
Chapter 1

Semi-Explicit Parallel Programming
in a Purely Functional Style: GpH

Declarative programming languages can play an important role in the process
of designing and implementing parallel systems. They bridge the gap between
a high-level specification, with proven properties of the overall system, and the
execution of the system on real hardware. Efficiently exploiting parallelism on
a wide range of architectures is a challenging task and should in our view be
handled by a sophisticated runtime environment. Based on this design philos-
ophy we have developed and formalised Glasgow parallel Haskell (GpH), and
implemented it as a conservative extension of the Glasgow Haskell Compiler.

The high-level nature of declarative languages eases the task of mapping
an algebraic specification down to executable code. In fact, the operational
components of the specification can already be considered an implementation,
with the associated properties acting as assertions in the program. Based on a
formal model of the declarative language, the validity of these properties can
be established by manual proof, which works on a level of detail similar to the
specification language itself. Many operational aspects, usually complicating
a proof of an implementation, do not come into the picture at this level. Most
importantly, unnecessary sequentialisation of the code is avoided.

However, the goal of implicit parallelism has proven an elusive one. Often
the automatically generated parallelism is too fine-grained to be efficient. In
other cases the data-dependencies between expressions prohibit the generation
of a sufficient amount of parallelism. Thus, we employ an approach of semi-
explicit parallelism, where only potential parallelism has to be annotated in a
program, and all aspects of coordination are delegated to the runtime environ-
ment. A corresponding formal model, in the form of a structured operational
semantics, handling pools of both realised and potential parallelism, is used to
establish the correctness of programs employing semi-explicit parallelism. The
runtime environment itself is capable of synchronising parallelism, using au-
tomatic blocking on data under evaluation, and by simulating virtual shared
memory across networks of machines. Being embedded into the optimised
runtime environment for a sequential language, we achieve efficient execution
of a high-level language, close to the original specification language, while
minimising the programmer effort in parallelising the code and being scalable
to large-scale applications that can be executed on heterogeneous networks
and computational Grids.
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2 Algebraic Languages in Specification-Based Software Development

This chapter summarises research performed over more than a decade, cov-
ering language design [28], semantics [6] and implementation [29, 21, 22]. In
particular this chapter elaborates on the semi-explicit programming model
(Section 1.1), reflects on the mapping from specification to executable code
(Section 1.2), presents a structural operational semantics (Section 1.3) for
reasoning about these parallel programs (Section 1.4), discusses the main
characteristics of the graph-reduction-based implementation (Section 1.5), un-
derlines the usability of the system by assessing the performance of existing
applications (Section 1.6), and concludes by recapitulating the role of our lan-
guage and methodology as a tool for specification, transformation and efficient
parallel execution (Section 1.7).

1.1 Introduction

One of the key problems of parallel programming is to identify work that
may be suitable for parallel execution. Because of their side-effect-free charac-
ter, it is relatively easy to identify independent expressions in purely functional
languages, such as Haskell [24], and to then construct independent threads to
evaluate these expressions. However, the costs of creating and synchronising
even ultra-lightweight threads can be extremely high relative to their runtime,
and even projected multi-core architectures such as Intel’s 80-core research
testbed [13] will be unable to extract effective performance from more than a
few hundred simultaneously running threads.

Many approaches have therefore been proposed to introduce parallelism for
functional languages [16], ranging from purely implicit parallelism to explicit,
manual thread creation, communication and load management. For the GpH
variant of Haskell that is described here [29], and which targets a multithreaded
parallel implementation, we have chosen a level of abstraction that hides most
of the coordination aspects of the parallel execution, but that still enables
the programmer to influence key aspects of thread creation. In this way it
is possible to guide the granularity of GpH threads to avoid, for example,
the creation of excessively fine-grained threads. The resulting semi-explicit
parallel model of computation will be elaborated below.

Semi-Explicit Parallelism

Semi-explicit parallel languages [16] form an important class of notations,
between explicit parallel languages where all coordination, communication and
control is made explicit (e.g. C extended with the MPI communications library
or Concurrent ML [26]), and purely implicit notations where no parallelism
control at all is provided (e.g. Sisal [27], Id [23] or NESL [9]). While aiming to
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par :: a → b → b — parallel composition
seq :: a → b → b — sequential composition

FIGURE 1.1: Types of the Basic Coordination Constructs in GpH

provide high levels of abstraction and automatically managing many aspects
of parallelism, as with purely implicit approaches, semi-explicit approaches re-
quire the programmer to include some directives to specify important aspects
of the parallel coordination. Examples of such languages include Skil [10],
Concurrent Clean [25], MultiLisp [14] and our own GpH notation.

While semi-explicit approaches were often historically based around the
use of annotations, more recent approaches, such as Caliban [18], provide
compositional language constructs. This supports a more powerful, flexible,
and often programmable, parallel programming methodology where (parallel)
coordination is separated from (sequential) computation. Complete paral-
lel programs are then orchestrated from lower-level components, which may
themselves be broken down into parallel or sequential sub-computations, as
required to implement the program.

GpH [29] is a modest extension of Haskell with parallel and sequential com-
position as its two basic coordination primitives (Figure 1.1). Denotationally,
both the par and seq constructs are projections onto the second operand, that
is, the value of the first operand is not returned as the result of the construct,
though it will usually be shared as part of some sub-computation in the second
operand. Operationally, seq indicates that the first operand should be evalu-
ated before the second operand, and par indicates that the first operand may
be evaluated in parallel with the evaluation of the second. The latter opera-
tion is termed “sparking”. Unlike most parallel notations, the act of sparking
an expression in GpH does not immediately force thread creation: rather the
runtime environment determines which sparks are chosen to become parallel
threads based on load and other information. It follows that programmers
simply need to expose expressions in the program that they believe can use-
fully be evaluated in parallel. The runtime environment manages the details
of parallel execution including thread creation, communication, workload bal-
ancing etc., as described in detail in Section 1.5. Parallel implementations of
GpH are publicly available from http://www.macs.hw.ac.uk/~dsg/gph/.

These two basic operations are then used to build higher-level constructs
that help simplify parallel programming. Our early experience of implement-
ing non-trivial programs in GpH showed that unstructured use of par and
seq operators could lead to unnecessarily obscure programs. This problem
can be overcome by using evaluation strategies [28]: non-strict, polymorphic,
higher-order functions that influence both the degree of evaluation of and the
parallelism to be found in a GpH expression. Evaluation strategies provide a
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type Strategy a = a → () — type of evaluation strategy
using :: a → Strategy a → a — strategy application

rwhnf :: Strategy a — reduction to weak head normal form
class NFData a where — class of reducible types

rnf :: Strategy a — reduction to normal form

FIGURE 1.2: Basic Evaluation Strategy Operations in GpH

clean separation between coordination and computation. The driving philos-
ophy behind evaluation strategies is that it should be possible to understand
the computation specified by a function without considering its coordination.

Figure 1.2 shows the basic operations that we provide for managing eval-
uation strategies. Strategies are defined as functions of type Strategy that
take a polymorphic argument and return a unit value. The using construct
then applies an evaluation strategy to a Haskell expression. We define two
strategies for handling reduction of Haskell expressions to normal forms. The
basic evaluation strategy rwhnf specifies that the associated expression is to
weak head normal form (WHNF), in which no reduction is performed either
under λ−expressions or within data structures. This corresponds to the de-
fault non-strict evaluation order used by Haskell. The overloaded rnf strategy
correspondingly specifies that the associated expression is to be reduced to
full normal form (NF), representing a maximal evaluation degree. We provide
instantiations of this strategy for all major standard Haskell types.

1.2 From Algebraic Specification to Executable Code

Functional programming languages are designed to provide a high level of
abstraction, focusing on what should be computed without committing the
machine as to how the computation should be organised. This design prin-
ciple has made functional languages a popular choice as execution languages
for algebraic specifications. The main language features that contribute to
this high level of abstraction are higher-order functions, polymorphism and
advanced mechanisms for modularisation, such as ML’s functors or Haskell’s
type classes. Tight links between algebraic specification languages and exe-
cution languages can be identified in Extended ML (EML) [17], which maps
down to ML, or in Spectrum [11], which uses advanced features such as type
classes as found in Haskell.

In our work we exploit the proximity between algebraic specification lan-



Semi-Explicit Parallel Programming in a Purely Functional Style: GpH 5

m | n = ∃k ∈ N. m× k = n
m ⊥ n = ¬ ∃k ∈ N. 1 < k ∧ k | m ∧ k | n
ϕ(i) = | {m ∈ N | m < i ∧ m ⊥ i} |

sumEuler(n) = Σn
i=1 ϕ(i)

FIGURE 1.3: Specification of the Euler Totient Function ϕ

guages and modern functional programming languages by attempting a direct
mapping of the specification into Haskell code. In many cases the algebraic
specification can already be considered an executable specification without the
need of further refinement steps. For more complex specifications the process
of mapping it to executable code may yield a number of proof obligations,
stated in the axioms of the specification language. The proof obligations may
be discharged using tools, including general theorem provers such as Isabelle
or Coq, or specialised provers, such as Sparkle. Our model of software de-
velopment does not tie the development to any particular tool, and the proof
obligations may even be discharged manually.

Some advanced language features provided by Haskell facilitate the mapping
of a specification into a program. In particular, the sophisticated typing
mechanism in Haskell, including type classes and functional dependencies,
provides a powerful tool. Recent developments into the direction of dependent
types [5] offer even more power to encode value-dependent properties into
the type of a function, and move the programming language even closer to
a specification language. These latest research directions aside, our current
practice in mapping specification to code is, however, one of manually refining
the specification to bring it into a rule-based format, suitable for a Haskell-like
language. The proof obligations imposed by the axioms in the specification
are proven either manually or with the help of a specialised theorem prover.

With respect to the parallel execution of the resulting code, a functional
language like GpH avoids the redundant sequentialisation found in impera-
tive languages. Nor do we mandate the specification of a parallelism structure
in early stages of the refinement. As demonstrated by the running example
used in this chapter, we generate rule-based code, which does not commit
to a particular evaluation order. We then identify possible sources of paral-
lelism and specify the parallel coordination using evaluation strategies [28].
Finally, we can exploit equational reasoning at this level to improve the par-
allel performance of the resulting program. It should be emphasised that
this entire process is architecture-independent and Section 1.6 demonstrates
good parallel performance of GpH applications on varying architectures from
shared-memory machines to wide-area Grid networks.

As a running example, we will use a simple algorithm that computes the
sum of the values of the Euler totient function for integers in the range from
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mkList :: Int → [Int]
mkList n = [1..(n-1)]

gcd :: Int → Int → Int
gcd x 0 = x

gcd x y = gcd y (rem x y)

relprime :: Int → Int → Bool
relprime x y = gcd x y == 1

euler :: Int → Int
euler n = length (filter (relprime n) (mkList n))

sumEuler :: Int → Int
sumEuler = sum . (map euler) . mkList

FIGURE 1.4: Sequential Haskell Definition of sumEuler

sumEulerPar1 n = sum ((map euler (mkList n)) ‘using‘ parList rnf)

sumEulerPar2 :: Int → Int → Int
sumEulerPar2 c n =
sum ([sum (map euler x) | x ← splitAtN c (mkList n)]

‘using‘ parList rnf)

FIGURE 1.5: Two Parallel Versions of sumEuler in GpH

1 to n, for some given n. The Euler totient function of a given integer i is
the number of integers less than i that are relatively prime to i, as shown in
Figure 1.3. Figure 1.4 shows the sequential Haskell code that implements this
example. It directly maps the specifications in Figure 1.3 to the functions
relprime, euler and sumEuler. In the code for relprime the following
property is exploited: ∀ m n. gcd m n = 1 =⇒ m ⊥ n. Each function is
preceded by a type signature, for example mkList :: Int → [Int] specifies
that mkList is a function that takes a fixed precision integer, of type Int, and
returns a list of integers, of type [Int]. The notation [1..(n-1)] defines the
list of integers between 1 and n− 1. In the definition of the greatest common
divisor (gcd) we use the remainder function on integers (rem). The higher-
order function filter selects all elements of a list that fulfil a given predicate,
and map applies a function to all elements of a list.

Figure 1.5 shows two simple parallel implementations of sumEuler that
use evaluation strategies. The first parallel version, sumEulerPar1, simply
applies the parList rnf strategy to the elements of the result list. The



Semi-Explicit Parallel Programming in a Purely Functional Style: GpH 7

parList :: Strategy a → Strategy [a]
parList strat [] = ()
parList strat (x:xs) = strat x ‘par‘ (parList strat xs)

FIGURE 1.6: Definition of parList in GpH

parList strategy is a parameterised strategy for lists that applies its argument
(another strategy) to each element of the list in parallel. In this case, we
will evaluate each element to full normal form using a different thread. The
parList strategy can easily be defined using the GpH par construct, as shown
in Figure 1.6. The definition applies the argument strategy, strat, to each
element of the list x:xs in parallel, returning the unit value () once the entire
list has been traversed (: is list cons).

The second parallel version, sumEulerPar2, is more sophisticated. It first
splits the list elements into groups of size c using the splitAtN function. A
list comprehension is used to bind each of the groups to the variable x in
turn. Here, the list comprehension syntax [ e | v ← l ] builds a list of
expressions whose value is e. The expression e depends on the value of v,
which is drawn from each element of the list l in turn. The inner sum of
the Euler totients for each group is then calculated, before all these results
are summed. The definition thus exploits associativity of the underlying +
operator. The reason for splitting the indexes in this way is so that each group
of c list elements may be evaluated in parallel by its own individual thread,
thereby increasing granularity. We will revisit this example in Section 1.4,
developing versions with improved parallel performance.

1.3 The Operational Semantics of GpH

In this section, we will present a parallel operational semantics for GpH,
defined in terms of the call-by-need evaluation of a parallel extension to the λ-
calculus, GpH-core. By making our semantics explicit in describing the way
threads are managed and stored, we are able to reason accurately about the
behaviour of GpH programs in terms of both coordination and computation.

1.3.1 Operational Semantics Overview

The GpH operational semantics is a two-level transition semantics. At the
lower level, there are single-thread transitions for performing the ordinary
evaluation of expressions through, e.g., β-reduction. All candidate single-
thread steps are performed simultaneously and in lock-step. They are then
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combined into a parallel computation super-step using coordination relations
defined at the upper level. We follow Launchbury’s seminal work [19] by using
a heap to allow sharing and by requiring all closures to be constructed by some
let-binding. Where Launchbury uses a big-step natural semantics, in order
to properly model coordination issues, we have chosen to use a small-step
computational semantics.

GpH-core is a simple subset of GpH, comprising the untyped λ-calculus
extended with numbers, recursive lets, sequential composition, seq, and par-
allel composition, par. Expressions are normalised so that all variables are
distinct, and the second argument to application and the first argument to
par must be variables.

x, y, z ∈ Variable
n ∈ Number
e ∈ Expression
e ::= n | x | e x | λx.e | let {xi = ei}ni=1 in e

| e1 seq e2 | x par e

1.3.2 Heaps and Labelled Bindings

Following [19], we use a heap of bindings of expressions to variables. To
deal with parallelism, each binding also carries a label to indicate its state.
Thus, heaps are partial functions from variables to expression/thread-state
pairs:

H,K ∈ Heap = Variable ◦→ (Expression,State)
α, β ∈ State

α ::= Inactive | Runnable | Active | Blocked

We write individual bindings with the thread state appearing as an annotation
on the binding arrow, thus:

x
α7→ e

A binding is Active (A) if it is currently being evaluated; it is Blocked (B) if it
is waiting for another binding before it can continue its own evaluation; and
it is Runnable (R) if it could be evaluated, but there are currently insufficient
resources to evaluate it. All other bindings are Inactive (I). Bindings there-
fore correspond to heap closures and labelled bindings correspond to parallel
threads. This is a rather simplified model of parallelism compared with the
actual GUM implementation (Section 1.5): we assume idealised parallelism,
with no communication costs; and unlike the actual implementation, threads
are created instantly and may be migrated at no cost. However, it serves to
provide limits on possible parallelism in the actual implementation.

The computational semantics is specified as a relation on heaps, H =⇒ H ′.
This is, in turn, defined in terms of a notion of single thread transitions (Sec-
tion 1.3.3) and a scheduling relation (Section 1.3.4). The parallel operational
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H : z
A7→ let {xi = ei}ni=1 in e −→ ({xi

I7→ ei}ni=1, z
A7→ e) (let)

(H,x
I7→ v) : z

A7→ x −→ (z A7→ v̂) (var)

(H,x
I7→ e) : z

A7→ x −→ (x R7→ e, z
B7→ x) (block1)

(H,x
RAB7→ e) : z

A7→ x −→ (z B7→ x) (block2)

H : z
A7→ (λy.e) x −→ (z A7→ e[x/y]) (subst)

H : z
A7→ e −→ (K, z

α7→ e′)

H : z
A7→ e x −→ (K, z

α7→ e′ x)
(app)

H : z
A7→ v seq e −→ (z A7→ e) (seq-elim)

H : z
A7→ e1 −→ (K, z

α7→ e′1)

H : z
A7→ e1 seq e2 −→ (K, z

α7→ e′1 seq e2)
(seq)

(H,x
RAB7→ e1) : z

A7→ x par e2 −→ (z A7→ e2) (par-elim)

(H,x
I7→ e1) : z

A7→ x par e2 −→ (x R7→ e1, z
A7→ e2) (par)

FIGURE 1.7: Single Thread Transition Rules

semantics then builds on this to describe a reduction sequence from an initial
global configuration to a final global configuration:

(H,main A7→ e) =⇒ . . . =⇒ (H ′,main I7→ v)

where main identifies the root expression for the program. Values, v, are in
weak head normal form, that is:

v ::= n | λx.e

1.3.3 Single Thread Transitions

The transition relation −→ of Figure 1.7 describes the computational step
taken by each active binding in the heap. The left hand side in each rule
represents a heap with the active binding distinguished by H : z

A7→ e. Multi-
label bindings, such as x

RAB7→ e in the block2 rule mean that the state is one of
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HA = {xi
A7→ ei }ni=1 {H : xi

A7→ ei −→ Ki}ni=1

H
p

=⇒ H[
⋃n

i=1 Ki]
(parallel)

FIGURE 1.8: Combining Multiple Thread Transitions

R,A or B but not I. The right hand sides of the rules are heaps comprising
only those bindings changed or created by that computation step.

Let: The let rule populates the heap with new bindings. These bindings
are inactive since under call-by-need they may not necessarily be evaluated.

Variables and blocking: In the var and blocki rules, z is a pointer to
another closure (called x). If x has already been evaluated to WHNF (the
var rule), then z simply receives that value. The notation v̂ indicates that all
bound variables in v are replaced with fresh variable names. If x is inactive
and has not yet been evaluated (the block1 rule), then z blocks at this point
and x joins the pool of runnable bindings. Finally, if x is not inactive (the
block2 rule), then z blocks but x is unaffected.

Application: Evaluating e x involves reducing e to a function abstraction
using app and then substituting x for the bound variable y using subst.

Seq: The seq rule initially evaluates e1 without considering e2. When and
if e1 is reduced to WHNF, its value (but not any changes to the heap) is
discarded by the seq-elim rule and evaluation then proceeds to e2.

Par: The par rule potentially introduces parallelism, i.e. suggests that an
inactive binding could be made active by putting it into a Runnable state
which may be promoted to Active later if sufficient resources are available.
Nothing needs to be done if the binding is not inactive (par-elim).

1.3.4 Multi-thread Transitions and Scheduling

The changes required for all active bindings are combined by the parallel
rule (Figure 1.8) to create a full heap-to-heap transition. This is the key point
in the semantics where reductions are carried out in parallel. We write HA

to represent all the active bindings in H, i.e., HA = {x A7→ e ∈ H}. Hence
in Figure 1.8 there are precisely n active bindings in H. The notation H[K]
updates heap H with all new or changed bindings given by K. A more precise
definition, together with a proof that conflicts do not arise between bindings
can be found in [6].

The scheduling actions for individual threads are defined in Figure 1.9 as
follows: i) any binding that is immediately blocked on a completing thread is
made runnable (unblock); ii) any active or runnable binding that is in WHNF
is made inactive (deactivate); iii) as many runnable bindings as resources
will allow are made active (activate). In the unblock rule, the notation ex
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(H,x
RA7→ v, z

B7→ ex) u−→ (H,x
RA7→ v, z

R7→ ex) (unblock)

(H,x
RA7→ v) d−→ (H,x

I7→ v) (deactivate)

|HA| < N

(H,x
R7→ e) a−→ (H,x

A7→ e)
(activate)

FIGURE 1.9: Single Thread Scheduling Rules

H
†

=⇒ H ′ if:

i) H
†−→∗ H ′ and ii) there is no H ′′ such that H ′ †−→ H ′′.

(† is u, d or a.)

FIGURE 1.10: Component Scheduling Relations

represents an expression that is immediately blocked on x, i.e., one of the
three forms:

ex ::= x | x y | x seq e′

Note that in the activate rule, N is a parameter to the semantics, indicating
the total number of processors. This ensures that no more than N bindings
are activated in any step. These rules do not, however, specify which bindings
are activated: bindings are chosen non-deterministically during the activation
phase. Since, however, this choice is at the coordination level, it does not
change the actual values that are computed.

The rules of Figure 1.10 extend the scheduling rules to multiple bindings.
To achieve the maximum possible parallelism with respect to the available
processors, it is necessary that all candidate threads are unblocked before de-
activation and that deactivation takes place before activation. This sequence
of actions is captured by the schedule relation of Figure 1.11.

1.3.5 The Computation Relation

Finally, our full semantic computation relation, compute, is defined as a
parallel transition

p
=⇒ followed by a scheduling of bindings s=⇒ (Figure 1.11).

This ordering ensures that the heaps that appear in a reduction sequence are
always fully scheduled. Since our semantics is parameterised on the num-
ber of processors, we decorate the computation relation with the number of
processors where necessary: =⇒

N
, so =⇒

1
indicates the single-processor case.
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s=⇒ = a=⇒ ◦ d=⇒ ◦ u=⇒ (schedule)

=⇒ = s=⇒ ◦ p
=⇒ (compute)

FIGURE 1.11: Overall Scheduling and Computation Relations

1.3.6 Properties of the Operational Semantics

Abramsky’s denotational semantics of lazy evaluation [1] models functions
by a lifted function space, thus distinguishing between a term Ω (a non-
terminating computation) and λx.Ω to reflect the fact that reduction is to
weak head normal form rather than head normal form. This is a widely-used,
simple and abstract semantics. The properties and results developed in this
section are expressed relative to this denotational semantics.

Launchbury [19] shows a number of results relating his natural semantics of
lazy evaluation to Abramsky’s denotational semantics. We borrow much of his
notation and several of our proofs are inspired by his. Previously we showed
that the 1-processor case of our semantics corresponds to Launchbury’s.

There are three main properties that we expect of our semantics: sound-
ness: the computation relation preserves the meanings of terms; adequacy :
evaluations terminate if and only if their denotation is not ⊥; determinacy :
the same result is always obtained, irrespective of the number of processors
and irrespective of which runnable threads are chosen for activation during
the computation.

The denotational semantics of our language is given in Figure 1.12. The
Val domain is assumed to contain a lifted version of its own function space.
The lifting injection is lift and the corresponding projection is drop.

The semantic function:

[[. . .]] : Exp→ Env→ Val

naturally extends to operate on heaps, the operational counterpart of envi-
ronments:

{{. . .}} : Heap→ Env→ Env

The recursive nature of heaps is reflected by a recursively defined environment:

{{x1 7→ e1 . . . xn 7→ en}}ρ = µρ′.ρ[x1 7→ [[e1]]ρ′ . . . xn 7→ [[en]]ρ′ ]

We also require an ordering on environments: if ρ ≤ ρ′ then ρ′ may bind more
variables than ρ but they are otherwise equal. That is:

∀x . ρ(x) 6= ⊥ ⇒ ρ(x) = ρ′(x)
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ρ ∈ Env = Var→ Val

[[λx.e]]ρ = lift λε.[[e]]ρ[x7→ε]

[[e x]]ρ = drop([[e]]ρ)([[x]]ρ)

[[x]]ρ = ρ(x)

[[let {xi = ei}ni=1 in e]]ρ = [[e]]{{x1 7→e1...xn 7→en}}ρ

[[e1 seq e2]]ρ =

{
⊥ if [[e1]]ρ = ⊥
[[e2]]ρ otherwise

[[x par e]]ρ = [[e]]ρ

FIGURE 1.12: Denotational Semantics

The arid environment ρ0 takes all variables to ⊥.
Soundness. Our computational relation H =⇒ H ′ can be considered

sound with respect to the denotational semantics in Figure 1.12 if the deno-
tations of all the bindings in H are unchanged in H ′. The ≤ ordering on
environments neatly captures this notion.

PROPOSITION 1.1
If H =⇒ H ′ then for all ρ, {{H}}ρ ≤ {{H ′}}ρ.

PROOF Induction on the size of H and the structure of expressions.

Adequacy. We wish to characterise the termination properties of our se-
mantics and Propositions 1.2 and 1.3 show an agreement with the denotational
definition. The proofs are modelled on the corresponding ones in [19].

PROPOSITION 1.2
If (H, z

A7→ e) =⇒∗ (H ′, z
I7→ v) then [[e]]{{H}}ρ 6= ⊥.

PROOF For all values v, [[v]]{{H′}}ρ 6= ⊥ so by Prop.1.1 [[e]]{{H}}ρ 6= ⊥.

PROPOSITION 1.3
If [[e]]{{H}}ρ 6= ⊥, there exists H ′, z, v such that (H, z

A7→ e) =⇒∗ (H ′, z
I7→ v).

A proof of Proposition 1.3 is outlined in [6]. It is closely based on the cor-
responding proof in [19], working with a variant of the denotational semantics
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which is explicit about finite approximations.
Determinacy. We now turn to the question of obtaining the same result

irrespective of the number of processors and irrespective of which runnable
threads are chosen for activation during the computation. Clearly, since the
results above hold for any number of processors it follows that if an evaluation
with N processors gives main a value then, depending on which threads are
activated, an evaluation with M processors can give the same result in the
sense of Proposition 1.1.

However, a consequence of the definition of a=⇒ is that the main thread may
be left runnable but never progress. It is possible that the main thread could
be delayed or suspended indefinitely, if there is a constant supply of unneeded
speculative threads being generated and scheduled in place of the main thread.
This corresponds to the implementation of GpH, with the management of
speculative evaluation the programmer’s responsibility [29]. It is possible to

define an alternative activation relation a′

=⇒ that requires that a runnable
thread on which main is blocked (in a transitive sense) will be activated in
preference to other runnable threads. We can be sure that there will always
be a free processor in this circumstance because the blocking action has made
one available.

H
a′

=⇒ H ′ if:

1. H
a−→∗ H ′;

2. there is no H ′′ such that H ′ a−→ H ′′ and

3. req(main,H ′) is active in H ′.

req(x,K) =

{
x, if x

RA7→ e ∈ K

req(y, K), if x
B7→ ey ∈ K

FIGURE 1.13: Stronger Activation Relation

With this version of the activation relation, we can show that if any eval-
uation gives an answer for main then they all do, irrespective of the number

of processors. For the 1-processor case, it is clear that the definition of a′

=⇒ in
Figure 1.13 ensures that there is always exactly one active binding and that
the blocked bindings form a chain from main to that active binding.

The following proposition demonstrates that all the closures activated in the
one processor case will also be activated in the multi-processor case. Recall
that =⇒

N
is the computation relation assuming a maximum of N processors.
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PROPOSITION 1.4

Given N ≥ 1 processors, suppose
(H,main A7→ e) =⇒

1
H1 =⇒

1
H2 . . . and

(H,main A7→ e) =⇒
N

K1 =⇒
N

K2 . . .

If x is active in some Hi then there is a j such that x is active in Kj.

PROOF Suppose zk is active in some Hi. By a′

=⇒ there is a chain main B7→
ez1 , z1

B7→ ez2 , z2
B7→ ez3 , . . . zk

A7→ e in Hi.
By induction on the length k of this chain we can show that there must be

some Kj where zk is active in Kj .

Finally we can bring all these results to bear to prove that evaluation is
deterministic in the sense that we get the same answer every time, for any

number of processors, assuming the a′

=⇒ activation relation.

COROLLARY 1.1

For any number of processors N ≥ 1, if (H,main A7→ e) =⇒
1

∗ (H ′,main I7→ v)
and
(H,main A7→ e) =⇒

N
K1 =⇒

N
K2 . . . then:

1. there is some i ≥ 1 such that Ki = (K ′
i,main I7→ v′);

2. [[v′]]{{K′
i}}ρ0

= [[v]]{{H′}}ρ0

PROOF

1. If there is no such Ki then main must remain active or blocked forever.
In either case there must be some binding z

A7→ e that remains active
and does not terminate. In that case the denotation of e in the context
of the corresponding heap must be ⊥ by Prop.1.3. But by Prop.1.4 at
some stage in the 1-processor evaluation z will be active and main will
be (transitively) blocked on z. By Prop.1.2 e will not reach a WHNF
so main will remain blocked. (Unless main = z in which case the result
follows immediately.)

2. {{H,main A7→ e}}ρ0 ≤ {{H ′,main I7→ v}}ρ0 by Prop.1.1, so in particular
[[v]]{{H′}}ρ0

= [[e]]{{H}}ρ0
.

Similarly, [[v′]]{{K′
i}}ρ0

= [[e]]{{H}}ρ0
.
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1.4 Program Equivalences and Reasoning

We will now demonstrate how we can perform program transformations on
parallel programs in order to improve performance. We will use the seman-
tic properties of the GpH par and seq constructs, defined in the previous
section, to derive versions of the program that expose improved parallel be-
haviour. Our overall goal is to reduce the total execution time on some specific
parallel platform. In working towards this goal, we will increase the degree
of parallelism that can be found in the program by judicious introduction of
evaluation strategies. However, since unlike the ideal situation considered by
our operational semantics, in the real-world the costs and overheads of par-
allel execution and communication mean that maximal parallelism does not
automatically lead to a minimal runtime.

We continue with the sequential version of sumEuler below. Note that
the three main worker functions (sum, map euler, and mkList) have been
composed into a three-stage sequential pipeline using the function composition
operator (.).

sumEuler :: Int → Int
sumEuler = sum . map euler . mkList

Despite the simplicity of this program, it is a good example because it exhibits
a typical structure of symbolic applications: it uses fairly small auxiliary func-
tions that are combined with function composition and higher-order functions.
The overall program structure is a fold-of-map (where the sum function is a
fold). Operationally, this structure suggests two possible ways of parallelisa-
tion: producer-consumer (or pipeline) parallelism, and data parallelism.

1.4.1 Pipeline Parallelism

The function compositions give rise to producer-consumer (or pipeline) par-
allelism, where the initial producer (mkList) runs in parallel with its consumer
(map euler), and this runs in parallel with the final consumer of the list (sum).
We can specify pipeline parallelism by using a parallel variant of the function
composition operator (.||), which computes both the producer and the con-
sumer function in parallel. The sumEuler function can then be written as:
sumEuler = sum .|| map euler .|| mkList

where the pipeline operator is defined as:
(f .|| g) x = let { x’ = g x ; y = f x’ } in x’ ‘par‘ y

While pipeline parallelism can be easily expressed, in this case it is not very
efficient, since the tight connection between producer and consumer leads to
frequent synchronisation between the generated threads, which can conse-
quently result in poor performance.
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This behaviour can be improved by attaching a strategy to the .|| com-
binator, ensuring that the producer generates whole blocks of list elements
and thus reduces the amount of synchronisation. In order to further increase
parallelism, we can use a parallel evaluation strategy to not only specify eval-
uation degree, but also parallelism on the result of the producer. Here we
use parallel, strategic function application $|| which applies a strategy to the
argument of a function: sumEuler n =

sum $|| (parList rnf) $ map euler $|| (parList rnf) $ mkList n

This is a mixture of pipeline and data parallelism, which we study in more
detail in the following section. Notably, this pipeline construct makes it pos-
sible to specify parallelism on the top level, when combining sequential code:
although mkList n is a sequential function, the application of parList rnf
triggers the parallel evaluation of all list elements. For large-scale program-
ming this approach of specifying parallelism when combining functions, rather
than when defining them, reduces and localises the amount of necessary code
changes (see [22] for a more detailed discussion).

1.4.2 Data Parallelism

More promising in this example is to use data parallelism, where the same
operation is applied to multiple components of a data structure in parallel.
In this case, the euler function, which is mapped over the list returned by
mkList, is a good candidate for data parallelism. We can define a parallel
variant of the map operation that builds on the parList strategy, and which
abstracts over the pattern of parallelism defined in sumEulerPar1, as follows:

parMap :: Strategy b → (a → b) → [a] → [b]
parMap strat f xs = map f xs ‘using‘ parList strat

This clearly shows how higher level parallel constructs can be constructed in
a layered manner, in order to maintain clear separation between coordination
and computation: it is obvious from the definition that the value returned
from a call to parMap is identical to a sequential map. We can use this equiva-
lence to simply replace the map euler expression by parMap s euler, where
s describes the evaluation degree on the elements of the result list. In this
case we choose rnf to increase the granularity of the generated tasks.

Examining the behaviour of this data-parallel code we find a large num-
ber of very fine-grained threads, since every list element gives rise to a new
thread. In order to improve performance further we need to combine com-
putations on neighbouring list elements into one, coarse-grained thread, as in
the definition of parSumEuler2. We call this process clustering of evaluation
and demonstrate how it can be derived from this code, and how it improves
parallel performance.
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parListChunk :: Int → Strategy a → Strategy [a]
parListChunk c strat [] = ()
parListChunk c strat xs = seqList strat (take c xs) ‘par‘

parListChunk c strat (drop c xs)

FIGURE 1.14: A Clustering Strategy used in sumEuler

1.4.3 Strategic Clustering

Clustering is easily introduced into functions that return a list or other
collection. For example, it is possible to construct a strategy that captures
the splitting technique used in the definition of sumEulerPar2 above. The
parListChunk strategy of Figure 1.14 introduces a number of parallel threads
to operate on subsequences, or chunks, of an input list. Here, each thread
evaluates a sub-list of length c. The seqList strategy is a sequential analogue
of parList, applying its argument strategy to every element of the list in
sequence. Using a parListChunk c s xs strategy will therefore generate bk

c c
potential threads, where k is the length of the list xs. The expression map f
xs can now be clustered as follows.

parMapChunk c strat f xs = map f xs ‘using‘ parListChunk c strat

As before, the advantage of a purely strategic approach is that the clustered
coordination operations can be captured entirely by the evaluation strategy
and isolated from the computation.

1.4.4 Cluster Class

As defined above, clustering works on the results of a function. However,
many common functions do not return a list or other collection as their result.
One common example is a fold function, that collapses a collection to a single
value. In order to cluster such functions, we introduce a generic Cluster type
class with functions to cluster the input data, lift the function to operate
on the clustered data, and perhaps decluster the result. Although clustering
changes the computation component of a parallel program, equivalence to
the sequential program is maintained by introducing clustering systematically
using semantics-preserving identities. We will discuss such transformations in
the following sections.

To be more precise, we require that every collection type c that is to be
clustered is an instance of the Haskell MMonad class, as shown by the subclass
dependency for Cluster below. We use a formulation of monads based on
the functions munit , mjoin and mmap [32], which is more suitable for our
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purposes than the usual Kleisli category (see Section 10.4 of [7]) with return
and bind operations that is used in many of the standard Haskell libraries.

class MMonad c where
munit :: a → c a
mjoin :: c (c a) → c a
mmap :: (a → b) → (c a → c b)

We introduce a new Haskell class, Cluster , parametrised by the collection
type c with four operations: singleton turns a collection into a 1 element
collection of collections; the generalised variant cluster n maps a collection
into a collection of sub-collections each of size n; decluster flattens a collection
of collections into a single collection; and lift takes a function on c a and applies
it to a collection of collections. For singleton, decluster and lift we can use
existing definitions in the MMonad class to provide default definitions.

class (MMonad c) => Cluster c where
singleton :: c a → c (c a)
cluster :: Int → c a → c (c a)
decluster :: c (c a) → c a
lift :: (c a → b) → (c (c a) → c b)

singleton = munit
decluster = mjoin
lift = mmap

All instances of the monad class come with proof obligations for the monad
identities (see Rules (I)–(III),(i)–(iv) of [32]). From these identities we obtain
the following equations relating lift , decluster , and singleton.

decluster ◦ singleton = id (M I)
decluster ◦ lift singleton = id (M II)

decluster ◦ decluster = decluster ◦ lift decluster (M III)

lift id = id (M i)
lift (f◦g) = (lift f) ◦ (lift g) (M ii)

lift f ◦ singleton = singleton ◦ f (M iii)
lift f ◦ decluster = decluster ◦ lift (lift f) (M iv)

We further require for each n that cluster n is a one-sided inverse of decluster .

decluster ◦ cluster n = id (C I)
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We now examine the properties of functions that modify the structure of the
base domain. We call a function malg : : c a → a an (Eilenberg-Moore)
algebra for the monad c if the following two identities hold

malg ◦ munit = id (A I)
malg ◦ mmap malg = malg ◦ mjoin (A II)

The identities for an algebra can be shown as the two commuting diagrams.

a
munit //

id ''OOOOOOOOOOOOO c a

malg
��
a

c (c a)
mmap malg //

mjoin
��

c a

malg
��

c a
malg // a

Given two algebras α : : c a→ a and β : : c b→ b, a homomorphism between
them is a function f : : a→ b such that f ◦ α = β ◦mmap f .

1.4.5 Transforming Clustered Programs

The categorical identities on collections are useful for transforming clustered
programs. This section discusses the two main identities we use (lift1 and
lift2), and shows that they follow from those of monads and algebras stated
in the previous section, together with the identity for cluster .

We note that, for every a, the function mjoin : : c (c a)→ c a is an algebra
for the monad c (called the free algebra on a), and that, for every f : : a→ b,
mmap f is an algebra homomorphism between these free algebras.

Clustering can be introduced into a program by the following identity that
holds for all algebra homomorphisms, f : : c a → c b. Algorithmically the
right-hand side splits the input into clusters, applies f to every cluster and
flattens the result.

f = decluster ◦ lift f ◦ cluster n (lift1)

c (c a)
lift f // c (c b)

decluster
��

c a
f //

cluster n

OO

c b

Recall that mmap = lift and mjoin = decluster . Since f is an algebra homo-
morphism we know decluster ◦ lift f = f ◦ decluster , and (lift1) follows
from (C I). The (A II) identity can be used as the following rewrite rule in
order to apply the function malg to all clusters before combining the results
using malg again.

f = f ◦ lift f ◦ cluster n (lift2)
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sumEuler :: Int → Int → Int
sumEuler c n = sum (map euler (mkList n)

‘using‘
parListChunk c rnf )

FIGURE 1.15: Strategic Clustering Version of sumEuler

Again, using mmap = lift and mjoin = decluster , this identity has an easy
proof. Since malg is an algebra for the monad, the identity malg ◦ lift malg =
malg ◦ decluster holds by (A II), and (lift2) follows again from (C I).

1.4.6 A Strategic Clustering Version of sumEuler

We will now exploit this generic clustering mechanism to provide an im-
proved parallel definition of sumEuler. We first summarise the performance
analysis of the (unclustered) data parallel version (see also Section 1.6). In
the map-phase of sumEuler it is easy to exploit data parallelism, by comput-
ing every euler function in parallel. However, an unclustered version such as
this will generally yield a large number of very fine-grained threads, resulting
in a speedup that may be close to one.

We have already seen how to improve the granularity of the algorithm by
arranging for a whole list chunk to be computed by just one thread, using
a parListChunk strategy. We now apply this strategy to the sumEulerPar1
code in Figure 1.5 and arrive at a “strategic clustering version” of sumEuler,
shown in Figure 1.15. This takes the cluster size c as an additional parameter
and applies the parListChunk evaluation strategy to the inner expression.
This then generates the list of result values that should be summed. Un-
fortunately, measurements in [21] show that the parallel performance of the
resulting algorithm is still rather unsatisfactory on typical tightly-connected
networks. While sufficient parallelism is generated early on in the program,
the sequential fold at the end of the computation becomes a serious bottleneck,
giving typical speedups of only around a factor of four on a sixteen-processor
network.

We can identify two reasons for this poor performance. Firstly, the sum com-
putation is sequential and this will therefore inevitably generate a sequential
tail to the computation, even if it is partially overlapped by the parallel map.
Secondly, both the argument to and the result of each parallel thread is a
list, and these may require a relatively large amount of time to communicate
where large chunks are concerned.
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sumEuler :: Int → Int → Int
sumEuler z n = sum ((lift worker) (cluster z (mkList n))

‘using‘ parList rnf)
where worker = sum . map euler

FIGURE 1.16: Clustered Version of sumEuler

1.4.7 A Generic Clustering Version of sumEuler

The derivation of a generic clustering version of sumEuler proceeds as fol-
lows. First we observe that a list is a monad with list-map as the mmap and
list-append as the mjoin function. Since sum is defined as fold (+) 0 in the
Haskell prelude, it is an algebra over lists. Finally, map euler is an algebra
homomorphism between free algebras.

sumEuler = sum ◦ map euler (unfold)
= sum ◦ decluster ◦ lift (map euler) ◦ cluster z (lift1)
= sum ◦ lift (sum) ◦ lift (map euler) ◦ cluster z (A II)
= sum ◦ lift (sum ◦ map euler) ◦ cluster z (M ii)

The transformed sumEuler code in Figure 1.16 retains separation between
the algorithmic and coordination code. In particular, the sequential code can
be used as a worker function, and the clustering operations are “wrapped”
around the (lifted) worker in order to achieve an efficient parallel version.

This version exhibits a much improved average parallelism on the same
modern sixteen-processor network as before. The sequential tail in the com-
putation has been vastly reduced, to about 15% of the total runtime compared
with about 80% of the total runtime in the strategic clustering version. As
a consequence of this improved behaviour we achieve a relative speed-up of
14.3 in a sixteen processor configuration. A detailed performance comparison
can be found in [21]. On larger parallel machines it might be advantageous
to use a different clustering scheme, which collects every z-th element of the
list into one block in order to achieve a better load balance. Notably, such a
change would effect only the definition of (de)cluster but not the code of
sumEuler itself.

In summary, we have seen how a (manual) program transformation process,
controlled by basic monad and algebra laws, was able to significantly improve
the performance of a data parallel algorithm. The developed clustering is
generic and can be applied to arbitrary algebras and monads. The parallel
performance obtained for the unclustered, and both strategic and generic
clustered, versions of the program is reported in Section 1.6.
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1.5 The Implementation of GpH

GpH is implemented by the GUM runtime environment [29], a multi-
threaded parallel implementation that has been steadily evolved since the
early 1990s, and which targets a variety of parallel and distributed architec-
tures ranging from multi-core systems through shared-memory machines and
distributed clusters to wide-area computational Grids [30, 4].

1.5.1 Implementation Overview

GUM uses a virtual shared memory model of parallelism, implementing a
parallel graph reduction mechanism to handle non-strict parallel evaluation
of GpH programs. In this model, the program constructs a graph structure
during execution. Each node in the graph represents a possibly shared (sub)-
expression that may need to be evaluated. Nodes are evaluated if (and only if)
they contribute to the result of the program, realising lazy evaluation. Follow-
ing evaluation, the graph node is updated with the value of the subexpression
and thus sharing of results is preserved.

Parallelism is introduced by creating threads whose purpose is to evaluate
nodes that have been marked using the par construct. This may cause other
nodes to be evaluated if they are linked as subexpressions of the main node
that is evaluated by the thread. Following evaluation, each graph node that
has been evaluated by a thread is updated with the result of the evaluation.
If one or more threads depend on this result and have therefore been blocked
waiting for the node to be evaluated, they may now be notified of the value,
and unblocked. We will elaborate on this below.

Since we use a virtual shared graph model, communication can be handled
implicitly through accesses to globally shared nodes rather than through ex-
plicit system calls. When a thread needs the value of a globally shared node,
and this is not available on the local processor, the processor which owns the
master copy will be contacted. In the simplest case, when the master copy
has already been evaluated, the value of the result is returned immediately,
and recorded as a locally cached copy. Similarly, if the master copy has not
yet been evaluated, it is returned in an unevaluated form to the requesting
processor. The local node will now become the master copy, and the thread
will continue by evaluating this node. If the master copy is currently under
evaluation, the thread that requested the value becomes blocked until the
result is produced, at which point it will be notified of the result.

An important feature of the GUM implementation is the use of a local heap
in addition to a global heap. A local heap is used to hold cached copies of
global values that will not change in future (the use of a purely functional lan-
guage ensures there are no cache coherence issues — once produced, the value
of a graph node is fixed and will never change), and to hold a graph that is not
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reachable globally. Since the majority of a graph that is produced falls into
the latter category, this is a major advantage. The dual-level approach allows
fast independent local collection, integrated with a slower, but much less fre-
quently used global collection mechanism, currently based around distributed
reference counting.

1.5.2 Thread Management

A thread is a virtual processor that executes a task to evaluate a given
graph node. GUM threads are extremely lightweight compared to operating
system constructs such as pthreads. They are implemented entirely within the
language’s runtime environment, and contain minimal state: a set of thread-
specific registers plus a pointer to a dedicated stack object.

Threads are allocated to processing elements (PEs), which usually corre-
spond to the cores or CPUs that are available on the target system. Each PE
has a pool of runnable threads. At each scheduling step, the runtime sched-
uler selects one of these threads for execution. This thread then runs until
either it completes, it blocks, or the system terminates as the result of an er-
ror condition (such as insufficient memory). This unfair scheduling approach
has the advantage of tending to decrease both the space usage and the overall
execution time [12], which is beneficial for parallel execution. However, it is
not suitable for concurrency, or for handling speculative threads, since in both
cases it is necessary to interleave thread execution.

In GpH, parallelism is introduced using par constructs in the source pro-
gram. When the expression e1 ‘par‘ e2 is evaluated, e1 is sparked for pos-
sible future evaluation, and then e2 is evaluated. Sparking involves recording
the graph node associated with e1 in the current PE’s spark pool. At a future
point, if there is insufficient workload, sparks may be selected from the spark
pool and used to construct threads to actually evaluate the closure. Sparking
a thunk (an unevaluated expression) is thus a cheap and lightweight operation
compared with thread creation, usually involving adding only a pointer to the
spark pool.

1.5.3 Spark Stealing

If a PE becomes idle, it will extract a previously saved spark from its local
spark pool if it can, and use this to create a new thread. If the spark is no
longer useful (eg., because the node it refers to has already been evaluated by
another thread), it will be discarded, and another one chosen for execution.

If the process fails and there are no useful local sparks, then the PE will
attempt to find work from another PE. It does this by generating a “FISH”
message that is passed at random from PE to PE until either some work is
found, or it has visited a preset number of PEs. If no work is found, then the
message is returned to the originating PE, and after a short, tunable delay, a
new FISH message is generated.
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If the PE that receives a FISH has a useful spark it sends a “SCHEDULE”
message to the PE that originated the FISH, containing the corresponding
graph node packaged with a tunable amount of nearby graph. The spark is
added to the local spark pool, and an ACK message is sent to the PE that
donated the spark.

1.5.4 Memory Management

Parallel graph reduction proceeds on a shared program/data graph, and a
primary function of the runtime environment of a parallel functional language
is to manage the virtual shared memory in which the graph resides.

In GUM, most sequential execution is exactly as in the standard sequential
Glasgow Haskell Compiler (GHC) implementation. This allows the GUM
implementation to take advantage of all the sequential optimisations that have
been built into GHC. Each PE has its own local heap memory that is used
to allocate graph nodes and on which it performs local garbage collections,
independently of other PEs. Local heap addresses are normal pointers into
this local heap.

Global addresses (GAs) are used to refer to remote objects. A global address
consists of a (PE identifier, local identifier) pair. Each PE then maintains a
table of in-pointers mapping these local identifiers to specific local addresses.
The advantage of this approach over simply using local addresses as part of a
global address is that it allows the use of a copying garbage collector, such as
the generational collector used in GHC. The garbage collector treats the table
of in-pointers as additional roots to the garbage collection. The corresponding
local address is then updated to reflect the new location of the object following
garbage collection. An important part of this design is that it is easy to turn
any local address into a global address (so that it can be exported to another
PE), simply by creating a new in-pointer.

In order to allow in-pointers to be garbage collected, we use a weighted
reference counting scheme [8], where global addresses accumulate some weight,
which is returned to the owner node if the remote copy of the node is garbage
collected. If all weight is returned, the in-pointer becomes garbage, and the
local node may be a candidate for recovery during garbage collection.

The only garbage not collected by this scheme consists of cycles that are
spread across PEs. We plan ultimately to recover these cycles, too, by halting
all PEs and performing a global collective garbage collection, but we have not
yet found the need for this in practice, even in very long-lived applications.
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1.6 Assessment of Parallel Performance

Taking sumEuler as our running example, Figure 1.17 compares the relative
speedups of the unclustered version and both strategic and generic clustering
versions developed in Section 1.4. The figure reports results on a 16-node
Beowulf cluster of Linux RedHat 6.2 workstations with 533MHz Celeron pro-
cessors and 128MB of DRAM connected through a 100Mb/s fast Ethernet
switch. It shows that the unclustered version produces hardly any speedup at
all, due to the extreme fine granularity of the generated parallelism. A naive
strategic version, which combines the execution of neighbouring elements, pro-
duces only speedups up to 3.7, mainly owing to the sequential sum operation
at the end. The improved generic clustering version avoids this sequential
bottleneck at the end and shows a good speedup of 14.3 on 16 processors.

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

Speedup of sumEuler

generic clustering
strategic clustering

no clustering

FIGURE 1.17: Speedups of Different Versions of sumEuler [21]

We have used our high-level program development approach on applications
from different application areas, and Table 1.1 summarises key aspects of some
example programs. The first column shows the parallel paradigm. The second
and third columns show the application domain and program name, respec-
tively. The fourth and fifth columns present the total size of the program
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and size of the code specifying the parallel coordination, both measured in
Source Lines of Code (SLOC). The last two columns report the maximal par-
allel performance and give a reference to detailed performance measurements.
Parallel performance is measured as maximum relative speedup, i.e., speedup
over the runtime of the parallel program executed on a single processor, on a
given number of Processing Elements (PEs).

TABLE 1.1: Program Characteristics and Performance Summary
Parallel Applications size Max Speed Ref
Paradigm Domain Name Code Coord. Spdup/PEs

Data Parallel

Symbolic linSolv 121 22 11.9/16 [20]
Computation smallGroup 52 8 26.9/28 [2]
Graphics raytracer 80 10 8.9/16 [20]

Numeric
sumEuler 31 5 9.1/10 [31]
matMult 43 9 3.4/4 [20]

Divide&Conquer AI Queens 21 5 7.9/16 [20]

Nested Parallelism
Natural Lang.- Lolita 47k 13 1.4/2 [22]
Processing Naira 5k 6 2.5/5 [22]

A key aspect of GpH programming reflected by the fifth column of Ta-
ble 1.1 is that the parallelisation requires only small code changes, localised
in only a few modules. This is in stark contrast to the pervasive changes
required by a lower-level parallel programming models. The applications re-
quire a range of parallelism paradigms. The majority of the applications
are symbolic in nature and exhibit irregular parallelism, i.e., both varying
numbers and sizes of tasks. Hence the parallelism results should not be di-
rectly compared with more regular problems where near-optimal parallelism
is achievable. The results show that, despite their very different computa-
tional structures, GpH delivers respectable parallel performance for all of the
programs and on widely-varying architectures, from modern multi-cores to
very high latency computational Grids [30, 22, 4]. The performance results
show that we can obtain good parallelism on local networks, such as Beowulf
clusters, e.g., 26.9 on 28PEs [22]. More recent results exhibit almost linear
speedup on an 8-core machine [15], and acceptable performance on a wide-
area network composed of three local networks: we achieve speedups of 7 on 7
nodes, and up to 16 on 41 nodes for a challenging graphics application [4, 3].
Thus, the parallel performance of GpH scales well even on heterogeneous
high-latency architectures. We attribute the largely architecture-independent
nature of the achieved speedup to the high-level of abstraction provided by
our parallel programming model. Unlike most programming models it does
not tie a concrete parallel implementation to the specifics of the underlying
architecture. Rather, a parallel runtime environment is in charge of coordi-
nating the parallelism by adjusting the coordination to dynamic properties
such as the current workload.
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1.7 Conclusion

On the one hand, the inherent complexity of designing parallel systems calls
for a high-level approach of specifying its behaviour. On the other hand, one
of the main goals for using parallelism is to improve performance through
the coordinated use of many processors on the same application. Thus, an
efficient implementation of the specified parallelism is almost as crucial as
the correctness of the implementation itself. To reconcile the tension between
high-level design and low-level performance, we use GpH, a parallel extension
of Haskell, as both specification and as programming language. As the former,
it is a useful intermediate step from a high-level algebraic specification to
tuned executable code. In this role it exploits the formal foundations of the
purely functional programming language Haskell, and enables the programmer
to extensively use code transformations to modify the degree of parallelism in
the code. As the latter, it profits from an efficient sequential implementation
(based on the highly optimising Glasgow Haskell Compiler), augmented with
advanced concepts such as a virtual shared heap, yielding a system of efficient,
largely architecture-independent parallelism.

We have demonstrated our high-level program development approach on ap-
plications from a range of application areas: e.g., numerical analysis, symbolic
computation, and natural language processing. These applications use a range
of parallelism paradigms and deliver good parallel performance on a range of
widely-varying architectures, from modern multi-cores to very high latency
computational Grids [30, 22, 4]. We have shown that GpH parallelisation
requires minimal, local refactoring rather than the pervasive changes required
by lower-level approaches. We attribute the largely architecture-independent
performance of GpH to its high-level parallel programming model. In [20] we
have outlined how GpH’s performance compares favourably with both con-
ventional parallel technologies and with other parallel functional languages.

Our experience in realising numerous parallel applications in various appli-
cation areas underlines that efficient parallel code can be developed through a
transformation-based programming methodology. In this process a set of tools
for controlling and examining the parallel behaviour has proven indispensable.
Our measurement results indicate good performance both on shared-memory
machines and clusters of workstations. The emerging architectures of large-
scale, computational Grids on the one hand, and multi-core, parallel machines
on the other hand, are a hard stress-test for the underlying parallel runtime
environment. Even though we already achieve acceptable performance on
both of these new kinds of architectures, we are currently enhancing the fea-
tures of the runtime environment to better deal with these new architectures,
by adding support for dynamically adapting the chosen policies for work dis-
tribution and scheduling.
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