Two Executable Mobility Design Patterns: mfold and mmap

Zara Field
School of Mathematical and
Computer Sciences
Heriot-Watt University
Edinburgh U.K.

zfl@macs.hw.ac.uk

Rick Dewar
School of Mathematical and
Computer Sciences
Heriot-Watt University
Edinburgh U.K.

rick@macs.hw.ac.uk

Phil Trinder
School of Mathematical and
Computer Sciences
Heriot-Watt University
Edinburgh U.K.

trinder@macs.hw.ac.uk

Andre Rauber Du Bois
Programa de Pos-Graduacao
em Informatica
UCPel
Pelotas - RS, Brazil
dubois@ucpel.tche.br

ABSTRACT

We present two mobility design patterns, mfold and mmap.
The patterns are equipped with corresponding coordination
specifications, mobility skeletons, implemented on top of a
host object-orientated mobile code language, Voyager. The
mobility skeletons provide a high-level of abstraction and
control all coordination aspects of the mobility design pat-
terns. We conclude by demonstrating, through a simple yet
concrete example, how the composite of these patterns and
skeletons can be used in the development of a practical dis-
tributed application, a mobile meeting scheduler.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems

Keywords

Design Patterns, Code Mobility, Agents

1. INTRODUCTION

Mobile design paradigms, including Mobile Agent, Re-
mote Evaluation and Code- on-Demand [11] and mobile code
languages such as Telescript [34], Aglets [22], Voyager [33]
and JoCaml [10] have the potential to increase the efficiency
and effectiveness of the development of complex and cus-
tomizable, distributed systems. In spite of this, the greater
flexibility offered by mobile computation comes at additional
costs. Designing and implementing mobile code systems is
more complex than systems based on the traditional client-
server paradigm, as complete mobility of cooperating appli-
cations forms large-scale, loosely-coupled and complex dis-

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee. PLoP '06, October 21-23, 2006 |d@aft OR,

USA.

Copyright 2006 ACM 978-1-60558-151-4/06/1055.00.

tributed systems. Furthermore, mobile code system devel-
opment is not yet fully supported by sound technologies or
methodological background.

Design patterns are a recognized means for promoting the
use of mobile code. Several mobile agent design patterns
have already been proposed [28], [23], [29], [1], [15]. The
problems shared by these previous efforts are described in
[16] and [20], which include lack of agreed definitions, du-
plicated efforts, complexity and the difficulty in identifying
and specifying common abstractions above the level of sin-
gle agents. Also, their documentation and classifications are
often difficult to apply since their purposes are not clearly
stated or are unnecessarily related to a specific platform [23].
They also tend to focus on how to build mobility systems,
and not why to use computational mobility [32].

This paper aims to go further and deeper in the expla-
nation of mobility design patterns by identifying the real-
world forces and contexts of the problems that gave rise to
the mfold and mmap patterns and corresponding skeletons.
Furthermore, the patterns will be described in a language,
platform and domain independent manner. The patterns
are therefore macroarchitecture [12] patterns as they repre-
sent the outline of the system configuration and are not de-
pendent on any specific mobile code platform.

To enhance these mobility design patterns we also pro-
vide implementations of corresponding mobility skeletons.
Mobility skeletons, including mfold and mmap have already
been implemented in mHaskell, an extension of Haskell, as
a set of higher-order functions [5]. However, the mobil-
ity skeletons provided here are implemented in the object-
orientated mobile code language, Java Voyager. Mobility
skeletons use the template design method [12] by setting up
the skeleton of the coordination algorithms for each mobil-
ity pattern. At this point, the patterns are described at the
microarchitecture layer [12] that represents the detail of the
system configuration and mobile code behavior in the spe-
cific platform, Voyager. A case study example is then used
to illustrate the use and composition of the patterns and
skeletons.

The patterns are therefore presented at different layers,
where each layer refines the abstractions of the previous
layer. Table 1 illustrates the abstraction relationship be-
tween mobility patterns, skeletons, mobile paradigms and a

Table 1: Abstraction Layers for Mobile Computation

Abstract Level | Mobility Pattern

High Level
Medium Level
Low Level

Mobility Skeletons
Mobile Codde Paradigms
Mobile Code API Primitives

mobile code API.

2. MOBILE CODE IN DISTRIBUTED IN-
FORMATION PROCESSING

Distributed information processing tasks are traditionally
performed with a centralized, sequential information pro-
cessing methodology based on the client-server architecture.
Using this method, large amounts of unfiltered information
are often retrieved on the client, who then processes the
information in order to extract information of importance.
This information shipping process is effective for simple, uni-
form procedures where access to information is restricted.
The system is typically closed in terms of what data can be
accessed and how it can be accessed as the sever stores a set
of fixed procedures for accessing the information.

Nowadays, customization and flexibility is key. People
want to access information in a variety of ways, from a
variety of devices, ranging from desktop PCs to handheld
devices accessing the internet on a variety of connection
modes and speeds. Evidentally, distributing computation
load, providing flexibility and reducing network interactions
would increase the efficiency and effectiveness of distributed
information processing applications in this dynamic and dis-
parate computing environment.

The application domains which may potentially benefit
from mobile code applications and mobility patterns include
Active Documents [9], Advanced Telecommunications Ser-
vices [24], Remote Device Control and Configuration, Net-
work Management [2, 3], Workflow Management and Coop-
eration [30, 27|, Active Networks [8], Grid Computing and
Global Computing [19], [25] and Advanced E-Commerce [31,
18, 13]. Mobile agents [11] are regarded highly attractive for
distributed information proccessing applications [7, 21, 6]. A
mobile agent is executable code that can autonomously mi-
grate from one location to another, providing dynamic func-
tion shipping. In data collection problems where the data
is remotely located, mobile agents can be used to migrate
to the remote location to perform the data collection locally
and reduce the data collected by either filtering or com-
pressing the results, realizing network bandwidth savings.
Using mobile agents for distributed information processing
also addresses the problem of network reliability. With mo-
bile agents, the agent can continue execution at one side
of an unreliable link. When the network link is back up,
the agent either continues migrating to the next informa-
tion source or returns home with the results.

Remote Evaluation, a one-shot remote code mechanism
that is more flexible than proxies but less complicated than
fully-general mobile agents, is another promising mobile
code paradigm for distributed information processing. Sev-
eral advantages arise from limiting movement to one hop. By
avoiding some of the security issues introduced by code that
can roam from site to site, infra-structural support is simpli-
fied. Also, technical problems associated with maintaining

and updating program state during migration are avoided,
without losing much functionality, a view supported by [17].

3. MOBILITY DESIGN PATTERNS:
MFOLD AND MMAP

3.1 MobileFold

1. Name mobile fold (mfold)

The name for the mfold pattern is inspired by the fold
higher order function in functional languages that cap-
tures a common recursion pattern for processing and
reducing lists. In an mfold invocation, a mobile op-
eration is performed at each remote location within a
given list. The results are systematically reduced at
the remote locations and returned when the mobile
operation has been performed at the last location.

2. Problem

e How can a customizable (mobile) computation be
used to migrate sequentially through a list of re-
mote locations performing a task at each loca-
tion reducing the results (i.e. merging/filtering),
while hiding the migratory and coordination de-
tails from the user?

e How can a programmer force a customizable com-
putation to migrate sequentially through a list of
remote locations, perform a distributed process-
ing task, while separating the migration and co-
ordination details from the task to be performed?

3. Motivating Scenario

You are designing a flexible and customizable dis-
tributed information system. You need to implement
an algorithm that will allow an arbitrary mobile com-
putation to migrate sequentially through a known set
of locations (i.e. a static itinerary), perform a task
at each location and automatically process the results
(i.e. reduce them) before migrating to the next loca-
tion. You require this distributed reducing of interme-
diate results, for example through merging or filtering,
to retain only those results of relevance to your require-
ments and to reduce the amount of information to be
transmitted. The solution needs to be reliable against
possible intermittent/low bandwidth connections, but
security of the transmitted data (i.e. results) is not a
significant issue. If the transmitted data is sensitive
and security is an issue, the user should refer to the
secure mfold pattern to be presented in a companion
paper.

The distributed task most suitable for this mobility
pattern is distributed information retrieval of selec-
tive yet non-sensitive information. For example, e-
commerce agents searching remote product sites for

Host 2

Host 3

Fpedorm task(]
migrate and resume v
I s

Host 4

Cperfc»rm task
% ,

migrate and resume

Host 1

o

Figure 1: Behaviour of mfold

the best price or network management agents collating
management information from remote network nodes.
This pattern could also be used for distributed infor-
mation dispersal applications, for example, dynamic
load balancing on computational grids as proposed in
[4] and [26]. Applications with a similar structure
could also benefit from the mfold pattern.

. Forces

Consider the mfold pattern when:

e The application domain is characterised by decen-
tralised resources, or the system can be thought
of a set of co-operating components. You want to
take this distributed data structure and apply a
function to each of its components.

e The mobile computation can be autonomous in
the sense that it requires no user intervention at
each resource location and can autonomously mi-
grate to each location in its itinerary.

e You only want relevant information returned from
your distributed processing task. You want the
mobile code to remotely process the results from
each resource location, for example by merging
or filtering, before migrating to the next resource
location, thus reducing bandwidth consumption
and the amount of data to be transmitted through
the network. If the amount of data to be trans-
mitted is large, this is not the best pattern and
the user should refer to the mmap pattern.

e Using a client server model, the server would be
overloaded with information. Using the mfold
pattern eliminates server overload and possible
bottlenecks by distributing computation load. It
also reduces the number of messages sent through
the network as the mobile code carries interme-
diate results with it as it migrates from location
to location. Using the traditional client server
model would also restrict your distributed pro-
cessing tasks to those already predefined at the
remote locations.

e You want the flexibility to perform any process-
ing task on the locations, i.e. a plug and play
application.

e The user may want to use resources on a network
with relatively narrow bandwidth or on devices

with intermitted access to a network. The user
may also have concerns with network reliability.

e You are not concerned with the security of the
mobile code or the results it obtains. If security
is an issue, the user is directed to the secure mfold
pattern, to be presented in a companion paper.

e The remote locations are known in advance and
all locations are known to be stable. If not, the
reliable mfold pattern, to be presented in a future
companion paper, should be used.

5. Solution

Mobile agents have been chosen as the mobile design
paradigm most appropriate for the mfold mobility pat-
tern and subsequent skeleton due to their inherent ad-
vantages over the other mobile code paradigms (REV
and COD). Not only can the customizable and flexi-
ble mobile agent autonomously migrate to the remote
location of a required resource but they can also carry
intermediate data as they autonomously migrate to the
next location, conserving bandwidth and overcoming
latency. These interactions can also continue if the
network connection goes down temporarily, increasing
reliability. The following platform independent models
provide an abstract view of the mfold pattern, includ-
ing the entities, their relationships and the operations
that must be implemented in general.

The diagram in figure 1 illustrates the behaviour of
the mfold pattern. The mobile agent is created at host
1. It then migrates to host 2, where it resumes exe-
cution and performs a task with the local resources.
The mechanisms for resuming execution of the agent
at a new location differ slightly with each mobile agent
framework, although in object-orientated mobile lan-
guages they typically work on entry-point migration
strategies based on callback methods which are in-
voked transparently as the result of arriving at a new
location. Once execution is complete, the mobile agent
merges or filters the results and then carries these in-
termediate results with it as it migrates to the next
location. Once again, it resumes execution and per-
forms a task with the local resources. It continues
with this pattern until it reaches the last host, where
it performs the task for the last time and returns the
result to the initiating program residing on host 1. The
class diagram in figure 2 shows the simple structure of
the mfold pattern and the participants. In practice,

the mfold class is initiated with a list of locations and
an ObjectTomfold, which encapsulates the task to be
performed at each location and the helper method to
process the results.

«interface»
ObjectTomfold

List = execute(currentLoc, prevResult)

ZF

mfold <<agent>> ConcreteObjectTomfold

-locations : String [] K——-

List = mfold(locations,ObjectToFold)

List = execute(currentLoc, prevResult)

Figure 2: UML class diagram for mfold pattern

Participants

e mfold: The mfold class contains the implemen-
tation for:

— the sequential coordination algorithm respon-
sible for the agents traversal along a list of
locations.

— invoking a polymorphic List = exe-
cute(currentlLoc, prevRes), whereby each
call to this method is performed on the
current location with the results from the
previous location.

— handling the storage of the intermediate re-
sults within the mobile agent.

— returning the result to the initiating program
when the task has been performed at the last
location in the given list.

e ObjectTomfold The ObjectTomfold interface,
which must be implemented to use the pat-
tern, forces the programmer to implement a List
= execute(currentLoc, prevRes) method that
conforms to the List = execute(currentLoc,
prevRes) used by the mfold class to invoke the
polymorphic method at each location.

e ConcreteObjectTomfold This class con-
tains the implementation for the List =
execute(currentlLoc, prevRes) method to be
performed at each location. It should contain the
implementation for the distributed information
processing task and helper methods that defines
how newly obtained results should be combined
with the results from the previous location (i.e.
how the results should be reduced).

The UML sequence diagram in figure 3 further illus-
trates the mfold pattern by showing the sequence of
interactions involved. It shows how, after the instan-
tiation of an mfold agent with a list of locations and
an ObjectTomfold at location 1, the agent migrates to
the first location in the list. It then invokes the List
= execute(currentLoc, prevRes), contained within
the ObjectTomfold and handles the reduction and stor-
age of the intermediate results before migrating to the
next location. This continues until the last location
where the result is returned to the initiating program.

6. mfold Mobility Skeleton implemented in Voy-

ager

The mobility patterns described in this paper are
equipped with corresponding mobility skeletons. Al-
though these mobility skeletons have been imple-
mented in Voyager, Aglets and mHaskell, the following
section describes the specific implementation details
for the mfold skeleton implemented in Voyager.

The mobility skeleton for the mfold pattern using the
mobile agent paradigm and implemented in Voyager
has the method signature,

List = mfold(ObjectTomfold obj, Stringl[] lo)

and takes as its parameters, an ObjectTomfold obj
that contains the distributed information processing
and result reducing methods and a list of remote loca-
tions lo. In a call to mfold, the obj is converted into
a agent by Voyager’s dynamic aggregation. It then
migrates through the list of locations lo performing
a task, execute(currentLoc, prevRes) at each loca-
tion. The results from the task performed at each loca-
tion are processed using the helper method contained
within the ObjectTomfold, with the final results re-
turned when all locations have been visited.

In practice, a callback method is responsible for invok-
ing the execute (currentLoc, prevRes) method when
the agent arrives at each location, which subsequently
reduces the results and initiates the agents movement
to the next location in the list 1o (the itinerary). In-
cidentally, the use of a reflexive callback method, that
is automatically called by the destination voyager dae-
mon, is the only means for coordinating Voyager agents
and is hard-coded into Voyager. When the agent has
reached the last location in the list 1o, it returns home
with the result.

The class diagram in figure 4 shows how the Voy-
ager implementation requires the additional interface
classes IAgent that is provided by Voyager and Imfold.
The IAgent class contains the methods for creating
mobile agents (obtaining an agent facet), moving them
to new locations and invoking the callback method.
The Imfold class is required in Voyager as the frame-
work forces the use of interfaces for invoking the meth-
ods of mobile agents.

7. Consequences

e Advantages

— The benefit of using the mfold pattern is that
once you have encapsulated the required co-
ordination behaviour of your mobile agent
within the mfold object, you can attach any
arbitrary OjectTomfold object to it that con-
tains the correct execute () method and for-
mat. You can then effectively plug the func-
tionality required from a set of predefined
task objects, or simply create them as re-
quired.

— The mobile agent can invoke resource opera-
tions locally, increasing performance through

Location 2

L/

mfold(locations, ObjectTomfold)

migrate

| Location 1 |

migrate

Location 3

[]

ObjectTomfold execute(currentLoc, prevRes)

return result List

| Location 4 |

ObjectTomfold.execute(currentLoc, prevRes)

migrate

7 ObjectTomfold.execute(currentLoc, prevRes)

Figure 3: Platform Independent Sequence Diagram for mfold Pattern

«interface»
Imfold

«interface»
ObjectTomfold

List = mfold(locations,ObjectToFold)

List = execute(currentLoc, prevResult)

«interface»

mfold <<agent>>

ConcreteObjectTomfold

IAgent

-locations : String []

move To(String destination, callback, arg)

List = mfold(locations, ObjectToFold)

List = execute(currentLoc, prevResult)

Figure 4: UML class diagram for mfold pattern in Voyager

locality. These results are also remotely pro-
cessed (i.e. reduced), which serves to dis-
tribute computation load.

— The mobile agent can carry results with it
as it travels through the network, eliminating
the transfer of intermediate data.

— The mobile agent can continue even if net-
work links go down.

e Disadvantages

— Information transmitted from location to lo-
cation is practically insecure. Although ma-
chines can be protected from foreign and mi-
grating objects, migrating agents and the
data they carry are typically unprotected
from potentially malicious hosts [14]. This is-
sue will be addressed in the secure form of the
mfold pattern and skeleton (to be presented
in a companion paper).

— Reliability and fault-tolerance is an issue. If
the mobile agent gets lost, for example, as a
result of an infrastructure failure, the infor-
mation retrieved is also lost. This issue will
be addressed in the reliable form of the mfold
pattern and skeleton (to be presented in a
companion paper).

— It may be possible that when the environment
is stable and network links are reliable, a dis-
tributed system using mobile code may not
perform as efficiently as traditional RMI or

8.

9.

RPC approaches. This however depends on
the mobile code platform being used whereby
performance is subject to performance refine-
ments.

Known Uses One such common example is when
mobile agents are used in e-commerce to visit a
set of potential product sources searching for prices.
However, rather than returning with a list of all
prices, the agent could use the mfold pattern and
return only the best price. Mobile agents are cur-
rently used in e-commerce and are commonly re-
ferred to as shopping or e-commerce bots (for a
list visit www.botspot.com/search/s-shop.htm) how-
ever the migration pattern of these mobile agents is
unclear.

Related Patterns and Frameworks

e Mobile Agent Itinerary Pattern [29]

The mfold is similar to the itinerary pattern
present in [29] where a single agent is used to itin-
erate through the destination locations perorming
a task at each location. However, the mfold pat-
tern differs from this simple pattern as it also ad-
dresses the processing of the information returned
from performing a task at each of the locations,
providing yet a higher level of abstraction.

e mmap
The mmap pattern can be composed neatly with
the mfold pattern. The mfold pattern can initially

Host 2 Host 3
LT 7

perform task REV

N send REV send REV
i return result

return result

Host 4

]> perform task > perform task
:[1
-

send REV i
-

-
retupr result

Figure 5: Behaviour of mmap

be used to locate a result common to all locations
in the itinerary and the mmap to use these results
(see section 4).

MOBILE MAP

. Name mobile map (mmap)

The name for the mmap pattern is inspired by the
map higher-order function in functional languages that
applies a function to every element in a list and returns
the resulting list. In an mmap invocation, a list is
returned that is the result of executing a function on
every location within the list of remote locations.

. Problem

e How can a customizable (mobile) computation be
used to perform a task at a set of locations, while
immediately returning the results from each loca-
tion?

e How can a customizable (mobile) computation be
multicast to a set of remote locations, while hid-
ing the migration details from the user?

. Motivating Scenario

You are designing a distributed information system.
You need to implement an algorithm that will migrate
a customizable mobile computation to each location
within a list, perform a task and return the result. The
system will be run on reliable/high bandwidth connec-
tions where the amount of data to be transmitted after
each location visit is potentially relatively large. The
distributed information processing task most suitable
for this mobility pattern is distributed information re-
trieval of large amounts of unfiltered information. In
contrast to the mfold pattern, the mmap returns the
full results from each location immediately and does
not carry the intermediate results from one location to
the next. The main benefit of mmap mobility pattern
is that the user can perform any task on the remote lo-
cations and is not restricted to predefined operations,
for example in traditional client/server technologies
such as remote method invocation (RMI) or remote
procedure call (RPC). The user can also delegate the
migration of the mobile code to the algorithm, which
returns the results from all locations once complete.
This pattern can also be used for distributed informa-
tion dispersal of the same task to a set of locations, as
observed in systems such as grid computing.

4. Forces

Consider the mmap pattern when:

e The application domain is characterised by decen-
tralised resources, or the system can be thought
of a set of co-operating components.

e You want to multicast a customisable mobile com-
putation either synchronously or asynchronously
to a set of remote locations.

e You want the flexibility to perform any processing
task on the remote locations. The client/server
model is too restricted in terms of services avail-
able as in this traditional paradigm, the server
only offers a predefined set of services that may
or may not accept code fragments as parameters.

e The amount of data to be returned from perform-
ing a task at the remote locations may be rel-
atively large and using the mfold pattern (and
mobile agents) would under perform in relation
to the amount of data to be transmitted through
the network.

e The user does not require any remote preprocess-
ing of the results returned from performing a task
at each location.

e The system may be used on devices with rela-
tively high processing capabilities.

e Autonomy is required by the user, wherein they
wish to delegate some task to a mobile computa-
tion.

e Repetitive time consuming tasks can be delegated
to a mobile computation to perform a task on be-
half of the user and require only minimal inter-
vention.

e The user wants to control what task the mobile
computation performs.

5. Solution

Remote evaluation (REV) [11] has been chosen as the
mobile paradigm most appropriate for the mmap mo-
bility pattern and subsequent mobility skeleton. With
remote evaluation, one location has the code to per-
form a task but does not have the required resources,
which are located at a remote location. The location
with the code migrates the code to the location with
the resources, which then performs the task locally,
using the resources as instructed and returning the re-
sults. A direct interaction between the source location

create mobile
REV unit

ﬂ

1
P 1

migrate

return result

migrate

migrate /7 perform service with local resource
|
return result | |

ui'?

perform service with local resource

return result

/:7 perform service with local resource

Figure 6: Platform Independent Sequence Diagram for mmap Pattern

and remote location exists with each interaction, as
the code sent by the source always returns the data
directly back to the source (see figure 5). Therefore, in
essence the context of execution of remote evaluation is
fundamentally limited to a single host location. This
pattern can therefore be applied in situations where
you require flexibility to multicast a task to a set of
remote locations and the amount of data to be trans-
mitted may be relatively large. The following platform
independent models provide an abstract view of the
mmap pattern, including the entities, their relation-
ships and the operations that must be implemented in
general.

The diagram in figure 5 illustrates the behaviour of the
mmap pattern. The remote evaluation unit is created
at host 1. It then migrates to host 2, performs the
task with the resources locally and returns the result.
This pattern continues until all locations have been
visited. Unlike the mfold pattern, the results from
each location are stored at host 1 and no intermediate
processing is performed.

The class diagram in figure 7 shows the simple struc-
ture of the mmap pattern and the participants. In
practice, the mmap class is initiated with a list of loca-
tions and an ObjectTommap, which encapsulates the
task to be performed at each location. An additional
value can also be supplied at compile time, which is
to be used by the ObjectTommap object i.e. the Ob-
jectToMap holds the method to update a file and the
value is passed as a parameter.

e mmap The mmap class contains the implemen-
tation for,

— the sequential coordination algorithm respon-
sible for migrating the remote evaluation unit
to each location in the list,

— invoking a polymorphic Object =
execute(currentLoc, value), whereby
each call to this method is performed on the
current location with the optional value.

e ObjectTommap

The ObjectTomfmap interface, which must

be implemented to use the pattern, forces
the programmer to implement an Object =
execute(currentLoc, value) method that con-
forms to the Object = execute(currentLoc,
value) used by the mmap class to invoke the
polymorphic method at each location.

e ConcreteObjectTommap
This class contains the implementation for the
Object = execute(currentLoc, value) method
to be performed at each location.

«interface»
ObjectTommap

Object = execute(currentLoc, value)

T

mmap <<REV>> ConcreteObjectTommap

-locations : String []

List = mmap(locations, ObjectTommap, value)

Object = execute(currentLoc, value)

Figure 7: UML class diagram for mmap pattern

The UML sequence diagram in figure 6 further il-
lustrates the mmap pattern by showing the sequence
of interactions involved. It shows how, after the in-
stantiation of the remote evaluation unit with a list
of locations and an ObjectTommap at location 1, it
migrates to the first location in the list. It then
invokes the Object = execute(currentLoc, value),
contained within the ObjectTommap. The result is
then returned to location 1. This pattern continues
until all locations have been visited. It should be
noted here that you can perform these interactions
either synchronously (as shown in figure 6 or asyn-
chronously).

. mmap Mobility Skeleton implemented in Voy-

ager
The mobility skeleton for the mmap pattern using the
remote evaluation paradigm and implemented in Voy-
ager has the method signature,

List = mmap(ObjectTommap obj, Stringl[] lo,
Object value)

and takes as its parameters, an object obj which is
converted into a mobile object by Voyager’s dynamic
aggregation. It then migrates to the first location in
the list 1o, passed as the second argument. A task is
then invoked, execute (currentLoc, value) using the
value as the parameter to that method. The result is
then returned. This continues until the remote evalu-
ation has been performed at all locations. In contrast
to the mfold skeleton, the mmap skeleton stores the
results within the initiating program. When all results
have been returned, a list of all results is returned to
the user.

The UML class diagram in figure 8 shows how the
Voyager implementation of the mmap pattern/skeleton
requires an additional IMobility class, provided by
Voyager, which contains the methods for creating a
mobile object (obtaining a mobile facet) and transpar-
ently moving objects to new locations.

«interface» «interface»
IMobility ObjectTommap

moveTo(String destination) Object = execute(currentLoc, value)

; ?

mmap <<REV>> ConcreteObjectTommap

-locations : String []

List = mmap(locations,ObjectTommap, value) Object = execute(currentLoc, value)

Figure 8: UML class diagram for mmap pattern in
Voyager

7. Consequences

e Advantages

— The benefit of using the mmap pattern is that
once you have encapsulated the required co-
ordination behaviour of your remote evalu-
ation within the mmap object, you can at-
tach any arbitrary OjectTommap object to it
that contains the correct execute() method
and format. You can then effectively plug
the functionality required from a set of pre-
defined task objects, or simply create them
as required.

— The remote evaluation can invoke customiz-
able resource operations locally, increasing
performance through locality.

— The remote evaluation can continue even if
network links go down, with result returned
when the network link is regained.

— The security of the results obtained from each
location becomes less of an issue as compared
to the mfold pattern, as intermediate results
are not carried from location to location.

e Disadvantages

— The results from the distributed information
processing task may still need to be processed
on the initiating host, in contrast to the mfold

pattern where the results are preprocessed
and reduced at the remote locations. In ex-
treme circumstances, this could lead to server
overload.

— Reliability and fault-tolerance is an issue. If
an infrastructure failure occurs on the remote
location, the remote evaluation, and thus re-
sults are lost. This issue will be addressed
in the reliable form of the mmap pattern and
skeleton (to be presented in a companion pa-

per).

8. Known Uses This type of pattern can be observed in
branching and merging patterns [29] that are used in
software development (version control tools). Branch-
ing can be likened to the Unix fork that creates a new
thread of execution, which incidentally corresponds to
the rfork function used in the mHaskell implementa-
tion of the mmap skeleton [5]. Another more promi-
nent example of such a pattern being observed in dis-
tributed computing is the use of remote evaluation is
grid computing. The mmap pattern would simplify the
programmers task when performing the same compu-
tation on a set of remote computers in the grid.

5. EXECUTABLE MOBILITY PATTERNS
IN PRACTICE: AN EXAMPLE

5.1 Mobile Meeting Scheduler

A mobile, automatic meeting scheduler is designed that
exploits code mobility by distributing computation load and
reducing network interactions. Users request a meeting and
the scheduler automatically checks the availability of peers
by sequentially migrating to their respective calendar loca-
tions performing availability assessments through local in-
teractions (use the mfold pattern herel). When the first
common time is identified for all peers, a meeting allocation
will be broadcast that automatically updates their calendars
(and the mmap here!).

This application can be built by composing the mfold and
mmap patterns, wherein the mfold is used to perform the
calendar assessments, carry the intermittent results and fi-
nally return the results to the initiating program. The mmap
pattern is then used to multicast the results.

The agents mfold interactions are depicted in figure 9.
Upon creation, the agent accesses the local calendar for a
list of free times available. These intermediate free times
are then carried with the agent to the next location and in-
tersected with the free times at the new location. The agent
traverses the list of locations performing an intersection be-
tween the newly acquired list of free times and the result
of the previous intersection, whereby the final result of the
distributed and systematic intersections is a list of common
free times to all peers. At the last location, the intersection
is performed for the last time and the first free time from
the resulting list is returned to the initiating program.

Figure 9 then shows how the initiating program, after re-
ceiving the result, multi-casts it to all peer calendars. A
synchronous mmap method provides confirmation that the
calendars have been updated.

The following implementation code, in Voyager, shows
how mfold and mmap patterns are composed to form a mul-
tifunctional and flexible distributed information system.

public
publ
{

s A
1 1 | |
| ! : | mfold
1 | | I
1 I L [}
: lrlgr-ahe 1 perform cakndar assasament | :
Create | ! | |
Scheduling | o I I
Agent | : migrate : ;
1 perform cakendar asssssment
] | I I
| | | I
1 | I
| : [: migrate | perform cakendar assessmeant
I |] i I
i I I L
I | |
: : retum List of free times : :
1 *= e e e e EEE T T E LY P Y = — I _/
~ T T T T "\I
| migrate : updats calendar : |
T 3 i | |
I | | I
I | I
Create : ratum corfimation : : : mmap
Motile Update | € preaty L e i
Object L . I
! I 1 I I
1 i I
| | i I
H retum confimation : :
:(-_ ______________ T _____ mikgrate : : update cakendar
1 I
I | | I
I | |
I | |
: : retum confrmation : :
i€ | I I
| | | |
I | | |
_ J

Figure 9: Sequence diagram for mobile meeting scheduler

class meetingScheduler{
ic static void main (String[] args)

String[] s = new String[3];

s[0]
s[1]
s[2]
s[3]
List

tr

= "//1inux25:8000";
= "//1inux26:8000";
= "//1inux29:8000";
= "//1inux30:8000";
results;

y{

Voyager.startup("8000") ;
}catch(Exception e){}

// Object used for the fold:

I0bjectToFold b = new ObjectToFold();

// Object used for the map:

I0bjectToMap ¢ = new ObjectToMap();

try{

mfold f = new mfold();

// mfold skeleton

results = f.mobilefold(b,s);

if (results.size()==0){
Voyager . shutdown() ;

}

mmap m = new mmap();

// mmap skeleton

List 1 =
m.map(c,s,results.get(0).toString());

for(int i = 0 ; i< 1l.size(); i++){

System.out.println(l.get(i).toString());

}
Voyager . shutdown() ;

}catch(Exception e){}

6. CONCLUSION AND FURTHER WORK

The patterns and corresponding skeletons are designed to
improve the communication and comprehension of the mo-
bility concepts they describe, thus providing more support
for the development of distributed information system ap-
plications that may benefit from code mobility.

The consequence of defining such patterns and corre-
sponding skeletons is that the developer can use the pat-
terns and skeletons to create a number of reusable mod-
ules (classes) that coordinate mobile code using a variety
of mobile paradigms. A set of objects can then be cre-
ated that perform alternative distributed information pro-
cessing tasks. In effect, the programmer will have a dynamic
and very flexible set of predefined tools suitable for any dis-
tributed information processing task.

We will extend this work by formalising additional dis-
tributed information processing mobility patterns. These
patterns, and more significantly the skeletons, will be ex-
tended to ensure the reliability and fault-tolerance of the
mobile computations.

7. REFERENCES

[1] Y. Aridor and D. B. Lange. Agent design patterns:
elements of agent application design. In AGENTS ’98:
Proceedings of the second international conference on

Autonomous agents, pages 108-115, New York, NY,
USA, 1998. ACM.

[2] M. Baldi, S. Gai, and G. P. Picco. Exploiting code
mobility in decentralized and flexible network
management. In MA ’97: Proceedings of the First
International Workshop on Mobile Agents, pages
13-26, London, UK, 1997. Springer-Verlag.

[3] M. Baldi and G. P. Picco. Evaluating the tradeoffs of
mobile code design paradigms in network management

applications. In ICSE ’98: Proceedings of the 20th
international conference on Software engineering,
pages 146-155, Washington, DC, USA, 1998. IEEE
Computer Society.

[4] W. Binder, G. Scrugendo, and J. Hulaas. Towards a
secure and efficient model for grid computing using
mobile code. In Proc. 8th ECOOP Workshop on
Mobile Object Systems: Agent Application and New
Frontiers, June 2002.

[5] A. R. D. Bois, P. W. Trinder, and H.-W. Loidl
Towards mobility skeletons. Parallel Processing
Letters, 15(3):273-288, 2005.

[6] B. Brewington, R. Gray, K. Moizumi, D. Kotz,

G. Cybenko, and D. Rus. Mobile agents in distributed
information retrieval. In M. Klusch, editor, Intelligent

Information Agents. Springer-Verlag: Heidelberg,
Germany, 1999.
[7] A. Carzaniga, G. P. Picco, and G. Vigna. Designing

distributed applications with a mobile code paradigm.
In Proceedings of the 19th International Conference on

Software Engineering, Boston, MA, USA, 1997.

[8] W.-S. E. Chen and C.-L. Hu. A mobile agent-based
active network architecture for intelligent network
control. Inf. Sci. Inf. Comput. Sci., 141(1-2):3-35,
2002.

[9] P. Ciancarini, R. Tolksdorf, and F. Zambonelli.

Coordination middleware for xml-centric applications.
In SAC ’02: Proceedings of the 2002 ACM symposium
on Applied computing, pages 336-343, New York, NY,

USA, 2002. ACM.
(10]

Applications Third International Symposium on

Mobile Agents, page 22, Washington, DC, USA, 1999.

IEEE Computer Society.
(11]

24(5):342-361, May 1998.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Professional, 1995.

[13] M. He and H. fung Leung. Agents in e-commerce:

state of the art. Knowl. Inf. Syst., 4(3):257-282, 2002.

[14] W. Jansen and T. Karygiannis. Nist special
publication 800-19 - mobile agent security. Technical
report, 2000.

[15] E. Kendall, M. Malkoun, and C. Jiang. The layered

agent patterns. In Proc. of The Pattern Languages of

Programs (PLoP’96), 1996.
[16] E. A. Kendall, P. V. M. Krishna, C. V. Pathak, and

C. B. Suresh. Patterns of intelligent and mobile
agents. In AGENTS ’98: Proceedings of the second

S. Conchon and F. L. Fessant. Jocaml: Mobile agents
for objective-caml. In ASAMA ’99: Proceedings of the
First International Symposium on Agent Systems and

A. Fuggetta, G. Picco, and G. Vigna. Understanding
Code Mobility. Transactions on Software Engineering,

25]

(26]

(27]

28]

29]

(30]

(31]

(32]

international conference on Autonomous agents, pages
92-99, New York, NY, USA, 1998. ACM.

D. Kotz, R. S. Gray, and D. Rus. Future Directions
for Mobile-Agent Research. Technical Report
TR2002-415, Hanover, NH, 2002.

R. Kowalczyk and L. Alem. Supporting mobility and
negotiation in agent-based e-commerce. pages
226-244, 2003.

H. Kuang, L. Bic, and M. B. Dillencourt. Iterative
grid-based computing using mobile agents. In ICPP,
pages 109—, 2002.

D. O. Kuester. Patterns as a means for intelligent
software engineering patterns as a means for
intelligent software engineering. In IC-A1°99, 1999.

D. B. Lange. Mobile objects and mobile agents: The
future of distributed computing? In ECCOP ’98:
Proceedings of the 12th European Conference on
Object-Oriented Programming, pages 1-12, London,
UK, 1998. Springer-Verlag.

D. B. Lange and O. Mitsuru. Programming and
Deploying Java Mobile Agents Aglets. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1998.

E. F. A. Lima, P. D. L. Machado, F. R. Sampaio, and
J. C. A. Figueiredo. An approach to modelling and
applying mobile agent design patterns. SIGSOFT
Softw. Eng. Notes, 29(3):1-8, 2004.

T. Magedanz, K. Rothermel, and S. Krause.
Intelligent agents: An emerging technology for next
generation telecommunications? In INFOCOM’96,
San Francisco, CA, USA, 24-28 1996.

B. D. Martino and O. F. Rana. Grid performance and
resource management using mobile agents. pages
251-263, 2004.

M. Schroeder and J. Gomoluch. Information agents on
the move: A survey on loadbalancing with mobiel
agents. Software Focus, 2(2):31-36, 2001.

J. Shepherdson, S. Thompson, and B. Odgers.
Decentralised workflows and software agents. BT
Technology Journal, 17(4):65-71, 1999.

A. Silva and J. Delgado. The agent pattern: A design
pattern for dynamic and distributed applications. In
Proceedings of the EuroPLoP’98, Third European
Conference on Pattern Languages of Programming and
Computing, Irsee, Germany, 1998.

Y. Tahara, A. Ohsuga, and S. Honiden. Agent system
development method based on agent patterns. In
ISADS ’99: Proceedings of the The Fourth
International Symposium on Autonomous
Decentralized Systems, page 261, Washington, DC,
USA, 1999. IEEE Computer Society.

H. Tarumi, K. Kida, Y. Ishiguro, K. Yoshifu, and

T. Asakura. Workweb system—multi-workflow
management with a multi-agent system. In GROUP
’97: Proceedings of the international ACM
SIGGROUP conference on Supporting group work,
pages 299-308, New York, NY, USA, 1997. ACM.

C. Wagner and E. Turban. Are intelligent e-commerce
agents partners or predators? Commun. ACM,
45(5):84-90, 2002.

M. Weiss. A pattern language for motivating the use

of agents. In AOIS, pages 142—-157, 2003.
[33] T. Wheeler. Voyager architecture best practices.
Technical report, Recursion Software, 2000.

[34] J. White. Mobile agents white paper. Technical report,
General Magic, 1994.

