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ABSTRACTWe present an operational semanti
s for parallel lazy eval-uation that a

urately models the parallel behaviour of thenon-stri
t parallel fun
tional language GpH. Parallelism ismodelled syn
hronously, that is, single redu
tions are 
ar-ried out separately then 
ombined before pro
eeding to thenext set of redu
tions. Consequently the semanti
s has twolevels, with transition rules for individual threads at onelevel and 
ombining rules at the other. Ea
h parallel threadis modelled by a binding labelled with an indi
ation of itsa
tivity status. To the best of our knowledge this is the �rstsemanti
s that models su
h thread states. A set of labelledbindings 
orresponds to a heap and is used to model sharing.The semanti
s is set at a higher level of abstra
tion thanan abstra
t ma
hine and is therefore more manageable forproofs about programs rather than implementations. At thesame time, it is suÆ
iently low level to allow us to reasonabout programs in terms of parallelism (i.e. the number ofpro
essors used) as well as work and run-time with di�erentnumbers of pro
essors.The framework used by the semanti
s is suÆ
iently 
exibleand general that it 
an easily be adapted to express otherevaluation models su
h as sequential 
all-by-need, spe
ula-tive evaluation, non-deterministi
 
hoi
e and others.
1. INTRODUCTIONThis paper des
ribes a new operational semanti
s that 
ap-tures the 
all-by-need evaluation of a parallel extension tothe �-
al
ulus. We use the term 
all-by-need synonymouslywith lazy evaluation, that is, normal order redu
tion to weakhead normal form (whnf) with subexpression sharing. Theextended �-
al
ulus language used in this paper,GpH-
ore,models Glasgow Parallel Haskell [35℄, an established paral-lel derivative of the non-stri
t purely fun
tional languageHaskell. Parallelism is provided in both GpH and GpH-
ore in a mostly-impli
it way, by using the annotation parto express parallel 
omposition while leaving thread man-
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agement to the run-time system. Note that par is only ahint of what to 
ompute in parallel; it does not a�e
t thevalue of expressions.The semanti
s presented is expli
it in des
ribing the waythreads are managed and stored. Therefore, the semanti
sallows us to reason a

urately about the behaviour of paral-lel fun
tional programs in terms of 
oordination (i.e. how the
omputation is arranged in parallel) as well as 
omputation(i.e. what value to 
ompute).A parallel 
all-by-need semanti
s is important for theoreti-
al reasons but there are also several pra
ti
al appli
ations.For example, it provides a basis for applying equational rea-soning to the parallel behaviour (or 
oordination) of parallelfun
tional programs. For instan
e, it allows us to show prop-erties su
h as: program X uses more pro
essors than programY; program X uses more spa
e than program Y; and programX runs faster than program Y. Being able to reason aboutthese properties 
an be useful for the programmer and 
om-piler writer alike. For the programmer, they will be ableto understand and improve the behaviour of their programsmore easily. For the 
ompiler writer, optimising transfor-mations [13℄ and the veri�
ation of 
ompiler models su
h asabstra
t ma
hines and simulators 
an be justi�ed.The parallel 
all-by-need semanti
s presented here is a sub-stantial development of earlier work [17℄ that gave a seman-ti
s of the same language but with the spe
ulative evalua-tion of expressions in an undetermined order. The semanti
spresented here has the following key features:� Name/expression bindings are used to model 
losures,whi
h in turn are used to model threads. The bindingsare labelled to model the GpH thread states: ina
tive,blo
ked, runnable and a
tive.� A heap of bindings is used to model spa
e-usage, shar-ing and parallelism (i.e. pro
essor usage 
an be quan-ti�ed).� The semanti
s is parameterised on the number of pro-
essors N, so we 
an readily model the behaviour ofprograms under di�ering resour
e assumptions.� It is stru
tured and therefore relatively 
onvenient touse for proving both 
omputational and 
oordinationalproperties of programs. The simpli
ity arises be
auseit models parallelism syn
hronously and the rules are



at two levels: single thread transitions at one level andmulti thread relations at the other level.� It 
aptures the thread behaviour and evaluation orderof an existing parallel fun
tional language implemen-tation, GpH.� The underlying idea of labelling heap bindings withtheir a
tivity status is suÆ
iently 
exible and powerfulto des
ribe a variety of other models of parallel lazyevaluation. See [19℄ for example.In Se
tions 2{10 we des
ribe the framework of our opera-tional semanti
 te
hnique and develop a spe
i�
ation of the
omputation and 
oordination behaviour of GpH. In Se
-tion 12 we relate our semanti
s to a standard denotationalsemanti
s for sequential lazy evaluation and prove a deter-mina
y result. We examine several alternative models ofparallel lazy evaluation to demonstrate the 
exibility andgenerality of our approa
h in Se
tion 13. In Se
tion 14 wede�ne some standard metri
s of parallelism in terms of oursemanti
s. We 
on
lude by dis
ussing related work in Se
-tion 15 and our future plans in Se
tion 16.
2. MODELLING PARALLELISMThe operational semanti
s we present is a two-level transi-tion semanti
s. At the lower level, there are single-threadtransitions for performing the ordinary evaluation of expres-sions (�-redu
tion and the like). All 
andidate single-threadsteps are 
arried out simultaneously (
on
eptually on sepa-rate pro
essors) and in lo
kstep. They are then 
ombinedinto a parallel 
omputation step using 
oordination relationsde�ned at the upper level.We follow Laun
hbury's seminal work [21℄ by using a heapto allow sharing and a restri
ted language to avoid the 
om-pli
ations of 
reating 
losures in the semanti
s. The re-stri
ted language ensures that every 
losure is provided witha `name' (a variable) by some 
orresponding let-binding.Our semanti
s is set at a lower level of abstra
tion thanLaun
hbury's sin
e we use a small-step 
omputational se-manti
s rather than a big-step natural semanti
s. This isthe typi
al approa
h for modelling parallelism [18℄ sin
e itallows us to more dire
tly represent the 
oordination of mul-tiple separate a
tions.Nevertheless, our semanti
s is at a higher level than an ab-stra
t ma
hine [4℄, thus avoiding the need for sta
ks, blo
k-ing queues and su
h like.
3. THE LANGUAGEGpH-
ore is a simple subset of the language GpH. It 
on-sists of the untyped �-
al
ulus extended with numbers, re-
ursive lets, a form of sequential 
omposition seq and aform of parallel 
omposition par. Sin
e [21℄, it has be
ome
ommon pra
ti
e to normalise the language to a restri
tedsyntax. The normalised terms di�er from their 
orrespond-ing terms in GpH in two ways: all variables are distin
t;and the se
ond argument of appli
ation and the �rst ar-gument of par must be variables. In fa
t, the normalisedterms 
orrespond to the internal 
ore language that is usedin the implementation of GpH. The pro
ess of normalisa-tion is straightforward by introdu
ing new let-bindings; for

example, an algorithm is given in [17℄.x; y; z 2 Variablen 2 Numbere 2 Expressione ::= n j x j e x j �x:e j let fxi = eigni=1 in ej e1 seq e2 j x par eNumbers are unne
essary but are in
luded to make exampleseasier to follow. No extra rules are needed in the semanti
sto deal with numbers. In our semanti
s only 
losed termswill be 
onsidered, that is, programs 
ontain no free vari-ables. Constru
tors and 
ase expressions are also a standardpart of the GpH language but are not in
luded here. Theyare unimportant to our 
entral 
on
ern with parallelism.
3.1 Parallel and sequential compositionGpH-
ore and GpH express parallel 
oordination using the
ombinators par (for parallel 
omposition) and seq (for se-quential 
omposition). These 
ombinators are de�ned asfollows: e1 seq e2 = (?; if e1 = ?e2; otherwisee1 par e2 = e2The operational behaviour of seq is to redu
e e1 to weakhead normal form before returning e2, thus enfor
ing anevaluation order. The termination properties of a program
an therefore be 
hanged by using seq, in 
ontrast to parwhi
h has no a�e
t on termination properties. The oper-ational behaviour of par is to pro
eed with the evaluationof e2 and if a separate pro
essor is available, to evaluate e1simultaneously. The idea of the par 
ombinator is not new;its invention is attributed to John Hughes.1It is important to note that par will evaluate e1 to whnf andno further. Hen
e the need for seq whi
h is often used tofor
e the evaluation of data stru
tures to normal form. Forexample, if xs and ys are two lists then xs par ys will notevaluate the two lists in parallel with 
all-by-need evalua-tion be
ause they are in whnf. Using seq, however, a fun
-tion seqList 
an be de�ned that for
es the evaluation of thestru
ture of a list. Hen
e, to redu
e the two lists in paralleland return them we 
an use (seqList xs par seqList ys) seq(xs; ys). Trinder et al. [34℄ o�er a mu
h more detailed ex-position of the use of par and seq.
4. HEAPS AND LABELLED BINDINGSFollowing [21℄ we use a heap of bindings of expressions tovariables, but for our purposes ea
h binding also 
arries alabel to indi
ate its state of a
tivity. Thus, heaps are partialfun
tions from variables to expression/thread-state pairs:H;K 2 Heap = Variable Æ! (Expression; State)�; � 2 State� ::= Ina
tive j Runnable j A
tive j Blo
kedWe write individual bindings with the thread state appear-ing as an annotation on the binding arrow, thus:x �7! e1Personal 
ommuni
ation: Dave Sands.



H : z A7! let fxi = eigni=1 in e �! (fxi I7! eigni=1; z A7! e) (let)(H;x I7! v) : z A7! x �! (z A7! v̂) (var)(H;x I7! e) : z A7! x �! (x R7! e; z B7! x) (blo
k1)(H;x RAB7! e) : z A7! x �! (z B7! x) (blo
k2)H : z A7! z �! (z B7! z) (bla
khole)H : z A7! (�y:e) x �! (z A7! e[x=y℄) (subst)H : z A7! e �! (K; z �7! e0)H : z A7! e x �! (K; z �7! e0 x) (app)H : z A7! v seq e �! (z A7! e) (seq-elim)H : z A7! e1 �! (K; z �7! e01)H : z A7! e1 seq e2 �! (K; z �7! e01 seq e2) (seq)(H;x RAB7! e1) : z A7! x par e2 �! (z A7! e2) (par-elim)(H; x I7! e1) : z A7! x par e2 �! (x R7! e1; z A7! e2) (par)Figure 1: Single thread transition rulesThe binding state is usually abbreviated to the �rst letter,I, R, A, or B. A binding is A
tive if it is 
urrently beingevaluated; it is Blo
ked if it is waiting for the evaluationof another binding before its evaluation 
an pro
eed; andit is Runnable if there are not enough resour
es 
urrentlyavailable to evaluate it. All other bindings are Ina
tive, thatis, they have not yet been initiated or they have �nishedbeing evaluated. A heap 
annot 
ontain multiple bindingsfor the same identi�er.The idea of labelling bindings with an indi
ation of theirstate of a
tivity is surprisingly powerful and general, allow-ing us to model a variety of parallel evaluation strategies aswe demonstrate in Se
tion 13. However, our main interestis in des
ribing GpH so that will remain our primary fo
usfor now.Bindings 
orrespond to heap 
losures and in our semanti
slabelled bindings 
orrespond to threads. In the run-timesystem for GpH [35℄ only 
losures that are not ina
tive 
or-respond to threads. GpH also uses other thread states su
has fet
hing, whi
h is the 
ommuni
ation state. It is useful tobe able to model 
ommuni
ation, but it is not as importantfor GpH as it is for many other languages. Our semanti
sattributes no 
ost to 
ommuni
ation, so an idealised ar
hi-te
ture is modelled. Some pro�ling simulators for GpH, forexample HBC-PP [32℄ and GranSim-Light [22℄, also modelsu
h an idealised ma
hine and they have proven to give use-ful information.The 
omputational semanti
s is given as a relation on heapsH =) H 0 whi
h is in turn de�ned in terms of a notion ofsingle thread transitions (Se
tion 5) and a s
heduling rela-tion (Se
tion 7).

The operational semanti
s des
ribes a redu
tion sequen
efrom an initial global 
on�guration to a �nal global 
on�g-uration: (H;main A7! e) =) : : : =) (H 0;main I7! v)where main is always used as the program identi�er. Hen
e,a program terminates as soon as main rea
hes a value v,irrespe
tive of other bindings. Values v are whnf expressionsin GpH-
ore, that is:v ::= n j �x:e
5. SINGLE THREAD TRANSITIONSThe transition fun
tion �! de�ned in Figure 1 des
ribesthe 
omputational step taken by ea
h a
tive binding in theheap. The left hand side in ea
h rule represents a heap withthe parti
ular a
tive binding distinguished:H : z A7! eSeveral of the rules depend on other bindings in the heap(for example, the blo
ki rules) so we also use the notation(H;x �7! e) to partition the heap, separating x �7! e from theother bindings in H. Multi-label bindings, su
h as x RAB7! ein the blo
k2 rule mean that the state is one of R;A or Bbut not I.The right hand sides of the rules in Figure 1 is a heap inthe sense that it is a set of labelled bindings but it 
onsistsof only those bindings that are 
hanged or 
reated by that
omputation step. The 
hanges for all a
tive bindings are
ombined by the parallel rule (Se
tion 6) to 
reate a fullheap to heap transition.



Let: The let rule populates the heap with new bindings.These bindings are ina
tive sin
e under 
all-by-need theymay not ne
essarily be evaluated.Variables and blo
king: In the var and blo
ki rules thedistinguished binding z A7! x represents the situation of eval-uating a 
losure (
alled z) whi
h 
onsists of a pointer to an-other 
losure (
alled x). If x has already been evaluated towhnf as in the var rule, then z simply re
eives that value.The notation v̂ signi�es a renaming of all bound variablesin v to fresh variable names. The var rule is the only pla
ewhere names are dupli
ated. As Laun
hbury proves [21℄,this is suÆ
ient to avoid all unwanted name 
lashes. An al-ternative suggested by Sestoft [33℄ is to rename bound vari-ables at the time that let bindings are added to the heap.Sestoft's approa
h is preferred for abstra
t ma
hines [4℄ butLaun
hbury's notation is more parsimonious and adequatefor our present purposes.If x is ina
tive and has not yet been evaluated, as in theblo
k1 rule, then z blo
ks at this point and x joins the pool ofrunnable bindings, possibly to be a
tivated by the s
hedul-ing relation. If x is already a
tive, runnable or blo
ked asin blo
k2 then z blo
ks but x is una�e
ted.Bla
k holes: Dis
ussion of the bla
khole rule is deferred toSe
tion 10.Appli
ation: Non-stri
t evaluation of e1 e2 pro
eeds by re-du
ing e1 to an abstra
tion (app rule) and then substitutingthe argument x for the bound variable y (subst).Seq: The seq rule pro
eeds to evaluate e1 in the expressione1 seq e2 but makes no progress on e2. When and if e1rea
hes whnf its value (but not the e�e
t on the heap) isdis
arded by the seq-elim rule and evaluation pro
eeds toe2.Par: In GpH the only way to introdu
e parallelism is byusing par and this is re
e
ted in the semanti
s by the parrule. Noti
e that it does not 
reate more parallelism imme-diately but instead suggests that a binding should be madea
tive by putting it into a Runnable state whi
h may be pro-moted to A
tive later. This promotion 
an happen in thes
heduling phase (Se
tion 7) but only if suÆ
ient pro
ess-ing resour
es are available. This 
orresponds to GpH wherepar is thought of as a hint of what to parallelise, ratherthan a 
ommand. If the binding is already a
tive, runnableor blo
ked there is no more to do (par-elim).
6. MULTI-THREAD TRANSITIONSA
tive bindings are delegated for single thread steps by thefollowing parallel 
omputation rule. This is the key point inthe semanti
s where redu
tions are 
arried out in parallel.The rule also melds together all the new bindings, updatingthe heap a

ordingly (Figure 2).We write HA to represent all the a
tive bindings in H. Morepre
isely: HA = fx A7! e 2 HgHen
e in Figure 2 there are exa
tly n a
tive bindings in H.

HA = fxi A7! ei gni=1 fH : xi A7! ei �! Kigni=1H p=) H[Sni=1Ki℄ (parallel)Figure 2: Combining multiple thread transitionsThe notation H[K℄ updates the heap H with all the newor 
hanged bindings given by K. More pre
isely, it 
an bede�ned as follows:H[K℄ = fx �7! e 2 H j x 62 dom(K) g [KBy taking the union of all the Ki in the parallel rule thereappears to be the potential for 
on
i
ts to arise betweenbindings. What if x B7! e 2 K1 and x A7! e0 2 K2, forexample? The following proposition demonstrates that forthe single thread rules de�ned in Figure 1, no su
h 
on
i
t
an arise.Proposition 6.1. Given (H1; z1 A7! e1) = (H2; z2 A7! e2)where z1 6= z2.If H1 : z1 A7! e1 �! K1 and H2 : z2 A7! e2 �! K2 then:� if x IAB7! e 2 K1 then x 62 dom(K2)� if x R7! e 2 K1 then either x 62 dom(K2) or x R7! e 2 K2Proof. By indu
tion on e1 and e2 and the synta
ti
 re-stri
tion that all variables are distin
t (Se
tion 3).
7. THE SCHEDULING RELATIONAs well as the 
omputational steps de�ned so far, we alsoneed to des
ribe the 
oordination aspe
ts of the language.In parti
ular we need to give the semanti
s of the s
hedulingphase of the evaluation. The s
heduling a
tions for individ-ual threads are de�ned in Figure 3 as follows:� Any binding that is immediately blo
ked on a 
om-pleting thread is made runnable (unblo
k);� An a
tive or runnable binding that is in whnf is madeina
tive be
ause its evaluation is done (dea
tivate);� As many runnable bindings as resour
es will allow arepromoted to being a
tive (a
tivate).(H; x RA7! v; z B7! ex) u�! (H; x RA7! v; z R7! ex) (unblo
k)(H;x RA7! v) d�! (H;x I7! v) (dea
tivate)jHAj < N(H;x R7! e) a�! (H;x A7! e) (a
tivate)Figure 3: Single thread s
heduling rulesThe notation ex represents an expression that is immediatelyblo
ked on x. In our language these 
an only take threeforms: ex ::= x j x y j x seq e0



In the a
tivate rule in Figure 3, N is a parameter to thesemanti
s, indi
ating the total number of pro
essors. Hen
ewe require that no more than N bindings are a
tivated.Note that nowhere in these rules is it spe
i�ed whi
h bind-ings are a
tivated. The a
tivation phase presents a non-deterministi
 
hoi
e. Nevertheless, the non-deterministi

hoi
e is at the 
oordination level and does not 
hange thevalue 
omputed.The rules in Figure 3 only a�e
t single bindings. We need tounblo
k and dea
tivate all 
andidate threads and to a
tivateas many as possible. To that end we make the de�nitionsin Figure 4. In e�e
t, the rules in Figure 4 de�ne y=) to bethe normal form relations built upon y�!.H y=) H 0 if:1. H y�!� H 0 and2. there is no H 00 su
h that H 0 y�! H 00.(y is u or d or a.)Figure 4: Component s
heduling relationsNote that a=) is the only `true' relation; u=); d=); p=) areall fun
tions. In other words the only non-determinism thatexists is in the 
hoi
e of whi
h threads from the runnablepool are a
tivated.S
heduling promotes runnable bindings into an a
tive stateif there are suÆ
ient pro
essors and demotes a
tive evalu-ated expressions to an ina
tive state. To a
hieve maximumparallelism with respe
t to the number of pro
essors it isne
essary that all 
andidate threads are unblo
ked beforedea
tivation and that dea
tivation takes pla
e before a
ti-vation to free up as many pro
essors as possible. This se-quen
e of a
tions is 
aptured by the full s
heduling relationde�ned in Figure 5.s=) = a=) Æ d=) Æ u=) (s
hedule)Figure 5: Complete s
heduling relation
8. THE COMPUTATION RELATIONFinally the full 
omputation relation of our semanti
s 
on-sists of a parallel transition p=) followed by a s
heduling ofbindings s=), as in Figure 6. This ordering ensures thatheaps appearing in a redu
tion sequen
e are always fullys
heduled. A brief example is given in Se
tion 11.=) = s=) Æ p=) (
ompute)Figure 6: Computation relationSin
e the semanti
s is parameterised on the number of pro-
essors, we de
orate the 
omputation relation with the num-ber of pro
essors where ne
essary: =)N . In parti
ular we willuse =)1 to indi
ate the single-pro
essor 
ase.

9. PROMOTING THE MAIN THREADA 
onsequen
e of the present de�nition of a=) is that themain thread may be left runnable but never progress. Sup-pose main blo
ks on some variable z by one of the blo
kingrules in Figure 1 and z is promoted to a runnable state. Ifthe pool of runnable threads is larger than the number ofavailable pro
essors then there is no guarantee that z willbe made a
tive under the present s
hedule relation. It ispossible that the main thread 
ould thus be delayed or sus-pended inde�nitely, if there is a 
onstant supply of unneededspe
ulative threads being generated and s
heduled in pla
eof the main thread.Yet, a

ording to the designers of GpH, their implementa-tion makes no assuran
e that a binding that main needshas priority over other bindings when de
iding whi
h onesto promote to an a
tive state. While their early papers warnpotential users that the run-time system o�ers little supportfor spe
ulative evaluation [35℄, it nevertheless seems desir-able for bindings required by the main thread to remaina
tive whenever possible sin
e that is the thread that deliv-ers the �nal result. There may be no harm in suspending themain thread but there surely 
an be no advantage either.We 
an model a solution to this `defe
t' by modifying thea
tivation relation a=) as in Figure 7 to require that anyrunnable thread on whi
h main is blo
ked, in a transitivesense made pre
ise by the fun
tion req , is a
tivated in pref-eren
e to any other runnable thread. We 
an be sure thatthere will always be a free pro
essor in this 
ir
umstan
ebe
ause the blo
king a
tion has made one available.H a0=) H 0 if:1. H a�!� H 0;2. there is no H 00 su
h that H 0 a�! H 00 and3. req(main; H 0) is a
tive in H 0.req(x;K) = (x; if x RA7! e 2 Kreq(y;K); if x B7! ey 2 KFigure 7: Stronger a
tivation relation
10. BLACK HOLESBla
k holes are 
ertain dete
table in�nite loops, su
h as:let x = x in xlet x = y; y = z; z = x in xInGpH, as well as sequential Haskell implementations, bla
kholes are dete
ted and re
ognised as worthless 
omputation.It is at least desirable that our semanti
s should re
e
t thistreatment. Taking the simplest 
ase of dire
t self-referen
e,we have:(H; z A7! let x = x in x) =) (H 0; x I7! x; z A7! x)=) (H 0; x A7! x; z B7! x)Without the bla
khole rule of Figure 1 we 
an go no furtherbe
ause there is no single thread rule that applies to an



fmain A7! let f = �x:x; g = (let a = 3 in f a) in g par (f g) g=) f f I7! �x:x; g I7! let a = 3 in f a;main A7! g par (f g) g (let)p=) f f I7! �x:x; g R7! let a = 3 in f a;main A7! f g g (par)s=) f f I7! �x:x; g A7! let a = 3 in f a;main A7! f g g=) f f I7! �x:x; a I7! 3; g A7! f a;main A7! (�x:x) g g (let, app(var))=) f f I7! �x:x; a I7! 3; g A7! (�x:x) a;main A7! g g (app(var), subst)=) f f I7! �x:x; a I7! 3; g A7! a;main B7! g g (subst, blo
k2)p=) f f I7! �x:x; a I7! 3; g A7! 3;main I7! g g (var)u=) f f I7! �x:x; a I7! 3; g A7! 3;main R7! g gd=) f f I7! �x:x; a I7! 3; g I7! 3;main R7! g ga=) f f I7! �x:x; a I7! 3; g I7! 3;main A7! g g=) f f I7! �x:x; a I7! 3; g I7! 3;main I7! 3 g (var)Figure 8: Example redu
tiona
tive thread like x A7! x and the parallel rule fails sin
e itrequires all a
tive bindings to progress. In general that isnot what we want be
ause other threads may still be doinguseful work towards the �nal result. The bla
khole rule dealswith this situation by 
onverting x A7! x to blo
ked x B7! xand thereby releases its pro
essor for other useful evaluation.This behaviour 
orresponds to the implementation of GpH.Cy
les su
h as let x = y; y = x in x that lead to bla
k holesalso be
ome blo
ked in our semanti
s, but without the needfor a spe
ial rule:(H; z A7! let x = y; y = x in x)=)(H 0; x I7! y; y I7! x; z A7! x)=)(H 0; x A7! x; y I7! x; z B7! x)=)(H 0; x B7! x; y A7! x; z B7! x)p=)(H 0; x B7! x; y B7! x; z B7! x)If the main thread depends on a bla
k hole and we requireit to remain a
tive as des
ribed in Se
tion 9 then we wouldexpe
t the 
omputation to halt. In su
h a 
ase req(main; H)is unde�ned so the a0=) step fails. In other words, (H a0=))is empty and hen
e so is (H =)).
11. AN EXAMPLETo demonstrate the operational semanti
s in a
tion we showin Figure 8 the redu
tion sequen
e with at least two pro
es-sors for the following program:main = let f = �x:xg = let a = 3 in f ain g par (f g)Note that most steps in Figure 8 are expressed in termsof the full 
ompute relation but in some interesting 
aseswe separate the parallel and s
hedule steps. Underlines areused to emphasise the a
tive bindings. As intended, f and g

evaluate in parallel. Note that this is the only redu
tion se-quen
e, provided there are at least two pro
essors. However,di�erent redu
tion sequen
es 
an arise when the number ofsparked threads ex
eeds the number of available pro
essors.
12. PROPERTIES OF THE SEMANTICSAbramsky's denotational semanti
s of lazy evaluation [1℄models fun
tions by a lifted fun
tion spa
e, thus distinguish-ing between a term 
 (a non-terminating 
omputation) and�x:
 to re
e
t the fa
t that redu
tion is to weak head nor-mal form rather than head normal form. This is a widely-used, simple and abstra
t semanti
s. The properties andresults developed in this se
tion are expressed relative tothis denotational semanti
s.Laun
hbury [21℄ shows a number of results relating his natu-ral semanti
s of lazy evaluation to Abramsky's denotationalsemanti
s. We borrow mu
h of his notation and several ofour proofs are inspired by his. In earlier work [5℄ we showedthat the 1-pro
essor 
ase of our semanti
s 
orresponds toLaun
hbury's.There are three main properties that we expe
t of our se-manti
s: soundness: the 
omputation relation preserves themeanings of terms; adequa
y : evaluations terminate if andonly if their denotation is not ?; determina
y : the sameresult is always obtained, irrespe
tive of the number of pro-
essors and irrespe
tive of whi
h runnable threads are 
ho-sen for a
tivation during the 
omputation. The determina
yresult will only hold if the s
heduling phase uses the a0=) re-lation whi
h guarantees that the binding on whi
h the mainthread is blo
ked remains a
tive, as dis
ussed in Se
tion 9.The denotational semanti
s of our language is given in Fig-ure 9. The Val domain is assumed to 
ontain a lifted versionof its own fun
tion spa
e. The lifting inje
tion is lift and the
orresponding proje
tion is drop.



� 2 Env = Var! Val[[�x:e℄℄� = lift ��:[[e℄℄�[x7!�℄[[e x℄℄� = drop([[e℄℄�)([[x℄℄�)[[x℄℄� = �(x)[[let fxi = eigni=1 in e℄℄� = [[e℄℄ffx1 7!e1:::xn 7!engg�[[e1 seq e2℄℄� = (? if [[e1℄℄� = ?[[e2℄℄� otherwise[[x par e℄℄� = [[e℄℄�Figure 9: Denotational semanti
sThe semanti
 fun
tion:[[: : :℄℄ : Exp! Env! Valnaturally extends to operate on heaps, the operational 
oun-terpart of environments:ff: : :gg : Heap! Env! EnvThe re
ursive nature of heaps is re
e
ted by a re
ursivelyde�ned environment:ffx1 7! e1 : : : xn 7! engg� =��0:�[x1 7! [[e1℄℄�0 : : : xn 7! [[en℄℄�0 ℄We also require an ordering on environments: if � � �0 then�0 may bind more variables than � but they are otherwiseequal. That is:8x : �(x) 6= ? ) �(x) = �0(x)The arid environment �0 takes all variables to ?.Soundness. Our 
omputational relation H =) H 0 
anbe 
onsidered sound with respe
t to the the denotationalsemanti
s in Figure 9 if the denotations of all the bindingsin H are un
hanged in H 0. The � ordering on environmentsneatly 
aptures this notion.Proposition 12.1. IfH =) H 0 then for all �, ffHgg� �ffH 0gg�.Proof. By indu
tion on the size of H and on the stru
-ture of expressions.Adequa
y. We wish to 
hara
terise the termination prop-erties of our semanti
s and Propositions 12.2 and 12.3 showan agreement with the denotational de�nition. The proofsare modelled on the 
orresponding ones in [21℄.Proposition 12.2. If (H; z A7! e) =)� (H 0; z I7! v) then[[e℄℄ffHgg� 6= ?.Proof. For all values v, [[v℄℄ffH0gg� 6= ? so by Prop.12.1[[e℄℄ffHgg� 6= ?.Proposition 12.3. If [[e℄℄ffHgg� 6= ?, there exists H 0; z; vsu
h that (H; z A7! e) =)� (H 0; z I7! v).

A proof of Proposition 12.3 is outlined in a appendix. Itis 
losely based on the 
orresponding proof in [21℄, workingwith a variant of the denotational semanti
s whi
h is expli
itabout �nite approximations.Determina
y. We now turn to the question of obtainingthe same result irrespe
tive of the number of pro
essors andirrespe
tive of whi
h runnable threads are 
hosen for a
-tivation during the 
omputation. Clearly, sin
e the resultsabove hold for any number of pro
essors it follows that if anevaluation with N pro
essors gives main a value then, de-pending on whi
h threads are a
tivated, an evaluation withM pro
essors 
an give the same result in the sense of Propo-sition 12.1.Without the side 
ondition dis
ussed in Se
tion 9 that is thebest that 
an be expe
ted | otherwise in general it is pos-sible for main to remain blo
ked inde�nitely. With the side
ondition, we want to demonstrate that if any evaluationgives an answer for main then they all do, irrespe
tive of thenumber of pro
essors. For the 1-pro
essor 
ase, it is 
learthat the de�nition of a0=) in Se
tion 9 ensures that thereis always exa
tly one a
tive binding and that the blo
kedbindings form a 
hain from main to that a
tive binding.The following proposition demonstrates that all the 
losuresa
tivated in the one pro
essor 
ase will also be a
tivated inthe multi-pro
essor 
ase. Re
all that =)N is the 
omputationrelation assuming a maximum of N pro
essors.Proposition 12.4. Given N � 1 pro
essors, suppose(H;main A7! e) =)1 H1 =)1 H2 : : : and(H;main A7! e) =)N K1 =)N K2 : : :If x is a
tive in some Hi then there is a j su
h that x isa
tive in Kj.
Proof. Suppose zk is a
tive in some Hi. By a0=) thereis a 
hain main B7! ez1 ; z1 B7! ez2 ; z2 B7! ez3 ; : : : zk A7! e in Hi.By indu
tion on the length k of this 
hain we 
an show thatthere must be some Kj where zk is a
tive in Kj .

Finally we 
an bring all these results to bear to prove thatevaluation is deterministi
 in the sense that we get the sameanswer every time, for any number of pro
essors, assumingthe a0=) a
tivation relation.



Corollary 12.5. For any number of pro
essors N � 1,if (H;main A7! e) =)1 � (H 0;main I7! v) and(H;main A7! e) =)N K1 =)N K2 : : : then:1. there is some i � 1 su
h that Ki = (K0i;main I7! v0);2. [[v0℄℄ffK0igg�0 = [[v℄℄ffH0gg�0Proof. 1. If there is no su
h Ki then main must re-main a
tive or blo
ked forever. In either 
ase theremust be some binding z A7! e that remains a
tive anddoes not terminate. In that 
ase the denotation of ein the 
ontext of the 
orresponding heap must be ?by Prop.12.3. But by Prop.12.4 at some stage in the1-pro
essor evaluation z will be a
tive and main willbe (transitively) blo
ked on z. By Prop.12.2 e will notrea
h a whnf so main will remain blo
ked. (Unlessmain = z in whi
h 
ase the result follows immedi-ately.)2. ffH;main A7! egg�0 � ffH 0;main I7! vgg�0 by Prop.12.1,so in parti
ular [[v℄℄ffH0gg�0 = [[e℄℄ffHgg�0 .Similarly, [[v0℄℄ffK0igg�0 = [[e℄℄ffHgg�0 .
13. OTHER EVALUATION STRATEGIESSo far we have 
on
entrated on a detailed treatment of thesemanti
s of a parti
ular parallel language, GpH, whi
h isthe fo
us of our broader 
urrent resear
h program. However,our 
entral framework of a heap of bindings labelled with anindi
ation of their a
tivity status is mu
h more general thanthat, allowing us to des
ribe various other models of parallelevaluation. There is insuÆ
ient spa
e for a full treatmenthere but we hope to give enough information that the reader
ould �ll in the details.
13.1 Sequential evaluationOur �rst example is not parallel at all but simply sequentiallazy evaluation. This 
an be a
hieved by just restri
ting the
omputation relation to the 
ase of a single pro
essor =)1but a number of simpli�
ations be
ome possible. First thereis no need for the notion of runnable bindings be
ause thereis always exa
tly one a
tive binding: req(main; H). In that
ase we 
an eliminate the s
heduling relation altogether byhaving the blo
k1 rule dire
tly a
tivate the ina
tive binding:(H; x I7! e) : z A7! x �! (z B7! x; x A7! e) (blo
k01)Of 
ourse there is also no need for the parallel rule. Fulldetails are given in [5℄. While there are other small-stepsemanti
s for lazy evaluation (e.g. [25℄) this one may be ofinterest for the fa
t that it dire
tly represents the passing of
ontrol between 
losures as they are evaluated.
13.2 Fully speculative evaluationFully spe
ulative evaluation is a 
ompletely impli
it approa
hwhere every appli
ation e1 e2 introdu
es parallelism by pro-
eeding to evaluate both e1 and e2 together [15℄. This 
aneasily be expressed in our framework by a modi�
ation to

the app rule:(H;x I7! v) : z A7! e �! (K; z �7! e0)(H; x I7! v) : z A7! e x �! (K; z �7! e0 x) (app1)(H;x I7! e2) : z A7! e1 x �! (x R7! e2; z A7! e1 x) (app2)(H;x RAB7! e2) : z A7! e1 �! (K; z �7! e01)(H;x RAB7! e2) : z A7! e1 x �! (K; z �7! e01 x) (app3)Thus if x is an ina
tive, unevaluated 
losure then it is maderunnable (app2). Otherwise the evaluation pro
eeds in afashion entirely analogous to Figure 1.
13.3 Non-deterministic choiceSo far we have 
on
entrated on languages that are determin-isti
 in the sense that the �nal result will always be the same(Corollary 12.5) but our framework 
an also des
ribe non-deterministi
 
hoi
e operators su
h as M
Carthy's amb [23,25℄. In general terms, to evaluate e1ambe2, evaluate e1 ande2 in parallel and a

ept the �rst to terminate as the result.The only real 
ompli
ation for our semanti
s is that if e1terminates we wish to dea
tivate e2 and all the threads thatit has spawned (and vi
e versa if e2 terminates �rst). Theapproa
h we take is to modify the unblo
king 
omponentof the s
heduling relation. First we give the single-threadtransition for amb:(H;x �7! e1; y �7! e2) : z A7! x amb y �!(x �07! e1; y �07! e2; z B7! x amb y) (amb)where �0 = (R if � = I� otherwise�0 is de�ned similarly. E�e
tively, z blo
ks and x and ybe
ome runnable unless they are already runnable, a
tiveor blo
ked.Now unblo
king an amb expression is spe
ial be
ause wewant to kill the other arm:(H;x RA7! v; z B7! x amb y) u�!((kill y H); x RA7! v; z B7! x) (unblo
kamb)There is a symmetri
al rule for y RA7! v. The kill y fun
tionsear
hes out all threads spawned by y and makes them ina
-tive. We do not give a de�nition here but simply note thatit has similarities to the fun
tion req de�ned in Se
tion 9, inthat it follows 
hains of blo
ked bindings.There is a slight 
ompli
ation however: it would be in
orre
tto make su
h a binding ina
tive in the 
ase where another,possibly mandatory, thread is also blo
ked on the same bind-ing. There is already suÆ
ient stru
ture and information inthe heap to 
orre
tly de�ne kill but it is mu
h easier if wealso re
ord at least the number of threads blo
ked on ea
hbinding (
f. [4℄ where we maintain expli
it blo
king queues).Then kill 
an 
he
k that there are no others blo
king on thebinding before making it ina
tive.



13.4 Controlled speculative evaluationAs mentioned in Se
tion 9, GpH does not provide mu
h sup-port for spe
ulative evaluation. Here we sket
h an extensionto the language to put some 
ontrol of spe
ulative evaluationin the hands of the programmer.The idea is to have a synta
ti
 variant of par, say sparwith the same denotational semanti
s as par but the run-time system (i.e. our s
hedule relation) is to give priority tonon-spe
ulative bindings (
reated by par) over spe
ulativebindings (
reated by spar). We 
an a
hieve this by havinganother label on bindings: Spe
ulative or Non-spe
ulative(
ontra
ted to S and N) as well as the a
tivity labels. Thereis not spa
e for all the details here but the S;N labels areintrodu
ed by spar and par respe
tively. For example:(H;x I7! e1) : z A7!� x spar e2 �! (z A7!� e2; x R7!S e1) (spar)where � is either S or N . The spe
ulation labels are passedon when blo
king o

urs but with N taking priority over Sin 
lashing 
ases.During a
tivation, if there are insuÆ
ient pro
essors to a
ti-vate all runnable bindings, enough spe
ulative a
tive bind-ings should be demoted to runnable to allow as many aspossible non-spe
ulative, runnable threads to be promotedto a
tive. The details are not parti
ularly diÆ
ult.A natural generalisation of this notion is to asso
iate a pri-ority with ea
h thread 
reated by par and the s
hedulersele
ts whi
h threads to a
tivate, based on this value [22℄.The framework outlined here 
an be modi�ed to handle thisapproa
h by repla
ing the S and N labels with a numeri
priority indi
ator.
14. METRICS OF PARALLELISMOne of the 
hief motivating fa
tors for developing our se-manti
s was to provide a means for formally 
omparing pro-grams in terms of time and parallelism. It turns out to bestraightforward to de�ne 
ommon metri
s for parallelism:work done, eÆ
ien
y and speedup (see [12℄ for the standardde�nitions) in terms of a redu
tion sequen
e. How realisti
is the operational semanti
s 
ompared with a real 
ompiler?Obviously our semanti
s is far removed from a real 
ompiler,that will have a highly optimised redu
tion engine and weshould not expe
t redu
tions in the semanti
s to 
omparepre
isely with 
ompiled 
ode. We do believe, however, thatour level of abstra
tion is su
h that we 
an draw 
on
lu-sions about parallelism and make reasonable 
omparisonsabout run-time. In fa
t, pro�ling simulators su
h as HBC-PP [32℄ are based on 
ounting similar redu
tions to those inour semanti
s and have proven to give useful performan
emeasurements.Definition 14.1 (Work and run-time). Given a re-du
tion sequen
e H0 =) H1 =) � � � =) HtN for a termi-nating program with N pro
essors, the total work done withrespe
t to N pro
essors is the total number of single threadtransitions: W (N) = tNXi=0 ???HAi ???

Run-time is simply given by:R(N) = tNDefinition 14.2 (Average parallelism). For an un-bounded number of pro
essors, the average parallelism is:Average parallelism = W (1)R(1)In pra
ti
e a de�nition parameterised on the number of pro-
essors 
an be more useful:P (N) = W (N)tNDefinition 14.3 (Maximum parallelism). Given anunbounded number of pro
essors, the maximum parallelismis the maximum number of a
tive pro
essors during evalua-tion: Maximum parallelism = max f???HAi ??? gt1i=0Or again we 
an take a

ount of the number of pro
essors:M(N) = maxf???HAi ??? gtNi=0For the example in Se
tion 11 with two or more pro
essorsthe work done is 10 and the run-time is 7 giving an averageparallelism of 1 37 . Using the same example with 1 pro
essorthe run-time in
reases to 10, so using extra pro
essors 
animprove the program's run-time.
15. RELATED WORKThere have been a variety of semanti
 des
riptions for 
all-by-need and 
all-by-name, for example [28, 20, 1, 31, 29, 3,3, 21, 25℄. This 
ontrasts with a relative s
ar
ity of semanti
des
riptions of parallel models. Parallel semanti
s of the �-
al
ulus have been explored with denotational semanti
s;for example Roe [31℄ de�nes a denotational semanti
s su
hthat operational 
osts of parallel 
omputations 
an be given.Greiner and Blello
h [15, 14℄ develop Roe's ideas furtherin a semanti
s that des
ribes a fully-spe
ulative redu
tionmodel for the �-
al
ulus. All of these semanti
s are useful forreasoning about di�erent redu
tion models of the �-
al
ulusbut none model a real parallel fun
tional language. A uniquefeature of our semanti
s is that it models the behaviour ofthreads during a parallel redu
tion sequen
e of a real parallelfun
tional language, namely GpH.Other parallel or 
on
urrent fun
tional languages that havea de�ned semanti
s in
lude NESL [8℄, Eden [10℄, pH [2℄,Con
urrent ML [30, 6℄, GoÆn [11℄ and S
heme [27℄. All ofthese languages are based on the �-
al
ulus but in
lude adi�erent set of language features to GpH. Eden and Con-
urrent ML have expli
it 
onstru
ts for 
on
urren
y. NESLprovides parallelism impli
itly by implementing several lan-guage primitives using nested data-parallelism. pH has syn-
hronisation, barriers and side-e�e
ts, all of whi
h requirespe
ial 
are in an operational semanti
s. GoÆn is builton Haskell by adding 
on
urrent 
onstraint 
ombinators toexpress 
oordination. The form of parallelism in GpH ismostly impli
it, whi
h makes it easier for the user to writeparallel programs than more expli
it languages. GpH is



more expressive than purely impli
it languages like NESL,be
ause in GpH 
ontrol parallelism as well as data paral-lelism 
an be expressed. There is no 
onsensus on the bestway of introdu
ing parallelism to fun
tional programminglanguages but the model des
ribed in this paper is used bya popular Haskell 
ompiler (GHC) and, as we have demon-strated, our framework extends to other parallel evaluationstrategies. In fa
t, a new operational semanti
s for Eden[19℄ is based on our semanti
 framework.
16. FURTHER WORKThere are many avenues to develop this work, beyond the
onsideration of other models of parallelism that we sur-veyed in Se
tion 13.
16.1 Extending the semanticsAdding 
ase, 
onstru
tors and primitives is simple and leftout of this paper be
ause they are not relevant to the dis-
ussion of parallelism. There are three main extensions tothe semanti
s that we are 
urrently 
onsidering: modellingspa
e, 
ommuni
ation and asyn
hronous redu
tion.Spa
e. Currently we have a simple model that essentiallyuses a monolithi
 heap for all the storage spa
e. This doesnot 
orrelate very well with typi
al parallel 
ompilers thatdistribute data a
ross pro
essors. For instan
e, GpH uses aseparate heap on ea
h pro
essor and 
ommuni
ates threadsbetween heaps. Others have worked on modelling spa
e eÆ-
iently in
luding Blumofe and Leiserson [9℄ and Blello
h etal. [7℄.Communi
ation. Another desirable extension is to model
ommuni
ation, whi
h again requires a more detailed treat-ment of heap spa
e, sin
e the essen
e of 
ommuni
ation is totransfer bindings between heaps on di�erent pro
essors. Thesemanti
s 
urrently allows us to reason about four threadstates (a
tive, ina
tive, runnable and blo
ked) but we wouldalso like to reason about other thread states su
h as fet
h-ing, whi
h is the 
ommuni
ation state. This is importantfor modelling the behaviour of a program on a real parallelar
hite
ture whose pro
essor topology may have an impa
ton a program's run-time. We have 
onsidered 
onstru
t-ing models where 
ommuni
ation laten
ies are modelled byusing `
lo
ks' (
ounters) on 
ompute steps.Asyn
hronous redu
tion. We would like to extend oursemanti
s to model the asyn
hronous redu
tion that is 
ar-ried out by the GpH run-time system. The 
lo
king me
ha-nism mentioned above for modelling 
ommuni
ation seemsto provide a simple me
hanism for modelling asyn
hronousbehaviour without adversely a�e
ting the simpli
ity of thepresent semanti
s.
16.2 Reasoning about parallel coordinationFun
tional languages are promoted as for being good forequational reasoning, so that properties of programs are eas-ily demonstrated by using familiar te
hniques. There is anabundan
e of work on equational reasoning about 
ompu-tation but very little on equational reasoning for parallel
oordination and 
omputation, perhaps be
ause it is mu
hmore diÆ
ult to reason about parallel programs. In Se
tion14 we des
ribed how programs 
an be 
ompared in terms of

time and parallelism. This 
an be used to develop a fam-ily of equivalen
es and 
ost orderings that have a knownbehaviour, shown formally using the semanti
s. For exam-ple, the following two expressions are equivalent in terms ofresour
e usage:x seq (y par z) (x seq y) par (x seq z):While we have used the semanti
s to demonstrate some sim-ple results, mu
h work remains to develop a family of ax-ioms for par and seq as well as higher-order 
ombinators.Re
ent work by Sands, Moran and Gustavsson [24, 16℄ onoperational te
hniques for 
all-by-need seems to hold somepromise.
16.3 Abstract machinesWork is in progress, using this semanti
s for developing anabstra
t ma
hine for lazy parallel graph redu
tion [4℄ justas Sestoft [33℄ did for Laun
hbury's sequential 
all-by-needsemanti
s and Moreau did for S
heme with futures [26℄. Wehave also written interpreters for our semanti
s [5℄ that allowus to analyse the behaviour of an expression automati
ally.The abstra
t ma
hine allows us to study more 
losely the be-haviour of a real 
ompiler and low-level features su
h as themanagement of blo
king queues [15℄ and garbage-
olle
tion[36℄. It should also be possible to use the semanti
s at thislevel to formally justify the behaviour of parallel simulatorssu
h as HBC-PP [32℄ and GranSim [22℄.
17. CONCLUSIONWe have developed an operational semanti
s for parallel lazyevaluation that models the language GpH. The semanti
suses the me
hanism of a heap of bindings labelled with anindi
ation of their a
tivity status, to model sharing and par-allel thread behaviour. The result is simpler than manyother attempts at a parallel semanti
s. We were also ableto show the 
orre
tness of our semanti
s with respe
t tostandard sequential 
all-by-need semanti
s.The te
hniques developed here are suÆ
iently powerful and
exible to des
ribe a wide variety of approa
hes to parallelevaluation, as we demonstrated with fully-spe
ulative evalu-ation, non-deterministi
 
hoi
e and programmer-
ontrolledspe
ulation. The 
exibility 
arries over to a 
lass of parallellazy abstra
t ma
hines we have derived from our semanti
framework.Developing the semanti
s has been su

essful in un
overingsubtleties in the real implementation. It is far easier toreason about behaviours su
h as prioritising main threadbindings, bla
k holes, unblo
king te
hniques and so on, atthis level of abstra
tion rather than in a real 
ompiler.
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APPENDIXThis appendix presents a more detailed outline of our proofof Proposition 12.3. It is derived dire
tly from Laun
hbury's
orresponding proof [21℄.We begin with a variant of the denotational semanti
s asshown in Figure 10, that allows us to expli
itly deal with�nite approximations. The new semanti
 fun
tion takes anextra argument representing a `resour
e'. The domain ofresour
es is the least solution of C = C? and we write thelifting inje
tion as S so the elements of C are ?; S?; SS? : : :with limit element !.The semanti
 fun
tion N takes a resour
e as an extra ar-gument and environments � : Var ! C ! Val now bindvariables to fun
tions whi
h take a resour
e and return avalue.The original semanti
s is equivalent to N , assuming unlim-ited resour
es:If 8x:� x = � x ! then [[e℄℄� = N [[e℄℄�!By the 
ontinuity of N , we have the following lemma:Lemma .1. If [[e℄℄� 6= ? then there is a natural number msu
h that N [[e℄℄�(Sm k) 6= ? where 8x:� x = � x !.

N [[e℄℄�? = ?N [[�x:e℄℄�(S k) = lift ��:N [[e℄℄�[x7!� ℄N [[e x℄℄�(S k) = drop(N [[e℄℄�k)(N [[x℄℄�k)N [[x℄℄�(S k) = � x kN [[let fxi = eigni=1 in e℄℄�(S k) = N [[e℄℄��0:�[xi 7!N [[ei℄℄�0 ℄ni=1kN [[e1 seq e2℄℄�(S k) = (? if N [[e1℄℄�k = ?N [[e2℄℄�k otherwiseN [[x par e℄℄� = N [[e℄℄�Figure 10: Resour
ed denotational semanti
sThe 
ore result relating the resour
ed semanti
s to our op-erational is the following:Lemma .2. If:N [[e℄℄��0:(x1 7!N [[e1℄℄�0 ;:::xn 7!N [[en℄℄�0 )(Sm?) 6= ?then there is a value v, a variable z and a heap H where:��0:(x1 7! N [[e1℄℄�0 ; : : : xn 7! N [[en℄℄�0) � ffHgg�0su
h that:(x1 I7! e1; : : : xn I7! en; z A7! e) =)� (H; z A7! v)Proof. By indu
tion on m. As an example of how theproof goes, 
onsider the 
ase e = xi.Let � = ��0:(x1 7! N [[e1℄℄�0 ; : : : xn 7! N [[en℄℄�0).If N [[xi℄℄�(S k) 6= ? then N [[ei℄℄�k 6= ?. By the indu
tivehypothesis we have:(x1 I7! e1; : : : xi A7! ei; : : : xn I7! en; z I7! xi)=)� (H; z I7! xi; xi A7! v)Using this fa
t, we 
an 
onstru
t the following relation byapplying rules blo
k1 and var :(x1 I7! e1; : : : xi I7! ei; : : : xn I7! en; z A7! xi)=) (x1 I7! e1; : : : xi A7! ei; : : : xn I7! en; z B7! xi)=)� (H; z B7! xi; xi A7! v)=) (H 0; z A7! v̂)Finally, the proof of Proposition 12.3 is as follows:Proof. By Lemma .1, if [[e℄℄ffx1 7!e1:::xn 7!engg�0 6= ?, thereis an m su
h that N [[e℄℄��0:(xi 7!N [[ei℄℄�0 )ni=1(Sm k) 6= ?.Thus by lemma .2 we have:(x1 7! e1 : : : xn 7! en; z A7! e) =)� (H; z I7! v)as required.


