
Under onsideration for publiation in J. Funtional Programming 1Parallel and Distributed HaskellsP.W.TRINDER, H-W. LOIDL�, R.F. POINTONyDept. of Computing and Eletrial Engineering,Heriot-Watt University, Edinburgh, EH14 4AS.(e-mail: fTrinder,HWLoidl,RPointong�ee.hw.a.uk)AbstratParallel and distributed languages speify omputations on multiple proessors and have aomputation language to desribe the algorithm, i.e. what to ompute, and a oordinationlanguage to desribe how to organise the omputations aross the proessors. Haskellhas been used as the omputation language for a wide variety of parallel and distributedlanguages, and this paper is a omprehensive survey of implemented languages. We outlineparallel and distributed language onepts and lassify Haskell extensions using them.Similar example programs are used to illustrate and ontrast the oordination languages,and the omparison is failitated by the ommon omputation language. A lazy language isnot an obvious hoie for parallel or distributed omputation, and we address the questionof why Haskell is a ommon funtional omputation language.1 IntrodutionParallel languages utilise additional proessors to redue program runtime. Dis-tributed languages use state-transforming threads to manipulate global state, i.e.the resoures of several proessors. A typial distributed appliation is a multiusergame or learning environment where users on multiple mahines interat with eahother in a ommon virtual world. The ombination of hardware redundany andstateful omputation in a distributed language failitates the onstrution of reli-able, i.e. fault tolerant, systems.The potential of funtional languages for parallelism has been reognised for overthirty years, long before Haskell existed e.g. (Wegner, 1971). Funtional languageso�er good abstration mehanisms, a sophistiated type system, high-level ompu-tation language and high-level oordination. However, the key advantage of a purefuntional paradigm is that referential transpareny guarantees the implementationonsiderable freedom of exeution order without hanging program semantis. Thisis evident to the parallelism ommunity and many parallel languages use pure om-putation languages, some of whih are subsets of impure languages, e.g. (Sholz,1996; Mihaelson et al., 2001).In omparison, the bene�ts of the funtional paradigm for distribution have been� Supported by APART fellowship 624 from the Austrian Aademy of Sienes.y Supported by researh grant GR/M 55633 from UK's EPSRC.



2 P.W. Trinder and H-W. Loidl and R.F. Pointonrealised only reently. Like their parallel ounterparts, distributed funtional lan-guages bene�t from good abstration mehanisms, a high-level omputation lan-guage, and sophistiated type system, but most of all beause large and identi�ableparts of the program are referentially transparent. Referential transpareny grantsfreedom of exeution order, e.g. failitating lazy ommuniation of data betweenproessors and parallel exeution of parts of the program; moreover the pure om-ponents are amenable to reasoning, e.g. optimisation or ompilation by transfor-mation (Peyton Jones et al., 1993). Even with its limited referential transpareny,Erlang has been used suessfully to demonstrate that a funtional paradigm signif-iantly aids engineering large distributed systems. One suh example is the 525K-line AXD301 ATM Swithing System distributed over up to 32 proessors (Blau &Rooth, 1998).Most parallel and distributed languages have a omputation language and a o-ordination (sub)language. The omputation language is used to speify the algo-rithm, i.e. to de�ne what value is to be omputed, and may be a sequential languagelike C, SML or Haskell98. The oordination language desribes how the omputa-tions are to be arranged on the virtual mahine, inluding aspets suh as threadreation, plaement, and synhronisation. In the parallelism literature the termoordination language usually refers to a language distint from the omputationlanguage, e.g. PCN oordinates Fortran or C omputations (Foster et al., 1992).In ontrast, funtional languages typially extend the omputation language witha few high-level oordination onstruts, and it is these that are rather looselytermed the oordination language in this paper. The onstruts support some oor-dination paradigm, and a wide range of paradigms and onstruts have been used.Examples inlude data-parallelism supported by Data Field Haskell (Holmerin &Lisper, 2000), or skeleton-based parallelism supported by parallel map, fold andother skeletons (Herrmann, 2000).Consistent with their high-level omputation language, most parallel and dis-tributed funtional languages support high-level oordination with automati man-agement of many oordination aspets. As with omputation, the great advantageof high-level oordination is that it frees the programmer from speifying low-leveloordination details. The disadvantages are that automati oordination manage-ment ompliates the operational semantis, makes the performane of programsopaque, is hard to implement, and is frequently less e�etive than hand-rafted o-ordination. Expliit oordination onstruts enourage programmers to onstrutstati, simple or regular oordination, whereas more impliit onstruts enouragemore dynami and irregular oordination.Low-level oordination may be managed solely by the ompiler as inPMLS (Mihaelson et al., 2001), solely by the runtime system as in GpH (Trinderet al., 1996), or by both as in Eden (Breitinger et al., 1997). Whihever mehanismis hosen, the implementation of sophistiated automati oordination managementis arduous, and there have been many more parallel and distributed language de-signs than well-engineered implementations. Haskell is a standard lazy funtionalresearh language with a sophistiated type and lass system (Peyton Jones et al.,1999). It has a relatively mature development environment inluding ompilers, in-



Parallel and Distributed Haskells 3terpreters, libraries and pro�ling tools. This paper surveys all implemented paralleland distributed languages with Haskell as omputation language.We start by addressing the question of why Haskell is a suitable omputationlanguage, and basis for a variety of oordination languages, in Setion 2. We de�neparallel and distributed language onepts, and lassify Haskell extensions usingthem in Setion 3. Parallel Haskells are surveyed and related to other parallel fun-tional languages in Setion 4, likewise distributed Haskells in Setion 5. The samesimple parallel or distributed program is expressed in eah language to illustrateand enable omparison of oordination onstruts. Setion 6 summarises the oor-dination onstruts in the languages and onludes by disussing open problems.2 Why Haskell?It is perhaps surprising to �nd a lazy language like Haskell as a popular funtionalomputation language, indeed Hains argues ogently that parallel funtional lan-guages should be strit (Hains, 1994). The problem has the following two aspets.Firstly lazy evaluation is sequential and performs minimum work, with redutioneasing when the expression is in weak head normal form. In ontrast parallel anddistributed programs arrange omputations on multiple proessors and hene re-quire some eager evaluation. Seondly, while in a strit language the omputationalbehaviour of an expression is independent of the way the result is used | it dependsonly on the operand values. In a lazy language the amount and order of evaluationis often under the ontrol of the onsumer of the result. This onfers extra expres-sive power | but makes it very hard to onstrut ost models, and means that theprogrammer must speify the evaluation degree of an expression: namely how muhevaluation should be performed (Klusik et al., 2000a; Trinder et al., 1998).Properties of Haskell that make it attrative as a omputation language and abasis for a oordination language are as follows. The individual properties are notunique to Haskell: many are properties of other lazy funtional languages, or puresubsets of strit funtional languages.Referential Transpareny. A key advantage of a pure omputation language isthat it an be easily married to many di�erent oordination languages beause ref-erential transpareny guarantees that exeution order is immaterial. The range ofoordination languages is amply illustrated by the languages outlined in Setions 4and 5. A pure omputation language onveys a number of immediate pratial bene-�ts. Parallel semantis are relatively easily developed, e.g. the operational semantisfor GpH and Eden (Baker-Finh et al., 2000; Hidalgo Herrero & Ortega Mall�en,2000). The language is amenable to analyses, e.g. the non-determinism analysis inEden (Pena & Segura, 2000). Pure languages are amenable to program derivation,ompilation by transformation, and transformations for optimising oordination areeasily introdued: the Eden ompiler is a good example (Pareja et al., 2000).Laziness. A omputation language with non-strit evaluation naturally supportshighly-dynami oordination where evaluation is performed and data is ommuni-ated on demand. Assuming that the exeution ost of the oordination is smallompared with the omputation, the primary ost of non-strit oordination is ad-



4 P.W. Trinder and H-W. Loidl and R.F. Pointonditional ommuniation. For example where an eager language simply sends datafrom produer to onsumer, a lazy language requires an additional message from theonsumer to request the data. The bene�t gained by the additional ommuniationin a lazy language is a natural throttling of both ommuniation and omputation.An example of ommuniation throttling is a remote thread onsuming a smallpart of a large data struture, where only that small part is ommuniated. Whereboth strit funtional and dataow languages often su�er from the eager reationof exess parallelism, a lazy language ameliorates these problems at the ost ofspeifying how muh evaluation should be performed. Finally laziness failitatesthe separation of onerns, e.g. evaluation strategies in GpH make essential use oflaziness to separate omputation and oordination (Trinder et al., 1998).Abstration Mehanisms. High-level modular oordination failities are produedusing Haskell's data and ontrol abstrations inluding lasses, modules, higher-order funtions, polymorphism and abstrat data types. Sine non-strit languagesseparate the de�nition of a value from its evaluation, the programmer has the ad-ditional exibility to deide where to speify the oordination. For example it ispossible to speify oordination when omposing funtions, by attahing a oor-dination onstrut to the value passed between funtions, without breaking thefuntion abstration. In the same way that the demand on the result of a funtionontrols the evaluation degree from outside, oordination onstruts an ontrol theparallelism from outside. More important for large systems, this abstration salesto expressing oordination only at module interfaes (Loidl et al., 1999).Polymorphi Strong Typing. The bene�ts of typing in omputation languagesare well-established, but the bene�ts of a typed oordination language are lessso. Strong typing ensures that oordination expressions are well-formed and re-dues runtime errors, and typed oordination onstruts inlude proess types inEden (Breitinger et al., 1997), and plaement diretives in Caliban (Taylor, 1997).Polymorphi types enable the onstrution of generi oordination onstruts. Ex-amples inlude skeletons in Eden (Klusik et al., 2000b) and polymorphi data �eldsin Data Field Haskell (Holmerin & Lisper, 2000). Open distributed languages re-quire dynami typing to enfore type orret interfaes to new programs, e.g. to anew lient or applet. Unusually, some Haskell-based languages are losed, e.g. Briskand GdH, and hene an be statially typed.Implementation Bene�ts. Due to the oroutine-like evaluation in lazy languages,their implementations already have many of the mehanisms required by paralleland distributed languages. For example Haskell implementations have mehanismsfor enapsulating suspended omputations for subsequent evaluation, and it is on-venient to transfer work from proessor to proessor as a suspension. Similarly,many lazy language implementations are based on graph redution, and the graphis a onvenient and uniform struture for ommuniating both ode and data.Pragmati Fators. There are many pratial reasons for seleting Haskell asa omputation language: the language is standardised and ompilers are well-developed, with good sequential optimisation and support important pratial fea-tures like useful libraries and a foreign language interfae. The implementations are



Parallel and Distributed Haskells 5both open soure and modular, and hene relatively easily adapted. Moreover thereare tools like pro�lers available, and there is an ative and supportive ommunity.Properties of Haskell that make it unattrative as a omputation language anda basis for a oordination language are as follows.Lazy Evaluation. As outlined above, lazy evaluation must frequently be over-ome to obtain suÆient parallelism or distribution. Moreover, it is muh harderto develop time and spae ost models for non-strit languages (Sands, 1990; Loidl,1998).Limited Module and Class Systems. More sophistiated systems than theHaskell98 module and lass system would failitate the enapsulation and deriva-tion of oordination onstruts. In GpH for example, it would be bene�ial to beable to derive basi evaluation strategies for new abstrat data types, e.g. an rnfstrategy that redues values of the new type to root normal form (Trinder et al.,1998).Cumbersome State Manipulation. Distributed programs neessarily manipulatestate on multiple proessors. However, desribing stateful omputations in Haskell'smonadi onstruts is relatively verbose and hard to reason about.Broadly speaking the properties that make Haskell a suitable omputation lan-guage are braodly similar to the properties that make it a good sequential language:namely its referential transpareny, sophistiated type system and good abstrationmehanisms as well as a number of pragmati fators. These attrations are suÆ-ient to overome the additional oordination required to subvert the default lazyevaluation. 3 Coordination Language ConeptsComputer hardware may be arranged in a large variety of ways, ranging from singleproessors, shared-memory and distributed-memory multiproessors to networks ofmahines. Parallel and distributed languages reet some of the underlying arhi-teture, while other languages abstrat over it. In this setion we de�ne a number ofonepts to failitate parallel and distributed language lassi�ation. Beause of thelarge number of onepts that distributed languages may or may not support it isvery hard to onstrut a simple yet aurate lassi�ation, although a number havebeen given, e.g. (Skilliorn & Talia, 1998). Our de�nitions and lassi�ation areneither new nor unusual, but are suitable for de�ning and lassifying the oordina-tion in parallel and distributed funtional languages. The lassi�ation is intendedfor small-sale systems omposed of programs written in the same language. Inontrast, large-sale distributed systems are supported by standard interfaes likeCORBA (Siegel, 1997) or Mirosoft DCOM (Merrik, 1996) and may have ompo-nents written in multiple languages, supplied by several vendors, be exeuted on aheterogeneous olletion of platforms, and have elaborate fault tolerane.Proessing Element (PE). A physial devie that performs omputation, typiallya proessor with memory and assoiated physial resoures suh as disk, sreen, et.Thread. An independent sequene of exeuting instrutions. Sometimes alsoknown as a lightweight proess to indiate that a thread has minimal private re-



6 P.W. Trinder and H-W. Loidl and R.F. Pointonsoures. Threads may be expliit with onstruts for reation and termination;semi-expliit being managed by diretives or annotations; or entirely impliit e.g.being managed by a data-parallel or skeleton ompiler. A (semi-)expliit approahis typially taken by distributed languages suh as Faile Antigua (Thomsen et al.,1993) and GdH (Pointon et al., 2000), whereas parallel languages tend to favoura more impliit approah, e.g. HDC (Herrmann, 2000) and High Performane For-tran (HPF, 1993). An important distintion is between pure threads that onlyreturn a value, and state-transforming threads that perform operations on externalstate.Thread Interation. The term used to desribe both ommuniation and syn-hronisation between threads. Communiation is the exhange of data and syn-hronisation is the oordination of ontrol. The two onepts are losely relatedand typially intertwined together, e.g. ommuniation requires synhronisation tosafely pass data to another thread, and some form of ommuniation is neessaryto indiate that synhronisation has oured. In languages with impliit intera-tions threads typially interat using shared data, freeing the programmer fromspeifying the interations. For example GpH threads interat via shared variables,and Java threads interat via shared objets using synhronised methods (Daontaet al., 1998). In languages with expliit interations threads in the same loationtypially interat using shared loation resoures, e.g. a semaphore. If the threadsare in di�erent loations then interations our through some global resoure, e.g.they may address a hannel or the mailbox of a thread.Loation. A named bounded spae ontaining resoures, like memory and I/Oapabilities, and usually threads. A loation may reside on a PE or a group ofPEs. A loation is an abstration of the familiar proess onept, but is moregeneral beause a loation's threads may be exeuting di�erent programs, or itmay ontain no threads. A language is loation independent if loations are impliit,e.g. enabling a �le to be aessed regardless of its loation. A language is loationaware if loations are expliit, enabling the programmer to utilise the resoures of aloation, e.g. forking a new thread onto a PE. Examples of abstrations for loationinlude Faile Antigua (Thomsen et al., 1993) whih provides nodeid to identify apartiular PE and GdH (Pointon et al., 2000) with PEId to name a loation.Open/Closed Systems. There is no reason why ommuniating threads must be-long to the same program, and often large systems onsist of many o-operatingprograms. In a losed system there is a stati set of programs being exeuted andall modes of inter-thread interation are known. Hene the interations an be stat-ially heked, e.g. for type safety, deadlok et. An open system omprises multipleexeuting programs interating using a prede�ned protool, for example in a lient-server model. This requires some language support to initialise ommuniation toonnet to other programs. Suh languages support a dynami model that is openin that it an be extended to inlude new programs. However, the interationsbetween suh a dynami set of programs annot be statially heked.Fault Tolerane. The ability of a program to detet, reover and ontinue afterenountering faults. Faults may either be internal to the proess, e.g. divide by zero,or external, e.g. disk failure, user interrupt.



Parallel and Distributed Haskells 73.1 Language Classi�ationLanguages an be lassi�ed by the oordination onepts they support as follows.Sequential languages support a single thread and are very ommon, examples in-lude Haskell98 (Peyton Jones et al., 1999) and SML (Milner et al., 1997). Con-urrent languages support expliit interations between multiple threads, and ex-amples inlude Conurrent Haskell (Peyton Jones et al., 1996) and CML (Reppy,1992). Parallel languages support multiple PEs hosting multiple threads usuallywith impliit interations and loation independene. They aim to redue programexeution time. Parallel extensions of Haskell inlude Eden (Breitinger et al., 1997),Nepal (Chakravarty et al., 2001), and many others overed in Setion 4. Distributedlanguages support multiple PEs hosting multiple threads with expliit interationsand loation awareness. Distributed languages are also more likely to support opensystems and more sophistiated fault tolerane. Distributed Haskells inlude Haskellwith Ports (Huh & Norbisrath, 2000), GdH (Pointon et al., 2000), and the othersovered in Setion 5.The remainder of the paper fousses on parallel and distributed funtionallanguages, onurrent languages are omitted beause most exeute either at asingle loation or on low-lateny shared-memory arhitetures where loation isrelatively unimportant. Figure 1 lassi�es parallel and distributed Haskells, to-gether with a few well-known languages, using thread interation, loation inde-pendene/awareness and open/losed properties.
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Fig. 1. Parallel and Distributed Haskell Classi�ation.4 Parallel HaskellsThe goal of parallel programming is to ahieve higher performane, thereby reduingruntime or inreasing the tratable problem size. This setion fousses on parallel



8 P.W. Trinder and H-W. Loidl and R.F. Pointonoordination language onstruts and paradigms: it is not possible to give meaning-ful performane omparisons of all the languages surveyed beause the languagesare implemented on a wide variety of parallel arhitetures, and few are availableon multiple platforms. We do, however, give diretly omparable measurements forEden and GpH in Setion 4.3.3. For the other languages we provide qualitativeperformane measures and referene more detailed disussion. Substantial perfor-mane omparisons of several programs implemented in Eden, GpH and PMLS, astrit parallel funtional language, are reported in (Loidl et al., 2001a).Adding oordination to a omputation language does not hange its expressivepower. Beause performane is intensional, i.e. not exposed in a standard semantisof the language, many parallel Haskells make oordination substantially impliit.Typially parallel languages are losed, provide little or no fault tolerane, and lim-ited loation awareness. In a parallel language loation is only indiretly importantbeause it may enable performane improvements to the program, e.g. improveddata loality.Parallel Haskells are illustrated and ompared using the sumEuler program shownin Figure 2. The program omputes the sum of a list of Euler totient values pro-dued by the euler funtion, i.e. the number of integers that are relatively prime toa given integer. It is also an instane of a ommon omputational struture, namelya fold-of-map. More interestingly, sumEuler exposes several oordination issues.Firstly, it is inherently data parallel beause of the independene of the euler om-putations. Seondly, good performane an only be obtained by seleting a goodthread granularity. This is beause individual alls to euler are very heap andhene several must be ombined into a single parallel thread to o�set thread man-agement osts. This is ahieved by the splitAtN funtion, shown in Figure 3, thatpartitions the input list into \hunks". Thirdly, the sum (fold) must be e�etivelyparallelised and this is done by omputing the sum of the hunks of totient values,before omputing the overall sum.The remainder of this setion is strutured by oordination paradigm. We looselyfollow the lassi�ation given in (Loogen, 1999), whih also ontains a more de-tailed disussion of non-Haskell parallel funtional languages. We relate the parallelHaskells disussed in Setions 4.1, 4.2, 4.3, and 4.4 with other parallel funtionallanguages in Setion 4.5, and summarise by disussing parallel language pragmatisin Setion 4.6. 4.1 A Skeleton-based HaskellSkeletons are a popular parallel oordination onstrut. Typially, a language hasa small set of prede�ned skeletons, where eah skeleton is a higher-order funtiondesribing a ommon oordination pattern with an eÆient parallel implementa-tion (Cole, 1999). Rather than managing an unstrutured set of parallel threads,the programmer need only use the higher-order funtions appropriately to introdueparallelism. Often these higher-order funtions work over ompound data struturesand onsequently the resulting parallel ode often resembles data parallel ode asdisussed in Setion 4.2.



Parallel and Distributed Haskells 9{ Top level funtion:sumEuler :: Int ! IntsumEuler n = sum [ euler i | i  [n,n-1..0℄ ℄{ Euler totient funtion:euler :: Int ! Inteuler n = length (filter (relprime n) [1..(n-1)℄){ Auxiliary funtions:{ Determine whether x and y are relatively primerelprime :: Int ! Int ! Boolrelprime x y = hf x y == 1{ Find the highest ommon fator of x and yhf :: Int ! Int ! Inthf x 0 = xhf x y = hf y (rem x y)Fig. 2. Sequential Haskell98 version of sumEulersplitAtN :: Int ! [a℄ ! [[a℄℄splitAtN n [℄ = [℄splitAtN n xs = ys : splitAtN n zswhere (ys,zs) = splitAt n xsFig. 3. A Clustering Funtion4.1.1 HDCHDC (Herrmann, 2000) is a stritly-evaluated subset of Haskell with skeleton-basedoordination. HDC programs are ompiled using a set of skeletons for ommonhigher-order funtions, like fold and map, and several forms of divide-and-onquer.The urrent implementation supports two divide-and-onquer skeletons and a paral-lel map, and the system relies on the use of these higher-order funtions to generateparallel ode. Unlike Haskell, HDC does not implement type lasses, and has stritsemantis to failitate stati thread plaement. Language-level lists are implementedas arrays internally. List omprehensions are ompiled to map and filter, wheremap operates in parallel over these arrays. In summary, HDC has purely impliitthreads with impliit interation. It is loation independent, sine parallelism is notexpliit in the program at all.In HDC it is possible to ahieve parallel exeution of the ode in Figure 2 withoutany ode hanges. In tuning the performane of the parallel program, however, itis often neessary to modify the ode, so as to weaken data dependenies or to in-rease granularity. In this ase we an inrease the granularity, i.e. the omputation



10 P.W. Trinder and H-W. Loidl and R.F. Pointonosts, of the individual threads by ombining several euler omputations into asingle thread and omputing the sum inside eah thread. The additional argument spei�es the size of these hunks of input data, and splitAtN is used to gener-ate the hunks. The funtion seqmap produes the same result as map but enforessequential evaluation of the euler funtions.sumEuler :: Int ! Int ! IntsumEuler  n = sum [ (sum . seqmap euler) x | x  splitAtN  [n,n-1..0℄ ℄Fig. 4. HDC Version of sumEulerA partiular fous of the HDC system is the time and spae eÆient stati threadplaement. The ompiler uses a library of skeletons to deompose a program intoparallel threads and plae the threads on the available PEs. In ontrast languagessuh as GpH and Eden, use more exible, but also more expensive, dynami resouremanagement.Reeting the fat that the HDC ompiler is still a prototype, only a set of fairlysmall example programs has been ompiled to eÆient ode: a Karatsuba algorithmfor polynomial multipliation, n-queens, maximum independent sets and onvex hullomputations. On a 1024-proessor Transputer-based Parsyte GCel-1024 mahinesalable three-digit speedups are reported for these programs in (Herrmann, 2000).4.2 Data Parallel HaskellsData parallel languages (O'Donnell, 1999) fous on the eÆient implementationof the parallel evaluation of every element in a olletion. The fous on de�ningparallelism over large data strutures makes this approah very appealing for theparallelisation of data-intensive appliations. Haskell's powerful onstruts for bulkdata types, in partiular lists, provide a very useful basis for de�ning data-parallelonstruts. Indeed, all of the languages disussed here use some parallel extensionof list omprehensions and impliitly parallel higher-order funtions suh as map.Compared to other approahes to parallelism, the data parallel approah makes iteasier to develop good ost models, although, it is notoriously diÆult to developost models for languages with a non-strit semantis. Typially data parallel lan-guages use a losed system model and impliit parallelism. Loation awareness is notrequired at the program level beause it is impliit in the data parallel exeution.4.2.1 Data Field HaskellData Field Haskell (Holmerin & Lisper, 2000) extends Haskell with the new notionof data �elds: generalisations of arrays, with parallel bulk data (olletion-oriented)operations de�ned over them, as shown in Figure 5. In general, a data �eld de�nesa partial funtion from index domain to value domain. Data �elds may speifyvarious multidimensional shapes, sparse or dense ontents, and �nite or in�nite



Parallel and Distributed Haskells 11lass Pord a . . .type (Pord a, Ix a) ) Data�eld a b = . . .type (Pord a, Ix a) ) Bounds a = . . .{ operations over data�elds: onstrution and seletiondatafield :: (Pord a,Ix a) ) (a ! b) ! Bounds a ! Data�eld a b(!) :: Data�eld a b ! a ! b{ operations over bounds of a data�eldbounds :: (Pord a,Ix a) :: Data�eld a b ! Bounds a(<:>) :: (Ix a, Pord a) ) a ! a ! Bounds a{ hyperstrit evaluationhstritTab :: (Pord a, Ix a, Eval a) ) Data�eld a b ! Data�eld a b{ forall abstration (language onstrut)forall apat1 ... apatn ! expFig. 5. Basi Coordination Construts in Data Field Haskellsize. A rih set of funtions for manipulating bounds are de�ned, e.g. 1<:>n de�nesa dense index domain of all integers between 1 and n. The omputation over adata�eld is de�ned either as a forall-abstration, i.e. a funtion applied to theindex domain, or via a set of prede�ned higher-order funtions over data�elds, e.g. afold-like foldlDf. To express the extent to whih an expression should be evaluatedData Field Haskell introdues funtions for strit and hyperstrit evaluation ofHaskell expressions, e.g. hstritTab. Data Field Haskell has been implemented asan extension for Haskell 1.3 on top of the nh13 ompiler (R�ojemo, 1995). However,no parallel implementation is available, yet.sumEuler :: Int ! Int ! IntsumEuler  n =sumDf ( forall i !sumDf ( forall j ! euler (xs!i)!j))where xs = mkField  nmkField :: Int ! Int ! Data�eld Int (Data�eld Int Int)mkField  n = datafield ( � i !datafield ( � j ! min *i+j n ) (0<:>-1)(0<:>n+-1 `div`  - 1)sumDf :: (Pord a, Ix a, Num b) ) Data�eld a b ! bsumDf = foldlDf (+) 0Fig. 6. Data Field Haskell Version of sumEulerThe example ode in Figure 6 demonstrates how to implement sumEuler in Data



12 P.W. Trinder and H-W. Loidl and R.F. PointonField Haskell. In mkField an expliit data�eld onstrutor is used to build a nesteddata�eld. The outer �eld ranges over the hunks that are mapped onto proessors.The inner �eld ranges over the values passed to the euler funtion on one proes-sor. The urrent, sequential, implementation does not distinguish between the twoforall onstruts, but in the parallel implementation it is planned to enable par-allel exeution by hoosing an appropriate, parallel, index domain. To avoid highoverhead when onverting lists into data�elds, most operations are performed onthe data�elds, even if there is little parallelism in the exeution of the ode.So far only a small set of sequential programs has been implemented in Data FieldHaskell. The largest appliations inlude a partile simulation, a neural networkrelaxation model, and an LU-fatorisation algorithm.4.2.2 NepalThe extension of Haskell developed in the Nepal projet (Chakravarty et al., 2001),here alled Nepal for short, adds parallel arrays to Haskell. It provides speial syn-tax suh as array omprehensions and parallel implementations of basi funtionsover these arrays. Similar in spirit to the NESL language (see Setion 4.5) dataparallelism an be nested, ahieving a high degree of exibility. A speial atteningtransformation is used to transform nested into at data parallelism (Chakravarty& Keller, 2000).Using the new language onstruts for arrays the implementation of sumEulerin Nepal is straightforward and shown in Figure 7. All standard operations on lists,suh as length, filter, et, have orresponding versions over parallel arrays. Theeuler funtion is modi�ed to use arrays as well, to make better use of the atteningtransformation thereby ahieving a better data distribution. Array omprehensionsof the form [: : : : :℄ are analogous to Haskell's list omprehensions and are trans-lated into alls to the funtions mapP and filterP, whih are in turn implementedas alls to parallel ode. Nepal's attening transformation in ombination with atype system that distinguishes loal from global values enables the ompiler to au-tomatially transform from the ode in Figure 7 into a lustered version with bettergranularity (Keller & Chakravarty, 1999). On the positive side, this approah of im-pliit parallelism is onvenient for the programmer and leads to onise programs.However, the downside is that lustering is outside the programmer's ontrol, whihimplies that it annot be easily modi�ed nor adapted dynamially.sumEuler :: Int ! IntsumEuler n = sumP [: euler i | i  [:n, n-1 .. 0:℄ :℄euler :: Int ! Inteuler n = lengthP (filterP (relprime n) [:1 .. n-1:℄)Fig. 7. Nepal Version of sumEuler



Parallel and Distributed Haskells 13Nepal is urrently being implemented as an extension of GHC with the follow-ing main steps. The attening transformation maps nested array omputations toat array omputations. Then the data parallel primitives are unfolded by deom-posing them into loal omponents, with optimisations suh as array loop fusionto improve granularity, and global omponents, introduing ommuniation. Forparallel exeution library routines of a strutured ommuniation library are usedto provide a high level of portability. Performane measurements of the urrentsequential implementation show a high eÆieny of the array ode, signi�antlyoutperforming both standard Haskell arrays and list-based implementations of testprograms suh as a Barnes-Hut algorithm. Parallel performane measurements ofa hand-translated Barnes-Hut algorithm ahieved promising speedups on up to 24proessors on a Cray T3E multi-proessor (Chakravarty & Keller, 2000).4.2.3 Data Parallel HaskellAn older system that used suh a data parallel approah was Data ParallelHaskell (Hill, 1994). The entral idea of Data Parallel Haskell was to replae thesingle \aim" of sequential omputation, namely omputing the result value, by aseries of aims of evaluation and to fore evaluation on all of them. Parallel per-formane ould be improved by manipulating the aim, whih beomes a entralomponent of Data Parallel Haskell's operational semantis, but remains hiddenfrom the programmer. The goal of this design was to ahieve data-parallel exeu-tion without foring strit evaluation and thereby sari�ing the advantages of alanguage with non-strit semantis.As new language onstruts Data Parallel Haskell de�ned speial arrays alledPODs (parallel data strutures), represented as one-dimensional sparse and po-tentially in�nite index/value pairs. POD omprehensions were used to de�ne dataparallelism. These omprehensions were ompiled to parallel implementations ofthe well-known map, fold and san funtions. The implementation used programtransformation to vetorise a funtional program. Data Parallel Haskell has beenimplemented as a parallel extension of Haskell 1.2 on the GHC 0.16 ompiler, butthere is no urrent development.4.3 Semi-Expliit Parallel HaskellsSemi-expliit parallel languages provide a few high-level onstruts for ontrollingkey oordination aspets, while automatially managing most oordination aspetsstatially or dynamially. Historially, annotations were ommonly used for semi-expliit oordination, but more reent languages provide ompositional languageonstruts. As a result, the distintion between semi-expliit oordination and o-ordination languages is now rather blurred, but the key di�erene in the approahis that semi-expliit languages aim for minimal expliit oordination.



14 P.W. Trinder and H-W. Loidl and R.F. Pointon4.3.1 GpHGpH (Trinder et al., 1998) is a modest extension of Haskell with parallel (par)and sequential (seq) omposition as oordination primitives (see Figure 8). Deno-tationally, both onstruts are projetions onto the seond argument. Operationallyseq auses the �rst argument to be evaluated before the seond and par indiatesthat the �rst argument may be exeuted in parallel. The latter operation is alledthe \sparking" of parallelism and is used in di�erent variants in many parallel lan-guages. The runtime-system, however, is free to ignore any available parallelism. Inthis model the programmer only has to expose expressions in the program that anusefully be evaluated in parallel. The runtime-system manages the details of theparallel exeution suh as thread reation, ommuniation et. In summary, GpHhas a losed system model with semi-expliit parallelism and impliit ommunia-tion, based on a virtual shared heap, and loation independene. GpH is publilyavailable from (GPH, 2001).par :: a ! b ! b { parallel ompositionseq :: a ! b ! b { sequential ompositiontype Strategy a = a ! () { type of evaluation strategyusing :: a ! Strategy a ! a { strategy appliationrwhnf :: Strategy a { redution to weak head normal formlass NFData a where { lass of reduible typesrnf :: Strategy a { redution to normal formFig. 8. Basi Coordination Construts in GpHExperiene of implementing non-trivial programs in GpH shows that the un-strutured use of par and seq operators an lead to rather obsure programs. Thisproblem an be overome with evaluation strategies : lazy, polymorphi, higher-order funtions ontrolling the evaluation degree and the parallelism of a Haskellexpression. They provide a lean separation between oordination and omputation.The driving philosophy behind evaluation strategies is that it should be possible tounderstand the omputation spei�ed by a funtion without onsidering its oor-dination. Figure 8 shows the basi operations over strategies. The using onstrutapplies a strategy to a Haskell expression. The basi strategy rwhnf redues anexpression to weak head normal form (WHNF), the default in Haskell. The over-loaded strategy rnf redues an expression to normal form (NF), and is instantiatedfor all major types.In GpH it is possible to speify blok-wise evaluation over the input list withhunk size  applying the parListChunk  rnf strategy to the list omprehension.However, without hanging the omputational ode it is not possible to omputethe sum of eah hunk. A version that does so is given in Figure 9. Again the



Parallel and Distributed Haskells 15sumEuler :: Int ! Int ! IntsumEuler  n = sum ([ (sum . map euler) x | x  splitAtN  [n,n-1..0℄ ℄`using` parList rnf)Fig. 9. GpH Version of sumEulersplitAtN funtion is used to split the list into hunks of size  for granularityontrol. The strategy parList de�nes data parallelism over these segments. Eahthread generated by this strategy omputes the funtion sum . map euler. Thislustering tehnique an be generalised to arbitrary data strutures as disussedin (Loidl et al., 2001b). In summary, the programmer has the hoie working purelyon strategy level, leaving the omputational ode of the program unhanged, or toperform some simple transformations of the omputational ode to further tuneparallel performane.GpH has been used to engineer several large programs, four of whih are disussedin (Loidl et al., 1999). The largest program is Lolita, a natural language proessoromprising tens of thousands of lines of ode, that has been parallelised for a sharedmemory mahine. Naira is a parallelising ompiler for a subset of Haskell, basedon the dataow model of omputation. Blakspots is a data-intensive real-worldappliation to �nd blakspots in a database of traÆ aident reords. LinSolv isan exat linear system solver. Performane results for all programs on worksta-tion networks and a Sun SMP mahine are reported in (Loidl et al., 1999), andperformane omparisons with Eden are reported in Setion 4.3.3.4.3.2 EdenEden (Breitinger et al., 1997) oordinates parallel omputations using expliit pro-ess reation and interonnetion, enabling the programmer to de�ne arbitraryproess networks. Thread interation an be either impliit, via shared variablesand funtion parameters on proess reation time, or expliit via ommuniatingparameters to proesses during proess life time. The language uses a losed systemmodel with loation independene. A prototype of the Eden system is available onrequest.Figure 10 summarises the basi oordination onstruts available in Eden. Pro-ess abstrations with type Proess a b de�ne the behaviour of proesses with inputof type a and output of type b analogous to funtions of type a ! b de�ned by �-abstrations. A proess abstration spei�es the mapping of data input in1: : :inmvia inports to data output out1: : :outm via outports. Inports and outports onnet(unidiretional) ommuniation hannels to proesses. Communiation hannels arenot autonomous objets, but tightly oupled with proesses. Proesses and their in-teronneting hannels are reated by the evaluation of proess instantiations of theform p # x whih applies the proess abstration p to the expression x, represent-ing the input tuple. The result of a proess instantiation is the tuple of outgoingdata of the newly reated proess. Eden proesses use independent threads to pro-



16 P.W. Trinder and H-W. Loidl and R.F. Pointonnewtype Proess a b = : : :{ proess abstration (language onstrut)proess (in1,...,inm) ! (out1,...,outn) :: Proess (a1,...,am) (b1,...,bn){ proess instantiation(#) :: (Transmissible a, Transmissible b) ) Proess a b ! a ! b{ non-deterministi merge proessmerge :: Proess [[a℄℄ [a℄Fig. 10. Basi Coordination Construts in Edendue their outputs. For eah output a separate thread is reated whih evaluatesthe output expression to normal form and sends the result value via the orre-sponding outport. Lists are transmitted as streams, i.e. element-wise. A prede�nednon-deterministi proess merge is provided for many-to-one ommuniation, whihis useful for speifying reative systems. It takes a list of input streams and mergesthe values in the order in whih they arrive.In Eden the programmer typially starts with a spei� proess network in mindand models this network using expliit proesses. Evaluation strategies may also berequired. This may amount to a higher e�ort in implementing a parallel algorithm,ompared to GpH or HDC, espeially when it is not possible to use one of a setof prede�ned Eden skeletons for parallel exeution (Klusik et al., 2000b). It o�ers,however, more possibilities for tuning the parallel performane.sumEuler :: Int ! Int ! IntsumEuler  n = sum ([ (proess z ! (sum . map euler) z) # x| x  splitAtN  [n,n-1..0℄ ℄`using` seqList r0)Fig. 11. Eden Version of sumEulerFigure 11 shows an Eden version of the sumEuler program. The list ompre-hension de�nes parallelism over the hunks of input data by applying a proessabstration to all hunks generated by splitAtN. The body of the proess abstra-tion spei�es the sequential omputation performed by eah thread. The strategyseqList r0 starts o� the evaluation of the parallel threads by enforing a spinestrit evaluation of the list.The largest programs implemented in Eden are a ray traer of several hundredlines of ode, a linear systems solver and a hekers program. Detailed measurementsof these programs an be found in (Klusik et al., 2001).



Parallel and Distributed Haskells 174.3.3 Eden/GpH Performane ComparisonsEden and GpH are available on the same platform and hene we are able to sum-marise the following diret performane omparisons. The measurements have beenperformed on a 32-node Beowulf luster (Ridge et al., 1997) onsisting of Linux Red-Hat 6.2 workstations with a 533MHz Celeron proessor, 128kB ahe, 128MB ofDRAM, 5.7GB of IDE disk, onneted through a 100Mb/s fast Ethernet swithwith a lateny of 142�s, measured under PVM 3.4.2. For the sumEuler programwith a list length of 8000 and a luster size of 100, the relative speedups on 16proessors are 13.1 for GpH and 12.4 for Eden.Other programs that have been ompared inlude a raytraer based on an Idprogram in the Impala benhmark suite (Impala, 2001). For this simple data parallelprogram a stati mapping of threads to proessors proves to be most eÆient, withGpH's dynami resoure management generating additional overhead. Overall, foran input of 640 spheres and a 350�350 grid, and using lusters of 10 lines, Edenahieves a relative speedup of 13.3 on 16 proessors, ompared to 5.2 for GpH.An exat linear system solver, originally developed in GpH and ported to Eden,ahieved relative speedups of 6.9 (GpH) and 13.2 (Eden) for a sparse 14�14 matrixwith arbitrary preision integers as input. A detailed disussion of these results ispresented in (Loidl et al., 2001a) and the program soures are available online.4.4 Haskell with a Coordination LanguageParallel oordination languages (Kelly & Taylor, 1999) are separate from the om-putation language and thereby provide a lean distintion between oordinationand omputation. Historially, Linda (Carriero & Gelernter, 1989) and PCN (Fos-ter et al., 1992) have been the most inuential oordination languages, and often aoordination language an be ombined with many di�erent omputation languages,typially Fortran or C. Other systems suh as SCL (Darlington et al., 1996) andP3L (Bai et al., 1995) fous on a skeleton approah for introduing parallelismand employ sophistiated ompilation tehnology to ahieve good resoure manage-ment. 4.4.1 CalibanThe latest implementation of the Caliban oordination language uses Haskell� asomputation language (Kelly, 1989; Taylor, 1997). Haskell� is a subset of Haskell,mainly omitting modules and type lasses. Caliban has onstruts for expliit par-titioning of the omputation into threads, and for assigning threads to (abstrat)proessors in a stati proess network. Communiation between proessors workson streams, i.e. eagerly evaluated lists, similar to Eden. In summary, Caliban usesa losed system model with oordination via semi-expliit threads, ommuniationvia impliitly de�ned data dependenies, and loation independene.Figure 12 summarises the basi oordination onstruts in Caliban. Eah entryrepresents a omponent in the data struture Plaement ontrolling the evaluationof a Haskell� expression. Sine Caliban's oordination onstruts are integrated



18 P.W. Trinder and H-W. Loidl and R.F. PointonNoPlae { null assertionBundle [x, y℄ { plae x and y on the same proessorAnnot x { extrat loation of xAr a b { doument a data dependeny between a and ba And b { exeute subnets a and b on di�erent proessorsa With b { exeute subnets a with b on the same group of proessorsFig. 12. Basi Coordination Construts in Calibaninto the host language, funtions produing plaement strutures, so alled net-work forming operators (NFOs), an be de�ned exploiting the full power of thehost language. These NFOs are evaluated at ompile-time using partial evaluationtehniques. The variables x and y are Haskell� variables of type Stream represent-ing omputations, whereas a and b represent proess networks of type Plaement.The Bundle assertion produes a proess network of o-loated omputations withthreads being generated for eah argument. The Annot diretive extrats plaementinformation from a omputation. Ar is an assertion of a data dependeny betweentwo proess networks, whih is heked by the ompiler. Two omposition diretivesfor proess networks are available. The And diretive indiates that the networksexeute in parallel, whereas the With diretive indiates that two networks shouldbe exeuted on the same group of proessors.sumEuler :: Int ! Int ! IntsumEuler  n = res moreover fan res resswhere res = sum ressress = map (sum . map euler) hunkshunks = splitAtN  [n,n-1..0℄fan :: Stream ! [Stream℄ ! Plaementfan s [℄ = NoPlaefan s (x:xs) = (Bundle [x℄) And (Ar x s) And (fan s xs)Fig. 13. Caliban Version of sumEulerFigure 13 shows the implementation of sumEuler in Caliban. In the body ofsumEuler the oordination expression fan res ress is applied to res by using themoreover lause, similar to GpH's using. The de�nition of fan itself spei�es theparallel exeution of every list element in its seond argument by using And foromposition. It orresponds to GpH's parList. Overall, this ode is similar to theode used in semi-expliit languages suh as GpH. However, sine Caliban desribesstati proess networks it may employ more eÆient, though less exible, resouremanagement.A prototype implementation of Caliban with Haskell� as host language is avail-able (Taylor, 1997). The largest appliations implemented in Caliban are a Jaobi



Parallel and Distributed Haskells 19relaxation algorithm and a ray traer, introdued in (Kelly, 1989). Although theoverall struture of this ray traer is similar to the one used in the omparisonof GpH with Eden, it should be noted that they are based on di�erent sequentialversions and that the input size as well as parallel arhiteture di�er. For an inputmodelling a sene with 20 ubes and a grid size of 100�100 rays, and using bloksof 40 rays for granularity ontrol in a task farm arhiteture, relative speedups ofup to 24 were ahieved on 35 proessors of a 128 proessor Fujitsu AP1000 basedon 25MHz Spar proessors (Taylor, 1997).4.5 Other Parallel Funtional LanguagesOther Parallel Haskells. Para-funtional programming (Hudak, 1986) is the generalapproah of adding ontrol diretives to a funtional program to speify parallel exe-ution. These ontrol diretives allow the programmer to desribe detailed exeutionshedules as well as the mapping of threads to proessors. A Haskell-based imple-mentation of para-funtional programming on an SGI Challenge shared-memorymahine is desribed in (Mirani & Hudak, 1995). This implementation fully inte-grates the diretives into Haskell by de�ning �rst-lass shedules with a monaditype. These shedules are used in a similar way to evaluation strategies in GpH andmoreover lauses in Caliban.Haskell-Linda (Peterson et al., 2000) is an extension of Haskell providing a bind-ing to basi operations de�ned in the Linda model (Carriero & Gelernter, 1989) fordesribing parallel exeution. It is an open system model with expliit parallelismand impliit synhronisation. In the Linda model ommuniation between parallelthreads is based on operations on a shared tuple spae. The basi operations on thistuple spae, whih is split into several regions, are read, write, and in (for read andremove). Parallel threads, represented as proess tuples in the tuple spae, ommu-niate by reading and writing tuples from/to the tuple spae. In reading from thetuple spae a pattern an be spei�ed. If several tuples math the pattern the resultis non-deterministi. Haskell-Linda is urrently used to speify parallel funtionalreative programs (Parallel-FRP) suh as a web-based online autioning system.Finally, several bindings of expliit message passing libraries, suh as PVM (PVM,1993) and MPI (MPI, 1997), for Haskell have been developed (Breitinger et al.,1998; Weber, 2000; Winstanley & O'Donnell, 1997). These languages use an opensystem model of expliit parallelism with expliit thread interation. Sine the o-ordination language is basially a stateful (imperative) language, monadi ode isused on the oordination level. Although the high availability and portability ofthese systems are appealing, the language models su�er from the rigid separationbetween the stateful and purely funtional levels.Other Non-strit Languages. The late 80s saw an inreasing interest in the parallelimplementation of non-strit funtional languages, whih is reeted in the imple-mentation of several suh systems. The <�;G>-mahine (Augustsson & Johnsson,1989) used LML with annotations for sparking and was implemented on a SequentSymmetry. The extension of Haskell with sparking annotations used on the paral-



20 P.W. Trinder and H-W. Loidl and R.F. Pointonlel GRIP mahine (Peyton Jones et al., 1987) was a diret preursor of the GpHlanguage overed in Setion 4.3.1. The LML-like, lazy, impliitly-parallel funtionallanguage ALFL has been implemented on a distributed-memory Intel Hyperubeas well as on a shared-memory Enore mahine (Goldberg, 1988), with near-linearspeedups for small programs suh as nqueens on the latter arhiteture.The HDG mahine (Kingdon et al., 1991) implemented a Miranda-like, impliitly-parallel, lazy language on a Transputer network, by using the evaluation transformermodel (Burn, 1991) to extrat parallelism. The PAM mahine (Loogen et al., 1989)implemented a simple non-strit, higher-order language with an expliit parallellet onstrut, in addition to the evaluation transformer model, on a Transputernetwork.Conurrent Clean (Plasmeijr et al., 1999; N�oker et al., 1991) is a language withlose similarity to Haskell, in partiular due to its non-strit semantis. Coordi-nation is spei�ed using annotations, i.e. ompiler diretives in omments, similarto, but more sophistiated than the diretives in GpH. Conurrent Clean has beenimplemented on the Transputer-based ZAPP mahine (Goldsmith et al., 1993),whih fousses on divide-and-onquer parallelism. Another implementation of Con-urrent Clean on a Transputer network ahieved good absolute performane re-sults (Kesseler, 1996).The Duth Parallel Redution mahine projet (Barendregt et al., 1987; Hartelet al., 1995) used a Miranda-like, lazy language with a speial \sandwih" anno-tation for desribing fork-and-join parallelism. Although this annotation favoursdivide-and-onquer parallelism, other paradigms suh as data parallelism an beexpressed by using program transformations. The largest appliation is a tidal pre-dition program on a small distributed-memory mahine.Other Strit Languages. Parallel extensions to Lisp have a long history:QLisp (Goldman et al., 1989), Paralation Lisp (Di Napoli et al., 1996), based on thegeneral Paralation model (Sabot, 1988), EuLisp (Padget et al., 1993), �Lisp (Think-ing Mahine Corporation, 1990), FX (Gi�ord et al., 1992), PaiLisp (Kawamoto,1999), BaLinda Lisp (Feng et al., 1995), TS/Sheme (Jagannathan, 1993). Someof the most prominent and most inuential systems are Multilisp (Halstead, 1985)and its suessor MulT (Kranz et al., 1989). The thread reation onstrut in thesetwo languages is a future, whih hides the synhronisation between parallel threadsbehind ordinary aess to variables in a shared address spae. In essene, it atslike a par operator in GpH. To redue the overhead imposed by a huge numberof parallel threads, lazy task reation was invented by Mohr et al. (1991). Thistehnique allows the omputation of a potential hild thread to be subsumed bythe parent thread.SAC (Single Assignment C) (Sholz, 1996) is a strit, �rst-order funtional lan-guage with impliit parallelism and impliit thread interation, optimised for arrayproessing. Its main appliation area is sienti� omputing with its fous on ar-ray strutures, whih an be abstrated over shape and dimensionality, and ratherregular parallelism. Good performane results for a Jaobi relaxation algorithm arereported on a shared-memory Sun Enterprise (Grelk, 1998).



Parallel and Distributed Haskells 21The UFO-Lite language (Sargeant, 1993) represents a �rst-order, hybrid fun-tional objet-oriented language with impliit parallelism and impliit thread inter-ation. Its prototype implementation on an SGI Origin fousses on the eÆienthandling of �ne grained parallelism.Skeleton-based Languages. A well-engineered skeleton-based language is theimpliitly-parallel, strit funtional language PMLS (Mihaelson et al., 2001). Itis an automatially parallelising ompiler for a pure subset of SML. The exeu-tion osts of funtions are pro�led by exeuting a strutural operational semantis.Based on this information a ost model for the available skeletons, possibly nested,is used to selet a deomposition and mapping of parallel threads. Measurementson a range of parallel mahines inluding a Beowulf luster, a Fujitsu AP3000, anIBM SP/2, and a Sun Enterprise SMP exhibit good speedups for programs suh asmatrix multipliation, a ray traer and a linear system solver (Saife et al., 2001).Other well-developed systems using a skeleton-based approah for parallelism areSCL (Darlington et al., 1996) and P3L (Bai et al., 1995). Both systems de�nea oordination language that an be freely ombined with an arbitrary omputa-tion language. In pratie these systems often use C or Fortran as omputationlanguages. As a ruial tehnique for the development of larger appliations theselanguages allow the spei�ation of data re-distribution to ompose skeletons withoniting data distributions.Data Parallel Languages. One of the most suessful parallel funtional languagesis NESL (Blelloh, 1996). NESL is a strit, strongly-typed, data-parallel languagewith impliit parallelism and impliit thread interation. It has been implementedon a range of parallel arhitetures, inluding several vetor omputers. A widerange of algorithms have been parallelised in NESL, inluding a Delaunay algorithmfor triangularisation (Blelloh & Narlikar, 1997), several algorithms for the n-bodyproblem (Blelloh et al., 1996), and several graph algorithms.Fish (Jay & Stekler, 1998) is a higher-order polymorphi language with stritsemantis. Its main innovation is the introdution of shapely types that enodeinformation about the bounds of array-like objets in the type system of the lan-guage. This extended type system enables shape analysis and provides additionalinformation to the ompiler, whih generates very eÆient sequential ode. Thedata-parallel variant of this language, GoldFish, is still under development.Dataow Languages. SISAL (Cann, 1992) is a �rst-order, strit funtional lan-guage with impliit parallelism and impliit thread interation. Its implementationis based on a dataow model and it has been ported to a range of parallel ar-hitetures. Comparisons of SISAL ode with parallel Fortran ode show that itsperformane is ompetitive with Fortran, without adding the additional omplexityof expliit oordination (LANL, 2001).The pHLuid system (Flanagan & Nikhil, 1996) is a parallel implementation of Idon networks of workstations. It uses a dataow model of omputation to ahieveimpliit parallelism. The Id language is, despite many syntati di�erenes, losely



22 P.W. Trinder and H-W. Loidl and R.F. Pointonrelated to Haskell. In (Hammes et al., 1995) a good language and performane om-parison of Id with Haskell on a realisti benhmark program is given. Id is polymor-phi, higher-order and has a non-strit semantis, implemented via lenient or par-allel eager evaluation. Indeed, a fusion of Id and Haskell has been proposed (Nikhilet al., 1995).Derivational Approahes. The referentially transparent semantis of Haskell makesit an attrative language for deriving parallel programs. In suh an approahHaskell, or often BMF notation, is used as spei�ation language, and the pro-gram is transformed, usually by hand, into a parallel program. The target languageis often C with MPI or PVM, but in some ases intermediate points of the transfor-mation are already exeutable, e.g. as Haskell+MPI programs. The most prominentof these approahes are abstrat parallel mahines (O'Donnell & R�unger, 2000), theTwoL system (Rauber & R�unger, 1996), systems using BSP (Valiant, 1990) as par-allel programming model e.g. (Loulergue, 2000), and several systems for derivingskeleton-based parallel ode out of Haskell or BMF spei�ations (Pepper, 1993;Bai et al., 1999). 4.6 Parallel Haskell PragmatisTools and Environment. A ommon feature of the languages disussed in this se-tion is their high-level and often dynami oordination. Sometimes the programmeronly has to identify expressions suitable for parallel exeution (GpH) in other asesit suÆes to give a high-level desription of a proess network (Eden, Caliban). Inontrast to detailed stati oordination, the parallel behaviour indued in a programby high-level, dynami oordination is far from obvious. This opaity is unfortunatebeause the programmer must have a lear understanding of parallel behaviour totune performane. Therefore a set of dynami pro�ling and visualisation tools isvery important for many parallel funtional languages.The best developed set of parallel pro�ling and visualisation tools exists for GpH.It onsists of a highly-tunable simulator for parallel exeution (GranSim) and sev-eral parallel pro�lers inluding GranCC and GranSP. The latter are post-mortemtools operating on a log �le, and visualising multiple aspets of parallel exeution,e.g. overall ativity of the mahine, per-proessor ativity or per-thread ativity. Forexample, Figure 14 shows an overall ativity pro�le of the sumEuler program fromSetion 4.3.1 exeuting on a 20 proessor Beowulf, with exeution time on the x-axisand the number of tasks on the y-axis. The tasks are separated into four lasses,depending on their state: running if they are exeuting; runnable if they ould beexeuted if a proessor were available; bloked if they await data under evaluation;and fething if they are retrieving data from another proessor. These tools havebeen ruial in the parallelisation of a set of large GpH programs (Loidl et al.,1999). The Eden system supports Paradise, a GranSim-like simulator (Hernandezet al., 1999), and Caliban provides similar but less sophistiated visualisation toolsfor analysing parallel performane (Taylor, 1997).
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sumEulerS_mp 5 5000 100 +RTS -qP -qPg -qg1 -qh0 -sstderr  
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Fig. 14. A GpH Ativity Pro�leProgramming Methodology. Impliit parallelism, often promised in the ontext offuntional languages, o�ers the entiing vision of parallel exeution without hangesto the program. In reality, however, the program must be designed with parallelismin mind to avoid unneessary sequentialisation. In theory, program analyses suhas granularity, sharing, and usage analysis an be used to automatially generateparallelism. In pratie, however, almost all urrent systems rely on some level ofprogrammer ontrol. The path from powerful and useful analyses, over the auto-mati extration of the right amount of usable parallelism, to the dynami resouremanagement required for these systems is a long one, and poses many researhproblems, espeially in the middle stage.Current development methodologies have several interesting features. The om-bination of languages with minimal expliit oordination and good pro�ling toolsfailitates the prototyping of alternative parallelisations. Obtaining good oordina-tion at an early stage of parallel software development avoids expensive re-designs.In later development stages, detailed ontrol over small but ruial parts of the pro-gram may be required, and pro�ling tools an help loate expensive parallel om-putations. During performane tuning the high level of abstration may beome aburden, hiding low level features that ould be usefully ontrolled by the program-mer. Spei� oordination aspets, suh as evaluation degree and data plaement,often have to be arefully spei�ed in some parts of a program, but they an onlybe indiretly ontrolled in languages like HDC, GpH, and Eden.Implementation Issues. Coordination onstruts an be added to an existing om-putation language suh as Haskell in two ways: they may be built-in to the language,



24 P.W. Trinder and H-W. Loidl and R.F. PointonnewPort :: IO (Port a)writePort :: Port a ! a ! IO ()readPort :: Port a ! IO amergePort :: Port a ! Port b ! IO (Port (Either a b))registerPort :: Port a ! PortName ! IO ()unregisterPort :: Port a ! IO ()lookupPort :: PortHost ! PortName ! IO (Port a)link :: Port a ! IO () ! IO Linkunlink :: Link ! IO ()Fig. 15. Haskell with Ports Construtsas in GpH and Eden, or built-on the language as a library, as in Haskell+MPI. Themain advantage of integrating parallelism into the language is that it failitatesanalysis and transformations of the program. Moreover, a tight oupling of paral-lelism with the runtime-system failitates dynami resoure management.On the other hand, providing a separate library for parallelism is in general easierto implement, and ahieves a more modular design. It is no oinidene that thereare several systems extending Haskell with some form of standard ommuniationlibrary. However, the main problem of this approah is the mismath between thedelarative omputation language and a library of imperative oordination on-struts. In pratie this means that monadi, and therefore serialised, ode must beused extensively, whih both hampers the design of parallel algorithms and elimi-nates many of the bene�ts of a purely funtional omputation language.5 Distributed HaskellsMany programs are naturally distributed in nature, that is they omprise multiplethreads interating expliitly on multiple PEs. Examples inlude CASE tools, multi-user simulations, multi-user distane learning environments. The following setionsdesribe the two reent distributed Haskell implementations, and their relationshipto other distributed funtional languages.5.1 Haskell with PortsHaskell with Ports (Huh & Norbisrath, 2000) is a library for Conurrent Haskellthat takes an imperative approah to distribution: adding additional monadi om-mands for ommuniation between PEs. The design of the library is inuened bythe Erlang language whih provides ommuniation via message passing with amailbox for every proess (Armstrong et al., 1996), and by onurrent onstraintprogramming whih introdues the notion of a port with a single reader (Jansonet al., 1993).Haskell with Ports has an open system model and threads interat using ports.



Parallel and Distributed Haskells 25{ Interfae {data ServerMsg = Ping (Port ClientMsg)data ClientMsg = Pong String{ Server {main = doserverPort  newPortregisterPort serverPort "PingServer"let pingServer = do(Ping lientPort)  readPort serverPortname  getEnv "HOST"writePort lientPort (Pong name)pingServerpingServer{ Client {main = doputStr "Host of ping server? "host  getLineserverPort  lookupPort host "PingServer"lientPort  newPortlet timePing p = doputStr ("Pinging "++show p++" ... ")(name,ms)  timeit (pingPong p)putStrLn ("at "++name++" time="++show ms++"ms")pingPong p = dowritePort p (Ping lientPort)(Pong name)  readPort lientPortreturn namemapM timePing (repliate 4 serverPort)return ()Host of ping server? ushasPinging (pHost="137.195.52.186") ... at ushas time=60msPinging (pHost="137.195.52.186") ... at ushas time=79msPinging (pHost="137.195.52.186") ... at ushas time=40msPinging (pHost="137.195.52.186") ... at ushas time=68msFig. 16. Haskell with Ports PingPorts allow expliit and dynamially-typed ommuniation of �rst order valuesinluding ports. Within a loation ommuniation is lazy, but between loationsommuniation is strit, i.e. messages sent to loal threads are not stritly evaluated,but any message to a remote thread is strit beause it is onverted to text usingshow. A port may have multiple writers but only one reader, and Figure 15 liststhe distribution onstruts. A port is reated by newPort, and the reader mustbe the port's reator and thus both port and reading thread reside on the same



26 P.W. Trinder and H-W. Loidl and R.F. PointonPE. Data is requested from the port by a bloking readPort. The mergePortoperation enables reading from multiple ports. Values are written to a port with anon-bloking writePort, and hene ports are essentially FIFO queues.A port is registered to make it visible to other PEs, using registerPort andunregisterPort. One a port is registered it an be retrieved using the PE and portnames via the lookupPort operation. A separate proess, the postoÆe, exeuteson eah PE and stores information about registered ports as well as performinginter-PE ommuniation. Linking is the eager detetion of errors in a port, i.e.atively wathing for errors, rather than handling them. By using link and unlinkan operation an be assoiated with port failure, e.g. a leanup routine an bespei�ed when a port disonnets. Linking together with exeption handling on theread and write operations provide a sound basis for fault tolerant programming.Ping is an example program that performs a lookup on an environment variableon a remote PE and then returns the resulting value to the original PE. The goalis to determine the overall time for the round trip where ommuniation is thedominating ost. For omparison, in our network the UNIX ping utility returns atime of the order of 0.5ms. Figure 16 shows a pair of Haskell with Ports programsthat implement ping, together with their output. The server program reates andregisters a port PingServer, before looping waiting for messages and respondingto them. The lient program performs a lookup on the spei�ed server for the portPingServer, then a monadi map, mapM, is used to all timePing four times. WithintimePing, the timeit funtion times the pingPong all whih sends a message tothe server and waits for a reply. The lient program reports relatively long times,whih is unsurprising for several reasons. Communiation proeeds with a messagepassing from lient, to loal postoÆe, to remote postoÆe, to server, and thenbak through this hain. All these omponents are implemented in Haskell andthe ommuniation is relatively high level, using sokets and the data is serialised,i.e. manipulated as text using read and show funtions. The implementation isurrently being optimised.Other Haskell with Ports appliations inlude a hat program where users om-muniate in a lient server mode, and a database where users ommuniate througha lient to a entral database server to manipulate the data.In summary, Haskell with Ports provides dynamially typed expliit ommunia-tion of �rst order values and Ports using a new Ports onstrut. Communiationis often strit with no sharing of data and therefore no synhronisation is nees-sary within the ommuniated data. An open system model allows programs toleave and join, while registering ports allows a onneting program loate spei�resoures. Loation independene an be implemented but would require a majorreimplementation of existing libraries. Exeptions and linking support robust faulttolerane. The library is publily available from (Haskell+Ports, 2001).5.2 GdHGdH (Pointon et al., 2000) is a modest onservative extension of Haskell98 and isa strit superset of both Conurrent Haskell (Peyton Jones et al., 1996) and GpH.



Parallel and Distributed Haskells 27forkIO :: IO () ! IO ThreadIdmyThreadId :: IO ThreadIdnewEmptyMVar :: IO (MVar a)takeMVar :: MVar a ! IO aputMVar :: MVar a ! a ! IO ()isEmptyMVar :: MVar a ! IO BoolraiseInThread :: ThreadId ! Exeption ! athrow :: Exeption ! aathAllIO :: IO a ! (Exeption ! IO a) ! IO aFig. 17. Conurrent Haskell ConstrutsIt supports two lasses of thread: pure threads and side-e�eting I/O threads. Purethreads are inherited from GpH and intended for parallelism, interating via sharedvariables, as desribed in Setion 4.3.1. Evaluation strategies are used in GdH tooordinate pure threads, exatly as in GpH. The remaining disussion fousses onthe I/O threads inherited from Conurrent Haskell.Conurrent Haskell supports expliit interleaved onurreny with named I/Othreads reated by a monadi forkIO ommand (Peyton Jones et al., 1999), and theonstruts are summarised in Figure 17. I/O threads may interat impliitly, likepure threads, or expliitly within the I/O monad using polymorphi semaphoreprimitives, termed MVars. Multiple threads may share an MVar, giving rise tonon-deterministi semantis. I/O Threads and MVars an be abstrated over togive bu�ers, FIFO hannels, merging, et. Conurrent Haskell supports both syn-hronous and asynhronous exeptions to allow the exible handling of exeptionalor error situations.myPEId :: IO PEIdallPEId :: IO [PEId℄lass Immobile a whereowningPE :: a ! IO PEIdrevalIO :: IO a ! a ! IO ainstane Immobile PEId Fig. 18. GdH ConstrutsGdH supports distributed programming by extending the semantis of ConurrentHaskell onstruts to multiple PEs and adding the new language onstruts for



28 P.W. Trinder and H-W. Loidl and R.F. Pointon- loal thread reation -forkIO :: IO () ! IO ThreadId- remote thread reation -rforkIO :: IO () ! PEId ! IO ThreadIdrforkIO job p = revalIO (forkIO job) pFig. 19. Remote Thread Plaement Using revalIOloation awareness given in Figure 18. A GdH program is a losed system andexeutes on a set of loations, eah labelled with a PEId. A thread's urrent loationis obtained by myPEId, and the list of all available loations is returned by allPEId.Stateful objets, suh as MVars, threads or �les, are unique and �xed at a loation,although referenes to them are freely opied to other loations. Stateful objetsare instanes of the new Immobile lass and are loated by the owningPE method.While GdH supports loation-awareness, signi�ant parts of a GdH programmay be loation independent. Pure and I/O threads interat impliitly regardlessof loation as in GpH. Loation independent manipulation of stateful objets issupported by rewriting the relevant libraries, like those for MVars, to enapsulateand hide the use of owningPE to determine the objet's loation.Distributed state is manipulated using a remote evaluation funtion in the IOmonad: revalIO job p whih bloks the alling thread until the exeution of jobat loation p ompletes. That is, revalIO temporarily reloates the thread, ratherlike Java RMI (Daonta et al., 1998). Loation independent properties of the remotethread reated by revalIO are preserved, e.g. error handling remains una�eted sothat an exeption raised in the remote thread may propagate bak to a handler inanother loation. Stateful objet plaement an also be aomplished by revalIO,for example Figure 19 shows its use to reate a distributed version of the ConurrentHaskell forkIO ommand that plaes a thread on a spei�ed PE.Partial distributed fault tolerane is supported in GdH by distributed exeptionswithout requiring any new language onepts. The synhronous and asynhronousexeptions supported by Conurrent Haskell are extended in a loation independentmanner, e.g. an exeption may be raised in a named I/O thread irrespetive ofwhether it is loal or remote. The fault tolerane is limited beause it is not easyto detet important failures inluding the failure of a PE and of a thread on a PE.Handling these failure modes is ritial for the onstrution of robust systems andan initial study has been onduted but not yet implemented (Trinder et al., 2000).A GdH ping program is shown in Figure 20. A destination PE, dest, is seletedfrom the list of PEs, and a monadi map, mapM alls timePing four times. WithintimePing, timeit times the pingPong funtion whih uses revalIO to performa trivial operation on the remote dest PE. Compared with the pair of Haskellwith Ports programs that ommuniate using expliit ports, the GdH program isa single, relatively ompat program with all the ommuniation ourring withinthe revalIO operation. Moreover, the GdH ping is relatively fast, returning values



Parallel and Distributed Haskells 29main = do( :dest: )  allPEIdlet timePing p = doputStr ("Pinging "++show p++" ... ")(name,ms)  timeit (pingPong p)putStrLn ("at "++name++" time="++show ms++"ms")pingPong p = revalIO remote premote = getEnv "HOST"mapM timePing (repliate 4 dest)return ()Pinging PE:524305 ... at n1708 time=3msPinging PE:524305 ... at n1708 time=1msPinging PE:524305 ... at n1708 time=1msPinging PE:524305 ... at n1708 time=1msFig. 20. GdH Ping
of the same order of magnitude as UNIX ping on our network. This is unsurprisingbeause the GdH runtime system uses PVM with UDP as the underlying protool,and C ode to serialise and pak the data.Other GdH appliations inlude the following. A ooperative editor allows multi-ple users on remote mahines to edit the same �le (Pointon et al., 2000). A FatoryChatroom allows multiple remote lients to interat via a TlHaskell interfae to aentral server that maintains user pro�le and a shared fatory simulation (Pointonet al., 2001). A distributed �le server and a multiuser geographial game have alsobeen onstruted (Pointon et al., 2001).In summary, GdH provides statially typed expliit ommuniation of higher or-der and stateful objets, e.g. funtions, suspensions, MVars. The Immobile lassallows remote resoures to be manipulated and shared in a loation independentmanner. Furthermore impliit thread interation ours through shared data, withommuniation ourring at the onsumer's demand. Impliit thread interationsubstantially lifts the burden of managing the ommuniation of, and synhronisa-tion on, data strutures from the programmer (Pointon et al., 2001). AdditionallyGdH is unusual in simultaneously supporting parallelism through pure threads, anddistribution through I/O threads. GdH is a losed system, and apitalises on this bymaking all PEs visible so a program an manipulate any resoure in the distributedstate. Distributed exeption handling is provided to support limited fault-tolerane.A more omplete desription of the design and implementation of GdH an be foundin (Pointon et al., 2000), and the implementation is bundled with publily availableGlasgow Haskell Compiler, version 5.00 onwards (GHC, 2001).



30 P.W. Trinder and H-W. Loidl and R.F. Pointon5.3 Other Distributed Funtional LanguagesAlthough the bene�ts of the funtional paradigm for distribution have been re-alised only reently, ompared with parallelism, distributed funtional languageshave already ahieved greater ommerial suess in the form of Erlang (Arm-strong et al., 1996; Blau & Rooth, 1998). This setion briey relates the distributedHaskells above to other distributed funtional languages, inluding some Haskell-based designs. Broadly speaking distributed oordination may be delarative, im-perative, or proess algebra-based, and the languages disussed below are lassi�edby oordination paradigm.Before disussing languages by paradigm, it is worth noting that numerous re-ent language implementations ompile to generi platforms like the Java VirtualMahine (JVM) and Mirosoft .NET. Despite problems mapping funtional vir-tual mahines onto the platforms various lasses of funtional language have takenthis route, inluding sequential, onurrent, parallel, distributed and mobile lan-guages. An early JVM-based sequential Haskell was produed by Wakeling (1997)and he has sine produed a mobile Haskell (Wakeling, 1998). A JVM-based paral-lel Haskell similar to GpH has been implemented by Rauber du Bois (2001). Thereis also a JVM-based implementation of the Curry language disussed below.Delarative Coordination. Several reent distributed Haskell designs use delarativeoordination: Distributed Haskell (Chakravarty et al., 1998b) and Curry (Hanus,1999) use logi-based oordination languages, while Brisk uses annotations, and anelaborated semantis (Holyer et al., 1998). Distributed Haskell oordinates distri-bution with a onstraint programming language. It evolved from the GoÆn parallelprogramming language (Chakravarty et al., 1998b), and a full implementation hasnot been onstruted (Chakravarty et al., 1998a). Conurrently exeuting proessesare alled agents, and Distributed Haskell adds language onstruts for agent plae-ment and introdues temporal onstraints to the language to deal with timeoutsand potentially provide fault tolerane. External ports are introdued for ommu-niation between appliations and dynami typing ensures the type safety of themessages.Curry is similar to GoÆn in that it is a funtional-logi programming language inwhih ommuniation is a onstraint to be solved. To support distribution namedports are added in the I/O monad similar to Haskell with Ports.Brisk introdues deterministi onurreny using multiple threads within thesame shared heap, with impliit synhronisation on shared graph. The limitationsof deterministi onurreny are weakened by allowing ommuniation based onmerging with hierarhial timestamps (Spiliopoulou, 1999), but the oordinationlanguage remains more restritive than others, e.g. inherently non-deterministiprograms like the dining philosophers annot be desribed. Brisk allows the om-muniation of higher-order values between PEs in a lazy and dynami manner, italso supports the ommuniation of ode for the mobility of running omputations,using a remote annotation. As Brisk is urrently only partially implemented it isnot lear the extend to whih distribution will be expliit or impliit.



Parallel and Distributed Haskells 31A major advantage of delarative oordination is that it failitates reasoningabout oordination and omputation in a uni�ed framework. Languages with delar-ative oordination typially have a losed systems model, and preserve referentialtranspareny by making many oordination aspets impliit in the semantis. Forexample in Brisk the independent soures of output, e.g. di�erent windows, or-respond to independent soures of demand within the program. In onsequenethe implementations of these languages are often extremely elaborate, moreoverdelarative oordination languages often lak expressive power, as illustrated forBrisk above.Imperative Coordination. Some oordination languages omprise expliit om-mands to reate proesses, ommuniate et. Erlang is probably the most ommer-ially suessful funtional language, and was developed in the teleommuniationsindustry for onstruting distributed, real-time fault tolerant systems (Armstronget al., 1996; Wikstrom, 1994; Wikstrom, 1996). It has been used by a number ofteleommuniations ompanies inluding One-2-One, Erisson and NorTel to on-strut a wide range of teleommuniations utilities (Tillman, 2000; Frithie, 2000;Hinde, 2000), inluding some large multiproessor appliations like the AXD301swith (Blau & Rooth, 1998): 525K lines of ode on 32 proessors. Compared withHaskell, Erlang is strit, impure, weakly typed and relatively simple: omittingfeatures suh as urrying and higher-order funtions. However the language has anumber of extremely useful features, inluding the OTP libraries, hot loading of newode into running appliations, expliit time manipulation to support soft real timesystems, and message authentiation. Erlang systems are open, loation-awarewith expliit mailbox-based ommuniation. Sophistiated fault tolerane is pro-vided by timeouts, exeption handlers with exeptions as values, and a mehanismwhere a proess an monitor the termination of other proesses.Distributed Poly/ML and Faile Antigua both extend ML with imperative o-ordination onstruts (Matthews, 1989; Matthews, 1991; Thomsen et al., 1993). ADistributed Poly/ML program reates proesses using fork and rfork primitives,and is loation-aware as a PE an be spei�ed. Communiation is over hannels,using send and reeive primitives. Unusually Distributed Poly/ML provides anondeterministi hoie primitive that selets the �rst of two proesses to ter-minate. In addition to primitives similar to those in Distributed Poly/ML, FaileAntigua provides a ping to asertain the liveness of a PE and kill to reset a PE.Both languages have a losed system model and are loation-aware, with expliitthread interation, and some support for fault tolerane.OZ, the language of the MOZART system, is a multi-paradigm distributed lan-guage ombining funtional, objet-oriented, and logi paradigms (Haridi et al.,1997). It provides a variety of primitives for distribution and fault tolerane andsupports the ommuniation of higher order values inluding variables. It uses ex-eptions for robust fault tolerane and distinguishes between lazy error detetionby handlers for synhronous exeptions, and eager error detetion by wathers forthe management of asynhronous exeptions whih may be generated by remoteobjets.



32 P.W. Trinder and H-W. Loidl and R.F. PointonConurrent Clean (N�oker et al., 1991), introdued in setion 4.5, supports dis-tribution using expliit message passing (Serrarens, 2001). It has Channels thatallow lazy normal form opying of data strutures. Moreover it provides primitivesfor reating, sharing, and type-heking hannels between programs enabling theonstrution of open systems. Exeption-based fault tolerane is also provided.Imperative approahes are almost always expliit and loation aware. Comparedwith proess algebra and delarative oordination languages, it is relatively easyto onstrut a sophistiated imperative oordination model. The downside is thatwhile it is still easy to reason about the omputation parts of a program, it is hardto reason about the entire program beause the imperative oordination restritsreferential transpareny. However, experiene with Erlang suggests that makingeven part of a large distributed system delarative is of onsiderable bene�t.Proess Algebra Coordination. The imperative oordination model for some lan-guages is based on proess algebras like CCS (Milner, 1989) or CSP (Hoare, 1986).Pit is a onurrent language based on asynhronous �-alulus (Turner, 1995), andNomadi Pit is an extension (Wojiehowski, 2000). The language has expliit o-ordination ommands, e.g. proesses synhronise to send and reeive. Nomadi Pitprograms are loation aware: it is possible to migrate a proess to a PE.Proess algebra languages make oordination expliit, and have the great ad-vantage having a ready-made algebra for reasoning about oordination, timing et.However, suh algebras are very di�erent from the equational approah used forreasoning about the omputational parts of a program.6 DisussionTo failitate diret omparison, Table 1 summarises the oordination onstruts ofparallel and distributed Haskells using the onepts from Setion 3. Some of thedistributed language implementations are not yet mature enough to allow om-plete de�nitive lassi�ation: these are marked as 'Undef' in the table. ParallelHaskells over all the major parallelism paradigms, and oordination ranges fromfully impliit like HDC, to relatively expliit like Caliban. In omparison to otherparallel language paradigms, all of the funtional languages are relatively impliit.In omparison to other distributed languages paradigms, many distributed Haskellsare losed and do not have well-developed fault tolerane. Coordination of state-transforming threads in distributed Haskells is almost always expliit, and theamount of impliit oordination possible in real distributed appliations remainsan open question.Parallel and distributed funtional programming the following wide range of hal-lenges, and Haskell-based researh languages are likely to be suitable vehiles forinvestigating many of them.Reasoning about Coordination. A major hallenge is to develop high-level equiv-alenes between expressions in the oordination language, espeially for extensiblelanguages desribing dynami oordination. Potentially oordination equivaleneswill aid the derivation and transformation of parallel and distributed programs,



Parallel and Distributed Haskells 33Language Threadsa Loation Interationa System Fault-model toleraneSequential:Haskell98 N/A N/A N/A N/A NoConurrent:Conurrent Haskell Exp. N/A Imp. & Exp. N/A YesParallel:HDC Imp. Indep. Imp. Closed NoData Parallel Haskell Imp. Indep. Imp. Closed NoData Field Haskell Imp. Indep. Imp. Closed NoNepal Imp. Indep. Imp. Closed NoGpH Semi-Exp. Indep. Imp. Closed NoEden Semi-Exp. Indep. Imp. & Exp.b Closed NoCaliban Semi-Exp. Indep. Exp. Closed NoDistributed:Haskell with Ports Exp. Aware Imp. & Exp.b Open YesGdH Exp. Aware Imp. & Exp. Closed PartialBrisk Exp. Aware Imp. Closed Undef.Distributed Haskell Exp. Aware Imp. & Exp. Undef. Undef.Curry Exp. Aware Imp. & Exp.b Undef. Undef.a Imp - Impliit, Exp - Expliit.b Restritions exist on interations between loations.Table 1. Haskell Coordination Language Summaryand may be inorporated into ompilers. The funtional programming ommunityhas well-developed equational tehniques for reasoning about the omputation lan-guage, but reasoning about oordination is far less developed. Parallel ost modelsstatially predit the time and spae required to evaluate an expression, and parallelost models add a model identifying the expressions simultaneously under evalua-tion to model oordination aspets suh as average parallelism, runtime, and totalspae usage. Good parallel ost models exist for some skeleton languages, e.g. (Skil-liorn, 1990; Bai et al., 1995), and some data parallel languages, e.g. (Blelloh,1996). However, there are few models for more dynami and extensible oordination,and most are low-level, e.g. parallel operational semantis (Blelloh & Greiner, 1996;Roe, 1991; Baker-Finh et al., 2000; Hidalgo Herrero & Ortega Mall�en, 2000). Thehallenge is greater for Haskell beause time and spae ost models are far harderto develop for lazy languages than for strit (Sands, 1990; Loidl, 1998).Higher-level Coordination. A major hallenge is to develop language onstruts,stati analyses and dynami tehniques to automatially introdue and ontrol o-ordination. Many parallel and distributed funtional language designers agree thatoordination should be as high-level, i.e. impliit, as possible. Current substantially-



34 P.W. Trinder and H-W. Loidl and R.F. Pointonimpliit languages like skeleton-based, data-parallel or distributed languages withdelarative oordination, have restrited oordination models as disussed above.The key problem for parallel languages is that funtional programs have massiveamounts of �ne-grained parallelism. In lazy languages like Haskell expressions thatan safely be evaluated in parallel an be identi�ed by stritness analyses. Identify-ing expressions that are worthwhile evaluating in parallel requires aurate parallelost models. It may also help the programmer if a visualisation of the oordination,e.g. a proess network, an be produed statially.Improved dynami oordination ontrol mehanisms redue the expliit oordi-nation ontrol required in the language. This is espeially important for non-stritparallel Haskells that naturally support highly-dynami oordination, and hal-lenges inlude the following. An important new parallelism onept is arhitetureindependene: i.e. a program an be easily and systematially ported between arhi-tetures while preserving good parallel performane. Runtime systems must makegood use of emerging arhiteture independent onepts. For example a runtimesystem may be parameterised by important arhiteture harateristis to failitategood performane on a variety of arhitetures. Alternately a runtime system maymeasure key arhiteture harateristis and adapt itself. The massive �ne-grainedparallelism in funtional programs failitates adaptation to multiple arhitetures,but better mehanisms are required to aggregate small tasks into larger tasks andto manage threads heaply. There is also a need for improved load managementstrategies to e�etively utilise all PEs, and alleviate heavily loaded PEs.Language onstruts with appropriate semantis enable high-level oordination.Languages like Eden and Brisk attempt to apture many oordination aspets inthe language semantis. Currently the oordination in these languages is limited,and the high-level onstruts are augmented with additional oordination primi-tives, e.g. Eden uses evaluation strategies in addition to the proess onstruts.The hallenge is to develop a small set of adequately expressive high-level oor-dination onstruts. Just as skeletons abstrat over ommon parallel oordinationpatterns, it may be possible to onstrut distributed skeletons to abstrat overommon distributed oordination patterns, like lient-server.Pragmati Challenges. An ongoing hallenge for parallel and distributed languageimplementors is to make the best of new tehnologies. Developing and maintainingthe elaborate implementations required by parallel and distributed Haskells is a realissue for researh groups. Development is aided by new arhiteture independentparallel middleware, like the PVM and MPI libraries (PVM, 1993; MPI, 1997), andit is not unusual to �nd a language available on half-a-dozen arhitetures. Similarly,the languages gain from improvements in funtional ompilation tehnology (PeytonJones et al., 1993; SML, 1993; Leroy, 1996). Lastly, implementations must adapt tonew tehnologies, e.g. generi platforms like the JVM and .NET, or to make e�etiveuse of the inreasingly heap and popular lusters of ommodity proessors (Ridgeet al., 1997).Programming Methodology. The �nest programming language is useless withoutan established methodology for developing programs systematially. Emerging par-allel funtional programming methodologies have been disussed in Setion 4.6.
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