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Abstract
Servers are a key element of current IT infrastructures, and
must often deal with large numbers of concurrent requests.
Reliability is crucial as any disruption is extremely costly.
Some important reliable servers are implemented in actor
languages/libraries that provide process isolation and su-
pervision. Reliability benchmarks model fault scenarios to
measure the reliability characteristics of systems.
The paper presents the design and implementation of a

new reliability benchmark for actor-based server languages:
Supervised Communicating Processes (SCP). SCP extends
an existing server concurrency benchmark by supervising
server actors/processes. We outline Erlang and Scala/Akka
SCP implementations, and an associated fault injector.
We compare the reliability characteristics of Erlang and

Scala/Akka for server-style computations using SCP in the
following four main experiments. (1) Progressive permanent
failures, where a percentage of server processes fail perma-
nently. (2) Recovery from different percentages (0% .. 20%)
of failures occurring uniformly, randomly, or in bursts, and
with a range of supervisor/supervisee ratios. (3) Comparing
how the Erlang and Scala/Akka SCPs handle burst, random
and uniform failure patterns. (4) Comparing how Erlang and
Scala/Akka handle server actor/process faults with different
fault patterns and failure rates.

CCS Concepts: • Computer systems organization→ Re-
liability; • Software and its engineering → Distributed
programming languages.

Keywords: Benchmark, Server, Reliability, Fault Tolerance,
Distributed System, Erlang
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1 Introduction
Servers are a key technology supporting activities like social
networks, online games, chat applications, and many others.
Many servers must often deal with large numbers of con-
current requests, and have low overheads when tolerating
failures. The programming language used to construct the
server has an important role in engineering efficient and reli-
able server software. So what language technologies should
be selected to engineer a new server?
Programming languages are commonly compared using

sets of benchmarks. For example, the famous Computer
Language Benchmarks Game compares languages for com-
pleting computational tasks. For servers, however, concur-
rency and reliability are more important than compute speed.
Comparing concurrent performance is harder, and bench-
mark suites are less widely used, some include the Barcelona
OpenMP Benchmarks [10] and BenchErl [3] for Erlang.
While the Savina benchmarks are designed to compare

actor languages/libraries, including both concurrency and
parallelism [13], we are not aware of any benchmark that
attempts to compare the reliability of actor languages/li-
braries. Measuring reliability is hard [5], for example, there
are multiple failure modes to consider like random failures or
bursts of failures. We do so in the restricted context of high
throughput servers with supervised server actors/processes.

The paper makes the following research contributions.
1. The design and implementation of a new lan-

guage neutral benchmark for reliable actor-based
server languages/libraries: Supervised Commu-
nicating Processes (SCP).We believe that SCP is the
first benchmark for comparing the reliability of actor-
based languages/libraries. SCP extends an existing
server benchmark previously used to compare Erlang,
Go and Scala/Akka for high throughput servers [34].
It does so by adding a supervision tree over the state-
less server actors. We outline Erlang and Scala/ Akka
SCP implementations, and an associated deterministic
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fault injector that supports four failure patterns: burst,
uniform, random and progressive (Section 3).

2. A systematic comparative analysis of the relia-
bility characteristics of Erlang and Scala/Akka
for server-style computations using SCP.We de-
scribe and analyse the performance of the Erlang and
Scala/Akka SCP implementations in the following four
main experiments. Under test the SCP implementa-
tions execute with the sole use of a 16-core server.
(1) Progressive permanent failures, where a percentage
of server processes fail permanently. For example, we
find that the throughput of the Erlang and Scala/Akka
SCPs drops by approximately 5% for every 5% of pro-
cess pairs killed, 10% for every 10% of process pairs
killed, and in general approximately X% for every X%
of process pairs killed. In both Erlang and Scala/Akka
the drop in throughput deviates from the expected
drop on occasion, and the deviations are greater for
Scala/Akka (Section 4.1).
(2) Recovery from different percentages (0% .. 20%) of
failures occurring uniformly, randomly, or in bursts,
and with a range of supervisor/supervisee ratios. The
Erlang SCP achieves good throughput with ratios of 1:1
and 1:128 process pairs per supervisor, and Scala/Akka
with a 1:1 ratio. For example, if 2.5% of process pairs
fail per second Erlang SCP throughput is 5005, 5031
and 5032 Messages/s for burst, uniform and random
failure modes; and the throughputs for the Scala/Akka
SCP are 4615, 4596 and 4593 Messages/s (Section 4.2).
(3) We compare how the Erlang and Scala/Akka SCPs
handle burst, random and uniform failure patterns. For
example, we find that with a supervisor/supervisee ra-
tio of 1:64 throughput falls at a similar rate for all
patterns, and by around 12% at a 20% failure rate in
both Erlang and Scala/Akka. However, with a 1:1 su-
pervisor/supervisee ratio both Erlang and Scala/Akka
SCPs tolerate high burst failures better with through-
put falling by just 4% at a 20% failure rate (Section 4.3).
(4) Comparing Erlang and Scala/Akka SCP performance
demonstrates that the Erlang SCP has a 10% higher
throughput in the absence of failures (5085 vs ∼4680
Messages/s). Normalising for this difference allows us
to directly compare the impact of different fault pat-
terns and failure rates on the Erlang and Scala/Akka
SCPs (Section 4.4).

2 Related Work
2.1 Servers & Server Technologies
2.1.1 Importance of Servers. In the last 25 years the size
of the internet is increased dramatically and it is estimated
that there are now ∼4.9 billion users worldwide [17]. This
has been driven by the rise of online retail, streaming, and
social media sites such as Amazon, Netflix and Facebook.

The throughput of servers has been required to grow to
meet this burgeoning demand, e.g. WhatsApp reported that
their servers had processed 64 billion messages in a single
day or 2.6 Billion messages per hour in 2014 [6]. Efficient
and effective server implementations are essential to ser-
vice such high request rates. Servers come in many forms
including Web-Servers, Cloud Servers, Real-Time Systems,
Blockchain, and many more. Choosing appropriate server
hardware and software is crucial, and a key element are the
language technologies used to implement the server.

2.1.2 Server Languages & Technologies. There are a
range of languages commonly used to implement servers
with an array of different characteristics. Table 1 outlines the
computation, coordination, reliability, and popularity char-
acteristics of a range of common server languages, extend-
ing a table in [34]. The Computation Model is the language
paradigm, e.g. Object-Oriented (OO). At a high abstraction
level the programmer specifies less information compared
with a low abstraction level. Coordination model is the par-
adigm used to create, communicate and synchronise units
of computation like threads or actors. Strong typing is a key
mechanism for improving reliability and may be enforced
statically or dynamically. The languages support a variety
of reliability mechanisms like exceptions, panics and actor
supervision. We consider support for distribution to be a
reliability characteristic as it enables a server language to
tolerate the failure of a host.
Here we propose a reliability benchmark for actor lan-

guages, and of the actor languages we choose to study Erlang
and Scala/Akka for the following reasons. Both languages
have high level computation models; both implement green
threads crucial for server performance on a single host; both
support distributed execution across multiple hosts which is
essential for engineering scalable servers.

2.1.3 Erlang. Erlang is designed for engineering reliable
and scalable distributed systems that may need to ’run for-
ever’ and/or meet soft real-time constraints [2]. Its computa-
tional model is functional and executes on the BEAM Virtual
Machine. Erlang’s coordination model is actors (called pro-
cesses). Reliability in Erlang is multi-layered: as in all actor
languages each process has a private state, preventing a failed
or failing process from corrupting the state of other processes.
Erlang avoids type errors by enforcing strong typing, albeit
dynamically. Connected VMs (nodes) check liveness with
heartbeats and can be monitored from outside Erlang, e.g.
by an operating system process. However, the most impor-
tant way to achieve reliability is supervision, which allows
a process to monitor the status of a child process and react
to any failure, for example by spawning a substitute process
to replace a failed process. Supervised processes can in turn
supervise other processes, leading to a supervision tree [23].
The rapid engineering of reliable systems is facilitated by
the OTP libraries, and these encode supervision behaviour.
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Table 1. Server Language Characteristics

Computation Coordination Reliability Popularity

Language Model Abstr.
Level Model Abstr.

Level Typing Primary Reliability
Mechanisms

Supports
Distribution

RedMonk
2022

Java Object
Oriented Mid Explicit Mid Strong

Static Exceptions Yes (Akka) 3

Rust Procedural Mid Explicit Mid Strong
Static Panic, Result Yes

(constellation) 19

Elixir Functional High Actors High Strong
Dynamic Supervision Yes ∼31

Go Procedural Mid CSP Mid Strong
Static Panic No 16

Scala/Akka OO &
Functional High Actors High Strong

Static
Exceptions, Supervi-
sion, Futures Yes 14

Erlang Functional High Actors High Strong
Dynamic Supervision Yes 34

2.1.4 Scala/Akka. Scala is a modern multi-paradigm lan-
guage [16], and combined with the Akka libraries is com-
monly used to engineer servers. Scala provides multiple com-
putation paradigms, supporting both object-oriented and
functional paradigms. It executes on Java Virtual Machines
(JVMs). For reliability, Scala provides a sophisticated strong
static type system that provides features such as algebraic
data types, anonymous and higher-order types.

Akka is an open-source toolkit and run-time used for de-
veloping reliable concurrent and distributed applications on
the JVM [14]. While Akka implements multiple concurrency
models, a key element is Erlang-inspired actor-based con-
currency. Akka Classic dynamically type-checks messages
between actors. More recently Typed Akka [15] statically
types messages using Scala typing. The Scala SCP implemen-
tation uses Typed Akka.

2.2 Server Benchmarking
Servers are routinely benchmarked to evaluate performance
using a range of Benchmark Management Systems (BMSs)
for different kinds of servers. For example Wrk [36] and
Apachebench [1] are popular BMS for web servers. BMS
generate loads on the server and can be parameterised to
test different aspects, e.g. different pages in a web server.
BMS are commonly concurrent in order to generate high
loads. Server benchmarking composes the System under
Benchmarking (SUB) with the BMS. The BMS is typically
executed on a different host(s) from the SUB hosts to avoid
competition for computation, memory, and other resources.

CPT Benchmark. The Concurrent Process Throughput
(CPT) benchmark has been proposed to evaluate the scalabil-
ity of server languages and was used to compare Erlang, Go
and Scala/Akka [34]. CPT spawns an array of actor (process)
pairs that communicate with each other continuously and
records the total number of messages sent every 2 seconds,

as depicted in figure 1. Experiments showed that Go had the
highest throughput, benefiting from low latency channels
and the high number of goroutines that could be spawned.
We extend the CPT benchmark in the next section to explore
the impact of failures on server throughput.

2.3 Server Reliability
Having a server crash can cause a company significant eco-
nomic disruption and reduce customer confidence [26]. The
ability of a system to deliver a high quality of service when
failures are experienced is known as its dependability [20].
Two key terms used to describe dependability are reliability
and availability. There are many strategies for ensuring a
system is fault-tolerant and reliable. A key strategy is failure-
oblivious computing which involves allowing the running of
the system to continue in the event of failures e.g. try-catch
blocks. A key implementation of this strategy is supervi-
sion which is where a process is ’supervised’ by another
process which will monitor for faults and step in to resolve
them if they occur. Another strategy is recovery-shepherding
which is when errors are caught and dealt with before they
corrupt the execution flow e.g. Panics in Go [11]. Another
widely used strategy is redundancy which is where multiple
instances of a process are made and swapped out for each
other if one fails. A key implementation of this strategy is
process isolation which is where processes within a system
are designed to be stateless and independent of each other
in order to make swapping in new instances quick and easy.
In order to engineer a system to be reliable you must know
the kinds of failures you may encounter and so many studies
have been completed on failures [19, 24].

Failure Types. It is well established from studies that hard-
ware failures are common in large-scale systems as the sheer
number of components in use can make even small failure
rates in components, problematic [24, 28, 30, 35]. In many
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Figure 1. Concurrent Process Throughput (CPT) Benchmark Architecture [34]

cases, these failures have also not occurred uniformly how-
ever they often fall into one of three categories: infant mor-
tality, random failures and wear-out failures [18]. Failures
within network & communication hardware can also cre-
ate issues, especially in servers where communication be-
tween systems is vital [12]. The second most common type
of failure is software failures [30]. The field of distributed
computing further complicates bug finding as it introduces
what is known as non-deterministic bugs [21]. These bugs
are very common in concurrent systems and can be particu-
larly troublesome as they often result in incorrect outputs
and even fatal errors [29]. Server systems must also con-
sider a failure type known as overload which is where a
server is overloaded with requests and suffers a degradation
of performance [31, 33].

2.4 Reliability Benchmarking
Reliability or dependability benchmarking is notoriously re-
source and time-intensive [5]. Hence SCP is designed to be
lightweight to have a low runtime to allow repeated execu-
tion in a short space of time.
A key parameter is the fault load which determines the

types of failures that occur, how many failures occur, and
when the failures occur. There have been many proposed
methods for designing fault loads that are lightweight, rep-
resentative and portable [8, 9]. Fault loads may be realistic,
i.e. based on some real-world data, or manufactured.

Failure Patterns. The fault loads used in this study are
designed to represent real-world scenarios and are derived
from the analysis of themost common failure types described
in section 2.3. Four different fault loads are used in this study
and they are: burst, random, uniform, and progressive.
In the first three patterns the failed server processes are re-
covered, and so induce only a temporary reduction in server
throughput during recovery. In the last pattern, progressive,
the failed processes are not recovered, and server throughput
drops permanently.
The uniform failure pattern represents scenarios where

failures are spread evenly across system components and
over time. This pattern is seen, for example, in web servers

where requests periodically fail. One study found the median
failure rate was ∼1.5% [25]. In SCP the uniform pattern is
implemented by terminating single actor/process pairs at a
specified frequency.
The burst failure pattern represents scenarios where a

sequence of failures occur close in time. This pattern is seen,
for example, in the hardware and network failures in data
centers, as discussed in Section 2.3. Both hardware and net-
work failures will terminate a large number of server pro-
cesses almost simultaneously [12]. In SCP the burst pattern
is implemented by terminating 25 actors/processes pairs at
a specified frequency. Terminating 25 actors/process pairs
in each burst is based on [29] however the bursts have been
increased to reduce the duration of the benchmark.
The random failure pattern is more realistic, represent-

ing the common scenario that combines uniform and burst
failures. This pattern is seen, for example, in web servers
where in addition to uniform request failures, 70% of servers
experience burst failures with a failure rate of at least 5-10%
[25]. In SCP the random pattern is implemented by com-
bining uniform failures and burst failures, and each burst
terminates up to 10 process pairs.

Theprogressive failure pattern represents scenarioswhere
a burst of failures are not recoverable. This pattern is seen,
for example, in servers with failing storage, either hard
drives [35] or RAID controllers [27]. In SCP the progres-
sive pattern is implemented similarly to the burst pattern,
except that a specific number of server process pairs can be
terminated, and the terminated pairs are not restarted.

3 SCP: A Benchmark for Comparing
Reliable Actor-Based Server Languages

We propose Supervised Communicating Processes (SCP) as a
benchmark for comparing server languages and frameworks
that provide fault tolerance using supervised actors. Rather
than a random Chaos Monkey [4, 7], SCP provides a deter-
ministic fault injector that makes it possible to explore the
impacts on throughput of different fault rates and patterns.



A Reliability Benchmark for Actor-Based Server Languages Erlang ’22, September 11, 2022, Ljubljana, Slovenia

Figure 2. Supervised Communicating Processes (SCP) Benchmark SUB Architecture Diagram

Figure 3. SCP Benchmark in Operation

3.1 SCP Design
SCP benchmark is designed as a simple and effective way to
analyse the reliability of actor-based server languages. The
key reliability strategies exploited are process isolation and
actor supervision, as explored in sections 4.1 & 4.2 respec-
tively. SCP is designed to be implemented idiomatically in
each language.

SCP extends the CPT benchmark with a supervision tree
that recovers from the failure of "server actors", i.e. the pairs
of communicating actors. In addition, a communication delay
is added between each message exchange between the pairs.
The delay represents a typical server processing time [22]
and prevents the server from hitting a throughput ceiling,
as in [34]. Throughput is also measured slightly differently,
being measured every second with the average computed
over a 60s execution. The simplicity of CPT means that the
server rapidly reaches a steady state.

SCP has a two-level supervision tree as depicted in Figure
2. The ’head’ supervisor supervises the aggregator process
along with an array of ’sub’ supervisors. Each ’sub’ supervi-
sor spawns and supervises a set of actor/process pairs. The

ratio of supervisors to supervisees is customisable and is a
metric explored in the experiments.

3.2 SCP SUB Implementations
The Erlang and Scala/Akka SCP SUB implementations are
available at https://github.com/AidanRandtoul/SCP.

3.2.1 Erlang. The Erlang SCP launches the fault injector
on one node before launching the SCP SUB on a separate
node. When starting the SUB the user specifies the desired
parameters for the benchmarking e.g. supervisor to super-
visee ratio, and the fault injection rate. The Erlang SCP SUB
has the following three main components.

Process Specification functions define the behaviour for
the aggregator, each process pair, along with spawning func-
tions for each. In each pair, there is a "main worker" process
that initiates communication and logs each completed com-
munication with the aggregator. Server-side processing is
simulated with a call to timer:sleep(200) that suspends

https://github.com/AidanRandtoul/SCP
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the process for 200ms1. The aggregator counts the number
of messages it has received and at 1s intervals records the
throughput in messages/s.

Benchmark Control coordinates the benchmark execu-
tion and spawns all SCP components. Once the SUB and
the Fault Injector are started a message is sent to the fault
injector with the requested fault load and a list of process-
ids of the supervisors. When benchmarking is complete the
injector is sent a message to stop, the results are logged, and
SCP SUB is terminated.
Process Supervision specifies the SCP supervisors us-

ing OTP. In SCP the child processes are temporary (never
restarted) in the Progressive Permanent Failures experiments,
and transient (only restart if crashed but not if stopped) in
the Failures with Recovery experiments. The restart strategy,
intensity and period are set by creating a map which rep-
resents the sup_flags and contains the desired values for
each. All other values in the sup_flags and child_specs
are left default.

3.2.2 Scala/Akka. The Scala/Akka SCP is implemented
in an object-oriented style using classes and methods. To
launch you must first run the fault injector executable on
the fault injector host, and then run the SUB executable on
the SUB host. The Scala/Akka SCP SUB has the following
main components.

The SUB defines a set of classes and a process to connect
to the fault injector. The type system requires that the types
of all potential messages are defined. For example, the main
worker actor can receive 3 message types: StartMessage,
PongMessage from the other worker, and Stop from the
fault injector. The aggregator behaviour is as in the Erlang
SCP. As Thread.sleep() is thread blocking in Scala the
200ms message delay is implemented using the Akka sched-
uler that will send a message after a given delay. An infelicity
is that scheduled messages are sent even if the process that
requested it has crashed. These are handled with a PostStop
clause that runs when an actor crashes/stops and cancels
any scheduled messages. A second fail-safe tracks message
timestamps and actors disregard messages sent before they
were created i.e. messages from an actor that is now dead.

Supervision in Scala/Akka is implemented very simply
by enclosing the context.spawn function in a behaviours.
supervise call. Using the .onFailure parameter, the type
of failure and required action are specified. In the Scala/Akka
SCP, the type of failure encountered is an Arithmetic Excep-
tion and either a restart or stop is required. The available
options for behaviour are to: Stop the process, Restart the
process, Escalate the failure or Ignore the failure. Using the

1Using sleep() inflates throughput as the sleeping process is descheduled
and, unlike a real server process, makes no demands on the host cores. How-
ever, the key metrics for SCP are how fault recovery impacts throughput,
rather than absolute throughput achieved.

.onFailure clause settings such as restart intensity and pe-
riod can also be set however as with the Erlang SCP most
settings were left as default.

3.3 Fault Injector Design
To evaluate reliability, faults are induced into the SUB as out-
lined in section 3.1, and for SCP this is done with a determin-
istic parametric fault injector. To remove the performance im-
pact of the fault injector, it runs on a separate machine/host.
The fault injector spawns a set of ’killer’ processes which at
a set interval and in a set pattern kill processes in the SUB, as
depicted in Figure 3. The fault injector implements burst, uni-
form, random and progressive failure patterns as outlined in
section 4.2. The burst pattern kills a set of actors/processes in
quick succession. The uniform pattern kills actors/processes
uniformly over time with a set interval between kills. The
random pattern combines both burst and uniform patterns
and is the most realistic. The progressive pattern kills a set
of actor/processes at 5s intervals.

3.4 Fault Injector Implementations
The Erlang and Scala/Akka fault injectors are available at
https://github.com/AidanRandtoul/SCP.

3.4.1 Erlang. The Erlang fault injector spawns an array of
’killer’ processes which kill processes at a set frequency and
pattern depending on the specified failure pattern. Each killer
is given a copy of the supervisor list from the benchmark
control with a unique ordering of the list to spread the killers
and by extension the kills over all the supervisors in the
system. The killers are spawned evenly over the interval
between kills so that increasing the failure load results in an
increased frequency of kills. Two helper functions are used
by the killers. The burstKill function kills a given number
of processes simultaneously. The randKill function kills
a given number of processes with a delay between kills to
implement a uniform failure pattern. The code snippet below
illustrates the Erlang killProcess function.

k i l l P r o c e s s ( Sup ) −>
PL i s t = s u p e r v i s o r : wh i ch_ch i l d r en (

Sup ) ,
{ _ , Target , _ , _ } = l i s t s : nth ( rand :

uni form ( length ( P L i s t ) ) , P L i s t ) ,
S t a t u s = rpc : c a l l ( SubNode , e r l ang ,

i s _ p r o c e s s _ a l i v e , [ Targe t ] ) ,

i f
S t a t u s −>

ex i t ( Target , k i l l ) ;
true −>

k i l l P r o c e s s ( Sup )
end .

https://github.com/AidanRandtoul/SCP


A Reliability Benchmark for Actor-Based Server Languages Erlang ’22, September 11, 2022, Ljubljana, Slovenia

3.4.2 Scala/Akka. The Scala/Akka Fault Injector imple-
mentation is similar to the Erlang injector. The Akka Sched-
uler provides the correct intervals between kills as Scala
lacks a non-thread blocking sleep function. The process of
killing a process pair is also slightly different due to the
way that ActorRefs (the equivalent of pid in Erlang) work.
When a supervisor restarts an Actor, it simply swaps out the
old instance of the actor with a new one, maintaining the
existing ActorRef. This means that a new list of ActorRefs
is not needed after each kill as in the Erlang Injector. The
code snippet below illustrates the Scala/Akka killProcess
function used by the injector.

p r i v a t e def k i l l P r o c e s s ( ) : Un i t = {
var t a r g e t = Random . n e x t I n t ( supLen )
s e r v e r L i s t ( s t a r t ) ( t a r g e t ) ! S e r v e r .

S top ( 0 )
s t a r t += 1
i f ( s t a r t => nSups ) { s t a r t −= nSups }

}

3.5 Platform and Methodology
The experiments are all executed on two nodes of the Univer-
sity of Glasgow GPG Cluster. The hardware of each of these
nodes is: a pair of Intel Xeon E5-2640v2 8 core (16 thread)
processors, 64GB RAM, and Scientific Linux 6. All results
were conducted on cold starts i.e. the Erlang VM and Scala
VM (JVM) were restarted after each run.

Table 2. SCP Benchmark Variables

Experimental Parameters Values
Supervisor to Supervisee Ratio 1:1-1:1024
Fault Injection Rate 0-20% of messages/s

Failure Pattern Burst, Uniform,
Random, Progressive

Failure Recovery True or False
Burst Size (Burst Pattern) 25 process pairs
Burst Size (Random Pattern) 1-10 process pairs

4 Some SCP Reliability Experiments
4.1 Progressive Permanent Failures
The Progressive Permanent Failures (PPF) experiments inves-
tigate the effectiveness of actor/process isolation in Erlang
and in Scala/Akka. That is, how does server throughput
change as server actors/processes are killed? The fault in-
jector repeatedly kills a set of SCP SUB server actors/pro-
cesses until there are no processes left to kill, and throughput
reaches 0 messages/s. The killing bursts occur at 5s intervals
to reduce the benchmarking time, so failures occur signifi-
cantly faster than for most real servers. The consistent killing
behaviour makes the results more understandable and easier

to analyse, and we use more realistic failure patterns in later
experiments.
There are 1000 process/actor pairs and the failure rate is

set at 10%, 5% and 2.5% of processes corresponding to 100,
50 and 25 process pairs failing in each burst respectively.
Figure 4 Plots throughput against time for the Erlang and
Scala/Akka SCPs with 5% failure bursts.
Figure 4 shows that the throughput of the Erlang and

Scala/Akka SCPs drops by approximately 5% for every 5%
of process pairs killed. In Erlang the drop in throughput de-
viates from the expected drop at 40s and 90s. The drop at
40s is significant with throughput dropping 185 M/s below
the expected value. We speculate that the Erlang deviations
are due to some background process, perhaps garbage collec-
tion. In Scala/Akka the deviations from expected throughput
occur at higher loads, like 5-10s and 15-20s. The deviations
reduce in magnitude and frequency as the load reduces. In
addition to background processes, the Scala/Akka deviations
may also be due to message latency fluctuating significantly
at high loads [32].

The throughput graphs showing the killing of 10% of pro-
cess pairs, and of 2.5% of process pairs are available in the
GitHub repository. They show a similar pattern, e.g. a 10%
drop in throughput for every 10% of process pairs killed. The
deviations from the expected fall in throughput are again
present and are less and more prominent respectively.

Variability is measured in 10 executions of these experi-
ments, and the error bars in Figure 4 plot the range of values
recorded when variance is > 5%. The Erlang SCP exhibits
little variation, with a maximum variation of 7.12% when
2.5% of process pairs fail. The Scala/Akka SCP exhibits sig-
nificantly more variation with a maximum variation of 26.2%
when 10% of process pairs fail. This is again likely due to
the fluctuating message latency of Scala/Akka [32]. The Er-
lang SCP has less variability with large bursts, whereas the
Scala/Akka SCP has less variability with smaller bursts.

As throughput for both Erlang and Scala/Akka SCPs falls
only in proportion to the percentage of processes that fail we
conclude that both Erlang and Scala/Akka provide effective
process isolation.

4.2 Burst, Random & Uniform Failures with
Recovery

In these experiments the Erlang and Scala/Akka SCP SUBs
recover after the failure of server actors/processes, exploiting
their supervision structures. We consider three common
failure patterns: burst, uniform and random from Section 2.4.
We vary the number of supervisors and hence the ratio of
supervisors to supervisees. To facilitate uniform partitioning
the SCP SUBs have 1024 actor/process pairs and between 1-
1024 supervisors. This allows us to explore the impact of the
supervisor/supervisee ratio in each language, and identify
an appropriate range of ratios.



Erlang ’22, September 11, 2022, Ljubljana, Slovenia Aidan Randtoul and Phil Trinder

0 10 20 30 40 50 60 70 80 90 100
0

500
1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000
5,500

Time (s)

Th
ro
ug

hp
ut

(M
es
sa
ge
s/

s

Erlang
Scala/Akka

Figure 4. Progressive Permanent Failure of 5% Process Pairs every 5s
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Figure 5. Burst Failure Pattern
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Figure 5a plots the throughput of the Erlang SCP SUB with
different supervisor/supervisee ratios, and with different
percentages of server actor/processes killed in bursts. In the
experiment, the SCP and the fault injector are run for 60s.
The failure rates discussed are in relation to the messages
sent between process pairs and so a failure frequency of
1% means that 1% of the message sequences experience a
failure every second. With failure rates below 5% throughput
is maintained well compared with the no failures baseline: it
falls by no more than 4% and is lowest at 4883 M/s with 1024
process pairs per supervisor (PPS). However with higher
failure rates and a higher number of PPS throughput falls
more significantly, e.g. by 10% to ∼4580 M/s with 20% failures
with up to 128 PPS. At high failure rates having a large
supervisor/supervisee ratio significantly reduces throughput,
e.g. with 20% failures and a single supervisor it falls to just
3715 M/s, a reduction of ∼27%. Conversely at failure rates
of 10% or more throughput is better maintained by having a
supervisor for every server process.
Figure 5b shows similar patterns for the Scala/Akka SCP

SUB tolerating burst failures. Throughput without failures
is more variable, and lower than in Erlang at 4650-4680 vs
5085 Messages/s. With failure rates below 5% throughput is
maintained well compared with the no failures baseline: it
falls by less than 4% to ∼4540 M/s. At higher failure rates
(10% or more) Scala requires more supervisors than Erlang
to maintain throughput, i.e. no more than two PPS.
Figures 6a and 6b show the throughputs with server ac-

tor/processes killed at random. The Erlang SCP SUB main-
tains throughput well even at high failure rates providing
there are sufficient supervisors. The Scala/Akka SCP SUB
throughput falls steadily with increasing failure rates and is
less sensitive to the number of supervisors. This may be due
to the role of the AkkaDispatcher in organising the restarting
of actors and assigning the tasks to processor threads. The
throughput graphs for uniform failures again show similar
patterns, following the random pattern results in Erlang and
the burst pattern results in Scala/Akka. They are available
for viewing in the GitHub Repo.

4.3 Failure Pattern Comparison
These experiments explore how the Erlang and Scala/Akka
SCP SUBs handle the different failure patterns: burst, random
and uniform. The previous section suggested that supervi-
sor/supervisee ratios of 1:1 and 1:64 are sane choices, and
are selected here.
Figure 7a plots an Erlang SCP SUB throughput curve for

each failure pattern against failure percentage with a super-
visor/supervisee ratio of 1:64. Throughput falls at a similar
rate for all patterns, and by around 12% at a 20% failure
rate. Conversely, Figure 7b reveals that with a 1:1 super-
visor/supervisee ratio the Erlang SCP SUB tolerates high
burst failures better than uniform or random failures, with
throughput falling by just 4% at a 20% failure rate.

With a supervisor/supervisee ratio of 1:64 Figure 8a shows
that the Scala/Akka SCP SUB throughput also falls at a simi-
lar rate for all patterns, and also by around 11%. However,
Figure 8b reveals that with a 1:1 supervisor/supervisee ratio
the Scala/Akka SCP SUB tolerates high uniform and burst
failures better than random failures. That is throughput for
uniform and burst failures falls by around 4% compared with
11% for random failures and at a 20% failure rate.

4.4 Comparing Erlang & Scala/Akka for Server
Faults

These experiments compare Erlang and Scala/Akka for han-
dling server actor/process faults using SCP SUB. We do so
by selecting sane supervisor/supervisor ratios (1:1 and 1:64)
as determined in Section 4.2. To account for the different
throughputs of the Erlang and Scala/Akka SCP SUBs we
compute the percentage of the throughput in the absence of
failure achieved by the SUBs under different failure patterns
and percentages.
Figure 9a plots the reduction in throughput in the SUBs

for different percentages of burst failures. Erlang and Scala/
Akka have very similar behaviours, and throughput falls
less with a 1:1 supervisor/supervisee ratio. These results
corroborate the results in Section 4.3 suggesting that the
additional supervisors allow both SCPs to handle bursts of
failures faster.
Figure 9c plots the reduction in throughput in the SUBs

for different percentages of random failures, and the curves
for the Erlang and Scala/Akka SCP SUBs are very similar.
Figure 9b plots the reduction in throughput in the SUBs for
different percentages of uniform failures. While the curves
for the Erlang and Scala/Akka SCP SUBs are similar with a
1:64 supervisor/supervisee ratio, the Scala/Akka throughput
falls far less than the Erlang throughput with a 1:1 supervi-
sor/supervisee ratio.

5 Conclusion
This paper specifies a new reliability benchmark for reli-
able server languages (SCP in Figure 2). We believe this
to be the first such reliability benchmark for actor server
languages/libraries. We outline Erlang and Scala/Akka SCP
implementations, and an associated fault injector (Section
3).
The Erlang and Scala SCPs behave broadly as expected,

and the take-home messages are as follows.
(1) When a percentage of server processes fail perma-

nently the throughput of the Erlang and Scala/Akka SCPs
drops in proportion to the reduction in server processes,
e.g. Figure 4. In both Erlang and Scala/Akka the drop in
throughput deviates from the expected drop on occasion. In
Scala/Akka the deviations are greater and more common at
high throughputs (Section 4.1).
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Figure 7. Erlang Failure Pattern Comparison
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Figure 8. Scala/Akka Failure Pattern Comparison

The remaining observations are for systems where failed
actors/processes are recovered by their supervisor.

(2) Selecting a suitable supervisor/supervisee ratio is criti-
cal for tolerating higher failure rates. Where the Erlang SCP
tolerates failures well up to a 1:128 ratio, the Scala/Akka SCP
often requires a 1:1 ratio, e.g. Figures 5a and 5b (Section 4.2).

(3) While failures reduce SCP throughput, the reductions
are small, even at high failure rates. Higher failure rates
cause greater drops in throughput, although with a suitable
supervisor/supervisee ratio the throughput drop is less than
12% even at high (20%) failure rates, e.g. Figures 5a and 6a
(Section 4.2).

(4) The Erlang and Scala/Akka SCPs survive the failure
of processes in different patterns: uniform, burst and ran-
dom. As before reductions in throughput are small given a
suitable supervisor/supervisee ratio, e.g. Figures 6a and 6b
(Section 4.3).

(5) At high failure rates throughput drops least with a 1:1
supervisor/supervisee ratio (Figures 7b and 7a). The Erlang

SCP tolerates burst failures better than uniform or random
(Figure 7b). The Scala/Akka SCP tolerates burst and uniform
failures better than random (Figure 8b) (Section 4.3).
(6) In the absence of failures the Erlang SCP has a 10%

higher throughput (5085 vs ∼4680 Messages/s) than the
Scala/Akka SSCP. Normalising for this difference allows
direct comparison the Erlang and Scala/Akka SCPs. Their
performance with 1:1 and 1:64 supervisor/supervisee ratios,
and burst and random failures, are very similar (Figures 9a
and 9c). The one divergence is that with a 1:1 ratio and ran-
dom failures the Scala/Akka SCP throughput falls far less
than the Erlang SCP throughput (Figure 9b). This divergence
warrants further investigation (Section 4.4).

A limitation of SCP is that the server actors are stateless,
and most real server actors are stateful, e.g. in a chat server
they record the chat participants. During recovery the state
is recovered from some store, either in-memory or persistent.
However, designing a benchmark to compare the reliability
of supervised stateful server actors seems very challenging:
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different actor languages & frameworks offer different stores,
and often support a range of stores, e.g. Erlang provides ETS,
DETS, Mnesia and more.
Further Work could use SCP to compare other actor

server languages like Elixir and Java/Akka. SCP could also
be used to explore different recovery strategies in actor lan-
guages. SCP could be elaborated in various ways, e.g. the
fault injector could be elaborated to allow the exploration of

different types of failures. In addition SCP currently explores
the failure of fairly small sets of actors within a VM, and this
could be broadened to consider the failure and recovery of
large numbers of actors when an entire VM fails and must
be restarted.
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Figure 9. Erlang vs Scala/Akka for Server Faults
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