
mHaskell: Mobile Computation in a Purely Functional
Language

André Rauber Du Bois1,2 , Phil Trinder1 , Hans-Wolfgang Loidl3

1 School of Mathematical and Computer Sciences,
Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K.

2Escola de Informática,
Universidade Católica de Pelotas, CEP: 96010-000 , Pelotas-RS, Brazil

3Ludwig-Maximilians-Universität München,
Institut für Informatik, D 80538 München, Germany

{dubois,trinder}@macs.hw.ac.uk,hwloidl@informatik.uni-muenchen.de

Abstract. This paper is a complete description of mHaskell, an extension of
Concurrent Haskell for mobile computation. We describe new stateful mobil-
ity primitives that use higher-order channels, giving their operational semantics
and an implementation outline. We show how medium-level coordination ab-
stractions can be constructed using monadic composition of the mobility prim-
itives. We briefly outline how high-level mobile coordination abstractions, or
mobility skeletons, can be defined using the lower-level abstractions. The use
of all three abstractions is demonstrated with examples and a new case study:
a distributed stateless web server where a thread farm skeleton is used to dis-
tribute work to remote locations.

1. Introduction

Networks are increasingly pervasive, and mobile computation languages are one means
of exploiting them [Fuggetta et al., 1998]. Mobile languages enable the programmer to
control the placement of active computations, and execute on open networks, i.e., a net-
work where locations, or machines, can dynamically join and leave the computation. A
mobile program can transport its state and code to another location in the network, where
it resumes execution [Lange and Oshima, 1999].

In a functional language functions are first class values, and in a distributed
language we expect to be able to communicate functions and computations. A lan-
guage that can communicate functions in an open system can be seen as a mobile
computation language, or mobile language. Many mobile languages are functional,
e.g., Jocaml [Conchon and Fessant, 1999], Nomadic Pict [Wojciechowski, 2000], Kali
Scheme [Cejtin et al., 1995], Facile [Knabe, 1995].

Mobile languages are fundamentally different from parallel languages. The objec-
tive of a mobile program is usually to exploit the resources available at specific locations,
e.g., databases, programs, or specific hardware. As a result mobile programs are usu-
ally stateful and in a purely functional context the stateful components must be carefully
managed to preserve referential transparency, e.g., using monads in Haskell. In contrast
parallel functional languages can freely distribute stateless computations.

This paper presents mHaskell, a mobile language based on the Haskell
purely functional language. Haskell uses monads to specify stateful com-
putations: stateful operations are encapsulated in an abstract I/O action data

type [Peyton Jones and Wadler, 1993]. Haskell computations are first-class values, i.e.,
functions can receive actions as arguments, return actions as results, and actions can be
combined to generate new actions. The crucial implication for a mobile language is that
computations can be manipulated and new abstractions over computations defined.

The paper starts by describing the new higher-order communication primitives
(Section 2). We show how they can be used to implement more powerful abstractions
such as remote thread creation (Section 3). Examples of using the primitives and other
abstractions are given (Section 4), as is a distributed stateless web server case study (Sec-
tion 5). The mHaskell operational semantics is outlined (Section 6), and related work
described (Section 7).

This paper is the first complete description of mHaskell together with its seman-
tics. Earlier papers have described the implementation [Du Bois et al., 2004a], and the
definition of mobility skeletons, or polymorphic high-level mobile coordination abstrac-
tions, with a distributed meeting scheduler case study [Du Bois et al., 2004b]. Additional
contributions of this paper are a new and unusual case study: the distributed stateless
webserver, implemented using a new interface to the serialisation routines, and the de-
sign, implementation and use of a new mobility skeleton: a thread farm.

2. Mobile Haskell

2.1. MChannels

Mobile Haskell or mHaskell is a small conservative extension of Concurrent Haskell
[Peyton Jones, 2001]. It enables the construction of distributed mobile software by in-
troducing higher order communication channels called Mobile Channels, or MChannels.
MChannels allow the communication of arbitrary Haskell values including functions, IO
actions and channels. Figure 1 shows the MChannel primitives.

data MChannel a -- abstract data type
type HostName = String
type ChanName = String

newMChannel :: IO (MChannel a)
writeMChannel :: MChannel a -> a -> IO ()
readMChannel :: MChannel a -> IO a
registerMChannel :: MChannel a -> ChanName -> IO ()
unregisterMChannel :: MChannel a -> IO()
lookupMChannel :: HostName -> ChanName ->

IO (Maybe (MChannel a))

Figure 1: Mobile Channels

The exact meaning of these primitives is defined in the operational semantics in
Section 6, here we give an informal explanation. The newMChannel function is used
to create a mobile channel and the functions writeMChannel and readMChannel
are used to write/read data from/to a channel. MChannels are synchronous, when a
readMChannel is performed in an empty MChannel it will block until a value is re-
ceived on that MChannel. When used locally, MChannels have similar semantics to
Concurrent Haskell channels. In the same way, when a value is written to a MChan-
nel the current thread blocks until the value is received in the remote host. The func-
tions registerMChannel and unregisterMChannel register/unregister channels
in a name server. Once registered, a channel can be found by other programs using

lookupMChannel, which retrieves a mobile channel from a given name server. A
name server is always running on every location of the system and a channel is always
registered in the local name server with the registerMChannel function. MChannels
are single-reader channels, meaning that only the program that created the MChannel can
read values from it. Values are evaluated to normal form before being communicated, as
explained in Section 2.3.

2.2. Discovering Resources

One of the objectives of mobile programming is to exploit the resources available in a
dynamic network. For example, if a program migrates from one location in the network to
another, this program must be able to discover the resources available at the destination.
By resource, we mean anything that the mobile computation would like to access in a
remote host e.g., databases, load information, local functions.

type ResName = String

registerRes :: a -> ResName -> IO ()
unregisterRes :: ResName -> IO ()
lookupRes :: ResName -> IO (Maybe a)

Figure 2: Primitives for resource discovery

Figure 2 presents the three mHaskell primitives for resource discovery and reg-
istration. All machines running mHaskell programs must also run a registration service
for resources. The registerRes function takes a name (ResName) and a resource (of
type a) and registers this resource with the name given. The function unregisterRes
unregisters a resource associated with a name and lookupRes takes a ResName and re-
turns a resource registered with that name in the local registration service. To avoid a type
clash, an abstract type must be defined to hold the different values that can be registered.

Resources with differing types can be elegantly handled using dynamic types.
The Glasgow Haskell Compiler (GHC) [GHC, 2005] supports a simple form of dynamic
types [Lämmel and Peyton-Jones, 2003], providing operations for injecting values of ar-
bitrary types into a dynamically typed value, and operations for converting dynamic val-
ues into a monomorphic type.

2.3. Strictness and Sharing

To simplify mHaskell’s semantics, values are evaluated to normal form before being sent
through an MChannel.

mHaskell evaluates all thunks (unevaluated expressions) in the graph that is being
communicated. The evaluation of thunks affects only pure expressions, as it is difficult to
predict the amount of graph that is being communicated in a lazy language. IO computa-
tions are not executed during this evaluation step, and most mobile programs are stateful
IO actions that interact with remote resources.

Haskell, like other non-strict languages, is commonly implemented using graph
reduction which ensures that shared expressions are evaluated at most once. Maintaining
sharing between graph nodes in a distributed system would result in a generally large
number of extra-messages and call-backs to the machines involved in the computation (to
request structures that were being evaluated somewhere else or to update these structures).
In mHaskell, computations are copied between machines and no sharing is preserved
across machines, although sharing is preserved in the value being communicated.

2.4. Implementation

Mobile languages require an architecture neutral code representation and mHaskell has
been implemented as an extension to the GHC compiler, which supports both byte-code
and native code. GHC combines an optimising compiler and the GHCi interactive envi-
ronment. GHCi is designed for fast compilation and linking, it generates machine inde-
pendent byte-code that is linked to the fast native-code available for the basic primitives
of the language.

To implement mHaskell, GHCi’s runtime system was extended with routines
to serialise Haskell expressions, i.e., convert expressions into an array of bytes that
can be easilly communicated. A description of the low-level details of the imple-
mentation, e.g., graph packing/unpacking, and distributed communication can be found
in [Du Bois et al., 2004a]. Here we extend the implementation by giving a simple inter-
face to these routines through two new Haskell primitives, packV and unpackV:

packV :: a -> IO CString
unpackV :: CString -> IO a

The packV primitive takes a Haskell expression and returns a C array with the
expression serialised, and unpackV converts the array back into a Haskell value.

Here is a simple example showing the use of the primitives:

main = do
buff <- packV plusone
newplusone <- unpackV buff
print ("result " ++

show ((newplusone::Int->Int) 1))
where
plusone :: Int ->Int
plusone x = x + 1

These primitives, as described in the case study, can be used to implement other
extensions to the compiler, e.g., a library for persistent storage of programs. Again, dy-
namic types could be used to ensure that the computations, when executed, have the right
type.

A key issue in a mobile language is to control how much code moves, e.g., should
primitives for addition and printing be copied? If the complete representation of the com-
putation is not communicated, the mobile code must dynamically link to code at the des-
tination location. Mobile Haskell provides a simple means of controlling mobility: only
modules compiled to byte code are communicated. Modules like the prelude that are
compiled to machine code are not communicated, and are dynamically linked at the des-
tination.

3. Mobility Abstractions

3.1. Mid-Level Abstractions

Using MChannels the programmer can specify low level coordination details, e.g.,
communication and synchronisation of computations. In this section we add another
layer of abstraction to mHaskell by showing how remote thread creation can be imple-
mented using MChannels. Every location in the system should run a remote fork server
(startRFork) (Figure 3). The server creates a MChannel with the name of the location

startRFork = do rfork:: IO () -> HostName -> IO()
mch <- newMChannel rfork io host = do
name <- fullHostName ch <- lookupMChannel host host
registerMChannel mch name case ch of
rforkServer mch Just nmc -> writeMChannel nmc io
where Nothing -> error "Remote Server
rforkServer mch = do unavailable"
comp <- readMChannel mch
forkIO comp
rforkServer mch

Figure 3: Implementation of rfork

in which it is running. After that, it keeps reading values from the MChannel and fork-
ing threads with the IO actions received. Threads are forked using the forkIO function
of Concurrent Haskell. If all locations in the system are running this server, the rfork
function is easily implemented. The rfork function looks for the channel registered in
the startRFork server, and sends the computation to be forked on the remote location
host.

A computation can be sent to be evaluated on a remote location using the reval
function, which is easily implemented using rfork:

reval :: IO a -> HostName -> IO a

3.2. Mobility Skeletons

Some of the main advantages of functional languages are the ease of composing computa-
tions and the powerful abstraction mechanisms. In separate work [Du Bois et al., 2004b],
we have used these techniques to develop parameterisable higher-order functions in
mHaskell that encapsulate common patterns of mobile computation, so called mobility
skeletons. These skeletons hide the coordination structure of the code, analogous to al-
gorithmic skeletons [Cole, 1989] for parallelism. Mobility skeletons abstract over mobile
stateful computations on open distributed networks. In Section 5, we identify and imple-
ment a new skeleton, the threadFarm.

4. Mobility Example: Determining Remote Load

Figure 4 shows a mHaskell program that measures the load on a remote location. It starts
by creating a new MChannel for the result. Then it forks a remote thread to execute code,
and waits for its reply by executing readMChannel. When the thread code is spawned
on a remote machine (in the example ushas), it obtains its load using a local function
called getLoad, that was previously registered in the resource server:

registerRes getLoad "getLoad"

After executing getLoad, it sends the result back to the main program where it
is printed.

The previous program can be extended to calculate the total load of the network,
as in Figure 5.

In this example, instead of using a channel to return the result of the remote com-
putation, reval is used. The code function, is modified to return a Maybe value, so it
is possible to detect failures in finding the getLoad resource on the remote locations.

main = do
mch <- newMChannel
rfork (code mch) "ushas.hw.ac.uk"
load <- readMChannel mch
print ("Load on ushas: "++ (show load))
where
code :: MChannel Int -> IO ()
code mch = do
func <- lookupRes "getLoad"
case func of
Just gL -> do

load <-gL
writeMChannel mch load

_ -> recoverError

recoverError = (...)

Figure 4: Sending code to ushas

main = do
load <- mapM (reval code) listofmachines
print load
where
code :: IO (Maybe Int)
code = do

func <- lookupRes "getLoad"
case func of
Just gL -> do

load <-gL
return (Just load)

Nothing -> return Nothing

Figure 5: Finding the load of a network

5. Case Study

5.1. Stateless Servers

In stateless servers [Halls, 1997], all persistent knowledge about applications is kept in
the documents exchanged between clients and servers. Servers and clients are stateless:

Figure 6: A simple counter page

the server stores the continuation of its application in the document that it returns to the
client. When it receives a new request from a client, it doesn’t need to remember anything
from the previous interaction, it simply executes the continuation contained in the new
input.

Mobile languages are a perfect platform for the implementation of stateless servers
because running applications can be saved, communicated and restarted. In this section,
we use the serialisation primitives, described in Section 2.4, to implement, following the
ideas presented in [Halls, 1997], a stateless web server that keeps the state of its computa-
tions in the pages that it sends to browsers, and executes code sent in the clients requests.
Furthermore, by using MChannels and a thread farm, we make the web server distributed,
using a cluster of machines to process the requests sent by clients.

As in [Marlow, 2000], the web server is implemented by using a simple main
loop, that repeatedly reads requests from a socket and forks threads to process these re-
quests. The main difference occurs when one of the messages contains the code for an
application:

(codeBuffer,args) <- getCode clientMsg
computation <- unpackV codeBuffer
responseToClient <- computation args

In this case, we use the getCode function, that processes the string representing
the client request, separating the serialised code in it from the normal arguments in a
POST message. The code is unpacked into the heap using the unpackV function, and
executed. The computation should generate a new web page with results to be sent back
to clients. If further client interaction is required, the web page generated will contain a
continuation.

For simplicity we assume that the computation stored in the client has type
[(String,String)] -> IO String, where the argument string has the values sent
by the client in the POST message. To avoid any type clashes, Haskell’s dynamic types
could be used to ensure that the computation has the right type.

5.2. A Counter

As an example, we present the implementation of a simple counter web page where the
server increments the counter and saves its continuation in the page, as illustrated in Fig-
ure 6. The counter is implemented as follows:

counter :: Int -> [(String,String)] -> IO String
counter n _ = do

cs <- counterPage (n+1) (counter (n+1))
return cs

It takes as an argument its current state (an Int) and uses the counterPage
function to generate the response that is sent back to web clients. The counterPage
action generates a new web page (a String), that displays the current state of the counter
in HTML (its first argument), and uses the packV function to serialise its second argu-
ment, that is, the continuation of the computation. The counter just ignores its second
argument, the contents of the POST message.

Every time that a browser sends a request for the root document (/) the counter is
started with zero:

str <- counter 0 emptyArg
sendResp socket str

threadFarmServer ::
IO (MChannel (Maybe (IO ())), MChannel HostName)

threadFarmServer = do
ioc <- newMChannel
hostc <- newMChannel
forkIO (serverth ioc hostc)
return (ioc,hostc)
where
serverth ioc hostc = do

v <- readMChannel ioc
case v of
Just action -> do

host <- readMChannel hostc
forkIO (handleCon action hostc host)
serverth ioc hostc

Nothing -> return ()
handleCon action hostc host= do

empty <- reval action host
writeMChannel hostc host

Figure 7: The thread farm server

and the page generated by the counter, containing its continuation, is sent back to the
client.

When the user presses the submit button in the web page (Figure 6), and the POST
message arrives in the web server, the continuation is unpacked, run, and a new continu-
ation is sent back to the client.

5.3. A Distributed Web Server

A web server may be overloaded if it receives a huge amount of requests from clients
asking to execute computations. In a mobile language it is possible to offload a server by
sending computations to be executed on other locations. With mHaskell, it is easy to make
the web server distributed: a cluster of machines can be used to execute the computations
sent by clients. A thread farm can be used in order to provide round-robin scheduling of
the tasks in the machines available for processing.

The thread farm is implemented using a server that reads actions from an MChan-
nel, and sends these actions to be executed on remote machines that it gets from another
MChannel (Figure 7). The threadFarmServer, when started, returns two MChan-
nels, that can be used to dynamically increase the number of computations and machines
used in the system. After creating the two MChannels the main thread of the server,
serverth, is forked. The server thread reads Maybe (IO()) values from the ioc
MChannel. The main thread is stopped once it reads a Nothing from ioc. When the
thread finds a value in the MChannel, it gets one remote machine from hostc and starts
another thread to handle the execution of the remote computation. The handleCon
function starts the remote execution of action on host and, after it completes, host
is returned to the MChannel of free machines. Remote evaluation (reval) is used in this
case, instead of rfork, because we want to be sure that the remote machine being used in
the computation is only returned to the list of free machines once the remote computation
has been completed.

The threadFarm function can be implemented as in Figure 8. It takes as an
argument a list of actions to be executed on remote locations, and a list of locations. It

threadFarm :: [IO ()] -> [HostName] ->
IO (MChannel (Maybe (IO ())))

threadFarm comp names = do
(ioc,hostc) <- threadFarmServer
mapM_ (writeMChannel hostc) names
mapM_ (writeMChannel ioc . Just) comp
return ioc

Figure 8: The thread farm

returns an MChannel that can be used to send more computations to the thread farm, or
to stop the thread farm server by writing a Nothing in it. The threadFarm starts the
server and then writes the initial values and locations into their respective channels.

In the case of the web server, the threadFarm can be started with an empty list
of computations, and the tfMChannel returned by threadFarm is used to send the
computations received from clients to the remote thread server:

tfMChannel <- threadFarm [] listOfMachines

Computations executed by the threadFarm must have type IO (), but in the
case of the web server, the computations received by clients, after given their argument,
have type IO String. Furthermore, the web server wants to receive the result of the
computation (the Stringwith the page that must be sent to clients) back from the remote
location that executed the computation. This is achieved by wrapping the computation in
an IO action that executes the computation and sends its result back through a MChannel,
as can be seen in this modified version of the program to handle POST messages:

(...)
resp <- newMChannel
writeMChannel tfMChannel (Just (execComp resp (computation args))
string <-readMChannel resp
sendResp socket string
where
execComp :: MChannel String -> IO String -> IO ()
execComp ch comp =do

str <- comp
writeMChannel r str

The computation is sent to the thread farm through the tfMChannel, and it
is wrapped in the execComp action, that just executes its argument, and sends its result
back to the web server through a channel. Exactly the same approach is used to implement
remote evaluation in terms of rfork.

The thread farm implemented in mHaskell is different than a parallel skeleton
because the code for the computations does not need to be present in the remote locations,
and new locations can be added dynamically to the thread farm.

6. Operational Semantics

This section gives the operational semantics for MChannels by extending the semantics
for monadic IO presented in [Peyton Jones, 2001]. The semantics has two levels: an
inner denotational semantics for pure terms that is standard and not described here, but
could be based, for example, on [Moran et al., 1999]; and an outer transitional semantics
describing the IO actions and MChannels. Our extensions only affect the transitional
semantics.

con ∈ Constructor
ch ∈ Char
x ∈ Variable
t ∈ ThreadId

Value V ::= \x− > M | conM1 · · ·Mn | ch

| return M | M >>= N

| putChar ch | getChar

Term M, N ::= V | M N | if M then N1 else N2 | · · ·

SState P, Q, R ::= {M}t A thread called t

| P | Q Parallel Composition
| νx.P Restriction

Evaluation contexts E ::= [·] | E >>= M

Figure 9: Syntactic and semantic domains of the basic functional language

Figure 9 gives the syntax of a simple Haskell-like functional language. Describing
the syntactic domains, M and N range over Terms and V over Values. A value is some-
thing that is considered by the inner, purely-functional semantics as evaluated. Primitive
monadic IO operations are treated as values, e.g., putChar ‘c’ is a value as no further
work can be done on this term in the purely-functional world. Variables P , Q and R range
over elements of the single-processor state SState and can be threads, MChannels (defined
in the extended syntax in Figure 11), a composition of two states using the | combinator,
or a restriction of a program state over a variable. A thread is an active element where the
evaluation occurs, while MChannels, like MVars [Peyton Jones, 2001], are just containers
for values that are used during the evaluation.

To identify the next transition rule to be applied, evaluation contexts are used. An
evaluation context E is a term with a hole [·], and its syntax is presented in Figure 9. The
symbol [·] indicates the location of the hole in an expression and E[M] is used to show that
the hole E is being filled by the term M . The basic transition rules for simple monadic
actions are presented in Figure 10. The transition from one program state to the next may
or may not be labelled by an event, α, representing communication with the external
environment, e.g., input (?) or output (!). For a detailed description of the semantics of
monadic actions, the reader should refer to [Peyton Jones, 2001].

{E[putChar ch]}t !ch−→ {E[return ()]}t (PUTC)

{E[getChar]}t ?ch−→ {E[return ch]}t (GETC)

{E[return N >>= M]}t −→ {E[M N]}t (LUNIT)

ε[[M]] = V M 6≡ V
{E[M]}t → {E[V]}t

(FUN)

Figure 10: Basic transition rules

In Figure 11, we extend the syntactic and semantic domains for IO actions with

MChannels. New variables are added to represent MChannel identifiers (c), location
names (s), MChannel names (n), and remote references to MChannels (r). The new
primitives on MChannels are added to the syntactic domain of the language. The semantic
domain is augmented with a data structure representing MChannels, which is recursively
defined and uses list-like operations for adding an element to the front and appending an
element to the end. We don’t give a formal definition of this data structure here, but ob-
serve that it is used as a queue. The overall state L is defined as a finite map from location
names (s) to single-processor states (P). Thus, L(s) = {M}t describes that M is being
executed at location s. We write L(s, P) to indicate that the finite map L is extended with
the binding s 7→ P , shadowing any previously binding of s in L.

c ∈ MChannel MChannel identifier
s ∈ LName Names of locations in the distributed system
n ∈ MName MChannel names
ε ∈ MName an empty MChannel name
rn@s ∈ RRef Remote Reference to MChannel n at location s

Value V ::= ... | newMChannel | writeMChannel c M

| readMChannel c | registerMChannel c n

| unregisterMChannel n | lookupMChannel s n | s | n | ε

SState P,Q,R ::= ...

| Cc
n An MChannel c with name n

State: Exp L ::= LName → SState

Mchannel Cc
n ::= 〈〉cn An empty MChannel c with name n

| M : Cc
n A MChannel c with head value M and tail C

| Cc
n ++〈M〉cn A MChannel c with M as the last element

Figure 11: Extended syntactic and semantic domains of the language with
MChannels

The transition rules for MChannels are presented in Figure 12. Common congru-
ence rules, such as commutativity and associativity of |, follow from the observation that
the semantics for Concurrent Haskell [Peyton Jones, 2001] is a special case of our seman-
tics for just one processor. Rule (NEWC) creates a new state with an empty MChannel
that has no name (ε), and executes in parallel with the current thread. The (REGC) and
(UNREGC) rules set and unset the name n of a MChannel. The readMChannel prim-
itive, reads a term M from a local MChannel. It returns the first element in the structure,
and cannot be applied to a remote reference, reflecting the fact that the MChannels are
single reader channels: only threads running on the location where the MChannel was
created can read from it. The lookupMChannel function, returns a remote reference
rn@s′ to a remote MChannel at location s′, if it exists. Otherwise it should return the value
Nothing, but this is left out of the semantics for simplicity. The writeMChannel
primitive can be applied to the identifier of a MChannel that runs on the same location
or to a remote reference. Rule (WRITECl) specifies that writing to a local MChannel ap-
pends the value, M , as the last element. Rule (WRITECr) states that if writeMChannel
is executed at location s, and is applied to a reference rn@s′ to a channel located at s′, the
term M is sent to location s′ and written into the channel. Before M is communicated the
function forceThunks is applied to it which forces the evaluation of pure expressions
(thunks) in the graph of the expression M , without executing the monadic actions, and

c 6∈ fn (E)
L(s, {E[newMChannel]}t) → L(s, νc.({E[return c]}t) | 〈〉

c
ε))

(NEWC)

L(s, {E[registerMChannel c n]}t | Cc
ε) → L(s, {E[return ()]}t) | Cc

n) (REGC)

L(s, {E[unregisterMChannel c]}t | Cc
n) → L(s, {E[return ()]}t) | Cc

ε) (UNREGC)

L(s, {E[readMChannel c]}t | M : Cc
n) → L(s, {E[return M]}t) | Cc

n) (READC)

r 6∈ fn (E) L(s′, {E[M ′]}t′ | Cc
n)

L(s, {E[lookupMChannel s′ n]}t) → L(s, νr.({E[return rn@s′]}t))
(LOOKUPC)

L(s, {E[writeMChannel c M]}t | Cc
n) → L(s, {E[return ()]}t) | Cc

n ++〈M〉cn) (WRITECl)

L(s, {E[writeMChannel rn@s′ M]}t) (s′, {E[M ′]}t′ | Cc
n) → (WRITECr)

L(s, {E[return ()]}t) (s′, {E[M ′]}t′ | Cc
n ++〈V ′〉cn)

where V ′ = forceThunks M

Figure 12: Transition rules for the language with MChannels

substitutes every occurrence of a MChannel in the graph by a remote reference.

The function forceThunks is not formalised here, although it can be
defined in the semantics of a language with an explicit heap with thunks such
as [Tolmach and Antoy, 2003].

Figure 13 shows the evaluation of the following mHaskell program using the se-
mantics:

server =newMChannel >>= \mch ->
registerMChannel mch n >>
readMChannel mch >>= \io ->
io

client =lookupMChannel s’ n>>=\mch ->
writeMChannel mch hello
where
hello = print "Hello "++"World"

There are two important things to notice in the evaluation. Firstly, the non-
determinism of the semantics: as in a real system, if the client looks for a channel
before the server registers it, the program fails at the the (LOOKUPC) rule. Secondly
in the evaluation of thunks, the strings "Hello " and "World" are concatenated be-
fore communication occurs, but IO actions are not evaluated by forceThunks, hence
evaluation of print "Hello world" occurs only on the server s′.

7. Related Work

There are numerous parallel and distributed Haskell extensions, and only those closely
related to mHaskell are discussed here. Of these languages, GDH [Pointon et al., 2000]
is the closest to mHaskell. The problem in using GDH for mobile computation is
that it is implemented to run on closed systems, that is, after a GDH program starts
running, no processors can neither join nor leave the computation. Haskell with
ports [Huch and Norbisrath, 2000] has primitives for communication very similar to the
ones presented here, and supports distribution on open systems. The only drawback is

server :
L(s′, {newMC >>= \mch− > regMC mch n>> readMC mch >>= \io− > io}t)

→ L(s′, νc.({return c >>= \mch− > regMC mch n>> readMC mch >>= \io− > io}t | 〈〉c
ε
)) (NEWC)

→ L(s′, νc.({(\mch− > regMC mch n>> readMC mch >>= \io− > io) c}t | 〈〉c
ε
)) (LUNIT)

→ L(s′, νc.({regMC c n>> readMC c>>= \io− > io}t | 〈〉c
ε
)) (FUN)

→ L(s′, νc.({readMC c>>= \io− > io}t | 〈〉c
n
)) (REGC)

client :
L(s, {lookup s′ n >>= \mch− > writeMC mch hello}t)

→ L(s, νr.({return rn@s′ >>= \mch− > writeMC mch hello}t)) (LOOKUPC)
→ L(s, νr.({(\mch− > writeMC mch hello) rn@s′}t)) (LUNIT)
→ L(s, νr.({writeMC rn@s′ hello}t)) (FUN)

server :
→ L(s′, νc.({readMC c>>= \io− > io}t | 〈print “Hello World”〉cn)) (WRITECr)
→ L(s′, νc.({return(print “Hello World”) >>= \io− > io}t | 〈〉cn)) (READC)
→ L(s′, νc.({(\io− > io) (print “Hello World”)}t | 〈〉cn)) (LUNIT)
→ L(s′, νc.({(print “Hello World”}t | 〈〉c

n
)) (FUN)

→ L(s′, νc.({(return ()}t | 〈〉c
n
)) (PRINT)

Figure 13: Example of evaluation using the semantics

that the current implementation of the language only supports communication of first-
order values: functions and IO actions cannot be communicated. Another closely related
system is Famke [van Weelden and Plasmeijer, 2002], an implementation of threads for
the lazy functional language Clean using monads and continuations, together with an
extension for distributed communication using ports. Famke has only a restricted form
of concurrency, providing interleaved execution of atomic actions using a continuation
monad.

There are other extensions to functional languages that allow the communica-
tion of higher-order values. Kali-Scheme [Cejtin et al., 1995] is an example of a strict
weakly typed language that allows the communication of functions. Other strict typed
languages such as Nomadic Pict [Wojciechowski, 2000], Facile [Knabe, 1995] and Jo-
caml [Conchon and Fessant, 1999] implement the communication primitives as side ef-
fects while we integrate them to the IO monad, preserving referential transparency.

8. Conclusions

The mHaskell mobile language has been described, covering its semantics, the definition
of a range of coordination abstractions, its implementation, and a case study. mHaskell
differs from previous extensions of Haskell in supporting higher-order communication in
open distributed systems, including the communication of functions, computations and
channels. mHaskell extends Concurrent Haskell and makes essential use of higher-order
functions, polymorphism and monadic manipulation of computations. The paper extends
previous mHaskell publications by giving a complete language description, describing
a novel case study, and introducing a new mobility skeleton. In future work we plan
to prove evaluation location and order properties using the operational semantics. We
also plan to investigate improving the reliability and security in mHaskell, e.g., modelling
Erlang-style behaviours, using proof carrying code [Aspinall et al., 2004] or distributed
versioning of modules [Sewell, 2001].

References

Aspinall, D., Gilmore, S., Hofmann, M., Sannella, D., and Stark, I. (2004). Mobile Re-
source Guarantees for Smart Devices. In CASSIS’04 — Intl. Workshop on Construc-

tion and Analysis of Safe, Secure and Interoperable Smart Devices, LNCS, Marseille,
France, March 10–13. Springer-Verlag.

Cejtin, H., Jagannathan, S., and Kelsey, R. (1995). Higher-order distributed objects. ACM
Transactions on Programming Languages and Systems (TOPLAS), 17(5):704–739.

Cole, M. (1989). Algorithmic Skeletons: Structured Management of Parallel Computa-
tion. Pitman.

Conchon, S. and Fessant, F. L. (1999). Jocaml: Mobile agents for Objective-Caml. In
ASA’99/MA’99, Palm Springs, CA, USA.

Du Bois, A. R., Trinder, P., and Loidl, H.-W. (2004a). Implementing Mobile Haskell. In
Trends in Functional Programming, volume 4. Intellect.

Du Bois, A. R., Trinder, P., and Loidl, H.-W. (2004b). Towards Mobility Skeletons. In
CMPP’04 — Constructive Methods for Parallel Programming, Stirling, Scotland.

Fuggetta, A., Picco, G., and Vigna, G. (1998). Understanding Code Mobility. Transac-
tions on Software Engineering, 24(5):342–361.

GHC (2005). The Glasgow Haskell Compiler. WWW page, http://www.haskell.org/ghc.

Halls, D. A. (1997). Applying Mobile Code to Distributed Systems. PhD thesis, Computer
Laboratory, University of Cambridge.

Huch, F. and Norbisrath, U. (2000). Distributed programming in Haskell with ports. In
IFL 2000, LNCS, Volume 2011. Springer-Verlag.

Knabe, F. C. (1995). Language Support for Mobile Agents. PhD thesis, School of Com-
puter Science, Carnegie Mellon University.

Lämmel, R. and Peyton-Jones, S. (2003). Scrap your boilerplate: a practical design pat-
tern for generic programming. In Proceedings of TLDI 2003. ACM Press.

Lange, D. B. and Oshima, M. (1999). Seven good reasons for mobile agents. Communi-
cations of the ACM, 3(42):88–89.

Marlow, S. (2000). Writing high-performance server applications in Haskell, case study:
A Haskell web server. In Haskell Workshop, Montreal, Canada.

Moran, A. K., Lassen, S. B., and Jones, S. L. P. (1999). Imprecise exceptions, co-
inductively. In Proceedings of HOOTS’99, volume 26 of ENTCS.

Peyton Jones, S. (2001). Tackling the awkward squad: monadic input/output, concur-
rency, exceptions, and foreign-language calls in Haskell. In Engineering theories of
software construction, pages 47–96. IOS Press.

Peyton Jones, S. L. and Wadler, P. (1993). Imperative functional programming. In Prin-
ciples of Programming Languages.

Pointon, R., Trinder, P., and Loidl, H.-W. (2000). The design and implementation of
Glasgow Distributed Haskell. In IFL 2000, LNCS, Volume 2011. Springer-Verlag.

Sewell, P. (2001). Modules, abstract types, and distributed versioning. In Proceedings of
POPL 2001, pages 236–247.

Tolmach, A. and Antoy, S. (2003). A monadic semantics for core Curry. In Proc. of
WFLP 2003, Valencia (Spain).

van Weelden, A. and Plasmeijer, R. (2002). Towards a strongly typed functional operating
system. In IFL 2002, LNCS, Volume 2670. Springer-Verlag.

Wojciechowski, P. T. (2000). Nomadic Pict: Language and Infrastructure Design for
Mobile Computation. PhD thesis, Wolfson College, University of Cambridge.

