
Improved Type Error Reporting

Jun Yang, Greg Mi
haelson, Phil Trinder and J. B. Wells

http://www.
ee.hw.a
.uk/~f
eejy1,trinder,greg,jbwg

Department of Computing and Ele
tri
al Engineering

Heriot-Watt University, EDINBURGH, EH14 4AS, UK

Abstra
t. The error reports produ
ed by 
ompilers for languages with

polymorphi
 type inferen
e are often uninformative. Several attempts

have been made to produ
e improved error reports. We de�ne a mani-

festo for good error reports and use it to evaluate both the traditional

algorithms, and several improved algorithms, in
luding two of our own

devising.

1 Introdu
tion

Debugging type errors in programs written in polymorphi
 languages with type

inferen
e is hard [13, 7℄. One reason is that mu
h type information is impli
it

| inferred by the 
ompiler. An error o

urs in type inferen
e when two uses of

a program variable are found to be in 
on
i
t, where ea
h use o

urs in some

program text that we 
all a site. These 
on
epts are best illustrated with an

example. In Figure 1, inferen
e pro
eeds left-to-right, initially assigning a type

variable 'a to the fun
tion parameter x. From the �rst use of x, sited at x 1, the

algorithm infers that x is a fun
tion from integer to some unknown type, i.e.,

x is of type int ! 'b where 'b is a freshly 
hosen type variable standing for

some as-yet-undetermined type. From the se
ond use of x, sited at x true, the

algorithm infers that x is a fun
tion from booleans to some unknown type, i.e.,

x is of type bool ! '
. The 
on
i
t is dete
ted when the uni�
ation of the two

types for x (int ! 'b and bool ! '
) fails.

fn x => (x 1, x true)

stdIn:6.9-6.23 Error: operator and operand don't agree [literal℄

operator domain: int

operand: bool

in expression:

x true

Fig. 1. Example of inferen
e failing

Unfortunately the errors reported by 
ompilers are often uninformative. Ver-

sion 110 of the SML/NJ 
ompiler reports the error site x true, but does not



mention x 1, whi
h is one of the sour
es of the type 
on
i
t, and may be the real

error. One reason for this is that 
ompilers use type inferen
e algorithms that

are designed primarily to analyze programs eÆ
iently, and have 
omprehensible

error reporting as a subsidiary goal.

This paper fo
uses on improved error reporting for languages with polymor-

phism and type inferen
e in the style of the Hindley/Milner type system. We

de�ne a manifesto for good type error reporting (se
tion 2). We use the mani-

festo to identify problems with the error reporting of various inferen
e algorithms

(se
tion 3). We brie
y survey improved error reporting systems (se
tion 4) and

des
ribe two new type inferen
e algorithms with improved error reporting (se
-

tion 5). We 
on
lude with a 
omparative evaluation of type error reporting sys-

tems (se
tion 6).

2 A Manifesto for Good Type Error Reporting

We think that good error reports should have the following properties:

1. Corre
t. This entails both 
orre
t dete
tion: errors are reported exa
tly when

the program is not legal, and 
orre
t reporting: all the reported sites 
on-

tribute to the type 
on
i
t.

2. Pre
ise. Ea
h 
on
i
ting site should be lo
ated in the smallest useful amount

of sour
e text. Moreover, there should be a simple relationship between the


on
i
ting type and the site from whi
h it was inferred.

3. Su

in
t. Error report should maximise useful information and minimise

non-useful information. Long and verbose explanations are tedious to read.

Short and terse explanation are hard to understand.

4. Ame
hani
al. An error report should not reprodu
e large amounts of 
ounter-

intuitive me
hani
al inferen
e. This in
ludes reporting with arti�
ially-introdu
ed

type variables [15℄.

5. Sour
e-based. The user need not know anything of the 
ompiler internals

to understand the error message. For example error reports should not use

\
ore" syntax generated by the 
ompiler from the original sour
e syntax.

The inferen
e algorithms 
an infer and report on sour
e syntax. However

the implementation may be not sour
e-based.

6. Unbiased. There should no inherent left-to-right (or similar) bias in the


hoi
e of where to report an error when multiple sites 
ontribute to the

error.

7. Comprehensive. The algorithm should be able to report all sites that 
on-

tribute to the reported type 
on
i
t. The user 
an reason about the error

from the reported sites and does not need to look at other parts of the

program to lo
ate the error.

Some error reporters aim to report multiple errors instead of stopping at the

�rst error, while avoiding generating a 
as
ade of bogus error messages. This is

not in
luded in the manifesto as it is not always desirable, for example many

error reporters in the edu
ation se
tor stop at the �rst error.



3 Inferen
e Algorithm Error Reporting

Type inferen
e algorithms, like theM andW algorithms, are designed primarily

to analyze programs eÆ
iently, and have 
omprehensible error reporting as a

subsidiary goal. Throughout the paper we use the W algorithm as implemented

in Standard ML of New Jersey, Version 110.0.6, O
tober 31, 1999 [9℄, and our

own implementation of the M algorithm based on [6℄.

Compared to our manifesto, inferen
e algorithm error reports are both 
orre
t

(1) and su

in
t (3), but have the following problems.

{ 2. Not pre
ise. The W algorithm does not identify the pre
ise sites in the

program that 
on
i
t. In parti
ular, it fails (i.e., noti
es an error) only at a

fun
tion appli
ation, and an erroneous expression is often su

essfully type-


he
ked long before its 
onsequen
e 
ollides at an appli
ation. For example,

if typing su

eeds for both fun
tion and argument expressions, but fails at

the (outermost) fun
tion appli
ation, the entire expression is reported as

the error site. Figure 2 illustrates this using New Jersey SML where W

algorithm does not report the \obvious" (to a human) problem that the

outermost fun
tion expe
ts an integer, but its argument is boolean.

The M algorithm is pre
ise, in parti
ular it always stops earlier than the

W algorithm when there is a type error [6℄. TheM algorithm does not stop

at appli
ation, it stops at 
onstant, variable, � abstra
tion instead. Figure 3

shows how it identi�es the site true more pre
isely.

(fn x ) x+1) ((fn y) if y then true else false) false)

stdIn:21.1-21.60 Error: operator and operand don't agree [literal℄

operator domain: int

operand: bool

in expression:

(fn x => x + 1)

((fn y =>

(
ase <exp>

of <rule>

| <rule>)) false)

Fig. 2. W Algorithm: Impre
ise Error Lo
ation

{ 4. Me
hani
al. The algorithms introdu
e a type variable for many 
onstru
ts

before instantiating the type and error reports use internal type variables

that have no obvious relation to the program text. For example, Figure 4

shows the fun
tion and 
orresponding error report produ
ed by Standard ML

of New Jersey, Version 110.0.6 W algorithm. The type variable 'Z appears

nowhere in the program text, having been introdu
ed during inferen
e.



(fn x ) x+1) ((fn y) if y then true else false) false)

-------------------- Error --------------------

Error in expression:

true

Type in
onsistent of requirement at the expression.

required type: int

a
tual type : bool

Fig. 3.M Algorithm: Appli
ation Error Reporting

fun f2 x (h::t) = h :: f2 t h

stdIn:35.1-35.27 Error: right-hand-side of 
lause doesn't agree with

fun
tion result type [
ir
ularity℄

expression: 'Z list -> 'Z list

result type: 'Z -> 'Z list

in de
laration:

f = (fn arg => (fn <pat> => <exp>))

Fig. 4. Inferen
e Algorithm: Counter-intuitive Reporting

{ 5. Not Sour
e-based. Errors are reported using text generated from the ab-

stra
t syntax tree. For example in Figure 2, SML/NJ 110 reports the error

using a pretty-printed version of its internal abstra
t syntax tree, whi
h is

di�erent from the sour
e syntax.

{ 6. Biased. The algorithms have a left-to-right bias: type 
he
king pro
eeds

exhaustively from top to bottom and left to right within the program text.

As shown in Figure 1, the W algorithm presumes that the �rst use of x is

the 
orre
t one.

{ 7. Not Comprehensive. The algorithms typi
ally stop at the �rst site in the

program where a 
on
i
t is dete
ted when there may be other undete
ted


on
i
ts in the program. For example, in Figure 5, Edinburgh Standard ML

(
ore language) reports f true as the error, and does not �nd the se
ond


on
i
t with f false and the type error in the result tuple, i.e. if the type

of the appli
ation of the fun
tion f is a spe
i�
 type e.g 'Z, then the type of

the right-hand side should be the spe
i�
 type 'Z, but in the example, the

type of right-hand side is a tuple type 'Z * 'Z * 'Z.



fun f x = (f 3, f true, f false)

Type 
lash in: (f true)

Looking for a: int

I have found a: bool

Fig. 5. Inferen
e Algorithm: Non-Comprehensive Reporting

4 Improved Error Reporting

The problems with inferen
e algorithm error reporting have motivated work

aimed at providing a better understanding of type error, often at the expense

of additional 
omputation. One approa
h is to provide better explanation of

how the inferen
e leads to a type error. The systems that use this approa
h are


lassi�ed as error explanation systems, e.g., [1, 4, 11℄.

Another approa
h is to provide a better error report, without ne
essarily

explaining the inferen
e that lead to the error. Systems using this approa
h are


lassi�ed as error reporting systems, e.g., [13, 5, 2, 8, 3℄. A third approa
h is to

provide a me
hanism for the programmer to probe the type of subexpressions [2℄.

4.1 Error Explanation Systems

There have been several error explanation systems. For example, the system of

Duggan and Bend uses a modi�ed uni�
ation algorithm to re
ord the reasons

whi
h led to a program variable having a parti
ular type [4℄. The system of

Beaven and Stansifer [1℄ explains how the inferen
e rea
hes the two 
on
i
ting

types. Soosaipillai's system [11℄ explains the type inferen
e by menu traversal.

Compared to our manifesto, type error explanation systems 
an be made


omprehensive, pre
ise, and 
orre
t. However they fail on several key points.

{ 3. Not Su

in
t. Sometimes the textual explanation has so mu
h information,

it rapidly be
omes tedious. Experts usually �nd this explanation too detailed

to be of real help, though they �nd valuable information about the di�erent

positions in the programs that 
ontribute to the type given by the tool [10℄.

{ 4. Me
hani
al. The explanations make substantial use of internal type vari-

ables as bridges between instan
es, sin
e they are the ones that get re�ned.

In 
ontrast a programmer is not 
on
erned with these type variables. To un-

derstand the explanations, it is ne
essary to remember from whi
h program

variable the type variable is inferred and where it is re�ned. If there are more

than a few type variables, it be
omes impossible to remember what entity a

type variable represents.

{ 5. Not Sour
e-based. Explanations use text generated from the abstra
t syn-

tax tree, rather than the original program text.

{ 6. Biased. They are based on theW algorithm, whi
h has a left-to-right bias

in inferring types and dis
overing errors.



4.2 Error Reporting Systems

Error reports 
an be improved by lo
ating all error sites, by lo
ating them more

pre
isely within the program text, or by providing an explanation of the 
on
i
t.

There have been several approa
hes, in
luding the following.

{ Wand's system [13℄ re
ords the sites that 
ontribute to ea
h type dedu
tion

when type errors are dete
ted, and uses this information to explain why the

errors happen. The algorithm re
ords substitutions together with fun
tion

appli
ations whi
h are the 
auses of the substitution. A type error 
onsists of

two types that 
annot be uni�ed, and both are derived by some substitutions:

the algorithm reports ea
h appli
ation that 
aused one of these substitutions

as a possible 
ause of the error. Where the in
onsisten
y is found depends

on the arbitrary order of traversal of the syntax tree during type analysis.

Consequently, the number of 
andidate error sites is also de
ided by the

programming style. The system lists the possible error sites; some of them

are not the dire
t sour
e of the type in
onsisten
y. It is not 
lear if there is

any relationship between the 
andidate error sites: the user needs to 
he
k

the types of the proposed error sites against their own intentions.

{ Johnson andWalz [5℄ give a maximum-
ow approa
h to de
ide whi
h usage is

the most likely error sour
e. The usage that is in the minority is a 
andidate

for the mistake. However for many errors there is one 
orre
t usage and one

in
orre
t usage and it is not 
lear how often the minority 
an be isolated,

and sometimes the minority usage may be the 
orre
t type.

{ Turner [12℄ 
onsidered improved error handling for unbound identi�er error

reports, sour
e-based error reports, and mutually re
ursive de
laration error

reports. Similar to Johnson's method, his method 
hooses the minority use

as the 
andidate for the error sour
e.

{ Bernstein and Stark give a method of debugging type errors in a so-
alled

open system [2℄. The user repla
es a suspe
t expression within the program

with a free variable. The system infers the type of the free variable, whi
h

the user 
an 
ompare with that expe
ted. The user 
an repeatedly probe the

program in this way until the error is un
overed. In 
ontrast to the other

te
hniques, this requires user intera
tion to lo
ate the error. In parti
ular,

the user must guess the probable lo
ation of the type error.

{ In ongoing work, M
Adam uses a graph of types to report errors [8℄. The

graph 
ontains information about types and the sites that 
ontribute to the

types, and an explanation is generated by traversing the graph. However,

to generate a 
on
ise explanation for some type errors, a suitable graph

traversal must be sele
ted. It is not 
lear what the best way to traverse the

graph.

{ The approa
h of Dinesh and Tip [3℄ requires no 
hanges to the type inferen
e

algorithm or the type system. The basi
 idea is to apply dependen
e tra
king

to a rewriting-based implementation of an ML type inferen
er. A program

sli
e 
an be 
omputed for ea
h reported type inferen
e error. A program

sli
e 
onsists of the parts of a program that(potentially) a�e
t the values




omputed at some point of interest. However it is un
lear how a

urate su
h

sli
es will be in pra
ti
e.

4.3 Error Reporting Systems vs. Manifesto

Wand's system is sele
ted as a typi
al model based on the W algorithm, using

a modi�ed uni�
ation algorithm to generate the explanation. Later work su
h

as Duggan and Bent [4℄ and M
Adam [7℄ is similar in using modi�ed uni�
ation

algorithm to report or explain error. The open system is not in
luded in our

evaluation be
ause it is user-driven type debugging, rather than error reporting.

Also we do not in
lude the work of Dinesh and Tip [3℄ be
ause it is di�erent

from type inferen
e.

fn n => n* (n=1)

------------------- Error sites ------------------

There are 5 possible sites,

the first one is where in
onsisten
e happened

BOOL ===> INT By *(( n, =(( n, 1))))

INT * INT ===> INT * INT By =(( n, 1))

INT * INT ===> INT * INT By *(( n, =(( n, 1))))

BOOL ===> BOOL By =(( n, 1))

INT ===> INT By =(( n, 1))

Fig. 6. Example of Wand's Error Reporting

Wand's system We 
ompare Wand's approa
h to our manifesto using Figure 6.

1. Corre
t. All the sites 
ontribute to the type 
on
i
t between int and bool.

2. Pre
ise. It reports only appli
ations. It is not pre
ise as the M algorithm,

e.g. it 
an not report smallest sites su
h as the operator * and =.

3. Not 
on
ise. Its report 
an be a long list of error sites. In the simple example

of Figure 6, it reports all the appli
ation subexpressions, and some of them

are redundant.

4. Fairly me
hani
al. A site may 
ontribute to substitutions to several types,

there are redundant reports for a single site, for example the site n=1 is

reported three times in Figure 6. But it reports the reasons that 
ontribute

to the type error.

5. Not sour
e-based. The implementation is not sour
e-based.

6. Biased. Wand's approa
h is to use a modi�ed uni�
ation algorithm to a

u-

mulate the reason of the type 
on
i
t. If the inferen
e algorithm has left-to-

right bias, the reports have left-to-right bias as well.



7. Comprehensive. It reports all the possible sites that 
ontribute to the type

error.

Johnson and Walz's method If a type in
onsisten
y arises, a maximum 
ow

te
hnique is applied to the set of type equations to determine the most likely

sour
e of the error. The approa
h is:

1. Corre
t. It reports a subset of the possible error sour
es.

2. Pre
ise. It 
an 
ompare the uses of any operator, and report the operator

su
h as * and = as the error site.

3. Su

in
t. It 
hooses the most likely error site.

4. Fairly me
hani
al. It sele
ts the minority usage as the error site, however

the majority uses may be the 
ause of the error. If there is just one 
orre
t

usage and one in
orre
t usage it is not possible to de
ide whi
h is in error.

It is 
ounter-intuitive in the sense that it does not report 
on
i
ting sites.

5. Can be sour
e-based.

6. Unbiased. It does not assume the �rst use is the 
orre
t use.

7. Comprehensive. It 
ompare all the uses and 
an �nd all the 
on
i
t sites.

The error explanations 
an not be illustrated as we have not implemented John-

son and Walz's method.

Turner's method If a type in
onsisten
y arises, a 
ount of the di�erent uses

is used to determine the most likely sour
e of the error. The approa
h is:

1. Corre
t. It reports a subset of the probable error sour
es.

2. Pre
ise. It 
ompare the types in patterns and appli
ations. But it is not

pre
ise as the M algorithm and Johnson and Walz's.

3. Su

in
t. It 
hooses the most likely error site.

4. Ame
hani
al. It sele
ts the minority usage as the error site.

5. Sour
e-based. It re
ords the expression the type 
he
ker is typing.

6. Unbiased. It does not assume the �rst use is the 
orre
t use.

7. Comprehensive. It 
an �nd all the 
on
i
t sites.

5 Improved Type Error Reporting

We now present two improved type error reporting algorithms. Both have been

des
ribed in [14℄, and are only brie
y outlined here.

5.1 Uni�
ation of Assumption Environments (UAE)

The �rst new algorithm is based on the uni�
ation of assumption environments.

The key idea is to independently type ea
h subexpression in an appli
ation

and return an assumption environment for ea
h subexpression whi
h gives the

lo
al type 
onstraints for every variable in the subexpression. The 
onsisten
y



of resulting assumption environments is 
he
ked at the root of subexpressions.

Left-to-right bias is removed by unifying the assumption environments at the

root of the subexpressions, where we 
ompare the uses of ea
h program variable

in di�erent subexpression to see if they are all 
onsistent: in this way every

subexpression is treated equally.

The UAE algorithm takes a type environment, an assumption environment

and an expression as its arguments. The type environment is the ordinary type

environment as in the W algorithm. The assumption environment 
ontains the

type 
onstraints for the program variables in previous typed subexpressions. At

the start of type 
he
king, the type environment and assumption environment

are empty. The assumption environment is used to 
he
k the type 
onsisten
y

of those program variables in other subexpressions and to identify pre
isely the

�ner grain error sites.

fn x ) (x 1, x true)

-------------------- Error --------------------

Type 
onfli
ts in expressions:

x(1)

x(true)

the same program variables have type 
onfli
ts in different sites

from the first expression

x: int -> 'a

but from the se
ond expression

x: bool -> 'b

Fig. 7. Example UAE Error Report

The method is best illustrated by an example, and Figure 7 shows the output

of our implementation for a simple fun
tion. On the same fun
tion, Figure 1

shows how the W algorithm pro
eeds from left to right, inferring a fun
tion

type for x from its �rst use, and then reporting the 
on
i
t at the se
ond use

of x, i.e., it reports x true as the (only) error site in Figure 1. In 
ontrast, the

UAE algorithm explains that x, whi
h must have a monomorphi
 type be
ause

it is lambda-bound, is used in
onsistently in di�erent subexpressions.

Figure 8 shows how the UAE algorithm identi�es the 
on
i
t between the left-

hand side of a fun
tion de�nition, and its uses within the body of the fun
tion.

Figure 4 shows that the W algorithm only reports the entire fun
tion de�nition

as an error.

UAE vs. Manifesto



fun f2 x (h::t) = h:: f2 t h

-------------------- Error --------------------

Type 
onfli
ts in expressions:

f2(x)(h :: t)

f2(t)(h)

elements in a pattern have different types

from the first expression '
 list

from the se
ond expression '


Fig. 8. Se
ond Example UAE Error Report

1. Corre
t. A reported error site or subexpression, has some relationship with

other sites, i.e., its type 
on
i
ts with that of another site. The UAE algo-

rithm reports pairs of sites with 
on
i
ting types, e.g., it reports x 1 and x

true as a pair of 
on
i
ting sites.

2. Pre
ise. It is more pre
ise than theW algorithm. For example in Figure 4 the

W algorithm reports the whole expression as the error site, in Figure 8 the

UAE algorithm reports the left-hand side and right-hand side type 
on
i
t

of the re
ursive fun
tion f2. It lo
ates the smallest pairs of type 
on
i
ting

sites. And the reported 
on
i
ting types 
an be inferred from the reported

sites dire
tly.

3. Su

in
t. It reports by the type 
on
i
ting uses of program variables in the

pairs, rather than how it 
on
ludes that there are type 
on
i
ts.

4. Ame
hani
al. It reports the 
on
i
ting sites. Its type information is inferred

from the reported sites. To understand why the reported sites are error

sites, the user needs to understand the reported type information. The type

information from the UAE algorithm is from lo
al typing of the reported

sites, it is easier to understand than the type information from a long 
hain

of inferen
es, su
h as that from the W algorithm.

5. Can be sour
e-based. The implementation is partially sour
e-based.

6. Unbiased. Every subexpression of an appli
ation is treated independently.

7. Comprehensive. The UAE algorithm identi�es the type 
on
i
ting uses of

the same program variable in a pair of subexpressions.

5.2 In
remental Error Inferen
e (IEI)

The se
ond new typing algorithm, in
remental error inferen
e, lo
ates 
on
i
ts

in appli
ation expressions when the UAE algorithm 
annot. This additional fun
-

tionality is bought by making the algorithm more 
omplex.

As we have seen in Se
tion 3, and Figure 2 in parti
ular, be
ause the W

algorithm fails (dis
overs a typing error) only at a fun
tion appli
ation, it often

identi�es large amounts of program text as the error site. The M algorithm



always stops earlier than the W algorithm [6℄ and 
an be used to report a �ner-

grain error site as shown in Figure 3. TheM algorithm brings a type 
onstraint

(or an expe
ted type) that ea
h subexpression must satisfy. For example, in the


ase of appli
ation, if the required type for appli
ation expression e

1

e

2

is real

from the 
ontext, then the required type for e

1

is � ! real, and the required

type for e

2

is �.

Be
ause it 
arries a 
ontext, the M algorithm reports a �ner grained error

site than the W algorithm, stopping at a 
onstant, a variable, or a lambda

expression. For example, Figure 3 shows the error message produ
ed by the M

algorithm for the same program as in Figure 2. TheM algorithm stops at true,

identifying a smaller error site, but it does not reveal the other sites whi
h are

in 
on
i
t.

The key idea behind IEI is to 
ombine theM algorithm and the UAE algo-

rithm. When the UAE algorithm fails (dis
overs a typing error) at an appli
ation,

and UAE �nds no dire
tly 
on
i
ting uses for ea
h program variable in all the

subexpression, IEI swit
hes to the M algorithm, whi
h always stops at a site

whi
h is smaller than the whole expression. In parti
ular, If the M algorithm

stops at the argument of a appli
ation, there is a 
on
i
t between the fun
tion

and the argument of the appli
ation. For example when theM algorithm stops

at true in Figure 3, it means that the fun
tion (fn x ) x + 1) has a type 
on-


i
t with its argument ((fn y) if y then true else false) false). But

the M algorithm stops too early, it does not report the false is another type

error site.

When type 
he
k fun
tion appli
ation, the IEI algorithm lo
ates the sour
es

of the 
on
i
t by assuming that the argument subexpression where the M al-

gorithm found a type in
onsisten
y is type 
orre
t, and then type 
he
king the

fun
tion subexpression under that assumption. Hen
e we 
an �nd another 
on-


i
ting site in the fun
tion appli
ation, and the reason for the 
on
i
t. This also

removes the left-to-right bias of inferen
e algorithms.

For example Figure 9 shows the error reported by IEI for the same program

as in Figures 2 and 3.

1

The in
remental error inferen
e algorithm IEI gives

error explanation messages by �nding a pair of dire
tly type 
on
i
ting sites,

and showing the reasons for their 
on
i
ts. IEI reports the fun
tion (fn x )

x + 1) and its argument ((fn y ) if y then true else false ) false )

have type 
on
i
ts. Moreover, IEI identi�es the reason for the 
on
i
ts: the

required type of x is a int from the operator + and an operand 1 of +, but x

as the argument in (fn x ) x + 1) is supplied with a bool value. Also the

subexpressions in fn y ) if y then true else false at the sites of true

and false is required as int type by fun
tion (fn x ) x + 1) but they are

bool type.

To avoid arti�
ially-introdu
ed type variables in error reporting, the IEI

infers as mu
h 
on
rete type information su
h as base types as possible.

1

As there are no 
ommon program variables that are in type 
on
i
ts in the subex-

pressions, the UAE algorithm behaves in the same way as the W algorithm and

reports the entire expression as the error site



(fn x ) x+1) ((fn y) if y then true else false ) false )

======================================================

Possible errors in fun
tion:

fn x=>x + 1

======================================================

-------------------- Error --------------------

Error in expression:

+

Error at use of the operator.

required type: bool * int -> 'a

operator type: int * int -> int

-------------------- Error --------------------

Error in expression:

(x, 1)

Type in
onsistent of requirement at the expression.

required type: int * int

a
tual type : bool * int

======================================================

Possible errors in argument:

(fn y=> if y then true else false)(false)

======================================================

-------------------- Error --------------------

Error in expression:

true

Type in
onsistent of requirement at the expression.

required type: int

a
tual type : bool

-------------------- Error --------------------

Error in expression:

false

Type in
onsistent of requirement at the expression.

required type: int

a
tual type : bool

Fig. 9. IEI Algorithm: Pre
ise Error Lo
ation

Others have previously suggested using a 
ombination of type-
he
king algo-

rithms to obtain additional information about type errors. For example, Rideau



and Thery 
ombined a variant of theM algorithm with the W algorithm, also a


ombination of the W andM algorithms found in Standard ML of New Jersey,

Version 110.0.6.

IEI vs. Manifesto We 
ompare the IEI algorithm to the Manifesto using

Figure 9.

1. Corre
t. Like the UAE algorithm, the IEI algorithm reports pairs of type


on
i
ting sites. The types of the error sites in a reported pair are in 
on
i
t.

Both sites are 
ontributors to the type 
on
i
t. For example, in Figure 9 IEI

reports that argument x of int type is supplied with a bool value.

2. Pre
ise. The IEI algorithm reports the smallest 
on
i
ting sites. For exam-

ple, in Figure 2 the W algorithm reports the whole expression as the error

site. In Figures 3, the M algorithm reports the true whi
h is only a part

of the bool appli
ation. This reporting is not suÆ
ient to identify the type

error. In Figure 9, IEI reports that the argument x of int is supplied with

bool value true or false, whi
h is type 
on
i
ting.

3. Su

in
t. Similarly to the UAE algorithm, IEI reports the type 
on
i
t

relationship of the sites and their types. For example, in Figure 9 it reports

that the required type for the appli
ation (fn y ) if y then true else

false) (false) is int by the requirement of the + and an operand 1 of +,

but its a
tual type is bool.

4. Fairly me
hani
al. IEI reports the pairs of sites with type 
on
i
ts. But the

type information of the pairs is inferred by theM algorithm, whi
h is passed

from the top of the expression to its subexpression and may not be as easy

to understand as that from the UAE algorithm.

5. Can be sour
e-based. The implementation is partially sour
e-based.

6. Unbiased. IEI does not assume the �rst use is the 
orre
t use.

7. Comprehensive. IEI �nds a pair of the 
on
i
ting sites.

6 Summary and Con
lusion

Figure 10 summarises the algorithms' performan
e against our manifesto. Cor-

re
tness(1) is omitted from the summary be
ause all of the algorithms are 
or-

re
t. Sour
e-based(5) is omitted, be
ause we believe that an implementation

of any algorithm 
ould be adapted to be sour
e-based. We make the following

observations:

{ The error reporting of the W and M algorithms is very similar, with the

M algorithm having a slight advantage in re
ursive de�nitions and tuple

expressions, be
ause it is more pre
ise. However, the M algorithm error re-

porting may be harder to understand than that of theW algorithm, be
ause

it is not 
omprehensive, and stops too early to supply enough helpful in-

formation. For example, it stops at true in Figure 3 without identifying

false as another 
on
i
t site. The W stop too late and may reports a large


hunk of 
ode as the error site. For example, it reports the entire appli
ation

expression as an error site in Figure 2.



Manifesto W M Wand Johnson and Walz Turner UAE IEI

2. Pre
ise poor very good good good good good very good

3. Su

in
t fair fair poor good good good good

4. Ame
hani
al poor poor fair fair fair good fair

6. Unbiased No No No Yes Yes Yes Yes

7. Comprehensive poor poor good very good good good good

Fig. 10. Error Reporting Systems vs. Manifesto

{ Wand, Johnson, Turner, UAE, and IEI produ
e better error reports than

the W and M algorithms. They do not stop too early as the M algorithm

or stop too late as the W algorithm.

{ Wand's system is the weakest be
ause it is biased and not su

in
t. In the

worse situation, it 
omplains all the subexpressions as the error sites.

{ It is hard to distinguish between Johnson, Turner, UAE, and IEI from our

manifesto.

In addition to the manifesto, we 
an make the following observation based

on general 
onsiderations.

{ Turner's implementation is sour
e-based. The implementations of UAE and

IEI are partially sour
e-based. We 
onsider that this 
ould 
onsiderably

improve error reporting in produ
tion 
ompliers.

{ Johnson's and Turner's method reports the error site by the 
omparison of

the number of di�erent uses. But many errors are of a form where there is

one 
orre
t usage and one in
orre
t usage, and Turner's method reports the

whole expression as a large error site. We 
onsider that reporting the two


on
i
ting subexpressions is better than reporting the whole expression.

{ The type information from the pure UAE algorithm is self-explained, i.e. the

user 
an infer the type information from the reported sites, and the user

does not need look at other parts of the original expression to reason about

the type information. This makes the type information easier to understand.

{ To identify error sites with greater pre
ision, the IEI algorithm uses global

inferen
e, often reporting types from a long 
hain of inferen
e. In e�e
t,

the IEI algorithm gains greater pre
ision at the pri
e of understandability.

Turner's type information is similar to that from the IEI.

From the observations, we 
on
lude that the error reporting from the UAE

algorithm is the easiest to understand. However the UAE algorithm is limited to

reporting the 
on
i
ting uses of the same program variable. Other algorithms

have short
oming in type information of their error reporting, that is the type

information 
omes from a long 
hain of inferen
e.

7 Future Work

We 
onsider that although the error site is important, the type information is


riti
al for understanding the error report. The type information in the error re-



port needs su

in
t explanations to improve its understandability. To give better

error reporting, it is important to understand how humans give error explana-

tion. To over
ome the short
omings of the type explanation systems, in
luding

the type error explanation systems, we have observed how human experts explain

type inferen
e and type errors and are developing a system that reports error in

a similar way [15℄. We now intend to 
omplete our new explanation system, in

parti
ular investigating the generation of maximally su

in
t explanations from

human-like te
hniques.
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