
An Operational Semantics for Parallel Lazy Evaluation

Clem Baker-Finch
University of Canberra

ACT, Australia

clem@ise.canberra.edu.au

David J. King
Motorola Labs

Basingstoke, England

David.King@motorola.com

Phil Trinder
Heriot-Watt University
Edinburgh, Scotland

trinder@cee.hw.ac.uk

ABSTRACTWe present an operational semantis for parallel lazy eval-uation that aurately models the parallel behaviour of thenon-strit parallel funtional language GpH. Parallelism ismodelled synhronously, that is, single redutions are ar-ried out separately then ombined before proeeding to thenext set of redutions. Consequently the semantis has twolevels, with transition rules for individual threads at onelevel and ombining rules at the other. Eah parallel threadis modelled by a binding labelled with an indiation of itsativity status. To the best of our knowledge this is the �rstsemantis that models suh thread states. A set of labelledbindings orresponds to a heap and is used to model sharing.The semantis is set at a higher level of abstration thanan abstrat mahine and is therefore more manageable forproofs about programs rather than implementations. At thesame time, it is suÆiently low level to allow us to reasonabout programs in terms of parallelism (i.e. the number ofproessors used) as well as work and run-time with di�erentnumbers of proessors.The framework used by the semantis is suÆiently exibleand general that it an easily be adapted to express otherevaluation models suh as sequential all-by-need, speula-tive evaluation, non-deterministi hoie and others.
1. INTRODUCTIONThis paper desribes a new operational semantis that ap-tures the all-by-need evaluation of a parallel extension tothe �-alulus. We use the term all-by-need synonymouslywith lazy evaluation, that is, normal order redution to weakhead normal form (whnf) with subexpression sharing. Theextended �-alulus language used in this paper,GpH-ore,models Glasgow Parallel Haskell [35℄, an established paral-lel derivative of the non-strit purely funtional languageHaskell. Parallelism is provided in both GpH and GpH-ore in a mostly-impliit way, by using the annotation parto express parallel omposition while leaving thread man-
ICFP ’00, Montreal, Canada.

agement to the run-time system. Note that par is only ahint of what to ompute in parallel; it does not a�et thevalue of expressions.The semantis presented is expliit in desribing the waythreads are managed and stored. Therefore, the semantisallows us to reason aurately about the behaviour of paral-lel funtional programs in terms of oordination (i.e. how theomputation is arranged in parallel) as well as omputation(i.e. what value to ompute).A parallel all-by-need semantis is important for theoreti-al reasons but there are also several pratial appliations.For example, it provides a basis for applying equational rea-soning to the parallel behaviour (or oordination) of parallelfuntional programs. For instane, it allows us to show prop-erties suh as: program X uses more proessors than programY; program X uses more spae than program Y; and programX runs faster than program Y. Being able to reason aboutthese properties an be useful for the programmer and om-piler writer alike. For the programmer, they will be ableto understand and improve the behaviour of their programsmore easily. For the ompiler writer, optimising transfor-mations [13℄ and the veri�ation of ompiler models suh asabstrat mahines and simulators an be justi�ed.The parallel all-by-need semantis presented here is a sub-stantial development of earlier work [17℄ that gave a seman-tis of the same language but with the speulative evalua-tion of expressions in an undetermined order. The semantispresented here has the following key features:� Name/expression bindings are used to model losures,whih in turn are used to model threads. The bindingsare labelled to model the GpH thread states: inative,bloked, runnable and ative.� A heap of bindings is used to model spae-usage, shar-ing and parallelism (i.e. proessor usage an be quan-ti�ed).� The semantis is parameterised on the number of pro-essors N, so we an readily model the behaviour ofprograms under di�ering resoure assumptions.� It is strutured and therefore relatively onvenient touse for proving both omputational and oordinationalproperties of programs. The simpliity arises beauseit models parallelism synhronously and the rules are



at two levels: single thread transitions at one level andmulti thread relations at the other level.� It aptures the thread behaviour and evaluation orderof an existing parallel funtional language implemen-tation, GpH.� The underlying idea of labelling heap bindings withtheir ativity status is suÆiently exible and powerfulto desribe a variety of other models of parallel lazyevaluation. See [19℄ for example.In Setions 2{10 we desribe the framework of our opera-tional semanti tehnique and develop a spei�ation of theomputation and oordination behaviour of GpH. In Se-tion 12 we relate our semantis to a standard denotationalsemantis for sequential lazy evaluation and prove a deter-minay result. We examine several alternative models ofparallel lazy evaluation to demonstrate the exibility andgenerality of our approah in Setion 13. In Setion 14 wede�ne some standard metris of parallelism in terms of oursemantis. We onlude by disussing related work in Se-tion 15 and our future plans in Setion 16.
2. MODELLING PARALLELISMThe operational semantis we present is a two-level transi-tion semantis. At the lower level, there are single-threadtransitions for performing the ordinary evaluation of expres-sions (�-redution and the like). All andidate single-threadsteps are arried out simultaneously (oneptually on sepa-rate proessors) and in lokstep. They are then ombinedinto a parallel omputation step using oordination relationsde�ned at the upper level.We follow Launhbury's seminal work [21℄ by using a heapto allow sharing and a restrited language to avoid the om-pliations of reating losures in the semantis. The re-strited language ensures that every losure is provided witha `name' (a variable) by some orresponding let-binding.Our semantis is set at a lower level of abstration thanLaunhbury's sine we use a small-step omputational se-mantis rather than a big-step natural semantis. This isthe typial approah for modelling parallelism [18℄ sine itallows us to more diretly represent the oordination of mul-tiple separate ations.Nevertheless, our semantis is at a higher level than an ab-strat mahine [4℄, thus avoiding the need for staks, blok-ing queues and suh like.
3. THE LANGUAGEGpH-ore is a simple subset of the language GpH. It on-sists of the untyped �-alulus extended with numbers, re-ursive lets, a form of sequential omposition seq and aform of parallel omposition par. Sine [21℄, it has beomeommon pratie to normalise the language to a restritedsyntax. The normalised terms di�er from their orrespond-ing terms in GpH in two ways: all variables are distint;and the seond argument of appliation and the �rst ar-gument of par must be variables. In fat, the normalisedterms orrespond to the internal ore language that is usedin the implementation of GpH. The proess of normalisa-tion is straightforward by introduing new let-bindings; for

example, an algorithm is given in [17℄.x; y; z 2 Variablen 2 Numbere 2 Expressione ::= n j x j e x j �x:e j let fxi = eigni=1 in ej e1 seq e2 j x par eNumbers are unneessary but are inluded to make exampleseasier to follow. No extra rules are needed in the semantisto deal with numbers. In our semantis only losed termswill be onsidered, that is, programs ontain no free vari-ables. Construtors and ase expressions are also a standardpart of the GpH language but are not inluded here. Theyare unimportant to our entral onern with parallelism.
3.1 Parallel and sequential compositionGpH-ore and GpH express parallel oordination using theombinators par (for parallel omposition) and seq (for se-quential omposition). These ombinators are de�ned asfollows: e1 seq e2 = (?; if e1 = ?e2; otherwisee1 par e2 = e2The operational behaviour of seq is to redue e1 to weakhead normal form before returning e2, thus enforing anevaluation order. The termination properties of a programan therefore be hanged by using seq, in ontrast to parwhih has no a�et on termination properties. The oper-ational behaviour of par is to proeed with the evaluationof e2 and if a separate proessor is available, to evaluate e1simultaneously. The idea of the par ombinator is not new;its invention is attributed to John Hughes.1It is important to note that par will evaluate e1 to whnf andno further. Hene the need for seq whih is often used tofore the evaluation of data strutures to normal form. Forexample, if xs and ys are two lists then xs par ys will notevaluate the two lists in parallel with all-by-need evalua-tion beause they are in whnf. Using seq, however, a fun-tion seqList an be de�ned that fores the evaluation of thestruture of a list. Hene, to redue the two lists in paralleland return them we an use (seqList xs par seqList ys) seq(xs; ys). Trinder et al. [34℄ o�er a muh more detailed ex-position of the use of par and seq.
4. HEAPS AND LABELLED BINDINGSFollowing [21℄ we use a heap of bindings of expressions tovariables, but for our purposes eah binding also arries alabel to indiate its state of ativity. Thus, heaps are partialfuntions from variables to expression/thread-state pairs:H;K 2 Heap = Variable Æ! (Expression; State)�; � 2 State� ::= Inative j Runnable j Ative j BlokedWe write individual bindings with the thread state appear-ing as an annotation on the binding arrow, thus:x �7! e1Personal ommuniation: Dave Sands.



H : z A7! let fxi = eigni=1 in e �! (fxi I7! eigni=1; z A7! e) (let)(H;x I7! v) : z A7! x �! (z A7! v̂) (var)(H;x I7! e) : z A7! x �! (x R7! e; z B7! x) (blok1)(H;x RAB7! e) : z A7! x �! (z B7! x) (blok2)H : z A7! z �! (z B7! z) (blakhole)H : z A7! (�y:e) x �! (z A7! e[x=y℄) (subst)H : z A7! e �! (K; z �7! e0)H : z A7! e x �! (K; z �7! e0 x) (app)H : z A7! v seq e �! (z A7! e) (seq-elim)H : z A7! e1 �! (K; z �7! e01)H : z A7! e1 seq e2 �! (K; z �7! e01 seq e2) (seq)(H;x RAB7! e1) : z A7! x par e2 �! (z A7! e2) (par-elim)(H; x I7! e1) : z A7! x par e2 �! (x R7! e1; z A7! e2) (par)Figure 1: Single thread transition rulesThe binding state is usually abbreviated to the �rst letter,I, R, A, or B. A binding is Ative if it is urrently beingevaluated; it is Bloked if it is waiting for the evaluationof another binding before its evaluation an proeed; andit is Runnable if there are not enough resoures urrentlyavailable to evaluate it. All other bindings are Inative, thatis, they have not yet been initiated or they have �nishedbeing evaluated. A heap annot ontain multiple bindingsfor the same identi�er.The idea of labelling bindings with an indiation of theirstate of ativity is surprisingly powerful and general, allow-ing us to model a variety of parallel evaluation strategies aswe demonstrate in Setion 13. However, our main interestis in desribing GpH so that will remain our primary fousfor now.Bindings orrespond to heap losures and in our semantislabelled bindings orrespond to threads. In the run-timesystem for GpH [35℄ only losures that are not inative or-respond to threads. GpH also uses other thread states suhas fething, whih is the ommuniation state. It is useful tobe able to model ommuniation, but it is not as importantfor GpH as it is for many other languages. Our semantisattributes no ost to ommuniation, so an idealised arhi-teture is modelled. Some pro�ling simulators for GpH, forexample HBC-PP [32℄ and GranSim-Light [22℄, also modelsuh an idealised mahine and they have proven to give use-ful information.The omputational semantis is given as a relation on heapsH =) H 0 whih is in turn de�ned in terms of a notion ofsingle thread transitions (Setion 5) and a sheduling rela-tion (Setion 7).

The operational semantis desribes a redution sequenefrom an initial global on�guration to a �nal global on�g-uration: (H;main A7! e) =) : : : =) (H 0;main I7! v)where main is always used as the program identi�er. Hene,a program terminates as soon as main reahes a value v,irrespetive of other bindings. Values v are whnf expressionsin GpH-ore, that is:v ::= n j �x:e
5. SINGLE THREAD TRANSITIONSThe transition funtion �! de�ned in Figure 1 desribesthe omputational step taken by eah ative binding in theheap. The left hand side in eah rule represents a heap withthe partiular ative binding distinguished:H : z A7! eSeveral of the rules depend on other bindings in the heap(for example, the bloki rules) so we also use the notation(H;x �7! e) to partition the heap, separating x �7! e from theother bindings in H. Multi-label bindings, suh as x RAB7! ein the blok2 rule mean that the state is one of R;A or Bbut not I.The right hand sides of the rules in Figure 1 is a heap inthe sense that it is a set of labelled bindings but it onsistsof only those bindings that are hanged or reated by thatomputation step. The hanges for all ative bindings areombined by the parallel rule (Setion 6) to reate a fullheap to heap transition.



Let: The let rule populates the heap with new bindings.These bindings are inative sine under all-by-need theymay not neessarily be evaluated.Variables and bloking: In the var and bloki rules thedistinguished binding z A7! x represents the situation of eval-uating a losure (alled z) whih onsists of a pointer to an-other losure (alled x). If x has already been evaluated towhnf as in the var rule, then z simply reeives that value.The notation v̂ signi�es a renaming of all bound variablesin v to fresh variable names. The var rule is the only plaewhere names are dupliated. As Launhbury proves [21℄,this is suÆient to avoid all unwanted name lashes. An al-ternative suggested by Sestoft [33℄ is to rename bound vari-ables at the time that let bindings are added to the heap.Sestoft's approah is preferred for abstrat mahines [4℄ butLaunhbury's notation is more parsimonious and adequatefor our present purposes.If x is inative and has not yet been evaluated, as in theblok1 rule, then z bloks at this point and x joins the pool ofrunnable bindings, possibly to be ativated by the shedul-ing relation. If x is already ative, runnable or bloked asin blok2 then z bloks but x is una�eted.Blak holes: Disussion of the blakhole rule is deferred toSetion 10.Appliation: Non-strit evaluation of e1 e2 proeeds by re-duing e1 to an abstration (app rule) and then substitutingthe argument x for the bound variable y (subst).Seq: The seq rule proeeds to evaluate e1 in the expressione1 seq e2 but makes no progress on e2. When and if e1reahes whnf its value (but not the e�et on the heap) isdisarded by the seq-elim rule and evaluation proeeds toe2.Par: In GpH the only way to introdue parallelism is byusing par and this is reeted in the semantis by the parrule. Notie that it does not reate more parallelism imme-diately but instead suggests that a binding should be madeative by putting it into a Runnable state whih may be pro-moted to Ative later. This promotion an happen in thesheduling phase (Setion 7) but only if suÆient proess-ing resoures are available. This orresponds to GpH wherepar is thought of as a hint of what to parallelise, ratherthan a ommand. If the binding is already ative, runnableor bloked there is no more to do (par-elim).
6. MULTI-THREAD TRANSITIONSAtive bindings are delegated for single thread steps by thefollowing parallel omputation rule. This is the key point inthe semantis where redutions are arried out in parallel.The rule also melds together all the new bindings, updatingthe heap aordingly (Figure 2).We write HA to represent all the ative bindings in H. Morepreisely: HA = fx A7! e 2 HgHene in Figure 2 there are exatly n ative bindings in H.

HA = fxi A7! ei gni=1 fH : xi A7! ei �! Kigni=1H p=) H[Sni=1Ki℄ (parallel)Figure 2: Combining multiple thread transitionsThe notation H[K℄ updates the heap H with all the newor hanged bindings given by K. More preisely, it an bede�ned as follows:H[K℄ = fx �7! e 2 H j x 62 dom(K) g [KBy taking the union of all the Ki in the parallel rule thereappears to be the potential for onits to arise betweenbindings. What if x B7! e 2 K1 and x A7! e0 2 K2, forexample? The following proposition demonstrates that forthe single thread rules de�ned in Figure 1, no suh onitan arise.Proposition 6.1. Given (H1; z1 A7! e1) = (H2; z2 A7! e2)where z1 6= z2.If H1 : z1 A7! e1 �! K1 and H2 : z2 A7! e2 �! K2 then:� if x IAB7! e 2 K1 then x 62 dom(K2)� if x R7! e 2 K1 then either x 62 dom(K2) or x R7! e 2 K2Proof. By indution on e1 and e2 and the syntati re-strition that all variables are distint (Setion 3).
7. THE SCHEDULING RELATIONAs well as the omputational steps de�ned so far, we alsoneed to desribe the oordination aspets of the language.In partiular we need to give the semantis of the shedulingphase of the evaluation. The sheduling ations for individ-ual threads are de�ned in Figure 3 as follows:� Any binding that is immediately bloked on a om-pleting thread is made runnable (unblok);� An ative or runnable binding that is in whnf is madeinative beause its evaluation is done (deativate);� As many runnable bindings as resoures will allow arepromoted to being ative (ativate).(H; x RA7! v; z B7! ex) u�! (H; x RA7! v; z R7! ex) (unblok)(H;x RA7! v) d�! (H;x I7! v) (deativate)jHAj < N(H;x R7! e) a�! (H;x A7! e) (ativate)Figure 3: Single thread sheduling rulesThe notation ex represents an expression that is immediatelybloked on x. In our language these an only take threeforms: ex ::= x j x y j x seq e0



In the ativate rule in Figure 3, N is a parameter to thesemantis, indiating the total number of proessors. Henewe require that no more than N bindings are ativated.Note that nowhere in these rules is it spei�ed whih bind-ings are ativated. The ativation phase presents a non-deterministi hoie. Nevertheless, the non-deterministihoie is at the oordination level and does not hange thevalue omputed.The rules in Figure 3 only a�et single bindings. We need tounblok and deativate all andidate threads and to ativateas many as possible. To that end we make the de�nitionsin Figure 4. In e�et, the rules in Figure 4 de�ne y=) to bethe normal form relations built upon y�!.H y=) H 0 if:1. H y�!� H 0 and2. there is no H 00 suh that H 0 y�! H 00.(y is u or d or a.)Figure 4: Component sheduling relationsNote that a=) is the only `true' relation; u=); d=); p=) areall funtions. In other words the only non-determinism thatexists is in the hoie of whih threads from the runnablepool are ativated.Sheduling promotes runnable bindings into an ative stateif there are suÆient proessors and demotes ative evalu-ated expressions to an inative state. To ahieve maximumparallelism with respet to the number of proessors it isneessary that all andidate threads are unbloked beforedeativation and that deativation takes plae before ati-vation to free up as many proessors as possible. This se-quene of ations is aptured by the full sheduling relationde�ned in Figure 5.s=) = a=) Æ d=) Æ u=) (shedule)Figure 5: Complete sheduling relation
8. THE COMPUTATION RELATIONFinally the full omputation relation of our semantis on-sists of a parallel transition p=) followed by a sheduling ofbindings s=), as in Figure 6. This ordering ensures thatheaps appearing in a redution sequene are always fullysheduled. A brief example is given in Setion 11.=) = s=) Æ p=) (ompute)Figure 6: Computation relationSine the semantis is parameterised on the number of pro-essors, we deorate the omputation relation with the num-ber of proessors where neessary: =)N . In partiular we willuse =)1 to indiate the single-proessor ase.

9. PROMOTING THE MAIN THREADA onsequene of the present de�nition of a=) is that themain thread may be left runnable but never progress. Sup-pose main bloks on some variable z by one of the blokingrules in Figure 1 and z is promoted to a runnable state. Ifthe pool of runnable threads is larger than the number ofavailable proessors then there is no guarantee that z willbe made ative under the present shedule relation. It ispossible that the main thread ould thus be delayed or sus-pended inde�nitely, if there is a onstant supply of unneededspeulative threads being generated and sheduled in plaeof the main thread.Yet, aording to the designers of GpH, their implementa-tion makes no assurane that a binding that main needshas priority over other bindings when deiding whih onesto promote to an ative state. While their early papers warnpotential users that the run-time system o�ers little supportfor speulative evaluation [35℄, it nevertheless seems desir-able for bindings required by the main thread to remainative whenever possible sine that is the thread that deliv-ers the �nal result. There may be no harm in suspending themain thread but there surely an be no advantage either.We an model a solution to this `defet' by modifying theativation relation a=) as in Figure 7 to require that anyrunnable thread on whih main is bloked, in a transitivesense made preise by the funtion req , is ativated in pref-erene to any other runnable thread. We an be sure thatthere will always be a free proessor in this irumstanebeause the bloking ation has made one available.H a0=) H 0 if:1. H a�!� H 0;2. there is no H 00 suh that H 0 a�! H 00 and3. req(main; H 0) is ative in H 0.req(x;K) = (x; if x RA7! e 2 Kreq(y;K); if x B7! ey 2 KFigure 7: Stronger ativation relation
10. BLACK HOLESBlak holes are ertain detetable in�nite loops, suh as:let x = x in xlet x = y; y = z; z = x in xInGpH, as well as sequential Haskell implementations, blakholes are deteted and reognised as worthless omputation.It is at least desirable that our semantis should reet thistreatment. Taking the simplest ase of diret self-referene,we have:(H; z A7! let x = x in x) =) (H 0; x I7! x; z A7! x)=) (H 0; x A7! x; z B7! x)Without the blakhole rule of Figure 1 we an go no furtherbeause there is no single thread rule that applies to an



fmain A7! let f = �x:x; g = (let a = 3 in f a) in g par (f g) g=) f f I7! �x:x; g I7! let a = 3 in f a;main A7! g par (f g) g (let)p=) f f I7! �x:x; g R7! let a = 3 in f a;main A7! f g g (par)s=) f f I7! �x:x; g A7! let a = 3 in f a;main A7! f g g=) f f I7! �x:x; a I7! 3; g A7! f a;main A7! (�x:x) g g (let, app(var))=) f f I7! �x:x; a I7! 3; g A7! (�x:x) a;main A7! g g (app(var), subst)=) f f I7! �x:x; a I7! 3; g A7! a;main B7! g g (subst, blok2)p=) f f I7! �x:x; a I7! 3; g A7! 3;main I7! g g (var)u=) f f I7! �x:x; a I7! 3; g A7! 3;main R7! g gd=) f f I7! �x:x; a I7! 3; g I7! 3;main R7! g ga=) f f I7! �x:x; a I7! 3; g I7! 3;main A7! g g=) f f I7! �x:x; a I7! 3; g I7! 3;main I7! 3 g (var)Figure 8: Example redutionative thread like x A7! x and the parallel rule fails sine itrequires all ative bindings to progress. In general that isnot what we want beause other threads may still be doinguseful work towards the �nal result. The blakhole rule dealswith this situation by onverting x A7! x to bloked x B7! xand thereby releases its proessor for other useful evaluation.This behaviour orresponds to the implementation of GpH.Cyles suh as let x = y; y = x in x that lead to blak holesalso beome bloked in our semantis, but without the needfor a speial rule:(H; z A7! let x = y; y = x in x)=)(H 0; x I7! y; y I7! x; z A7! x)=)(H 0; x A7! x; y I7! x; z B7! x)=)(H 0; x B7! x; y A7! x; z B7! x)p=)(H 0; x B7! x; y B7! x; z B7! x)If the main thread depends on a blak hole and we requireit to remain ative as desribed in Setion 9 then we wouldexpet the omputation to halt. In suh a ase req(main; H)is unde�ned so the a0=) step fails. In other words, (H a0=))is empty and hene so is (H =)).
11. AN EXAMPLETo demonstrate the operational semantis in ation we showin Figure 8 the redution sequene with at least two proes-sors for the following program:main = let f = �x:xg = let a = 3 in f ain g par (f g)Note that most steps in Figure 8 are expressed in termsof the full ompute relation but in some interesting aseswe separate the parallel and shedule steps. Underlines areused to emphasise the ative bindings. As intended, f and g

evaluate in parallel. Note that this is the only redution se-quene, provided there are at least two proessors. However,di�erent redution sequenes an arise when the number ofsparked threads exeeds the number of available proessors.
12. PROPERTIES OF THE SEMANTICSAbramsky's denotational semantis of lazy evaluation [1℄models funtions by a lifted funtion spae, thus distinguish-ing between a term 
 (a non-terminating omputation) and�x:
 to reet the fat that redution is to weak head nor-mal form rather than head normal form. This is a widely-used, simple and abstrat semantis. The properties andresults developed in this setion are expressed relative tothis denotational semantis.Launhbury [21℄ shows a number of results relating his natu-ral semantis of lazy evaluation to Abramsky's denotationalsemantis. We borrow muh of his notation and several ofour proofs are inspired by his. In earlier work [5℄ we showedthat the 1-proessor ase of our semantis orresponds toLaunhbury's.There are three main properties that we expet of our se-mantis: soundness: the omputation relation preserves themeanings of terms; adequay : evaluations terminate if andonly if their denotation is not ?; determinay : the sameresult is always obtained, irrespetive of the number of pro-essors and irrespetive of whih runnable threads are ho-sen for ativation during the omputation. The determinayresult will only hold if the sheduling phase uses the a0=) re-lation whih guarantees that the binding on whih the mainthread is bloked remains ative, as disussed in Setion 9.The denotational semantis of our language is given in Fig-ure 9. The Val domain is assumed to ontain a lifted versionof its own funtion spae. The lifting injetion is lift and theorresponding projetion is drop.



� 2 Env = Var! Val[[�x:e℄℄� = lift ��:[[e℄℄�[x7!�℄[[e x℄℄� = drop([[e℄℄�)([[x℄℄�)[[x℄℄� = �(x)[[let fxi = eigni=1 in e℄℄� = [[e℄℄ffx1 7!e1:::xn 7!engg�[[e1 seq e2℄℄� = (? if [[e1℄℄� = ?[[e2℄℄� otherwise[[x par e℄℄� = [[e℄℄�Figure 9: Denotational semantisThe semanti funtion:[[: : :℄℄ : Exp! Env! Valnaturally extends to operate on heaps, the operational oun-terpart of environments:ff: : :gg : Heap! Env! EnvThe reursive nature of heaps is reeted by a reursivelyde�ned environment:ffx1 7! e1 : : : xn 7! engg� =��0:�[x1 7! [[e1℄℄�0 : : : xn 7! [[en℄℄�0 ℄We also require an ordering on environments: if � � �0 then�0 may bind more variables than � but they are otherwiseequal. That is:8x : �(x) 6= ? ) �(x) = �0(x)The arid environment �0 takes all variables to ?.Soundness. Our omputational relation H =) H 0 anbe onsidered sound with respet to the the denotationalsemantis in Figure 9 if the denotations of all the bindingsin H are unhanged in H 0. The � ordering on environmentsneatly aptures this notion.Proposition 12.1. IfH =) H 0 then for all �, ffHgg� �ffH 0gg�.Proof. By indution on the size of H and on the stru-ture of expressions.Adequay. We wish to haraterise the termination prop-erties of our semantis and Propositions 12.2 and 12.3 showan agreement with the denotational de�nition. The proofsare modelled on the orresponding ones in [21℄.Proposition 12.2. If (H; z A7! e) =)� (H 0; z I7! v) then[[e℄℄ffHgg� 6= ?.Proof. For all values v, [[v℄℄ffH0gg� 6= ? so by Prop.12.1[[e℄℄ffHgg� 6= ?.Proposition 12.3. If [[e℄℄ffHgg� 6= ?, there exists H 0; z; vsuh that (H; z A7! e) =)� (H 0; z I7! v).

A proof of Proposition 12.3 is outlined in a appendix. Itis losely based on the orresponding proof in [21℄, workingwith a variant of the denotational semantis whih is expliitabout �nite approximations.Determinay. We now turn to the question of obtainingthe same result irrespetive of the number of proessors andirrespetive of whih runnable threads are hosen for a-tivation during the omputation. Clearly, sine the resultsabove hold for any number of proessors it follows that if anevaluation with N proessors gives main a value then, de-pending on whih threads are ativated, an evaluation withM proessors an give the same result in the sense of Propo-sition 12.1.Without the side ondition disussed in Setion 9 that is thebest that an be expeted | otherwise in general it is pos-sible for main to remain bloked inde�nitely. With the sideondition, we want to demonstrate that if any evaluationgives an answer for main then they all do, irrespetive of thenumber of proessors. For the 1-proessor ase, it is learthat the de�nition of a0=) in Setion 9 ensures that thereis always exatly one ative binding and that the blokedbindings form a hain from main to that ative binding.The following proposition demonstrates that all the losuresativated in the one proessor ase will also be ativated inthe multi-proessor ase. Reall that =)N is the omputationrelation assuming a maximum of N proessors.Proposition 12.4. Given N � 1 proessors, suppose(H;main A7! e) =)1 H1 =)1 H2 : : : and(H;main A7! e) =)N K1 =)N K2 : : :If x is ative in some Hi then there is a j suh that x isative in Kj.
Proof. Suppose zk is ative in some Hi. By a0=) thereis a hain main B7! ez1 ; z1 B7! ez2 ; z2 B7! ez3 ; : : : zk A7! e in Hi.By indution on the length k of this hain we an show thatthere must be some Kj where zk is ative in Kj .

Finally we an bring all these results to bear to prove thatevaluation is deterministi in the sense that we get the sameanswer every time, for any number of proessors, assumingthe a0=) ativation relation.



Corollary 12.5. For any number of proessors N � 1,if (H;main A7! e) =)1 � (H 0;main I7! v) and(H;main A7! e) =)N K1 =)N K2 : : : then:1. there is some i � 1 suh that Ki = (K0i;main I7! v0);2. [[v0℄℄ffK0igg�0 = [[v℄℄ffH0gg�0Proof. 1. If there is no suh Ki then main must re-main ative or bloked forever. In either ase theremust be some binding z A7! e that remains ative anddoes not terminate. In that ase the denotation of ein the ontext of the orresponding heap must be ?by Prop.12.3. But by Prop.12.4 at some stage in the1-proessor evaluation z will be ative and main willbe (transitively) bloked on z. By Prop.12.2 e will notreah a whnf so main will remain bloked. (Unlessmain = z in whih ase the result follows immedi-ately.)2. ffH;main A7! egg�0 � ffH 0;main I7! vgg�0 by Prop.12.1,so in partiular [[v℄℄ffH0gg�0 = [[e℄℄ffHgg�0 .Similarly, [[v0℄℄ffK0igg�0 = [[e℄℄ffHgg�0 .
13. OTHER EVALUATION STRATEGIESSo far we have onentrated on a detailed treatment of thesemantis of a partiular parallel language, GpH, whih isthe fous of our broader urrent researh program. However,our entral framework of a heap of bindings labelled with anindiation of their ativity status is muh more general thanthat, allowing us to desribe various other models of parallelevaluation. There is insuÆient spae for a full treatmenthere but we hope to give enough information that the readerould �ll in the details.
13.1 Sequential evaluationOur �rst example is not parallel at all but simply sequentiallazy evaluation. This an be ahieved by just restriting theomputation relation to the ase of a single proessor =)1but a number of simpli�ations beome possible. First thereis no need for the notion of runnable bindings beause thereis always exatly one ative binding: req(main; H). In thatase we an eliminate the sheduling relation altogether byhaving the blok1 rule diretly ativate the inative binding:(H; x I7! e) : z A7! x �! (z B7! x; x A7! e) (blok01)Of ourse there is also no need for the parallel rule. Fulldetails are given in [5℄. While there are other small-stepsemantis for lazy evaluation (e.g. [25℄) this one may be ofinterest for the fat that it diretly represents the passing ofontrol between losures as they are evaluated.
13.2 Fully speculative evaluationFully speulative evaluation is a ompletely impliit approahwhere every appliation e1 e2 introdues parallelism by pro-eeding to evaluate both e1 and e2 together [15℄. This aneasily be expressed in our framework by a modi�ation to

the app rule:(H;x I7! v) : z A7! e �! (K; z �7! e0)(H; x I7! v) : z A7! e x �! (K; z �7! e0 x) (app1)(H;x I7! e2) : z A7! e1 x �! (x R7! e2; z A7! e1 x) (app2)(H;x RAB7! e2) : z A7! e1 �! (K; z �7! e01)(H;x RAB7! e2) : z A7! e1 x �! (K; z �7! e01 x) (app3)Thus if x is an inative, unevaluated losure then it is maderunnable (app2). Otherwise the evaluation proeeds in afashion entirely analogous to Figure 1.
13.3 Non-deterministic choiceSo far we have onentrated on languages that are determin-isti in the sense that the �nal result will always be the same(Corollary 12.5) but our framework an also desribe non-deterministi hoie operators suh as MCarthy's amb [23,25℄. In general terms, to evaluate e1ambe2, evaluate e1 ande2 in parallel and aept the �rst to terminate as the result.The only real ompliation for our semantis is that if e1terminates we wish to deativate e2 and all the threads thatit has spawned (and vie versa if e2 terminates �rst). Theapproah we take is to modify the unbloking omponentof the sheduling relation. First we give the single-threadtransition for amb:(H;x �7! e1; y �7! e2) : z A7! x amb y �!(x �07! e1; y �07! e2; z B7! x amb y) (amb)where �0 = (R if � = I� otherwise�0 is de�ned similarly. E�etively, z bloks and x and ybeome runnable unless they are already runnable, ativeor bloked.Now unbloking an amb expression is speial beause wewant to kill the other arm:(H;x RA7! v; z B7! x amb y) u�!((kill y H); x RA7! v; z B7! x) (unblokamb)There is a symmetrial rule for y RA7! v. The kill y funtionsearhes out all threads spawned by y and makes them ina-tive. We do not give a de�nition here but simply note thatit has similarities to the funtion req de�ned in Setion 9, inthat it follows hains of bloked bindings.There is a slight ompliation however: it would be inorretto make suh a binding inative in the ase where another,possibly mandatory, thread is also bloked on the same bind-ing. There is already suÆient struture and information inthe heap to orretly de�ne kill but it is muh easier if wealso reord at least the number of threads bloked on eahbinding (f. [4℄ where we maintain expliit bloking queues).Then kill an hek that there are no others bloking on thebinding before making it inative.



13.4 Controlled speculative evaluationAs mentioned in Setion 9, GpH does not provide muh sup-port for speulative evaluation. Here we sketh an extensionto the language to put some ontrol of speulative evaluationin the hands of the programmer.The idea is to have a syntati variant of par, say sparwith the same denotational semantis as par but the run-time system (i.e. our shedule relation) is to give priority tonon-speulative bindings (reated by par) over speulativebindings (reated by spar). We an ahieve this by havinganother label on bindings: Speulative or Non-speulative(ontrated to S and N) as well as the ativity labels. Thereis not spae for all the details here but the S;N labels areintrodued by spar and par respetively. For example:(H;x I7! e1) : z A7!� x spar e2 �! (z A7!� e2; x R7!S e1) (spar)where � is either S or N . The speulation labels are passedon when bloking ours but with N taking priority over Sin lashing ases.During ativation, if there are insuÆient proessors to ati-vate all runnable bindings, enough speulative ative bind-ings should be demoted to runnable to allow as many aspossible non-speulative, runnable threads to be promotedto ative. The details are not partiularly diÆult.A natural generalisation of this notion is to assoiate a pri-ority with eah thread reated by par and the shedulerselets whih threads to ativate, based on this value [22℄.The framework outlined here an be modi�ed to handle thisapproah by replaing the S and N labels with a numeripriority indiator.
14. METRICS OF PARALLELISMOne of the hief motivating fators for developing our se-mantis was to provide a means for formally omparing pro-grams in terms of time and parallelism. It turns out to bestraightforward to de�ne ommon metris for parallelism:work done, eÆieny and speedup (see [12℄ for the standardde�nitions) in terms of a redution sequene. How realistiis the operational semantis ompared with a real ompiler?Obviously our semantis is far removed from a real ompiler,that will have a highly optimised redution engine and weshould not expet redutions in the semantis to omparepreisely with ompiled ode. We do believe, however, thatour level of abstration is suh that we an draw onlu-sions about parallelism and make reasonable omparisonsabout run-time. In fat, pro�ling simulators suh as HBC-PP [32℄ are based on ounting similar redutions to those inour semantis and have proven to give useful performanemeasurements.Definition 14.1 (Work and run-time). Given a re-dution sequene H0 =) H1 =) � � � =) HtN for a termi-nating program with N proessors, the total work done withrespet to N proessors is the total number of single threadtransitions: W (N) = tNXi=0 ???HAi ???

Run-time is simply given by:R(N) = tNDefinition 14.2 (Average parallelism). For an un-bounded number of proessors, the average parallelism is:Average parallelism = W (1)R(1)In pratie a de�nition parameterised on the number of pro-essors an be more useful:P (N) = W (N)tNDefinition 14.3 (Maximum parallelism). Given anunbounded number of proessors, the maximum parallelismis the maximum number of ative proessors during evalua-tion: Maximum parallelism = max f???HAi ??? gt1i=0Or again we an take aount of the number of proessors:M(N) = maxf???HAi ??? gtNi=0For the example in Setion 11 with two or more proessorsthe work done is 10 and the run-time is 7 giving an averageparallelism of 1 37 . Using the same example with 1 proessorthe run-time inreases to 10, so using extra proessors animprove the program's run-time.
15. RELATED WORKThere have been a variety of semanti desriptions for all-by-need and all-by-name, for example [28, 20, 1, 31, 29, 3,3, 21, 25℄. This ontrasts with a relative sarity of semantidesriptions of parallel models. Parallel semantis of the �-alulus have been explored with denotational semantis;for example Roe [31℄ de�nes a denotational semantis suhthat operational osts of parallel omputations an be given.Greiner and Blelloh [15, 14℄ develop Roe's ideas furtherin a semantis that desribes a fully-speulative redutionmodel for the �-alulus. All of these semantis are useful forreasoning about di�erent redution models of the �-alulusbut none model a real parallel funtional language. A uniquefeature of our semantis is that it models the behaviour ofthreads during a parallel redution sequene of a real parallelfuntional language, namely GpH.Other parallel or onurrent funtional languages that havea de�ned semantis inlude NESL [8℄, Eden [10℄, pH [2℄,Conurrent ML [30, 6℄, GoÆn [11℄ and Sheme [27℄. All ofthese languages are based on the �-alulus but inlude adi�erent set of language features to GpH. Eden and Con-urrent ML have expliit onstruts for onurreny. NESLprovides parallelism impliitly by implementing several lan-guage primitives using nested data-parallelism. pH has syn-hronisation, barriers and side-e�ets, all of whih requirespeial are in an operational semantis. GoÆn is builton Haskell by adding onurrent onstraint ombinators toexpress oordination. The form of parallelism in GpH ismostly impliit, whih makes it easier for the user to writeparallel programs than more expliit languages. GpH is



more expressive than purely impliit languages like NESL,beause in GpH ontrol parallelism as well as data paral-lelism an be expressed. There is no onsensus on the bestway of introduing parallelism to funtional programminglanguages but the model desribed in this paper is used bya popular Haskell ompiler (GHC) and, as we have demon-strated, our framework extends to other parallel evaluationstrategies. In fat, a new operational semantis for Eden[19℄ is based on our semanti framework.
16. FURTHER WORKThere are many avenues to develop this work, beyond theonsideration of other models of parallelism that we sur-veyed in Setion 13.
16.1 Extending the semanticsAdding ase, onstrutors and primitives is simple and leftout of this paper beause they are not relevant to the dis-ussion of parallelism. There are three main extensions tothe semantis that we are urrently onsidering: modellingspae, ommuniation and asynhronous redution.Spae. Currently we have a simple model that essentiallyuses a monolithi heap for all the storage spae. This doesnot orrelate very well with typial parallel ompilers thatdistribute data aross proessors. For instane, GpH uses aseparate heap on eah proessor and ommuniates threadsbetween heaps. Others have worked on modelling spae eÆ-iently inluding Blumofe and Leiserson [9℄ and Blelloh etal. [7℄.Communiation. Another desirable extension is to modelommuniation, whih again requires a more detailed treat-ment of heap spae, sine the essene of ommuniation is totransfer bindings between heaps on di�erent proessors. Thesemantis urrently allows us to reason about four threadstates (ative, inative, runnable and bloked) but we wouldalso like to reason about other thread states suh as feth-ing, whih is the ommuniation state. This is importantfor modelling the behaviour of a program on a real parallelarhiteture whose proessor topology may have an impaton a program's run-time. We have onsidered onstrut-ing models where ommuniation latenies are modelled byusing `loks' (ounters) on ompute steps.Asynhronous redution. We would like to extend oursemantis to model the asynhronous redution that is ar-ried out by the GpH run-time system. The loking meha-nism mentioned above for modelling ommuniation seemsto provide a simple mehanism for modelling asynhronousbehaviour without adversely a�eting the simpliity of thepresent semantis.
16.2 Reasoning about parallel coordinationFuntional languages are promoted as for being good forequational reasoning, so that properties of programs are eas-ily demonstrated by using familiar tehniques. There is anabundane of work on equational reasoning about ompu-tation but very little on equational reasoning for paralleloordination and omputation, perhaps beause it is muhmore diÆult to reason about parallel programs. In Setion14 we desribed how programs an be ompared in terms of

time and parallelism. This an be used to develop a fam-ily of equivalenes and ost orderings that have a knownbehaviour, shown formally using the semantis. For exam-ple, the following two expressions are equivalent in terms ofresoure usage:x seq (y par z) (x seq y) par (x seq z):While we have used the semantis to demonstrate some sim-ple results, muh work remains to develop a family of ax-ioms for par and seq as well as higher-order ombinators.Reent work by Sands, Moran and Gustavsson [24, 16℄ onoperational tehniques for all-by-need seems to hold somepromise.
16.3 Abstract machinesWork is in progress, using this semantis for developing anabstrat mahine for lazy parallel graph redution [4℄ justas Sestoft [33℄ did for Launhbury's sequential all-by-needsemantis and Moreau did for Sheme with futures [26℄. Wehave also written interpreters for our semantis [5℄ that allowus to analyse the behaviour of an expression automatially.The abstrat mahine allows us to study more losely the be-haviour of a real ompiler and low-level features suh as themanagement of bloking queues [15℄ and garbage-olletion[36℄. It should also be possible to use the semantis at thislevel to formally justify the behaviour of parallel simulatorssuh as HBC-PP [32℄ and GranSim [22℄.
17. CONCLUSIONWe have developed an operational semantis for parallel lazyevaluation that models the language GpH. The semantisuses the mehanism of a heap of bindings labelled with anindiation of their ativity status, to model sharing and par-allel thread behaviour. The result is simpler than manyother attempts at a parallel semantis. We were also ableto show the orretness of our semantis with respet tostandard sequential all-by-need semantis.The tehniques developed here are suÆiently powerful andexible to desribe a wide variety of approahes to parallelevaluation, as we demonstrated with fully-speulative evalu-ation, non-deterministi hoie and programmer-ontrolledspeulation. The exibility arries over to a lass of parallellazy abstrat mahines we have derived from our semantiframework.Developing the semantis has been suessful in unoveringsubtleties in the real implementation. It is far easier toreason about behaviours suh as prioritising main threadbindings, blak holes, unbloking tehniques and so on, atthis level of abstration rather than in a real ompiler.
AcknowledgmentsWe would like to thank Jon Hall for his ontributions in theearly stages of this projet. We have also bene�ted fromdisussions with Dave Sands.
18. REFERENCES[1℄ S. Abramsky. The lazy lambda alulus. In ResearhTopis in Funtional Programming, pages 65{117.Addison Wesley, 1990.



[2℄ S. Aditya, Arvind, L. Augustsson, J.-W. Maessen, andR. S. Nikhil. Semantis of pH: A parallel dialet ofHaskell. In Proeedings of the Haskell Workshop, pages35{49, La Jolla, California, 1995.[3℄ Z. Ariola, M. Felleisen, J. Maraist, M. Odersky, andP. Wadler. A all-by-need lambda alulus. In The22nd Symposium on Priniples of ProgrammingLanguages (POPL'95), pages 233{246, San Franiso,California, 1995.[4℄ C. Baker-Finh. An abstrat mahine for parallel lazyevaluation. In Trends in Funtional Programming,hapter 17. Intellet, 2000.[5℄ C. Baker-Finh, D. J. King, J. G. Hall, andP. Trinder. An operational semantis for parallelall-by-need. Tehnial Report No. 99/1, Departmentof Computing, The Open University, Milton Keynes,1999.[6℄ D. Berry, R. Milner, and D. N. Turner. A semantisfor ML onurreny primitives. In The 19thSymposium on Priniples of Programming Languages(POPL'92), pages 119{129, 1992.[7℄ G. E. Blelloh, P. B. Gibbons, Y. Matias, and G. J.Narlikar. Spae-eÆient sheduling of parallelism withsynhronization variables. In Proeedings of 9th ACMSymposium on Parallel Algorithms and Arhitetures(SPAA'97), pages 12{23, Newport, RI, 1997.[8℄ G. E. Blelloh and J. Greiner. A provable time andspae eÆient implementation of NESL. InInternational Conferene on Funtional Programming(ICFP'96), pages 213{225, 1996.[9℄ R. D. Blumofe and C. E. Leiserson. Spae-eÆientsheduling of multithreaded omputations. SIAMJournal of Computing, 27(1):202{229, 1998.[10℄ S. Breitinger, R. Loogen, Y. Ortega-Mall�en, andR. Pe~na. Eden: Language De�nition and OperationalSemantis. Fahbereih Mathematik und Informatik,Philipps Universit�at Marburg, 1998. Tehnial Report96-10.[11℄ M. Chakravarty, Y. Guo, M. K�ohler, and H. Lok.GoÆn: Higher-order funtions meet onurrentonstraints. Siene of Computer Programming,30(1{2):157{199, 1998.[12℄ D. L. Eager, J. Zahorhan, and E. D. Lazowska.Speedup versus eÆieny in parallel systems. IEEETransations on Computers, 38(3):408{423, 1989.[13℄ C. Flanagan and M. Felleisen. The semantis of futureand its use in program optimization. In The 22ndSymposium on Priniples of Programming Languages(POPL'95), pages 209{220, San Franiso, California,1995.[14℄ J. Greiner. Semantis-based parallel ost models andtheir use in provably eÆient implementations. PhDthesis, Shool of Computer Siene, Carnegie MellonUniversity, Pittsburgh, 1997.

[15℄ J. Greiner and G. E. Blelloh. A provablytime-eÆient parallel implementation of fullspeulation. ACM Transations on ProgrammingLanguages and Systems, 21(2):240{285, 1999.[16℄ J. Gustavsson and D. Sands. A foundation forspae-safe transformations of all-by-need programs.In The Third International Workshop on Higher OrderOperational Tehniques in Semantis, volume 26 ofEletroni Notes in Theoretial Computer Siene.Elsevier, 1999.[17℄ J. G. Hall, C. Baker-Finh, P. Trinder, and D. J.King. Towards an operational semantis for a parallelnon-strit funtional language. In Proeedings of theInternational Workshop on the Implementation ofFuntional Languages (IFL'98), LNCS 1595, pages55{72, London, 1998.[18℄ M. Hennessy. The Semantis of ProgrammingLanguages. Wiley, 1990.[19℄ M. Hidalgo-Herrero and Y. Ortega-Mall�en. Adistributed operational semantis for a parallelfuntional language. Submitted to Sottish FuntionalProgramming Workshop, St. Andrews, 2000.[20℄ M. B. Josephs. The semantis of lazy funtionallanguages. Theoretial Computer Siene, 68:105{111,1989.[21℄ J. Launhbury. A natural semantis for lazyevaluation. In The 20th Symposium on Priniples ofProgramming Languages (POPL'93), pages 144{154,Charleston, South Carolina, 1993.[22℄ H.-W. Loidl. Granularity in Large-Sale ParallelFuntional Programming. PhD thesis, Department ofComputing Siene, University of Glasgow, 1998.[23℄ J. MCarthy. A basis for a mathematial theory ofomputation. In Pro. Western Joint ComputerConferene, pages 225{238, 1961.[24℄ A. Moran and D. Sands. Improvement in a lazyontext: An operational theory for all-by-need. InThe 26th Symposium on Priniples of ProgrammingLanguages (POPL'99), pages 45{56, San Antonio,Texas, 1999.[25℄ A. K. Moran. Call-by-name, Call-by-need, andMCarthy's Amb. PhD thesis, Computing SieneDepartment, Chalmers University, 1998.[26℄ L. Moreau. The PCKS-mahine: an abstrat mahinefor sound evaluation of parallel funtional programswith �rst-lass ontinuations. In European Symposiumon Programming (ESOP'94), LNCS 788, pages424{438, Edinburgh, 1994.[27℄ L. Moreau. The semantis of Sheme with future. InInternational Conferene on Funtional Programming(ICFP'96), pages 146{156, 1996.[28℄ G. D. Plotkin. Call-by-name, all-by-value and the�-alulus. Theoretial Computer Siene,1(2):125{159, 1975.



[29℄ S. Purushothaman and J. Seaman. An adequateoperational semantis of sharing in lazy evaluation. InThe 4th European Symposium on Programming(ESOP'92), LNCS 582, pages 435{450, Rennes, 1992.[30℄ J. H. Reppy. An operational semantis of �rst-lasssynhronous operations. Tehnial report, Departmentof Computer Siene, Cornell University, 1991.[31℄ P. Roe. Parallel programming using funtionallanguages. PhD thesis, Department of ComputingSiene, University of Glasgow, Glasgow, Sotland,1991.[32℄ C. Runiman and D. Wakeling. Pro�ling parallelfuntional omputations (without parallel mahines).In Proeedings of the 1993 Glasgow Workshop onFuntional Programming, pages 236{251, Ayr,Sotland, 1994.[33℄ P. Sestoft. Deriving a lazy abstrat mahine. Journalof Funtional Programming, 7(3):231{264, 1997.[34℄ P. Trinder, K. Hammond, H.-W. Loidl, and S. PeytonJones. Algorithm + Strategy = Parallelism. Journalof Funtional Programming, 8(1):23{60, 1998.[35℄ P. Trinder, K. Hammond, J. Mattson, A. Partridge,and S. Peyton Jones. GUM: A portableimplementation of Haskell. In Proeedings ofProgramming Language Design and Implementation(PLDI'96), pages 79{88, Philadelphia, USA, 1996.[36℄ C. Walton. An abstrat mahine for memorymanagement. In Trends in Funtional Programming,hapter 10. Intellet, 2000.
APPENDIXThis appendix presents a more detailed outline of our proofof Proposition 12.3. It is derived diretly from Launhbury'sorresponding proof [21℄.We begin with a variant of the denotational semantis asshown in Figure 10, that allows us to expliitly deal with�nite approximations. The new semanti funtion takes anextra argument representing a `resoure'. The domain ofresoures is the least solution of C = C? and we write thelifting injetion as S so the elements of C are ?; S?; SS? : : :with limit element !.The semanti funtion N takes a resoure as an extra ar-gument and environments � : Var ! C ! Val now bindvariables to funtions whih take a resoure and return avalue.The original semantis is equivalent to N , assuming unlim-ited resoures:If 8x:� x = � x ! then [[e℄℄� = N [[e℄℄�!By the ontinuity of N , we have the following lemma:Lemma .1. If [[e℄℄� 6= ? then there is a natural number msuh that N [[e℄℄�(Sm k) 6= ? where 8x:� x = � x !.

N [[e℄℄�? = ?N [[�x:e℄℄�(S k) = lift ��:N [[e℄℄�[x7!� ℄N [[e x℄℄�(S k) = drop(N [[e℄℄�k)(N [[x℄℄�k)N [[x℄℄�(S k) = � x kN [[let fxi = eigni=1 in e℄℄�(S k) = N [[e℄℄��0:�[xi 7!N [[ei℄℄�0 ℄ni=1kN [[e1 seq e2℄℄�(S k) = (? if N [[e1℄℄�k = ?N [[e2℄℄�k otherwiseN [[x par e℄℄� = N [[e℄℄�Figure 10: Resoured denotational semantisThe ore result relating the resoured semantis to our op-erational is the following:Lemma .2. If:N [[e℄℄��0:(x1 7!N [[e1℄℄�0 ;:::xn 7!N [[en℄℄�0 )(Sm?) 6= ?then there is a value v, a variable z and a heap H where:��0:(x1 7! N [[e1℄℄�0 ; : : : xn 7! N [[en℄℄�0) � ffHgg�0suh that:(x1 I7! e1; : : : xn I7! en; z A7! e) =)� (H; z A7! v)Proof. By indution on m. As an example of how theproof goes, onsider the ase e = xi.Let � = ��0:(x1 7! N [[e1℄℄�0 ; : : : xn 7! N [[en℄℄�0).If N [[xi℄℄�(S k) 6= ? then N [[ei℄℄�k 6= ?. By the indutivehypothesis we have:(x1 I7! e1; : : : xi A7! ei; : : : xn I7! en; z I7! xi)=)� (H; z I7! xi; xi A7! v)Using this fat, we an onstrut the following relation byapplying rules blok1 and var :(x1 I7! e1; : : : xi I7! ei; : : : xn I7! en; z A7! xi)=) (x1 I7! e1; : : : xi A7! ei; : : : xn I7! en; z B7! xi)=)� (H; z B7! xi; xi A7! v)=) (H 0; z A7! v̂)Finally, the proof of Proposition 12.3 is as follows:Proof. By Lemma .1, if [[e℄℄ffx1 7!e1:::xn 7!engg�0 6= ?, thereis an m suh that N [[e℄℄��0:(xi 7!N [[ei℄℄�0 )ni=1(Sm k) 6= ?.Thus by lemma .2 we have:(x1 7! e1 : : : xn 7! en; z A7! e) =)� (H; z I7! v)as required.


