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Abstract. This paper demonstrates that it is possible to obtain good,
scalable parallel performance by coordinating multiple instances of un-
altered sequential computational algebra systems in order to deliver a
single parallel system. The paper presents the first substantial paral-
lel performance results for SymGrid-Par, a system that orchestrates
computational algebra components into a high-performance parallel ap-
plication. We show that SymGrid-Par is capable of exploiting differ-
ent parallel/multicore architectures without any change to the compu-
tational algebra component. Ultimately, our intention is to extend our
system so that it is capable of orchestrating heterogeneous computations
across a high-performance computational Grid. For now, we illustrate
our approach with a single, unmodified production computational alge-
bra system, GAP, running on two common commodity architectures —
a homogeneous cluster and an eight-core system.
Computational algebra applications are large, specialised, and symbolic,
rather than the more commonly studied numerical applications. They
also exhibit high levels of irregularity, and multiple levels of irregularity.
We demonstrate that for three small but representative algebraic com-
putations, good parallel speedup is possible relative to a sequential GAP
system running on a single processor/core. We compare the performance
of the orchestrated system with that of parGAP, an established parallel
implementation of GAP, demonstrating
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1 Introduction

We describe the design and implementation of a new system for orchestrating
sequential computational algebra components into a coherent parallel program.
Computational algebra applications are typically constructed using domain-
specific programming notations, executed using specialist runtime engines that



have rarely been designed with parallelism in mind. Common commercial exam-
ples include Maple [9], Mathematica [1] and MuPAD [25]; while widely-used free
examples include Kant [12] and GAP [15]. While many computational algebra
applications are computationally intensive, and could, in principle, make good
use of the array of modern parallel architectures including multicore and clus-
ter machines, relatively few parallel implementations are available. Those that
are available can be unreliable and difficult to use. Indeed, in at least one case
of which we are aware [10, 23], the underlying computational algebra system
has been explicitly optimised to be single-threading, rendering Parallelisation
a major and daunting task. By providing an external mechanism that is capa-
ble of orchestrating individual sequential components into a coherent parallel
program, we aim to facilitate the parallelisation of a variety of computational
algebra systems.

This paper is structured as follows. We first briefly introduce the GAP com-
putational algebra system that we will use to develop our experimental appli-
cations (Section 2), and discuss the SymGrid-Par middleware for parallelising
computational algebra systems, (Section 3). We then describe our experimental
setup (Section 4) and consider results for three simple applications running on
networked clusters (Sections 5–7) and a multicore machine (Section 8). Finally,
we describe related work (Section 9) and conclude (Section 10).

This paper presents the first substantial parallel performance results for the
SymGrid-Par GCA component. In particular, our results demonstrate:

1. flexibility – we parallelise three test problems that capture typical features of
real computational algebra problems, including problems with varying levels
of irregular parallelism (Sections 5–7);

2. effectiveness – we show good parallel performance for each program, both
absolute performance and in comparison to an established parallel language,
GpH [27], and compare the performance of alternative parallel algorithms to
solve the same algebraic problem (Section 6); and

3. portability – we show that SymGrid-Par GCA can deliver good parallel
performance on both parallel clusters and multicores (Section 8).

2 Computational Algebra and GAP

Computational algebra has played an important role in a number of notable
mathematical developments, for example in the classification of finite simple
groups. It is essential in several areas of mathematics which apply to computer
science, such as formal languages, coding theory, or cryptography. Computa-
tional algebra applications are typically characterised by complex and expen-
sive computations that would benefit from parallel computation, but which may
exhibit a high degree of irregularity in terms of both data- and computational-
structures. Application developers are typically mathematicians or other domain
experts, who may not possess parallel expertise or have the time/inclination to
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learn complicated parallel systems interfaces. Our work aims to support this ap-
plication irregularity in a seamless and transparent fashion, by providing easy-

to-use coordination middleware that supports dynamic task allocation, load re-
balancing and task migration GAP [15] is a free system for computational dis-
crete algebra, which focuses on computational group theory. It provides a high-
level domain-specific programming language, a library of algebraic functions,
and libraries of common algebraic objects. GAP is used in research and teaching
for studying groups and their representations, rings, vector spaces, algebras, and
combinatorial structures.

3 The SymGrid-Par Parallel Middleware

The SymGrid-Par middleware orchestrates computational algebra components
into a parallel application. SymGrid-Par components communicate using Open-
Math [2], an XML-based data description format, designed specifically to rep-
resent computational mathematical objects. A high performance computer al-
gebra Grid service is provided by an integration of SymGrid-Par within the
SymGrid framework [16]. In this paper, we restrict our attention to parallel
coordination on a single cluster or a multicore machine.

SymGrid-Par (Figure 1) is built around Gum [28], the runtime imple-
mentation of Glasgow Parallel Haskell (GpH). GpH is a a well-established
semi-implicit [17] parallel extension to the standard non-strict purely functional
language Haskell. Gum provides various high-level parallelism services includ-
ing support for ultra-light-weight threads, virtual shared-memory management,
scheduling support, automatic thread placement, automatic datatype-specific
marshalling/unmarshalling, implicit communication, load-based thread throt-
tling, and thread migration. It thus provides a flexible, adaptive environment



for managing parallelism at various degrees of granularity. It has been ported
to a variety of shared-memory and distributed-memory parallel machines, and
more recently [3, 4] to Globus-based computational Grids using the Grid-enabled
MPICH-G2 implementation of the standard MPI communication library.

SymGrid-Par exploits the capabilities of the Gum system by layering a
simple API over basic Gum functionality. It comprises two generic interfaces (de-
scribed below): the CAG interface links computational algebra systems (CASs)
to Gum; and the GCA interface conversely links Gum to these systems. In this
paper, we consider only the interfaces to/from GAP. Interfacing to other sys-
tems follows essentially the same pattern, however. The CAG interface is used
by GAP to interact with Gum. Gum then uses the GCA interface to invoke
remote GAP functions, to communicate with the GAP system etc. In this way,
we achieve a clear separation of concerns: Gum deals with issues of thread cre-
ation/coordination and orchestrates the GAP engines to work on the application
as a whole; while each instance of the GAP engine deals solely with execution
of individual algebraic computations.

3.1 The CAG Interface

The CAG interface consists of an API implementing a set of common patterns of
symbolic computation, which are potentially amenable to parallel execution. The
CAG interface supports these patterns as a set of dynamic algorithmic skeletons

which may be called directly from within the computational steering interface,
and which will consequently be used to orchestrate sequential GAP components
into parallel computations.

3.2 The GCA Interface

The GCA interface (Figure 2) interfaces Gum with GAP, connecting to a small
interpreter that allows the invocation of arbitrary CAS functions, marshalling
and unmarshalling data as required. The interface comprises both C and Haskell
components. The C component is mainly used to invoke operating system ser-
vices that are needed to initiate the GAP process, to establish communication
channels, and to send and receive commands/results from the GAP process.
It also provides support for static memory that can be used to maintain state
between calls. The Haskell component provides interface functions to the user
program and implements the communication protocol with the GAP process.
The main GpH functions are:

gapEval :: String -> [gapObject] -> gapObject
gapEvalN :: String -> [gapObject] -> [gapObject]

string2GAPExpr :: String -> gapObject
gapExpr2String :: gapObject -> String

Here, gapEval and gapEvalN allow GpH programs to invoke GAP functions by
giving a function name plus a list of parameters as gapObjects; gapEvalN is used
to invoke GAP functions that return more than one object; while string2GAPExpr

and gapExpr2String convert GAP objects to/from internal GpH data formats.
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4 Experimental Setup

We have implemented SymGrid-Par as described above for Intel/AMD ma-
chines running MPI under Linux. In this paper, we measure the performance
of our implementation on two different systems (Table 1): i) a 28-node Beowulf
cluster, located at Heriot-Watt university (bwlf ); and ii) a new eight-core Dell
Poweredge 2950 machine located at the University of St Andrews (ardbeg), con-
structed from two quad-core Intel Xeon 5355 processors. Nodes on the Beowulf
cluster are connected using 100Mb/s Ethernet. Each node has a 533MHz front-
side bus, and 512MB of standard DIMMs. All nodes run the same version of
Fedora Linux (kernel version 2.6.10-1). The Dell Poweredge has a 1333MHz
front-side bus, and 16GB of fully-buffered 667MHz DIMMs. It runs CentOS
Linux 4.5 (kernel version 2.6.9-55).

We measure three testbed parallel programs (Table 2). Fibonacci is a simple
benchmark that computes Fibonacci numbers (Section 5). The sum-Euler pro-
gram is a more realistic example that computes the sum of applying the Euler
totient function to an integer list (Section 6). Finally, the smallGroup program
is a real problem that determines whether the average order of the elements of a
mathematical group is an integer (Section 7). In order to help reduce the impact
of operating system and other system effects, all runtimes given below are taken
as the mean of three wall-clock times.

5 Ideal Example: Fibonacci

The first step in validating the GCA-GAP design is to demonstrate that it can ef-
ficiently and effectively parallelise simple programs with good parallel behaviour.
That is, we show that GAP and Gum can interact correctly and with limited
overhead, and that it is possible to orchestrate sequential GAP components into
a coherent and efficient parallel program. The parallel Fibonacci function has
previously been shown to deliver excellent parallel performance under both GpH

and other languages [22].
Figure 3 shows the speedup and run-time curves for GCA-GAP and GpH

Fibonacci implementations. It shows that GCA-GAP delivers marginally super-
linear speedup for this ideal parallel application, giving a maximum speedup of
30 on 28 PEs. As the sequential parFib 35 is faster in GAP than GpH, it follows
also GCA-GAP is faster than GpH on a single PE: 5, 921s vs. 7, 704s. Moreover,
the performance advantage scales well on the number of processors we have tried
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here. The modest super-linearity in the GCA-GAP speedups can be attributed
to reduced memory management costs when the problem is split into several
smaller parts.

6 A Non-Trivial Example: sum-Euler

6.1 Problem Outline and Implementations

The sum-Euler program computes the sum of applying the Euler totient function
to the elements of an integer list. Figure 4 shows the GpH code that calculates
the sum of the Euler totients for some range of numbers. The main function,
sumTotient, generates a list of integers between the specified lower and upper
limits. This is split into chunks of size c using the splitAtN function. The euler
function is mapped in parallel across each chunk using parMap, then the result
summed sequentially for each chunk. Finally, the sum can be determined for all
chunks. This gives a data parallel implementation, with a fairly cheap combina-
tion phase involving only a small amount of communication. Figure 5 shows the
corresponding GCA-GAP implementation, which calls the GAP function euler.
This function generates a list from 1 to n, selecting only those elements of the
list that are prime relative to n. It returns a count of the number of these rel-
atively prime elements. It uses the auxiliary relprime function, which returns
true if its arguments are relatively prime, i.e. the highest common factor of the
two arguments is 1. Despite its use of data parallelism, sum-Euler gives rise to
highly irregular parallelism during execution, since task granularity can vary
significantly depending on input parameter values.

We have defined two versions of the euler function in GAP. Figure 6, shows
a näıve recursive implementation, and Figure 7, shows the more usual direct
implementation. In the recursive implementation, which is a direct translation
of the GpH code, the relprime function calls the hcf function to calculate the
highest common factor of x and y recursively. In the direct implementation,
relprime instead uses the highly optimised GAP function GcdInt to identify
arguments which are relatively prime.



sumTotient :: Int-> Int-> Int-> Int
sumTotient :lower upper c =

sum (parMap (euler)
(splitAtN c [lower .. upper]))

euler :: Int -> Int
euler n = length (filter

(relprime n) [1 .. n-1])

relprime :: Int -> Int Bool

relprime x y = hcf x y == 1

Fig. 4. sum-Euler: GpH

sumTotientGAP :: Int-> Int-> Int-> Int
sumTotientGAP lower upper c =

sum(parMap (eulerGAP)
(splitAtN c [lower .. upper]))

eulerGAP :: Int -> Int
eulerGAP n = gapObject2Int(gapEval ‘‘euler’’

[int2GAPObject n])

Fig. 5. sum-Euler: GCA-GAP

6.2 Results for sum-Euler

Table 3 shows sequential results for sum-Euler. For this example, we can see that
the GpH/Gum implementation is significantly more efficient than either of the
GAP implementations, and that the direct GAP solution is significantly faster
than the recursive implementation. Overall, the GpH/Gum program is a factor
of 2-3 times faster than the direct GAP program, and a factor of 8-17 times
faster than the recursive GAP version.

Table 4 shows the performance of sum-Euler for arguments ranging between
1 and 32, 000 on the bwlf cluster in Table 1. The first column shows the number
of PEs; the second and third columns show runtime and speedup for GCA-GAP
using the direct implementation of euler; the fourth and fifth columns show run-
times and speedups for GCA-GAP using the recursive implementation of euler,
and the last two columns show runtimes and speedups for Gum. Table 5 shows
the corresponding performance for arguments ranging between 1 and 80, 000.
In this case, no results could be recorded for the recursive implementation and
these figures are therefore omitted.

The Recursive GCA-GAP Algorithm Table 4 shows that the recursive
GCA-GAP algorithm delivers near-linear speedup, yielding a maximum speedup

hcf := function(x,y)

local m;
if y=0 then return x;
else m:= x mod y; return hcf(y,m); if;

end;;

relprime := function(x,y)
local x;

m:= hcf(x,y); return m=1;

end;;

euler := function (n)
local x;

x:= Number(Filtered([1..n],x->relprime(x,n)));
return x;

end;;

Fig. 6. Recursive euler in GAP

relprime := function(x,y)

local m;
m := GcdInt(x,y); return m=1;

end;;

euler := function(n)

local x;
x := Number(Filtered([1..n],

x->relprime(x,n)));
return x;

end;;

Fig. 7. Direct euler in GAP
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Table 3. Sequential

PE
GCA-GAP Gum

Dir
Spd

Rcr
Spd rt Spd

rt rt

1 3,006s 1 500s 1 164s 1.0
2 1,139s 2.6 320s 1.5 121s 1.3
4 542s 5.5 154s 3.2 69s 2.3
6 365s 8.2 107s 4.6 45s 3.6
8 267s 11.2 84s 5.9 38s 4.3
12 174s 17.2 59s 8.4 39s 4.2
16 141s 21.3 51s 9.8 35s 4.6
20 115s 26.1 45s 11.1 30s 5.4
28 95s 31.6 40s 12.5 23s 7.1

Table 4. 32,000

PE
GCA-GAP Gum

Dir
Spd rt Spd

rt

1 3,265s 1 1,088s 1
2 1,677s 1.9 633s 1.7
4 818s 3.9 330s 3.3
8 406s 8.0 165s 6.6
12 277s 11.7 126s 8.6
16 207s 15.7 95s 11.4
20 183s 17.8 78s 13.9
24 159s 20.5 76s 14.3
28 139s 23.4 76s 14.3

Table 5. 80,000

Table 6. sum-Euler Runtime and Speedup

of 31.6 on 28 PEs. Despite this, it is still slower than Gum by a factor of 18.3
on 1 PE and a factor of 4.1 on 28 PEs. This difference in performance can
be attributed to the lack of memory management optimisations for recursive
programming in GAP [20, 11]. Moreover, the mod operator, which is used in the
hcf function, is very memory-intensive in GAP. In contrast, the Gum memory
management and garbage collectors are better optimised for recursion [21]. The
modest super-linearity in the GCA-GAP program can again be attributed to
reduced memory management costs.

The Direct GCA-GAP Algorithm From Table 4, we can see that the direct
algorithm yields some, but not exceptional, parallel performance. We observe
a speedup of 1.5 on 2 PEs and 12.5 on 28 PEs. Although the direct algorithm
displays worse speedup than its recursive counterpart, it is faster by a factor of 6
on 2 PEs and by a factor of 2.3 on 28 PEs. It is clear that, for this example, the
direct algorithm is implemented more efficiently by the GAP kernel. Although
the direct algorithm delivers better speedup than the Gum algorithm (Table 4),
Gum is still faster by a factor of 3 on 1 PE and by a factor of 1.7 on 28 PEs. This is
mainly a consequence of the highly optimised sequential Haskell implementation
that has been exploited by GpH, though marshalling/unmarshalling adds some
overhead to the GCA-GAP performance. The poor speedup observed on 28 PEs
with an input of 32, 000 for both Gum and the direct GCA-GAP implementation
is largely a consequence of the problem size. Increasing the input size to 80, 000
(Table 5) improves the speedup by almost a factor of two in each case, to 14.3
and 23.4 on 28 PEs, respectively.

7 Multi-level Irregular Example: smallGroup

We now apply GCA-GAP to a real computational algebra problem that ex-
hibits two levels of irregularity, together with the potential for nested parallelism,
smallGroup.

7.1 Problem Outline and Implementations

The smallGroup program searches for mathematical groups whose order is not
greater than a given constant, n, that have some specific property. In the case



1

10

100

1000

10000

50 100 150 200 250 300 350 400

N
um

be
r 

of
 G

ro
up

s

Group Order 

Group sizes from 1 to 400

no of group search

Fig. 8. Number of groups of a given order from 1 to 400

of the problem we have chosen to study, the property is that the average order
of their elements is an integer. This example provides two levels of irregularity:

– firstly, as shown by Figures 8, the number of groups of a given order varies
enormously, i.e. by 5 orders of magnitude; and

– secondly, there are variations in the cost of computing the prime power of
each group.

The kernel of the smallGroup program is shown in Figures 9 and 10. There are
two obvious places to introduce data parallelism:

– the smallGroupSearch function generates a list of integers between a low
value (lo) and a high value (hi), and sequentially applies predSmallGroup

to each integer.
– the ifmatch function relies on the masterSlaves skeleton [8] to generate a

set of hierarchical master worker tasks to calculate IntAvgOrder in GAP.

smallGroupSearch :: Int -> Int [(Int,Int)]

smallGroupSearch lo hi = concat(map(ifmatch)(predSmallGroup [lo..hi]))

predSmallGroup :: ((Int,Int) ->(Int,Int,Bool)) -> Int ->[(Int,Int)]

predSmallGroup (i,n) = (i,n,(gapObject2String (gapEval ‘‘IntAvgOrder’’
[int2GapObject n, int2GapObject i])) == ‘‘true’’)

ifmatch :: ((Int,Int) -> (Int,Int,Bool)) -> Int -> [(Int, Int)]
ifmatch predSmallGroup n = [(i,n) | (i,n,b) <-

(masterSlaves predSmallGroup [(i,n) | i<- [1 nrSmallGroups n]]),b]

nrSmallGroups :: Int -> Int
nrSmallGroups n = gapObject2Int

(gapEval ‘‘NrSmallGroups’’ [int2GapObject n])

Fig. 9. GCA: smallGroup search code



IntAvgOrder := function(n,i)

local cc, sum, c, g;
sum:=0; g:=SmallGroup(n,i); cc:= ConjugacyClasses(g);
for c in cc do

sum:=sum + Size(c)*Order(Representative(c));
od;

return(sum mod Size(g)) = 0;
end;

smallGroupsSearch := function(N, IntAvgOrder)
local hits, n, i,g;

hits:=[];
for n in [1..N] do

for i in [1..NrSmallGroups(n)] do
if IntAvgOrder(n,i) then Add(hits,[n,i]); if;

od;

od;
return hits

end;

Fig. 10. GAP: smallGroup search code

7.2 Single Level Irregularity: One Group Order

Our first experiment studies GCA-GAP performance with a single level of irreg-
ularity, i.e. by computing the property for a single group order, i.e. introduces
tasks for each of the 56, 092 groups generated for n = 256. Table 7 shows the
results of evaluating smallGroup 256 in parallel. The first column shows the
number of PEs; the second and third columns show runtimes and speedups for
GCA-GAP and the final column shows the speedup over the sequential GAP im-
plementation. We observe good parallel performance, with a relative speedup of
26.7 on 28 PEs (95% efficiency), and even better absolute speedup over sequen-
tial GAP. As with the sum-Euler example, by assigning memory management
and coordination aspects to GpH, we are able to outperform sequential GAP
even on a single processor, requiring only 829s for the single-PE GpH execution,
versus 913s for the sequential GAP execution.

7.3 Multi-Level Irregularity: Ranges of Group Orders

Our second experiment investigates multi-level irregularity, where the outer level
applies the predSmallGroup to a sequence of group orders, and the inner level

PE
GCA-

Spd
Spd

GAP (GAP)

1 829s 1 1.1
2 416s 1.9 2.1
4 206s 4.0 4.4
8 104s 7.9 8.7
12 70s 11.8 13.0
16 53s 15.6 17.2
20 42s 19.7 21.7
24 36s 23.0 25.3
28 31s 26.7 29.4

Table 7. [256..256]

PE
GCA-

Spd
Spd

GAP (GAP)

1 1,377s 1 1.2
2 698s 1.9 2.3
4 360s 3.8 4.6
6 243s 5.6 6.8
8 186s 7.4 8.9
12 132s 10.4 12.5
16 105s 13.1 15.7
20 89s 15.4 18.6
28 73s 18.8 22.7

Table 8. [1 ... 400]

PE
GCA-

Spd
Spd

GAP (GAP)

1 239,121s 1 1.1
4 63,296s 3.7 4.3
8 30,929s 7.7 8.8
16 15,049s 15.8 18.1
28 8,179s 29.2 33.4

Table 9. [600 ... 1000]

Table 10. smallGroup



then generates worker tasks for each element of the sequence. To demonstrate
repeatability, we consider two sets of inputs, for orders in the ranges 1 to 400
and 600 to 1000, respectively.

Results for smallGroup [1 ... 400] Table 8 shows the results of computing
smallGroup for orders between 1 and 400, where a total of 87, 927 candidate
small groups are considered. For these inputs, the sequential GAP program
takes 1, 658s. We observe good parallel performance: GCA-GAP shows a rel-
ative speedup of 1.9 on 2 PEs (representing 95% efficiency), and 18.8 on 28 PEs
(67% efficiency), and absolute speedup over sequential GAP of up to 22.7 on 28
PEs. The loss of efficiency can be attributed to the nature of the smallGroup

program, which is a challenging parallel application with two levels of parallelism
and highly irregular task granularity.

Results for smallGroup [600 ... 1000] Table 9 similarly shows the results
of computing smallGroup for orders between 600 and 1000, where a total of
1, 163, 006 candidate small groups are considered. For these inputs, the sequen-
tial GAP program takes 273, 874s. The results shown here confirm those in
the previous section: GCA-GAP continues to provide significant parallel per-
formance on the larger input sizes considered here. Despite the irregularity of
the smallGroup application, we observe super-linear speedup of a factor of 29.2
on 28 PEs. As with the sum-Euler example of Section 6, this is a consequence
of the memory management/garbage collection system used in the sequential
implementation.

8 Multicore Results for smallGroup

Multicore architectures are becoming increasingly common: quad-core Intel pro-
cessor sets based on Pentium IV cores are now available, and it is possible to
purchase off-the-shelf systems containing eight Intel Pentium IV cores, with
sixteen-core machines recently announced. Clearly, such systems are likely to
replace not only commodity shared-memory machines (which may indeed now
comprise several multicore processors), but also traditional desktop processors.
They thus represent an important emerging target architecture for users of com-
putation algebra (and, indeed, other) systems. Effectively managing parallelism
for such systems has proved to be an interesting challenge, however. This section
investigates the performance of GCA-GAP on an eight-core Dell Poweredge sys-
tem, built from two quad-core Intel Xeon 5355 processors (ardbeg, see Table 1,
page 5). We consider only the performance of the smallGroup program, since
this represents the most serious of the applications we have previous studied in
this paper.

8.1 Results for smallGroup on an Eight-Core Machine

Figure 11 shows the runtime and speedup curves for computing smallGroup

between 800 and 1000 on an eight-core machine. A total of 42, 473 candidate



0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

R
un

tim
e

S
pe

ed
up

PEs

smallGroup Search [800 .. 1000] 

Runtime
Speedup (GCA-GAP)

Speedup (GAP)

Fig. 11. smallGroup [800 ... 1000], on an eight-core Machine

small groups are considered. The results show that a slightly super-linear speedup
is possible on eight cores, with a real absolute speedup of a factor of 8.8 over
sequential GAP. As anticipated, our results show better scalability for GCA-
GAP on the multicore system than on the Beowulf cluster. This is mainly due
to the low communication costs for the multicore architecture compared with the
distributed machine. Moreover, the ultra-light-weight threads that are available
in GpH make it more suitable for use in multicore architecture [29, 18]. We
conclude that our approach is capable of producing good performance results
on multicore architectures as well as clusters, and that this performance is, in
general, likely to be superior for a multicore machine of a given size.

9 Related Work

Parallel Symbolic Computation. Work on parallel symbolic computation dates
back to at least the early 1990s – Roch and Villard [26] provide a good general
survey of early research. Within this general area, significant research has been
undertaken for parallelise specific computational algebra algorithms, notably
term re-writing and Gröbner basis completion e.g. [6]. A number of one-off
parallel programs have also been developed for specific algebraic computations,
mainly in representation theory [24]. However, while several symbolic compu-
tation systems include some form of operator to introduce parallelism parallel
Maple [7], or parallel GAP [10]), very few production parallel algorithms have
been produced. This is partly due to the complexities involved in program-
ming such algorithms using explicit parallelism and partly due to the lack of
generalised support for communication, distribution etc, in these systems. By
abstracting over such issues, by providing system-independent orchestration of
parallel programs, we anticipate that SymGrid-Par will considerably simplify
the construction of parallel computational algebra computations.

Parallel Functional Languages and Computer Algebra Systems include, for ex-
ample, the GHC-Maple interface and the Eden-Maple system [23]. None of these



systems is in widespread use at present, none supports the broad range of com-
putational algebra applications we are targeting, nor has the support of the
developers of those systems, none has such an ambitious goal in terms of orches-
trating legacy sequential components, and none has achieved the results on both
multicore and cluster systems reported here.

Orchestrating Services Over the last 20 years there has been a great inter-
est in orchestrating services, for example Grid Services, such as job submis-
sion, data transfer and data portal services. A number of environments have
been developed, both commercailly e.g. FlowMark [19] BPEL [13], and for re-
search, e.g. DAGMan [14], and GridAnt [5]. SymGrid-Par orchestrates het-
erogeneous computations across high-performance computational Grid environ-
ments, rather than services. Moreover, SymGrid-Par targets both commer-
cial applications (Maple, Mathematica, MuPAD) and research/academic appli-
cations (Kant, GAP),

10 Conclusions and Future Work

We have outlined SymGrid-Par, a system that orchestrates legacy sequential
computational algebra components into a high-performance parallel application.
The computational algebra systems we coordinate are large and complex, util-
ising specialised data structures and algorithms. Moreover they are symbolic in
nature rather than the more commonly studied numerical applications.

The primary research contribution of the paper is to demonstrate that it is
possible to obtain good, scalable parallel performance by coordinating unaltered

computer algebra system instances. We present the first substantial parallel per-
formance results for the SymGrid-Par GCA component, restricted to a single
computational algebra system, GAP. We show the flexibility of SymGrid-Par
by parallelising three typical algebraic computations, including the smallGroup

problem with multiple levels of extremely irregular parallelism where problem
sizes may vary by 5 orders of magnitude. We show the effectiveness of the archi-
tecture by demonstrating good parallel performance for each program, achieving
relative speedups of between 12.5 and 31.6 on a 28-node cluster, and up to 8.3
on the eight-core machine. We further compare GCA parallel performance with
an established parallel language, GpH [27]. We further compare the performance
of alternative parallel algorithms to solve the same algebraic problem. We show
the portability of SymGrid-Par by showing that GCA can deliver good par-
allel performance on two common commodity architectures — an homogeneous
cluster and an eight-core system.

We must now extend our results to cover a wider variety of computational
algebra systems. The implementers of the Maple, Kant and MuPAD systems
are partners in the SCIEnce project, and we will shortly integrate them into
SymGrid-Par. We anticipate delivering similar parallel performance to the
users of these other computational algebra systems, again without needing to

alter the stable, reliable and widely-used sequential kernels of these systems. The



benefits of lightweight orchestration through GpH are clear: it is possible to
achieve good parallel performance without needing major system rewrites. This
is a major gain for developers of complex legacy systems wishing to take rapid
and straightforward advantage of the upcoming availability of cheap commodity
parallel hardware.

Acknowledgements We would like to thank Hans-Wolfgang Loidl for his
constructive comments on a previous draft of this paper, Steve Linton and
Alexander Konovalov for computational algebra expertise

This research is partially supported by European Union Framework 6 grant
RII3-CT-2005-026133 SCIEnce: Symbolic Computing Infrastructure in Europe.

References

1. The Mathematica. Wolfram Media, Inc., Champaign, IL, 1999.
2. The OpenMath Format, http://www.openmath.org/, 2007.
3. A. Al Zain, P. Trinder, H.-W. Loidl, and G. Michaelson. Managing Heterogeneity

in a Grid Parallel Haskell. J. Scalable Comp.: Practice and Experience, 7(3):9–25,
2006.

4. A. Al Zain, P. Trinder, H-W. Loild, and G. Michaelson. Evaluating a High-Level
Parallel Language (GpH) for Computational Grids. IEEE TPDS, 2007.

5. K. Amin, G. v. Laszewski, M. Hategan, N. J. Zaluzec, S. Hampton, and A. Rossi.
GridAnt: A Client-Controllable Grid Workflow System. In HICSS ’04, Washington,
DC, USA, 2004. IEEE Computer Society.
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