Chapter 1

| mplementing M obile Haskell

André Rauber Du Bois?, Phil Trinder!, Hans-Wolfgang LoidI?

Abstract: Mobile computation enables computations to move between a dy-
namic set of locations, and is becoming an increasingly important paradigm.
mHaskell is an extension of Haskell that supports mobile computation in open
distributed systems i.e. a system where multiple executing programs can inter-
act using a predefined protocol. This paper outlines the mHaskell primitives,
discusses the design and pragmatics of their implementation and includes pre-
liminary performance comparisons with Jocaml. The implementation addresses
several challenges, including serialisation of programs in a lazy language with
sharing, and using a combination of bytecode and machine code to manage the
common software base, i.e. to determine what to communicate between locations.

1.1 INTRODUCTION

Mobile Haskell [BTLO03] (mHaskell) is a conservative extension of the purely

functional Haskell language designed to facilitate the construction of distributed

mobile software. As depicted in Figure 1.1, mHaskell extends Concurrent Haskell

[JGF96], an extension supporting concurrent programming, with higher order

communication channels called Mobile Channels (MChannels), that allow the

communication of arbitrary Haskell values including functions and channels.
The main features of the mHaskell implementation are:

e mHaskell supports the construction of open systems, enabling programs to
connect and communicate with other programs and to discover new resources
in the network. The abstractions we use to provide this basic functionality
are MChannels and remote evaluation. They have fast implementations in the
RTS (runtime system) using C and TCP/IP sockets.

1School of Mathematical and Computer Science, Heriot-Watt University, Edinburgh
EH14 4AS, Scotland, Email:{duboi s, t ri nder }@racs. hw. ac. uk

2| udwig-Maximilians-Universitdt Miinchen, Institut fiir Informatik, D 80538
Miinchen, Germany, Email: hwi oi dl @ nf or mat i k. uni - nuenchen. de



e mHaskell is portable. It is implemented as an extension of the GHC (Glasgow
Haskell Compiler) [GHC98] compiler that has been ported to many different
architectures and operating systems. Our extensions are implemented using
standard C and TCP/IP sockets, maintaining a high degree of portability.

e mHaskell is designed to run on heterogeneous networks. Mobile languages
designed to work on global distributed systems, such as the Internet, must be
able to communicate code between machines of different architectures and op-
erating systems. The usual approach for communicating computations on het-
erogeneous networks is by compiling programs into architecture-independent
byte-code. GHC is both an optimising compiler and an interactive environ-
ment called GHCi, which compiles user defined functions into byte-code, and
this technology could be used by mHaskell for communicating computations
on heterogeneous networks.

e mHaskell takes a hybrid approach, combining byte-code and machine code.
GHCi is designed for fast compilation and linking. It generates machine inde-
pendent byte-code that is linked to the fast native-code available for the basic
primitives of the language. As the basic modules in GHC are compiled into
machine code and are present in every standard installation of the compiler,
the routines for communication have to send only the machine independent
part of the program and link it to the local definitions of the machine depen-
dent part when the code is received. This gives us the advantage of having
much faster code than using only byte-code.

Concurrent
Haskell

Haskell 98

FIGURE 1.1. mHaskell isan extension of Concurrent Haskell

This paper is organised as follows: In the next section we present the MChan-
nels communication primitives and the primitives for resource discovery and reg-
istration. In section 1.3 the implementation of mHaskell is described first by giv-
ing a general overview of the platform and its challenges and then by describing
each of the design decisions.



1.2 MOBILE HASKELL

1.2.1 Communication Primitives

Figure 1.2 shows the MChannel primitives. Haskell with Ports [FHO01] has similar
primitives but restricts the type of values that can be communicated to basic values
and data types, no functions or 10 computations can be communicated.

dat a MChannel a -- abstract
type Host Nane String
type ChanNane = String

newMChannel :: 10 (Mchannel a)

wri t eMChannel .. Mchannel a ->a -> 10 ()

r eadMChannel :: MChannel a -> 10 a

regi st er MChannel :: MChannel a -> ChanNane -> 10 ()
unr egi st er MChannel :: Mchannel a -> 1)

| ookupMChannel .. Host Nane -> ChanNane ->

| O (Maybe (MChannel a))

FIGURE 1.2. MobileChannds

The newMChannel function is used to create a mobile channel and the func-
tionswr i t eMChannel andr eadMChannel are used to write/read data from/to
a channel. MChannels are synchronous and have similar semantics to Concur-
rent Haskell channels: when a value is written to a channel the current thread
blocks until the value is received in the remote host. In the same way when
a readMChannel is performed in an empty MChannel it will block until a
value is received on that MChannel. The functions r egi st er MChannel and
unr egi st er MChannel register/unregister channels in a name server. Once
registered, a channel can be found by other programs using | ookupMChannel
which retrieves a mobile channel from the name server. A hame server is always
running on every machine of the system and a channel is always registered in
the local name server with the r egi st er MChannel function. MChannels are
single-reader channels, meaning that only the program that created the MChan-
nel can read values from it. Values are evaluated to normal form before being
communicated.

In figure 1.3 a simple example describing how to use MChannels is presented.
First a program running on a machine called ushas registers a channel mv with
the name " ny C" in its local name server. When registered the channel can be seen
by other machines using the | ookupMChannel primitive. After the lookup,
the connection between the two machines is established and communication is
performed with the functionswr i t eMChannel and r eadMChannel .



oo .

11, BN 2,
| registerMchannel mv " myC" ~~~_| lookupM Channel " ushashw.ac.uk" " myC"
‘ T -
[ Prog 1 } 3. Connection isestalisned ™~~~ _
Prog 2
ushas.hw.ac.uk Ixtrinder.hw.ac.uk

FIGURE 1.3. Exampleusing MChannels

1.2.2 Discovering Resources

One of the objectives of mobile programming is to better exploit the resources
available in a network. Hence, if a program migrates from one node of the network
to another, this program must be able to discover the resources available at the
destination. By resource, we mean anything that the mobile computation would
like to access in a remote host, from simple files to databases.

type ResNane = String

registerRes :: a -> ResNane -> 10 ()
unregi sterRes :: ResNane -> 10 ()
| ookupRes :: ResNane -> | O (Maybe a)

FIGURE 1.4. Primitivesfor resourcediscovery

Figure 1.4 presents the three mHaskell primitives for resource discovery and
registration. All machines running mHaskell programs must also run a registration
service for resources. The r egi st er Res function takes a name (ResNane)
and a resource (of type a) and registers this resource with the name given. unr egi st er Res
unregisters a resource associated with aname and | ookupRes takes a ResNane
and returns a resource registered with that name in the local registration service.
To avoid a type clash, if the programmer wants to register resources with different
types, she has to define an abstract data type that will hold the different values that
can be registered.

A better way to treat these possible type clashes would be to use dynamic
types like Clean’s Dynamics [Pil98], but at the moment there is no complete im-
plementation of it in any of the Haskell compilers.



1.2.3 Remote Thread Creation
mHaskell also provides a construct for remote thread creation:
rforklO:: 10 () -> HostNane -> 10 ()

It is similar to Concurrent Haskell’s f or k1 Oas it takes an 10 action as an argu-
ment but instead of creating a local thread it sends the computation to be evaluated
on the remote host Host Name. The r f or kI Ofunction is implemented using
MChannels as described in [BTLO3].

1.2.4 A Simple Example

Figure 1.5 shows a mHaskell program that visits a | i st onachi nes and ex-
ecutes the computation called nobi | e on all the machines of the list. First a
channel nch is created and registered with the name " mai nnth", this chan-
nel is used by the remote locations to send the result of the computation back
to the main machine. Then, the function sendMbbi | e is mapped over the
I i st of machi nes. Thiscomputation, looks for a specific channel called cl i ent nth
on the remote host, and sends nobi | e to be executed remotely. The client re-
ceives the computation, executes it and sends the result back to the main program
through the mch channel.

The program in figure 1.5, although simple, uses all the facilities provided by
mHaskell (i.e. remote MChannels, Registration of resources and mobile compu-
tation), and is used in the measurements given in section 1.5

1.3 IMPLEMENTATION DESIGN

1.3.1 Introduction

Mobile systems must abstract over the heterogeneity of large scale distributed
systems, allowing machines of different architectures running different operat-
ing systems to communicate. This abstraction is usually achieved by compiling
programs into architecture-independent byte-code. As a platform to build our
system, we have chosen the Glasgow Haskell Compiler (GHC) [GHC98], a state-
of-the-art implementation of Haskell. The main reason for choosing GHC is that
it supports the execution of byte-code combined with machine code. GHC is
both an optimising compiler and an interactive environment called GHCi. GHCi
is designed for fast compilation and linking. It generates machine independent
byte-code that is linked to the fast native-code available for the basic primitives of
the language. Both GHC and GHCi share the same runtime-system, based on the
Spineless Tagless G-machine (STG)-machine [PJ92a], that is a graph reduction
machine.

This and the next section explain how the implementation of mHaskell using
the GHC compiler works. First, in this section, we discuss some design options
in the language level, such as the evaluation of thunks (unevaluated expressions),
and how to deal with shared computations and MChannels, and how these design



main = do
nch <- newMChannel
regi st er MChannel nth "mai nnch”
list <- nmapM (sendMobil e nobile nch) |istofnachines
let v = sumlist
print ("Total Load of the network:
wher e
nmobi |l e = do
res <- | ookupRes "getLoad"
case res of
Just getlLoad -> do
| oad <- getLoad
return | oad
Not hi ng ->return O
listof machines = (...)

++ (show v))

sendMobile :: 10 () -> Mchannel Int -> HostNane -> | O Int
sendMobil e conp nth host = do
nc <- | ookupMChannel host "clientnch"
case nt of
Just nnt -> writeMchannel nnt conp
result <- readMChannel nth
return result

FIGURE 1.5. Program that computestheload of a network

options influence a real implementation. In the next section we discuss the low
level issues of the implementation such as how to force the evaluation of expres-
sions, packing routines and the implementation of MChannels.

1.3.2 Evaluating Expressions before Communication

When a value is sent through a channel, it is evaluated to normal form before
communication occurs. The reason for this design decision is that lazy evalua-
tion makes it difficult to reason about what is being communicated. Consider the
following example:

| et

(a,b,c) =f x
in
if a then

witeMChannel ch b

Suppose that in the tuple returned by f  x the first value a is a Boolean, the second
b an integer, and the third c is a really large data structure (e.g. a big tree). Based



on the value of a we choose if we want to send the integer b (and only b) to a
remote host. In the example, it seems that the only value being sent is the integer,
but because of lazy evaluation that is not what happens. In the beginning of the
evaluation, we have a graph similar to the one in figure 1.6.

a= getFirst

b= getSecond
C=| geThird /

FIGURE 1.6. Graphforlet (a,b,c) =f x

(fx)

Atthe pointwherewr i t eMChannel is performed, the value b is represented
in the heap as the selector that gets the second value of a tuple applied to the whole
tuple. If wri t eMChannel does not evaluate its argument before communica-
tion, the whole value is communicated and it is difficult to see that in the Haskell
code.

The evaluation of thunks affects only pure expressions, or expressions that
can be evaluated using seq (Haskell function that evaluates its argument to weak
head normal form). 10 computations and functions will not be affected by this
evaluation step.

There are still ways of sending pure expressions to be evaluated on remote
hosts. The programmer can send a tuple with a function and its arguments, and the
function is applied to the values only on the remote end. Unevaluated expressions
can also be communicated if wrapped in an 10 value, as in the appl y function:

apply :: (a->b) ->a ->10b
apply f x = return (f x)

1.3.3 Sharing Properties

Many non-strict functional languages are implemented using graph reduction,
where a program is represented as a graph and the evaluation of the program
is performed by rewriting the graph. The graph ensures that shared expressions
are evaluated only once [PJ92b].

Maintaining sharing between nodes in our distributed system will result in
a large number of extra-messages and call-backs to the machines involved in the
computation (to request structures that were being evaluated somewhere else or to
update these structures) that the programmer of the system did not know about. In
a typical mobile application, the client will receive some code from a channel and
then the machine can be disconnected from the network while the computation



is being executed (consider a handheld or a laptop). If we preserve sharing, it
is difficult to tell when a machine can be disconnected, because even though the
computation is not being executed anymore, the result might be needed by some
other application that shared the same graph structure. The problem is partially
solved by making the primitives strict: expressions will be evaluated just once and
only the result is communicated.

1.3.4 MChannels

MChannels are single-reader channels, and there are two main reasons for that.
First, it is difficult to decide where a message should be sent when we have more
than one machine reading values from the same channel. The main question is
where is this channel located? To implement channels with multiple readers we
would need to maintain some sort of distributed state keeping track of all the
machines that have references to the channel and these references must be updated
every time the channel is moved to another place.

A simple way to implement multiple reader channels would be to keep the
channel in one place, the place where it was created, and all other references to
the channel read and write values into the channel by sending messages to this
main location. The problem with this approach is that if the main location crashes
all the other machines that have references to the channel cannot communicate
anymore (Figure 1.7).

Mhannst A
It Machine 1 RN
writel}/l/ChanneI A readMChannel A
Machine 2 Machine 3

FIGURE 1.7. Machines2 and 3 cannot communicate if Machine 1 crashes

The second reason is security: with multiple reader channels one process can
pretend to be a server and steal messages. This is a classic problem also found in
the untyped 1-calculus [Mil99].



1.4 THE IMPLEMENTATION

1.4.1 Packing Routines

The graph representing the computation being communicated is packed at the
source and unpacked at the destination. The mHaskell pack and unpack routines
are based on the GUM [THM*96] system, but are extended to pack GHCi’s Byte-
Code Objects (BCOs).

Packing, or serialising, arbitrary graph structures is not a trivial task and care
must be taken to preserve sharing and cycles. Asin GPH [THM™'96], GDH [PTLO0Q]
and Eden [BLOMP97], packing is done breadth-first, closure by closure and when
the closure is packed its address is recorded in a temporary table that is checked
for each new closure to be packed to preserve sharing and cycles. We proceed
packing until every reachable graph has been serialised.

The main heap object to be packed in our implementation of mHaskell is the
BCO, that is GHC’s internal representation for its architecture-independent byte-
code. ABCO iscomposed ofitsi nf o_t abl e (which contains information about
the closure’s fields and also its entry code), a list of instructions, a list of pointers
and a list of info tables. The BCO’s info table is the same for every BCO so it does
not need to be packed, its list of instructions is just a list of bytes and is packed
easily. The list of pointers contains a list of other closures that are used in the
byte-code instructions, so all of them must also be packed. The list of info tables
contains pointers to info tables of data structures that are constructed during the
execution of the BCO’s instructions. Those info tables are machine dependent
hence are packed in a special way explained in section 1.4.2.

As the basic modules that come with GHC are compiled into machine code
and are present in every standard installation of the compiler, the packing routines
have to pack only the machine independent part of the program and link it to the
local definition of the machine dependent part when the code is received and un-
packed. This gives us the advantage of having much faster code than using only
byte-code. Once packed, the BCO can be communicated in the way described in
section 1.4.4. All machines running the mobile programs should have the same
version of the GHC/GHCi system with an implementation of the primitives for
mobility and also have the same binary libraries installed. Programs that com-
municate functions that are not in the standard libraries must be compiled into
byte-code using GHCi.

Our packing mechanism gives us a simple way of controlling the amount of
code communicated: since only functions that are compiled into byte code are
packed, if the programmer knows that one module used in the computation is
already in the remote host, this module must be compiled into machine code, so
it will not be communicated.

Programs that will only receive byte-code do not need to have GHCi installed
because the byte-code interpreter is part of GHC’s RTS. In fact, if only functions
from the standard libraries are used in the mobile programs, there is no need to
have GHCi at all in both ends of the communication.



1.4.2 Communicating user defined types (ADTS)

Currently user defined types are always compiled into machine code in GHCi.
There are two ways to overcome this problem. The first one would be to compile
the types into a different type of closure that uses BCOs internally. This requires
changing the compiler. The other solution is to ship the data type including the
values in its info table. The entry code for these objects is very simple and has to
be generated again in the destination.

In our current implementation, all data types used in the mobile programs
must be defined in all the machines that are going to receive the code. Thus we
only pack the name representing its info table in the linker and the content of
its fields. When unpacking, we look for the local definition of the info table by
searching for its name in the linker’s tables. We consider an implementation of
one of the two solutions described above, as a tuning step in the development
of the prototype implementation, aiming to reduce the common software base
needed on all machines.

1.4.3 Evaluating Expressions

A simple way to evaluate thunks would be to use evaluation strategies[THLP98],
e.g.

let list = [1..100]
in witeMchannel nth |i st

where in the definition of wr i t eMChannel we use the r nf strategy to evaluate
its argument to normal form.
But strategies will not work in all cases. Consider the following example:

f:: a->b ->1Int

in
writeMhannel ch (f a)
In this case it is not possible, inside of the definition of wr i t eMChannel , to

evaluate the expression a using strategies. One solution to this problem would be
to implement a function ki ds with type:

kids:: Hvalue -> Array# Hval ue

That takes a value from the heap (the expression to be evaluated) and returns an
array with all the thunks pointed to by this value. Using ki ds we can write
a deepSeq :: a -> () function that recursively applies seq to all the
thunks pointed by its argument.

Another way to evaluate thunks is to do it inside the RTS: using a primitive
function that creates a new RTS thread to evaluate its argument to normal form by
forcing the evaluation of all the expressions pointed by the argument.

10



In our implementation we use a hybrid approach: a thunk in the top level of
the graph representing the computation is forced by a seq (as in figure 1.8). If
there are other thunks in the graph, these thunks are evaluated by an extra thread
in the RTS. Care must be taken to preserve the queue of closures yet to be packed
if the new thread induces garbage collection. In short the packing queue is made
visible to the Garbage Collector.

Cons ’ Q

‘ seqt

Y

Thunk

Thunk Thunk

FIGURE 1.8. Evaluation of thunksusingseq

1.4.4 Implementation of MChannels

The basic structure to support MChannels is implemented in a similar way to Ports
in Distributed Haskell [VFO01].

Communication is implemented using the standard sockets library provided
by the operating system, thus avoiding the need for any extra libraries e.g. PVM
or MPI. Haskell objects are serialised using the packing routines explained before
and converted into an array of bytes that can be easily communicated through a
socket.

Communication via sockets can be done using two different protocols: TCP
and UDP. UDP is a fast connectionless protocol that does not handle message
loss. TCP on the other hand is a connection-based protocol, making it easier
to implement communication with the cost of a little extra overhead. We have
chosen to implement the communication routines using TCP.

The channel data type is a simple Haskell data type that contains internally all
the information that will be needed for communication, i.e. the name of the chan-
nel, the name of the host where it belongs and a concurrent Haskell channel (CHC)
through which the communication between the program and the mobile runtime
system occurs. When a new MChannel is created also a CHC is created to serve
as a communication link between the program and the communication layer of the
RTS. When a value is written into a MChannel, it is in fact written into its CHC.
The RTS then reads this value from the CHC, serialises it and communicates it to

11



TABLE 1.1. Comparative Jocaml and mHaskell Execution Times

Number of Machines | Jocaml | mHaskell
visited (sec) (sec)

1 0.05s 0.47s

2 0.06s 0.93s

4 0.10s 1.85s

8 0.16s 3.70s

16 0.28s 7.42s

the appropriate host based on the information present in the MChannel data type.
When the RTS receives a value from a remote host this value is written into the
CHC that represents the MChannel that should receive the message. A thread that
reads a value from a MChannel is in fact reading a value from the internal CHC
and will stay blocked in this CHC until a value is written by the RTS there.

To make ports visible to other machines in the network we use ther egi st er -
MChannel and | ookupMChannel primitives. These primitives communicate
with an external naming service that keeps listening for requests on a well known
port. This service maintains a table with all the ports registered in the machine in
which it is running. It also communicates with lookups launched by other hosts
looking for channels. When a lookup is received, all the information about the
channel is sent back to the client, so the client can communicate directly with the
program that is waiting for requests on that channel.

1.5 INITIAL EVALUATION

Table 1.1 shows a comparison between Jocaml [CF99] and mHaskell using the
mobile program from section 1.2.4.

Jocaml [CF99] is an extension to Objective-Caml [OCa02], a strict functional
language with extensions for object oriented programming, used to develop sys-
tems with mobile agents. Jocaml extends Objective-Caml with a small set of
primitives taken from the Join-Calculus [FG96]. Jocaml programs communicate
and synchronise through messages sent on channels, called names in the Join-
Calculus terminology.

Although mHaskell presents good scalability when the number of machines is
increased, it is still roughly twenty times slower than Jocaml when running on a
system with more then two machines. The main reason for that is the routine that
recursively transverses the graph, forcing the evaluation of thunks before packing.
Every time a computation is sent, the graph has to be transversed twice: once to
force the evaluation and once for packing. It is not an option to force the evalu-
ation while packing because the evaluation of the graph might change what has
been already packed. Because Jocaml is strict, the evaluation of expressions to be
communicated occurs naturally. Moreover, Jocaml is built as an extension to the
Objective Caml compiler [OCa02], a compiler with primitives for serialisation.

12



mHaskell is still in its early stages and a lot of optimisation could be applied.
For example, in the program used in the experiments, the same function is sent
to different hosts and is repacked every time it is communicated. Such packed
computations could be stored for reuse.

1.6 RELATED WORK

There are numerous parallel and distributed Haskell extensions [TLP02].

GPH and Eden are simple and powerful extensions to the Haskell language
for parallel computing. They both allow remote execution of computation, but
the placement of threads is implicit. The programmer uses the par combinator
in GPH, or process abstractions in Eden, but where and when the data will be
shipped is decided by the implementation of the language.

GDH is closer to the language presented here. Communication can be imple-
mented using MVars and remote execution of computations is provided with the
reval | O(remote evaluation) and r f or kI O primitives. The problem in using
GDH for mobile computation is that it is implemented to run on closed systems.
After a GDH program starts running, no other PE (processing element) can join
the computation. Moreover the GDH implementation relies on a virtual shared
heap that is shared by all the machines running the computation. The algorithms
used to implement this kind of structure will not scale well for very large dis-
tributed systems like the Internet [BTLO3].

Haskell with ports is a very interesting model to implement distributed pro-
grams in Haskell because it was designed to work on open systems. The only
drawback is that the current implementation of the language restricts the values
that can be sent through a port to the basic types and types that can instantiate
the Show class. Furthermore, the types of the messages which can be received
with r eadPor t must be an instance of the Read class. The reason for these
restrictions is that the values of the messages are converted to strings in order to
be sent over the network [FHO1].

There are other extensions to functional languages that allow the communi-
cation of higher-order values. Kali-Scheme [CIJK95] and Erlang [Erl02] are ex-
amples of strict untyped languages (Erlang is dynamically typed) that allow the
communication of functions. Haskell is a statically typed language hence the
communication between nodes can be described as a data type and many mistakes
can be caught during the compilation of programs. Other strict typed languages
such as Nomadic Pict [Woj00], Facile [Kna95] and Jocaml [CF99] implement
the communication primitives as side effects while we integrate them to the 10
monad, preserving referential transparency.

Curry [Han99] is a functional logic language that provides communication
based on Ports in a similar way to the extension presented in this paper. Gof-
fin [CGK98] is a Haskell extension for concurrent constraint programming using
ports but there is no distributed implementation of the language available yet. An-
other language that is closely related to our system is Famke [VWP02]. Famke is
an implementation of threads for the lazy functional language Clean [NSVEP91]

13



(using monads and continuations), together with an extension for distributed com-
munication using ports. Famke has only a restricted form of concurrency, provid-
ing interleaved execution of atomic actions using a continuations monad.

1.7 CONCLUSIONS AND FUTURE WORK

We have presented the implementation of mHaskell, an extension of Haskell for
building open, distributed mobile systems. Unlike related systems mHaskell can
communicate arbitrary values, including functions and MChannels, between pro-
cessors. This enables the use of powerful abstraction mechanisms provided by
functional languages. Although the current implementation of mHaskell is still a
prototype, it demonstrates the use of such abstraction mechanisms.

There are a number of issues that could be investigated in the future:

e It may be possible to extend the compiler with a mobility analyses (maybe
based on a non-determinism analyses [PS02]) that would decide the parts of
the program that should be compiled into byte-code and the parts that could be
compiled into machine code, based on the occurrences of wr i t eMChannel ,
as in [Kir01].

e The implementation could be optimised, e.g. maintain a cache of functions
already communicated to avoid repeated communication.

e Some languages that support mobility of code also support the migration of
running computations (usually referred as strong mobility). We could also
extend Haskell with a primitive for transparent strong mobility, that would be
a primitive to explicitly migrate threads:

noveTo :: HostNane -> | ()

The primitive noveTo receives as its argument a Host Narre to where the
current thread should be moved.

Strong mobility could be implemented in two ways: RTS level and Code
Transformation.

— RTS level: We use packing routines that pack the state of the current thread
(its stack) and send it to be evaluated in a remote host. This work would
extend our previous work on thread migration for the parallel functional
language GPH [BLTO02].

— Code Transformation: During compilation a program using noveTo is
transformed into a simpler program that uses only weak mobility. One way
to do that is to lift the 10 monad into a continuation monad and then every
call to roveTo is translated into a remote evaluation of the continuation
of the current thread.

14



ACKNOWLEDGEMENTS

The authors would like to thank Simon Marlow and Simon Peyton Jones for their
helpful comments on the implementation design for mHaskell. Bernard Pope also
gave important suggestions about the evaluation of thunks. This work has been
partially supported by an ORS and James Watt Scholarship.

REFERENCES

[BLOMP97] Silvia Breitinger, Rita Loogen, Yolanda Ortega-Mallén, and Ricardo Pefia.

[BLT02]

[BTLO3]

[CF99]

[CGK98]

[CIK95]

[Erl02]
[FG96]

[FHO1]

[GHC98]
[Han99]

[JGF96]

The Eden Coordination Model for Distributed Memory Systems. In High-
Level Parallel Programming Models and Supportive Environments (HIPS),
volume 1123. IEEE Press, 1997.

André Rauber Du Bois, Hans-Wolfgang Loidl, and Phil Trinder. Thread
migration in a parallel graph reducer. In IFL. Springer-Verlag, LNCS 2670,
2002.

Andre R. Du Bois, Phil Trinder, and Hans-Wolfgang Loidl. Towards a Mo-
bile Haskell. In Proc. of the 12th Inter national Workshop on Functional and
(Constraint) Logic Programming (WFLP 2003), pages 113-116, Valencia
(Spain), 2003.

Sylvain Conchon and Fabrice Le Fessant. Jocaml: Mobile agents for
Objective-Caml. In First International Symposium on Agent Systems and
Applications (ASA'99)/Third International Symposium on Mobile Agents
(MA'99), Palm Springs, CA, USA, 1999.

Manuel M. T. Chakravarty, Yike Guo, and Martin Kohler. Distributed
haskell: Goffin on the internet. In Fuji International Symposium on Func-
tional and Logic Programming, pages 80-97, 1998.

Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher-order dis-
tributed objects. ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), 17(5):704-739, 1995.

Erlang. WWW page, June 2002.

Cédric Fournet and Georges Gonthier. The reflexive chemical abstract ma-
chine and the join-calculus. In Conference on Lisp and Functional Pro-
gramming (LFP’84), Austin, Texas, 1996.

\Wolker Stolz Frank Huch. Distributed programming in haskell: From ports
to streams. In Haskell Workshop, 2001.

The Glasgow Haskell Compiler. WWW page, January 1998.

M. Hanus. Distributed programming in a multi-paradigm declarative lan-
guage. In Proc. of the International Conference on Principles and Practice
of Declarative Programming (PPDP’99), volume 1702, pages 376-395.
Springer LNCS, 1999.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent
Haskell. In Conference Record of POPL '96: The 23 ACM SIGPLAN-
S GACT Symposium on Principles of Programming Languages, pages 295—
308, St. Petersburg Beach, Florida, 21-24 1996.

15



[Kir01]

[Kna95]
[Mil99]

[NSVEP91]

[0Ca02]
[Pil9g]

[PJ92a]

[PJ92b]

[PS02]

[PTLOO]

[THLP98]

[THM+96]

[TLPO2]
[VFO1]
[VWP02]

[Wojoo]

Zeliha Dilsun Kirli. Mobile Computation with Functions. PhD thesis,
Laboratory for Foundations of Computer Science, University of Edinburgh,
2001.

Frederick Colville Knabe. Language Support for Mobile Agents. PhD the-
sis, School of Computer Science, Carnegie mellon University, 1995.

Robin Milner. Communicating and Mobile Systems: The r-Calculus. Cam-
bridge University Press, May 1999.

Eric Nocker, Sjaak Smetsers, Marko van Eekelen, and Rinus Plasmeijer.
Concurrent Clean. In Leeuwen Aarts and Rem, editors, Proc. of Parallel
Architectures and Languages Europe (PARLE '91), volume 505, pages 202—
219. Springer-Verlag, 1991.

OCaml. WWW page, June 2002.

Marco Pil. Dynamic types and type dependent functions. In Implementation
of Functional Languages, pages 169-185, 1998.

S. L. Peyton Jones. Implementing lazy functional languages on stock hard-
ware: The spineless tagless g-machine. Journal of Functional Program-
ming, 2(2):127-202, 1992.

S.L. Peyton Jones. Implementation of Functional Programming Languages.
A Tutorial. Prentice Hall, 1992.

R. Pefia and C. Segura. A polynomial cost non-determinism analysis. In
Implementation of Functional Languages, LNCS, Volume 2312, pages 121-
137. Springer-Verlag, 2002.

R. Pointon, P.W. Trinder, and H-W. Loidl. The design and implementation
of Glasgow Distributed Haskell. In IFL. Springer LNCS, 2000.

Philip W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl, and Simon L.
Peyton Jones. Algorithm + Strategy = Parallelism. Journal of Functional
Programming, 8(1):23-60, January 1998.

Philip W. Trinder, Kevin Hammond, James S. Mattson Jr., Andrew S. Par-
tridge, and Simon L. Peyton Jones. GUM: a portable implementation of
Haskell. In Proceedings of Programming Language Design and |mplemen-
tation, Philadephia, USA, May 1996.

P.W. Trinder, H-W. Loidl, and R.F. Pointon. Parallel and distributed
haskells. Journal of Functional Programming, 12(4/5):469-510, 2002.

V.Stolz and F.Huch. Implementation of Port-based Distributed Haskell. In
Draft. Proc. of IFL, 2001.

Arjen van Weelden and Rinus Plasmeijer. Towards a strongly typed func-
tional operating system. In IFL 2002, 2002.

Pawel Tomasz Wojciechowski. Nomadic Pict: Language and Infrastructure
Design for Mobile Computation. PhD thesis, Wolfson College, University
of Cambridge, 2000.

16



