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ABSTRACT
We present the results of the first four years of the European
research project SCIEnce (www.symbolic-computation.org),
which aims to provide key infrastructure for symbolic com-
putation research. A primary outcome of the project is that
we have developed a new way of combining computer algebra
systems using the Symbolic Computation Software Compos-
ability Protocol (SCSCP), in which both protocol messages
and data are encoded in the OpenMath format. We describe
SCSCP middleware and APIs, outline some implementations
for various Computer Algebra Systems (CAS), and show how
SCSCP-compliant components may be combined to solve sci-
entific problems that can not be solved within a single CAS,
or may be organised into a system for distributed parallel
computations.

Categories and Subject Descriptors
I.1 [Symbolic and Algebraic Manipulation]: Miscella-
neous

Keywords
OpenMath, SCSCP, interface, coordination, parallelism

1. INTRODUCTION
A key requirement in symbolic computation is to efficiently

combine computer algebra systems (CAS) to solve problems
that cannot be addressed by any single system. Addition-
ally, there is often a requirement to have CAS as a back-end
of mathematical databases and web or grid services, or to
combine multiple instances of the same or different CAS for
parallel computations.

There are many possible combinations. Examples include:
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GAP and Maple in CHEVIE for handling generic character
tables [21]; Maple and the PVS theorem prover to obtain
more reliable results [1]; GAP and nauty in GRAPE for
fast graph automorphisms [40]; and GAP as a service for
the ECLiPSe constraint programming system for symmetry-
breaking in search [22]. In all these cases, interfacing to a
CAS with the required functionality is far less work than
re-implementing the functionality in the “home” system.

Even within a single CAS, users may need to combine lo-
cal and remote instances for a number of reasons, including:
remote system features which are not supported in the lo-
cal operating system; a need to access large (and changing)
databases; remote access to the latest development version
or to the configuration at the home institution; licensing re-
strictions permitting only online services, etc. A common
quick solution is cut-and-paste from telnet sessions and web
browsers. It would, however, be more efficient and more flex-
ible to combine local and remote computations in a way such
that remotely obtained results will be plugged immediately
into the locally running CAS.

Moreover, individual CPUs have almost stopped increas-
ing in power, but are becoming more numerous. A typical
workstation now has 4-8 cores, and this is only a beginning.
If we want to solve larger problems in future, it will be essen-
tial to exploit multiple processors in a way that gives good
parallelism for minimal programmer/user effort.

CAS authors have inevitably started to face these issues,
and have addressed them in various ways. For example, a
CAS may write input files for another program and invoke
it; the other program then will write CAS input to a file
and exit; the CAS will read it and return a result. This
works, but has fairly serious limitations. A better setup
might allow the CAS to interact with other programs while
they run and provide a separate interface to each possible
external system. The SAGE system [39] is essentially built
around this approach. However, achieving this is a major
programming challenge, and an interface will be broken if
the other system changes its I/O format, for example.

The EU Framework 6 SCIEnce project “SCIEnce – Sym-
bolic Computation Infrastructure in Europe” is a major 5-
year project that brings together CAS developers and ex-
perts in computational algebra, OpenMath, and parallel com-
putations. It aims to design a common standard interface
that may be used for combining computer algebra systems



(and any other compatible software). Our vision is an easy,
robust and reliable way for users to create and consume
services implemented in any compatible systems, ranging
from generic services (e.g. evaluation of a string or an Open-
Math object) to specialised (e.g. lookup in the database;
executing certain procedure). We have developed a sim-
ple lightweight XML-based remote procedure call protocol
called SCSCP (Symbolic Computation Software Compos-
ability Protocol) in which both data and instructions are rep-
resented as OpenMath objects. SCSCP is now implemented
in several computer algebra systems (see Section 2.2 for an
overview) and has APIs making it easy to add SCSCP inter-
faces to more systems. Another important outcome of the
project is the development of middleware for parallel com-
putations, SymGrid-Par, which is capable of orchestrating
SCSCP-compliant systems into a heterogeneous system for
distributed parallel computations.

We will give an overview of these tools below. First we
briefly characterise the underpinning OpenMath data encod-
ing and the SCSCP protocol (Section 2). Then we outline
SCSCP interfaces in two different systems, one open source
and one commercial, and provide references for existing im-
plementations in other systems (Section 3). After that we
describe several examples that demonstrate the flexibility of
the SCSCP approach and some SCSCP specific features and
benefits (Section 4). We introduce several SCSCP-compliant
tools for parallel computations in various environments (Sec-
tion 5), before concluding (Section 6).

2. A COMPUTER ALGEBRA
LINGUA FRANCA

2.1 OpenMath
In order to connect different CAS it is necessary to speak

a common language, i.e., to agree on a common way of mar-
shaling mathematical semantics. Here, the obvious choice
was OpenMath [37], a well-established standard that has
been used in similar contexts. OpenMath is a very flexible
language built from only twelve language elements (integers,
doubles, variables, applications etc.). The entire semantics
is encapsulated in symbols which are defined in Content Dic-
tionaries (CDs) and are strictly separate from the language
itself. So, one finds the “normal” addition under the name
plus in the CD arith1. A large number of CDs is available at
the OpenMath website [37], such as polyd1 for the definition
and manipulation of multivariate polynomials, group4 for
cosets and conjugacy classes, etc. OpenMath was designed
to be efficiently used by computers, and may be represented
in several different encodings. The XML representation is
the most commonly used, but there exist also a binary rep-
resentation and a more human readable representation called
Popcorn [29]. In the current draft of MathML 3, an Open-
Math dialect (called Strict Content MathML) is used for the
semantics layer.

2.2 SCSCP
In order to actually perform communication between two

systems, it is necessary to fix a low-level communication pro-
tocol. The protocol developed in SCIEnce is called SCSCP.
SCSCP [15] is used both to link systems directly with each
other, and also as the foundation for more advanced cluster
and grid infrastructures (see Section 5). The advantage of
this approach is that any system that implements SCSCP

can immediately connect to all other systems that already
support it. This avoids the need for special cases and min-
imizes repeated effort. In addition, SCSCP allows remote
objects to be handled by reference so that clients may work
with objects of a type that do not exist in their own sys-
tem at all (see the example in Section 4.2). For example, to
represent the number of conjugacy classes of a group only
knowledge of integers is required, not knowledge of groups.
The SCSCP protocol (currently at version 1.3) is socket-
based. It uses port number 26133, as assigned by the Inter-
net Assigned Numbers Authority (IANA)), and XML-format
messages.

3. BUILDING BLOCKS
FOR CAS COMPOSITION

In this section, we briefly describe the implementation of
the SCSCP protocol for two systems: GAP [18] and MuPAD
[34]. The main aim of this section is to show that SCSCP
is a standard that may be implemented in different ways by
different CAS, taking into account their own design princi-
ples.

3.1 GAP
In the GAP system, support for OpenMath and SCSCP

is implemented in two GAP packages called OpenMath and
SCSCP, respectively. The OpenMath package [11] is an Open-
Math phrasebook for GAP: it converts OpenMath to GAP
and vice versa, and provides a framework that users may
extend with their private content dictionaries. The SCSCP

package [30] implements SCSCP, using the GAP OpenMath,
IO [35] and GAPDoc [32] packages. This allows GAP to run as
either an SCSCP server or client. The server may be started
interactively from the GAP session or as a GAP daemon.
When the server accepts a connection from the client, it
starts the “accept-evaluate-return” loop:

• accepts the "procedure_call" message and looks up
the appropriate GAP function (which should be de-
clared by the service provider as an SCSCP procedure);

• evaluates the result (or produces a side-effect);

• replies with a "procedure_completed" message or re-
turns an error in a "procedure_terminated" message.

The SCSCP client performs the following basic actions:

• establishes connection with server;

• sends the "procedure_call" message to the server;

• waits for its completion or checks it later;

• fetches the result from a "procedure_completed" mes-
sage or enters the break loop in the case of a "proce-

dure_terminated" message.

We have used this basic functionality to build a set of instruc-
tions for parallel computations using the SCSCP framework.
This allows the user to send several procedure calls in paral-
lel and then collect all results, or to pick up the first available
result. We have also implemented the master-worker parallel
skeleton in the same way (see Section 5.2).

A demo SCSCP server is available for test purposes at
chrystal.mcs.st-andrews.ac.uk, port 26133. This runs
the development version of the GAP system plus a selec-
tion of public GAP packages. Further details, downloads,
and a manual with examples are available online [30].



3.2 MuPAD
There are two main aspects to the MuPAD SCSCP sup-

port: the MuPAD OpenMath package [26] and the SCSCP
server wrapper for MuPAD. The former offers the ability
to parse, generate, and handle OpenMath in MuPAD and
to consume SCSCP services, the latter provides access to
MuPAD’s mathematical abilities as an SCSCP service. The
current MuPAD end-user license agreement, however, does
not generally allow providing MuPAD computational facili-
ties over the network. We therefore focus on the open-source
OpenMath package, which can be downloaded from [26].

3.2.1 OpenMath Parsing and Generation
Two functions are available to convert an OpenMath XML

string into a tree of MuPAD OpenMath:: objects, namely
OpenMath::parse(str) which parses the string str, and
OpenMath::parseFile(fname) which reads and parses the
file named fname. Conversely, a MuPAD expression can be
converted into its OpenMath representation using gener-

ate::OpenMath. Note that it is not necessary to directly use
OpenMath in MuPAD if the SCSCP connection described
below is used: the package takes care of marshalling and un-
marshalling in a way that is completely transparent to the
MuPAD user.

3.2.2 SCSCP Client Connection
The call s := SCSCP(host, port) creates an SCSCP con-

nection object, that can subsequently be used to send com-
mands to the SCSCP server. Note that the actual connec-
tion is initiated on construction by starting the Java pro-
gram WUPSI [27] which is bundled with the OpenMath pack-
age. This uses an asynchronous message-exchange mode,
and can therefore be used to introduce background compu-
tations. The command s::compute(. . .) can then be used to
actually compute something on the server (s(. . .) is equiva-
lent). Note that it may be necessary to wrap the parameter
in hold(...) to prevent premature evaluation on the client
side. In order to use the connection asynchronously, the send
and retrieve commands may be used: a := s::send(...)

returns an integer which may be used to identify the com-
putation. The result may subsequently be retrieved using
s::retrieve(a). retrieve will normally return FAIL if the
result of the computation is not yet computed, but this be-
haviour can be overridden using a second parameter to force
the call to block.

3.3 Other Implementations of SCSCP
The SCIence project has produced a Java library [28] that

acts as a reference implementation for systems developers
who would like to implement SCSCP for their own systems.
This is freely available under the Apache2 license. In ad-
dition to GAP and MuPAD, SCSCP has also been imple-
mented in two other systems participating in the SCIEnce
project: KANT [17] and Maple [33] (the latter implementa-
tion is currently a research prototype and not available in the
Maple release). There are third-party implementations for
TRIP [19, 20], Magma [8] (as a wrapper application), and
Macaulay2 [24]. SCSCP thus, as intended, allows a large
range of CAS to interact and to share computations.

4. EXAMPLES
In this section we provide a number of examples which

demonstrate the features and benefits of SCSCP, such as

flexible design, composition of different CAS, working with
remote objects and speeding up computations. More exam-
ples can be found in e.g. [14, 16] and on the web sites for
individual systems.

4.1 GAP
In order to illustrate the flexibility of our approach, we

will describe three possible ways to set up a procedure for
the same kind of problems.

The GAP Small Groups Library [7] contains all groups
of orders up to 2000, except groups of order 1024. The
GAP command SmallGroup(n,i) returns the i-th group of
order n. Moreover, for any group G of order 1 ≤ |G| ≤
2000 where |G| 6∈ {512, 1024}, GAP can determine its li-
brary number : the pair [n,i] such that G is isomorphic to
SmallGroup(n,i). This is in particular the most efficient
way to check whether two groups of “small” order are iso-
morphic or not.

Let us consider now how we can provide a group iden-
tification service with SCSCP. When designing an SCSCP
procedure to identify small groups, we first need to decide
how the client should transmit a group to the server. We will
give three possible scenarios and outline simple steps needed
for the design and provision of the SCSCP services within
the provided framework.
Case 1. A client supports permutation groups (for example,
a client is a minimalistic GAP installation without the Small
Groups Library). In this case the conversion of the group to
and from OpenMath will be performed straightforwardly, so
that the service provider only needs to install the function
IdGroup as an SCSCP procedure (under the same or different
name) before starting the server:

gap> InstallSCSCPprocedure("IdGroup",IdGroup);

InstallSCSCPprocedure : IdGroup installed.

The client may then call this, obtaining a record with the
result in its object component:

gap> EvaluateBySCSCP("IdGroup",[SymmetricGroup(6)],

> "scscp.st-and.ac.uk",26133);

rec( attributes := [ [ "call_id", "hp0SE18S" ] ],

object := [ 720, 763 ] )

Case 2. A client supports matrices, but not matrix groups.
In this case, the service provider may install the SCSCP pro-
cedure which constructs a group generated by its arguments
and return its library number:

IdGroupByGens := gens -> IdGroup( Group( gens ) );

Note that validity of any input and the applicability of the
IdGroup method to the constructed group will be automati-
cally checked by GAP during the execution of the procedure
on the SCSCP server, so there is no need to add such checks
to this procedure (though they may be added to replace the
standard GAP error message for these cases by other text).

Case 3. A client supports groups in some specialised rep-
resentation (for example, groups given by pc-presentation in
GAP). Indeed, for groups of order 512 the Small Groups Li-
brary contains all 10494213 non-isomorphic groups of this
order and allows the user to retrieve any group by its li-
brary number, but it does not provide an identification fa-
cility. However, the GAP package ANUPQ [36] provides a
function IdStandardPresented512Group that performs the
latter task. Because the ANUPQ package only works in a



UNIX environment it is useful to design an SCSCP service
for identification of groups of order 512 that can be called
from within GAP sessions running on other platforms (note
that the client version of the SCSCP package for GAP does
work under Windows).

Now the problem reduces to the encoding of such a group
in OpenMath. Should it, for example, be converted into
a permutation representation, which can be encoded using
existing content dictionaries or should we develop a new con-
tent dictionary for groups in such a representation? Luckily,
the SCSCP protocol provides enough freedom for the user
to select his/her own data representation. Since we are in-
terfacing between two copies of the GAP system, we are free
to use a GAP-specific data format, namely the pcgs code,
an integer that describes the polycyclic generating sequence
(pcgs) of the group, to pass the data to the server (see the
GAP manual and [6] for more details).

First we create a function that takes the pcgs code of a
group of order 512 and returns the number of this group in
the GAP Small Groups library:

gap> IdGroup512 := function( code )

> local G, F, H;

> G := PcGroupCode( code, 512 );

> F := PqStandardPresentation( G );

> H := PcGroupFpGroup( F );

> return IdStandardPresented512Group( H );

> end;;

After such a function is created on the server, it becomes
“visible” as an SCSCP procedure under the same name:

gap> InstallSCSCPprocedure("IdGroup512",IdGroup512);

InstallSCSCPprocedure : IdGroup512 installed.

For convenience, the client may be supplied with a function
that is specialised to use the correct server port, and which
checks that the transmitted group is indeed of order 512:

gap> IdGroup512Remote:=function( G )

> local code, result;

> if Size(G)<>512 then Error("|G|<>512\n");fi;

> code := CodePcGroup( G );

> result := EvaluateBySCSCP("IdGroup512",[code],

> "scscp.st-and.ac.uk", 26133);

> return result.object;

> end;;

Now the call to IdGroup512Remote returns the result in the
standard IdGroup notation:

gap> IdGroup512Remote( DihedralGroup( 512 ) );

[ 512, 2042 ]

4.2 GAP and Macaulay2
We now consider interaction between GAP and Macaulay2

[24]. Macaulay2 is “a software system devoted to support-
ing research in algebraic geometry and commutative alge-
bra,” that is particularly well known for its efficient Gröbner
bases procedures. We have implemented OpenMath and the
SCSCP protocol as packages in the Macaulay2 system, and
they have been available in the stable branch since late 2009.
The OpenMath support includes basic arithmetic, matrices,
finite fields elements, polynomials, Gröbner bases, etc. All
support for OpenMath symbols was implemented directly in
the Macaulay2 language, to allow for easy maintenance and
extensibility.

Macaulay2 is fully SCSCP 1.3 compatible and can act both
as a server and as a client. The server is multithreaded so
it can serve many clients at the same time, and supports
storing and retrieving of remote objects. The client was
designed in such a way as to disclose remote computation
using SCSCP with minimal interaction from the user. It
supports convenient creation and handling of remote objects,
as demonstrated below.

An example of a GAP client calling a Macaulay2 server for
the Gröbner basis computation, can be found [16]. Although
this 2008 implementation used a prototype wrapper imple-
mentation of an SCSCP server for Macaulay2, rather than
the full internal implementation that we have now, it nicely
demonstrates the possible gain of connecting computer alge-
bra systems using SCSCP.

The next example of a Macaulay2 SCSCP client calling
a remote GAP server was produced using the current im-
plementation. First, we load the OpenMath and SCSCP
packages and establish a connection to the GAP server that
accepts and evaluates OpenMath objects.

i1 : loadPackage "SCSCP"; loadPackage "OpenMath";

i3 : GAP = newConnection "127.0.0.1"

o3 = SCSCP Connection to GAP (4.dev) on

scscp.st-and.ac.uk:26133

o3 : SCSCPConnection

We demonstrate the conversion of an arithmetic operation
to OpenMath syntax (note the abbreviated form Macaulay2
uses to improve legibility of XML expressions), and evaluate
the expression in GAP.

i4 : openMath 1+2

o4 = <OMA

<OMS cd="arith1" name="plus"

<OMI "1"

<OMI "2"

o4 : XMLnode

i5 : GAP <== openMath 1 + 2

o5 = 3

We then create two matrices in Macaulay2 (suppressing the
output of the creation of the second one), and create a re-
mote object G in GAP representing the group they generate.

i6 : m1 = id_(QQ^10)^{1,6,2,7,3,8,4,9,5,0}

o6 = | 0 1 0 0 0 0 0 0 0 0 |

| 0 0 0 0 0 0 1 0 0 0 |

| 0 0 1 0 0 0 0 0 0 0 |

| 0 0 0 0 0 0 0 1 0 0 |

| 0 0 0 1 0 0 0 0 0 0 |

| 0 0 0 0 0 0 0 0 1 0 |

| 0 0 0 0 1 0 0 0 0 0 |

| 0 0 0 0 0 0 0 0 0 1 |

| 0 0 0 0 0 1 0 0 0 0 |

| 1 0 0 0 0 0 0 0 0 0 |

10 10

o6 : Matrix QQ <--- QQ

i7 : m2 = id_(QQ^10)^{1,0,2,3,4,5,6,7,8,9};

i8 : G = GAP <=== matrixGroup({m1,m2})

o8 = << Remote GAP object >>

o8 : RemoteObject



When we ask for the size of the group, Macaulay2 simply
creates a new object representing |G|. Finally, evaluating
this object in GAP gives the number of elements in the group
generated by those matrices.

i9 : size G

o9 = << Remote GAP object >>

o9 : RemoteObject

i10 : GAP <== size G

o10 = 10080

One of the most important features of this example is that
despite the fact that Macaulay2 has no support for groups at
all, by using OpenMath and SCSCP, we can still create an
object that represents a group, and obtain useful information
about it.

4.3 MuPAD
To show how the OpenMath MuPAD package is used, we

first demonstrate some features of the OpenMath package:

>> package("OpenMath"):

>> 1+a*sin(x)

a*sin(x) + 1

>> om := OpenMath(%)

arith1.plus(1, arith1.times(transc1.sin($x), $a))

>> OpenMath::toXml(om)

<OMA>

<OMS cd=’arith1’ name=’plus’/>

<OMI>1</OMI>

<OMA>

<OMS cd=’arith1’ name=’times’/>

<OMA>

<OMS cd=’transc1’ name=’sin’/>

<OMV name=’x’/>

</OMA>

<OMV name=’a’/>

</OMA>

</OMA>

Now we use it to establish an SCSCP connection to a ma-
chine 400km away that is running KANT [12]. We use the
KANT server to factor the product of shifted Swinnerton-
Dyer polynomials. Of course, we could do it locally in Mu-
PAD, but that would take 38 seconds:

>> swindyer := proc(plist) ... :

>> R := Dom::UnivariatePolynomial(x,Dom::Rational):

>> p1 := R(swindyer([2,3,5,7,11])):

>> p2 := R(subs(swindyer([2,3,5,7,13,17])),x=3*x-2):

>> p := p1 * p2:

>> degree(p), nterms(p)

96, 49

>> st := time(): F1 := factor(p): time()-st

38431

Now let us use KANT remotely:

>> package("OpenMath"):

>> kant := SCSCP("scscp.math.tu-berlin.de",26133):

>> st:=rtime():

F2:=kant::compute(hold(factor)(p)):

rtime()-st

1221

Establishing the connection, marshalling and unmarshalling
the objects, sending them over the network, and the actual
KANT computation took only 1.2 seconds in total. This
demonstrates the flexibility of the SCSCP approach: the
most appropriate system may be used for the task at hand.
Users are no longer restricted to performing all aspects of a
required computation in a single system that may not pro-
vide good support for all required operations.

5. INFRASTRUCTURE
FOR PARALLEL COMPUTATIONS

In contrast to notations for numerical computations, which
have an emphasis on floating point arithmetic, monolithic ar-
rays, and programmer-controlled memory allocation, sym-
bolic computing has an emphasis on functional notations,
greater interactivity, very high level programming abstrac-
tions, complex data structures, automatic memory manage-
ment, etc. With this different evolutionary path, it is not
surprising that symbolic computation has parallelisation re-
quirements that differ significantly from those for traditional
numerical high-performance computing. In particular, par-
allel symbolic computations are often highly irregular, need
to exploit more complex data structures than their numer-
ical counterparts, and exhibit sophisticated computational
patterns that are only just being identified.

We have developed a number of tools that exploit the
capabilities of SCSCP for marshaling/unmarshaling sym-
bolic data as part of a parallel computation, outlined be-
low: SPSD (a middleware written in Java using the SCSCP
API); the master-worker skeleton implemented directly in
GAP; and a general programmable framework for paral-
lelism, SymGrid-Par. These provide increasing levels of
capability and scalability.

5.1 WUPSI/SPSD
The Java framework outlined above [28] has been used

to construct “WUPSI”, an integrating software component
that is a universal Popcorn SCSCP Interface providing seve-
ral different technologies for interacting with SCSCP clients
and servers. One of these is the Simple Parallel SCSCP
Dispatcher (SPSD), which allows very simple patterns like
parallel map or zip to be used on different SCSCP servers si-
multaneously. The parallelization functionality is offered as
an SCSCP service itself, so it can be invoked not only from
the WUPSI command line, but also by any other SCSCP
client. Since WUPSI and all parts of it are open source and
freely available, they can be exploited to build whatever in-
frastructure seems necessary for a specific use case.

5.2 GAP Master-Worker Skeleton
Using the SCSCP package for GAP, it is possible to send

requests to multiple services to execute them in parallel, or
to wait until the fastest result is available, and implement
various scenarios on top of the provided functionality. One
of these is the master-worker skeleton, included in the pack-
age and implemented purely in GAP. The client (i.e. master,
which orchestrates the computation) works in any system
that is able to run GAP, and it may even orchestrate both
GAP based and non-GAP based SCSCP servers, exploiting
such SCSCP mechanisms as transient content dictionaries
to define OpenMath symbols for a particular operation that
exists on a specific SCSCP server, and remote objects to
keep references to objects that may be supported only on the



other CAS. It is quite robust, especially for stateless services:
if a server (i.e. worker) is lost, it will resubmit the request to
another available server. Furthermore, it allows new workers
(from a previously declared pool of potential workers) to be
added during the computation. It has flexible configuration
options and produces parallel trace files that can be visu-
alised using EdenTV [5]. The master-worker skeleton shows
almost linear (e.g. 7.5 on 8-core machine) speedup on irreg-
ular applications with low task granularity and no nested
parallelism. The SCSCP package manual [30] contains fur-
ther details and examples. See also [13, 31] for two examples
of using the package to deal with concrete research problems.

5.3 SymGrid-Par
SymGrid [25] provides a new framework for executing

symbolic computations on computational Grids: distributed
parallel systems built from geographically-dispersed parallel
clusters of possibly heterogeneous machines. It builds on and
extends standard Globus toolkit [23] capabilities, offering
support for discovering and accessing Web and Grid-based
symbolic computing services (SymGrid-Services [9]) and
for orchestrating symbolic components into Grid-enabled ap-
plications (SymGrid-Par [2]). Both of these components
build on SCSCP in an essential way. Below, we will focus
on SymGrid-Par, which aims to orchestrate multiple se-
quential symbolic computing engines into a single coherent
parallel system.

5.3.1 Implementation details
SymGrid-Par (Figure 1) extends our implementation

of the Gum system [4, 41], a message-based portable par-
allel implementation of the widely used purely functional
language Haskell [38] for both shared and distributed mem-
ory architectures. SymGrid-Par comprises two generic in-
terfaces: the “Computational Algebra system to Grid mid-
dleware” (CAG) interface links a CAS to Gum; and the
“Grid middleware to Computational Algebra system”(GCA)
interface conversely links Gum to a CAS. The CAG inter-
face is used by computational algebra systems to interact
with Gum. Gum then uses the GCA interface to invoke
remote computational algebra system functions, to commu-
nicate with the CAS etc. In this way, we achieve a clear
separation of concerns: Gum deals with issues of thread
creation/coordination and orchestrates the CAS engines to
work on the application as a whole; while each instance of
the CAS engine deals solely with execution of individual al-
gebraic computations.

The GCA interface interfaces our middleware with a CAS,
connecting to a small interpreter that allows the invocation
of arbitrary computational algebra system functions, mar-
shaling/unmarshaling data as required. The interface com-
prises both C and Haskell components. The C component
is mainly used to invoke operating system services that are
needed to initiate the computational algebra process, to es-
tablish communication channels, and to send and receive
commands/results from the computational algebra system
process. It also provides support for static memory that can
be used to maintain state between calls. The Haskell com-
ponent provides interface functions to the user program and
implements the communication protocol with the computa-
tional algebra process.

The CAG interface comprises an API for each symbolic
system that provides access to a set of common (and po-
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tentially parallel) patterns of symbolic computation. These
patterns form a set of dynamic algorithmic skeletons (see
[10]), which may be called directly from within the computa-
tional algebra system, and which may be used to orchestrate
a set of sequential components into a parallel computation.
In general (and unlike most skeleton approaches), these pat-
terns will be nested and can be dynamically composed to
form the required parallel computation. Also, in general,
they may mix components taken from several different com-
putational algebra systems.

5.3.2 Standard Parallel Patterns
The standard patterns we have identified are listed be-

low. The patterns are based on commonly-used sequential
higher-order functions that can be found in functional lan-
guages such as Haskell. Similar patterns are often defined as
algorithmic skeletons. Here, each argument to the pattern
is separated by an arrow (->), and may operate over lists
of values ([..]), or pairs of values ((..,..)). All of the
patterns are polymorphic: i.e. a, b etc. stand for (possibly
different) concrete types. The first argument in each case
is a function of either one or two arguments that is to be
applied in parallel.

parMap:: (a->b) -> [a] -> [b]
parZipWith:: (a->b->c) ->[a] -> [b] -> [c]
parReduce:: (a->b->b) -> b -> [a] -> b
parMapReduce::(d->[a]->b) -> (c->[(d,a)]) -> c -> [(d,b)]
masterSlaves::((a->a)->(a->a->b)) -> [(a,a)] -> [(a,a,b)]

So, for example, parMap is a pattern taking two arguments
and returning one result. Its first argument (of type a->b)
is a function from some type a to some other type b, and
its second argument (of type [a]) is a list of values of type
a. It returns a list of values each of type b. Operationally,
parMap applies a function argument to each element of a list,
in parallel, returning the list of results, e.g.

parMap double [1,4,9,16] == [2,8,18,32]
where double x = x + x

It thus implements a parallel version of the common map

function, which applies a function to each element of list.
The parZipWith pattern similarly applies a function, but in
this case to two arguments, one taken from each of its list
arguments. Each application is performed in parallel, e.g.

parZipWith add [1,4,9,16] [3,5,7,9] == [4,9,16,25]
where add x y = x + y



Again, this implements a parallel version of the zipWith

function that is found in functional languages such as Haskell.
Finally, parReduce reduces its third argument (a list of type
[a]) by applying a function (of type a->b->b) between pairs
of its elements, ending with the value of the same type b as
its second argument; parMapReduce pattern combines fea-
tures of both parMap and parReduce, first generating a list
of key-value pairs from every input item (in parallel), before
reducing each set of values for one key across these inter-
mediate results; masterSlaves is used to introduce a set
of tasks and generate a set of worker processes to apply the
given function parameter in parallel to these tasks under the
control of a coordinating master task. The parReduce and
parMapReduce patterns are often used to construct parallel
pipelines, where the elements of the list will themselves be
lists, perhaps constructed using other parallel patterns. In
this way, we can achieve nested parallelism. [3] contains fur-
ther details on SymGrid-Par, including the description of
several experiments and a detailed analysis of their parallel
performance.

6. CONCLUSIONS
We have presented a framework for combining computer

algebra systems using a newly-developed remote procedure
call protocol SCSCP (Symbolic Computation Software Com-
posability Protocol). By defining common data and task in-
terfaces for all systems, we allow complex computations to
be constructed by orchestrating heterogeneous distributed
components into a single symbolic application. Any sys-
tem supporting SCSCP can immediately connect to all other
SCSCP-compliant systems, thus avoiding the need for spe-
cial cases and minimizing repeated efforts. Furthermore, if
some CAS changes its internal format then it only needs to
update one interface, namely that to the SCSCP protocol
(instead of as many interfaces as there are programs it con-
nects to). Moreover, this change can take place completely
transparently to the other CAS connecting to it.

We have demonstrated several examples of setting up com-
munication between different CAS, thus exhibiting SCSCP
benefits and features including its flexible design, the abil-
ity to solve problems that can not be solved in the “home”
system, and the possibility to speed up computations by
sending request to a faster CAS. Finally, we have shown
how sequential systems can be combined into heterogeneous
parallel systems that can deliver good parallel performance.

SCSCP uses an OpenMath representation to encode both
transmitted data and protocol instructions, and may be sup-
ported not only by a CAS, but by any other software as
well. To achieve this, it is necessary only to support SCSCP
messages accordingly to the protocol specification, while the
support of particular OpenMath constructions and objects is
dictated only by the nature of the application. This support
may consequently be limited to a few basic OpenMath data
types and a small set of application-relevant symbols. For
example, a Java applet to display the lattice of subgroups of
a group may be able to draw diagrams for partially ordered
sets without any support for the group-theoretical Open-
Math CDs. Other possible applications may include a web
or SCSCP interface to a mathematical database, or, as an
extreme proof-of-concept, even a server providing access to
a computer algebra system through an Internet Relay Chat
bot.

Additionally, SCSCP-compliant middleware may look in-

side an SCSCP message, extracting all necessary technical
information from its outer levels and taking the embedded
OpenMath objects as a “black box”. This approach is es-
sentially used in the SymGrid-Par middleware (Section 5)
which performs marshaling and unmarshaling of OpenMath-
represented data between CASes. By exploiting well-esta-
blished adaptive middleware (Gum), we can manage com-
plex irregular parallel computations on clusters and shared-
memory parallel machines. This allows us to harness a num-
ber of advanced Gum features that are important to sym-
bolic computations, including: automatic control of task
granularity, dynamic task creation, implicit asynchronous
communication, automatic sharing-preserving data marshal-
ing/unmarshaling, ultra-lightweight work stealing and task
migration, virtual shared memory, and distributed garbage
collection.

We have already seen examples of SCSCP-compliant soft-
ware that were created outside the SCIEnce project and we
hope that we will have more of them in the future. We anti-
cipate that existing and emerging SCSCP APIs will be useful
here as templates for new APIs. In conclusion, SCSCP is a
powerful and flexible framework for combining CAS, and we
encourage developers to cooperate with us in adding SCSCP
support to their software.
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