
Improved Type Error Reporting

Jun Yang, Greg Mihaelson, Phil Trinder and J. B. Wells

http://www.ee.hw.a.uk/~feejy1,trinder,greg,jbwg

Department of Computing and Eletrial Engineering

Heriot-Watt University, EDINBURGH, EH14 4AS, UK

Abstrat. The error reports produed by ompilers for languages with

polymorphi type inferene are often uninformative. Several attempts

have been made to produe improved error reports. We de�ne a mani-

festo for good error reports and use it to evaluate both the traditional

algorithms, and several improved algorithms, inluding two of our own

devising.

1 Introdution

Debugging type errors in programs written in polymorphi languages with type

inferene is hard [13, 7℄. One reason is that muh type information is impliit

| inferred by the ompiler. An error ours in type inferene when two uses of

a program variable are found to be in onit, where eah use ours in some

program text that we all a site. These onepts are best illustrated with an

example. In Figure 1, inferene proeeds left-to-right, initially assigning a type

variable 'a to the funtion parameter x. From the �rst use of x, sited at x 1, the

algorithm infers that x is a funtion from integer to some unknown type, i.e.,

x is of type int ! 'b where 'b is a freshly hosen type variable standing for

some as-yet-undetermined type. From the seond use of x, sited at x true, the

algorithm infers that x is a funtion from booleans to some unknown type, i.e.,

x is of type bool ! '. The onit is deteted when the uni�ation of the two

types for x (int ! 'b and bool ! ') fails.

fn x => (x 1, x true)

stdIn:6.9-6.23 Error: operator and operand don't agree [literal℄

operator domain: int

operand: bool

in expression:

x true

Fig. 1. Example of inferene failing

Unfortunately the errors reported by ompilers are often uninformative. Ver-

sion 110 of the SML/NJ ompiler reports the error site x true, but does not

mention x 1, whih is one of the soures of the type onit, and may be the real

error. One reason for this is that ompilers use type inferene algorithms that

are designed primarily to analyze programs eÆiently, and have omprehensible

error reporting as a subsidiary goal.

This paper fouses on improved error reporting for languages with polymor-

phism and type inferene in the style of the Hindley/Milner type system. We

de�ne a manifesto for good type error reporting (setion 2). We use the mani-

festo to identify problems with the error reporting of various inferene algorithms

(setion 3). We briey survey improved error reporting systems (setion 4) and

desribe two new type inferene algorithms with improved error reporting (se-

tion 5). We onlude with a omparative evaluation of type error reporting sys-

tems (setion 6).

2 A Manifesto for Good Type Error Reporting

We think that good error reports should have the following properties:

1. Corret. This entails both orret detetion: errors are reported exatly when

the program is not legal, and orret reporting: all the reported sites on-

tribute to the type onit.

2. Preise. Eah oniting site should be loated in the smallest useful amount

of soure text. Moreover, there should be a simple relationship between the

oniting type and the site from whih it was inferred.

3. Suint. Error report should maximise useful information and minimise

non-useful information. Long and verbose explanations are tedious to read.

Short and terse explanation are hard to understand.

4. Amehanial. An error report should not reprodue large amounts of ounter-

intuitive mehanial inferene. This inludes reporting with arti�ially-introdued

type variables [15℄.

5. Soure-based. The user need not know anything of the ompiler internals

to understand the error message. For example error reports should not use

\ore" syntax generated by the ompiler from the original soure syntax.

The inferene algorithms an infer and report on soure syntax. However

the implementation may be not soure-based.

6. Unbiased. There should no inherent left-to-right (or similar) bias in the

hoie of where to report an error when multiple sites ontribute to the

error.

7. Comprehensive. The algorithm should be able to report all sites that on-

tribute to the reported type onit. The user an reason about the error

from the reported sites and does not need to look at other parts of the

program to loate the error.

Some error reporters aim to report multiple errors instead of stopping at the

�rst error, while avoiding generating a asade of bogus error messages. This is

not inluded in the manifesto as it is not always desirable, for example many

error reporters in the eduation setor stop at the �rst error.

3 Inferene Algorithm Error Reporting

Type inferene algorithms, like theM andW algorithms, are designed primarily

to analyze programs eÆiently, and have omprehensible error reporting as a

subsidiary goal. Throughout the paper we use the W algorithm as implemented

in Standard ML of New Jersey, Version 110.0.6, Otober 31, 1999 [9℄, and our

own implementation of the M algorithm based on [6℄.

Compared to our manifesto, inferene algorithm error reports are both orret

(1) and suint (3), but have the following problems.

{ 2. Not preise. The W algorithm does not identify the preise sites in the

program that onit. In partiular, it fails (i.e., noties an error) only at a

funtion appliation, and an erroneous expression is often suessfully type-

heked long before its onsequene ollides at an appliation. For example,

if typing sueeds for both funtion and argument expressions, but fails at

the (outermost) funtion appliation, the entire expression is reported as

the error site. Figure 2 illustrates this using New Jersey SML where W

algorithm does not report the \obvious" (to a human) problem that the

outermost funtion expets an integer, but its argument is boolean.

The M algorithm is preise, in partiular it always stops earlier than the

W algorithm when there is a type error [6℄. TheM algorithm does not stop

at appliation, it stops at onstant, variable, � abstration instead. Figure 3

shows how it identi�es the site true more preisely.

(fn x) x+1) ((fn y) if y then true else false) false)

stdIn:21.1-21.60 Error: operator and operand don't agree [literal℄

operator domain: int

operand: bool

in expression:

(fn x => x + 1)

((fn y =>

(ase <exp>

of <rule>

| <rule>)) false)

Fig. 2. W Algorithm: Impreise Error Loation

{ 4. Mehanial. The algorithms introdue a type variable for many onstruts

before instantiating the type and error reports use internal type variables

that have no obvious relation to the program text. For example, Figure 4

shows the funtion and orresponding error report produed by Standard ML

of New Jersey, Version 110.0.6 W algorithm. The type variable 'Z appears

nowhere in the program text, having been introdued during inferene.

(fn x) x+1) ((fn y) if y then true else false) false)

-------------------- Error --------------------

Error in expression:

true

Type inonsistent of requirement at the expression.

required type: int

atual type : bool

Fig. 3.M Algorithm: Appliation Error Reporting

fun f2 x (h::t) = h :: f2 t h

stdIn:35.1-35.27 Error: right-hand-side of lause doesn't agree with

funtion result type [irularity℄

expression: 'Z list -> 'Z list

result type: 'Z -> 'Z list

in delaration:

f = (fn arg => (fn <pat> => <exp>))

Fig. 4. Inferene Algorithm: Counter-intuitive Reporting

{ 5. Not Soure-based. Errors are reported using text generated from the ab-

strat syntax tree. For example in Figure 2, SML/NJ 110 reports the error

using a pretty-printed version of its internal abstrat syntax tree, whih is

di�erent from the soure syntax.

{ 6. Biased. The algorithms have a left-to-right bias: type heking proeeds

exhaustively from top to bottom and left to right within the program text.

As shown in Figure 1, the W algorithm presumes that the �rst use of x is

the orret one.

{ 7. Not Comprehensive. The algorithms typially stop at the �rst site in the

program where a onit is deteted when there may be other undeteted

onits in the program. For example, in Figure 5, Edinburgh Standard ML

(ore language) reports f true as the error, and does not �nd the seond

onit with f false and the type error in the result tuple, i.e. if the type

of the appliation of the funtion f is a spei� type e.g 'Z, then the type of

the right-hand side should be the spei� type 'Z, but in the example, the

type of right-hand side is a tuple type 'Z * 'Z * 'Z.

fun f x = (f 3, f true, f false)

Type lash in: (f true)

Looking for a: int

I have found a: bool

Fig. 5. Inferene Algorithm: Non-Comprehensive Reporting

4 Improved Error Reporting

The problems with inferene algorithm error reporting have motivated work

aimed at providing a better understanding of type error, often at the expense

of additional omputation. One approah is to provide better explanation of

how the inferene leads to a type error. The systems that use this approah are

lassi�ed as error explanation systems, e.g., [1, 4, 11℄.

Another approah is to provide a better error report, without neessarily

explaining the inferene that lead to the error. Systems using this approah are

lassi�ed as error reporting systems, e.g., [13, 5, 2, 8, 3℄. A third approah is to

provide a mehanism for the programmer to probe the type of subexpressions [2℄.

4.1 Error Explanation Systems

There have been several error explanation systems. For example, the system of

Duggan and Bend uses a modi�ed uni�ation algorithm to reord the reasons

whih led to a program variable having a partiular type [4℄. The system of

Beaven and Stansifer [1℄ explains how the inferene reahes the two oniting

types. Soosaipillai's system [11℄ explains the type inferene by menu traversal.

Compared to our manifesto, type error explanation systems an be made

omprehensive, preise, and orret. However they fail on several key points.

{ 3. Not Suint. Sometimes the textual explanation has so muh information,

it rapidly beomes tedious. Experts usually �nd this explanation too detailed

to be of real help, though they �nd valuable information about the di�erent

positions in the programs that ontribute to the type given by the tool [10℄.

{ 4. Mehanial. The explanations make substantial use of internal type vari-

ables as bridges between instanes, sine they are the ones that get re�ned.

In ontrast a programmer is not onerned with these type variables. To un-

derstand the explanations, it is neessary to remember from whih program

variable the type variable is inferred and where it is re�ned. If there are more

than a few type variables, it beomes impossible to remember what entity a

type variable represents.

{ 5. Not Soure-based. Explanations use text generated from the abstrat syn-

tax tree, rather than the original program text.

{ 6. Biased. They are based on theW algorithm, whih has a left-to-right bias

in inferring types and disovering errors.

4.2 Error Reporting Systems

Error reports an be improved by loating all error sites, by loating them more

preisely within the program text, or by providing an explanation of the onit.

There have been several approahes, inluding the following.

{ Wand's system [13℄ reords the sites that ontribute to eah type dedution

when type errors are deteted, and uses this information to explain why the

errors happen. The algorithm reords substitutions together with funtion

appliations whih are the auses of the substitution. A type error onsists of

two types that annot be uni�ed, and both are derived by some substitutions:

the algorithm reports eah appliation that aused one of these substitutions

as a possible ause of the error. Where the inonsisteny is found depends

on the arbitrary order of traversal of the syntax tree during type analysis.

Consequently, the number of andidate error sites is also deided by the

programming style. The system lists the possible error sites; some of them

are not the diret soure of the type inonsisteny. It is not lear if there is

any relationship between the andidate error sites: the user needs to hek

the types of the proposed error sites against their own intentions.

{ Johnson andWalz [5℄ give a maximum-ow approah to deide whih usage is

the most likely error soure. The usage that is in the minority is a andidate

for the mistake. However for many errors there is one orret usage and one

inorret usage and it is not lear how often the minority an be isolated,

and sometimes the minority usage may be the orret type.

{ Turner [12℄ onsidered improved error handling for unbound identi�er error

reports, soure-based error reports, and mutually reursive delaration error

reports. Similar to Johnson's method, his method hooses the minority use

as the andidate for the error soure.

{ Bernstein and Stark give a method of debugging type errors in a so-alled

open system [2℄. The user replaes a suspet expression within the program

with a free variable. The system infers the type of the free variable, whih

the user an ompare with that expeted. The user an repeatedly probe the

program in this way until the error is unovered. In ontrast to the other

tehniques, this requires user interation to loate the error. In partiular,

the user must guess the probable loation of the type error.

{ In ongoing work, MAdam uses a graph of types to report errors [8℄. The

graph ontains information about types and the sites that ontribute to the

types, and an explanation is generated by traversing the graph. However,

to generate a onise explanation for some type errors, a suitable graph

traversal must be seleted. It is not lear what the best way to traverse the

graph.

{ The approah of Dinesh and Tip [3℄ requires no hanges to the type inferene

algorithm or the type system. The basi idea is to apply dependene traking

to a rewriting-based implementation of an ML type inferener. A program

slie an be omputed for eah reported type inferene error. A program

slie onsists of the parts of a program that(potentially) a�et the values

omputed at some point of interest. However it is unlear how aurate suh

slies will be in pratie.

4.3 Error Reporting Systems vs. Manifesto

Wand's system is seleted as a typial model based on the W algorithm, using

a modi�ed uni�ation algorithm to generate the explanation. Later work suh

as Duggan and Bent [4℄ and MAdam [7℄ is similar in using modi�ed uni�ation

algorithm to report or explain error. The open system is not inluded in our

evaluation beause it is user-driven type debugging, rather than error reporting.

Also we do not inlude the work of Dinesh and Tip [3℄ beause it is di�erent

from type inferene.

fn n => n* (n=1)

------------------- Error sites ------------------

There are 5 possible sites,

the first one is where inonsistene happened

BOOL ===> INT By *((n, =((n, 1))))

INT * INT ===> INT * INT By =((n, 1))

INT * INT ===> INT * INT By *((n, =((n, 1))))

BOOL ===> BOOL By =((n, 1))

INT ===> INT By =((n, 1))

Fig. 6. Example of Wand's Error Reporting

Wand's system We ompare Wand's approah to our manifesto using Figure 6.

1. Corret. All the sites ontribute to the type onit between int and bool.

2. Preise. It reports only appliations. It is not preise as the M algorithm,

e.g. it an not report smallest sites suh as the operator * and =.

3. Not onise. Its report an be a long list of error sites. In the simple example

of Figure 6, it reports all the appliation subexpressions, and some of them

are redundant.

4. Fairly mehanial. A site may ontribute to substitutions to several types,

there are redundant reports for a single site, for example the site n=1 is

reported three times in Figure 6. But it reports the reasons that ontribute

to the type error.

5. Not soure-based. The implementation is not soure-based.

6. Biased. Wand's approah is to use a modi�ed uni�ation algorithm to au-

mulate the reason of the type onit. If the inferene algorithm has left-to-

right bias, the reports have left-to-right bias as well.

7. Comprehensive. It reports all the possible sites that ontribute to the type

error.

Johnson and Walz's method If a type inonsisteny arises, a maximum ow

tehnique is applied to the set of type equations to determine the most likely

soure of the error. The approah is:

1. Corret. It reports a subset of the possible error soures.

2. Preise. It an ompare the uses of any operator, and report the operator

suh as * and = as the error site.

3. Suint. It hooses the most likely error site.

4. Fairly mehanial. It selets the minority usage as the error site, however

the majority uses may be the ause of the error. If there is just one orret

usage and one inorret usage it is not possible to deide whih is in error.

It is ounter-intuitive in the sense that it does not report oniting sites.

5. Can be soure-based.

6. Unbiased. It does not assume the �rst use is the orret use.

7. Comprehensive. It ompare all the uses and an �nd all the onit sites.

The error explanations an not be illustrated as we have not implemented John-

son and Walz's method.

Turner's method If a type inonsisteny arises, a ount of the di�erent uses

is used to determine the most likely soure of the error. The approah is:

1. Corret. It reports a subset of the probable error soures.

2. Preise. It ompare the types in patterns and appliations. But it is not

preise as the M algorithm and Johnson and Walz's.

3. Suint. It hooses the most likely error site.

4. Amehanial. It selets the minority usage as the error site.

5. Soure-based. It reords the expression the type heker is typing.

6. Unbiased. It does not assume the �rst use is the orret use.

7. Comprehensive. It an �nd all the onit sites.

5 Improved Type Error Reporting

We now present two improved type error reporting algorithms. Both have been

desribed in [14℄, and are only briey outlined here.

5.1 Uni�ation of Assumption Environments (UAE)

The �rst new algorithm is based on the uni�ation of assumption environments.

The key idea is to independently type eah subexpression in an appliation

and return an assumption environment for eah subexpression whih gives the

loal type onstraints for every variable in the subexpression. The onsisteny

of resulting assumption environments is heked at the root of subexpressions.

Left-to-right bias is removed by unifying the assumption environments at the

root of the subexpressions, where we ompare the uses of eah program variable

in di�erent subexpression to see if they are all onsistent: in this way every

subexpression is treated equally.

The UAE algorithm takes a type environment, an assumption environment

and an expression as its arguments. The type environment is the ordinary type

environment as in the W algorithm. The assumption environment ontains the

type onstraints for the program variables in previous typed subexpressions. At

the start of type heking, the type environment and assumption environment

are empty. The assumption environment is used to hek the type onsisteny

of those program variables in other subexpressions and to identify preisely the

�ner grain error sites.

fn x) (x 1, x true)

-------------------- Error --------------------

Type onflits in expressions:

x(1)

x(true)

the same program variables have type onflits in different sites

from the first expression

x: int -> 'a

but from the seond expression

x: bool -> 'b

Fig. 7. Example UAE Error Report

The method is best illustrated by an example, and Figure 7 shows the output

of our implementation for a simple funtion. On the same funtion, Figure 1

shows how the W algorithm proeeds from left to right, inferring a funtion

type for x from its �rst use, and then reporting the onit at the seond use

of x, i.e., it reports x true as the (only) error site in Figure 1. In ontrast, the

UAE algorithm explains that x, whih must have a monomorphi type beause

it is lambda-bound, is used inonsistently in di�erent subexpressions.

Figure 8 shows how the UAE algorithm identi�es the onit between the left-

hand side of a funtion de�nition, and its uses within the body of the funtion.

Figure 4 shows that the W algorithm only reports the entire funtion de�nition

as an error.

UAE vs. Manifesto

fun f2 x (h::t) = h:: f2 t h

-------------------- Error --------------------

Type onflits in expressions:

f2(x)(h :: t)

f2(t)(h)

elements in a pattern have different types

from the first expression ' list

from the seond expression '

Fig. 8. Seond Example UAE Error Report

1. Corret. A reported error site or subexpression, has some relationship with

other sites, i.e., its type onits with that of another site. The UAE algo-

rithm reports pairs of sites with oniting types, e.g., it reports x 1 and x

true as a pair of oniting sites.

2. Preise. It is more preise than theW algorithm. For example in Figure 4 the

W algorithm reports the whole expression as the error site, in Figure 8 the

UAE algorithm reports the left-hand side and right-hand side type onit

of the reursive funtion f2. It loates the smallest pairs of type oniting

sites. And the reported oniting types an be inferred from the reported

sites diretly.

3. Suint. It reports by the type oniting uses of program variables in the

pairs, rather than how it onludes that there are type onits.

4. Amehanial. It reports the oniting sites. Its type information is inferred

from the reported sites. To understand why the reported sites are error

sites, the user needs to understand the reported type information. The type

information from the UAE algorithm is from loal typing of the reported

sites, it is easier to understand than the type information from a long hain

of inferenes, suh as that from the W algorithm.

5. Can be soure-based. The implementation is partially soure-based.

6. Unbiased. Every subexpression of an appliation is treated independently.

7. Comprehensive. The UAE algorithm identi�es the type oniting uses of

the same program variable in a pair of subexpressions.

5.2 Inremental Error Inferene (IEI)

The seond new typing algorithm, inremental error inferene, loates onits

in appliation expressions when the UAE algorithm annot. This additional fun-

tionality is bought by making the algorithm more omplex.

As we have seen in Setion 3, and Figure 2 in partiular, beause the W

algorithm fails (disovers a typing error) only at a funtion appliation, it often

identi�es large amounts of program text as the error site. The M algorithm

always stops earlier than the W algorithm [6℄ and an be used to report a �ner-

grain error site as shown in Figure 3. TheM algorithm brings a type onstraint

(or an expeted type) that eah subexpression must satisfy. For example, in the

ase of appliation, if the required type for appliation expression e

1

e

2

is real

from the ontext, then the required type for e

1

is � ! real, and the required

type for e

2

is �.

Beause it arries a ontext, the M algorithm reports a �ner grained error

site than the W algorithm, stopping at a onstant, a variable, or a lambda

expression. For example, Figure 3 shows the error message produed by the M

algorithm for the same program as in Figure 2. TheM algorithm stops at true,

identifying a smaller error site, but it does not reveal the other sites whih are

in onit.

The key idea behind IEI is to ombine theM algorithm and the UAE algo-

rithm. When the UAE algorithm fails (disovers a typing error) at an appliation,

and UAE �nds no diretly oniting uses for eah program variable in all the

subexpression, IEI swithes to the M algorithm, whih always stops at a site

whih is smaller than the whole expression. In partiular, If the M algorithm

stops at the argument of a appliation, there is a onit between the funtion

and the argument of the appliation. For example when theM algorithm stops

at true in Figure 3, it means that the funtion (fn x) x + 1) has a type on-

it with its argument ((fn y) if y then true else false) false). But

the M algorithm stops too early, it does not report the false is another type

error site.

When type hek funtion appliation, the IEI algorithm loates the soures

of the onit by assuming that the argument subexpression where the M al-

gorithm found a type inonsisteny is type orret, and then type heking the

funtion subexpression under that assumption. Hene we an �nd another on-

iting site in the funtion appliation, and the reason for the onit. This also

removes the left-to-right bias of inferene algorithms.

For example Figure 9 shows the error reported by IEI for the same program

as in Figures 2 and 3.

1

The inremental error inferene algorithm IEI gives

error explanation messages by �nding a pair of diretly type oniting sites,

and showing the reasons for their onits. IEI reports the funtion (fn x)

x + 1) and its argument ((fn y) if y then true else false) false)

have type onits. Moreover, IEI identi�es the reason for the onits: the

required type of x is a int from the operator + and an operand 1 of +, but x

as the argument in (fn x) x + 1) is supplied with a bool value. Also the

subexpressions in fn y) if y then true else false at the sites of true

and false is required as int type by funtion (fn x) x + 1) but they are

bool type.

To avoid arti�ially-introdued type variables in error reporting, the IEI

infers as muh onrete type information suh as base types as possible.

1

As there are no ommon program variables that are in type onits in the subex-

pressions, the UAE algorithm behaves in the same way as the W algorithm and

reports the entire expression as the error site

(fn x) x+1) ((fn y) if y then true else false) false)

==

Possible errors in funtion:

fn x=>x + 1

==

-------------------- Error --------------------

Error in expression:

+

Error at use of the operator.

required type: bool * int -> 'a

operator type: int * int -> int

-------------------- Error --------------------

Error in expression:

(x, 1)

Type inonsistent of requirement at the expression.

required type: int * int

atual type : bool * int

==

Possible errors in argument:

(fn y=> if y then true else false)(false)

==

-------------------- Error --------------------

Error in expression:

true

Type inonsistent of requirement at the expression.

required type: int

atual type : bool

-------------------- Error --------------------

Error in expression:

false

Type inonsistent of requirement at the expression.

required type: int

atual type : bool

Fig. 9. IEI Algorithm: Preise Error Loation

Others have previously suggested using a ombination of type-heking algo-

rithms to obtain additional information about type errors. For example, Rideau

and Thery ombined a variant of theM algorithm with the W algorithm, also a

ombination of the W andM algorithms found in Standard ML of New Jersey,

Version 110.0.6.

IEI vs. Manifesto We ompare the IEI algorithm to the Manifesto using

Figure 9.

1. Corret. Like the UAE algorithm, the IEI algorithm reports pairs of type

oniting sites. The types of the error sites in a reported pair are in onit.

Both sites are ontributors to the type onit. For example, in Figure 9 IEI

reports that argument x of int type is supplied with a bool value.

2. Preise. The IEI algorithm reports the smallest oniting sites. For exam-

ple, in Figure 2 the W algorithm reports the whole expression as the error

site. In Figures 3, the M algorithm reports the true whih is only a part

of the bool appliation. This reporting is not suÆient to identify the type

error. In Figure 9, IEI reports that the argument x of int is supplied with

bool value true or false, whih is type oniting.

3. Suint. Similarly to the UAE algorithm, IEI reports the type onit

relationship of the sites and their types. For example, in Figure 9 it reports

that the required type for the appliation (fn y) if y then true else

false) (false) is int by the requirement of the + and an operand 1 of +,

but its atual type is bool.

4. Fairly mehanial. IEI reports the pairs of sites with type onits. But the

type information of the pairs is inferred by theM algorithm, whih is passed

from the top of the expression to its subexpression and may not be as easy

to understand as that from the UAE algorithm.

5. Can be soure-based. The implementation is partially soure-based.

6. Unbiased. IEI does not assume the �rst use is the orret use.

7. Comprehensive. IEI �nds a pair of the oniting sites.

6 Summary and Conlusion

Figure 10 summarises the algorithms' performane against our manifesto. Cor-

retness(1) is omitted from the summary beause all of the algorithms are or-

ret. Soure-based(5) is omitted, beause we believe that an implementation

of any algorithm ould be adapted to be soure-based. We make the following

observations:

{ The error reporting of the W and M algorithms is very similar, with the

M algorithm having a slight advantage in reursive de�nitions and tuple

expressions, beause it is more preise. However, the M algorithm error re-

porting may be harder to understand than that of theW algorithm, beause

it is not omprehensive, and stops too early to supply enough helpful in-

formation. For example, it stops at true in Figure 3 without identifying

false as another onit site. The W stop too late and may reports a large

hunk of ode as the error site. For example, it reports the entire appliation

expression as an error site in Figure 2.

Manifesto W M Wand Johnson and Walz Turner UAE IEI

2. Preise poor very good good good good good very good

3. Suint fair fair poor good good good good

4. Amehanial poor poor fair fair fair good fair

6. Unbiased No No No Yes Yes Yes Yes

7. Comprehensive poor poor good very good good good good

Fig. 10. Error Reporting Systems vs. Manifesto

{ Wand, Johnson, Turner, UAE, and IEI produe better error reports than

the W and M algorithms. They do not stop too early as the M algorithm

or stop too late as the W algorithm.

{ Wand's system is the weakest beause it is biased and not suint. In the

worse situation, it omplains all the subexpressions as the error sites.

{ It is hard to distinguish between Johnson, Turner, UAE, and IEI from our

manifesto.

In addition to the manifesto, we an make the following observation based

on general onsiderations.

{ Turner's implementation is soure-based. The implementations of UAE and

IEI are partially soure-based. We onsider that this ould onsiderably

improve error reporting in prodution ompliers.

{ Johnson's and Turner's method reports the error site by the omparison of

the number of di�erent uses. But many errors are of a form where there is

one orret usage and one inorret usage, and Turner's method reports the

whole expression as a large error site. We onsider that reporting the two

oniting subexpressions is better than reporting the whole expression.

{ The type information from the pure UAE algorithm is self-explained, i.e. the

user an infer the type information from the reported sites, and the user

does not need look at other parts of the original expression to reason about

the type information. This makes the type information easier to understand.

{ To identify error sites with greater preision, the IEI algorithm uses global

inferene, often reporting types from a long hain of inferene. In e�et,

the IEI algorithm gains greater preision at the prie of understandability.

Turner's type information is similar to that from the IEI.

From the observations, we onlude that the error reporting from the UAE

algorithm is the easiest to understand. However the UAE algorithm is limited to

reporting the oniting uses of the same program variable. Other algorithms

have shortoming in type information of their error reporting, that is the type

information omes from a long hain of inferene.

7 Future Work

We onsider that although the error site is important, the type information is

ritial for understanding the error report. The type information in the error re-

port needs suint explanations to improve its understandability. To give better

error reporting, it is important to understand how humans give error explana-

tion. To overome the shortomings of the type explanation systems, inluding

the type error explanation systems, we have observed how human experts explain

type inferene and type errors and are developing a system that reports error in

a similar way [15℄. We now intend to omplete our new explanation system, in

partiular investigating the generation of maximally suint explanations from

human-like tehniques.

Referenes

1. Mike Beaven and Ryan Stansifer. Explaining type errors in polymorphi languages.

ACM Letters on Programming Languages and Systems, 2:17{30, Marh 1993.

2. Karen L. Bernstein and Eugene W. Stark. Debugging type errors (full version).

Tehnial report, State University of New York at Stony Brook, 1995.

3. T. B. Dinesh and Frank Tip. A sliing-based approah for loating type errors. In

Proeedings of the USENIX Conferene on Domain-Spei� Languages (DSL'97).

Santa Barbara, CA, Ot. 1997.

4. Domini Duggan and Frederik Bent. Explaining type inferene. Siene of Com-

puter Programming, 27:37{83, 1996.

5. Gregory F. Johnson and Janet A. Walz. A maximum ow approah to anomaly

isolation in uni�ation-based inremental type inferene. In Conferene Reord of

the Thirteenth Annual ACM Symposium on Priniples of Programming Languages,

pages 44{57. ACM Press, January 1986.

6. Oukseh Lee and Kwangkeun Yi. Proofs about a folklore let-polymorphi type

inferene algorithm. ACM Transations on Programming Languages and Systems,

20(4):707{723, 1998.

7. Brue J. MAdam. On the Uni�ation of Substitutions in Type Inferene. In

Kevin Hammond, Anthony J. T. Davie, and Chris Clak, editors, Implementation

of Funtional Languages (IFL'98), London, UK, volume 1595 of LNCS, pages 139{

154. Springer-Verlag, September 1998.

8. Brue J. MAdam. Generalising Tehniques for Type Debugging. In Phil Trinder,

Greg Mihaelson, and Hans-Wolfgang Loidl, editors, Trends in Funtional Pro-

gramming, pages 49{57. Intellet, Marh 2000.

9. Robin Milner, Mads Tofte, Robert Harper, and David MaQueen. The De�nition

of Standard ML (Revised). MIT Press, 1997.

10. Laurene Rideau and Laurent Thery. Interative programming environment for

ML. Tehnial Report 3193, Institut National de Reherhe en Informatique et en

Automatique, Marh 1997.

11. Helen Soosaipillai. An explanation based polymorphi type-heker for Standard

ML. Master's thesis, Department of Computer Siene, Heriot-Watt University,

1990.

12. David Turner. Enhaned error handling for ML. CS4 Projet, Department of

Computer Siene, University of Edinburgh, 1990.

13. Mithell Wand. Finding the soure of type errors. In Conferene Reord of the

Thirteenth Annual ACM Symposium on Priniples of Programming Languages,

pages 38{43. ACM Press, January 1986.

14. Jun Yang. Explaining type errors by �nding the soure of a type onit. In Phil

Trinder, Greg Mihaelson, and Hans-Wolfgang Loidl, editors, Trends in Funtional

Programming, pages 58{66. Intellet, Marh 2000.

15. Jun Yang, Greg Mihaelson, and Phil Trinder. How do people hek polymorphi

types? In Alan F. Blakwell and Eleonora Bilotta, editors, Twelfth Annual Meet-

ing of the Psyhology of Programming Interest Group Proeedings, pages 67{77.

Memoria, April 2000.

