed Language Constructs 1 2007/4/3



type declarations and the frequency of dynamic type checking
(Section 9).

2. Related Work
Popular programming language comparisons are inappropriate for
distributed languages. There are few distributed language com-
parisons and they typically compare performance rather than lan-
guage, e.g. the Hartstone distributed benchmark measures real-
time performance [14]. There are numerous language comparisons,
some general e.g. [4], some comparing within a paradigm e.g.
object-oriented languages [19] and others comparing paradigms,
e.g. scripting versus general purpose languages [23]. Some of the
comparisons incorporate hundreds of languages, and some dis-
tributed languages, e.g. ERLANG, have contributed to the compar-
isons. However the great majority of benchmark programs are se-
quential and are necessarily small kernels of larger applications,
and hence not a good basis for comparing languages intended for
engineering large-scale distributed systems. In contrast this paper
analyses the impacts of distributed language constructs, e.g. fault
tolerance, on the engineering of two substantial distributed product
components.

Evaluating distributed functional languages (DFLs) with sub-
stantial real applications is challenging. Most DFLs like Kali
Scheme [3], Facile [6], OZ [9], and GdH [22] are research lan-
guages and are demonstrated on relatively small ’virtual’ applica-
tions. Virtual applications are only used for measurement, and not
for a practical purpose. Our study is unusual in comparing, inter
alia, ERLANG and GdH using substantial real distributed product
components.

Comparing distributed languages, and especially DFLs, is chal-
lenging. DFLs require a sophisticated implementation to man-
age distributed coordination, and as research languages most
DFL implementations are relatively immature. For example a
language may only be available as a prototype on a specific
hardware/operating system platform. Some small scale compar-
isons have been undertaken, e.g. [21] compares Eden, GdH and
Java/RMI using small kernels. We use larger components and com-
pare four distributed technologies: the ERLANG and GdH DFLs,
and C++ with CORBA and UDP.

Other studies have compared ERLANG with other distributed
language technologies. Ericsson have undertaken some unpub-
lished comparative studies. A published study addresses research
question Q1 in this paper, i.e. the reduction in application size. The
study is based on the development of the AXD301 ATM switch
with more than 1M source lines of code (SLOC) and reports that
the ERLANG systems have between 4 and 10 times less code than
C/C++, Java or PLEX [28]. This is in agreement with the results
we report in Section 5. Our study goes beyond these earlier studies
by making a systematic investigation of the impact of specific dis-
tributed language constructs as outlined by the research questions
in the previous section.

Earlier work has thoroughly investigated the fault tolerance of
the ERLANG DCC [18], and compared ERLANG, but not GdH,
with C++/CORBA and C++/UDP for distributed software engi-
neering [17]. The latter work compares the robustness, productiv-
ity, performance, functionality, interoperability and practicality of
the technologies. The results demonstrate that the ERLANG compo-
nents meet the corresponding functional requirements, and hence
are an appropriate basis for the language analysis reported in sec-
tions 5 – 9.

3. Distributed Language Technologies
Distributed coordination can be specified at a range of levels of
abstraction. At the lowest level the programmer explicitly places

computations and resources at named locations and arranges com-
munication and synchronisation between them. Such low-level co-
ordination, e.g. ������� / � �����
	��
� or �� 	�� / ��	���� ��� can be viewed as
equally harmful for coordination as �
����� is for algorithms [7].
Higher level distribution technologies reduce the programming ef-
fort to specify coordination, and this section briefly outlines the
distributed technologies used in our study.

C++ is a sequential language, and like many other sequential
languages is commonly combined with distribution technologies
to construct distributed systems. The two distribution technologies
used for the telecoms components measured here are CORBA and
the UDP and ICI communication libraries.

3.1 Low-Level Distribution: UDP and ICI

Constructing a distributed system using a low-level communica-
tion library typically entails explicitly spawning operating system
processes and managing communication between them. Often data
must be explicitly marshalled and unmarshalled. There are numer-
ous libraries at different levels of abstraction. Both the UDP and ICI
libraries used in our study are low-level. The User Datagram Pro-
tocol (UDP) is a core internet protocol, and enables components to
send short messages, or datagrams, over sockets. UDP is relatively
fast as, unlike TCP, it does not provide reliable or ordered datagram
delivery.

3.2 Mid-Level Distribution: CORBA

CORBA, Common Object Request Broker Architecture, wraps a
sequential component into an object containing information about
the capabilities of the component and how to call it. The wrapped
objects can be called from other programs or CORBA objects
across a network. CORBA uses an interface definition language
(IDL) to specify the interfaces that objects will present to the
world. CORBA then specifies a mapping from IDL to a specific
implementation language like C++ or Java. CORBA provides mid-
level distributed coordination by providing a language and platform
neutral remote procedure call. In addition CORBA defines common
services such as transactions and security.

3.3 Higher-Level Functional Distribution

A number of distributed functional languages have been con-
structed with a range of models of distributed coordination, as
outlined in the previous section. With the exception of ERLANG,
almost all are research languages used to investigate high-level dis-
tributed coordination integrated with the language. The following
sections briefly outline the DFLs used in our study.

3.4 High-Level Distribution: ERLANG

ERLANG is a DFL originally developed in Ericsson for constructing
highly reliable telecom systems [1]. The language has integrated
distribution, including first-class processes, advanced fault toler-
ance mechanisms, automatic storage management i.e. garbage col-
lection, soft real-time support, and sophisticated availability sup-
port e.g. hot-loading hardware and software upgrades into a run-
ning system.

ERLANG has several general features that facilitate the con-
struction of large distributed real-time systems. The module sys-
tem allows the structuring of very large programs into conceptually
manageable units. ERLANG supports single-assignment variables,
and has an explicit notion of time, enabling it to support soft real-
time applications, i.e. where response times are in the order of mil-
liseconds.

ERLANG has been used by a number of companies to construct
a wide range of applications, primarily in the telecoms sector, but
increasingly in other sectors, e.g. banking. Examples include the
first implementation of GPRS for standard packet data in GSM

Evaluating High-Level Distributed Language Constructs 2 2007/4/3



systems [8], and the Intelligent Network Service Creation Environ-
ment [10]. The largest application to date is the AXD 301 scalable
and robust backbone ATM switch [2], currently utilising up to 288
Processing Elements (PEs). The code comprises over 1.7 million
lines of new ERLANG code [11, p.6], 300K lines of mostly-reused
C and 8K lines of Java, developed by a team peaking at 50 software
engineers [27].

3.4.1 Fault Tolerance

The ERLANG reliability philosophy is to separate the functionality
and error-handling concerns. That is, the programmer writes sim-
ple code for the successful case that may fail, raising an exception.
The key to this “let it fail” ethos is that the language incorporates
first class processes that can fail without damaging other processes.
True processes, while common in operating systems, are extremely
unusual in production programming languages. A common reason
for a failure is a timeout and the exception raised may be handled
within a process by an exception handler, or by a monitoring pro-
cess.

Supervisor

DME_Rx DME_Tx

DME_Rx−drv DME_Tx−drv

Strategy: one_for_one
Restarts: None

Supervisor
Strategy: one_for_one
Restarts: 1/h

Figure 1. ERLANG/C DM Supervision Tree

The monitoring of one process by another is sufficiently com-
mon that it is encapsulated by the supervisor behaviour [11]. An
ERLANG behaviour is a high-level distributed coordination abstrac-
tion. In the supervisor behaviour the supervising, or parent, process
spawns child processes and declares a number of coordination as-
pects. An important aspect is the action to perform in the event of
a failure, e.g. restart the child process, kill the child process, kill all
the child processes. A second important aspect is the frequency of
failures to be tolerated, e.g. one per hour. As the supervised pro-
cesses may supervise other processes, a supervision tree can be
constructed.

Figure 1 shows the supervision tree for the ERLANG/C DM
component described in Section 4.3. In this tree, Supervisor 2 will
restart either of the ERLANG receiver or transmitter processes at
most once an hour. Supervisor 1 will fail gracefully if supervisor 2
fails or either of the C drivers fail, reflecting the fact that it has no
way of restarting the C drivers. This supervision tree provides much
of the DM robustness, and is less than 10 source lines of code.
��������� ������� �	��
 � � ���� ��� ��	����	�
	��������

Figure 2. ERLANG DM Communication

3.4.2 High-Level Communication

Communication between ERLANG processes is high-level asyn-
chronous message passing. The communication mechanisms pro-
vide automatic data marshalling, error detection, communication
and synchronisation. Figure 2 and Figure 3 give a dramatic com-
parison of the same communication in ERLANG and in C++ with

ICI. An ERLANG � � ��� is a point-to-point send primitive. The C++
version contains considerable amounts of data marshalling and de-
fensive code, e.g. lines 32-37 detect and report an error. The ER-
LANG version crucially relies on automatic error detection, and that
the failure will be handled elsewhere, most probably by a supervis-
ing process.

�������������������������� �����!�"�#�$�%���&�'�(�(���%*)�),+�%���&�'�(�(�-�./(10�+�2�'�%435���/���	6
7�8
9:��;�<�=�$�>�" ?�(�@�=���0�A�=�+���%CB
DE����=���F�2�G1H�F�=�G�I�J�K�=���;�<MLN?�(�@�=�+���%CB
O "�F�>�-�"�I�=�;�>�P�>�-�; %�'���=�(�������0/(4B
Q:-�G�I�>	�1Q ?�(�@�=�(���R�'SB
T
UWV�VX��'���'�%1?4�N.�'Y(���R�'Z��A[��&��\?	'�(�(���@�'
]^?�(�@�=�(���R�'�_Z(���R�'���A43`����=���F�2�G1H�F�=�G�I�J�K�=���;�<	6�B
�1a
���bV�VbH�%�'�����'[G1H/G`?	'�(�(���@�'Z����c�'�&��d���d(�'�.��d���e����>�fZ(��Z���
�17gV�V�(�'�.���(h�b��'��	��&�'iGN.�A��j?	'�(�(���@�'�����k��e��.��gk�7g&� ��1'�.���(
�19[G�&��N�/(�@i��&���=N?�(�@�=�����c�'�&��43j����=���F�2�G1H�F�=�G�I�J�K�=�K�$�HSl

G1H/G�=�����>�f�=�>�P�;�m�=�GN�*ln?�(�@�=�(���R�'/6�B
� O V�VX"�'���%	�1'���'iG1H/G\?	'�(�(���@�'���0�A�A�'�%�+����N.���'�%
�1QX?�(�@�=���0�A�=�+���%g_[��&���=N?�(�@�=�����c�'�&��*o,@�'��	G�&��N�/(�@�p�0�A�$���%4316qB
�1T
�1UgV�Ve>�!�+�'�&���(��d+�.���%r35�������YL�6s_�tu3v����=���F�2�G1H�F�=�G�I�J�K�=���;�<wL�6
�1]X?�(�@�=�+���%d_w3v����=���F�2�G1H�F�=�G�I�J�K�=���;�<wL�65?�(�@�=���0�A�=�+���%CB
7�a
7/�bV�Ve$���+�0� �����'e?	'�(�(���@�'���0�A�A�'�%
7�7d;�F�>�=�����=���F�2�G1H�F�=�G�I�J�K�=���F�2�G1H�F�=�>�x�$�F43j?�(�@�=�+���%Cl\;�F�"�2�F�"�6�B
7�9d;�F�>�=�����=���F�2�G1H�F�=�G�I�J�K�=�I�-���=�2�F�"�=�;�-�$�$�K�"�>�F��y3
7�D ?�(�@�=�+���%ClnI�-���=�2�F�"�=�;�-�$�$�K�"�>�F���6�B
7 O ;�F�>�=�����=���F�2�G1H�F�=�G�I�J�K�=�J�GN"�;�>�=�;�-�$�=�$�"�K�>�K�=�2�F�"�;y3
7�Q ?�(�@�=�+���%Cln$�"�K�>�K�=�2�F�"�;/G�K�I�=�K�I�F	6�B
7�T
7�UgV�Vb;�'�.��e?	'�(�(���@�'����h��z�'b����>�fd����(1{
7�]�%�'���=�(�������0/(h_s?�=���&���=�����=�+���%�|�t�(�'�.��435}	��&���=N?�(�@�=�����c�'�&��	6�B
9�a
9/�bV�VbH�z�'�&1{g��z����e?	'�(�(���@�'�~���(�(�'�.��Z(10/&�&�'�(�(�A�0� � �!
9�7[��Aw35%�'���=�(�������0/(���_g;�-�H�H�F�;�;/6
9�9d8
9�D�V�Ve"�'�+���%���+�%����� �'�?[~�z�'�.Y(�'�.��	�N.�@uG1H/G`?	'�(�(���@�'
9 O (�R�=�'�%�%�=N?�(�@43v��P���K�"*lj;���=�F�"�"�=���;�<�=�F�"�"�=�K�$�H�K���FCle=�=�J�G���F�=�=yl\=�=��	G�I�F�=�=yl
9�Q ������������������ �����!�"�#Y+�%���&�'�(�(1-�./(10�+�2�'�%*)\A��/�� �0�%�'[(�'�.��	�N.�@u�
9�T �j��'��	��&�'i�N.�A��j?	'�(�(���@�'����b����>�f���6�B
9�Ud�

Figure 3. C++/ICI DM Communication

3.4.3 Automatic Memory Management

Like many modern programming languages, ERLANG provides au-
tomatic memory management, supported by garbage collection.
This both relieves the programmer from specifying a significant
and awkward aspect of the program, and improves reliability by
guaranteeing safe storage management and reducing space leaks.
ERLANG programs typically contain no explicit storage manage-
ment, and hence there is none in Figure 2. In contrast, lines 9 and
13 of the C++ code in Figure 3 calculate a size and allocate an
object of that size.

3.4.4 Pragmatics

To aid rapid application development ERLANG is supplied with the
Open Telecom Platform (OTP) libraries [25]. The OTP include,
inter alia, libraries, design principles, and productivity, profiling
and debugging tools. A compiler [12] and a bytecode interpreter
are both available open source for ERLANG.

Evaluating High-Level Distributed Language Constructs 3 2007/4/3



3.5 Very High-Level Distribution: GdH

Glasgow distributed Haskell (GdH) is a research language with
very high-level distributed coordination. It was designed to investi-
gate the construction of reliable distributed applications in high-
level languages. Haskell [20] is the de facto standard non-strict
functional language and the GdH implementation is based of the
Glasgow Haskell Compiler, arguably the best Haskell implemen-
tation. GdH combines features of two other variants of Haskell,
Glasgow parallel Haskell [26] and Concurrent Haskell, with some
additional constructs [22].

GdH has the following features. It supports both parallel dis-
tributed computation using two classes of thread: stateless threads
and stateful I/O threads. Processing Elements (PEs) are identified
so a program can use resources unique to a PE, like a data source or
a GUI interacting with a user. Both remote procedure call and re-
mote evaluation distribution paradigms are supported. Remote pro-
cedure call is provided by the � � � ������� primitive:

� � � ������� 
/
 ��� �����	��
�� � ������� �
and remote evaluation by the � �
� ������ primitive:

� ��� ������ 
/
 ��� ��� ���	��
�� � �����������
� � � � � �
As in Concurrent Haskell some communication and synchronisa-
tion is implicit: threads on one PE can share variables with threads
on other PEs. Moreover, stateful threads can explicitly communi-
cate and synchronise using distributed polymorphic semaphores
( ������� � ). Higher-level constructs, like channels between threads
on different PEs, are constructed by abstracting over distributed
������� � . Fault tolerance is provided by distributed exception han-
dling, e.g. an exception can be raised on one PE and handled on
another.

GdH supports very high-level distributed coordination in sev-
eral ways. Typically only a few key stateful objects are explicitly
located, and the location of the large majority of stateless objects in
a program is implicit. The communication and synchronisation as-
sociated with these objects is entirely implicit and managed by the
sophisticated language implementation. Moreover, stateful compu-
tations are concisely expressed using abstractions like channels and
higher-order monadic functions. For example a monadic map that
distributes an action to a sequence of locations effectively performs
a sequence of remote procedure calls:
� ����� ��� ����� � � � � �������  � ���� �	� � ���

4. Basis of Comparison
This section outlines the challenges posed by engineering of tele-
com software and describes the telecom components that are
reengineered as the basis of our comparison between the distributed
languages.

4.1 Distributed Telecoms Software

The telecoms sector is rapidly growing, with new devices and
technologies appearing almost daily. This adds to the complexity
of telecoms systems, which by their very nature have a distributed
architecture, an array of different hardware, operating systems,
networks, and application software. Rapid development and high
levels of reliability and availability are key requirements. Telecoms
providers aspire to 99.999% availability, which equates to little
more than 5 minutes downtime a year, but this is rarely achieved.

The rapid production of robust telecoms software raises the fol-
lowing technical challenges. High Level Programming: using high
level programming paradigms in application development releases
the programmer from dealing with awkward, low level, technical
issues such as memory management and communication details.
Correctness: telecoms systems are typically too large for the cor-
rectness to be shown using formal proof. Hence, the importance of
thorough testing that typically consumes more than 50% of the soft-

ware development effort. Additionally, abstraction can help with
correctness, since it is easier to demonstrate properties or model
check, if the specification or implementation is given in a high-
level formal notation. Fault tolerance: most downtime is caused not
by hardware faults, but by system and application software failure.
Recovering from a software crash, or processor failure, improves
availability. Maintainability: which includes both debugging exist-
ing systems, and adding new features.

Currently many distributed telecoms systems are implemented
in C with SDL on real-time operating systems with trends towards
using C++/CORBA, JAVA/RMI. There is considerable interest in
applying higher level techniques. One such technique is model
driven software engineering, and UML 2.0 State Machines are a
common model. Similarly, high level distributed programming lan-
guages are attractive because of the potential to reduce develop-
ment time, and improve reliability and maintainability. Clearly the
implementation technology must also meet the other functional re-
quirements of telecom applications, e.g. real-time requirements.

4.2 Dispatch Call Controller (DCC)

The first component reengineered is a prototype dispatch call sys-
tem developed at Motorola Labs in Illinois [15]. Dispatch call pro-
cessing is a prevalent feature of many wireless communication sys-
tems. Managing the call processing with a distributed paradigm en-
ables throughput to be scaled as system usage grows, with work dy-
namically distributed to the resources available. The requirements
for the DCC model are derived from the technical report by Lil-
lie [15] and from a set of functional requirements [24].

The DCC requires the following functionality. It must provide
dynamic scalability, i.e. the ability to adapt to use additional re-
sources while the system is running. It must reclaim resources to
enable continuous execution, i.e. ensure that once a service instance
has terminated, all of its resources are reclaimed. It must be fault
tolerant, and in particular provide continued service despite fail-
ures. It must meet soft real time performance criteria, i.e. call man-
agement mustn’t interrupt the call. For the purpose of the study we
use a model of the DCC service that only deals with regular voice
point-to-point calls and hand-offs between the base radio stations.
More complete descriptions of the systems measured are available
in [18].

The DCC service comprises two distinct parts, the subscribers
of the system generating traffic and the fixed-end terminating the
service. Subscribers are simulated by two processes: one that sets
up the call and generates simulated voice traffic, and another that
simulates subscriber roaming by issuing hand-off messages to the
fixed-end notifying it that the subscriber is now associated with
a new base radio station. The fixed-end is simulated by a service
dealing with both hand-offs and call requests.

The DCC software test platform comprises the subsystems de-
scribed below and the overall architecture is shown in Figure 4. The
hardware platform is a 32-node Beowulf cluster.

Test Management Responsible for starting and controlling the
System Management and Traffic Generator subsystems dur-
ing the test. The Test Manager will also inject the faults into the
non-testing subsystems.

Traffic Generator The Traffic Generator sends a sequence of calls
to the Service Port and acts as a sink for all messages from
service instances to caller.

System Management Responsible for starting, stopping and man-
agement of the Service Port and the worker nodes. The Sys-
tem Management subsystem is also responsible for restarting
the Service Port for any worker that fails.

Evaluating High-Level Distributed Language Constructs 4 2007/4/3



Test Management System Management

Service Port

Traffic Generator

Worker Worker

Leader

Processing Element

Controll

Communication

Figure 4. ERLANG DCC Architecture

Service Port The Port is responsible for starting and maintaining
all the interfaces used by the services to communicate with the
Workers and relays calls from the subscribers of the services to
the Worker responsible for Service Admission acting as gate-
keeper.

Worker There are one or more Worker subsystems in the system
and they are responsible for executing of the dispatch call han-
dlers. One of the workers is the designated leader of the work-
ers and is responsible for admission control and distribution of
calls between the available Workers. The leader is elected, and
re-elected after a failure, using a standard protocol.

4.3 Data Mobility Server (DM)

VLR_QUERY

HLR_QUERY

DEVICE_INFO

VLR_QUERY_RESP
VLR_PUSH

VLR_QUERY_RESP

VLR_PUSH

HLR_QUERY_RESP

DEVICE_INFO

PZThrottle

RM

CM

MM_DEVICE_INFODM_Rx DM_Tx

IHLR

CONFIG CONFIG

DMRX_STATE_CHANGE DMTX_STATE_CHANGE

SCHEDULE_THROTT

VLR_QUERY

HLR_QUERY

HLR_QUERY_RESP

DM Clients

UDP

EXECUTE_EVENT

DM

Figure 5. Abstract DM Architecture

The Data Mobility service is a small component of a radio com-
munications subsystem (RCS) which is responsible for communi-
cation between the RCS and mobile data devices. The following
DM description avoids using precise product names, and some de-
tails are made abstract to preserve commercial confidentiality. Both
the RCS and DM were developed by Motorola as part of an existing
product that follows an international standard.

Lang. C++ IDL Total Ratio
C++/CORBA 13906 83 13989 42
ERLANG 2143 6
GdH 335 1

Table 1. DCC Code Sizes (SLOC)

The abstract DM architecture is shown in Figure 5, where PZ
is a participating zone manager, RM is a resource manager, CM is
a configuration manager, and IHLR is an individual home location
register. Key aspects of the architecture are as follows. The DM
has two main components a receiver (DM Rx) and a transmitter
(DM Tx). The DM communicates with data mobility devices us-
ing UDP, and with five other components of the RCS using ICI.
For brevity this is termed the C++/UDP implementation in the re-
mainder of the paper.

The DM has not been implemented in GdH, but two ERLANG
DM implementations have been constructed, one purely in ER-
LANG, and an ERLANG/C implementation that reuses some C DM
libraries thus allowing the measurement of interoperation costs.
Key aspects of the ERLANG DM architectures are as follows. There
are four primary components: DME Rx and DME Tx are ERLANG
receiver/transmitter processes and DME Rx-drv and DME Tx-drv
are C receiver/transmitter drivers. The architecture combines Unix
processes, C threads, and ERLANG processes. The ERLANG DMs
interoperate with the same C RCS test harness as the C++ DM.

5. Application Size
This section investigates the impact of high-level distribution on
application size by comparing the sizes of the DCC and DM com-
ponents in ERLANG and GdH with the existing C++/CORBA and
C++/UDP implementations. The significance of software size is
well established: shorter programs are faster to produce [13, 23],
and hence programmers working in higher level languages are more
productive. The reduced development time crucially reduces time
to market for the product. Moreover, shorter programs are easier
to maintain, which is important as more than 50% of programming
effort is expended on maintenance [13].

The metric we use for software size is logical source lines of
code (SLOC). There are numerous software complexity metrics,
e.g. McCabe’s cyclomatic complexity [16], and a good survey
is available in [5]. Indeed McCabe’s cyclomatic complexity is a
Motorola corporate standard but is unavailable for either the DCC
or the DM in isolation. SLOC has the advantages of simplicity,
relatively wide use, and enabling cross-paradigm comparisons, in
this case to compare functional and object-oriented programs.

5.1 Dispatch Call Controller

The sizes of the C++, ERLANG and GdH DCC implementations
are reported in Table 1, together with the ratios between the sizes.
The ERLANG implementation is a seventh of the size, and the
GdH implementation is ������� nd of the size, of the C++/CORBA
implementation.

While the language features contributing to the size differences
are discussed in the following section, Table 2 exhibits additional
factors contributing to the size differential. The table distinguishes
between the testing component, the generic and reusable platform
component, and the specific DCC service component of the imple-
mentations. While all three implementations meet the DCC func-
tional requirements, the GdH implementation is less generic. That
is, additional effort would be required to adapt it to meet similar
functional requirements, and this is reflected in the relatively large
service component. Secondly, while testing is a crucial part of ap-
plication development, the sizes of the DCC testing components

Evaluating High-Level Distributed Language Constructs 5 2007/4/3



Lang. C++/CORBA ERLANG GdH
SLOC % No. SLOC % No. SLOC % No.

Mod Mod Mod
Reusable
Platform 13544 81% 30 1996 52% 22 305 67% 4
Specific
Service 445 3% 5 147 4% 1 30 7% 1
Appln.
Total 13989 35 2143 23 335 5
Testing
Stats 868 6% 1 1687 44% 9 119 26% 1
Total 14857 100% 36 3830 100% 32 454 100% 6

Table 2. DCC Functional Analysis (SLOC)

Lang. C/C++ ERLANG Total Ratio
C++ 3101 3101 7.8
ERLANG/C 247 616 863 2.2
ERLANG 398 398 1

Table 3. DM Code Sizes (SLOC)

should not be compared as the three DCC implementations have
not been tested to the same level. That is, the C++/CORBA and
GdH implementations have been lightly tested, whereas the ER-
LANG implementation has been substantially tested.

5.2 Data Mobility Server

The size of the C++ and ERLANG DM are reported in Table 1, and
the sizes of the DMs are depicted in Figure 6. As for the DCC,
the pure ERLANG DM implementation is significantly smaller than
the C++/UDP implementation. Even the interoperating ERLANG/C
implementation is 3.6 times smaller than the C++/UDP implemen-
tation.

Figure 6. Source Code Sizes

5.3 Size Discussion

The GdH DCC is far smaller than both the ERLANG and C++/CORBA
DCCs reflecting the very high level specifications of both compu-
tation and distributed coordination. The ERLANG DCC and DM
are less than 1/6th of the size of the corresponding C++ implemen-
tations reflecting its high-level coordination. The ERLANG result
is consistent with other measurements [28], and with developer
folklore in companies like Ericsson, T-Mobile and Nortel. We con-
clude that high-level distributed language constructs reduce the
application size of realistic components. Moreover the GdH DCC
results suggest that very high-level distribution constructs reduce
application size still further. The following section investigates the
language constructs that contribute to the size reduction.

Code Type C++ Code RCS C libraries
Application 19.2% 12.1%
Defensive 25.3% 24.2%
Communication 22.1% 5.6%
Memory management 11.3% 7.1%
Type declarations 11.2% 11.6%
Defines 1.1% 23.6%
Includes 8.1% 8.6%
Process management 1.9% 7.1%

Table 4. C++ DM Code Proportions

Code Type ERLANG ERLANG/C ERL./C ERL./C
Total Total ERLANG C Part

Part
Application 62.2% 61.8% 69.0% 43.7%
Defensive 0.5% 1.7% 0.0% 6.1%
Communication 15.1% 10.2% 10.9% 8.5%
Memory Mgmnt 0.0% 3.2% 0.0% 11.3%
Type Decls 4.9% 6.1% 5.2% 8.5%
Defines 5.4% 5.7% 7.0% 2.4%
Includes 2.4% 5.7% 2.4% 13.8%
Process Mgmnt 9.5% 5.6% 5.5% 5.7%

Table 5. ERLANG DM Code Proportions

6. Language Feature Impact
This section attributes size reductions to specific language features
by analysing the DM component code. With a total of 19K lines
of code, the DCC is too large to analyse conveniently. Figure 7
and Tables 5 and 4 compare the C++ and ERLANG DM code. For
simplicity the following discussion compares the C++ DM only
with the pure ERLANG DM. When interpreting the percentages in
these results, the reader should recall that the ERLANG DM is 1/7th
of the size of the C++ DM.

The results show that the primary language features contributing
to the reduction in code size are as follows.

- ERLANG’s sophisticated fault tolerance mechanisms mean
that the programmer can code for the successful case. Hence,
there is far less defensive code in the ERLANG implementation:
0.5% as opposed to 25.3%

- ERLANG’s high-level communication greatly reduces the ef-
fort of specifying communication, e.g. buffering, marshalling
and error-checking: 15.1% as opposed to 23.9%.

- ERLANG’s garbage collection greatly reduces the memory
management coding effort: 11.6% as opposed to 0%.

Of crucial importance to product development teams, much
of the code that is omitted from the ERLANG implementation is
technically challenging, e.g. memory management and defensive
code are notoriously hard to get correct and to test.

7. Coordination Code Size
This section investigates the hypothesis that a language with high-
level coordination reduces the amount of coordination that the
programmer must specify. While the hypothesis is widely believed,
as far as we know this is the first evidence for a realistic, i.e. 15K
line software component.

Table 6 reports the amount of coordination code in the ERLANG,
GdH and C++/CORBA DCC implementations. The measurements
exclude declarations for coordination. While the percentage coor-
dination for C++/CORBA and ERLANG is similar, the amount of

Evaluating High-Level Distributed Language Constructs 6 2007/4/3



Figure 7. Source Code Breakdown

Part SLOC Percentage Modules
C++/CORBA 2812 19% 13
ERLANG 881 23% 9
GdH 44 10% 4

Table 6. DCC Coordination Code Sizes

ERLANG DCC ERLANG FT DCC Size Increase
Part SLOC %ageMod. SLOC %age Mod. SLOC %age Mod.
Total 3830 100% 32 4882 100% 38 27% 19%
Platform 1996 52% 22 2994 61% 26 50% 9% 18%
Service 147 4% 1 147 3% 1 0% -1% 0%
Testing 1687 44% 9 1741 36% 11 3% -8% 22%

Coord. 881 23% 9 1933 40% 28 119% 17%210%

Table 7. Original and Fault Tolerant ERLANG DCC Code Analysis

code is significantly less, i.e. 881 SLOC as opposed to 2812. The
very high-level coordination constructs in GdH reduce the coordi-
nation specification cost still further to just 10% or 44 SLOC. We
conclude that, as expected, high-level coordination constructs re-
duce the amount of coordination that the programmer must specify,
and that very high-level constructs reduce it yet further.

8. Cost of Adding Fault Tolerance
This section investigates the cost of adding robustness to a realistic
distributed system using a language with sophisticated fault toler-
ance. Our investigation uses the ERLANG fault tolerance mecha-
nisms outlined in section 3.4.

The C++/UDP DM includes 25.3% defensive code (Table 4),
and our Motorola collaborators assure us that this is relatively low
for telecoms components. In contrast the ERLANG DM includes
just 0.5% defensive code (Table 5). Moreover, we have elsewhere
demonstrated that the ERLANG DM is resilient: sustaining through-
put at extreme loads and automatically recovering when load drops.
In contrast the C++/UDP DM fails catastrophically when over-
loaded [17, 18]. Of course the C++ DM could be reengineered to be
resilient, typically by declining excess requests, and also to recover.
However this would make the program even larger, more complex,
and harder to validate.

To quantify the cost of adding fault tolerance we have con-
structed a second, fault tolerant DCC, the ERLANGFT DCC. We
have elsewhere demonstrated that the ERLANGFT DCC exhibits
high levels of availability: remaining available despite repeated
and multiple hardware and software failures, and dynamic recon-
figurability: with throughput scaling near-linearly when resources
are added or removed [17]. As the C++/CORBA DCC is not fault

Part Lines of Code Percentage
ERLANG FT 164 3%
C++ 3574 24%
GdH 137 30%

Table 8. Type Declarations

Part Lines of Code Percentage
total 4882 100%
dynamic tests 687 14%

Table 9. ERLANG FT DCC Dynamic Type Tests

tolerant it is compared for size with the original ERLANG DCC
version in Table 1.

The sizes and functions of the ERLANGFT and original ER-
LANG DCCs are reported in Table 7, where the last line compares
the sizes of the coordination functionality in each implementation.
The 8th column of the table show that there is a modest 27% in-
crease in total application size, and that most of the increase is in the
reusable platform (50%). The last row of the table shows that there
is a dramatic increase in the amount of coordination code (119%),
moreover the coordination code has become pervasive, increasing
by 210% from just 9 out of 32 modules in the original ERLANG
DCC to 28 out of 38 modules in the ERLANGFT DCC.

We conclude that distributed languages with sophisticated fault
tolerance, like ERLANG, greatly facilitate the construction of ro-
bust, i.e. resilient, highly-available and dynamically-reconfigurable,
systems. Moreover robustness is introduced for a modest cost: an
increase in total application size of 0.5% for the DM and 27% for
the DCC. The additional fault tolerance code primarily specifies
coordination, and coordination becomes pervasive in the applica-
tion.

9. Type System Impacts
Distributed software places demands on the type system: compo-
nents of a distributed system must typically be separately typed, of-
ten statically, while messages between components must be dynam-
ically typed. The languages in our study have very different type
systems: ERLANG is dynamically typed, C++ is weakly typed with
parametric and subtyping polymorphism, and GdH is strongly stat-
ically typed with Hindley-Milner and parametric polymorphism.
This section investigates some of the impacts of the different type
systems on realistic distributed software.

Table 8 reports the number of type declarations in each of the
DCC implementations. The dynamic typing in ERLANG means that
it contains very few declarations, just 3%. In contrast the C++
DCC contains the greatest number of type declarations, 3574, and
a far higher percentage than in ERLANG. This represents both the
static typing, and limited use of type inference in C++. Finally,
the table shows that while the GdH DCC contains relatively few
type declarations, just 137, these represent the highest percentage
of the code, 30%. Many of the GdH type declarations could be
inferred and hence are not necessary, but are commonly included
as a programming discipline. It is commonly believed that the
additional safety, static checking, and self documentation provided
by strong static typing more than compensate for this substantial
overhead.

Table 9 reports the number of dynamic type checks in the
ERLANG FT DCC. It reveals a significant proportion of dynamic
type tests, with one source line in 7 making a type test. We infer
that dynamic typing is likely to incur a significant performance
overhead for this component, and suggest that this is typical of
other distributed components.

Evaluating High-Level Distributed Language Constructs 7 2007/4/3



10. Conclusions
10.1 Summary

We have investigated the impact of high level distributed program-
ming language constructs on the engineering of two telecoms soft-
ware components. Our investigation compares GdH, a language
with very high-level distribution, and ERLANG, a language with
high-level distribution, with conventional distributed technologies:
mid-level C++/CORBA and low-level C++/UDP. Let us return to
the research questions from the introduction.

Q1 Do high-level distributed language constructs reduce appli-
cation size? Reflecting it’s high-level distribution, the ERLANG
DCC and DM are less than 1/6th of the size of the C++ DM.
The ERLANG result is consistent with other measurements [28],
and with developer folklore. We conclude that high-level distri-
bution language constructs significantly reduce the application
size of realistic components. With very high level coordina-
tion, the GdH DCC is far smaller than both the ERLANG and
C++/CORBA DCCs and this suggests that very high-level dis-
tribution constructs reduce application still further (Section 5).

Q2 What high-level distributed language constructs impact ap-
plication size? Our investigation identified three primary high-
level language constructs that reduce distributed programming
effort: sophisticated fault tolerance case saves 27%, high-level
communications save 22%, and automatic memory manage-
ment saves a further 11% (Section 6).

Q3 What is the impact of high-level coordination? While the per-
centage of coordination code in the ERLANG and C++/CORBA
DCCs is similar, approximately 20%, the amount of code is sig-
nificantly less: 881 SLOC as opposed to 2812. The very high-
level coordination constructs in GdH reduce the coordination
specification cost dramatically further to just 10%. We conclude
that, as expected, high-level coordination constructs reduce the
amount of coordination that the programmer must specify, and
that very high-level constructs reduce it yet further (Section 7).

Q4 What is the impact of sophisticated fault tolerance con-
structs, and what are the costs of introducing robustness?
Robustness is introduced for a modest cost using advanced
fault tolerance. The C++/UDP DM includes 25.3% defensive
code and yet fails to provide key robustness capabilities, e.g.
resilience to overload. In contrast, the ERLANG DM includes
just 0.5% defensive code and provides additional robustness, in-
cluding resilience. Adding fault tolerance increases the size of
the DCC by just 27%, and much of the additional effort is ex-
pended in the reusable platform (50%). Significantly, almost all
of the additional code is coordination, i.e. an additional 119%,
and coordination becomes pervasive throughout the application,
appearing in 28 out of 38 modules (Section 8).

Q5 What are some of the impacts of the type systems on dis-
tributed software engineering? The DCC in dynamically-
typed ERLANG requires relatively few type declarations, just
3%, but induces substantial amounts of dynamic type checks,
e.g. 1 source line in 7. The DCC in statically-typed C++ re-
quires the greatest number of type declarations, 3574 and 24%,
reflecting both static typing and limited type inference. The
DCC in GdH, reflecting the common idiom of Hindley-Milner
polymorphism, contains the the greatest percentage of type dec-
larations, 30%, yet the least number of type declarations (Sec-
tion 9).

10.2 Discussion

It can be argued from the results in Sections 5- 7 that a language
with very high-level distribution, like GdH, gives the greatest ben-

efits for distributed software development. These results should,
however, be viewed with some caution. GdH is a research language
and lacks a production-quality implementation. More significantly,
GdH’s distributed paradigm is limited in a number of ways. GdH
uses a distributed virtual shared-memory model, so distributed per-
formance will not scale as well as a distributed-memory model like
ERLANG. GdH has conventional fault tolerance using distributed
exceptions, where other languages including ERLANG have more
advanced models. GdH supports only closed systems: i.e. while an
arbitrary number of processes can be created on an arbitrary num-
ber of processors, all of the distributed processes are part of a single
program and no new programs nor new processors can be added (or
removed). Finally, GdH is lazy and hence it’s harder to statically
predict program performance, often a crucial aspect of distributed
systems.

We conclude that high-level distributed language constructs can
aid the rapid production of realistic robust systems. Moreover, we
have presented some evidence that very high-level distributed lan-
guage constructs further aid the rapid production of realistic sys-
tems. The high-level constructs dramatically reduce application
size, thereby reducing development time and aiding maintenance.
Sophisticated fault tolerance, high-level communication and auto-
mated memory management are major contributions to reducing
the development effort. High level constructs greatly reduce the
amount of coordination the programmer must specify, and very
high-level constructs reduce it dramatically. Robustness is intro-
duced for a modest cost using sophisticated fault tolerance.

In ongoing work we are working with a product group within
Motorola to reengineer a substantial distributed system in ER-
LANG. We are also investigating a generic toolkit for constructing
ERLANG wrappers to make existing components written in conven-
tional languages robust and scalable.

Acknowledgments
We gratefully acknowledge research funding from the UK EPSRC
(GR/R88137) and from Motorola UK Research Labs.

References
[1] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent

Programming in ERLANG. Prentice Hall, ���
�

edition, 1996.

[2] S. Blau, J. Rooth, J. Axell, F. Hellstrand, M. Buhrgard, T. Westin, and
G. Wicklund. AXD 301: A new generation ATM switching system.
Computer Networks, 31(6):559–582, 1999.

[3] H. Cejtin, S. Jagganathan, and R. Kelsey. Higher-order distributed
objects. ACM Trans. On Programming Languages and Systems
(TOPLAS), 17(1), Sept. 1995.

[4] The Computer Language Shootout Benchmarks. WWW page, July
2006.

[5] N. Fenton and S. Pfleeger. Software Metrics: A Rigorous and
Practical Approach. PWS, 1998.

[6] P. Giacalone, P. Mishra, and S. Prasad. Facile: a symmetric integration
of concurrent and functional programming. In Tapsoft89, LNCS 352,
pages 181–209. Springer-Verlag, 1989.

[7] S. Gorlatch. Send-receive considered harmful: Myths and realities
of message passing. ACM Transactions on Programming Languages
and Systems, 26(1):47–56, 2004.

[8] H. Granbohm and J. Wiklund. GPRS - General Packet Radio Service.
Ericsson Review, (2), 1999.

[9] S. Haridi, P. Van Roy, and G. Smolka. An overview of the design
of Distributed Oz. In Proceedings of the Second International
Symposium on Parallel Symbolic Computation (PASCO ’97), pages
176–187, Maui, Hawaii, USA, July 1997. ACM Press.

Evaluating High-Level Distributed Language Constructs 8 2007/4/3



[10] S. Hinde. Use of ERLANG/OTP as a Service Creation Tool for IN
Services. In Proceedings of the ���

�
International ERLANG/OTP

Users Conference (EUC’00). Ericsson Utvecklings AB, 2000.

[11] J.Armstrong. Making reliable distributed systems in the presence
of software errors. PhD thesis, Department of Microelectronics and
Information Technology, Royal Institute of Technology, Stockholm ,
Sweden, Dec. 2003.

[12] E. Johansson, M. Pettersson, K. Sagonas, and T. Lindgren. The
development of the HiPE system: Design and experience report.
Software Tools for Technology Transfer, 4(4):421–436, August 2003.

[13] C. Jones. Programming Productivity. McGraw-Hill, 1986.

[14] N. Kamenoff and N. Weiderman. Hartstone distributed benchmark:
Requirements and definitions. In Proceedings of the 12th Real Time
Systems Symposium, pages 199–208, San Antonio, Texas, USA, 1999.
IEEE.

[15] R. Lillie. Implementing dynamic scalability in a distributed pro-
cessing environment. Technical report, Motorola Labs, Shaumburg,
Illinois, 1999.

[16] McCabe. A complexity measure. IEEE Transactions on Software
Engineering, 2:308–320, 1976.

[17] J. Nyström, P. Trinder, and D. King. High-level Distribution for the
Rapid Production of Robust Telecoms Software: Comparing C++ and
ERLANG. Concurrency and Computation: Practice and Experience.
To Appear.

[18] J. Nyström, P. Trinder, and D. King. Are High-level Languages
suitable for Robust Telecoms Software? In Proceedings of the 24th
International Conference, SAFECOMP 2005, volume LNCS 3688,
pages 275–288. Springer-Verlag, 2005.

[19] Object-Oriented Languages: A Comparison. WWW page, July 2006.

[20] J. Peterson, K. Hammond, et al. Report on the Programming
Language Haskell (Version 1.4), Apr. 1997.

[21] R. Pointon, S. Priebe, H.-W. Loidl, R. Loogen, and P. Trinder. Func-
tional vs Object-Oriented Distributed Languages. In Eurocast’01,
LNCS 2178, pages 642–656, Canary Islands, Spain, Feb. 2001.
Springer-Verlag.

[22] R. Pointon, P. Trinder, and H.-W. Loidl. The Design and Implemen-
tation of Glasgow distributed Haskell. In Proceedings of the Inter-
national Workshop on Implementing Functional Languages (IFL’00),
LNCS 2011, pages 101–116, Aachen, Germany, Sept. 2000.

[23] L. Prechelt. An empirical comparison of seven programming
languages. Computer, 33(10):23–29, 2000.

[24] L. Rittle. Distributed Dispatch Architecture Project (Functional
Requirements). Technical report, Land Mobile Products Sector
Research, Shaumburg, Illinois, 1998.

[25] S. Torstendahl. Open Telecom Platform. Ericsson Review, (1), 1997.

[26] P. Trinder, K. Hammond, H.-W. Loidl, and S. Peyton Jones. Algo-
rithm + Strategy = Parallelism. Journal of Functional Programming,
8(1):23–60, Jan. 1998.

[27] U. Wiger. Industrial-Strength Functional Programming: Experiences
with the Ericsson AXD301 Project. In Proceedings of the Interna-
tional Workshop on Implementing Functional Languages (IFL’00),
Aachen, Germany, Sept. 2000. Presentation Only.

[28] U. Wiger. Four-Fold Increase in Productivity and Quality. In
Proceedings of the International Workshop Formal Design of Safety
Critical Embedded Systems (FemSYS’01), 2001.

Evaluating High-Level Distributed Language Constructs 9 2007/4/3


