
Chapter 1

Low Pain vs No Pain
Multi-core Haskells
M. KH. Aswad , P. W. Trinder, A. D. Al Zain, G. J. Michaelson 1, J.
Berthold2

Abstract: Multicores are becoming the dominant processor technology and func-
tional languages are theoretically well suited to exploit them. In practice, how-
ever, implementing effective high level parallel functional languages is extremely
challenging.

This paper is the first programming and performance comparison of functional
multicore technologies and reports some of the first ever multicore results for two
languages. As such it reflects the growing maturity of the field by systematically
evaluating four parallel Haskell implementations on a common multicore archi-
tecture. The comparison contrasts the programming effort each language requires
with the parallel performance delivered. The study uses 15 ’typical’ programs to
compare a ’no pain’, i.e. entirely implicit, parallel language with three ’low pain’,
i.e. semi-explicit languages.

The parallel Haskell implementations use different versions of GHC compiler
technology, and hence the comparative performance metric is speedup which nor-
malises against sequential performance. We ground the speedup comparisons
by reporting both sequential and parallel runtimes and efficiencies for three of
the languages. Our experiments focus on the number of programs improved, the
absolute speedups delivered, the parallel scalability, and the program changes re-
quired to coordinate parallelism. The results are encouraging and, on occasion,
surprising.

1School of Mathematics and Computer Sciences, Heriot-Watt University,
Edinburgh, UK; {mka19,trinder,ceeatia,greg}@macs.hw.ac.uk

2Datalogisk Institut, University of Copenhagen, berthold@diku.dk

1

2 CHAPTER 1. PARALLEL HASKELLS

1.1 INTRODUCTION

Physical limits of semiconductor technology and improved manufacturing tech-
nologies are driving processor technology towards multi and many cores. This
hardware trend has engendered much interest in functional languages, as their
statelessness makes them well suited to exploit multicore architectures, and match-
ing interest in the functional community to exploit the new hardware, e.g. [1].

Typically a parallel functional program must not only specify the computation
i.e. a correct and efficient algorithm, it must also specify the coordination e.g. how
the program is partitioned, or how parts of the program are placed on processors.
Most parallel functional languages incorporate high level coordination sublan-
guages and a range of models have been used including data parallelism e.g. [5],
semi-explicit models e.g. [13], coordination languages e.g. [17], and algorithmic
skeletons e.g. [15]. The ultimate extreme is to make coordination entirely implicit,
typically using either profiling as in [11] or parallel iteration as in [8]. The slogan
associated with languages with high-level coordination is ’Low Pain Parallelism’
and with implicit languages is ’No Pain Parallelism’.

This paper reflects the current status of multicore functional programming by
systematically comparing four parallel Haskell implementations on a common
multicore architecture (Section 1.4). We compare a ’no pain’ parallel imple-
mentation Feedback Directed Implicit Parallelism (FDIP) [11], with three ’low
pain’, i.e. semi-explicit languages [9] (Section 1.2). The semi-explicit Haskells
are Eden [13] and two implementations of Glasgow parallel Haskell (GpH) [23],
namely GpH-SMP, an optimised shared memory implementation integrated in
GHC [14], and GpH-GUM, a message-passing implementation designed for shared
and distributed memory architectures [22] (Section 1.3).

Our performance comparisons are based on speedups, which normalise against
different sequential performance. The baseline for the speedup comparisons are
sequential and parallel runtimes and efficiencies for three languages (Section 1.5).
Section 1.6 reports parallel performance and programming effort, focusing on the
number of programs improved, speedups delivered, and program changes required
to coordinate parallel evaluation. We compare the scalability, the programming
effort required, and the parallel performance achieved, in each language (Sec-
tion 1.7). In the concluding Section 1.8, we summarise the key results and discuss
their implications. An expanded version of the paper is available as [2].

1.2 PARALLEL HASKELL LANGUAGE COMPARISON
This section outlines GpH and Eden, the two semi-explicit Haskell extensions that
are compared in the remainder of the paper. The FDIP implicit approach we con-
sider supports an unchanged Concurrent Haskell [18]. Indeed although both Eden
and GpH-SMP also support concurrency i.e. multiple stateful (IO) threads, our
language comparisons focuses on parallelism only. We illustrate the coordination
extensions by using them to parallelise the Boyer nofib program [16]. Figure 1.1
shows the key top-level function where, in an obvious extension to the original
program, the input size n is passed as a parameter.

1.2. PARALLEL HASKELL LANGUAGE COMPARISON 3

test :: Int -> Bool
test n = all test0 (take n (repeat (Var X)))

FIGURE 1.1. Sequential Top-level Boyer function

Glasgow parallel Haskell (GpH) GpH is a modest extension of Haskell98 with
parallel (par) and sequential (seq) composition as coordination primitives. Eval-
uation strategies abstract over par and seq to provide lazy, polymorphic, higher-
order functions that control the evaluation degree and the parallelism of an expres-
sion [23].

test n m = all (&& True) res
where
xs = take n (repeat (Var X))
xs1 = splitAtN m xs
res = map (all test0) xs1

‘using‘ parList rnf
splitAtN :: Int -> [a] -> [[a]]
splitAtN n [] = []
splitAtN n xs = ys : splitAtN n zs

where (ys,zs) = splitAt n xs

FIGURE 1.2. GpH Top Boyer function

test n m f = all (&& True) res
where
xs = take n (repeat (Var X))
xs1 = splitAtN m xs
res = parallelMap (all test0) xs1
parallelMap = mw np pf
np = noPe
pf = min 100 maxpf
maxpf = max 2 (n ‘div‘ (m*np*f)))

splitAtN :: Int -> [a] -> [[a]]
splitAtN n [] =... -- see on the left

FIGURE 1.3. Eden Top Boyer function

Figure 1.2 shows the GpH parallelisation of the top-level Boyer test func-
tion, and works as follows. The input list is bound to a variable xs, and then split
into chunks equivalent to physical cores and bound to xs1. Next the condition
(all test0) is mapped over the chunks to give a list of intermediate results
res. It is this mapping that is parallelised (‘using‘ parList rnf). The
final stage is to combine the intermediate results all (&& True) res.

The parallelisation illustrates some interesting points. In this program, just 1
of the 52 functions in the 300 line program changes. This is the case for many,
but not all, programs (exceptions are Sphere and Hidden where parallelism is in-
troduced in more than one function). The parallel paradigm is chunked data par-
allelism. That is, the parallelism is determined by the underlying data structure,
and to obtain suitable thread granularity, the program has been changed to aggre-
gate the input. In other programs it is possible to introduce parallelism without
changing the algorithmic or computational part of the program, e.g. [12].
Eden Eden [13] extends Haskell with syntactic constructs to explicitly define
and instantiate processes. In contrast to the other languages, such direct Eden
programming exposes parallel tasks at the language level, and requires the pro-
grammer to manage them using the control mechanisms provided in the language.
In practise however, Eden provides libraries of skeletons [13, 3] and many pro-
grams, including all of the nofib suite here, can be parallelised using them.

Eden supports a distributed memory parallel paradigm. That is, processes
share no values, and communicate only by messages. It might be thought that such
a paradigm would not be suitable for parallelism on shared-memory multicore
architectures, however recent results have shown good performance [1], as indeed
do the results in Sections 1.5, 1.6, 1.7. We return to this issue in Section 1.8

Figure 1.2 shows the Eden skeleton-based parallelisation of the top-level Boyer

4 CHAPTER 1. PARALLEL HASKELLS

Description FDIP GpH Eden
Classification Implicit Semi-explicit Semi-explicit
Evaluation Order NormalOrder Normal/ Mixed Mixed
Methodology FDIP Tools Evaluation Strategies Direct or Skeletons
Process Model Speculative Threads Optional Explicit Processes
& Creation Mandatory Creation
Thread Placement Implicit Implicit & Dynamic Implicit & Static
Communication Implicit Implicit Implicit & Explicit
Channels

TABLE 1.1. Language-level Comparison of Parallel Haskells

test function, and works as follows. As before, the input list is chunked into
xs1 and the intermediate results combined by all (&& True) res in the
final stage. For Eden, the mapping of (all test0) over the chunks is paral-
lelised using a master worker skeleton parameterised by the number of cores and
the number of tasks to prefetch: mw np pf. The f parameter specifies the num-
ber of tasks to be prefetched: 1

f of the average tasks per worker , but not more than
100 tasks. The average tasks per worker is list length (n) divided by chunk size
(m) and no of workers (np),that is

⌊
n

m·np· f

⌋
. As in GpH the paradigm is chunked

data parallelism, and just one out of 52 functions has been parallelised, although
this time an algorithmic skeleton is used.

Language Comparison Table 1.1 summarises the language level differences in
coordination specification in the three parallel Haskells. Much of the table sum-
marises aspects outlined above. However a key distinction between the languages
is that while FDIP preserves normal order evaluation of pure expressions, GpH
may not, and Eden does not. GpH preserves normal order evaluation if every
evaluation strategy added is no more strict than the embedding function. How-
ever it is often useful to be more strict, e.g. speculatively evaluating expressions
in the anticipation that they will be used. While Eden processes preserve some
normal order evaluation internally, e.g. of expressions within the body of a pro-
cess, processes will always strictly evaluate their arguments and results.

As an entirely implicit language, FDIP has the highest level of coordination
abstraction, GpH an intermediate level and Eden the lowest. That is, Eden is most
explicit about coordination behaviour, but as we shall see in Section 1.7, the use
of appropriate skeletons can raise the level of abstraction.
1.3 PARALLEL HASKELL IMPLEMENTATION COMPARISON
All of the parallel Haskells perform parallel graph reduction [19] and support
high-level coordination, relying on sophisticated implementations to effectively
manage a vast array of low-level coordination issues typically including task
placement, communication, synchronisation, and storage management.

Feedback Directed Implicit Parallelism (FDIP) Parallelism is introduced and
controlled in FDIP in a four stage process [11] as follows. Firstly an example
execution of the program is profiled. Secondly the profile trace is analysed as
a dependency graph of computations to identify useful sources of parallelism.
Given the large number of potential computations thunks in almost any Haskell
program, the challenge is to identify thunks that are simultaneously independent

1.3. PARALLEL HASKELL IMPLEMENTATION COMPARISON 5

of other thunks, demanded by the program, and with large thread granularity. The
third stage is to recompile the program to automatically introduce parallelism at
the identified program sites. Finally sophisticated mechanisms are introduced into
the runtime system to manage the threads introduced at these sites. These include
treating the parallel threads as speculative, and managing load with work stealing.

GpH-SMP Since 2004 the Glasgow Haskell Compiler (GHC) has supported a
shared-memory implementation of GpH. The shared memory implementation is
evolving rapidly [14], and the precise version we describe here and measure in
later Sections is the head version GHC 6.11 from June 2009, denoted GpH-SMP
in the remainder of the paper. The GHC runtime system implements Concurrent
Haskell threads using capabilities and a system of lightweight threads multiplexed
onto a small number of heavyweight OS threads to achieve real parallelism on a
multiprocessor, while still keeping overheads of concurrency low [10]. GHC 6.11
supports both parallel and sequential garbage collection, and the measurements in
the following sections use the former. In this scheme, when memory is exhausted
all cores cease reduction and perform garbage collection in parallel.

GUM Implementation of GpH Graph-reduction on a Unified Machine-model
(GUM) is a portable, parallel runtime environment for GpH [22]. As the name
suggests GUM is designed for both shared and distributed memory architectures.
It implements a Distributed Shared Memory (DSM) model of parallel graph re-
duction on a distributed, but virtually shared, graph. Graph segments are commu-
nicated in a message passing architecture, using standard communication libraries
like PVM [20] to provide an architecture neutral and portable runtime environ-
ment.

Eden Implementation The Eden implementation extends GHC making a few
changes to the front-end, but major modifications to the runtime environment [4].
When run in parallel, each PE runs a sequential copy of the GHC runtime system.
Multiple PEs communicate by message-passing, and the communication layer has
been designed to allow plug-in replacement of different message-passing libraries.
Typically, it uses either PVM or MPI libraries.

Implementation Comparison Table 1.2 summarises the implementation level
differences between the four parallel Haskells. While an arbitrary number of Eden
processes can be dynamically created, each process is mandatory. In contrast the
other implementations support dynamic techniques including thread subsumption,
sparking, and the creation of optional or speculative threads. Eden uses eager
work distribution: newly created processes are pushed out to available PEs, while
the other implementations are lazy and idle PEs steal work (thunks). FDIP and
GpH-GUM are careful not to duplicate work by evaluating the same thing more
than once, but work may be duplicated in Eden and, sometimes, in GpH-SMP.
A key distinction between the implementations is the heap model: while FDIP and
GpH-SMP have shared heaps, GUM maintains a virtual shared heap, and Eden
uses distributed independent heaps, both interacting via message passing. Mes-
sage passing is essential for distributed systems but initially seems enormously

6 CHAPTER 1. PARALLEL HASKELLS

Description FDIP GpH-SMP GpH-GUM Eden
GHC Version GHC 6.6 GHC 6.11 GHC 4.06 GHC 6.8
Evaluation Par. Graph Par. Graph Par. Graph Par. Graph
Model Reduction Reduction Reduction Reduction
Granularity Ctrl Dynamic Dynamic Dynamic Static
Synchronisation Thunk Thunk Thunk Channel
Unit Locking Locking Locking Locking
Work Work Work Work Dynamic
Distribution Stealing Pushing Stealing Process

& Stealing Placement
Work Duplication Not Possible Possible Not Possible Possible
Heap Shared Shared Virtual Distr.

Heap Heap Shared Heap Heap
GC Dependent, Dependent, Independent, Independent,

Sequential Parallel Parallel Parallel
TABLE 1.2. Implementation-level Comparison of Parallel Haskells

expensive compared with shared memory access. That is, computation graphs
must be serialised into, and deserialised from, messages, and potentially expen-
sive message-passing functions invoked. However the independent heaps main-
tained by GUM and Eden convey four significant advantages for shared-memory
systems like multicores. Firstly, while the cores in shared heap implementations
like FDIP and GpH-SMP must synchronise to garbage collect, GUM and Eden
cores can collect independently and hence in parallel. Secondly, synchronisa-
tion is confined to limited shared memory areas, essentially the communication
buffers. Thirdly, synchronisation granularity is often large, i.e. on large messages,
rather than on individual thunks or memory locations. Finally cache coherency
issues are reduced as tasks do not share caches [1]. We discuss the performance
implications of the heap designs further in Section 1.8.

Although both FDIP and GpH-SMP use dependent stop-the-world GC, such
a design is not inherent. An implementation that maintains some form of thread-
private heap, e.g. [6], would enable independent garbage collection and offer
many of the advantages outlined above, without incurring the high communica-
tion costs of message passing.

1.4 EXPERIMENT DESIGN

We compare the performance of the four parallel Haskells using the 15 programs
from the ’real’ and ’spectral’ sections of the nofib benchmark suite [16]. The ’real’
and ’spectral’ sections of the nofib suite are carefully designed to be representative
of small Haskell programs, i.e. around 300 source lines of code. The programs are
a substantial subset of the 20 multicore benchmarks used in [11] that are in turn
carefully selected to be representative. Of the five programs not measured, two are
not nofib benchmarks, and three (cacheprof, calendar and fibheaps) are
too small to benefit from parallel execution, i.e. where the input cannot be sized
to give a runtime of 3s on current hardware. Crucially, other than to exclude short
programs, the programs are not selected a priori for having obvious parallel struc-

1.5. RUNTIME COMPARISON 7

ture. Hence our results reflect the multicore performance that might be expected
for a set of ’typical’ small Haskell programs. To parallelise the programs in Eden
and GpH the programs were first time and space profiled to identify computation-
ally expensive functions, and these were parallelised. A variety of parallelisations
were investigated for each program and the best selected. The same GpH program
is evaluated under GpH-SMP and GpH-GUM, and the Eden program introduces
an appropriate skeleton. Example GpH and Eden parallelisations of the Boyer
benchmark are discussed in 1.2.

All programs are measured on the same input, and with the same heap size.
We follow the common practice of increasing input size in many cases to match
improvements in processor technology since the benchmarks were established
in 1992. The best parallel performance is reported for each system. For Eden,
GpH-SMP and GpH-GUM the best performance is obtained on 8 cores, but for
FDIP it is obtained on 4 cores as discussed in Section 1.7. Parallel runtimes are
variable and to ameliorate these effects the measurements are based on the median
runtimes from three executions.

The implementations are all based on the GHC compiler, but use different
versions of it. The FDIP approach uses GHC 6.6, GpH-SMP uses GHC 6.11,
GpH-GUM uses GHC 4.06, and Eden uses GHC 6.8. GHC has been continuously
developed to maturity over the years, and typically the sequential execution time
of programs is improved by later versions of the compiler. To address the issue
of varying sequential performance, the primary comparative measure is absolute
speedup, i.e. relative to the corresponding optimised sequential GHC compiler,
e.g. Eden speedups are relative to GHC 6.8. The absolute speedups are grounded
by comparative runtime measurements in Section 1.5..

The programs are all measured on common multicore architectures, namely
eight core machines comprising two quad-cores. The GpH-SMP, GpH and Eden
measurements are for Intel Xeon 5410 cores running at 2.33GHz, with a 1998
MHz front-side bus 6144 KB and 8GB RAM running under Linux Fedora 7. The
FDIP measurements are for Intel Xeon X5350 running at 2.66GHz with 4GB
RAM running under Windows Server 2003 R2 x64 service pack 2.

1.5 RUNTIME COMPARISON

As the parallel implementations use different versions of the GHC compiler (Sec-
tion 1.4), this section provides a baseline for the speedup measurements in the
following sections by comparing the runtimes and efficiencies of the GpH-SMP,
GpH-GUM and Eden parallel implementations on 1, 2, 3, 4, 6, and 8 cores. FDIP
is excluded as an implementation is not available.

Single Core Results Table 1.3 summarises the single core runtimes of 4 nofib
programs that deliver good speedup. To facilitate comparison, the inputs for the
programs are sized to give sequential GHC 6.11 runtimes of approximately 35s.
Columns 2–4 of the table report optimised sequential runtimes for the compiler in-
stances extended by the parallel Haskell implementations, and these form the basis
for the absolute speedup calculations in the remainder of the paper. Columns 5–7
of the table report the 1 core parallel runtimes for each implementation. Columns

8 CHAPTER 1. PARALLEL HASKELLS

Sequential 1 Core 8 Core
Program GHC GHC GHC GpH GpH Eden GpH GpH Eden

6.11 4.06 6.8 SMP GUM SMP GUM
Boyer 34.1 49.3 36.7 35.0 77.52 37.1 10.0 14.1 10.1
Clausify 26.9 51.2 29.1 33.1 78.7 29.3 3.9 11.5 3.9
Fft2 38.1 75.7 48.6 38.2 80.9 49.2 13.3 45.8 17.7
Rewrite 37.1 68.1 46.8 39.0 94.9 52.05 6.8 26.9 9.9
Mean 34.1 61.1 40.3 36.3 83.0 41.9 8.5 24.6 10.7

TABLE 1.3. Sequential and Parallel Runtime Comparison (seconds).

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6 7 8 9

 T
im

e
in

 s
ec

on
d

Ed
en

 G
pH

 A
nd

 G
H

C
-S

M
P

No-of-Cores

Boyer Runtimes

GpH-SMP
GpH-GUM

Eden
GHC6.11
GHC4.06

FIGURE 1.4. Runtime Comparison of Parallel Haskells (Boyer)

8–10 of the table report the 8 cores parallel runtimes for each implementation. We
make the following observations.
1: The sequential runtimes vary by as much as a factor of 2.0: Fft2 under GHC
6.11 takes 38.1s, and under GHC 4.06 takes 75.7s, but typical variation is less.
2: The mean sequential runtimes show that GHC 4.06 is the slowest on a single
core, and 1.8 (61.1/34.1) times slower than GHC 6.11. This reflects recent GHC
performance improvements. GHC 6.8 is 18% (40.3/34.1) slower than GHC 6.11.
Longer runtimes for GHC 4.06 and GHC 6.8 give GpH-GUM, and to a lesser
extent Eden, an advantage in the following speedup measurements as the compute
time is relatively large compared with communication time.
3: When executed on a single processor parallel language implementations intro-
duce overheads compared with sequential execution, e.g. launching a single vir-
tual PE [22]. This sequential efficiency is a function of both the parallel program
and the architecture, and represents this parallel overhead. Comparing columns 2
and 5, 3 and 6, and 4 and 7 of Table 1.3 shows that this expectation is met for all
languages with mean sequential efficiencies of 74% (61.1/83.0) for GpH-GUM,
96% (40.3/41.9) for Eden, and 94%(34.1/36.3) for GpH-SMP.

Eight Core Results Table 1.3 (columns 8–10) summarises the runtimes of the
same 4 programs on 8 cores. We make the following observations.
1: On 8 cores the variation in runtimes is at most a factor of 4.1 (26.9/6.5), be-
tween GpH-SMP and GpH-GUM Rewrite, but is typically rather less.
2: The mean 8-core runtimes show that, for this collection of programs, GpH-
SMP remains fastest, Eden is just 26% (10.7/8.5) slower, and GpH-GUM slowest
by a factor of 2.9 (24.6/8.5).

1.6. PROGRAMMING EFFORT AND PERFORMANCE RESULTS 9

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8 9

 S
pe

ed
up

No-of-Cores

Boyer Speedup

GpH-SMP11
GpH-GUM

Eden

FIGURE 1.5. Absolute Speedup Comparison of Parallel Haskells (Boyer)

Runtime and Speedup Graphs Figures 1.4 and 1.5 compare the runtimes and
absolute speedups of Boyer program from Table 1.3. The program is measured
on 1, 2, 3, 4, 6, and 8 cores. We make the following observations.
1: The runtime curves are broadly similar for all implementations. For GpH-SMP
and Eden the curves are very similar, and while the Eden is a little slower on 1
core, the 8 core results are very similar.
2: Three implementations scale, i.e. the runtimes fall as cores are added. The
only exceptions are between 2 and 4 cores under GpH-GUM and between 4 and
8 cores under GpH-SMP and Eden. This is in marked contrast to FDIP, where the
best performance may be achieved under 2,3 or 4 cores [11], and we shall return
to this point in Section 1.7.
3: Reflecting the runtime curves, the speedup curves for the program are broadly
similar, and for GpH-SMP and Eden very similar.
4: The speedup on a single core reflects the sequential efficiencies of the imple-
mentations.

1.6 PROGRAMMING EFFORT AND PERFORMANCE RESULTS

This section investigates the parallel performance of the four parallel Haskells in
conjunction with the programming effort required to achieve that performance.
Parallel performance is measured as absolute speedup and programming effort
as logical source lines of code (SLOC) [7], both as an absolute number and as
a percentage of program length. For our purposes SLOC has the advantages of
simplicity and relatively wide use. We also record the parallel paradigm applied
in GpH and Eden. The absolute speedups achieved for all 15 programs in the four
languages is depicted in Figure 1.7.

FDIP Multicore Performance FDIP is entirely implicit, and so no programmer
effort is expended other than in profiling and using a special compiler. Similarly
the programmer does not need to identify and apply some parallel paradigm. The
FDIP performance results reported in this paper are based on the ICFP’07 pa-

10 CHAPTER 1. PARALLEL HASKELLS

Program Speedup Lines
Name Of Code
Hidden 1.82 316
sort1 1.3 113
sort2 1.3 124
Atom 1.27 57
Simple 1.27 1053
Mean 1.5

TABLE 1.4. FDIP Progs Im-
proved

Program Speedup Lines Lines % Paradigm
Name Code Chgd Chgd

Clausify 6.8 101 6 6 Chunked Data
Parallelism

Primetest 5.9 112 15 13 Chunked Data
Parallelism

Rewrite 5.5 408 14 3 Chunked Data
Parallelism

Sphere 3.8 332 12 4 Nested Data
Parallelism

Hidden 3.5 316 6 2 Nested Data
Parallelism

Boyer 3.4 295 9 3 Chunked Data
Parallelism

Fft2 2.9 705 13 2 Data Parallelism
Mean 4.5 10.7 4.7

TABLE 1.5. GpH-SMP Progs Improved

per [11], augmented with some additional results from the authors. Where the
other parallel Haskells are measured on 8 cores, FDIP performs better on 4 cores
than on 8 and hence Table 1.4 follows [11] in reporting the programs that are im-
proved on 4 cores. It shows that FDIP speeds up only 20% (3/15) of the programs,
with a mean speedup of 1.5, and maximum speedup of 1.8

Automatically extracting good parallel performance is acknowledged to be a
challenging problem. However some of the reasons for the relatively poor perfor-
mance of FDIP are because the implementation is immature compared with the
other systems and has some known technical problems [11]. Specifically, the sim-
ulation ignores several crucial aspects of parallel coordination, namely contention
within the GHC runtime system; the overheads of the shim lock implementation;
and finally the overheads of sparking work and the cache effects of moving data
from a sparking core to one running work speculatively.

GpH-SMP Multicore Performance Table 1.5 reports the programming effort
and parallel performance of programs improved by GpH-SMP on 8 cores. As a
semi-explicit parallel language, GpH requires the programmer to identify a suit-
able parallel paradigm and introduce evaluation strategies to apply it. Introducing
the parallelism requires changing an average of just 10.7 lines in each program,
i.e. 4.7% of the code.

The table shows that GpH-SMP improves nearly half of the programs, i.e.
46% (7/15). The mean speedup is 4.5, with a best speedup of 6.8 for Clausify. It
is impressive that 3 of the programs achieve speedups of 4 or more on 8 cores, i.e.
a parallel efficiency of 50% or more.

GpH-GUM Multicore Performance Table 1.6 reports the programming effort
and parallel performance of programs improved by GpH-GUM on 8 cores. Only
12 of the 15 programs are attempted for GpH-GUM as Compress, Hidden and
Primetest import modules not available in GHC 4.06.

As before, GpH requires the programmer to identify a suitable parallel paradigm
and apply it. Introducing the parallelism requires changing an average of just 11
lines of each of these programs, i.e. 3.6% of the code. The table shows that GpH-
GUM improves 42% (5/12) of the programs. The mean speedup is 3.1, with a
best speedup of 4.5 for Clausify.

1.7. COMPARATIVE STUDY 11

Program Speed- Lines Lines % Paradigm
Name up Code Chgd Chgd
Clausify 4.5 101 6 6 Chunked Data

Parallelism
Boyer 3.5 295 9 3 Chunked Data

Parallelism
Rewrite 2.5 408 14 3 Chunked Data
Sphere 1.8 332 12 4 Nested Data

Parallelism
Fft2 1.7 705 13 2 Data Parallelism
Mean 3.1 11 3.6

TABLE 1.6. GpH-GUM Progs Improved

Program Speed- Lines Lines % Paradigm
Name up Code Chgd Chgd

Clausify 6.2 101 7 7 Data Parallelism
Rewrite 4.7 408 15 4 Chunked Data

Parallelism
Fft2 3.7 705 11 2 Data Parallelism
Boyer 3.6 295 14 5 Chunked Data

Parallelism
Compress 1.6 109 3 2 Data Parallelism
Sphere 1.5 332 7 2 Data Parallelism
Mean 3.6 10 3.6

TABLE 1.7. Eden Progs Improved

Description FDIP* GpH- GpH- Eden
SMP GUM

No. Programs Measured 15 15 12 15
No. Programs Improved 3 7 5 6
% Programs Improved 20% 46% 42% 40%
No. Lines Changed 0 11 11 10
% Code Changed 0 4.7 3.6 3.6
Mean Speedup 1.5* 4.5 3.1 3.6
* Performance on 4 Cores

TABLE 1.8. Comparative Multicore Performance Summary

Eden Multicore Performance Table 1.7 reports the programming effort and par-
allel performance of programs improved by Eden on 8 cores. Eden requires the
programmer to identify a suitable parallel paradigm and introduce an appropri-
ately parameterised algorithmic skeleton to exploit it. This set of programs all
use the master-worker skeleton discussed in Section 1.2, but some do so directly,
while others like Boyer and Rewrite chunk the input to improve thread granular-
ity. Introducing the parallel coordination requires changing an average of just 10
lines in each program, again just 3.6% of the program text.

The table shows that Eden improves a slightly smaller fraction, i.e. 40% (6/15),
of the programs than GpH-SMP and GpH-GUM. The maximum speedup is simi-
lar to GpH-SMP (6.2 vs 6.8), the mean speedup is slightly less (3.6 vs 4.7). Four
of the programs achieve speedups of 3.6 or more on 8 cores, i.e. a parallel effi-
ciency of 45% or more.

1.7 COMPARATIVE STUDY

This section compares the best parallel performance of the four Haskell languages
and the programming effort required to achieve that performance. Table 1.8 sum-
marises the key metrics from section 1.6.

Programming Effort Comparison As a purely implicit approach, FDIP requires
minimal programmer effort, simply the execution of a profiling run. In contrast
GpH and Eden both require programmer effort to time profile the program, to
insert evaluation strategies or skeletons, and to tune the parallel performance. Ta-
bles 1.5, 1.6, and 1.7 show that the scale of the program changes is on average

12 CHAPTER 1. PARALLEL HASKELLS

FIGURE 1.6. Performance Scalability of Parallel Haskells on 4 Cores.

small in both absolute and relative terms, e.g. representing just 11 lines or 4.3% of
the program text in both languages. We conclude that, for these relatively simple
programs, using existing Eden skeletons represents a similar level of coordination
abstraction to evaluation strategies in GpH.

The results also illustrate that in both GpH and Eden some programs are eas-
ier to parallelise than others. That is, the scale of program changes induced by
parallelisation may vary significantly in both absolute and relative terms. For ex-
ample Table 1.5 shows that in GpH the number of lines changed may vary from 3
to 15, and the percentage of program text may vary from 1% to 13%. Similarly,
Table 1.7 shows that in Eden the number of lines changed may vary from 3 to 15,
and the percentage of program text may vary from 2% to 7%.

The parallel paradigms used in the improved programs are all forms of data
parallelism, sometimes combined with chunking to increase thread granularity, or
nesting to introduce additional parallelism. Although the parallelisation changes
are small, the source lines of code metric does not reflect the programmer effort
expended on the key intellectual challenge, namely understanding the computa-
tional structure of a program written by another programmer.

Scalability A key property of a parallel implementation is scalability, i.e. whether
performance increases as processing elements are added. We have already seen
the scalability of the GpH-SMP, GpH-GUM and Eden implementations up to 8
cores in the discussion of Figure 1.4.

Figure 1.6 provides a more detailed analysis for three programs (Boyer, FFT2
and Simple) in each language on 1, 2, 3 or 4 cores. Each program gives good
performance on at least one implementation. The figure shows that in GpH-SMP,
GpH-GUM and Eden the performance of programs, i.e. speedup, for Boyer and
FFT2 improves steadily as cores are added. In contrast FDIP delivers the best
speedup for Simple on 3 cores. This is not an isolated result: the 5 programs
delivering speedups under FDIP reported in [11] deliver maximum speedup twice
on 3 cores, and three times on 4 cores.

Furthermore, FDIP ceases to scale beyond 4 cores [21], and this is illustrated
by the 4 core performances of Boyer, Simple and FFT2 in Figure 1.6, which are

1.8. CONCLUSION 13

FIGURE 1.7. Performance Comparison of Parallel Haskells (8 cores)

uniformly better than the 8 core performances reported in Figure 1.7. The rea-
sons for this have not been established, but are likely to be either lock contention
or low-level memory effects, e.g. disrupting caches when transferring threads be-
tween cores.
Performance Comparison A complete comparison of the speedups achieved on
8 cores for all 15 programs in the four languages is depicted in Figure 1.7. The
performance price of FDIP’s purely implicit approach is high: it improves the
fewest number of programs: 3 out of 15 on 4 cores (Table 1.4), and 2 out of
15 on 8 cores (Figure 1.7). Moreover the mean and maximum speedup are both
relatively small at 1.5 and 1.8 respectively on 4 cores. However, a mean speedup
of 1.5 on 4 cores shows parallel efficiency approaching that of the semi-explicit
implementations, i.e. speedups of approximately 3.5 on 8 cores. FDIP parallelism
scales both irregularly, and only to 4 cores (Section 1.7).

GpH-SMP delivers the best performance, improving 7/15 programs with mean
speedup of 4.5 and maximum speedup of 6.8. Eden delivers the next best per-
formance, improving 6/15 programs with mean speedup of 3.6 and maximum
speedup of 6.2. GpH-GUM is the worst of the semi-explicit languages, improv-
ing 5/12 programs with mean speedup of 3.1 and maximum speedup of 4.5. We
analyse the implications of these relative performances in section 1.8.

1.8 CONCLUSION

Summary The preceding sections report the first comparison of functional mul-
ticore technologies and are some of the first ever GpH-GUM and GpH-SMP mul-
ticore results. We contrast a ’no pain’ approach with three ’low pain’ approaches,
and start by outlining and comparing the approaches at both language and im-
plementation levels. We present the design of an experiment using 15 programs
carefully selected to reflect the multicore performance that might be expected for
a typical set of Haskell programs.

To ground the speedup comparisons we report sequential and parallel run-
times and efficiencies for three of the languages. Although the parallel Haskell

14 CHAPTER 1. PARALLEL HASKELLS

implementations all use GHC, they each use a different version, and hence expose
different relative speedups. This should be taken into account when looking at our
primary performance metric (absolute speedups). We find that sequential runtimes
vary by as much as a factor of 2.9, and 8-core runtimes by as much as a factor of
4.0 (26.9/6.8). On a single core GpH-SMP is fastest and GpH-GUM slowest, and
sequential efficiencies vary between 74% and 95%. Finally runtime and speedup
graphs show that GpH-SMP, GpH-GUM and Eden parallel performance scales.
We report detailed parallel performance and programming effort studies, and
make a comparative study with the following key results.
1: FDIP’s purely implicit approach requires minimal programmer effort. In con-
trast GpH and Eden both require programmer effort to understand the program’s
computational structure, to profile it, to insert parallel coordination, and to tune
the parallel performance. As the languages provide high levels of coordination
abstraction the program changes are small, on average no more than 4.3% of the
program text in both languages. We conclude that Eden skeletons represent a
similar high level of coordination abstraction to evaluation strategies in GpH.
2: While GpH-SMP, GpH-GUM and Eden all scale consistently up to 8 cores,
FDIP does not scale beyond 4 cores and may deliver best performance on 3 or 4
cores.
3: The performance price of FDIP’s purely implicit approach is high: it improves
the fewest number of programs (just 3 out of 15) and the mean and maximum
speedup are both relatively small at 1.5 and 1.8 respectively on 4 cores.
4: All three semi-explicit approaches improve approximately half of the pro-
grams, and the performance of GpH-SMP exceeds Eden which in turn exceeds
GpH-GUM.
Discussion As multicores become the dominant processor technology it is cru-
cial that functional languages realise their theoretical potential to exploit them ef-
fectively. Our study reflects some of the technologies emerging to do so, namely
four multicore Haskell implementations, and the results have a number of impli-
cations for the field.

It is clear that purely implicit parallelism remains an elusive goal. The FDIP
approach speeds up fewer programs, with smaller speedups, and doesn’t scale
well. While it is not clear that the scaling issues with FDIP are fundamental, the
move towards many cores will make scalability a crucial property for languages
and implementations.

It might be seen as discouraging that, even in the low pain languages, only
half of the programs deliver absolute speedups, and that the mean parallel effi-
ciencies are only around 45% (Tables 1.5, 1.6, and 1.7). However recall that these
programs were neither designed to be parallel, nor selected for their inherent par-
allelism. While some algorithms will remain inherently sequential, it is likely
with thoughtful design a far higher percentage of programs can be effectively
parallelised. Moreover the implementations are evolving fast and we can expect
greater parallel efficiencies in the near future.

Interestingly the multicore performance delivered by Eden remains compara-
ble with that of GpH-SMP, (e.g. mean speedup within 30%, maximum speedup

1.8. CONCLUSION 15

within 10%. This is surprising as while the GpH-SMP implementation is de-
signed for multicores and communicates/synchronises via shared memory access,
the Eden implementation is designed for distributed memory architectures, and
pays a massive communication/synchronisation overhead for message passing.
Passing a message entails serialising heap, calling expensive communication li-
braries, and deserialising heap. We argue that the key reason for the relatively
good multicore performance of Eden is the maintenance of independent heaps,
and Section 1.3 discusses the four significant advantages of independent heaps
for multicores. Furthermore, we speculate that as multicore scale to many cores
the advantages of independent heaps will be greatly magnified, and that some
form of thread-private heap, e.g. [6], will be essential.

There are many encouraging signs for multicore functional languages. The
GpH and Eden semi-explicit approaches deliver effective high level coordination,
and hence require very small program changes, and perhaps only half a working
day to introduce and tune the parallelism for a known program. The fact that there
are 4 multicore Haskells to compare reflects the level of interest in addressing the
challenges. The implementations all have considerable room for improvement,
e.g. the GpH-GUM and Eden naive distributed memory implementations could
be dramatically improved by shared-memory communication libraries. Another
promising line of future work is to integrate distributed and shared-memory im-
plementations to better exploit the increasingly ubiquitous clusters of multicore
architectures.

Acknowledgements Thanks to Rita Loogen, Tim Harris, and Simon Marlow for
constructive feedback. This research is supported by European Union Framework
6 grant RII3-CT-2005-026133 SCIEnce.

REFERENCES

[1] A. Al Zain, J. Berthold, K. Hammond, P. Trinder, G. Michaelson, and M. Aswad.
Low-Pain, High-Gain Multicore Programming in Haskell: Coordinating Irregular
Symbolic Computations on MultiCore Architectures. In Workshop on Declarative
Aspects of Multicore Programming (DAMP’09). ACM Press, 2009.

[2] M. Aswad, P. W. Trinder, A. Al Azain, G. Michaelson, and J. Berthold. Low
Pain vs No Pain Multi-core Haskells (Full Report). Technical Report 0068,
http://www.macs.hw.ac.uk/˜mka19/papertec.pdf, School of Math. Comp. Sciences
Heriot-Watt Univ., Edinburgh, UK, Jun 2009.

[3] J. Berthold, M. Dieterle, R. Loogen, and S. Priebe. Hierarchical master-worker skele-
tons. In PADL’08 — Practical Aspects of Declarative Languages, pages 248–264,
2008.

[4] J. Berthold and R. Loogen. Parallel coordination made explicit in a functional setting.
In Z. Horváth and V. Zsók, editors, 18th Intl. Symposium on the Implementation of
Functional Languages (IFL 2006), Springer LNCS 4449, Budapest, Hungary, 2007.

[5] M. M. T. Chakravarty, R. Leshchinskiy, S. Jones, G. Keller, and S. Marlow. Data
Parallel Haskell: a status report. In Workshop on Declarative Aspects of Multicore
Programming (DAMP’07). ACM Press, 2007.

16 CHAPTER 1. PARALLEL HASKELLS

[6] T. Domani, G. Goldshtein, E. K. Kolodner, E. Lewis, E. Petrank, and D. Sheinwald.
Thread-local heaps for java. In SIGPLAN Not, pages 76–87. ACM Press, 2002.

[7] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Practical Ap-
proach. PWS, 1998.

[8] C. Grelck and S. B. Scholz. SaC – from High-Level Programming with Arrays to
Efficient Parallel Execution. Parallel Processing Letters, 13(3):401–412, 2003.

[9] K. Hammond and G. Michaelson, editors. Research Directions in Parallel Functional
Programming. Springer, London, 1999.

[10] T. Harris, S. Marlow, and S. Jones. Haskell on a Shared-Memory Multiprocessor. In
Proc. ACM Haskell’05, pages 49–61, New York, NY, USA, 2005. ACM.

[11] T. Harris and S. Singh. Feedback directed implicit parallelism. SIGPLAN Not.,
42(9):251–264, 2007.

[12] H.-W. Loidl, P. Trinder, K. Hammond, S. Junaidu, R. Morgan, and S. Peyton Jones.
Engineering Parallel Symbolic Programs in GPH. Concurrency — Practice and Ex-
perience, 11(12):701–752, October 1999.

[13] R. Loogen, Y. Ortega-Mallén, and R. Pena-Marı́. Parallel Functional Programming
in Eden. Functional Programming, 2005.

[14] S. Marlow, S. Peyton Jones, and S. Singh. Runtime Support for Multicore Haskell.
In ICFP’09, 2009. (to appear).

[15] G. Michaelson, H. S., N. Scaife, and P. Bristow. A Parallel SML compiler based on
algorithmic skeletons. Journal of Functional Programming, 15(4):615–650, 2005.

[16] W. Partain. The nofib Benchmark Suite of Haskell Programs. In Glasgow Work-
shop on Functional Programming, Workshops in Computing, pages 195–202, Ayr,
Scotland, 1992. Springer-Verlag.

[17] J. Peterson, V. Trifonov, and A. Serjantov. Parallel Functional Reactive Programming.
In PADL’00 — Practical Aspects of Declarative Languages, LNCS 1753, pages 16–
31. Springer-Verlag, 2000.

[18] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In POPL’96 —
Symposium on Principles of Programming Languages, pages 295–308, St Petersburg,
Florida, Jan. 1996. ACM.

[19] S. Peyton Jones and D. Lester. Implementation of Functional Programming Lan-
guages. Prentice Hall, 1987.

[20] Parallel Virtual Machine Reference Manual. University of Tennessee, Aug 1993.

[21] S. Singh. Private Communication about FDIP Performance, 11 2008.

[22] P. W. Trinder, J. Hammond, J. Mattson, A. Partridge, and S. L. Peyton Jones. GUM:
a portable parallel implementation of Haskell. In Proc. ACM PLDI’96, pages 79–88,
New York, NY, USA, 1996. ACM Press.

[23] P. W. Trinder, K. Hammond, H. W. Loidl, and P. Jones. Algorithm + Strategy =
Parallelism. Journal of Functional Programming, 8:23–60, 1998.

