
MANAGING HETEROGENEITY IN A GRID PARALLEL HASKELL

{A. D. AL ZAIN, P. W. TRINDER, G. J. MICHAELSON}∗ AND H-W. LOIDL†

Abstract. Computational Grids potentially offer cheap large-scale high-performance systems, but are a very
challenging architecture, being heterogeneous, shared and hierarchical. Rather than requiring a programmer to
explicitly manage this complex environment, we recommend using a high-level parallel functional language, like GpH,
with largely automatic management of parallel coordination.

We present GRID-GUM, an initial port of the distributed virtual shared-memory implementation of GpH for
computational Grids. We show that, GRID-GUM delivers acceptable speedups on relatively low latency homoge-
neous and heterogeneous computational Grids. Moreover, we find that for heterogeneous computational Grids, load
management limits performance.

We present the initial design ofGRID-GUM2, that incorporates new load management mechanisms that cheaply
and effectively combine static and dynamic information to adapt to heterogeneous Grids. The mechanisms are
evaluated by measuring four non-trivial programs with different parallel properties. The measurements show that
the new mechanisms improve load distribution over the original implementation, reducing runtime by factors ranging
from 17% to 57%, and the greatest improvement is obtained for the most dynamic program.

Key words. Parallel Computing, Programming Languages

AMS subject classifications. 65Y05, 68N15

1. Introduction. Hardware price/performance ratios and improved middleware and network
technologies make cluster computing and computational Grids increasingly attractive. These ar-
chitectures are typically heterogeneous in the sense that they combine processing elements with
different CPU speeds and memory characteristics. Parallel programming on such heterogeneous
architectures is more challenging than on classical homogeneous high performance architectures.

Rather than requiring the programmer to explicitly manage low level issues such as heterogene-
ity we advocate a high-level parallel programming language, specifically Glasgow parallel Haskell
(GpH), where the programmer controls only a few key parallel coordination aspects. The remaining
coordination aspects, including heterogeneity, are dynamically managed by a sophisticated runtime
environment, Gum. Gum has been engineered to deliver good performance on classical HPCs and
clusters [1].

This paper presents GRID-GUM, a port of Gum to computational Grids using the de-facto
standard Globus Toolkit, in Section 4. Measurements in Section 6 show that GRID-GUM gives
good performance in some instances, e.g. on homogeneous low-latency multi-clusters. However for
heterogeneous architectures load management emerges as the performance-limiting issue.

We present the initial design of GRID-GUM2 in Section 7, which incorporates new load dis-
tribution mechanisms for virtual shared-memory over a wide area network. The new mechanisms
are decentralised, obtaining complete static information during start up, and then cheaply prop-
agating partial dynamic information during execution. The effectiveness of the new mechanisms
for multi-clusters Grid environment is investigated using four non-trivial programs from a range of
application areas, and with varying degrees of irregular parallelism and using both data parallel and
divide-and-conquer paradigms in Section 8. Related work is discussed in Section 9, and we conclude
in Section 10.

2. Grids & the Globus Toolkit.

2.1. Overview:. Grid technology is an infrastructure which provides the ability to dynami-
cally link distributed resources as an ensemble to support these execution of large scale, resource-
intensive applications [19].

The idea behind the Grid is to serve as an enabling technology for a broad set of applications
in science, business, entertainment, health and other areas. Using Berman’s classification [19], we

∗School of Mathematical and Computer Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K.
({ceeatia,trinder,greg}@macs.hw.ac.uk)

†Ludwig-Maximilians-Universität München, Institut für Informatik, D 80538 München, Germany,
hwloidl@informatik.uni-muenchen.de

1

2

are working with computational Grids, which use the Grid to aggregate substantial computational
resources in order to tackle problems that cannot be solved on a single system

2.2. Globus Toolkit :. The Globus Toolkit is open source software with an open architecture,
comprising a collection of software components designed to support the development of applications
for high performance distributed computing environments or ”Grids” [20]. The three main compo-
nents are:

• Resource Management: allocation and management of Grid resources;
• Information Services: providing information about Grid resources;
• Data Management: accessing and managing data in a Grid environment.

Globus Toolkit is similar to a distributed operating system with uniform access to system features.
Globus Toolkit uses a standard application programming interface (API) for sending data and work
to other machines which can be expressed in terms of extensible resource specification language
(RSL), which is used as a common notation for describing resource requirements. While, RSL is no
more sophisticated than other systems for cluster computing e.g. a Beowulf cluster running standard
Linux distribution, there are components which might be very useful for GRID-GUM in the long
run: for example for monitoring system behaviour.

The Grid architecture in the Globus Toolkit [26] identifies the fundamental system components,
specifies the purpose and function of these components, and indicates how these components interact
with one another. Grid layers defines a slim API for resource and connectivity protocols, so that
collective services have a simple interface to work with; on fabric layer, many and often specialised
resources are covered (e.g. storage, sensors), not just the usual for parallel computing such as memory,
CPU etc. The fabric layer provides the resources that are shared by the Grid: CPU time, storage,
sensors. The connectivity layer defines the core communication and authentication protocols required
for Grid-specific multi-clusters transactions. In the resource layer there are information protocols
that tells us about the state of the resource and management protocols that negotiate access to
a resource. The collective layer includes directory services, scheduling, data replication services,
workload management, col-laboratory services and monitoring services.

3. Gum and GpH.

3.1. GpH. GpH is a parallel dialect of the functional language Haskell. Its only extension to
Haskell is a primitive, par, which indicates a possible parallel execution for a program expression.
All dynamic control of the parallelism is completely implicit. This programming model encourages
the generation of massive amounts of fine-grained parallelism and puts even higher importance on
the efficiency of its management in the runtime environment.

3.2. Gum. Gum (Graph reduction for a Unified Machine model) is a parallel runtime environ-
ment, implements a functional language and is based on parallel graph reduction [7]. In this model
a program is represented as a graph structure and parallelism is exploited by reducing independent
subgraphs in parallel. The most natural implementation of parallel graph reduction uses a shared
heap for memory management. Gum implements a virtual shared heap on a distributed memory
model, using Pvm as generic communication library for transferring data. For efficient compilation
we use a state-of-the-art, optimising compiler, namely the Glasgow Haskell Compiler [2]. Originally
Gum was defined for homogeneous clusters and currently does not consider information on latencies
or the load on other nodes. Gum uses blind load distributed mechanism, where requests are sent to
random processing elements (PEs).

Gum has a simple run-time model. Essentially, in the course of execution, PEs generate sparks
representing potential parallel activities which may subsequently be realised as threads. Idle PEs
which lack local sparks may request work from other randomly chosen PEs by sending them fish
messages. If a fished PE does not have spare sparks then it will pass the message onto another PE.
Thus, Gum utilises a pull approach for work stealing to dynamically balance activity across PEs.

In a homogeneous HPC, the Gum model assumes that all PEs have the same processing and
communication characteristics. It is also assumed that a parallel program has sole use of the HPC
so its performance is not affected by unpredictable concurrent usage. Thus load balance in Gum

3

may be maintained without reference to run-time loads, with communication overhead from excess
fishing restricted through a very simple throttling mechanism.

3.3. Communication Libraries. Gum is independent of the library used to communicate
between PEs. Gum was originally based on the Pvm communication library but now has been
adapted to use Mpi, in particular Mpich and Mpich-G2. We summarise these libraries before
considering their integration into Gum. Pvm(Parallel Virtual Machine) emerged as one of the most
popular cluster message-passing systems in 1992 [21].

The Mpi (Message Passing Interface) Standard defines a library of routines that implement the
message passing model [22], and it has a richer set of constructs than Pvm. Mpich is a popular
implementation of the Mpi standard [23]. Mpich-G2 is a Grid-enabled implementation of the Mpi

standard [25]. It is a port of Mpich, built on top of services provided from the Globus Toolkit to
support efficient, transparent execution in the Grid heterogeneous environments.

4. GRID-GUM. To port GpH to computational Grids its Gum runtime environment must
be ported to the Grid collective layer as depicted in Figure 4.1. Gum sits above the collective
layer provided by Globus Toolkit, which in turn provides a unified distributed environment on the
clusters comprising the underlying Grid. Such integration depends on the provision of appropriate
communication libraries within the collective layer to link Gum transparently to the Grid: this is
considered in more detail in the next section.

GUM
Parallel Program

GpH

Grid Collective Layer

Computational Grid

High Level Grid RTE

runs−on

runs−on

compiles−to

Fig. 4.1. System Architecture

GRID-GUM extends the existing Gum memory management, and thread management tech-
niques. In particular, it implements a virtual shared heap over a wide-area network [3]. The com-
munication management in GRID-GUM is similar to Gum, but it uses a different communication
library: built around Mpich-G2, and hence the Globus Toolkit [8] as middle-ware. While Gum uses
a system manager process to start and stop parallel execution, GRID-GUM generates an RSL file
internally at the beginning of the execution. This file contains: the PE name, port number, and
certificate name, environment variables, arguments for the executable program, the directory where
the executable program is located in the specified PE, and the executable program’s name. This
RSL file is used by MpichG2 to spawn the specified number of PEs.

Figure 4.2 illustrates the load distribution mechanism in GRID-GUM, depicting the logical
components on each PE of theGRID-GUM abstract machine. When activated a spark causes a new
thread to be generated. Threads that are not currently being executed reside in the thread pool.
When the CPU is idle, and the thread pool is empty, a spark will be activated to generate a thread.
If a running thread blocks on unavailable data, it is added to the blocking queue of that node until
the data becomes available.

The thick arrows between the PEs in Figure 4.2 show load distribution messages exchanged
in GRID-GUM. Initially all processors, except for the main PE, will be idle, with no local sparks
available. PE2 sends a FISH message to a random-chosen PE. On arrival of this message, PE1 will
search for a spark and, if available, send it to PE2. This mechanism is usually called work stealing
or passive load distribution, since an idle processor has to ask for work. GRID-GUM also improves

4

Fig. 4.2. Interaction of the components of a Gum processing element.
PE 1

run

spark activate

run

spark

PE 2

FISH

activate

Spark Pool

Thread Pool

CPU

awake

block

Closure

Blocking Queue

Spark Pool

Thread Pool

CPU

awake

block

Closure

Blocking Queue

SCHEDULE

IF received FISH THEN
 IF sparks availabel THEN
 send spark in SCHEDULE
 to originPE
 ELSE

 THEN
 return back to orginPE
 ELSE
 destPE = random PE
 from PEs list
 send FISH to destPE

 IF FISH exceed age

Fig. 4.3. Work request

IF idle THEN
 IF runnable thread THEN

 IF spark in spark pool THEN

 evaluate new thread
 ELSE

 active new spark
 ELSE
 IF last SCHEDULE from
 mainPE THEN
 destPE = mainPE
 ELSE

 PEs list
 send FISH to destPE

 destPE = random PE from

Fig. 4.4. Work location

Fig. 4.5. The load distribution mechanisms in GRID-GUM

load distribution by using Limited Thread mechanism which includes specifying a hard limit on
the total number of live threads, i.e. runnable or blocked threads in the thread pool. Figure 4.5
summarises the GRID-GUM load distribution mechanism, it deals locating work (Figure 4.4), and
handling work requests (Figure 4.3), where these activities are performed in the main scheduler loop
between thread time slices.

5. Measurement Framework.

5.1. Hardware Apparatus. The measurements have been performed on five Beowulf clus-
ters: three located at Heriot-Watt Riccarton campus (Edin1, Edin2, and Edin3), a cluster located
at Ludwig-Maximilians University Munich (Muni), and a cluster located at Heriot-Watt boarder
campus(SBC); see Tables 5.1 and 5.2 for the characteristic of these Beowulfs.

All run-times in the coming tables represent the median of three executions to ameliorate the
impact of operating system and shared network interaction. In addition, tables include at the
bottom, the minimum, maximum and the geometric mean (root mean square) values.

5.2. Software Apparatus. The programs measured in this experiment are classified by the
communication degree, which is the number of messages the program sends per second, so we can
study the impact of the latency of the network on program behaviour. Six programs are measured
in this experiment. Three have low communication degree, parFib, queens and sumEuler, and the
other three have relatively high communication degree, raytracer, matMult, and linSolv.

The parFib computes Fibonacci numbers. The sumEuler program computes the sum over the
application of the Euler totient function over an integer list. The queens program places a chess

5

CPU Cache Memory

MHz kB kB

Edin1 534 128 254856
Edin2 1395 256 191164
Edin3 1816 512 247816
SBC 933 256 110292
Muni 1529 256 515500

Table 5.1

Characteristics of Beowulf Clusters

Edin1 Edin2 Edin3 SBC Muni

Edin1 0.20 0.27 0.35 2.03 35.8
Edin2 0.27 0.15 0.20 2.03 35.8
Edin3 0.35 0.20 0.20 2.03 35.8
SBC 2.03 2.03 2.03 0.15 32.8
Muni 35.8 35.8 35.8 32.8 0.13

Table 5.2

Approximate Latency between Clusters (ms)

pieces on a board. The raytracer calculates a 2D image of a given scene of 3D objects by tracing
all rays in a given scene of 3D objects by tracing all rays in a given grid, or window. The matMult

multiples two matrices. The linSolv program finds an exact solution of a linear system of equations.
See Table 5.3

Program Application Area Paradigm Regularity

queens AI Div-Conq. Regular
parFib Numeric Div-Conq. Regular
linSolv Symb. algebra Data Para. Limit irreg.
sumEuler Nume. Analysis Data Para. Irregular
matMult Numeric Divi-Conq. Irregular
raytracer Graphic Data Para. High irreg.

Table 5.3

Programs Characteristics and Performance

6. GRID-GUM Performance. In developing GRID-GUM, a crucial first step was to ensure
that Gum could seamlessly support GpH in a Grid environment. In particular, it was important
to demonstrate conclusively that the HPC-oriented Gum communication layer could be modified
for transparent use in a heterogeneous Grid. As discussed above, Gum communication is based
on Pvm, where communication in widely used Grid environments like Globus Toolkit is based on
special forms of Mpi. While there is some evidence that Pvm and Mpi offer comparable behaviours,
it was not known whether the additional Grid control layers might add unacceptable overheads costs
to Gum, rendering its use inappropriate for parallel functional programming support in a Grid.

6.1. Communication Library Impact. This experiment investigates the impact of using
different communication libraries on the performance on a single cluster.

The measurements in this section have been performed on the Edin1 cluster. In Table 6.2,
the fifth and sixth columns record the wall-clock and execution speedup. The wall-clock time is
the execution time plus the startup time. The seventh and the last columns show the percentage
variance of the wall-clock and execution speedup relative to the Gum/Pvm implementation speedup.

Overall, the Gum/Pvm implementation consistently shows the best wall-clock speedup and
Gum/Mpich-G2 the worst marked as the average packet size, in Gum level, shrinks. As shown in
measurements in the Table 6.1, the average packet size is relatively small for parFib, and sumEuler,
and the wall-clock speedup variance is big between the different Gum implementations for these
programs. For raytracer, matMult, and linSolv the average packet size is significantly larger and
the wall-clock speedup variance is smaller.

The main source of overhead for the communication is the time needed for packing and unpacking
in the communication libraries. Good performance for small packets is important for Gum, since
parallel functional programs have massive amount of fine grained parallelism including many small
messages. This is untypical for general parallel applications, and Mpi implementations may well be
tuned for the common case of large packet sizes. However, the big difference between Mpich and
Mpich-G2 is related to the extra startup security checking overhead which Globus Toolkit adds for
Mpich-G2

6

program comm No of Alloc comm Average

Name library Threads Rate Degree Pkt Size

MB/s Pkts/s Byte

parFib Pvm 26595 55.3 65.5 5.5
Mpich 26595 52.7 58.0 5.5
Mpich-G2 26595 43.2 14.8 5.6

sumEuler Pvm 82 52.8 2.09 90.2
Mpich 82 47.9 1.4 90.3
Mpich-G2 82 45.7 0.7 90.2

raytracer Pvm 350 60.0 46.7 321.7
Mpich 350 61.4 45.5 320.4
Mpich-G2 350 49.5 62.9 323.0

linSolv Pvm 242 40.3 5.5 290.6
Mpich 242 40.8 3.1 300.1
Mpich-G2 242 26.5 2.5 276.3

matMult Pvm 144 39.0 67.3 208.8
Mpich 144 40.1 52.2 213.3
Mpich-G2 144 40.0 31.2 209.3

queens Pvm 24 38.8 0.2 851.8
Mpich 24 37.0 0.2 818.9
Mpich-G2 24 34.0 0.1 846.1

Table 6.1

Dynamic Program Properties on 16 PEs

Comparison of the execution-time speedup of the Gum implementations with the different GpH

programs shows that no implementation is always better than the others. However, the differences
in execution-time speedup are less marked than the differences on the wall-clock speedup.

To summarise:
• For programs with long execution time the performance of Gum is independent of the

communication libraries (Table 6.2);
• For small programs Gum with Pvm gives the best wall clock speedup and Gum with Mpich-

G2 the worst (Table 6.2);
• Mpich-G2 has a high startup cost relative to Pvm or Mpich (Table 6.2).

6.2. GRID-GUM on Multiple Clusters.

6.2.1. Low Latency Multi-Cluster. This experiment investigates the performance impact
of executing GpH programs on multiple heterogeneous clusters with moderate latency interconnect.

The measurements in Table 6.5 use Mpich communication library on SBC and Edin3 Beowulf
clusters described in Table 5.1. Each SBC machine is labelled S (Slow) and each Edin3 machine
is labelled F (Fast). Two programs are measured: raytracer with relatively high communication
degree, and queens with relatively low communication degree. The first column shows different
combinations of machines. The second and the fifth columns record the speedup using F ’s sequential
runtime for raytracer and queens respectively. The third and the sixth columns records the speedup
using S’s sequential runtime, and the fourth and the last columns show the wall-clock time. The
first machine in the configuration string is where the program starts.

Table 6.5 shows that, replacing a local machine S by a faster remote machine F decreases the
runtime and increases the speedup. For example in Table 6.5, SSS cluster requires 1663.0s to finish
the computation of raytracer; however, if S machine has been replaced by F remote machine,
the runtime is decreased by 37%. Interestingly, this result supports the idea of using a fast remote
machine to improve the performance of a GpH parallel program, and it shows thatGRID-GUM can
cope with moderate latency network without modification.

However, it is observable that GRID-GUM, with its blind load mechanism, often gives unsatis-
factory scheduling in heterogeneous Grid multi-clusters. For example, replacing one of the FFF

7

program comm Runtime Speedup %variance
Name library Seq 16 PE Wall Exec Wall Exec

sec sec Clock Clock
parFib Pvm 413.7 22.8 14.8 17.1 00% 00%

Mpich 409.4 20.5 6.8 19.8 54% -15%
Mpich-G2 465.1 26.3 2.3 17.6 84% -2%

sumEuler Pvm 1607.1 131.8 11.1 12.1 00% 00%
Mpich 1585.1 139.2 8.8 11.3 20% 6%
Mpich-G2 1598.1 188.1 3.5 8.4 68% 30%

raytracer Pvm 2855.4 315.3 8.9 9.6 00% 00%
Mpich 2782.7 365.2 7.8 8.9 12% 7%
Mpich-G2 2782.7 301.7 6.8 9.2 22% 4%

linSolv Pvm 834.2 102.6 6.5 8.9 00% 00%
Mpich 828.4 110.5 5.5 7.3 15% 17%
Mpich-G2 828.9 112.2 5.1 7.3 21% 17%

matMult Pvm 891.9 150.2 5.9 5.9 00% 00%
Mpich 891.9 191.9 4.6 4.6 21% 21%
Mpich-G2 916.3 292.6 3.1 5.0 47% 15%

queens Pvm 2802.7 375.1 7.4 7.4 00% 00%
Mpich 2802.7 390.9 7.1 7.1 4% 4%
Mpich-G2 2816.4 567.8 4.9 6.2 33% 16%

Min Pvm

Mpich 4% -15%
Mpich-G2 21% -2%

Max Pvm

Mpich 54% 21%
Mpich-G2 84% 30%

Geometric Mean Pvm

Mpich 26% 13%
Mpich-G2 49% 16%

Table 6.2

Speedup on 16 PEs

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s Wed Sep 14 13:49:52 BST 2005GUM

0

1

2

3

4

5

6

7

0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s Tue Oct 26 14:50:20 CEST 2004GUM

0

1

2

3

4

5

6

7

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k120.0 k140.0 k160.0 k180.0 k200.0 k220.0 k240.0 k260.0 k280.0 k300.0 k320.0 k340.0 k360.0 k

a) Homogeneous clusters b) Heterogeneous cluster

Fig. 6.1. per PE Activity Profile for raytracer

machines by a slower remote machine S increases the runtime of queens from 249.5s to 768.2s, i.e.
by a factor of three. Likewise, adding a slower remote machine S to two FF local machines increases
the runtime of queens from 384.6s to 768.2s i.e. by a factor of two.

GRID-GUM shows relatively poor performance on heterogeneous cluster for many programs,
and that is due to poor load management. For example, Figure 6.1 shows GRID-GUM per-PE
activity profile for raytracer on a heterogeneous and a homogeneous cluster. A per-PE activity
profile shows the behaviour for each of the PEs (y-axis) over execution time (x-axis). Each PE is
visualised as a horizontal line, with darker shades of gray (green in a colour profile) indicating a
larger number of runnable threads. Gaps in the horizontal lines (red areas in the colour profile)
indicate idleness.

8

raytracer queens(13)
Speedup Rtime Speedup Rtime
F S Sec. F S Sec.

F 1.0 3.3 1483.3 1.0 3.2 719.5
S 0.3 1.0 4894.0 0.3 1.0 2324.7

FF 1.9 6.3 772.8 1.8 6.0 384.6
FS 1.2 4.0 1199.4 0.9 3.0 753.5

SS 0.5 1.8 2698.5 0.6 1.9 1176.9
SF 0.7 2.3 2106.1 1.0 3.4 666.3

FFF 2.7 8.9 545.1 2.8 9.3 249.5
FFS 2.0 6.7 728.6 0.9 3.0 768.2
FSS 1.4 4.8 1002.3 0.9 3.1 733.6

SSS 0.8 2.9 1663.0 0.9 2.9 795.7
SSF 1.4 4.6 1047.8 1.1 3.7 627.6
SFF 1.4 4.8 1002.1 1.5 4.8 478.3

Table 6.3

raytracer queens(13)
Speedup Rtime Speedup Rtime
F S Sec. F S Sec.

FFFF 3.4 11.4 425.9 2.7 9.0 258.2
FFFS 2.7 9.0 538.8 1.4 4.8 483.0
FFSS 2.2 7.2 675.7 1.2 4.0 578.0
FSSS 1.7 5.8 833.1 1.2 4.1 561.6
SSSS 1.1 3.8 1280.9 0.9 3.1 741.6
SSSF 1.6 5.3 916.2 1.2 4.1 560.3
SSFF 1.4 4.8 1006.7 1.2 4.1 563.5
SFFF 1.4 4.6 1046.3 1.9 6.1 375.5

FFFFF 4.0 12.9 376.7 4.0 12.8 181.1
FFFFS 3.5 11.5 422.9 2.8 9.1 254.5
FFFSS 2.9 9.4 519.2 1.3 4.2 544.9
FFSSS 2.4 7.9 615.3 1.3 4.3 530.1
FSSSS 1.9 6.4 755.6 1.2 4.0 577.7

SSSSF 1.7 5.7 850.7 1.2 4.1 560.5
SSSFF 1.8 6.2 786.0 1.5 4.9 474.3
SSFFF 1.8 6.1 790.4 1.9 6.1 375.4
SFFFF 1.9 6.5 747.6 2.2 7.3 316.5

Table 6.4

Table 6.5

Heterogeneous Clusters and Low Latency Interconnect Results

Figure 6.1.a depicts the performance on homogeneous cluster where all PEs have the same CPU
speed. Figure 6.1.b depicts the performance on heterogeneous cluster where there are four fast
machines (0-3) and four slow machines (4-7). All PEs in Figure 6.1.a are uniformly loaded, and
finish at the same time, in contrast the PEs in Figure 6.1.b have numerous idle periods, and finish at
different times. Figure 6.1.b also shows long idle periods at the beginning of the computation, where
only a small amount of parallelism is available, and blocking on data that is remotely evaluated will
cause the entire PE to remain idle until new work is obtained (see the start of PE 6). Matching
the profile in Figure 6.1.a, the fast processors in Figure 6.1.b (0-3) show a fairly balanced load and
finish at about the same time. Towards the end only PE 3 has useful work, and the main PE 0 has
to wait for it to finish. Considering the runtime of the heterogeneous cluster, 368.0s, is almost two
times greater than the runtime of the homogeneous cluster, 220.0s.

To summarise:
• Replacing a local PE with a faster remote PE reduces execution time (Table 6.5);
• GRID-GUM’s load balancing mechanism does not deliver good scheduling in a heterogeneous

Grid multi-clusters (Figure 6.1);
• In a moderate latency configuration, latency is not the dominating factor, sinceGRID-GUM

can overlap communication with computation, provided a sufficient amount of parallelism
is available (Table 6.5).

6.2.2. High Latency Multi-Cluster. This experiment investigates the performance impact
of executing GpH programs on multiple homogeneous clusters with a high latency interconnect. We
measure programs with both low and high communication degrees.

The measurements in Table 6.8, and 6.9 use Mpich-G2 communication library on the Muni
and Edin2 Beowulf clusters described Table 5.1. Each Muni machine is labelled M and each Edin2
machine is labelled E

Five programs have been tested: two programs with relatively low communication degree
parFib, and sumEuler, and three programs with relatively high communication degree raytracer,
linSolv, and matMult, see Table 6.1.

For programs with a low communication degree, Table 6.8 shows that adding a remote machine
M decreases the runtime. Even on multi-clusters configurations with very high latency between the
clusters, the additional computational power outweighs the expensive but infrequent communication.
It also shows that replacing a local machine E by a remote machine M does not grossly deteriorate

9

parFib(45) sumEuler

Rtime Spedup Rtime Spedup
Sec. E M Sec. E M

M 867.5 1.2 1.0 3138.5 1.0 1.0
E 1070.1 1.0 0.8 3227.6 1.0 0.9

MM 431.0 2.2 2.0 1270.4 2.5 2.4
EM 480.6 2.2 1.8 1308.8 2.4 2.3
EE 536.8 1.9 1.6 1332.8 2.4 2.3

MMM 298.8 3.5 2.9 869.9 3.7 3.6
EMM 331.1 3.2 2.6 838.7 3.8 3.7
EEM 338.9 3.1 2.5 867.9 3.7 3.6
EEE 374.8 2.8 2.3 899.7 3.5 3.4

Table 6.6

parFib(45) sumEuler

Rtime Spedup Rtime Spedup
Sec. E M Sec. E M

MMMM 241.9 4.4 3.5 629.7 5.1 4.9
EMMM 251.3 4.2 3.4 670.7 4.8 4.6
EEMM 268.0 3.9 3.2 665.8 4.8 4.7
EEEM 274.9 3.8 3.1 665.5 4.8 4.7
EEEE 292.9 3.6 2.9 662.2 4.8 4.7

MMMMM 205.9 5.0 4.2 523.2 6.1 5.9
EMMMM 212.7 5.0 4.0 544.0 5.9 5.7
EEMMM 226.2 4.7 3.8 553.7 5.8 5.6
EEEMM 224.7 4.7 3.8 620.8 5.1 5.0
EEEEM 234.0 4.5 3.7 588.4 5.4 5.3
EEEEE 251.3 4.2 3.4 570.8 5.6 5.4

Table 6.7

Table 6.8

Low Communication Degree Programs

performance. For example, in Table 6.8, in an EEE configuration sumEuler requires 899.7s to
finish, machine M is added EEEM the runtime decreases by 26.0%. Furthermore, replacing a
local machine E by a remote machine M , yielding a EEM configuration, shows little change in the
runtime (3.5%). In short, using remote machines in high latency communications does not have
impact on the performance of low communication degree programs.

raytracer matMult linSolv

Rtime Speedup Rtime Speedup Rtime Speedup
Sec. E M Sec. E M Sec. E M

M 903.8 1.1 1.0 265.8 0.9 1.0 290.0 1.0 1.0
E 1027.8 1.0 0.8 259.9 1.0 1.0 299.3 1.0 0.9

MM 548.6 1.8 1.4 228.8 1.1 1.1 196.5 1.5 1.4
EM 624.6 1.6 1.4 393.0 0.6 0.6 232.0 1.2 1.2
EE 545.7 1.8 1.6 227.8 1.1 1.1 164.9 1.8 1.7

MMM 383.7 2.6 2.3 133.0 1.9 1.9 139.4 2.1 2.0
EMM 535.8 1.9 1.6 297.7 0.8 0.8 231.8 1.2 1.2
EEM 494.9 2.0 1.8 201.9 1.2 1.3 141.1 2.1 2.0
EEE 387.5 2.6 2.3 137.8 1.8 1.9 136.8 2.1 2.1

MMMM 312.8 3.2 2.8 121.9 2.1 2.1 119.5 2.5 2.4
EMMM 497.6 2.0 1.8 295.0 0.8 0.9 142.5 2.1 2.0
EEMM 421.7 2.4 2.1 213.9 1.2 1.2 134.9 2.2 2.1
EEEM 377.9 2.7 2.3 145.9 1.7 1.8 120.9 2.4 2.3
EEEE 326.4 3.1 2.7 114.8 2.2 2.3 117.1 2.5 2.4

MMMMM 287.8 3.5 3.1 108.6 2.3 2.4 104.4 2.8 2.7
EMMMM 473.8 2.1 1.9 290.8 0.8 0.9 147.0 2.0 1.9
EEMMM 413.7 2.4 2.1 228.8 1.1 1.1 142.1 2.1 2.0
EEEMM 378.7 2.7 2.3 150.9 1.7 1.7 104.9 2.8 2.7
EEEEM 329.9 3.1 2.7 125.1 2.0 2.1 107.7 2.7 2.7
EEEEE 279.8 3.6 3.2 95.9 2.7 2.7 102.9 2.9 2.8

Table 6.9

High Communication Degree Programs

Table 6.9 shows, programs with a high communication degree, replacing a local machine with
a slightly faster remote machine increases the runtime and decreases the speedup. For instance

10

testLinSolv_mp.mpi 31 83 +RTS -qp4 -H64M -s Wed Jul 6 13:58:50 BST 2005GUM

0

1

2

3

0 5.0 k 10.0 k 15.0 k 20.0 k 25.0 k 30.0 k 35.0 k 40.0 k 45.0 k 50.0 k 55.0 k 60.0 k 65.0 k 70.0 k 75.0 k 80.0 k

testLinSolv_mp.mpi 31 83 +RTS -qp4 -H64M -s Wed Jul 6 14:06:34 BST 2005GUM

0

1

2

3

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k

a) Homogeneous low latency interconnect b) Heterogeneous high latency interconnect

Fig. 6.2. per PE Activity Profile for linSolv on multi-Clusters

linSolv on two local machines EE takes 174.9s, if one of the local machine is replaced by a remote
machine EM , the runtime increases by 41.4%. Note that for all programs the runtime increases
when adding a remote machine in such a way. Furthermore, a configuration of the form EMM . . . M

is always worst among the configurations with the same number of PEs. This is because the local
machine E, which has all the work in the beginning of the execution, has to communicate with
the other machines through a high latency network, which becomes a bottleneck in the execution.
Finally, configurations of the form E . . .E or M . . . M are usually the best configurations, because
all machines communicate with others through the low latency network.

GRID-GUM shows relatively poor performance on high latency interconnect multi-clusters for
many programs. For example, Figure 6.2 shows GRID-GUM per-PE activity profile for linSolv

on a homogeneous low and a heterogeneous high latency interconnect multi-clusters. Figure 6.2.a
depicts the performance on homogeneous low latency interconnect cluster. Figure 6.2.b depicts the
performance on heterogeneous high latency interconnect where PE 0 & PE 1 and PE 2 & PE 3 are
connected pairwise by a low latency network, and with a high latency network between the pairs.

In Figure 6.2.b the PEs exhibit significantly more idle time, i.e. gaps in the horizontal line, and
complete at different times. In contrast, the work is fairly evenly balanced in Figure 6.2.a. The idle
time in Figure 6.2.b is due to PEs waiting for data to without other threads execute.

To summarise:

• For high communication degree programs GRID-GUM delivers poor performance on high
latency multi-clusters (Table 6.9);

• For low communication degree programsGRID-GUM can delver good performance on high
latency multi-clusters (Table 6.8);

• The poor performance ofGRID-GUM on high latency multi-clusters is primarily due to poor
load management (Figure 6.2).

7. GRID-GUM2. Based on the results in previous section, it is essential to modify GRID-

GUM for execution on a computational Grid, (GRID-GUM2). GRID-GUM2 uses the monitored
information to provide a good load distribution over the Grid using the following policies:

• An idle PE sends a FISH message only to a PE that has high load relative to its CPU speed.
• PEs have a preference for obtaining work from PEs that currently have low communication

latency.
• The recipient PE switches from passive to active load distribution if a FISH message received

from another cluster.

The new GRID-GUM2 mechanism has two main components: information collection and adap-
tive load distribution. The information collection is supported by a monitoring mechanism to provide
the current state information of the Grid network. The monitoring mechanism performs during the
whole course of execution. It collects static information like CPU speed at the start of program
in PEStatic table (Figure 7.1), and dynamic information such as load and latency during the ex-

11

PE

550 MHz

550 MHz

350 MHz

350 MHz

Time Stamp

350 MHz

13:40:01

13:45:00

12:40:03

13:44:03

14:40:03

A

D

C

B

F

CPU Speed

Fig. 7.1. PEStatic Table

Load time_stamp

2000 14:13:49

3000 14:13:59

10000 14:12:22

PE

A

B

D

Fig. 7.2. PEDynamic Table

PE

0.75 msec

Last Update

12:45:20F

Latency

C 10.00 msec 12:50:25

G 2.05 msec 12:24:50

Fig. 7.3. ComMap Table

ecution in PEDynamic and ComMap tables (Figures 7.2 and 7.3) respectively. The adaptive load
distribution of GRID-GUM2 comprises the following aspects:

• Resource-level load distribution: programs executed do not required specific resource, present
on only same PEs. Idle PEs use load distribution mechanism inGRID-GUM2 to seek work
from PEs relatively heavily loaded.

• Dependent load distribution: GRID-GUM2 aims for an efficient load distribution mechanism
to a single parallel program with dependent tasks.

• Decentralised information services: GRID-GUM2 maintains a decentralised scheme where
every PE is responsible for maintaining state information of some nearby PEs and share it
with other PEs.

• Dynamic load distribution: GRID-GUM2 assumes that limited knowledge about the load
and PEs are available a priori, and load distribution decisions have to be made during the
execution.

• Decentralised load distribution organisation: GRID-GUM2 distributes the load distribution
decision to every PE. Therefore, each PE acts as both a load distributer and a computational
resource.

• Redistribution support: GRID-GUM2 supports work placement which enhance system reli-
ability and flexibility.

• Adaptive load distribution: GRID-GUM2 is a mainly passive load distribution system where
lightly loaded PEs have to explicitly ask for work from PEs with excess load. However, if an
idle PE requests work from a PE residing outside its cluster and the request originated from
relatively powerful cluster, it changes from a passive to an active system and the recipient
PE sends more work to the idle PE.

The core of GRID-GUM2 load distribution can be summarised as work location (Figure 7.4),
and work request handling (Figure 7.5).

8. GRID-GUM2 Performance on Heterogeneous Architecture. This experiment investi-
gates the performance impact of using the adaptive load distribution of GRID-GUM2 on multiple
heterogeneous clusters with moderate latency interconnect.

The measurements in Table 8.1 useGRID-GUM andGRID-GUM2 on Edin1 and Edin2 Beowulf
clusters described in Table 5.1. Four GpH programs are measured in this experiment: queens,
sumEuler, linSolv and raytracer described in Section 5. In Table 8.1, The second and third
columns record the run-time using GRID-GUM and GRID-GUM2 in seconds respectively. The last
column shows the percentage improvement of GRID-GUM2.

Table 8.1 shows that,GRID-GUM2 outperformsGRID-GUM on multiple heterogeneous clusters
with moderate latency interconnect as far as the execution time is concerned. GRID-GUM2 shows
run-time improvements between 17% and 57%. The greatest improvement are given with the most
dynamic program, raytracer. Through the rest of this sub-section we consider studying in more
details the behaviour of raytracer in multi-clusters heterogeneous architecture.

raytracer has highly irregular execution, and consequently is very sensitive to changes in
parallel environment. Figure 8.1 shows per-PE and overall activity profiles for raytracer, with
execution on four fast machines (0,2,4,6), and four slow machines (1,3,5,7). A per-PE activity
profile shows the behaviour for each of the PEs (y-axis) over execution time (x-axis). An overall

12

IF received fish THEN
 update tables with data
 from fishing PE
 IF sparks availabelTHEN
 IF fishing PE is local THEN
 send sparks in sechedule
 to fishing PE+local data
 ELSE
 send spark(s) in super−schedule
 to fishing PE+local data
 ELSE
 IF another PE has spark
 forward fish+local data
 to busiest local PE

Fig. 7.4. Work Request

IF idle THEN

 to busiest PE from tables

 IF runnable−thread THEN

 execute runnable−thread

 IF spark in the spark−pool THEN

 create runnable−thread

 execute runnable−thread

 ELSE

 send fish+local data

 to busiest PE from tables

 send fish+local data

Fig. 7.5. Work Location

Fig. 7.6. The Load Distribution Mechanisms in GRID-GUM2

Program Run-time (s) Improvement %
GRID-GUM GRID-GUM2

queens 668 310 53%
sumEuler 570 279 51%
linSolv 217 180 17%

raytracer 1340 572 57%

Min 17%
Max 57%

Geometric
47.3%

Mean
Table 8.1

Performance On Heterogeneous Architecture

activity profile shows the behaviour of the program at each instant of its execution.

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s Thu Mar 10 14:49:57 GMT 2005GUM

0

1

2

3

4

5

6

7

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k 240.0 k 260.0 k 280.0 k 300.0 k 320.0 k 340.0 k 360.0 k

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s

running runnable fetching blocked migrating
0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k120.0 k140.0 k160.0 k180.0 k200.0 k220.0 k240.0 k260.0 k280.0 k300.0 k320.0 k340.0 k360.0 k

ta
sk

s

0

5

10

15

20

25

30

35

40

45

 cycles368005Runtime =

Average Parallelism = 5.2GrAnSim

a) Per-PE activity profile b) Overall activity profile

Fig. 8.1. GRID-GUM: raytracer with 350X350 Image on a Heterogeneous multi-Clusters

Figure 8.1.a shows a poor load distribution of GRID-GUM with raytracer to calculate an
image with resolution 350X350 using eight heterogeneous machines, i.e. four fast and four slow
machines. PEs as depicted in Figure 8.1 have numerous idle period and finish at different time.
From Figure 8.1.b, it is observable that there are a considerable number of runnable threads waiting
to be evaluated at most of the execution time. This may explain the poor load distribution in

13

GRID-GUM. PEs with slow CPU speed in a heterogeneous architecture in GRID-GUM show the
same demand of seeking work as PEs with fast CPU speed. This concludes that PEs with slow CPU
speed accumulate and activate sparks as PEs with fast CPU speed. If a spark has been activated, it
remains in its local PE as runnable or blocked thread in the thread pool and it can not be evaluated
by another PE. Considering that PEs have different capabilities of evaluating their own threads
explains the reason that there are many runnable threads are waiting to be evaluated while there
are some PEs are idle.

GRID-GUM provides explicit control over the load distribution by specifying a hard limit on the
total number of live threads, i.e. runnable or blocked threads. Figure 8.2 shows per-PE and overall
activity profiles for raytracer to calculate an image with resolution 350X350, with execution on
four fast machines (0,2,4,6), and four slow machines (1,3,5,7). GRID-GUM in this experiment uses
a hard limit of 1 on the total number of live threads in the thread pool.

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -qt1 -H32M -s Thu Mar 10 15:00:37 GMT 2005GUM

0

1

2

3

4

5

6

7

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -qt1 -H32M -s

running runnable fetching blocked migrating
0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

 cycles234626Runtime =

Average Parallelism = 7.2GrAnSim

a) Per-PE activity profile b) Overall activity profile

Fig. 8.2. GRID-GUM with Thread Limitation: raytracer with 350X350 Image on a Heterogeneous multi-Clusters

In Figure 8.2, GRID-GUM with thread limitation shows an efficient load distribution in a het-
erogeneous architecture with moderate latency interconnect. it completes the image manipulation
in 327 s, while the version ofGRID-GUM does not employ thread limitation requires 441 s. Expect-
edly, for the same problemGRID-GUM2 has similar performance, i.e. 338 s, withGRID-GUM using
thread limitation (Figure 8.3).

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s Wed Sep 14 17:36:05 BST 2005GUM

0

1

2

3

4

5

6

7

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k 240.0 k

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s

running runnable fetching blocked migrating
0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k 240.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

 cycles247869Runtime =

Average Parallelism = 7.2GrAnSim

a) Per-PE activity profile b) Overall activity profile

Fig. 8.3. GRID-GUM2: raytracer with 350X350 Image on a Heterogeneous multi-Clusters

However,GRID-GUM’s load distribution efficiency regress when the size of the input increased
even with thread limitation. Figure 8.4 shows per-PE and overall activity profiles for raytracer to
calculate an image with resolution 500X500, with execution on four fast machines (0,2,4,6), and four
slow machines (1,3,5,7). GRID-GUM in this experiment uses a hard limit of 1 on the total number
of live threads in the thread pool.

14

Main_mp.mpi 12 5 500 500 UK4 +RTS -qp8 -qt1 -H32M -s Wed Sep 14 18:22:50 BST 2005GUM

0

1

2

3

4

5

6

7

0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k 500.0 k 550.0 k 600.0 k

Main_mp.mpi 12 5 500 500 UK4 +RTS -qp8 -qt1 -H32M -s

running runnable fetching blocked migrating
0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k 500.0 k 550.0 k 600.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

 cycles647985Runtime =

Average Parallelism = 5.4GrAnSim

a) Per-PE activity profile b) Overall activity profile

Fig. 8.4. GRID-GUM with Thread Limitation: raytracer with 500X500 Image on a Heterogeneous multi-Clusters

PEs in Figure 8.4.a finish at the same time, but they still have numerous idle periods which
deteriorate the performance. This idle periods are caused by the dependencies between threads in
raytracer. These dependencies are effected badly by the thread limitation , which causes PEs to
remain idle waiting for certain threads to be evaluated. Figure 8.4.b shows that the idle periods
are not caused by lack of tasks to be evaluated. Generally speaking, thread limitation has a serious
impinge on many programs performance. Figure 8.5 shows per-PE profiles for linSolv with and
without thread limitation on 8 homogeneous machines from Edin1 Beowulf cluster.

testLinSolv_mp.mpi 31 81 +RTS -qp8 -qt1 -H128M -s Fri Sep 16 14:22:41 BST 2005GUM

0

1

2

3

4

5

6

7

0 200.0 k 400.0 k 600.0 k 800.0 k 1.0 M 1.2 M 1.4 M 1.6 M 1.8 M 2.0 M 2.2 M 2.4 M 2.6 M

testLinSolv_mp.mpi 31 81 +RTS -qp8 -H128M -s Fri Sep 16 11:51:07 BST 2005GUM

0

1

2

3

4

5

6

7

0 200.0 k 400.0 k 600.0 k 800.0 k 1.0 M 1.2 M 1.4 M

a) With thread limitation b) With no thread limitation

Fig. 8.5. GRID-GUM: linSolv on a Heterogeneous multi-Clusters

From Figure 8.5, GRID-GUM delivers better performance with linSolv without using thread
limitation. GRID-GUM requires 2802 s to finish linSolv computation using thread limitation, unlike
when thread limitation is excludedGRID-GUM requires only 1521 s to finish the same computation
in the same platform.

However, GRID-GUM2 shows more effective load distribution in heterogeneous architecture in
comparison with GRID-GUM’s load distribution. Figure 8.6 shows per-PE and overall activity
profiles for raytracer to calculate an image with resolution 500X500, with execution on four fast
machines (0,2,4,6), and four slow machines (1,3,5,7).

PEs in Figure 8.6.a are fairly balanced and and finish at about the same time. Figure 8.6.b
shows that GRID-GUM2 scores a good average parallelism in 8 PEs, 6.9, and generates enough
tasks for all PEs at each instant of the execution time. Finally, GRID-GUM2 outperforms GRID-

GUM with thread limitation in raytracer when the image resolution increases from 350X350 to
500X500, the execution time for GRID-GUM2 and GRID-GUM with thread limitation is 572 s and
814 s, respectively.

To summarise:
• GRID-GUM2 shows efficiency and automatic management of data and work on heteroge-

15

Main_mp.mpi 12 5 500 500 UK4 +RTS -qp8 -H32M -s Wed Sep 14 18:25:35 BST 2005GUM

0

1

2

3

4

5

6

7

0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k

Main_mp.mpi 12 5 500 500 UK4 +RTS -qp8 -H32M -s

running runnable fetching blocked migrating
0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

 cycles470757Runtime =

Average Parallelism = 6.9GrAnSim

a) Per-PE activity profile b) Overall activity profile

Fig. 8.6. GRID-GUM2: raytracer with 500X500 Image on a Heterogeneous multi-Clusters

neous multi-clusters Grid environment (Table 8.1);
• For some programs, thread limitation improves the performance of GRID-GUM on hetero-

geneous multi-clusters but not for all (Figures 8.2 and 8.5);
• GRID-GUM2 outperforms GRID-GUM and GRID-GUM with thread limitation for large

input sizes (Figures 8.6 and 8.4).

9. Related Work. The most closely related to our philosophy of semi-implicit management of
parallelism in a high level language is the ConCert system [10] system and the Hemlock compiler [11],
which translates a subset of ML to machine code, for execution on a Grid architecture. In contrast
to our work, parallelism is expressed via explicit synchronisation.

Under the topic of meta-computing several projects, like Harness [12], aim at provide func-
tionality similar to GRID-GUM2. The characteristic difference to GRID-GUM2 is the automatic
management of parallelism within one parallel program.

Alt et al apply skeletons to computational Grids [13]. This work focuses on providing the
application user with skeletons to capture common patterns of Grid abstractions. However, our aim
is to provide more general programming language support for parallelism through an implementation
that incorporates new implicit dynamic coordination-management strategies. Aldinucci et al also
apply skeletons to computational Grids [14].This work focuses on providing a skeleton to centralise
load management in the Grid environment. However, our aim is to solve load scheduling on the
Grid by developing a dynamic decentralised load schedule.

10. Conclusion. We have presented and measured two Grid-enabled runtime environments
for the GpH high-level parallel programming language.

Measurements of GRID-GUM showed that for large programs, the performance of Gum on a
single cluster is largely independent of the communication library used. Despite being designed for
homogeneous clusters, GRID-GUM delivers good and predictable speedups on Grid multi-clusters
with a low latency interconnect. In contrast, on Grid multi-clusters with heterogeneous architecture,
GRID-GUM does not deliver good performance due to poor scheduling. In addition, on Grid multi-
clusters with a high latency interconnect, Grid-GUM only delivers acceptable speedups for low
communication degree programs.

We have presented the initial design of GRID-GUM2 that incorporates new load management
mechanisms, informed by theGRID-GUM results. GRID-GUM2 achieves good parallel performance
for a typical set of symbolic applications running on two heterogeneous clusters connected via the
Globus Toolkit, realising a small but typical computational Grid. The improved performance is
achieved by dynamically distributing work between the machines on top of a virtual shared memory
implementation. No explicit thread placement or scheduling has to be done by the programmer. In
particular, our system makes contributions towards load distribution on such wide-area networks

We conclude that, with appropriate load management strategies, acceptable performance can
be obtained on hereogeneous computational Grids from a distributed virtual shared heap imple-
mentation of a high-level parallel language.

16

REFERENCES

[1] H-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik, R. Loogen, G. J. Michaelson, R.

Peña, Á. J. Rebón Portillo, S. Priebe and P. W. Trinder, Comparing Parallel Functional Languages:
Programming and Performance, in Higher-order and Symbolic Computation, Kluwer Academic Publishers,
16(3),2003.

[2] GHC,The Glasgow Haskell Compiler, Department of Computing Science, University of Glasgow
(http://www.dcs.gla.ac.uk/), January 1998, ”The Glasgow Haskell Compiler compiles code written in the
functional programming language Haskell” URL: http://www.dcs.gla.ac.uk/fp/software/ghc/

[3] P. W. Trinder, K. Hammond, J. S. Mattson Jr., A. S. Partridge and S. L. Peyton Jones, GUM: a
Portable Parallel Implementation of Haskell, in PLDI’96 — Conf. on Programming Language Design and
Implementation, 1996, Philadephia USA

[4] T. L. Casavant and J. G. Kuhl, A Taxonomy of Scheduling in General-Purpose Distribution Computing
Systems, in IEEE Transactions on Software Engineering, 14(2),1988, ISSN 0098-5589, pages 141–154, IEEE
Press, Piscataway NJ USA

[5] Y-T. Wang, and R. J. T. Morris, Load Sharing in Distributed Systems , In Scheduling and Load Balancing
in Parallel and Distributed Systems, 1995, Shirazi, A. and Hurson, A. R. and Kavi, K. M. , eds, IEEE
Transactions on Software Engineering, pp. 7–20, ACM

[6] D. L. Eager, E. D. Lazowska and J. Zahorjan, , A comparison of receiver-initiated and sender-initiated
adaptive load sharing (extended abstract), in SIGMETRICS ’85: Proceedings of the 1985 ACM SIGMET-
RICS conference on Measurement and modeling of computer systems, 1985, ISBN 0-89791-169-5, pp. 1–3,
Austin Texas United States, ACM Press

[7] S. L.Peyton Jones, C. Clack, J. Salkild and M. Hardie, GRIP — a High-Performance Architecture for
Parallel Graph Reduction, in Intl. Conf. on Functional Programming Languages and Computer Architecture,
pp. 98–112, September 1987, LNCS 274, Portland Oregon, Springer-Verlag

[8] I. Foster, and C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit, in ”The International Journal
of Supercomputer Applications and High Performance Computing”, 11(2), pp. 115–128, 1997

[9] A. Al Zain, P. Trinder, H-W. Loidl and G. Michaelson, Grid-GUM: Towards Grid-Enabled Haskell, in
Draft Proceedings of IFL’04 — Intl. Workshop on the Implementation of Functional Languages, Septamber
2004, Lübeck Germany

[10] Trustless Grid Computing in ConCert, B-Y. Evan Chang, K. Crary, M. DeLap, R. Harper, J. Liszka, T.
Murphy VII, and F. Pfenning, In Proceedings of the GRID 2002 Workshop, 2536 of LNCS, Springer-Verlag,
2001

[11] T. Murphy VII, Hemlock and Concert v2 Framework, Talk at Carnegie Mellon University, August 2003
[12] M. Beck, J. Dongarra, G. Fagg, A. Geist, P. Gray, M. Kohl, J. Migliardi, K. Moore, T. Moore P.

Papadopoulos, S. Scott and V. Sunderam HARNESS: A Next Generation Distributed Virtual Machine,
in Future Generation Computer Systems, 15(5/6):571-582, October 1991, Special Issue in Metacomputing

[13] M. Alt, H. Bischof and S. Gorlatch, Program Development for Computational Grids Using Skeletons and
Performance Prediction, in CMPP’02 — Int. Workshop on Constructive Methods for Parallel Programming,
June 2002

[14] M. Aldinucci, M. Dnelutto and Dünnweber, Optimization Techniques for Implementing Parallel Sckeletons
in Grid Environments, in CMPP’04 — Intl. Workshop on Constructive Methods for Parallel Programming,
July 2004, Stirling Scotland

[15] M. Litzkow, M. Livny and M. Mutka, Condor- A Hunter of Idle Workstations, in Proc. the 8th Internation-
alConference of Distributed Computing Systems, San Jose, California, June 1988

[16] J. Frey and T. Tannenbaum and M. Livny and I. Foster and S. Tuecke, Condor-G: A Computation
Management Agent for Multi-Institutional Grids,in HPDC10 — Tenth International Symposium on High
Performance Distributed Computing, August, 2001, IEEE Press

[17] F. Berman and R. Wolski, The AppLeS Project: A Status Report, 1997
[18] A. S. Grimshaw, M. J. Lewis, A. J. Ferrari and J. F. Karpovich, Architectural Support for Extensibility

and Autonomy in Wide-Area Distributed Object Systems, Department of Computer Science, University of
Virginia, 1998, Technical Report, CS-98-12

[19] F. Berman, G. Fox and T. Hey, The Grid: past, present, future, in Grid Computing - Making the Global
Infrastructure a Reality, pp. 9–50, John Wiley & Sons, Ltd, West Sussex, England, 2003

[20] I. Foster and C. Kesselman, The Globus project: a status report, in Future Generation Computer Systems,
15(5–6), pp. 607–621, 1999

[21] A. Geist, A. Beguelin, J. Dongerra, W. Jiang, R. Manchek and V. Sunderam, PVM: Parallel Virtual
Machine, MIT, 1994

[22] W. Gropp, E. Lusk and A. Skjellum, Using MPI: Portable Parallel Programming with the Message-Passing
Interface, MIT, second ed. , 1999

[23] W. Gropp, E. Lusk, N. Doss and A. Skjellum, A high-performance, portable implementation of the MPI
Message-Passing Interface standard, in Parallel Computing, 1996, 22(6), pp. 789–828

[24] G. A. Geist, J. A. Kohl and P. M. Papadopoulos, PVM and MPI: A comparison of features, in Calculateurs
Parallels, 8(2), 1996

[25] N. Karonis, B. Toonen and I. Foster, MPICH-G2: A Grid-Enabled Implementation of the Message Passing
Interface., in Journal of Parallel and Distributed Computing, 2003

[26] I. Foster, C. Kesselman and S. Tuecke, The Anatomy of the Grid: Enabling Scalable Virtual Organizations,
in Int. J. Supercomputer Applications, 2001

17

[27] S. Zhou,X. Zheng, J. Wang and P. Delisle, Utopia: a Load Sharing Facility for Large, Heterogeneous
Distributed Computer Systems, in Software - Practise and Experience, 23(12), pp. 1305–1336,1993

[28] Sun Microsystems, Grid-Engine Project, 2001, <URL:http://gridengine.sunsource.net/>
[29] P. W. Trinder, K. Hammond, H-W. Loidl and S. L. Peyton Jones, Algorithm + Strategy = Parallelism, in

Journal of Functional Programming, 1998, 8(1), pp. 23–60

Appendix A: sumEuler.
module Main(main) where

import System(getArgs)

import Strategies

sumTotient :: Int -> -- lower limit of the interval

Int -> -- upper limit of the interval

Int -> -- chunk size

Int

sumTotient lower upper c =

sum (map (sum . map euler) (splitAtN c [upper, upper-1 .. lower])

‘using‘ parList rnf)

euler :: Int -> Int

euler n = length (filter (relprime n) [1 .. n-1])

relprime :: Int -> Int -> Bool

relprime x y = hcf x y == 1

hcf :: Int -> Int -> Int

hcf x 0 = x

hcf x y = hcf y (rem x y)

mkList :: Int -> Int -> [Int]

mkList lower upper = reverse (enumFromTo lower upper)

splitAtN :: Int -> [a] -> [[a]]

splitAtN n [] = []

splitAtN n xs = ys : splitAtN n zs

where (ys,zs) = splitAt n xs

main = do args <- getArgs

let

lower = read (args!!0) :: Int -- lower limit of the interval

upper = read (args!!1) :: Int -- upper limit of the interval

c = read (args!!2) :: Int -- chunksize

putStrLn ("Sum of Totients between [" ++

(show lower) ++ ".." ++ (show upper) ++ "] is " ++

show (sumTotient lower upper c))

