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ABSTRACT

We present an operational semantics for parallel lazy eval-
wation that accurately models the parallel behaviour of the
non-strict parallel functional language GpPH. Parallelism is
modelled synchronously, that is, single reductions are car-
ried out separately then combined before proceeding to the
next set of reductions. Consequently the semantics has two
levels, with transition rules for individual threads at one
level and combining rules at the other. Each parallel thread
is modelled by a binding labelled with an indication of its
activity status. To the best of our knowledge this is the first
semantics that models such thread states. A set of labelled
bindings corresponds to a heap and is used to model sharing.

The semantics is set at a higher level of abstraction than
an abstract machine and is therefore more manageable for
proofs about programs rather than implementations. At the
same time, it is sufficiently low level to allow us to reason
about programs in terms of parallelism (i.e. the number of
processors used) as well as work and run-time with different
numbers of processors.

The framework used by the semantics is sufficiently flexible
and general that it can easily be adapted to express other
evaluation models such as sequential call-by-need, specula-
tive evaluation, non-deterministic choice and others.

1. INTRODUCTION

This paper describes a new operational semantics that cap-
tures the call-by-need evaluation of a parallel extension to
the A-calculus. We use the term call-by-need synonymously
with lazy evaluation, that is, normal order reduction to weak
head normal form (whnf) with subexpression sharing. The
extended A-calculus language used in this paper, GPH-CORE,
models Glasgow Parallel Haskell [35], an established paral-
lel derivative of the non-strict purely functional language
Haskell. Parallelism is provided in both GpH and GrPH-
CORE in a mostly-implicit way, by using the annotation par
to express parallel composition while leaving thread man-
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agement to the run-time system. Note that par is only a
hint of what to compute in parallel; it does not affect the
value of expressions.

The semantics presented is explicit in describing the way
threads are managed and stored. Therefore, the semantics
allows us to reason accurately about the behaviour of paral-
lel functional programs in terms of coordination (i.e. how the
computation is arranged in parallel) as well as computation
(i.e. what value to compute).

A parallel call-by-need semantics is important for theoreti-
cal reasons but there are also several practical applications.
For example, it provides a basis for applying equational rea-
soning to the parallel behaviour (or coordination) of parallel
functional programs. For instance, it allows us to show prop-
erties such as: program X uses more processors than program
Y; program X uses more space than program Y; and program
X runs faster than program Y. Being able to reason about
these properties can be useful for the programmer and com-
piler writer alike. For the programmer, they will be able
to understand and improve the behaviour of their programs
more easily. For the compiler writer, optimising transfor-
mations [13] and the verification of compiler models such as
abstract machines and simulators can be justified.

The parallel call-by-need semantics presented here is a sub-
stantial development of earlier work [17] that gave a seman-
tics of the same language but with the speculative evalua-
tion of expressions in an undetermined order. The semantics
presented here has the following key features:

e Name/expression bindings are used to model closures,
which in turn are used to model threads. The bindings
are labelled to model the GPH thread states: inactive,
blocked, runnable and active.

e A heap of bindings is used to model space-usage, shar-
ing and parallelism (i.e. processor usage can be quan-
tified).

e The semantics is parameterised on the number of pro-
cessors N, so we can readily model the behaviour of
programs under differing resource assumptions.

e It is structured and therefore relatively convenient to
use for proving both computational and coordinational
properties of programs. The simplicity arises because
it models parallelism synchronously and the rules are



at two levels: single thread transitions at one level and
multi thread relations at the other level.

e [t captures the thread behaviour and evaluation order
of an existing parallel functional language implemen-
tation, GpPH.

e The underlying idea of labelling heap bindings with
their activity status is sufficiently flexible and powerful
to describe a variety of other models of parallel lazy
evaluation. See [19] for example.

In Sections 2 10 we describe the framework of our opera-
tional semantic technique and develop a specification of the
computation and coordination behaviour of GPH. In Sec-
tion 12 we relate our semantics to a standard denotational
semantics for sequential lazy evaluation and prove a deter-
minacy result. We examine several alternative models of
parallel lazy evaluation to demonstrate the flexibility and
generality of our approach in Section 13. In Section 14 we
define some standard metrics of parallelism in terms of our
semantics. We conclude by discussing related work in Sec-
tion 15 and our future plans in Section 16.

2. MODELLING PARALLELISM

The operational semantics we present is a two-level transi-
tion semantics. At the lower level, there are single-thread
transitions for performing the ordinary evaluation of expres-
sions (B-reduction and the like). All candidate single-thread
steps are carried out simultaneously (conceptually on sepa-
rate processors) and in lockstep. They are then combined
into a parallel computation step using coordination relations
defined at the upper level.

We follow Launchbury’s seminal work [21] by using a heap
to allow sharing and a restricted language to avoid the com-
plications of creating closures in the semantics. The re-
stricted language ensures that every closure is provided with
a ‘name’ (a variable) by some corresponding let-binding.
Our semantics is set at a lower level of abstraction than
Launchbury’s since we use a small-step computational se-
mantics rather than a big-step natural semantics. This is
the typical approach for modelling parallelism [18] since it
allows us to more directly represent the coordination of mul-
tiple separate actions.

Nevertheless, our semantics is at a higher level than an ab-
stract machine [4], thus avoiding the need for stacks, block-
ing queues and such like.

3. THE LANGUAGE

GPH-CORE is a simple subset of the language GpH. It con-
sists of the untyped A-calculus extended with numbers, re-
cursive lets, a form of sequential composition seq and a
form of parallel composition par. Since [21], it has become
common practice to normalise the language to a restricted
syntax. The normalised terms differ from their correspond-
ing terms in GPH in two ways: all variables are distinct;
and the second argument of application and the first ar-
gument of par must be variables. In fact, the normalised
terms correspond to the internal core language that is used
in the implementation of GPH. The process of normalisa-
tion is straightforward by introducing new let-bindings; for

example, an algorithm is given in [17].

x,y, z € Variable
n € Number
e € Expression
ex=n| x| ex | de | let{zi=r¢e;};_; ine
| e1seqes | zpare

Numbers are unnecessary but are included to make examples
easier to follow. No extra rules are needed in the semantics
to deal with numbers. In our semantics only closed terms
will be considered, that is, programs contain no free vari-
ables. Comnstructors and case expressions are also a standard
part of the GPH language but are not included here. They
are unimportant to our central concern with parallelism.

3.1 Parallel and sequential composition
GPH-CORE and GPH express parallel coordination using the
combinators par (for parallel composition) and seq (for se-
quential composition). These combinators are defined as
follows:

€1 seq €2

{J_, ifeg =L

e2, otherwise
€] par €z = €3

The operational behaviour of seq is to reduce e; to weak
head normal form before returning es, thus enforcing an
evaluation order. The termination properties of a program
can therefore be changed by using seq, in contrast to par
which has no affect on termination properties. The oper-
ational behaviour of par is to proceed with the evaluation
of es and if a separate processor is available, to evaluate e
simultaneously. The idea of the par combinator is not new;
its invention is attributed to John Hughes.

It is important to note that par will evaluate e; to whnf and
no further. Hence the need for seq which is often used to
force the evaluation of data structures to normal form. For
example, if s and ys are two lists then xs par ys will not
evaluate the two lists in parallel with call-by-need evalua-
tion because they are in whnf. Using seq, however, a func-
tion seqList can be defined that forces the evaluation of the
structure of a list. Hence, to reduce the two lists in parallel
and return them we can use (seqList xs par seqList ys) seq
(zs,ys). Trinder et al. [34] offer a much more detailed ex-
position of the use of par and seq.

4. HEAPS AND LABELLED BINDINGS
Following [21] we use a heap of bindings of expressions to
variables; but for our purposes each binding also carries a
label to indicate its state of activity. Thus, heaps are partial
functions from variables to expression/thread-state pairs:
H, K € Heap = Variable o— (Expression, State)
a, B € State

a ::= Inactive | Runnable

Active | Blocked

We write individual bindings with the thread state appear-
ing as an annotation on the binding arrow, thus:

(e
r—e

!Personal communication: Dave Sands.



H: 23 let {zi=e}im ine — ({z; N €itiz1,2 A e) (let)

(H,xév):zlﬁ)x — (z:)f)) (var)
(H,.rii)e):zé)z — (mi—R)e,ZiE)z) (block:)
(H,ar;Rbﬁ)B e):zbﬁ)x — (zlE)a:) (blocks)
A B
H:zv2z — (20 2) (blackhole)
H:zd Aye)z — (z Y e[z /y]) (subst)
H:izde — (K, 2z €')
A a (app)
H:z5ex — (K,z— €' 1)

H:zlﬁ)vseqe — (zi)e) (seg-elim)
H:Ziﬁ)el—)(K,zﬂ)e'l) (seq)
seq

H:Ziﬂ)elseqeg — (K,zﬂ)e’l seq ez)
(H,x A8 e1): z i)a:par es — (2 o €2) (par-elim)
(H,mii)el):zé)zparez — (zﬁ)el,zi)eg) (par)

Figure 1: Single thread transition rules

The binding state is usually abbreviated to the first letter,
I, R, A, or B. A binding is Active if it is currently being
evaluated; it is Blocked if it is waiting for the evaluation
of another binding before its evaluation can proceed; and
it is Runnable if there are not enough resources currently
available to evaluate it. All other bindings are Inactive, that
is, they have not yet been initiated or they have finished
being evaluated. A heap cannot contain multiple bindings
for the same identifier.

The idea of labelling bindings with an indication of their
state of activity is surprisingly powerful and general, allow-
ing us to model a variety of parallel evaluation strategies as
we demonstrate in Section 13. However, our main interest
is in describing GPH so that will remain our primary focus
for now.

Bindings correspond to heap closures and in our semantics
labelled bindings correspond to threads. In the run-time
system for GPH [35] only closures that are not inactive cor-
respond to threads. GPH also uses other thread states such
as fetching, which is the communication state. It is useful to
be able to model communication, but it is not as important
for GpH as it is for many other languages. Our semantics
attributes no cost to communication, so an idealised archi-
tecture is modelled. Some profiling simulators for GpH, for
example HBC-PP [32] and GRANSIM-Light [22], also model
such an idealised machine and they have proven to give use-
ful information.

The computational semantics is given as a relation on heaps
H = H' which is in turn defined in terms of a notion of
single thread transitions (Section 5) and a scheduling rela-
tion (Section 7).

The operational semantics describes a reduction sequence
from an initial global configuration to a final global config-
uration:

(H, main S e) = ... = (H', main ,iH))

where main is always used as the program identifier. Hence,
a program terminates as soon as main reaches a value v,
irrespective of other bindings. Values v are whnf expressions
in GPH-CORE, that is:

vi=mn | Az.e

5. SINGLE THREAD TRANSITIONS

The transition function —» defined in Figure 1 describes
the computational step taken by each active binding in the
heap. The left hand side in each rule represents a heap with
the particular active binding distinguished:

A
H:z—e

Several of the rules depend on other bindings in the heap
(for example, the block; rules) so we also use the notation
(H,z % e) to partition the heap, separating z +> e from the

other bindings in H. Multi-label bindings, such as z A% e
in the blocks rule mean that the state is one of R, A or B
but not 1.

The right hand sides of the rules in Figure 1 is a heap in
the sense that it is a set of labelled bindings but it consists
of only those bindings that are changed or created by that
computation step. The changes for all active bindings are
combined by the parallel rule (Section 6) to create a full
heap to heap transition.



Let: The let rule populates the heap with new bindings.
These bindings are inactive since under call-by-need they
may not necessarily be evaluated.

Variables and blocking: In the war and block; rules the

distinguished binding z Bz represents the situation of eval-
uating a closure (called z) which consists of a pointer to an-
other closure (called z). If z has already been evaluated to
whnf as in the var rule, then z simply receives that value.

The notation © signifies a renaming of all bound variables
in v to fresh variable names. The var rule is the only place
where names are duplicated. As Launchbury proves [21],
this is sufficient to avoid all unwanted name clashes. An al-
ternative suggested by Sestoft [33] is to rename bound vari-
ables at the time that let bindings are added to the heap.
Sestoft’s approach is preferred for abstract machines [4] but
Launchbury’s notation is more parsimonious and adequate
for our present purposes.

If = is inactive and has not yet been evaluated, as in the
block: rule, then z blocks at this point and z joins the pool of
runnable bindings, possibly to be activated by the schedul-
ing relation. If z is already active, runnable or blocked as
in blocks then z blocks but z is unaffected.

Black holes: Discussion of the blackhole rule is deferred to
Section 10.

Application: Non-strict evaluation of e; es proceeds by re-
ducing e to an abstraction (app rule) and then substituting
the argument z for the bound variable y (subst).

Seq: The seq rule proceeds to evaluate e; in the expression
e1 seq ez but makes no progress on e;. When and if e;
reaches whnf its value (but not the effect on the heap) is
discarded by the seg-elim rule and evaluation proceeds to
€9.

Par: In GrPH the only way to introduce parallelism is by
using par and this is reflected in the semantics by the par
rule. Notice that it does not create more parallelism imme-
diately but instead suggests that a binding should be made
active by putting it into a Runnable state which may be pro-
moted to Active later. This promotion can happen in the
scheduling phase (Section 7) but only if sufficient process-
ing resources are available. This corresponds to GPH where
par is thought of as a hint of what to parallelise, rather
than a command. If the binding is already active, runnable
or blocked there is no more to do (par-elim).

6. MULTI-THREAD TRANSITIONS

Active bindings are delegated for single thread steps by the
following parallel computation rule. This is the key point in
the semantics where reductions are carried out in parallel.
The rule also melds together all the new bindings, updating
the heap accordingly (Figure 2).

We write H* to represent all the active bindings in H. More
precisely:
H* ={z 5 eec H}

Hence in Figure 2 there are exactly n active bindings in H.

HAz{a:i:)ei}{‘:l {H:xibﬁ)e,— — Ki}?:l
H = H|UL, Ki]

(parallel)

Figure 2: Combining multiple thread transitions

The notation H[K] updates the heap H with all the new
or changed bindings given by K. More precisely, it can be
defined as follows:

HK|={zSecH|z ¢ dom(K)}UK
By taking the union of all the K; in the parallel rule there
appears to be the potential for conflicts to arise between
bindings. What if z > e € K; and z B e e K, for
example? The following proposition demonstrates that for

the single thread rules defined in Figure 1, no such conflict
can arise.

PROPOSITION 6.1. Given (Hi,z B e1) = (Hz, 22 o ez)
where z1 # z2.
If Hi : z: bé)el —> K1 and Hs : 22 bﬂﬂm —> K> then:

o ifzr ag . € K, then x & dom(K>)

o ifx X e € Ky then either x & dom(K>) orx Beek,

Proor. By induction on e; and e> and the syntactic re-
striction that all variables are distinct (Section 3). [

7. THE SCHEDULING RELATION

As well as the computational steps defined so far, we also
need to describe the coordination aspects of the language.
In particular we need to give the semantics of the scheduling
phase of the evaluation. The scheduling actions for individ-
ual threads are defined in Figure 3 as follows:

e Any binding that is immediately blocked on a com-
pleting thread is made runnable (unblock);

e An active or runnable binding that is in whnf is made
inactive because its evaluation is done (deactivate);

e As many runnable bindings as resources will allow are
promoted to being active (activate).

(H,z&;lv,zg)ez) -2 (H,mﬁv,zi—R)ez) (unblock)
(H,x s v) N (H,x Hy v) (deactivate)

H"*| <N
H7] < (activate)

(H,zi—R)e) -2 (H,.riﬁ)e)

Figure 3: Single thread scheduling rules

The notation e” represents an expression that is immediately
blocked on z. In our language these can only take three
forms:

e’ i=x|zy|xzseqe



In the activate rule in Figure 3, N is a parameter to the
semantics, indicating the total number of processors. Hence
we require that no more than N bindings are activated.
Note that nowhere in these rules is it specified which bind-
ings are activated. The activation phase presents a mon-
deterministic choice. Nevertheless, the non-deterministic
choice is at the coordination level and does not change the
value computed.

The rules in Figure 3 only affect single bindings. We need to
unblock and deactivate all candidate threads and to activate
as many as possible. To that end we make the definitions

in Figure 4. In effect, the rules in Figure 4 define =5 to be

the normal form relations built upon =

1. H - H' and
2. there is no H” such that H' —s H".

(fiswordora.)

Figure 4: Component scheduling relations

Note that == is the only ‘true’ relation; ==, :d>7 == are
all functions. In other words the only non-determinism that
exists is in the choice of which threads from the runnable
pool are activated.

Scheduling promotes runnable bindings into an active state
if there are sufficient processors and demotes active evalu-
ated expressions to an inactive state. To achieve maximum
parallelism with respect to the number of processors it is
necessary that all candidate threads are unblocked before
deactivation and that deactivation takes place before acti-
vation to free up as many processors as possible. This se-
quence of actions is captured by the full scheduling relation
defined in Figure 5.

d
= = Lot o0 (schedule)

Figure 5: Complete scheduling relation

8. THE COMPUTATION RELATION
Finally the full computation relation of our semantics con-
sists of a parallel transition == followed by a scheduling of
bindings ==, as in Figure 6. This ordering ensures that
heaps appearing in a reduction sequence are always fully
scheduled. A brief example is given in Section 11.

= = == o0== (compute)

Figure 6: Computation relation

Since the semantics is parameterised on the number of pro-
cessors, we decorate the computation relation with the num-
ber of processors where necessary: ? In particular we will

use = to indicate the single-processor case.
1

9. PROMOTING THE MAIN THREAD

A consequence of the present definition of == is that the
main thread may be left runnable but never progress. Sup-
pose main blocks on some variable z by one of the blocking
rules in Figure 1 and z is promoted to a runnable state. If
the pool of runnable threads is larger than the number of
available processors then there is no guarantee that z will
be made active under the present schedule relation. It is
possible that the main thread could thus be delayed or sus-
pended indefinitely, if there is a constant supply of unneeded
speculative threads being generated and scheduled in place
of the main thread.

Yet, according to the designers of GPH, their implementa-
tion makes no assurance that a binding that main needs
has priority over other bindings when deciding which ones
to promote to an active state. While their early papers warn
potential users that the run-time system offers little support
for speculative evaluation [35], it nevertheless seems desir-
able for bindings required by the main thread to remain
active whenever possible since that is the thread that deliv-
ers the final result. There may be no harm in suspending the
main thread but there surely can be no advantage either.

We can model a solution to this ‘defect’ by modifying the
activation relation == as in Figure 7 to require that any
runnable thread on which main is blocked, in a transitive
sense made precise by the function req, is activated in pref-
erence to any other runnable thread. We can be sure that
there will always be a free processor in this circumstance
because the blocking action has made one available.

H =% H i
1. H - H';
2. there is no H" such that H -% H' and

3. req(main, H') is active in H'.

T, ifr 8 ecKk

req(y, K), ifz Beve K

req(z, K) = {

Figure 7: Stronger activation relation

10. BLACKHOLES

Black holes are certain detectable infinite loops, such as:
letz =z inx
letz=y,y=zz2=zincz

In GPH, as well as sequential Haskell implementations, black
holes are detected and recognised as worthless computation.
It is at least desirable that our semantics should reflect this
treatment. Taking the simplest case of direct self-reference,
we have:

(H,Ziﬁ)let.r:zinz):(H’,zii)m,ziﬁ)z)
:>(H',aclﬁ>a:,z£>a:)

Without the blackhole rule of Figure 1 we can go no further
because there is no single thread rule that applies to an



{mainéleth/\ac.a:,g:(leta:3infa) ingpar (f g)}

:>{fbi))\a:.ac,gbi)leta=3infa,mambﬁ)gpar(fg)}

é{fii))\m.z,gﬁ)leta:3infa,mainié)fg}

é{fii))\m.z,giﬁ)leta:3infa,mainiﬁ)fg}

:>{f|i))\a:.ac,abi>3,glﬁ>fa,mainbﬁ)()\a:.ar;) g}

= {f N )\m.z,aii)?;,giﬂ) (Az.z) a, main ié)g}

:>{fbi))\a:.x,ali>3,gbﬁ>a,mam£>g}

:p>{fbi))\a:.x,ali>3,gb—>3,mainb—>g}
z,a v

:d>{fbi))\a:.x,al—>3,gbi>3,main£>g}
:a>{fbi))\a:.x,ali>3,gbi>

:{fii))\m.z,ai—)?;,gii)?;,mamii)?;}

(let)

(par)

(ZEta a’pp(uar))
(app(vary, subst)
(subst, blocks)

(var)

(var)

Figure 8: Example reduction

active thread like = 2 z and the parallel rule fails since it
requires all active bindings to progress. In general that is
not what we want because other threads may still be doing
useful work towards the final result. The blackhole rule deals
with this situation by converting x A 2 to blocked = &
and thereby releases its processor for other useful evaluation.
This behaviour corresponds to the implementation of GPH.

Cycles such as let x = y,y = = in z that lead to black holes
also become blocked in our semantics, but without the need
for a special rule:

H,Ziﬂ)letm:y,y:minz)

(
(H',.rii)y,yii)z,zi)z)
( ,xbﬁ)ac,yli)x,zbga:)
(

B A B
LT T, Y P L, 2 )
B B B
L(H' 2= x,y =,z = x)

If the main thread depends on a black hole and we require
it to remain active as described in Section 9 then we would
expect the computation to halt. In such a case req(main, H)

is undefined so the == step fails. In other words, (H =)
is empty and hence so is (H =).

11. AN EXAMPLE

To demonstrate the operational semantics in action we show
in Figure 8 the reduction sequence with at least two proces-
sors for the following program:

main = let f = \x.x
g=leta=3in fa
in g par (f g)

Note that most steps in Figure 8 are expressed in terms
of the full compute relation but in some interesting cases
we separate the parallel and schedule steps. Underlines are
used to emphasise the active bindings. As intended, f and g

evaluate in parallel. Note that this is the only reduction se-
quence, provided there are at least two processors. However,
different reduction sequences can arise when the number of
sparked threads exceeds the number of available processors.

12. PROPERTIES OF THE SEMANTICS

Abramsky’s denotational semantics of lazy evaluation [1]
models functions by a lifted function space, thus distinguish-
ing between a term  (a non-terminating computation) and
Az.Q to reflect the fact that reduction is to weak head nor-
mal form rather than head normal form. This is a widely-
used, simple and abstract semantics. The properties and
results developed in this section are expressed relative to
this denotational semantics.

Launchbury [21] shows a number of results relating his natu-
ral semantics of lazy evaluation to Abramsky’s denotational
semantics. We borrow much of his notation and several of
our proofs are inspired by his. In earlier work [5] we showed
that the 1-processor case of our semantics corresponds to
Launchbury’s.

There are three main properties that we expect of our se-
mantics: soundness: the computation relation preserves the
meanings of terms; adequacy: evaluations terminate if and
only if their denotation is not L; determinacy: the same
result is always obtained, irrespective of the number of pro-
cessors and irrespective of which runnable threads are cho-
sen for activation during the computation. The determinacy

result will only hold if the scheduling phase uses the == re-
lation which guarantees that the binding on which the main
thread is blocked remains active, as discussed in Section 9.

The denotational semantics of our language is given in Fig-
ure 9. The Val domain is assumed to contain a lifted version
of its own function space. The lifting injection is lift and the
corresponding projection is drop.



p € Env= Var — Val

[Az.e], = lift Ae.[e]
[e z], = drop([e],)([=],)
[z], = p()

[let {z; = e;}i—; in e]]p = [[e]]HIIHEI___anean

e if [ea], =L
[e1 seq 62]]p - {[[82]],; otherwise

[z par e]]p = [[e]]p

Figure 9: Denotational semantics

The semantic function:
[...]: Ezp — Env— Val

naturally extends to operate on heaps, the operational coun-
terpart of environments:

{...}: Heap » Env— Env

The recursive nature of heaps is reflected by a recursively
defined environment:

{zi—er...on—ep=
pp'pler = [erl, - xn = [en] ]
We also require an ordering on environments: if p < p’ then

p' may bind more variables than p but they are otherwise
equal. That is:

Vo . p(z) # L = p(z) = p'(2)

The arid environment po takes all variables to L.

Soundness. Our computational relation H = H' can
be considered sound with respect to the the denotational
semantics in Figure 9 if the denotations of all the bindings
in H are unchanged in H'. The < ordering on environments
neatly captures this notion.

PROPOSITION 12.1. If H = H' then forallp, {H}p <
{H }op.

PrROOF. By induction on the size of H and on the struc-
ture of expressions. []

Adequacy. We wish to characterise the termination prop-
erties of our semantics and Propositions 12.2 and 12.3 show
an agreement with the denotational definition. The proofs
are modelled on the corresponding ones in [21].

ProrosiTioN 12.2. If(H,z S e) =" (H',z+> v) then
[[8]]5(1{]},; #L.

PRrOOF. For all values v, [v]g,.q, # L so by Prop.12.1
lelgry, #L- O

ProposiTiON 12.3. If [e]yy, # L, there ezists H' zwv
such that (H,z Y e) =" (H',z N v).

A proof of Proposition 12.3 is outlined in a appendix. It
is closely based on the corresponding proof in [21], working
with a variant of the denotational semantics which is explicit
about finite approximations.

Determinacy. We now turn to the question of obtaining
the same result irrespective of the number of processors and
irrespective of which runnable threads are chosen for ac-
tivation during the computation. Clearly, since the results
above hold for any number of processors it follows that if an
evaluation with N processors gives main a value then, de-
pending on which threads are activated, an evaluation with
M processors can give the same result in the sense of Propo-
sition 12.1.

Without the side condition discussed in Section 9 that is the
best that can be expected otherwise in general it is pos-
sible for main to remain blocked indefinitely. With the side
condition, we want to demonstrate that if any evaluation
gives an answer for main then they all do, irrespective of the
number of processors. For the 1-processor case, it is clear

that the definition of == in Section 9 ensures that there
is always exactly one active binding and that the blocked
bindings form a chain from main to that active binding.

The following proposition demonstrates that all the closures
activated in the one processor case will also be activated in
the multi-processor case. Recall that ? is the computation

relation assuming a maximum of N processors.

PROPOSITION 12.4. Given N > 1 processors, suppose
(H,mainiﬁ)e) ?Hl ?Hg... and

(H,mainiﬁ)e)?Kl?Kg...

If x is active in some H; then there is a j such that x is
active in Kj.

PROOF. Suppose z; is active in some H;. By == there

. . . B B B A .
is a chain main — e*', z1 — €°2, 20 — €3, ... 2 — e in H;.

By induction on the length k of this chain we can show that
there must be some K; where z; is active in K;. [

Finally we can bring all these results to bear to prove that
evaluation is deterministic in the sense that we get the same
answer every time, for any number of processors, assuming

the == activation relation.



COROLLARY 12.5. For any number of processors N > 1,
if (H, main & e) :1>* (H', main v v) and

(H, main A €) ? K, ? K> ... then:

1. there is some i > 1 such that K; = (K., main N v');

2 [0 00 = [0l

PROOF. 1. If there is no such K; then main must re-
main active or blocked forever. In either case there
must be some binding z 2 e that remains active and
does not terminate. In that case the denotation of e
in the context of the corresponding heap must be L
by Prop.12.3. But by Prop.12.4 at some stage in the
1-processor evaluation z will be active and main will
be (transitively) blocked on z. By Prop.12.2 e will not
reach a whnf so main will remain blocked. (Unless
main = z in which case the result follows immedi-
ately.)

2. {H, main A e}po < {H', main N v}po by Prop.12.1,
so in particular [v] gy, = lelguy,,-

Similarly, [[v']]w(;}}p0 =[elgnp,,- U

13. OTHER EVALUATION STRATEGIES

So far we have concentrated on a detailed treatment of the
semantics of a particular parallel language, GPH, which is
the focus of our broader current research program. However,
our central framework of a heap of bindings labelled with an
indication of their activity status is much more general than
that, allowing us to describe various other models of parallel
evaluation. There is insufficient space for a full treatment
here but we hope to give enough information that the reader
could fill in the details.

13.1 Sequential evaluation

Our first example is not parallel at all but simply sequential
lazy evaluation. This can be achieved by just restricting the
computation relation to the case of a single processor =

but a number of simplifications become possible. First there
is no need for the notion of runnable bindings because there
is always exactly one active binding: req(main, H). In that
case we can eliminate the scheduling relation altogether by
having the block: rule directly activate the inactive binding:

(H,zii)e):zi).r — (Zif)a:,a:iﬁ)e) (block})

Of course there is also no need for the parallel rule. Full
details are given in [5]. While there are other small-step
semantics for lazy evaluation (e.g. [25]) this one may be of
interest for the fact that it directly represents the passing of
control between closures as they are evaluated.

13.2 Fully speculative evaluation

Fully speculative evaluation is a completely implicit approach
where every application e; es introduces parallelism by pro-
ceeding to evaluate both e; and e» together [15]. This can
easily be expressed in our framework by a modification to

the app rule:

(H,xév):z:)e — (K,z5¢€)

7 n ~ (app1)
(Hx—v):zex — (K,z—e€' 1)
(H,zii)eg):zé)elz — (.’L"—R)EQ,Z'é)el z) (app2)
(H,zRiﬁ)Bez):Ziﬁ)el — (K,z% €l)
(apps)

(H,mRiﬁ)Bez):Ziﬂ)el z — (K,z €| )

Thus if x is an inactive, unevaluated closure then it is made
runnable (app2). Otherwise the evaluation proceeds in a
fashion entirely analogous to Figure 1.

13.3 Non-deterministic choice

So far we have concentrated on languages that are determin-
istic in the sense that the final result will always be the same
(Corollary 12.5) but our framework can also describe non-
deterministic choice operators such as McCarthy’s amb [23,
25]. In general terms, to evaluate e; ambes, evaluate e; and
es in parallel and accept the first to terminate as the result.
The only real complication for our semantics is that if e;
terminates we wish to deactivate e> and all the threads that
it has spawned (and vice versa if e; terminates first). The
approach we take is to modify the unblocking component
of the scheduling relation. First we give the single-thread
transition for amb:

A
(H,a:bg)el,yﬁ)@):zl—)xamby —

(xS e,y N €2, 2> ramby) (amb)

where

, R ifa=1
o =
« otherwise
B' is defined similarly. Effectively, z blocks and z and y
become runnable unless they are already runnable, active
or blocked.

Now unblocking an amb expression is special because we
want to kill the other arm:

RA B
(H,z ¥ v,z = ramb y)

((kill y H),x S v,z B x)  (unblockams)
There is a symmetrical rule for y & v, The kill y function
searches out all threads spawned by y and makes them inac-
tive. We do not give a definition here but simply note that
it has similarities to the function req defined in Section 9, in
that it follows chains of blocked bindings.

There is a slight complication however: it would be incorrect
to make such a binding inactive in the case where another,
possibly mandatory, thread is also blocked on the same bind-
ing. There is already sufficient structure and information in
the heap to correctly define kill but it is much easier if we
also record at least the number of threads blocked on each
binding (cf. [4] where we maintain explicit blocking queues).
Then kill can check that there are no others blocking on the
binding before making it inactive.



13.4 Controlled speculative evaluation

As mentioned in Section 9, GPH does not provide much sup-
port for speculative evaluation. Here we sketch an extension
to the language to put some control of speculative evaluation
in the hands of the programmer.

The idea is to have a syntactic variant of par, say spar
with the same denotational semantics as par but the run-
time system (i.e. our schedule relation) is to give priority to
non-speculative bindings (created by par) over speculative
bindings (created by spar). We can achieve this by having
another label on bindings: Speculative or Non-speculative
(contracted to S and N) as well as the activity labels. There
is not space for all the details here but the S, N labels are
introduced by spar and par respectively. For example:

(H,zii)el):zé)zspareg — (Ziﬂ)eg,mil—;)el) (spar)
(o8 o

where o is either S or N. The speculation labels are passed
on when blocking occurs but with N taking priority over S
in clashing cases.

During activation, if there are insufficient processors to acti-
vate all runnable bindings, enough speculative active bind-
ings should be demoted to runnable to allow as many as
possible non-speculative, runnable threads to be promoted
to active. The details are not particularly difficult.

A natural generalisation of this notion is to associate a pri-
ority with each thread created by par and the scheduler
selects which threads to activate, based on this value [22].
The framework outlined here can be modified to handle this
approach by replacing the S and N labels with a numeric
priority indicator.

14. METRICS OF PARALLELISM

One of the chief motivating factors for developing our se-
mantics was to provide a means for formally comparing pro-
grams in terms of time and parallelism. It turns out to be
straightforward to define common metrics for parallelism:
work done, efficiency and speedup (see [12] for the standard
definitions) in terms of a reduction sequence. How realistic
is the operational semantics compared with a real compiler?
Obviously our semantics is far removed from a real compiler,
that will have a highly optimised reduction engine and we
should not expect reductions in the semantics to compare
precisely with compiled code. We do believe, however, that
our level of abstraction is such that we can draw conclu-
sions about parallelism and make reasonable comparisons
about run-time. In fact, profiling simulators such as HBC-
PP [32] are based on counting similar reductions to those in
our semantics and have proven to give useful performance
measurements.

DEFINITION 14.1 (WORK AND RUN-TIME). Given a re-
duction sequence Hy = H, — --- = Hy, for a termi-
nating program with N processors, the total work done with
respect to N processors is the total number of single thread
transitions:

t
W(N) = XN: Ea
i=0

Run-time 1s simply given by:

R(N) = ty

DEFINITION 14.2  (AVERAGE PARALLELISM). For an un-
bounded number of processors, the average parallelism is:

R(o0)

Average parallelism =

In practice a definition parameterised on the number of pro-
cessors can be more useful:

W(N)

P(N) = =

DEFINITION 14.3  (MAXIMUM PARALLELISM). Given an
unbounded number of processors, the mazimum parallelism
is the mazimum number of active processors during evalua-
tion:

i
i=0
Or again we can take account of the number of processors:

t
o

Mazimum parallelism = max { ‘HZA

M(N) = max { \H;‘

For the example in Section 11 with two or more processors
the work done is 10 and the run-time is 7 giving an average
parallelism of 1%. Using the same example with 1 processor
the run-time increases to 10, so using extra processors can
improve the program’s run-time.

15. RELATED WORK

There have been a variety of semantic descriptions for call-
by-need and call-by-name, for example [28, 20, 1, 31, 29, 3,
3, 21, 25]. This contrasts with a relative scarcity of semantic
descriptions of parallel models. Parallel semantics of the A-
calculus have been explored with denotational semantics;
for example Roe [31] defines a denotational semantics such
that operational costs of parallel computations can be given.
Greiner and Blelloch [15, 14] develop Roe’s ideas further
in a semantics that describes a fully-speculative reduction
model for the A-calculus. All of these semantics are useful for
reasoning about different reduction models of the A-calculus
but none model a real parallel functional language. A unique
feature of our semantics is that it models the behaviour of
threads during a parallel reduction sequence of a real parallel
functional language, namely GrPH.

Other parallel or concurrent functional languages that have
a defined semantics include NESL [8], Eden [10], pH [2],
Concurrent ML [30, 6], Goffin [11] and Scheme [27]. All of
these languages are based on the A-calculus but include a
different set of language features to GPH. Eden and Con-
current ML have explicit constructs for concurrency. NESL
provides parallelism implicitly by implementing several lan-
guage primitives using nested data-parallelism. pH has syn-
chronisation, barriers and side-effects, all of which require
special care in an operational semantics. Goffin is built
on Haskell by adding concurrent constraint combinators to
express coordination. The form of parallelism in GPH is
mostly implicit, which makes it easier for the user to write
parallel programs than more explicit languages. GPH is



more expressive than purely implicit languages like NESL,
because in GPH control parallelism as well as data paral-
lelism can be expressed. There is no consensus on the best
way of introducing parallelism to functional programming
languages but the model described in this paper is used by
a popular Haskell compiler (GHC) and, as we have demon-
strated, our framework extends to other parallel evaluation
strategies. In fact, a new operational semantics for Eden
[19] is based on our semantic framework.

16. FURTHER WORK

There are many avenues to develop this work, beyond the
consideration of other models of parallelism that we sur-
veyed in Section 13.

16.1 Extending the semantics

Adding case, constructors and primitives is simple and left
out of this paper because they are not relevant to the dis-
cussion of parallelism. There are three main extensions to
the semantics that we are currently considering: modelling
space, communication and asynchronous reduction.

Space. Currently we have a simple model that essentially
uses a monolithic heap for all the storage space. This does
not correlate very well with typical parallel compilers that
distribute data across processors. For instance, GPH uses a
separate heap on each processor and communicates threads
between heaps. Others have worked on modelling space effi-
ciently including Blumofe and Leiserson [9] and Blelloch et
al. [7].

Communication. Another desirable extension is to model
communication, which again requires a more detailed treat-
ment of heap space, since the essence of communication is to
transfer bindings between heaps on different processors. The
semantics currently allows us to reason about four thread
states (active, inactive, runnable and blocked) but we would
also like to reason about other thread states such as fetch-
ing, which is the communication state. This is important
for modelling the behaviour of a program on a real parallel
architecture whose processor topology may have an impact
on a program’s run-time. We have considered construct-
ing models where communication latencies are modelled by
using ‘clocks’ (counters) on compute steps.

Asynchronous reduction. We would like to extend our
semantics to model the asynchronous reduction that is car-
ried out by the GPH run-time system. The clocking mecha-
nism mentioned above for modelling communication seems
to provide a simple mechanism for modelling asynchronous
behaviour without adversely affecting the simplicity of the
present semantics.

16.2 Reasoning about parallel coordination

Functional languages are promoted as for being good for
equational reasoning, so that properties of programs are eas-
ily demonstrated by using familiar techniques. There is an
abundance of work on equational reasoning about compu-
tation but very little on equational reasoning for parallel
coordination and computation, perhaps because it is much
more difficult to reason about parallel programs. In Section
14 we described how programs can be compared in terms of

time and parallelism. This can be used to develop a fam-
ily of equivalences and cost orderings that have a known
behaviour, shown formally using the semantics. For exam-
ple, the following two expressions are equivalent in terms of
resource usage:

z seq (y par z) (z seqy) par (z seq z).

While we have used the semantics to demonstrate some sim-
ple results, much work remains to develop a family of ax-
ioms for par and seq as well as higher-order combinators.
Recent work by Sands, Moran and Gustavsson [24, 16] on
operational techniques for call-by-need seems to hold some
promise.

16.3 Abstract machines

Work is in progress, using this semantics for developing an
abstract machine for lazy parallel graph reduction [4] just
as Sestoft [33] did for Launchbury’s sequential call-by-need
semantics and Moreau did for Scheme with futures [26]. We
have also written interpreters for our semantics [5] that allow
us to analyse the behaviour of an expression automatically.
The abstract machine allows us to study more closely the be-
haviour of a real compiler and low-level features such as the
management of blocking queues [15] and garbage-collection
[36]. It should also be possible to use the semantics at this
level to formally justify the behaviour of parallel simulators
such as HBC-PP [32] and GRANSIM [22].

17. CONCLUSION

We have developed an operational semantics for parallel lazy
evaluation that models the language GPH. The semantics
uses the mechanism of a heap of bindings labelled with an
indication of their activity status, to model sharing and par-
allel thread behaviour. The result is simpler than many
other attempts at a parallel semantics. We were also able
to show the correctness of our semantics with respect to
standard sequential call-by-need semantics.

The techniques developed here are sufficiently powerful and
flexible to describe a wide variety of approaches to parallel
evaluation, as we demonstrated with fully-speculative evalu-
ation, non-deterministic choice and programmer-controlled
speculation. The flexibility carries over to a class of parallel
lazy abstract machines we have derived from our semantic
framework.

Developing the semantics has been successful in uncovering
subtleties in the real implementation. It is far easier to
reason about behaviours such as prioritising main thread
bindings, black holes, unblocking techniques and so on, at
this level of abstraction rather than in a real compiler.
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APPENDIX

This appendix presents a more detailed outline of our proof
of Proposition 12.3. It is derived directly from Launchbury’s
corresponding proof [21].

We begin with a variant of the denotational semantics as
shown in Figure 10, that allows us to explicitly deal with
finite approximations. The new semantic function takes an
extra argument representing a ‘resource’. The domain of
resources is the least solution of C' = C, and we write the
lifting injection as S so the elements of C are L, S L, SS1 ...
with limit element w.

The semantic function N takes a resource as an extra ar-
gument and environments o : Var - C — Val now bind
variables to functions which take a resource and return a
value.

The original semantics is equivalent to A/, assuming unlim-
ited resources:

IfVe.px=o0zwthen [e], =N[e],w

By the continuity of A, we have the following lemma:

Lemma 1. If [e],, # L then there is a natural number m
such that N'[e] (S™ k) # L whereVe.pr =0 z w.

Nle], L =1
Nz.e], (S k) = lift \r.NTel,, sy
Nle ] (S k) = drop(N[e] k) (N [«] k)
Nz],(Sk)=0cazk
Nllet {zi =i}y ine], (S k) = Nlel,or o0, mnpe,nn, F

L if Ne:] k=1
Neiseqes] (S k) = {N[[ez]]ak otherwise

Nz pare] = Ne],

Figure 10: Resourced denotational semantics

The core result relating the resourced semantics to our op-
erational is the following:

LEmma 2. If:
NlIe]]p,o-’.(zlb—)N[el]]a;,...anN[en]]a,)(SmJ‘) #1
then there is a value v, a variable z and a heap H where:
po' (z1 = Nleal,is - xn = Nen], ) < {H}po
such that:
(21> e1,... 20 éen,zlﬁ)e) =" (H,z:)v)

PrOOF. By induction on m. As an example of how the
proof goes, consider the case e = ;.

Let 0 = po' (z1 = Nei],/,. .. zn = Nen] ).

If Nzi],(S k) # L then Ne;] k # L. By the inductive
hypothesis we have:

1 A 1 I
(1= e1,...¢i > ei,...Tn > €y, 2 > T;)
1 A
=" (H,z > zi,2; = v)

Using this fact, we can construct the following relation by
applying rules block: and var:

1 I I A
(T1 > €e1,...Ti €iy...Tn > €n,2 > T;)
1 A I B
= (T1 7 €1,...T; ¥ €;,...Tn > €n,Z — T;)
B A
=" (H,z = x;,Ti = v)

= (H' 25 %) O
Finally, the proof of Proposition 12.3 is as follows:

Proor. By Lemma .1,if[e]g, .. . . 3, 7L there
is an m such that Nl[e]]l‘al-(zi'_)/\f[[ei]]gl)i":l(Sm k) # L.

Thus by lemma .2 we have:

(mli—)el...zni—)en,zé)e) =" (H,z — )

as required. O



