
Reliable Scalable Symbolic Computation: The Design of
SymGridPar2

ABSTRACT
Symbolic computation is an important area of both Mathematics
and Computer Science, with many large computations that would
benefit from parallel execution. Symbolic computations are, how-
ever, challenging to parallelise as they have complex data and con-
trol structures, and both dynamic and highly irregular parallelism.
The SymGridPar framework has been developed to address these
challenges on small-scale parallel architectures. However the mul-
ticore revolution means that the number of cores and the number
of failures are growing exponentially, and that the communication
topology is becoming increasingly complex. Hence an improved
parallel symbolic computation framework is required.

This paper presents the design and initial evaluation of SymGrid-
Par2 (SGP2), a successor to SymGridPar that is designed to provide
scalability onto 106 cores, and hence also provide fault tolerance.
We present the SGP2 design goals, principles and architecture. We
describe how scalability is achieved using layering and by allowing
the programmer to control task placement. We outline how fault
tolerance is provided by supervising remote computations, and out-
line higher-level fault tolerance abstractions.

We describe the SGP2 implementation status and development
plans. We report the scalability and efficiency on approximately
2000 cores, and investigate the overheads of tolerating faults for
simple symbolic computations.

1. INTRODUCTION
Symbolic computation has underpinned key advances in Mathe-

matics and Computer Science, for example in number theory, cryp-
tography, and coding theory. Many symbolic problems are large,
and the algorithms often exhibit a high degree of parallelism. How-
ever, parallelising symbolic computations poses challenges, as sym-
bolic algorithms tend to employ complex data and control struc-
tures. Moreover, the parallelism is often both dynamically gener-
ated and highly irregular, e. g., the number and sizes of subtasks
may vary by several orders of magnitude. The SCIEnce project de-
veloped SymGridPar [13] as a standard framework for executing
symbolic computations on small-scale parallel architectures (Sec-
tion 2). SymGridPar uses OpenMath [20] as a lingua franca for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

communicating mathematical data structures, and dynamic load
management for handling dynamic and irregular parallelism.

SymGridPar is not, however, designed for architectures with large
numbers of cores. The multicore revolution is driving the number
of cores along an exponential curve, but interconnection technol-
ogy does not scale that fast. Hence many anticipate that processor
architectures will have ever deeper memory hierarchies, with mem-
ory access latencies varying by several orders of magnitude. The
expectation is similar for large scale computing systems, where an
increasing number of cores will lead to deeper interconnection net-
works, with relatively high communication latency between distant
cores. Related to the exponential growth in the number of cores is
a predicted exponential growth in core failures, as core reliability
will remain constant, at best. These trends exacerbate the chal-
lenges of exploiting large scale architectures because they require
the programmer to pay attention to locality and to guard against
failures.

This paper presents the design and initial evaluation of SymGrid-
Par2 (SGP2), a successor to SymGridPar that is designed to scale
onto 106 cores by providing the programmer with high-level ab-
stractions for locality control and fault tolerance. SGP2 is being de-
veloped as part of the UK EPSRC HPC-GAP project, which aims
to scale the GAP computer algebra system to large scale clusters
and HPC architectures.

The remainder of the paper is organised as follows. Section 2
surveys related work on parallel symbolic computation. Section 3
presents the SGP2 design goals, principles and architecture. A key
implementation design decision is to coordinate the parallel com-
putations in HdpH, a scalable fault tolerant domain specific lan-
guage (Section 3.2).

We describe how scalability is achieved using layering and by
allowing the programmer to control task placement on a distance-
based abstraction of the communication topology of large architec-
tures (Section 4). We outline how fault tolerance is provided by su-
pervising remote computations, and sketch higher-level fault toler-
ance abstractions like supervised workpools and supervised skele-
tons (Section 5).

SGP2 is still under development, and we outline the current im-
plementation and give preliminary scalability and fault tolerance
results. Specifically, we investigate the scalability and efficiency of
a layered task placement strategy on approximately 2000 cores of
an HPC architecture (Section 6.2), and we evaluate the overheads
of a fault tolerant skeleton on a Beowulf cluster, both in the pres-
ence and absence of faults (Section 6.3).

2. RELATED WORK

2.1 Symbolic Computation and GAP

Symbolic Computation has played an important role in a number
of notable mathematical developments, for example in the classifi-
cation of finite simple groups. It is essential in several areas of
mathematics which apply to computer science, such as formal lan-
guages, coding theory, or cryptography. Computational Algebra
(CA) is an important class of Symbolic Computation (SC) where
applications are typically characterised by complex and expensive
computations that would benefit from parallel computation. Appli-
cation developers are typically mathematicians or other domain ex-
perts, who may not possess parallel expertise or have the time/inclination
to learn complicated parallel systems interfaces.

There are several Computational Algebra Systems (CAS) that
often specialise in some mathematical area, for example Maple [5],
Kant [8], or GAP [10]. GAP is a free-to-use, open source sys-
tem for computational discrete algebra, which focuses on compu-
tational group theory. It provides a high-level domain-specific pro-
gramming language, a library of algebraic functions, and libraries
of common algebraic objects. GAP is used in research and teaching
for studying groups and their representations, rings, vector spaces,
algebras, and combinatorial structures.

2.2 Orchestrating CAS with SCSCP
The Symbolic Computation Software Composability Protocol

(SCSCP) is a lightweight protocol for orchestrating CAS developed
in the SCIEnce project [13]. In essence the protocol allows a CAS
to make a remote procedure call to another CAS. Hence SCSCP
compliant CAS may be combined to solve scientific problems that
cannot be solved within a single CAS, or may be orchestrated for
parallelism.

In SCSCP both data and instructions are represented as Open-
Math objects. OpenMath is a standard markup language for speci-
fying the meaning of mathematical formulae [20]. SCSCP has be-
come a de facto standard, with implementations for 9 CAS and li-
braries for several languages including Java, C++, and Haskell [13].

2.3 Parallel Symbolic Computation
Some discrete mathematical problems, especially in number the-

ory, exhibit trivial parallelism, where they can be partitioned into
relatively large, totally independent pieces of predictable size. Math-
ematicians have for many years parallelised these computations by
running different pieces on different computers. In extreme cases,
the primitive steps are so simple and independent that they are
amenable to internet-wide distributed computation as in the “Great
Internet Mersenne Prime Search”, which recently found a record-
breaking prime number,with 12 978 189 digits.

Numerous authors have developed parallel algorithms and im-
plementations of a variety of mathematical computations, and even
developed general frameworks intended to simplify parallel pro-
gramming for mathematical users e.g. [18, 12, 23]. Of particular
relevance is the ParGAP system [7], which provided bindings to
the MPI library in the GAP language. Most of these systems were
specific to now obsolete hardware, and none has achieved wide us-
age.

In the recent SCIEnce project, a European consortium have in-
vestigated parallelising a range of algebraic computations in a Grid
context. The consortium designed and exploited the general-purpose
skeleton-based SymGrid-Par framework outlined in the next sec-
tion.

These, and other experiences, show that parallel algebraic com-
putations pose additional and specific problems, as follows. Paral-
lel algebraic computations exhibit high degrees of irregularity, with
varying numbers and sizes of tasks. Some computations have both
multiple levels of irregularity, and enormous (5 orders of magni-

client

Coord. Server

server server server

OpenMath

SCSCP

SCSCP

OpenMath

socket

socket

socket

socket socket socket

CA

CA CA CA

CAG

GCA

Figure 1: SymGridPar and SymGridPar2 Architecture

tude) variation in task sizes [1]. They use complex user-defined
data structures. They have complex control flows, often exploiting
recursion. They make little, if any, use of floating-point operations.

This combination of irregularity, recursive structure and limited
use of floating-point operations imply that computational algebra
problems are unsuitable for relatively inflexible HPC acceleration
techniques like vectorisation or FPGAs, rather they must use archi-
tectures based on general-purpose cores.

Moreover, explicit parallel paradigms are unlikely to deal ef-
fectively with the highly irregular computation structure, and this
motivates our decision to develop a scheduling and management
framework.

2.4 The SymGridPar Framework
The SymGridPar middleware [13] orchestrates sequential SCSCP-

compliant CAS into a parallel application. SymGridPar has been
designed to achieve a high degree of flexibility in constructing a
platform for high-performance, distributed symbolic computation,
including multiple CAS. Although designed for distributed mem-
ory architectures, it also delivers good performance on shared mem-
ory architectures [22].

The SymGridPar architecture is shown in Figure 1, and has three
main components.

The Client.
The end user works in his/her own familiar programming envi-

ronment, so avoiding the need to learn a new CAS, or a new lan-
guage to exploit parallelism. The coordination layer is almost com-
pletely hidden from the CAS end user: they work exactly as they
would with the CAS apart from calling some algorithmic skele-
tons to introduce parallelism [6]. Some skeletons are generic, e.g.
a parMap applies a function to every element of a list in paral-
lel. Other skeletons are specific to the CA domain, e.g. a multiple
homomorphic image skeleton solves each image in parallel.

The Coordination Server.
This middleware provides parallelised services and parallel skele-

ton implementations. The skeleton implementations delegate work
(usually calls to expensive computational algebra routines) to the
Computation Server, which is another SCSCP-compliant computer
algebra system. Currently the Coordination Server is implemented
in Eden [14], a parallel Haskell dialect, allowing the user to exploit
dynamic load management, polymorphism, and higher order func-

tions for the effective implementation of high-performance paral-
lelism.

The Computation Server.
This component is a parallel machine with one or more CAS in-

stances. For example a Beowulf cluster of 16 core nodes, and 16
instances of GAP on each node. Each server handles the requests
that are sent to it, and returns the results to the coordination server.
Finally, the coordination server may combine the results for return-
ing to the client.

2.5 A Critique of SymGridPar for Impending
Architectures

The multicore revolution is leading to the number of cores fol-
lowing Moore’s law, i.e. growing exponentially. Many expect 100,000
core platforms to become commonplace. Hence parallel systems
must be designed for far greater scale than previously. Moreover,
the best predictions are that core failures on such an architecture
will become relatively common, perhaps one hour mean time be-
tween core failures. So parallel systems need to be both scalable
and fault tolerant.

SymGridPar was never designed to scale to thousands of cores,
let alone millions. Neither does its load management scale beyond
a few hundred cores, nor does it provide any abstractions for con-
troling locality or tolerating failures. In part, these deficiencies are
down to the SGP Coordination Server being implemented in Eden,
which provides neither fault tolerance nor the locality control re-
quired by large architectures. The design presented in the follow-
ing sections addresses these shortcomings.

3. SGP2 ARCHITECTURE: DESIGN GOALS
AND PRINCIPLES

3.1 SGP2 Design Goals and Principles
The main goal in developing SymGridPar2 (SGP2) as a succes-

sor to SymGridPar is scaling symbolic computation to architectures
with 106 cores. As argued above, this scale necessitates two further
design goals: topology awareness and fault tolerance, to cope with
increasingly non-uniform communication topologies and increas-
ingly frequent component failures, respectively. Finally, the SGP2
design aims to preserve the user experience of SGP, specifically the
high-level skeleton API. That is, to the CAS user SGP2 will look
like SGP, apart from a few new skeleton parameters for tuning lo-
cality control and/or fault tolerance.

Orthogonal to the above four design goals, SGP2 aims to em-
body the following design principles. Firstly, the design of SGP2
is layered. That is, the most high-level abstractions, e. g., topology
aware fault tolerant skeletons, are implemented in terms of simpler
abstractions, e. g., plain skeletons, and simpler primitives.

Secondly, to support dynamic and irregular parallelism, task place-
ment in SGP2 should avoid explicit choice wherever possible. In-
stead, choice should be semi-explicit, i. e., the programmer decides
which tasks are suitable for parallel execution and possibly at what
distance from the current processing element (PE) they should they
be executed. However, the actual decisions where to schedule work
should be taken at runtime by the system rather than by the pro-
grammer.

3.2 SGP2 Architecture and HdpH
SGP2 retains the component architecture of SGP, as depicted in

Figure 1, but provides a scalable fault tolerant Coordination Server
component. The key implementation design decision is to realise

-- task distribution in the Par monad
type Par a -- Par monad computation returning type ’a’
type Closure a -- serialisable closure of type ’a’

pushTo :: PE -> Closure (Par ()) -> Par () -- eager explicit
spark :: Closure (Par ()) -> Par () -- lazy implicit

-- communication via IVars
type IVar a -- write-once buffer of type ’a’
type GIVar a -- global handle to an ’IVar a’

new :: Par (IVar a) -- creation
glob :: IVar a -> Par (GIVar a) -- globalisation
rput :: GIVar (Closure a) -> Closure a -> Par () -- remote write
get :: IVar a -> Par a -- local read

Figure 2: HdpH primitives.

the Coordination Server using the HdpH domain specific language
(DSL) [16], designed to deliver scalable fault tolerant symbolic
computation. HdpH is a shallowly embedded parallel extension
of Haskell that supports high-level semi-explicit parallelism. To
aid portability and maintainability, HdpH itself possesses a modu-
lar, layered architecture, and is implemented in Concurrent Haskell
(with GHC extensions).

The HdpH language extends the Parmonad DSL [17] for shared-
memory parallelism to distributed memory. Figure 2 lists the HdpH
primitives. There are two modes of task distribution, both taking a
task of type Par () wrapped as a serialisiable Closure. The
pushTo primitive eagerly places the task on a named PE, where
it is immediately executed. In contrast the spark primitive places
the task into a local spark pool, from where it may be stolen by any
PE looking for work. That is, spark provides on-demand (lazy)
implicit task placement via distributed work stealing.

Tasks synchronise and communicate via write-once buffers called
IVar. An IVar is created by new, and globalised by glob, result-
ing in a GIVar, a global handle to the IVar. Via the global han-
dle, rput can transparently write a serialisable closure to a remote
IVar. An IVar can be read by get, which will block until a value is
available; note that get operates locally — it can only read IVars
on the node they were created on.

The polymorphic Closure data type is central to communica-
tion in HdpH as only closures can be sent over the network. HdpH
provides the following primitive operations: unClosure unwraps
a Closure t and returns its value of type t; toClosure wraps
a value of any serialisable type t into a Closure t. Additionally,
the Template Haskell construct $(mkClosure [| e |]) con-
structs a Closure t wrapping the unevaluated thunk e of type
t; thus closures can wrap both values and computations. Efficient
higher-level operations, like function closure application, are built
on top of these primitives. Moreover HdpH provides a library of
algorithmic skeletons, high-level abstractions for parallelism, built
on top of the primitives.

A core feature of the HdpH system is its two-level work steal-
ing scheduler, that combines local work stealing (from cores on the
same node) with distributed work stealing (over the network) in a
sophisticated way. This enables the HdpH coordination server to
adapt to the irregular and dynamic parallelism exhibited by sym-
bolic computations.

4. SGP2 LOCALITY CONTROL
Historically many parallel architectures have had a flat communi-
cation topology: the communication latency between any pair of
processors is approximately the same. Parallel programming mod-
els like MPI [19] exploit this simplified model.

PE

SMP

rack

cluster

internet

u v x y z

d u v x y z
u 0 1

2
1
2

1
2

1
2

v 1
2 0 1

2
1
2

1
2

x 1
2

1
2 0 1

8
1
4

y 1
2

1
2

1
8 0 1

4

z 1
2

1
2

1
4

1
4 0

Figure 3: Hierarchy and Distance Metric

As the number of cores grows however, we find that large scale
architectures necessarily have a hierarchical communication topol-
ogy. For example in a typical cluster a core in an shared-memory
node can communicate more quickly with a core in the same node
than with a core in a remote shared-memory node. To the program-
mer this manifests itself in differences in latency as messages to
far-away processors have to hop across more switches and routers.
Due to network contention, effective bandwidth typically decreases
with increasing latency.

Large-scale parallel programming needs to be aware of the net-
work topology, as both locality information (in the problem do-
main) and network topology information are necessary to efficiently
schedule parallelism on large systems. The SGP2 design exposes
the network topology as an abstract distance metric, and lets the
programmer express locality in terms of these abstract distances.
Thus, the distance metric enables locality control but avoids the
temptation to code for a specific topology.

4.1 Distance Metric and Equidistant Bases
We take an abstract view of the network topology, modelling it as a
hierarchy, as for example in Figure 3, i. e., an unordered tree whose
leaves correspond to processing elements (PEs). Every subtree of
the hierarchy forms a virtual cluster. The interpretation of these
virtual clusters is not fixed. Figure 3 suggests the interpretation that
a subtree of depth 1 represents a shared memory multi-core (SMP)
node, a subtree of depth 2 represents a rack consisting of several
multicores, a subtree of depth 3 represents a server room with sev-
eral racks, and a subtree of depth 4 (i. e., the whole hierarchy in
Figure 3) represents several clusters connected over the internet.

The hierarchy is characterised by a distance function d on PEs,
see Figure 3, which is defined by

d(p, q) =

 0 if p = q
2−n if p 6= q and n = length of longest

common path from root to p and q.

Mathematically speaking, the distance function defines an ultra-
metric space on the set of PEs. That is, d is non-negative, symmet-
ric, 0 on the diagonal, and satisfies the strong triangle inequality:
d(p1, p3) ≤ max{d(p1, p2), d(p2, p3)} for all PEs p1, p2, p3. We
observe that all non-zero distances are isolated points in the real
interval [0, 1], and we denote the set of distances by range d =
{2−n | n = 0, 1, . . . } ∪ {0}.

Given a PE p and r ≥ 0, define D(p; r) = {q | d(p, q) ≤ r} to
be the ball1 with center p and radius r. Balls correspond to virtual
clusters in the hierarchy, and have the following properties (due to
d being an ultrametric).

(B1) Every PE inside a ball is its center. That is, for all p, q and r,
d(p, q) ≤ r implies D(p; r) = D(q; r).

(B2) Every ball of radius r ∈ range d is uniquely partitioned by
a set of balls of radius 1

2
r, the centers of which are pairwise

spaced distance r apart. That is,D(p; r) is partitioned by the
1More accurately, D(p; r) is known as a closed ball or disk.

set {D(q; 1
2
r) | q ∈ D(p; r)}, and d(q, q′) = r for any two

distinct balls D(q; 1
2
r) and D(q′; 1

2
r) in the partition.

We call the set {D(q; 1
2
r) | q ∈ D(p; r)} the equidistant partition

of D(p; r). A set Q of PEs is an equidistant basis for D(p; r) if Q
contains exactly one center of each ball in the equidistant partition
of D(p; r). That is, {D(q; 1

2
r) | q ∈ Q} = {D(q; 1

2
r) | q ∈

D(p; r)} and for all q, q′ ∈ Q,D(q; r) = D(q′; r) implies q = q′.
Our abstract view means that the hierarchy need not exactly re-

flect the physical network topology. Rather, it presents a logical
arrangement of the network into a hierarchy of clusters of man-
ageable size. For example two small ethernet clusters networked
by a fast, high bandwidth WAN may be treated as a single clus-
ter. However, since one motivation for topology awareness is to
enable SGP2 to take communication costs into account, actual la-
tencies should be reasonably compatible with the distance metric,
i. e., with increasing distance actual latency should increase rather
than decrease.

The remainder of this section describes how SGP2 will realise
topology awareness by integrating the distance metric into both ex-
plicit work placement and work stealing primitives in HdpH. For
ease of use SGP2 will provide topology aware skeletons imple-
mented as HdpH skeletons.

4.2 Lazy Work Stealing
HdpH requires only a small change to allow the programmer to
control the locality of tasks distributed via random stealing. HdpH
will expose the set of distances range d as an abstract type, Dist,
and add a radius parameter (of type Dist) to the spark primitive:

spark :: Dist -> Closure (Par ()) -> Par ()

The radius r constrains how far a task can travel from the spark-
ing PE p0: it can be stolen precisely by the PEs in the closed ball
D(p0; r). The corner cases deserve special attention.

• Radius r = 1 imposes no locality constraint at all, i. e., the
task may be stolen by any PE.

• Radius r = 0 pins the task to p0, i. e., it cannot be stolen at
all. Thus r = 0 can express co-location of tasks.

The remainder of this subsection details aspects of HdpH’s topol-
ogy aware work stealing algorithm, including its task selection pol-
icy. Let p0 be the current PE.

When p0 executes the primitive spark r task, it adds the
pair (task,r) to its spark pool data structure. We call the pair
(task,r) a bounded spark (with radius r).

When p0 runs out of work, and its own spark pool is non-empty,
it uses the following local spark selection policy: Pick the youngest
of the sparks with minimal radius and schedule it for execution.
Thus, p0 prioritises sparks with small radius for local scheduling.
If, on the other hand, p0 runs out of work with its own spark pool
empty then it will send a message requesting work to a random
PE.2

When p0 receives a request for work from another PE p, it tries
to find a suitable spark using the following remote spark selection
policy: Pick a spark with minimal radius from the the set of sparks
whose radius is greater or equal to d(p0, p); if there are several such
sparks, pick the oldest one. Thus for remote scheduling, p0 priori-
tises sparks whose radii match the distance to the PE requesting
work. If this policy does not yield a suitable spark then p0 for-
wards p’s request for work to a random PE. If, however, the remote
2Actually, p0 does not wait for the spark pool to drain completely;
to hide latency p0 will send a request for work already when the
pool hits a minimum number, the so-called low water mark.

spark selection policy does yield a spark (task,r) then p0 sends
the spark to the requesting PE p, which will put it into its own spark
pool, from where it will either be scheduled for local execution, or
sent to yet another PE requesting work. Note that due to property
(B1), D(p0;r) = D(p;r), i. e., both p0 and p are centers of the
same ball of PEs eligible to execute the spark (task,r).

To prioritise local stealing, the work search algorithm is not uni-
formly random. When p0 initiates a request for work, it will send
its request to a random PE nearby. And when p0 forwards a request
for work from another PE p, it will forward to a random PE at a dis-
tance greater or equal to d(p0, p). Thus, a request for work targets
nearby PEs first, looking for local work, and then travels further
and further afield in search for work. To prevent the network being
swamped with requests for work at times when there is little work,
requests expire after being forwarded a number of times. In this
case the requesting PE backs off for some time before repeating the
request. Note that the bounded spark primitive still falls into the
class of semi-explicit parallel programming interfaces. It is not an
explicit interface because it does not expose locations, and because
it leaves the actual scheduling decisions to the RTS’s work stealing
algorithm. The spark radii only allow the programmer to constrain
the RTS’s choices to better take locality into account.

4.3 Eager Work Placement
Random work stealing performs well with irregular parallelism.
However, it tends to under-utilise large scale architectures at the
beginning of the computation. To combat this drawback, SGP2
complements random stealing with explicit placement. Explicit
placement differs from random stealing in several dimensions:

• Placement is mandatory and explicitly controlled by the pro-
grammer, i. e., concrete locations are exposed.

• Placement is eager, i. e., an explicitly placed tasked will be
scheduled for execution immediately, taking priority over ran-
domly stolen tasks.

HdpH already supports eager work placement via the pushTo prim-
itive. Adding support for topology aware placement requires mak-
ing HdpH fully location aware. To do so, HdpH will expose the
following additional primitives:

dist :: PE -> PE -> Dist
equiDist :: Dist -> Par [(PE, Int)]

The function dist is the reification of the distance metric d. The
primitive equiDist takes a radius r and returns a size-enriched
equidistant basis for D(p0; r), where p0 is the current PE. More
precisely, it returns a non-empty list [(q0,n0),(q1,n1),...]
such that

• ni is the size ofD(qi;
1
2
r), i. e., ni equals the number of PEs

clustered up to distance 1
2
r around qi, and

• the qi form an equidistant basis for D(p0; r).

By convention, q0 = p0, which can be used to discover the identity
of the current PE, so equiDist 0 returns [(p0,1)].

Property (B2) guarantees that equidistant bases exist. However,
due to (B1), these bases are not unique. For example, given the net-
work topology in Figure 3, calling equiDist 1

2
on PE u might

result in the lists [(u,4),(v,4),(x,8)] or [(u,4),(v,4),(y,8)]
or [(u,4),(v,4),(z,8)], amongst others.

The sizes ni in an equidistant basis are intended to measure the
compute power clustered around the PEs qi, respectively, and hence
assume that all PEs are homogeneous. The homogeneity require-
ment can be relaxed by reporting “sizes” ni relating to the actual

-- bounded, work stealing parallel map skeleton
parMapLocal :: Dist

-> Closure (a -> b)
-> [Closure a]
-> Par [Closure b]

parMapLocal r c_f cs = mapM spawn cs >>= mapM get where
spawn c = do
v <- new
gv <- glob v
spark r $(mkClosure

[|rput gv $
toClosure (unClosure c_f $ unClosure c)|])

return v

-- 2-level bounded parallel map skeleton
parMap2Level :: Dist

-> Closure (a -> b)
-> [Closure a]
-> Par [Closure b]

parMap2Level r c_f cs = do
qs <- equiDist r
let nPEs = sum $ map snd qs
let n = length xs
let qcs = chunk nPEs qs n cs
vs <- mapM spawn qcs
concat <$> mapM (v -> unClosure <$> get v) vs
where spawn (q,cs_q) = do

v <- new
gv <- glob
pushTo q $(mkClosure

[|parMapLocal (r/2) c_f cs_q >>=
rput gv . toClosure|])

return v

Figure 4: Topology Aware Algorithmic Skeletons

compute power (e. g., measured by benchmarking) of the PEs clus-
tered around the qi rather than just the number of such PEs.

HdpH does not expose a primitive returning the set of all PEs
as it would be prohibitively expensive on any large architecture.
Instead, HdpH only maintains a distance-indexed table of the bases
returned by equiDist, and the space required to store this table
typically scales logarithmically with the number of cores. The set
of all PEs can be computed from the equidistant bases by a (costly)
distributed gather operation.

4.4 Topology aware Skeletons
HdpH provides a library of topology aware algorithmic skeletons
that abstract over the topology aware primitives. For example Fig-
ure 4 shows two versions of a parallel map over a list. Both skele-
tons take an extra radius parameter for locality control. Note that
for distribution over the network HdpH requires the function argu-
ment and the list elements to be Closures. Skeletons similar to
these are measured in Section 6.2
parMapLocal creates sparks bounded by radius r, resulting in

a lazy distribution of the parallel work across the network to PEs no
further than distance r from the PE calling parMapLocal. PEs
beyond this distance will receive no tasks from this skeleton as their
communication latency is expected to outweigh the benefit of the
additional parallelism.
parMap2Level uses a combination of eager and lazy work

distribution. It splits the list into chunks and eagerly pushes big
tasks to PEs with an equidistant basis (with radius r). Each big
task in turn calls parMapLocal on its chunk of the list, restricting
the radius to 1

2
r. This results in a quick distribution of big tasks to

PEs far from the caller, and these PEs then act as local coordinators
by sparking small tasks to be evaluated in their vicinity. Thanks to
bounded sparks and equidistance of the coordinators, it is guaran-
teed that the small tasks sparked by one local coordinator stay in its
vicinity; in particular, they cannot travel to a PE in the vicinity of

another local coordinator.
We stress that both of the above skeletons allow for tuning of lo-

cality via a single radius parameter, without ever exposing locations
to the programmer. This abstract locality control is intended to fa-
cilitate performance portability between parallel architectures.

5. SGP2 FAULT TOLERANCE
Fault tolerance is a means to unlock SymGridPar2 scalability

ambitions for reliable long-running computations on massively par-
allel systems.

Most existing fault tolerant approaches in distributed architec-
tures follow a rollback-recovery approach, often involving check-
pointing and synchronization phases. New opportunities are being
explored as alternative and more scalable possibilities, and both
language and non-language based techniques have been proposed.
At the highest level, fault oblivious and self stabilising algorithms
have been developed [4] for imprecise applications such as stochas-
tic simulations, which often involve a balance between precision
and reliability. Such a trade-off is impossible in the SymGridPar2
design, where the symbolic computing domain requires solutions
to be necessarily exact.

A lower level and popular approach for achieving fault tolerance
in HPC systems is to adopt a resilient MPI communication layer.
Thorough comparisons of fault tolerant MPI approaches and im-
plementations have been made [9], and these include checkpoint-
ing the state of computation, or extending the semantics of the MPI
standard. In either case, the onus is often on the user to handle
faults programmatically.

The fault tolerant mechanisms in SymGridPar2 exploit the loosely
coupled design of HdpH, which separates remote tasks and values.
They are designed to support both implicit and explicit work place-
ment strategies on the topologies described in Section 4. Remote
computations can be supervised, and is redistributed when partial
system failure is detected. The work stealing scheduling design
(Section 4.2) is necessarily transparent to facilitate fault tolerance,
and a supervised work stealing scheduler is under development.

HdpH will expose supervised variants of the task distribution
primitives spark and pushTo that guarantee completion of a task
even in the presence of failures.

supervisedSpark :: IVar a -> Dist -> Closure (Par ()) -> Par ()
supervisedPushTo :: IVar a -> [PE] -> Closure (Par ()) -> Par ()

Both primitives need to watch their first argument, the IVar which
is to receive the result of the task, in order to determine whether
or not the supervised task has completed. W. r. t. task distribu-
tion, supervisedSpark v r task behaves like spark r
task (Section 4.2). However, behind the scenes, the current PE su-
pervises whichever PE has stolen task, and resparks task should
that PE fail.

At first, supervisedPushTo v ps task behaves like pushTo
(head ps) task (Section 3.2). However, the current PE su-
pervises whichever PE task was pushed to. Should that PE fail,
task is pushed to the next PE on the list ps; if there is no next PE,
task is executed by the current PE.

Some symbolic applications, such as the Orbit calculation [15],
require distributed data structures to achieve scalability, and con-
structs such as fault tolerant replicated distributed hash tables are
planned for SymGridPar2.

5.1 Fault Tolerant Workpools and Skeletons
To provide fault tolerance in SymGridPar2, some supervision-

based reliability primitives have been developed. One such con-
struct is a supervised workpool [21]. This primitive and the fault
tolerant mechanisms are described in Section 5.1.1. Rather than

pushMap
:: [PE] -- available PEs
-> Closure (a -> b) -- function closure
-> [a] -- input list
-> IO [b] -- output list

pushDivideAndConquer
:: [PE] -- available PEs
-> Closure (Closure a -> Bool) -- trivial
-> Closure (Closure a -> IO (Closure b)) -- simplySolve
-> Closure (Closure a -> [Closure a]) -- decompose
-> Closure

(Closure a -> [Closure b] -> Closure b) -- combine
-> Closure a -- problem
-> IO (Closure b) -- output

Figure 5: Fault Tolerant Algorithmic Skeletons

using these primitives directly we recommend programming using
higher-level abstractions, outlined in Section 5.1.2.

5.1.1 Supervised Workpools
The supervised workpool construct extends the popular workpool

pattern by adding fault tolerance, embracing node supervision and
task reallocation techniques.

The supervised workpool takes units of work as input, returning
values as output, whilst task distribution is masked from the pro-
grammer. Once tasks are distributed, a dedicated heartbeat thread
is created to monitor the availability of the nodes that have been
assigned tasks from the workpool. A copy of all tasks is held
on the node hosting the workpool. If values are received from
remote nodes, then the local copy is discarded. If instead, a re-
mote node failure is identified, the supervised workpool establishes
which tasks of those allocated to the failed node had not been eval-
uated at the point of failure. These tasks are reallocated to the re-
maining available nodes. This design reduces a distributed-memory
architecture down to a single point of failure — the node that hosts
the supervised workpool.

5.1.2 Fault Tolerant Algorithmic Skeletons
Fault tolerant algorithmic skeletons provide another high-level

fault tolerance abstraction. A number of these skeletons have been
developed that exploit supervised workpools (Figure 5). They en-
capsulate commonly used parallel patterns, and match the API of
the corresponding non-fault tolerant counterpart in HdpH. As the
workpool entails some supervision overheads, the user must decide
whether their priority is absolute performance or reliability.

6. INITIAL EVALUATION
This section outlines the SGP2 implementation status before demon-

strating the capabilities of the current implementation snapshot by
presenting some scalability and fault tolerance measurements.

6.1 Implementation Status
The HdpH DSL outlined in Section 3.2 is implemented for both

Beowulf clusters and for HPC platforms, and is available on github [11]
. The cluster implementation uses TCP communication and a full
set of Unix utilities, and is demonstrated in Section 6.3. The HPC
implementation is more challenging as it must use MPI [19] for
communication and a restricted set of Unix utilities, e.g. no sock-
ets. Section 6.2 demonstrates HdpH scalability on HECToR, at
present the UK’s largest HPC with approximately 90 000 cores.

HdpH implements most of the generic SGP CAG skeletons in-
cluding those in Figures 4 and 5, and others like task-farms. Not all
of the locality control and fault tolerance features described in Sec-

 0

 50

 100

 150

 200

 250

32 64 128 256 512 1024 2048

20

50

100

200

500

1000
1200

ru
nt

im
e

[s
]

ab
so

lu
te

 s
pe

ed
up

cores

sumEuler [1..160k] runtime
sumEuler [1..240k] runtime
sumEuler [1..160k] speedup
sumEuler [1..240k] speedup

Figure 6: Strong Scaling of a 2-level Skeleton to 2048 Cores

tions 4 and 5 are fully realised. HdpH has some locality control:
distinguishing between PEs on the same multicore node and on
other nodes, and providing explicit work placement. Some fault tol-
erant abstractions have been implemented as outlined in Section 5,
but we plan more.

We are currently developing the key components required to com-
plete the SGP2 implementation, namely (1) a high-performance
link (with overheads much lower than SCSCP) between the HdpH
coordination server and GAP CAS servers, (2) HdpH skeletons spe-
cific to the symbolic computation domain, and (3) GAP bindings to
the HdpH skeletons to implement the CAG interface.

6.2 Scalability
The scalability of HdpH has been investigated on HECToR with

the SumEuler symbolic benchmark that sums Euler’s totient func-
tion φ over long lists of integers. SumEuler is an irregular data
parallel problem where the irregularity stems from computing φ
on smaller or larger numbers. The HdpH implementation uses a
layered two-level skeleton combining eager explicit task placement
with lazy work stealing very similar to the parMap2Level skele-
ton described in Section 4.4. The main difference being that it does
not control locality on the inner work stealing layer.

Figure 6 reports the runtimes and speedup of the SumEuler bench-
mark on two input lists with 160k and 240k elements respectively.
The benchmark demonstrates strong scaling from 1 to 64 nodes
(i. e., 32 to 2048 cores) on HECToR. Note that the absolute speedup
is extrapolated because the problem is too big to be run sequen-
tially; the extrapolation is based on an estimated absolute speedup
of 21 on 32 cores, an estimate that was confirmed on smaller in-
puts. Efficiency ranges from 66% on 32 cores to about 63% on 512
cores, but drops on 2048 cores to 55% and 45% for the larger and
smaller inputs, respectively.

The benchmark demonstrates that HdpH scales well to 2048 cores,
and very well to about 512 cores. Beyond 512 cores, the speedup
curves deviate slightly from their linear progression. We believe
this is because the problem size is too small, the runtimes have
fallen to 5 seconds, rather than an inherent limit on the scalability
of HdpH. The obvious next step is to investigate the weak scaling
of HdpH for larger data sets, and on larger HECToR configurations.

The performance of topology aware work stealing alone has been
investigated in [2], demonstrating that topology awareness reduces
variability and increases speedup, in some cases by an order of

 90

 95

 100

 105

 110

 115

 120

0 % 20 % 40 % 60 % 80 % 100 %

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 30

 33

R
un

tim
e

(S
ec

on
ds

)

N
um

be
r

of
 r

ea
llo

ca
te

d
cl

os
ur

es

Time of Node Failure w.r.t. Estimated Runtime

Summatory Liouville Runtimes with 1 Node Failure

Mean closure reallocation
Mean of failure free runtimes

Runtimes with failure
Using 9 nodes no failures

Using 10 nodes no failures

Figure 7: Workpool Recovery Times after a Node Failure

magnitude.

6.3 Fault Tolerance
The performance and failure-recovery overheads have been re-

ported for divide-and-conquer and task-parallel fault tolerant skele-
tons [21]. The example used here is the task-parallel Summatory
Liouville, a current Computational Algebra problem [3]. The Li-
ouville function λ(n) is the completely multiplicative function de-
fined by λ(p) = −1 for each prime p. L(n) denotes the sum of
the values of the Liouville function λ(n) up to n, where L(n) :=∑n

k=1 λ(k) .
The computation measured is L(3 · 108) with a chunk size of

106, which is initially deployed on 10 nodes, generating 300 clo-
sures, and distributing 30 to each node.

The results in Figure 7 show the runtime of calculatingL(3 · 108)
when node failure occurs at approximately 10%,20%..90% of ex-
pected execution time, and 5 runtimes are observed at each timing
point. The mean number of closures that are reallocated relative to
when node failure occurs is also shown. Lastly, it shows 5 runtimes
using 10 nodes when no failures occur, and additionally 5 runtimes
using 9 nodes, again with no failures.

Fully evaluated closure values are first seen at 40% of estimated
total runtime, where only 16 (of 30) are reallocated. This continues
to fall until 90% of the predicted runtime, when 0 closures are real-
located, indicating that all closures had already been fully evaluated
on the responsible node, prior to failing.

When a node dies early on, i.e. in the first 30% of estimated total
runtime, the performance of the remaining 9 nodes is comparable
with that of a failure-free run on 9 nodes. Moreover, node failure
occurring near the end of a run, e.g. at 90% of estimated runtime,
does not impact runtime performance, i.e. matches that of a 10
node cluster that experiences no failures at all.

7. CONCLUSION
We have presented the design and initial evaluation of SymGrid-

Par2 (SGP2), a framework for executing symbolic computations
on large (106 core) architectures. We have outlined the SGP2 de-
sign goals, principles and architecture, including the key decision
to coordinate the parallel computations in the HdpH domain spe-
cific language (Section 3). We have described how scalability is
achieved using layering and by allowing the programmer to control
task placement (Section 4). We have outlined how fault tolerance

is provided by supervising remote computations, and shown how
higher-level fault tolerance abstractions can be constructed (Sec-
tion 5). We have outlined the current implementation and report
encouraging scalability and fault tolerance results on architectures
with up to 2000 cores (Section 6).

The implementation of SGP2 is ongoing, and Section 6.1 dis-
cusses our plans to complete the CAG interface to GAP, to better
integrate the fault tolerance and work distribution, and to improve
locality control. We are simultaneously developing an HdpH pro-
filer to aid programmers. Alongside the implementation effort we
also plan to investigate SGP2’s effectiveness on challenge symbolic
computations. One such challenge application, to be developed
within HPC-GAP, will involve solving large “standard base” prob-
lems that arise in algebraic representation theory.

8. REFERENCES
[1] A. Al Zain, J. Berthold, K. Hammond, and P. Trinder.

Orchestrating Production Computer Algebra Components
into Portable Parallel Programs. In Open Source Grid and
Cluster Conference, pages 257–266, Oakland, California,
USA, May 2008.

[2] M. Aswad, P. W. Trinder, and H.-W. Loidl. Architecture
aware parallel programming in Glasgow Parallel Haskell
(GPH). Procedia CS, 9:1807–1816, 2012.

[3] P. B. Borwein, R. Ferguson, and M. J. Mossinghoff. Sign
Changes in Sums of the Liouville Function. Math. Comput.,
77(263):1681–1694, 2008.

[4] F. Cappello, A. Geist, B. Gropp, L. V. Kalé, B. Kramer, and
M. Snir. Toward Exascale Resilience. High Performance
Computing Applications, 23(4):374–388, 2009.

[5] B. W. Char et al. Maple V Language Reference Manual.
Maple Publishing, Waterloo Canada, 1991.

[6] M. Cole. Algorithmic Skeletons: Structured Management of
Parallel Computation. The MIT Press, Cambridge, MA,
1989.

[7] G. Cooperman. Parallel GAP: mature interactive parallel
computing. In Groups and computation, III (Columbus, OH,
1999), pages 123–138. de Gruyter, Berlin, 2001.

[8] M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner,
M. Schörnig, and K. Wildanger. Kant v4. J. Symb. Comput.,
24(3/4):267–283, 1997.

[9] W. Gropp and E. Lusk. Fault Tolerance in MPI Programs.
Special issue of the Journal High Performance Computing
Applications, 18:363–372, 2002.

[10] T. G. Group. GAP – Groups, Algorithms, and Programming,
2007. http://www.gap-system.org.

[11] Haskell distributed parallel Haskell download.
https://github.com/PatrickMaier/HdpH.

[12] W. Kuechlin. PARSAC-2: A Parallel SAC-2 Based on
Threads. In Proc. AAECC-8:, pages 341–353, London, UK,
1991. Springer-Verlag.

[13] S. Linton, K. Hammond, A. Konovalov, C. Brown,
P. Trinder., and H.-W. Loidl. Easy Composition of Symbolic
Computation Software: A New Lingua Franca for Symbolic
Computation. . Journal of Symbolic Computation (JSC),
2012. To Appear.

[14] R. Loogen, Y. Ortega-Mallén, and R. Peña-Marí. Parallel
functional programming in eden. J. Funct. Program.,
15(3):431–475, 2005.

[15] F. Lubeck and M. Neunhoeffer. Enumerating Large Orbits
and Direct Condensation. Experiment. Math., 10:197–205,
2001.

[16] P. Maier and P. Trinder. Implementing a high-level
distributed-memory parallel Haskell in Haskell. In IFL 2011,
Lawrence, Kansas, USA. Springer, 2012. To appear.

[17] S. Marlow, R. Newton, and S. L. Peyton-Jones. A monad for
deterministic parallelism. In Haskell 2011, Tokyo, Japan,
pages 71–82. ACM Press, 2011.

[18] M. M. Maza and S. M. Watt, editors. PASCO ’07:
Proceedings of the 2007 International Workshop on Parallel
Symbolic Computation, London, Ontario, Canada. ACM
Press, 2007.

[19] MPI-Forum. MPI: A message passing intrface standard.
International Journal of Supercomputer Application,
8(3–4):165–414, 1994.

[20] The OpenMath Standard, Version 2.0,
http://www.openmath.org/, 2012.

[21] R. Stewart, P. Trinder, and P. Maier. Supervised Workpools
for Reliable Massively Parallel Computing. Submitted to
TFP’12, 2012.

[22] A. A. Zain, J. Berthold, K. Hammond, P. Trinder,
G. Michaelson, and M. Aswad. Low-Pain, High-Gain
Multicore Programming in Haskell: Coordinating Irregular
Symbolic Computations on MultiCore Architectures. In
SIGPLAN Workshop on Declarative Aspects of Multicore
Programming (DAMP’09). ACM Press, 2009.

[23] R. E. Zippel, editor. Computer algebra and parallelism,
volume 584 of Lecture Notes in Computer Science, Berlin,
1992. Springer-Verlag.

http://www.gap-system.org
https://github.com/PatrickMaier/HdpH
http://www.openmath.org/

