
Classifying the Reliability of Microservice
Architectures

Abstract—Microservices are popular as they offer better scal-
ability and reliability than monolithic software architectures.
Reliability is improved by the loose coupling between individual
microservices. However in production systems some microser-
vices are tightly coupled, or chained together.

We classify the reliability of microservices: if a minor mi-
croservice fails then the application continues to operate; if a
critical microservice fails, the entire application fails. Combining
reliability with the established classifications of dependence
(individual/chained) and state (stateful/stateless) defines a new
three dimensional space: the Microservices Dependency State
Reliability (MDSR) classification. Using three web application
case studies (Hipster-Shop, Jupyter and WordPress) we identify
microservice instances that exemplify the six points in MDSR.
We demonstrate that each point in MDSR corresponds to a
known reliability pattern or bad smell. Hence MDSR provides
a structured classification of microservice software with the
potential to improve code quality.

We explore the reliability implications of the different MDSR
classes by running the case study applications against a fault
injector, and show the following. All applications fail catas-
trophically if a critical microservice fails. Applications survive
the failure of individual minor microservice(s). The failure of
any chain of microservices in JPyL & Hipster is catastrophic.
Individual microservices do not necessarily have minor reliability
implications.

Index Terms—microservices, reliability, web architectures, pat-
terns, bad smells, web applications

I. INTRODUCTION

Microservices are an increasingly popular software archi-
tecture, in part because they are perceived to offer better
scalability and reliability than monolithic architectures. Some
microservices are stateful: they record some information, e.g.
the participants in a web chat. Others are stateless and record
no information, e.g. they simply accept requests and process
them.

Monolithic architectures are prone to catastrophic failure,
where the user-visible functionality is suddenly and perma-
nently unavailable [1]. That is, it is common for the failure
of a single monolithic component to cause the entire system
to fail. Cascade failures in web application stacks are a well
known example.

In contrast microservice architectures potentially provide
improved reliability due to the loose coupling of the services.
So if one microservice fails, others will remain available. This
may cause a reduction in throughput but will most likely avoid
catastrophic failure [2]. In the worst case scenario, the loose
coupling of services enables graceful failure [3].

This is achieved based on the design principle that microser-
vices are implemented as standalone, independent services [4].

However, many industrial large scale web applications consist
of different types of microservices like chained microservices.
For example, in the Netflix Titus Platform, hundreds of indi-
vidual and chained microservices can be found [5].

Chained microservices are usually tightly coupled, e.g.
by high-frequency API-based interaction sequences. Chained
microservices make an application far less reliable because
if any of the services fail the entire chain fails, and may
induce catastrophic failure [6]. For example, in 2014 BBC
experienced a critical database overload that caused many
of its critical microservices to fail one after another [7].
In 2015, Parse.ly experienced several cascading outages in
their analytics data processing backend due to a microservices
message bus overload [8].

This paper makes the following research contributions.
1) We combine a reliability (minor/critical) classification

with the established classifications of dependence (indi-
vidual/chained) and state (stateful/stateless). If a minor
microservice fails the application continues to function,
although performance or functionality may be reduced.
If a critical microservice fails, the entire application fails.
Combining reliability with state and dependence defines
a new three dimensional space: the Microservices De-
pendency State Reliability (MDSR) classification. As
microservice chains are necessarily critical [6], only
six of the possible eight points in the space are valid
(Section IV).

2) Using three web applications we exhibit microservices
that exemplify each of the six points in MDSR. The web
applications are: (1) Hipster-Shop, a Google demo appli-
cation; (2) JPyL, a Jupyter Notebook/Flask web stack;
and (3) WordPress, the well-known content management
system (Section II).

3) We demonstrate that each point in MDSR corresponds to
a known microservice pattern or bad smell [9]. Crucially
MDSR identifies classes of microservices prone to criti-
cal failure and providing a framework for analysing the
properties of microservices, and chains of microservices,
in a system. (Section V).

4) We explore the reliability implications of different
MDSR microservice classes by running Hipster, JPyL &
WordPress against a simple process level fault injector.
Specifically we show the following. (1) All applications
fail catastrophically if a critical microservice fails. (2)
Applications survive the failure of a minor microservice,
and the successive failure of minor microservices. (3)
The failure of any chain of microservices in JPyL

& Hipster is catastrophic. (4) Individual microservices
do not necessarily have minor reliability implications
(Section VI).

II. EXAMPLE MICROSERVICES WEB APPLICATIONS

We illustrate our new classification and analysis using three
realistic microservice web applications. Hipster-Shop is a
popular Google microservices demonstration web application;
JPyL is a Jupyter/Flask microservices web application; Word-
Press is a widely-used Content Management System with mi-
croservice plugins. The applications illustrate different aspects
of real world microservice web applications, e.g. Hipster-Shop
implements microservices in different languages, and both
JPyL and WordPress combine monolithic and microservice
components.

A. Hipster-Shop

Hipster-Shop is an e-commerce application with 10 mi-
croservices (Figure 1) used by Google to demonstrate tools
like Kubernetes Engine [10]. Users can perform activities like
viewing products, adding items to cart and making purchases.
The microservices are developed in different languages like
Python, Go and Java with communication taking place via
gRPC remote procedure calls.

Fig. 1. Hipster-Shop Architecture Diagram1

B. JPyL: Jupyter/Python/Linux

The Jupyter Notebook framework is a web-based code
development environment [11]. JPyL is a web stack that
combines the popular Flask microservices web tier with mono-
lithic Jupyter components (Figure 2). The Flask web tier
has 7 microservices and is fairly conventional as outlined in
Figure 2. Some are supported by a data store, e.g. current
geolocation and IP address information are accessed via the
userdata microservice that extracts the data from a MySQL
database. Data is displayed on the webpage via the reverse
proxy and port configuration microservices on port 10125.
Crucially for reliability a backup URL port can be initiated
via a redirect if the original port service is interrupted. Users
will still be able to access the content and are automatically
redirected to a different port.

JPyL features a Defense-in-Depth multi-layered security
approach where a range of security mechanisms is deployed

1Source: https://github.com/GoogleCloudPlatform/microservices-demo

throughout the stack. The intention is that if an attacker
penetrates one layer, another layer may thwart the attack. Each
layer is handled by a specific Flask microservice or set of
microservices. For example, security headers are processed by
a Python Talisman microservice.

Fig. 2. JPyL Application Architecture

C. WordPress

WordPress is an open source web development and Con-
tent Management System (CMS) accounting for a significant
proportion of online sites. One of the main reasons for the
popularity of WordPress is its wide range of plugins that
provide additional functionality [12].

As a standalone application WordPress has a monolithic ar-
chitecture with core CMS components that communicate with
a MySQL database. Microservices are, however, commonly
integrated into WordPress to provide plugins that support
additional functionalities—for example to provide facilities
to post comments, allow subscription memberships, to search
indexes, or to provide data analytics [13].

The application we study integrates microservice plugins
that allow users to post comments on a blog. These services
use the WordPress HTTP REST microservice that facilitates
communication between the microservices plugins and the
monolithic components as shown in Figure 3.

Fig. 3. Architecture of the WordPress Application Studied

III. RELATED WORK

A. Existing Microservice Classifications

Fowler and Lewis identify the following three microservices
design principles [14]:

https://github.com/GoogleCloudPlatform/microservices-demo

1) Independent services — each service should run in its
own process and be deployed in its own container like
one service per Docker container.

2) Single functionality — one business function per ser-
vice. This is referred to as the Single Responsibility
Principle (SRP).

3) Communication — should be via a REST API or mes-
sage brokers.

Others have added other principles like reliability [6], and
advocate using design patterns like timeouts, bounded retries,
circuit breakers and bulkheads to tolerate failures [6]. However
most assume that all microservices are individual, but in
reality there are many types of microservices. Microservices
are commonly classified by their properties and we outline
some key properties below, and summarise in Table I.

1) Dependence: classifies a microservice by how tightly
coupled it is with other microservices [5], [6], [15]. Individual
microservices are loosely coupled to other microservices, with
low dependency. Communication with other microservices is
via infrequent remote API calls. Many individual microser-
vices express computations at a high level of abstraction, and
provide their own built-in runtimes, functionalities and data
stores [16]. Examples for JPyL include the SSL and Service
Logging services (Figure 2) while Hipster-Shop includes Fron-
tend and Adservice microservices (Figure 1).

In contrast chained microservices are tightly coupled with
one or more other microservices. A chained microservice is
reliant on some form of constant communication with another
service to function [6]. In JPyL, the Reverse Proxy service is
dependent on the Port Configuration service to display data
on the webpage through port 10125. Specifically the Reverse
Proxy must access the Port Configuration to determine which
backup URL port to use.

2) State: classifies a microservice by whether it preserves
state between service requests. Stateful microservices require
data storage, for example to record transactions or current
actors [17]. In JPyL the Service Logging microservice is
stateful: it logs the status of all microservices in the application
in a MySQL database (Figure 2). Other microservices are
Stateless, i.e. they maintain no session state. Such services
typically accept requests, process them in a pure fashion, and
respond accordingly. In JPyL the SSL microservice is stateless:
it processes https requests but maintains no session data.

3) Combinations of properties, and inheritance of proper-
ties: Microservices may have any combination of properties,
e.g. individual/stateful or chained/stateless. Properties may
be inherited from other chained microservices, e.g. if any
microservice is stateful then the entire chain is stateful. In
Hipster-Shop although both Checkout and Payment microser-
vices are stateless, their chain with Cart Services is stateful as
Cart Services is stateful (Figure 4).

B. Microservices Patterns and Bad Smells

Some design patterns capture reusable solutions to common
microservice design challenges [9]. For example the Database-
Per-Service pattern prevents tight coupling by ensuring that

TABLE I
MICROSERVICES CLASSIFICATION CRITERIA

Classification Properties Description

Dependence Individual Loosely Coupled. Constant communi-
cation with other microservices not re-
quired.

Chained Tightly Coupled. Constant communica-
tion with other microservices required.

State Stateless No data store. Does not maintain state.
Stateful Utilises data store. Maintains state.

Reliability Critical Supports core functionality. Service
failure means application becomes sud-
denly and permanently unavailable.

Minor Supports non-essential functionality.
Application continues to function de-
spite service failure. Degradation in
performance or graceful failure over a
period of time.

multiple microservices are not dependent on a single data
store. Instead, each service accesses its own private store [18],
eliminating the single data store as a single point of failure
(SPOF). While design patterns like Database-Per-Service help,
they are not universal solutions. For example a single atomic
operation often spans multiple microservices, and here addi-
tional techniques are required to ensure consistency across the
data stores [19].

Likewise microservice bad smells identify common designs
that may cause issues [9]. Indeed [6] and the Fowler and
Lewis design principles consider all chained microservices
as bad smells and prone to reliability issues. For example
the code snippet in Listing 1, reproduced from [6], shows an
instance where a Cassandra microservice is dependent on the
messagebus microservice to receive data. If the messagebus
microservice is interrupted or fails, the Cassandra service will
no longer receive the data it needs to function. This is an
instance of the Inappropriate Service Intimacy bad smell [18].

Listing 1. Cascade failure between chained microservices arising from an
Inappropriate Service Intimacy bad smell

Crash (c a s s a n d r a)
f o r s i n d e p e n d e n t s (messagebus) :

i f n o t HasTimeouts (s , 1 s)
and n o t H a s C i r c u i t B r e a k e r
(s , messagebus , . . .)) :
r a i s e Wi l l b l o c k on message bus

C. Microservices Reliability

There are substantial studies of the reliability of microser-
vice software in both the academic [6], [20], [21] and grey
literature [22], [23]. These reveal that the microservices reli-
ability design principle is not always followed. This principle
states that a microservice should be fault tolerant so that
in the case of failure, its impact on other services will be
negligible. [24]

However, developers do not always implement the neces-
sary design patterns to prevent microservices failure. Even if
they do, they remain unaware whether their microservice can
actually tolerate failures until it actually occurs [6]. Thus, the
occurrence of failures in microservices should be expected at
some point.

The literature distinguishes partial and catastrophic failures
in microservices. Partial failures are typically temporary and
recovery is automatic, e.g. the Docker container for some
microservices may fail briefly, or a microservice without a
load balancer can become overloaded [20]. Downtime can
often be minimised if replacement microservice instance(s)
are activated automatically [21]. Partial failure is considered
acceptable in the design of microservices applications.

In contrast, catastrophic failure is considered unacceptable
as it can lead to long downtimes without manual inter-
vention [1]. In microservices, catastrophic failures are often
termed Interaction Faults [20]. Common causes are incorrect
coordination or communication failure between microservices,
e.g. asynchronous message delivery lacking sequence control
or a microservice receiving an unexpected output in its call
chain. The errors may be replicated in several microservice
instances [20], so even switching workload from a failed
instance doesn’t help as the new instance fails in the same
way.

Chained microservices are especially prone to interaction
faults because they violate the Single Responsibility Principle
(SRP) and lead to brittle architectures [6]. Moreover adding
more microservices to the chain increases coupling [25] and
the likelihood of catastrophic failure. If one service in the
chain fails, there will be a cascade of failures of all services
in the chain [6], [26].

A limitation of [6] and the Fowler and Lewis design
principles is that they consider only dependence. We extend
their work by simultaneously classifying dependence, state and
reliability.

D. Detecting Failures and Identifying Causes

Detecting failure within microservices usually involves con-
figuring a collection of microservices indicators (KPIs) to
continuously monitor for root causes of failures. These are
usually based on time series data. For example, the response
level of a microservice is measured over a period of time
to certain calls/requests from other services. The microservice
will be deemed as having failed if it becomes anomalous [27].

In addition, diagnosing the severity and exact reason for
a microservices failure in a large-scale service ecosystem
is troublesome. The diagnosis usually requires domain and
site-reliability knowledge as well as automated observability
support [28]. Not all companies have such resources.

IV. CLASSIFYING THE RELIABILITY OF MICROSERVICES

A. Critical and Minor Reliability

1) Critical vs Minor Microservices: To analyse the relia-
bility of a microservice architecture we consider a reliability
property alongside the established properties of state and

dependency. Minor microservices provide non-essential func-
tionality, and the application continues to operate if they fail,
although performance and/or functionality may be reduced. In
Hipster-Shop, the Adservice microservice is minor because if
it fails, the server returns a 404 status code indicating that the
service is temporarily unavailable. The rest of the application
continues to function normally.

Critical microservices provide core functionality to the
application, and if such a service fails, the entire application
fails catastrophically even if there are several instances of the
microservice. In JPyL, the chained PortConfig to Reverse-
Proxy services are critical because if the PortConfig service
fails, the ReverseProxy service will not be able to determine
the port to display data or access the URL backup port. As
with other properties criticality is inherited within chains, so
if any microservice is critical then the entire chain is critical.

It would be possible to consider partial failures as different
from minor failures, but doing so requires distinguishing
between minor and partial failures. For simplicity we select
the binary minor/critical classification, although we shall see
in section VI that some minor failures have very significant
performance implications.

B. The Microservice Dependency State Reliability (MDSR)
Classification

Combining reliability with the state and dependency classi-
fications defines a three-dimensional space: our new Microser-
vices Dependency State Reliability (MDSR) Classification.
Figure 4 depicts the MDSR classification, and the first rows
of the Patterns and Bad Smells tables below provide example
microservices from the case study applications that correspond
to the eight points in the classification space. For example the
individual/stateful/minor exemplar is JPyL’s Service Logging
microservice.

Only six of the eight points in the space are valid, how-
ever, as microservice chains are necessarily critical [6]. We
confirm this in our evaluation (Section VI) where, even
though we attempt to recover reliability using of microservice
patterns, the chains remain critical. That is, we implement a
Database-Per-Service pattern for the chained/stateful UserData
& White/Black Listing service and an API Gateway for the
chained/stateless/ Product Catalog & Recommended service.
In both cases the application fails catastrophically despite
reporting only a ”404 Service Not Found” error. Hence is
not possible to find microservices that occupy the chained/s-
tateful/minor or chained/stateless/minor classifications, i.e. the
shaded columns in Figure 4.

The second rows of the Patterns and Bad Smells tables
in Figure 4 show the errors produced when the example
microservice at each classification point fails. For example
when the individual/stateful/critical Frontend service fails,
Hipster-Shop reports a ”500 Internal Server Error” and fails
catastrophically. In contrast when the individual/stateful/minor
Service Logging service fails JPyL reports a ”404 Service Not
Found” and continues to operate.

V. IDENTIFYING RELIABILITY PATTERNS & BAD SMELLS

MDSR classification makes it possible to analyse the ex-
pected properties of microservices and chains of microservices
in an architecture. Specifically it helps to identify design
patterns and bad smells in the architecture. To illustrate, the
third row of the Patterns and Bad Smells tables in Figure 4
identify the microservice pattern or bad smell associated with
each point in the classification space. Of the patterns and bad
smells enumerated in [9], the classification identifies 4 out of
8 patterns and 3 out of 11 bad smells. The pattern and bad
smell descriptions are summarised in Tables II & III.

In our applications individual/stateful microservices have
only minor reliability implications if they implement a pattern.
For example JPyL Service Logging is individual/stateful/minor
and implements the Database-Per-Service pattern.

Most critical microservices are associated with known bad
smells. For example the individual/stateless/critical SSL mi-
croservice in JPyL is an instance of Microservices Greedy,
where there is a proliferation of microservices. Of course SSL
need not be implemented as a microservice.

Hence MDSR provides a useful analysis of microservice
software, helping to identify bad smells to be considered
for refactoring to improve reliability. MDSR incorporates the
principle that chained microservices are critical, even if they
implement patterns in an attempt to recover reliability.

TABLE II
MICROSERVICES PATTERNS DESCRIPTION [18]

Pattern Description
Database-Per-Design Microservice accesses its own

private data store.
API-Gateway Microservice communication

occurs through an API.
Single Responsibility Principle Microservice performs a single

functionality

TABLE III
MICROSERVICES BAD SMELLS DESCRIPTION [9]

Bad Smell Description
SRP Violation2 Microservice performs more

than a single functionality.
Reason: Tight Coupling

Microservices Greedy Microservices created for every
feature in an application.
Reason: More microservices
could lead to more points of
failure

Shared Persistency Different microservices access
the same data storage.
Reason: Single Point of Failure
(SPOF)

Cyclic Dependency Constant call cycles between
microservices
Reason: Too much dependency

2Not listed in the Taibi bad smells classification.

VI. EVALUATING THE RELIABILITY OF DIFFERENT
CLASSES OF MICROSERVICES

A. Experiment Design

We execute the Hipster, JPyL & WordPress web applications
against a simple fault injector to investigate the reliability
implications of different classes of microservices. All appli-
cations are executed on a typical server, i.e. a 16 core Intel
server with 2TB of RAM running Ubuntu 18.04. Hipster uses
Minikube 1.19.0 and multiple languages including Python 3.6,
Go 1.10 and C# 8.0. JPyL uses Jupyter Server 6.1, Python
3.6, MySQL 5.7 and Flask 1.1.2. WordPress v5.7.2 uses
PHP 7.2 and MySQL 5.7. The code for all applications, the
experiments, and the fault injector are available in a Bitbucket
repo3.

Requests are generated to each application using wrk
1.2 [29] for sixty seconds with a simulated 100 concurrent
users. The reported measurements are based on three consec-
utive benchmark executions, and identify the median.

This fault injector is implemented in Python using the Chaos
Monkey Engine 1.1.0 [30] to terminate the process associated
with a specific microservice at a specific time. As neither
process nor termination time is selected at random, this is
not a Chaos Monkey.

B. Critical Microservice Failure

Catastrophic failure is a major challenge for web applica-
tions and our case study applications are no exception. To
investigate the failure of critical microservices we target the
chained/stateful/critical HTTP REST microservice in Word-
Press, the chained/stateless/critical Port Config microservice
in JPyL, the individual/stateless/critical SSL microservice in
JPyL & the chained/stateful/critical Cart Service in Hipster.

Figures 5, 6, 7 & 8 plot throughput (Request KB/s) against
time. The red line in each box plot is the median throughput
from three executions. Once established, all services have
throughputs of approximately 600KB/s. When the fault injec-
tor kills the critical microservice at 43s the applications fail
almost instantaneously: by 50s throughput is 0KB/s.

C. Minor/Individual Microservice Failure

Our first investigation of the failure of minor microservices
uses an individual microservice. Specifically we target the in-
dividual/stateful/minor Service Logging microservice in JPyL.
Recall that, although stateful, this microservice has a private
store following the Database-per-service design pattern.

As before, Figure 9 plots JPyL throughput (Request KB/s)
against time, and the service is running at around 600KB/s.
Once the fault injector kills the critical microservice at 43s the
application continues to serve pages, but throughput falls dra-
matically but briefly to around 2KB/s. By 50s the application
is able to recover to a throughput of around 520KB/s.

3URL removed for double blind review.

Fig. 4. Microservices Dependency State Reliability (MDSR) Classification

D. Critical/Chained Design Pattern Microservices Failure

We next investigate the failure of critical/chained chained
microservices. Specifically we target the chained/stateful/crit-
ical User Data & White/Black Listing microservices in JPyL
and the chained/stateless/critical Product Catalog & Recom-
mended microservices in Hipster. Both microservice chains
implement patterns that aim to recover reliability (section IV).

As before Figure 10 plots JPyL throughput (Request KB/s)
against time, and the service is running at around 600KB/s.

Once the fault injector kills the pair of microservices at 43s
the application reports a 404 Service Not Found error and
continues to serve pages. However the throughput has fallen
to around 2KB/s. That is the application is barely able to
accept client requests or even load in a browser quickly. A
similar failure is reported for Hipster when the Product Catalog
service fails (Figure 11).

For realistic workloads the failure of chained/critical mi-
croservices even with pattern implementations has caused the
applications to fail catastrophically!

Fig. 5. A JPyL Critical Failure (Port Config & Reverse Proxy) at 43s.

Fig. 6. A JPyL Critical Failure (SSL) at 43s.

E. Multiple Microservices Failure

Even if an application survives the failure of a single minor
microservice, how will it cope when multiple microservices
fail successively? To investigate the failure of multiple mi-
croservices in JPyL we target three microservices i.e. Service
Logging, Security Headers & User Data – White/Black List-
ing. Specifically the fault injector kills these microservices in
order at approximately 16s, 32s and 48s into the execution.

Figure 12 plots JPyL throughput (Request KB/s) against
time, and the service is running at around 600KB/s. When
the fault injector kills the individual/minor microservices the
throughput drops briefly to around 2KB/s, but then recovers
to around 600KB/s. As before, when the chained/critical
microservice fails at 48s the application fails catastrophically.

Fig. 7. A WordPress Critical Failure (HTTP REST & Comment) at 43s.

Fig. 8. Hipster Critical Failure (Cart & Payment Services) at 43s.

F. Evaluation Summary

The key findings from our evaluation are as follows. (1)
All case study applications fail catastrophically if a critical
microservice fails (Figures 5, 6, 7 & 8). (2) JPyL survives the
failure of an individual/minor microservice (Figure 9), and
even the successive failure of two individual/minor microser-
vices (up to 40s in Figure 12) (3) The failure of any chain of
microservices in JPyL & Hipster is catastrophic: throughput
being dramatically reduced (by 98%) (Figures 10, 11 and
after 48s in Figure 12). (4) Individual microservices do not
necessarily have minor reliability implications, e.g. the Hipster
Frontend is individual/stateful/critical and the JPyl SSL is
individual/stateless/critical (Figure 6).

VII. CONCLUSION

Microservices are commonly classified based on their de-
pendence (chained/individual) or state (stateful/stateless). We

Fig. 9. JPyL Minor/Individual Failure (Service Logging) at 43s.

Fig. 10. JPyL Minor/Chained (User Data & White-Blacklisting) at 43s.

add a binary reliability classification, and combine it with the
other classifications to define a three dimensional space: the
MDSR Classification in Figure 4 (Section IV). Using three
established web applications we exhibit microservices that
exemplify six of the eight points in MDSR. The remaining
points in the space are not valid as microservice chains are
necessarily critical as argued, e.g. by [6], and confirmed in
our evaluation.

The tables in Figure 4 show that each point in MDSR
corresponds to a known microservice pattern or bad smell [9].
Hence MDSR provides a framework to analyse the properties
of microservices and chains of microservices in a system,
identifying components to be considered for refactoring to
improve reliability (Section V).

We investigate the reliability implications of MDSR classes
by running the case study applications against a simple fault
injector under realistic workloads to show the following. (1)
All applications fail catastrophically if a critical microservice

Fig. 11. Hipster Minor/Chained (Product & Recommended) at 43s.

Fig. 12. JPyL Multiple Minor Failures at 16s, 32s, 48s.

fails. (2) Applications survive the failure of individual minor
microservice(s). (3) The failure of any chain of microservices
in JPyL & Hipster is catastrophic. (4) Individual microservices
do not necessarily have minor reliability implications.

In future work we plan to investigate larger microservice-
based systems to accumulate evidence for the effectiveness of
our MDSR Classification in identifying reliability bad smells.
We also seek to investigate whether the analysis could be
automated, with a view to complementing Service Dependency
Graphs (SDG) tools that map microservices relationships.

REFERENCES

[1] E. Nikolaidis, S. Chen, H. Cudney, R. T. Haftka, and R. Rosca, “Compar-
ison of probability and possibility for design against catastrophic failure
under uncertainty,” J. Mech. Des., vol. 126, no. 3, pp. 386–394, 2004.

[2] M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges when moving
from monolith to microservice architecture,” in International Conference
on Web Engineering. Springer, 2017, pp. 32–47.

[3] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, “The pains and
gains of microservices: A systematic grey literature review,” Journal of
Systems and Software, vol. 146, pp. 215–232, 2018.

[4] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Mi-
croservices: The journey so far and challenges ahead,” IEEE Software,
vol. 35, no. 3, pp. 24–35, 2018.

[5] S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and N.-L. Hsueh,
“Using service dependency graph to analyze and test microservices,” in
2018 IEEE 42nd Annual Computer Software and Applications Confer-
ence (COMPSAC), vol. 2. IEEE, 2018, pp. 81–86.

[6] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar,
“Gremlin: Systematic resilience testing of microservices,” in 2016
IEEE 36th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2016, pp. 57–66.

[7] R. Cooper, “BBC online outage on saturday 19th july
2014,” 2014, https://www.bbc.co.uk/blogs/internet/entries/
a37b0470-47d4-3991-82bb-a7d5b8803771.

[8] A. Montalenti, “Kafkapocalypse: a postmortem on our service outage,”
2015, https://blog.parse.ly/kafkapocalypse/.

[9] D. Taibi and V. Lenarduzzi, “On the definition of microservice bad
smells,” IEEE software, vol. 35, no. 3, pp. 56–62, 2018.

[10] Google, “Hipster-shop microservices demo,” 2021,
https://github.com/GoogleCloudPlatform/microservices-demo.

[11] J. M. Perkel, “Why jupyter is data scientists’ computational notebook
of choice.” Nature, vol. 563, no. 7729, p. 145, 2018.

[12] S. K. Patel, V. Rathod, and J. B. Prajapati, “Performance analysis of con-
tent management systems-joomla, drupal and wordpress,” International
Journal of Computer Applications, vol. 21, no. 4, pp. 39–43, 2011.

[13] B. Williams, D. Damstra, and H. Stern, Professional WordPress: design
and development. John Wiley & Sons, 2015.

[14] J. Lewis and M. Fowler, “Microservices: A definition of a new architec-
tural term,” 2015, https://martinfowler.com/articles/microservices.html.

[15] S. E. Ghirotti, T. Reilly, and A. Rentz, “Tracking and controlling
microservice dependencies,” Communications of the ACM, vol. 61,
no. 11, pp. 98–104, 2018.

[16] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri, and Y. Al-Hammadi,
“The evolution of distributed systems towards microservices architec-
ture,” in 2016 11th International Conference for Internet Technology
and Secured Transactions (ICITST). IEEE, 2016, pp. 318–325.

[17] A. Wu, “Taking the cloud-native approach with microservices,” Ma-
genic/Google Cloud Platform, 2017.

[18] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural patterns for mi-
croservices: A systematic mapping study.” in CLOSER, 2018, pp. 221–
232.

[19] C. K. Rudrabhatla, “Comparison of event choreography and orchestra-
tion techniques in microservice architecture,” International Journal of
Advanced Computer Science and Applications, vol. 9, no. 8, pp. 18–22,
2018.

[20] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study,” IEEE Transactions on Software
Engineering, 2018.

[21] G. Toffetti, S. Brunner, M. Blöchlinger, F. Dudouet, and A. Edmonds,
“An architecture for self-managing microservices,” in Proceedings of
the 1st International Workshop on Automated Incident Management in
Cloud, 2015, pp. 19–24.

[22] E. Wolff, “Why microservices fail: An experience report,” Tech. Rep.,
2018.

[23] D. Gupta and M. Palvankar, “Pitfalls and challenges faced during a
microservices architecture implementation,” Tech. Rep., 2020.

[24] A. Power and G. Kotonya, “A microservices architecture for reactive
and proactive fault tolerance in iot systems,” in 2018 IEEE 19th Inter-
national Symposium on” A World of Wireless, Mobile and Multimedia
Networks”(WoWMoM). IEEE, 2018, pp. 588–599.

[25] S. Eski and F. Buzluca, “An automatic extraction approach: Transition to
microservices architecture from monolithic application,” in Proceedings
of the 19th International Conference on Agile Software Development:
Companion, 2018, pp. 1–6.

[26] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casal-
las, and S. Gil, “Evaluating the monolithic and the microservice archi-
tecture pattern to deploy web applications in the cloud,” in 2015 10th
Computing Colombian Conference (10CCC). IEEE, 2015, pp. 583–590.

[27] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang, C. Jia, Z. Wang,
and D. Pei, “Localizing failure root causes in a microservice through

causality inference,” in 2020 IEEE/ACM 28th International Symposium
on Quality of Service (IWQoS). IEEE, 2020, pp. 1–10.

[28] W. Hasselbring and G. Steinacker, “Microservice architectures for scala-
bility, agility and reliability in e-commerce,” in 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). IEEE, 2017,
pp. 243–246.

[29] W. Glozer, “wrk http benchmarking tool on github,” 2019,
https://github.com/wg/wrk.

[30] PyPi, “Chaos monkey engine project description,” 2017,
https://pypi.org/project/chaosmonkey/.

https://www.bbc.co.uk/blogs/internet/entries/a37b0470-47d4-3991-82bb-a7d5b8803771
https://www.bbc.co.uk/blogs/internet/entries/a37b0470-47d4-3991-82bb-a7d5b8803771
https://blog.parse.ly/kafkapocalypse/
https://martinfowler.com/articles/microservices.html

	Introduction
	Example Microservices Web Applications
	Hipster-Shop
	JPyL: Jupyter/Python/Linux
	WordPress

	Related Work
	Existing Microservice Classifications
	Dependence
	State
	Combinations of properties, and inheritance of properties

	Microservices Patterns and Bad Smells
	Microservices Reliability
	Detecting Failures and Identifying Causes

	Classifying the Reliability of Microservices
	Critical and Minor Reliability
	Critical vs Minor Microservices

	The Microservice Dependency State Reliability (MDSR) Classification

	Identifying Reliability Patterns & Bad Smells
	Evaluating the Reliability of Different Classes of Microservices
	Experiment Design
	Critical Microservice Failure
	Minor/Individual Microservice Failure
	Critical/Chained Design Pattern Microservices Failure
	Multiple Microservices Failure
	Evaluation Summary

	Conclusion
	References

