Improved Type Error Reporting

Jun Yang, Greg Michaelson, Phil Trinder and J. B. Wells
http://www.cee.hw.ac.uk/"{ceejyl,trinder,greg,jbw}

Department of Computing and Electrical Engineering
Heriot-Watt University, EDINBURGH, EH14 4AS, UK

Abstract. The error reports produced by compilers for languages with
polymorphic type inference are often uninformative. Several attempts
have been made to produce improved error reports. We define a mani-
festo for good error reports and use it to evaluate both the traditional
algorithms, and several improved algorithms, including two of our own
devising.

1 Introduction

Debugging type errors in programs written in polymorphic languages with type
inference is hard [13,7]. One reason is that much type information is implicit
— inferred by the compiler. An error occurs in type inference when two uses of
a program variable are found to be in conflict, where each use occurs in some
program text that we call a site. These concepts are best illustrated with an
example. In Figure 1, inference proceeds left-to-right, initially assigning a type
variable ’a to the function parameter x. From the first use of x, sited at x 1, the
algorithm infers that x is a function from integer to some unknown type, i.e.,
x is of type int — ’b where ’b is a freshly chosen type variable standing for
some as-yet-undetermined type. From the second use of x, sited at x true, the
algorithm infers that x is a function from booleans to some unknown type, i.e.,
x is of type bool — ’c. The conflict is detected when the unification of the two
types for x (int — ’b and bool — ’c) fails.

fn x => (x 1, x true)
stdIn:6.9-6.23 Error: operator and operand don’t agree [literall
operator domain: int
operand: bool
in expression:
X true

Fig. 1. Example of inference failing

Unfortunately the errors reported by compilers are often uninformative. Ver-
sion 110 of the SML/NJ compiler reports the error site x true, but does not

mention x 1, which is one of the sources of the type conflict, and may be the real
error. One reason for this is that compilers use type inference algorithms that
are designed primarily to analyze programs efficiently, and have comprehensible
error reporting as a subsidiary goal.

This paper focuses on improved error reporting for languages with polymor-
phism and type inference in the style of the Hindley/Milner type system. We
define a manifesto for good type error reporting (section 2). We use the mani-
festo to identify problems with the error reporting of various inference algorithms
(section 3). We briefly survey improved error reporting systems (section 4) and
describe two new type inference algorithms with improved error reporting (sec-
tion 5). We conclude with a comparative evaluation of type error reporting sys-
tems (section 6).

2 A Manifesto for Good Type Error Reporting

We think that good error reports should have the following properties:

1. Correct. This entails both correct detection: errors are reported exactly when
the program is not legal, and correct reporting: all the reported sites con-
tribute to the type conflict.

2. Precise. Each conflicting site should be located in the smallest useful amount
of source text. Moreover, there should be a simple relationship between the
conflicting type and the site from which it was inferred.

3. Succinct. Error report should maximise useful information and minimise
non-useful information. Long and verbose explanations are tedious to read.
Short and terse explanation are hard to understand.

4. Amechanical. An error report should not reproduce large amounts of counter-

intuitive mechanical inference. This includes reporting with artificially-introduced

type variables [15].

5. Source-based. The user need not know anything of the compiler internals
to understand the error message. For example error reports should not use
“core” syntax generated by the compiler from the original source syntax.
The inference algorithms can infer and report on source syntax. However
the implementation may be not source-based.

6. Unbiased. There should no inherent left-to-right (or similar) bias in the
choice of where to report an error when multiple sites contribute to the
error.

7. Comprehensive. The algorithm should be able to report all sites that con-
tribute to the reported type conflict. The user can reason about the error
from the reported sites and does not need to look at other parts of the
program to locate the error.

Some error reporters aim to report multiple errors instead of stopping at the
first error, while avoiding generating a cascade of bogus error messages. This is
not included in the manifesto as it is not always desirable, for example many
error reporters in the education sector stop at the first error.

3 Inference Algorithm Error Reporting

Type inference algorithms, like the M and W algorithms, are designed primarily
to analyze programs efficiently, and have comprehensible error reporting as a
subsidiary goal. Throughout the paper we use the W algorithm as implemented
in Standard ML of New Jersey, Version 110.0.6, October 31, 1999 [9], and our
own implementation of the M algorithm based on [6].

Compared to our manifesto, inference algorithm error reports are both correct
(1) and succinct (3), but have the following problems.

— 2. Not precise. The W algorithm does not identify the precise sites in the

program that conflict. In particular, it fails (i.e., notices an error) only at a
function application, and an erroneous expression is often successfully type-
checked long before its consequence collides at an application. For example,
if typing succeeds for both function and argument expressions, but fails at
the (outermost) function application, the entire expression is reported as
the error site. Figure 2 illustrates this using New Jersey SML where W
algorithm does not report the “obvious” (to a human) problem that the
outermost function expects an integer, but its argument is boolean.
The M algorithm is precise, in particular it always stops earlier than the
W algorithm when there is a type error [6]. The M algorithm does not stop
at application, it stops at constant, variable, A abstraction instead. Figure 3
shows how it identifies the site true more precisely.

(fn x = x+1) ((fn y= if y then true else false) false)

stdIn:21.1-21.60 Error: operator and operand don’t agree [literall
operator domain: int
operand: bool
in expression:
(fn x => x + 1)
((fn y =>
(case <exp>
of <rule>
| <rule>)) false)

Fig. 2. W Algorithm: Imprecise Error Location

— 4. Mechanical. The algorithms introduce a type variable for many constructs
before instantiating the type and error reports use internal type variables
that have no obvious relation to the program text. For example, Figure 4
shows the function and corresponding error report, produced by Standard ML
of New Jersey, Version 110.0.6 W algorithm. The type variable ’Z appears
nowhere in the program text, having been introduced during inference.

(fn x = x+1) ((fn y= if y then true else false) false)

Error in expression:
true

Type inconsistent of requirement at the expression.
required type: int
actual type : bool

Fig. 3. M Algorithm: Application Error Reporting

fun f2 x (h::t) =h :: f2 t h

stdIn:35.1-35.27 Error: right-hand-side of clause doesn’t agree with
function result type [circularity]
expression: ’Z list -> ’Z list
result type: ’Z -> ’Z list
in declaration:
f = (fn arg => (fn <pat> => <exp>))

Fig. 4. Inference Algorithm: Counter-intuitive Reporting

— 5. Not Source-based. Errors are reported using text generated from the ab-
stract syntax tree. For example in Figure 2, SML/NJ 110 reports the error
using a pretty-printed version of its internal abstract syntax tree, which is
different from the source syntax.

— 6. Biased. The algorithms have a left-to-right bias: type checking proceeds
exhaustively from top to bottom and left to right within the program text.
As shown in Figure 1, the W algorithm presumes that the first use of x is
the correct one.

— 7. Not Comprehensive. The algorithms typically stop at the first site in the
program where a conflict is detected when there may be other undetected
conflicts in the program. For example, in Figure 5, Edinburgh Standard ML
(core language) reports £ true as the error, and does not find the second
conflict with £ false and the type error in the result tuple, i.e. if the type
of the application of the function f is a specific type e.g >Z, then the type of
the right-hand side should be the specific type ’Z, but in the example, the
type of right-hand side is a tuple type ’Z * °Z * *Z.

fun f x = (f 3, £ true, f false)
Type clash in: (f true)

Looking for a: int

I have found a: bool

Fig. 5. Inference Algorithm: Non-Comprehensive Reporting

4 TImproved Error Reporting

The problems with inference algorithm error reporting have motivated work
aimed at providing a better understanding of type error, often at the expense
of additional computation. One approach is to provide better explanation of
how the inference leads to a type error. The systems that use this approach are
classified as error ezplanation systems, e.g., [1,4,11].

Another approach is to provide a better error report, without necessarily
explaining the inference that lead to the error. Systems using this approach are
classified as error reporting systems, e.g., [13,5,2,8,3]. A third approach is to
provide a mechanism for the programmer to probe the type of subexpressions [2].

4.1 Error Explanation Systems

There have been several error explanation systems. For example, the system of
Duggan and Bend uses a modified unification algorithm to record the reasons
which led to a program variable having a particular type [4]. The system of
Beaven and Stansifer [1] explains how the inference reaches the two conflicting
types. Soosaipillai’s system [11] explains the type inference by menu traversal.
Compared to our manifesto, type error explanation systems can be made
comprehensive, precise, and correct. However they fail on several key points.

— 3. Not Succinct. Sometimes the textual explanation has so much information,
it rapidly becomes tedious. Experts usually find this explanation too detailed
to be of real help, though they find valuable information about the different
positions in the programs that contribute to the type given by the tool [10].

— 4. Mechanical. The explanations make substantial use of internal type vari-
ables as bridges between instances, since they are the ones that get refined.
In contrast a programmer is not concerned with these type variables. To un-
derstand the explanations, it is necessary to remember from which program
variable the type variable is inferred and where it is refined. If there are more
than a few type variables, it becomes impossible to remember what entity a
type variable represents.

— 5. Not Source-based. Explanations use text generated from the abstract syn-
tax tree, rather than the original program text.

— 6. Biased. They are based on the W algorithm, which has a left-to-right bias
in inferring types and discovering errors.

4.2 Error Reporting Systems

Error reports can be improved by locating all error sites, by locating them more
precisely within the program text, or by providing an explanation of the conflict.
There have been several approaches, including the following.

— Wand’s system [13] records the sites that contribute to each type deduction
when type errors are detected, and uses this information to explain why the
errors happen. The algorithm records substitutions together with function
applications which are the causes of the substitution. A type error consists of
two types that cannot be unified, and both are derived by some substitutions:
the algorithm reports each application that caused one of these substitutions
as a possible cause of the error. Where the inconsistency is found depends
on the arbitrary order of traversal of the syntax tree during type analysis.
Consequently, the number of candidate error sites is also decided by the
programming style. The system lists the possible error sites; some of them
are not the direct source of the type inconsistency. It is not clear if there is
any relationship between the candidate error sites: the user needs to check
the types of the proposed error sites against their own intentions.

— Johnson and Walz [5] give a maximum-flow approach to decide which usage is
the most likely error source. The usage that is in the minority is a candidate
for the mistake. However for many errors there is one correct usage and one
incorrect usage and it is not clear how often the minority can be isolated,
and sometimes the minority usage may be the correct type.

— Turner [12] considered improved error handling for unbound identifier error
reports, source-based error reports, and mutually recursive declaration error
reports. Similar to Johnson’s method, his method chooses the minority use
as the candidate for the error source.

— Bernstein and Stark give a method of debugging type errors in a so-called
open system [2]. The user replaces a suspect expression within the program
with a free variable. The system infers the type of the free variable, which
the user can compare with that expected. The user can repeatedly probe the
program in this way until the error is uncovered. In contrast to the other
techniques, this requires user interaction to locate the error. In particular,
the user must guess the probable location of the type error.

— In ongoing work, McAdam uses a graph of types to report errors [8]. The
graph contains information about types and the sites that contribute to the
types, and an explanation is generated by traversing the graph. However,
to generate a concise explanation for some type errors, a suitable graph
traversal must be selected. It is not clear what the best way to traverse the
graph.

— The approach of Dinesh and Tip [3] requires no changes to the type inference
algorithm or the type system. The basic idea is to apply dependence tracking
to a rewriting-based implementation of an ML type inferencer. A program
slice can be computed for each reported type inference error. A program
slice consists of the parts of a program that(potentially) affect the values

computed at some point of interest. However it is unclear how accurate such
slices will be in practice.

4.3 Error Reporting Systems vs. Manifesto

Wand’s system is selected as a typical model based on the W algorithm, using
a modified unification algorithm to generate the explanation. Later work such
as Duggan and Bent [4] and McAdam [7] is similar in using modified unification
algorithm to report or explain error. The open system is not included in our
evaluation because it is user-driven type debugging, rather than error reporting.
Also we do not include the work of Dinesh and Tip [3] because it is different
from type inference.

fn n => n*x (n=1)

——————————————————— Error sites --——-———--—-————-—-
There are 5 possible sites,

the first one is where inconsistence happened
BOOL ===> INT By *((n, =((n, 1))))

INT # INT ===> INT * INT By =((n, 1))

INT # INT ===> INT * INT By #*((n, =((n, 1))))
BOOL ===> BOOL By =((n, 1))

INT ===> INT By =((n, 1))

Fig. 6. Example of Wand’s Error Reporting

Wand’s system We compare Wand’s approach to our manifesto using Figure 6.

[y

Correct. All the sites contribute to the type conflict between int and bool.

2. Precise. It reports only applications. It is not precise as the M algorithm,
e.g. it can not report smallest sites such as the operator * and =.

3. Not concise. Its report can be a long list of error sites. In the simple example
of Figure 6, it reports all the application subexpressions, and some of them
are redundant.

4. Fairly mechanical. A site may contribute to substitutions to several types,
there are redundant reports for a single site, for example the site n=1 is
reported three times in Figure 6. But it reports the reasons that contribute
to the type error.

5. Not source-based. The implementation is not source-based.

6. Biased. Wand’s approach is to use a modified unification algorithm to accu-

mulate the reason of the type conflict. If the inference algorithm has left-to-

right bias, the reports have left-to-right bias as well.

7. Comprehensive. It reports all the possible sites that contribute to the type
erTor.

Johnson and Walz’s method If a type inconsistency arises, a maximum flow
technique is applied to the set of type equations to determine the most likely
source of the error. The approach is:

1. Correct. It reports a subset of the possible error sources.

2. Precise. It can compare the uses of any operator, and report the operator

such as * and = as the error site.

Succinct. It chooses the most likely error site.

4. Fairly mechanical. It selects the minority usage as the error site, however
the majority uses may be the cause of the error. If there is just one correct
usage and one incorrect usage it is not possible to decide which is in error.
It is counter-intuitive in the sense that it does not report conflicting sites.

5. Can be source-based.

6. Unbiased. It does not assume the first use is the correct use.

7. Comprehensive. It compare all the uses and can find all the conflict sites.

w

The error explanations can not be illustrated as we have not implemented John-
son and Walz’s method.

Turner’s method If a type inconsistency arises, a count of the different uses
is used to determine the most likely source of the error. The approach is:

1. Correct. It reports a subset of the probable error sources.

2. Precise. It compare the types in patterns and applications. But it is not
precise as the M algorithm and Johnson and Walz’s.

Succinct. It chooses the most likely error site.

Amechanical. Tt selects the minority usage as the error site.

Source-based. It records the expression the type checker is typing.
Unbiased. It does not assume the first use is the correct use.
Comprehensive. It can find all the conflict sites.

No ot

5 Improved Type Error Reporting

We now present two improved type error reporting algorithms. Both have been
described in [14], and are only briefly outlined here.

5.1 Unification of Assumption Environments (U{AE)

The first new algorithm is based on the unification of assumption environments.
The key idea is to independently type each subexpression in an application
and return an assumption environment for each subexpression which gives the
local type constraints for every variable in the subexpression. The consistency

of resulting assumption environments is checked at the root of subexpressions.
Left-to-right bias is removed by unifying the assumption environments at the
root of the subexpressions, where we compare the uses of each program variable
in different subexpression to see if they are all consistent: in this way every
subexpression is treated equally.

The UAE algorithm takes a type environment, an assumption environment
and an expression as its arguments. The type environment is the ordinary type
environment as in the W algorithm. The assumption environment contains the
type constraints for the program variables in previous typed subexpressions. At
the start of type checking, the type environment and assumption environment
are empty. The assumption environment is used to check the type consistency
of those program variables in other subexpressions and to identify precisely the
finer grain error sites.

fn x = (x 1, x true)

———————————————————— Error -—-——---———————————--
Type conflicts in expressions:

x(1)

x (true)

the same program variables have type conflicts in different sites
from the first expression
x: int -> ’a

but from the second expression
x: bool -> ’b

Fig. 7. Example /AE Error Report

The method is best illustrated by an example, and Figure 7 shows the output
of our implementation for a simple function. On the same function, Figure 1
shows how the W algorithm proceeds from left to right, inferring a function
type for x from its first use, and then reporting the conflict at the second use
of x, i.e., it reports x true as the (only) error site in Figure 1. In contrast, the
UAE algorithm explains that x, which must have a monomorphic type because
it is lambda-bound, is used inconsistently in different subexpressions.

Figure 8 shows how the U//AE algorithm identifies the conflict between the left-
hand side of a function definition, and its uses within the body of the function.
Figure 4 shows that the W algorithm only reports the entire function definition
as an error.

UAE vs. Manifesto

fun f2 x (h::t) = h:: f2 t h
———————————————————— Error -———----————-—————--
Type conflicts in expressions:

f2(x)(h :: t)

£2(t) (h)

elements in a pattern have different types
from the first expression ’c list
from the second expression ’c

Fig. 8. Second Example U/aE Error Report

1. Correct. A reported error site or subexpression, has some relationship with
other sites, i.e., its type conflicts with that of another site. The U/ AE algo-
rithm reports pairs of sites with conflicting types, e.g., it reports x 1 and x
true as a pair of conflicting sites.

2. Precise. It is more precise than the W algorithm. For example in Figure 4 the
W algorithm reports the whole expression as the error site, in Figure 8 the
UAE algorithm reports the left-hand side and right-hand side type conflict
of the recursive function £2. It locates the smallest pairs of type conflicting
sites. And the reported conflicting types can be inferred from the reported
sites directly.

3. Succinct. It reports by the type conflicting uses of program variables in the
pairs, rather than how it concludes that there are type conflicts.

4. Amechanical. Tt reports the conflicting sites. Its type information is inferred
from the reported sites. To understand why the reported sites are error
sites, the user needs to understand the reported type information. The type
information from the U/ AE algorithm is from local typing of the reported
sites, it is easier to understand than the type information from a long chain
of inferences, such as that from the W algorithm.

5. Can be source-based. The implementation is partially source-based.

Unbiased. Every subexpression of an application is treated independently.

7. Comprehensive. The U/AE algorithm identifies the type conflicting uses of
the same program variable in a pair of subexpressions.

>

5.2 Incremental Error Inference (ZET)

The second new typing algorithm, incremental error inference, locates conflicts
in application expressions when the I/ AE algorithm cannot. This additional func-
tionality is bought by making the algorithm more complex.

As we have seen in Section 3, and Figure 2 in particular, because the W
algorithm fails (discovers a typing error) only at a function application, it often
identifies large amounts of program text as the error site. The M algorithm

always stops earlier than the W algorithm [6] and can be used to report a finer-
grain error site as shown in Figure 3. The M algorithm brings a type constraint
(or an expected type) that each subexpression must satisfy. For example, in the
case of application, if the required type for application expression ejes is real
from the context, then the required type for e; is 3 — real, and the required
type for es is (3.

Because it carries a context, the M algorithm reports a finer grained error
site than the W algorithm, stopping at a constant, a variable, or a lambda
expression. For example, Figure 3 shows the error message produced by the M
algorithm for the same program as in Figure 2. The M algorithm stops at true,
identifying a smaller error site, but it does not reveal the other sites which are
in conflict.

The key idea behind ZEZ is to combine the M algorithm and the U/AE algo-
rithm. When the i/ AE algorithm fails (discovers a typing error) at an application,
and UAE finds no directly conflicting uses for each program variable in all the
subexpression, ZET switches to the M algorithm, which always stops at a site
which is smaller than the whole expression. In particular, If the M algorithm
stops at the argument of a application, there is a conflict between the function
and the argument of the application. For example when the M algorithm stops
at true in Figure 3, it means that the function (fn x = x + 1) has a type con-
flict with its argument ((fn y=- if y then true else false) false). But
the M algorithm stops too early, it does not report the false is another type
error site.

When type check function application, the ZEZ algorithm locates the sources
of the conflict by assuming that the argument subexpression where the M al-
gorithm found a type inconsistency is type correct, and then type checking the
function subexpression under that assumption. Hence we can find another con-
flicting site in the function application, and the reason for the conflict. This also
removes the left-to-right bias of inference algorithms.

For example Figure 9 shows the error reported by ZEZ for the same program
as in Figures 2 and 3.! The incremental error inference algorithm ZEZ gives
error explanation messages by finding a pair of directly type conflicting sites,
and showing the reasons for their conflicts. ZEZ reports the function (fn x =
x + 1) and its argument ((fn y = if y then true else false) false)
have type conflicts. Moreover, ZET identifies the reason for the conflicts: the
required type of x is a int from the operator + and an operand 1 of +, but x
as the argument in (fn x = x + 1) is supplied with a bool value. Also the
subexpressions in fn y = if y then true else false at the sites of true
and false is required as int type by function (fn x = x + 1) but they are
bool type.

To avoid artificially-introduced type variables in error reporting, the ZET
infers as much concrete type information such as base types as possible.

! As there are no common program variables that are in type conflicts in the subex-
pressions, the U/AE algorithm behaves in the same way as the W/ algorithm and
reports the entire expression as the error site

(fn x = x+1) ((fn y= if y then true else false) false)

Possible errors in function:
fn x=>x + 1

Error in expression:
+

Error at use of the operator.
required type: bool * int -> ’a
operator type: int * int -> int

Error in expression:
(x, 1)

Type inconsistent of requirement at the expression.
required type: int * int
actual type : bool * int

Possible errors in argument:
(fn y=> if y then true else false) (false)

Error in expression:
true

Type inconsistent of requirement at the expression.
required type: int
actual type : bool

Error in expression:
false
Type inconsistent of requirement at the expression.

required type: int
actual type : bool

Fig. 9. ZET Algorithm: Precise Error Location

Others have previously suggested using a combination of type-checking algo-
rithms to obtain additional information about type errors. For example, Rideau

and Thery combined a variant of the M algorithm with the W algorithm, also a
combination of the W and M algorithms found in Standard ML of New Jersey,
Version 110.0.6.

ZET vs. Manifesto We compare the ZET algorithm to the Manifesto using
Figure 9.

1.

N oo

6

Correct. Like the U/ AE algorithm, the ZET algorithm reports pairs of type
conflicting sites. The types of the error sites in a reported pair are in conflict.
Both sites are contributors to the type conflict. For example, in Figure 9 ZET
reports that argument x of int type is supplied with a bool value.

Precise. The ZET algorithm reports the smallest conflicting sites. For exam-
ple, in Figure 2 the W algorithm reports the whole expression as the error
site. In Figures 3, the M algorithm reports the true which is only a part
of the bool application. This reporting is not sufficient to identify the type
error. In Figure 9, ZET reports that the argument x of int is supplied with
bool value true or false, which is type conflicting.

Succinct. Similarly to the U/AE algorithm, ZET reports the type conflict
relationship of the sites and their types. For example, in Figure 9 it reports
that the required type for the application (fn y = if y then true else
false) (false) is int by the requirement of the + and an operand 1 of +,
but its actual type is bool.

Fairly mechanical. ZET reports the pairs of sites with type conflicts. But the
type information of the pairs is inferred by the M algorithm, which is passed
from the top of the expression to its subexpression and may not be as easy
to understand as that from the //AE algorithm.

Can be source-based. The implementation is partially source-based.
Unbiased. ZET does not, assume the first use is the correct use.
Comprehensive. ZET finds a pair of the conflicting sites.

Summary and Conclusion

Figure 10 summarises the algorithms’ performance against our manifesto. Cor-
rectness(1) is omitted from the summary because all of the algorithms are cor-
rect. Source-based(5) is omitted, because we believe that an implementation
of any algorithm could be adapted to be source-based. We make the following
observations:

— The error reporting of the W and M algorithms is very similar, with the

M algorithm having a slight advantage in recursive definitions and tuple
expressions, because it is more precise. However, the M algorithm error re-
porting may be harder to understand than that of the W algorithm, because
it is not comprehensive, and stops too early to supply enough helpful in-
formation. For example, it stops at true in Figure 3 without identifying
false as another conflict site. The W stop too late and may reports a large
chunk of code as the error site. For example, it reports the entire application
expression as an error site in Figure 2.

Manifesto w M Wand|Johnson and Walz|Turner| Uae| ZET
2. Precise poor|very good| good good good |good |very good
3. Succinct fair fair poor good good |good| good
4. Amechanical ||poor| poor fair fair fair |good fair
6. Unbiased No No No Yes Yes | Yes Yes
7. Comprehensive||poor| poor good very good good |good| good
Fig. 10. Error Reporting Systems vs. Manifesto
— Wand, Johnson, Turner, /AE, and ZET produce better error reports than
the W and M algorithms. They do not stop too early as the M algorithm
or stop too late as the W algorithm.
— Wand’s system is the weakest because it is biased and not succinct. In the
worse situation, it complains all the subexpressions as the error sites.
— It is hard to distinguish between Johnson, Turner, YAE, and ZEZ from our
manifesto.
In addition to the manifesto, we can make the following observation based
on general considerations.

Turner’s implementation is source-based. The implementations of //AE and
TZET are partially source-based. We consider that this could considerably
improve error reporting in production compliers.

Johnson’s and Turner’s method reports the error site by the comparison of
the number of different uses. But many errors are of a form where there is
one correct usage and one incorrect usage, and Turner’s method reports the
whole expression as a large error site. We consider that reporting the two
conflicting subexpressions is better than reporting the whole expression.
The type information from the pure U/ AE algorithm is self-explained, i.e. the
user can infer the type information from the reported sites, and the user
does not need look at other parts of the original expression to reason about
the type information. This makes the type information easier to understand.
To identify error sites with greater precision, the ZEZ algorithm uses global
inference, often reporting types from a long chain of inference. In effect,
the ZET algorithm gains greater precision at the price of understandability.
Turner’s type information is similar to that from the ZET.

From the observations, we conclude that the error reporting from the U/ AE

algorithm is the easiest to understand. However the I/ AE algorithm is limited to
reporting the conflicting uses of the same program variable. Other algorithms
have shortcoming in type information of their error reporting, that is the type
information comes from a long chain of inference.

7

Future Work

We consider that although the error site is important, the type information is
critical for understanding the error report. The type information in the error re-

port needs succinct explanations to improve its understandability. To give better
error reporting, it is important to understand how humans give error explana-
tion. To overcome the shortcomings of the type explanation systems, including
the type error explanation systems, we have observed how human experts explain
type inference and type errors and are developing a system that reports error in
a similar way [15]. We now intend to complete our new explanation system, in
particular investigating the generation of maximally succinct explanations from
human-like techniques.

References

10.

11.

12.

13.

. Mike Beaven and Ryan Stansifer. Explaining type errors in polymorphic languages.

ACM Letters on Programming Languages and Systems, 2:17-30, March 1993.
Karen L. Bernstein and Eugene W. Stark. Debugging type errors (full version).
Technical report, State University of New York at Stony Brook, 1995.

T. B. Dinesh and Frank Tip. A slicing-based approach for locating type errors. In
Proceedings of the USENIX Conference on Domain-Specific Languages (DSL’97).
Santa Barbara, CA, Oct. 1997.

Dominic Duggan and Frederick Bent. Explaining type inference. Science of Com-
puter Programming, 27:37-83, 1996.

Gregory F. Johnson and Janet A. Walz. A maximum flow approach to anomaly
isolation in unification-based incremental type inference. In Conference Record of
the Thirteenth Annual ACM Symposium on Principles of Programming Languages,
pages 44-57. ACM Press, January 1986.

Oukseh Lee and Kwangkeun Yi. Proofs about a folklore let-polymorphic type
inference algorithm. ACM Transactions on Programming Languages and Systems,
20(4):707-723, 1998.

Bruce J. McAdam. On the Unification of Substitutions in Type Inference. In
Kevin Hammond, Anthony J. T. Davie, and Chris Clack, editors, Implementation
of Functional Languages (IFL’98), London, UK, volume 1595 of LNCS, pages 139—
154. Springer-Verlag, September 1998.

Bruce J. McAdam. Generalising Techniques for Type Debugging. In Phil Trinder,
Greg Michaelson, and Hans-Wolfgang Loidl, editors, Trends in Functional Pro-
gramming, pages 49-57. Intellect, March 2000.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised). MIT Press, 1997.

Laurence Rideau and Laurent Thery. Interactive programming environment for
ML. Technical Report 3193, Institut National de Recherche en Informatique et en
Automatique, March 1997.

Helen Soosaipillai. An explanation based polymorphic type-checker for Standard
ML. Master’s thesis, Department of Computer Science, Heriot-Watt University,
1990.

David Turner. Enhanced error handling for ML. CS4 Project, Department of
Computer Science, University of Edinburgh, 1990.

Mitchell Wand. Finding the source of type errors. In Conference Record of the
Thirteenth Annual ACM Symposium on Principles of Programming Languages,
pages 38-43. ACM Press, January 1986.

14.

15.

Jun Yang. Explaining type errors by finding the source of a type conflict. In Phil
Trinder, Greg Michaelson, and Hans-Wolfgang Loidl, editors, Trends in Functional
Programming, pages 58-66. Intellect, March 2000.

Jun Yang, Greg Michaelson, and Phil Trinder. How do people check polymorphic
types? In Alan F. Blackwell and Eleonora Bilotta, editors, Twelfth Annual Meet-
ing of the Psychology of Programming Interest Group Proceedings, pages 67-77.
Memoria, April 2000.

