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Abstract. Due to the varying latencies between memory banks, efficient
shared memory access is challenging on modern NUMA architectures.
This has a major impact on the shared memory performance of par-
allel programs, particularly those written in languages with automatic
memory management.

This paper presents a performance evaluation of distributed and shared
heap implementations of parallel Haskell on a state-of-the-art physical
shared memory NUMA machine. The evaluation exposes bottlenecks in
the shared-memory management, which results in limits to scalability
beyond 25 out of the 48 cores.

We demonstrate that a hybrid system, GUMSMP, that combines both
distributed and shared heap abstractions consistently outperforms the
shared memory GHC implementation on seven benchmarks by a factor
of 3.3 on average. Specifically, we show that the best results are obtained
when sharing memory only within a single NUMA region, and using
distributed memory system abstractions across the regions.

1 Introduction

Current high-end servers offer 48 or 64 cores with a NUMA (non-uniform mem-
ory access) architecture that supports shared memory access across the address
space. On such architectures, reduced synchronisation costs are bought at the
price of memory latencies, which vary by a factor of up to 3, depending on the
NUMA region in which the memory bank is located (Sec 2.2). Even more prob-
lematic, for those applications that require frequent memory access, the memory
bus can become a major bottleneck, degrading access times far below the values
measured on an idle machine. These architectures pose a challenge to parallel
languages, especially in cases where they make very dynamic use of memory.

We study the impact of state-of-the-art NUMA architectures on the parallel
performance of languages with automated memory management. We explore a
range of systems from purely shared-memory, hybrid shared/distributed memory
to purely distributed memory. The vehicle for our study is a suite of implementa-
tions of the Glasgow parallel Haskell (GpH) extension of Haskell. The underlying
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compiled parallel graph reduction execution model induces both frequent and
highly random memory access, aggravating the impact of the NUMA memory
architecture. Hence GpH programs are excellent test cases for exploring the
impact of NUMA memory management. Our results, however, are not restricted
to Haskell: the issues we explore impact all languages with automated memory
management on NUMA architectures.

We demonstrate that the scalability of the shared memory GpH implementa-
tion is limited by heap contention due to synchronisation and locking overheads
of the stop-the-world, parallel garbage collector (Section 3.3). This limits the
number of cores, that can be usefully exploited, to well below the 48 physi-
cal cores available on our AMD Opteron measurement platform. In contrast,
our hybrid shared/distributed system can effectively exploit several distributed
heaps on a physical shared memory machine, to reduce both memory contention
and heap locking.

We quantify the impact of heap contention on state-of-the-art NUMA servers
for memory intensive languages like GpH, and hence identify how parallel Haskell
applications can best exploit emerging shared memory hardware architectures.
This paper makes the following contributions:

– We investigate the scalability limits of the shared heap implementation of a
memory intensive language (the GHC-SMP implementation of GpH) on a
recent NUMA architecture (Section 3.2).

– We analyse the memory usage profile of the applications and find that a
hybrid shared/distributed memory implementation of a memory intensive
language (the GUMSMP implementation of GpH) exhibits significantly
smaller GC overheads than the shared memory implementation GHC-SMP.

– For a range of shared and distributed heap configurations, the hybrid
GUMSMP approach improves performance by a factor of 3.3 on average
for 7 benchmarks (Section 3.3).

– We investigate how to optimise the number of cores per node of a distributed
memory multicore cluster (Section 4).

Our measurements in Section 3.3 demonstrate a drop in runtime by up to a fac-
tor of 4.5 when using the hybrid GUMSMP, over the specialised shared memory
GHC-SMP system. Moreover, we achieve the best results when using the shared
memory system on a single NUMA region, while using the distributed memory sys-
tem across the regions, effectively matching the number of heaps to the number of
NUMA regions on the hardware platform. We conjecture that this latter config-
uration represents a sound decision for other languages with automated memory
management, which will be similarly affected by the varying memory latencies.

2 Background

2.1 Parallel Haskell Implementations

This section provides a brief overview of the three existing parallel Haskell imple-
mentations: GHC-GUM, using distributed heaps with a virtual shared heap
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abstraction to hide the distribution from the programmer; GHC-SMP, using a
shared heap implementation; and GHC-GUMSMP, or just GUMSMP, repre-
senting a hybrid of both memory management models.

The Distributed Memory GHC-GUM Implementation: GHC-GUM
(Graph Reduction for a Unified Machine Model) [19] is our research platform
for distributed memory parallelism based on GHC, which represents a portable
implementation of an abstract graph reduction machine, based on explicit mes-
sage passing and implementing a virtual shared heap. It implements the Glasgow
Parallel Haskell (GpH) extension. GHC-GUM was built as an extension to the
runtime environment (RTE) of the Glasgow Haskell Compiler (GHC) [13]. Par-
allelism is introduced by the par primitive, indicating that the evaluation of an
expression is potentially parallel, and exploited by reducing separate sub-graphs
in parallel [15].

A key concept integrated into the GHC-GUM design is the virtual shared
heap, as shown in Figure 1, where the graph representing the program to be
evaluated in parallel is stored, and is implemented on top of a distributed memory
model. Another key characteristic is the dynamic and adaptive management of
both work and data. This enables the runtime environment to adjust the dynamic
behaviour of an application to the hardware characteristics and to the dynamic
behaviour of the program.

Memory Management: The parallel program is represented as a graph in a
(flat) virtual shared memory and can be evaluated in parallel using the available
processors. Each Processing Element (PE) has local memory integrated into
the global distributed heap, and a two level addressing scheme; one for local
addresses (LAs), and one for global addresses (GAs), which is used to reference
values in the shared heap. GAs enable each PE to garbage collect locally, without
the need to synchronise with other PEs.

A Global Address (GA) is a globally unique identifier for a closure, which is
created as a result of sending work from one PE to another in response to a work-
request message. After a thunk, representing work, is sent to the requesting PE,
the original thunk is overwritten with a FetchMe closure, a global indirection,
containing the global address of the new copy of the thunk at the destination.
The purpose of overwriting a thunk with FetchMe is to indicate that it is being
evaluated in another PE, and to indicate its new location, should the result be
needed subsequently by the original PE. The GA consists of a locally unique
identifier, the PE identifier of the destination and a weight, as discussed below.

A Global Indirection Table (GIT) is maintained within each PE to map global
identifiers to the local address of the corresponding heap closure. The GIT acts
as a source of roots for local garbage collection. This design enables each PE
to garbage collect independently, provided that the GIT is adjusted after each
garbage collection to reflect the new locations of the local heap closures.

Global addresses are garbage collected using standard distributed weighted
reference counting algorithm [10]. When a GA is created, it has an initial weight
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Fig. 1. Structure of a Virtual Shared Heap

that is split whenever the reference is shared. This mechanism aims to minimise
the synchronisation needed among referrers to one closure. When a global object
is locally garbage collected, the associated reference weight is returned to the
owning PE.

A mapping of global to local addresses is required to ascertain whether a
copy of a newly imported graph structure already exists on that PE, and to
avoid duplication of data and work. If a newly imported graph structure does
exist, the version of the graph, which has been evaluated less, will be subsumed
by the more evaluated version. The details of this design are discussed in more
detail in the virtual shared memory instance of PAEAN [6].

The Shared Memory GHC-SMP Implementation: GHC-SMP is an opti-
mised shared memory implementation of GpH, integrated into the standard dis-
tribution of GHC [8,12]. It assumes physical shared memory and uses mutexes
for synchronisation between local threads. GHC-SMP excels at the efficient
handling of light weight threads. Millions of light weight threads are supported
by the GHC runtime environment, which also supports concurrency. In order
to achieve high thread management performance, the threads are multiplexed
onto a handful of operating system threads, approximately one for each physi-
cal CPU. A thread is represented by a thread state object (TSO), and a heap
allocated structure, which maintains the state of the Haskell thread including its
stack. The structure of the TSO is the same as in GHC-GUM. A small set of
operating system threads (worker threads, one worker thread per core) execute
the Haskell threads. One Haskell Execution Context (HEC) is maintained for
each core, owing to the fact that the worker thread may vary frequently.

Memory Management: The memory management is based on the concept of a
block-structured heap [12,14,20]. The shared heap is divided into non-contiguous,
fixed-sized blocks. A block allocator manages these blocks, which can be singly
allocated, and linked together into lists to form an allocation area, to be pro-
vided to each HEC to allocate fresh objects. They can also be linked in contiguous
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groups to allocate large objects with sizes greater than a block size. The operat-
ing system provides the block allocator with memory initially and when it has
none remaining.

The garbage collector implemented in GHC-SMP is a generational, copying
garbage collector based on dividing the shared heap into generations of fixed-
size blocks. Generations are numbered from 0 to n, with 0 being the youngest.
To collect generation n, all younger generations from 0 to n must be collected.
A remembered set is maintained to keep track of all pointers referenced from
mutable objects in the older generation to younger ones. The youngest genera-
tion, where new objects are allocated, is frequently garbage collected. Objects
are promoted from generation n to the older generation n+1, which is collected
less frequently, after they have survived a specific number of collections.

Each generation is collected using a copying collection, where the promotion
of objects takes place by evacuating all reachable objects from the root pointers
or remembered sets of older generations. Then, the scavenge phase operates on
each evacuated object and in turn evacuates each pointer in the object.

This garbage collection is parallel and stop-the-world so it is initiated by a
HEC with an exhausted allocation area, and takes place when all the HECs syn-
chronise to start the garbage collection. For parallel copying GC, it is important
to evacuate or scavenge each object using different processors. Each GC thread
synchronises to get a private (to-space) allocation block. Local per-HEC remem-
bered sets are maintained to avoid synchronisation costs and to improve data
locality, as the TSOs that have been executed on a given core, with the data
they refer to, are likely to be present in the core cache, and therefore traversed
by the garbage collector on the same core.

Load balancing of the GC is achieved with work stealing queues. When the
GC begins, each HEC already has a lot of data in its cache. Therefore, the GC
thread takes blocks to scavenge from its own queue in preference to stealing,
starting with blocks from the oldest generations. If no work is available in its
own queue, then it will try to steal work from the queues of other HECs. This
design improves the locality and reduces the contention of a single, global work
queue, which was originally implemented in GHC-SMP. In fact, stealing work
from the queues of other HECs in order to balance the load, is to be avoided
with minor collections as it has a detrimental effect on locality [12].

Lock Contentions: During parallel garbage collection, synchronisation is required
for the following parts:

1. One global lock in the block allocator to obtain a new block for a GC thread:
Each GC thread needs a private block into which objects can be copied when
they are evacuated. Contention to this lock is reduced by allocating multiple
blocks at a time and by keeping the spare ones on a private partly-free-
list associated with the thread. When a GC thread wants a fresh allocation
block, it first searches in its partly-free-list to reduce synchronisation.

2. One lock per step in the large-object lists: Large objects with sizes greater
than a block size are allocated into a block group of contiguous blocks.
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A linked list of large objects is maintained for each step of each genera-
tion. During the garbage collection, those large objects are not copied, but
are, instead, moved by re-linking them from one linked list to another, and
therefore require a lock.

3. The per-object evacuation lock: To prevent multiple GC threads from copy-
ing the same object, an atomic instruction is required for synchronisation.
This synchronisation represents the major source of overhead for the par-
allel copying GC with up to 30% of the GC time [14]. In improvements to
the original design, this contention was reduced by relaxing the lock when
copying immutable objects, resulting in a 7% improvement. Since the rate
of actual collisions is very low, the space wasted by duplicate copying is
negligible [12].

The Hybrid Shared/Distributed Memory GUMSMP Implementation:
GUMSMP is our integration of GHC-SMP and GHC-GUM functionality in
one system. It is designed to be multilevel, using different, tailored technologies
on the small scale, physical shared memory level (multicores) and also on the
large scale, distributed memory level (clusters). The design was built based on
the successful technologies that already exist at both levels. In particular, it
combines a mechanism of work stealing for passive load distribution, with an
adaptive, dynamic mechanism for automatically distributing work and data on a
cluster. Technically, this design was achieved by integrating the functionalities of
the existing GHC-SMP and GHC-GUM implementations of the RTE for GHC.
The main design objectives for GUMSMP and the implementation details can
be found in [1].

2.2 NUMA Architectures

One of the main trends in hardware design is the use of a NUMA (Non-Uniform
Memory Access) model for physical shared memory machines [9]. The design goal
is to provide performance scalability for manycore machines with large main
memory. In this model, the main memory is partitioned into several NUMA
regions, each of which is associated with several cores. Access to the memory
within one region is fast, while remote access must pass through an on-chip
network to access a different memory bank, and is much slower. This performance
asymmetry intensifies as when the number of cores in a single region increases,
thus negatively affecting uniformity [17].

Formanycore processors, theNUMAdesign of thememory sub-system requires
awareness of the differences in latency by the system or the algorithm to avoid
scaling issues. Both effective memory bandwidth and latency to different regions
on the processor can be negatively impacted by problems with hardware [4].

Traditionally the term NUMA is mainly used to characterise the structure
of the memory sub-system. However, in general, other resources, such as I/O,
are also impacted by the asymmetry of NUMA architectures. This can result in
substantial fluctuation in I/O performance relative to latency and bandwidth,
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where remote I/O access generates a higher latency and usually a lower band-
width for data transfer, as shown in [17]. This paper, however, mainly focuses
on the asymmetry in memory latencies.

3 Performance on NUMA Architecture

The measurements are made on a 48-core NUMA machine, provided by four
AMD Opteron-based processors, one per socket. Each processor contains two
NUMA regions, and each region has six 2.8GHz cores. The total RAM is 512
GB, evenly distributed as 64 GB for each region. A 2 MB L2 cache is shared
between every 2 cores in each region, and a 6 MB L3 cache is shared between
all the 6 cores within the same region. The machine runs x86 64 Linux CentOS
6.5. Memory latencies1 on this NUMA architecture vary by a factor of 2.2.

The RTE of the parallel Haskell implementations are based on GHC 6.12.2,
using GCC 4.4.7, and PVM 3.4.5 for message passing. For GHC-SMP, the per-
formance of GHC 7.6.3 was tested, delivering similar results. In our experiments,
we choose 40 cores to evenly partition the machine into 2, 5, 6, and 8 regions.

3.1 Setup and Programs

We used the following benchmarks that exhibit a range of parallel patterns:

– parfib is a divide-and-conquer program, which computes for a given value,
the Fibonacci number using a depth threshold.

– coins is a divide-and-conquer program, which computes the number of ways
to pay a given value from a fixed set of coins.

– sumEuler is a data-parallel program, which computes the sum of the Euler
totient function on the list interval.

– worpitzky is a divide-and-conquer program, which checks the Worpitzky
property over Stirling numbers.

– maze is a nested data-parallel AI application for finding the path through a
fixed maze using a parallelism threshold.

– mandelbrot is a data-parallel application for computing a Mandelbrot set
over a given window size, and number of iterations.

– blackscholes is a data-parallel application, which represents implemen-
tation of the Black-Scholes algorithm for modelling financial contracts by
providing a number of options, and granularity.

3.2 Scalability Limits

Table 1 compares runtimes using the GHC-SMP shared memory with the GHC-
GUM distributed memory system. These numbers show a significant degrada-
tion in performance for the shared memory GHC-SMP system, beyond 15 to
25 cores, while the distributed memory GHC-GUM implementation continues
1 Measured using numactl -H.
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to scale. The program with the lowest heap allocation rate, worpitzky, scales
best, achieving the lowest runtime in an GHC-SMP setting at 35 cores, but
even this program has a lower performance on 40 cores (on an 48-core machine).
Meanwhile, coins has the highest allocation rate; it represents the one with the
lowest scalability, as performance starts to decrease after 15 cores.

Table 1. Runtimes for GHC-SMP and GUM with increasing core numbers (lowest
RTs for GHC-SMP highlighted)

Runtimes

Cores 1 15 20 25 30 35 40

Implementation SMP GUM SMP GUM SMP GUM SMP GUM SMP GUM SMP GUM SMP GUM

parfib 6004.2 6644.7 741.8 573.4 746.7 406.1 666.7 350.4 740.9 296.3 711.9 307.7 752.67 276.31

coins 5155.7 5690.7 829.2 485.0 857.5 432.9 834.8 384.3 940.4 340.4 1137.5 340.7 1095.1 318.3

sumEuler 1507.9 1552.0 199.9 102.8 197.9 94.2 182.3 77.9 194.3 81.9 226.1 81.5 222.0 79.0

worpitzky 1842.3 1818.3 217.3 173.1 204.9 135.9 187.0 116.5 185.2 111.5 169.9 105.4 178.6 108.8

maze 3181.9 3289.4 1472.5 675.8 1424.4 505.5 1404.3 467.9 1553.9 419.3 1650.9 403.2 1527.9 348.7

mandelbrot 4226.9 3772.6 1163.1 420.0 631.5 327.9 801.2 294.9 779.8 303.5 821.6 313.9 882.4 315.4

blackscholes 5133.1 5996.3 542.5 396.3 463.32 326.3 431.8 265.1 406.9 245.4 491.6 235.4 596.9 200.42

While GHC-GUM starts with higher execution times on 1 PE, it typically
outperforms GHC-SMP from ca. 10–15 cores onwards. In consideration of this
trend, the remainder of the paper is based on a study that assumes there is an
intermediate point with even higher performance in the range of the extremes
of shared heap GHC-SMP, and distributed heap GHC-GUM.

3.3 Benefits of a Distributed Heap

The GUMSMP implementation of parallel Haskell combines the heap models
for both GHC-SMP and GHC-GUM. It provides parameters for selecting the
number of cores to be used, inherited from GHC-SMP, and for selecting the
number of PEs (independent instances of the Haskell runtime environment),
inherited from GHC-GUM.

The figures and tables in this section explore a range of configurations, from
a purely shared heap to purely distributed heaps, using the GUMSMP imple-
mentation and a total of 40 cores. The columns in Table 2 show configurations in
the form PE/N, indicating that PE instances of the runtime system, each with
its own heap, are spawned, with N cores used in each instance, all accessing the
same shared heap. Our goal is to establish a balance between PE instances and
per PE core numbers that achieve the best results for this set of test programs.

Our main results, the runtimes in Figure 2, Table 2 (lowest runtimes high-
lighted), and the speedups in Figure 3 show that for all programs a hybrid of
distributed and shared heaps achieves the best performance. Typically, it is best
to use up to 5 of the 40 physical cores, resulting in at least 8 separate PEs
running simultaneously. For the more data intensive mandelbrot application
(see Figure 6), we observed a further, but minor, improvement when using 5
cores. Notably, the improvement relative to the pure shared memory execution
(GHC-SMP) is most pronounced for maze (a data intensive program) and coins



Balancing Shared and Distributed Heaps on NUMA Architectures 9

���

���

���

���

���

���

���

���

���

����

� � � � � �� �� ��

�
��
��
��
��

��
��
��
�

�����������������������

��������

�����
�����
��������
���������
����
������
������������

Fig. 2. Runtimes (normalised w.r.t. maximum runtime) for GUMSMP with increasing
numbers of cores per PE. Note that in each case a total of 40 cores is used, and the
difference is only in the number of cores that are used per PE.
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Fig. 3. Speedup for GUMSMP with increasing numbers of cores per PE (always using
40 cores in total)

(a divide-and-conquer program) with runtime improvements up to a factor of
4.5; whereas, improvements for other programs are between 2.2 and 3.3.

To quantify the garbage collection (GC) overhead, we measure the percent-
age of GC time relative to the total execution time in Figure 4. There is a
strong correlation between this GC percentage, and the runtime, indicating a
loss in performance for high core numbers, which is mainly due to memory man-
agement overheads. Part of this overhead is inherent to the parallel nature of
the execution. All the programs typically generate a large number of threads;
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Fig. 4. Average GC percentage (normalised w.r.t. maximum average GC percentage)
for the hybrid GUMSMP system on 40 cores

especially in the case of the shared heap implementation. Each thread defines
a set of live heap cells, which need to be retained following garbage collection.
The large amount of live data, which shows up as significantly higher values of
memory residency in Figure 6, translates into the need for a (currently NUMA-
agnostic) garbage collection to perform more work, which represents one major
source of overhead. The other major sources of overhead, which are harder to
quantify, are the synchronisation to perform stop-the-world GC, and the per-
object locking that is required to prevent multiple threads from duplicating
mutable objects when copying, as discussed in Section 2.1.

It should be noted, that we always use the default minimum heap size of 0 for
each PE; thus, there is no gain in the size of the initial heap when increasing the
number of PEs. When increasing the minimum heap size, we observe a significant
drop in runtime for GHC-SMP, as expected, because garbage collections are less

Table 2. Runtimes (in sec.) for the hybrid GUMSMP system on 40 cores (lowest RTs
highlighted)

Configuration GUM GUMSMP SMP SMP RT
GUMSMP RT

PE/Cores PE 40 40/1 20/2 10/4 8/5 5/8 4/10 2/20 N 40

parfib 276.31 277.1 258.5 306.6 310.6 460.2 485.7 635.3 752.67 2.9

coins 318.3 304.4 240.9 356.8 364.5 388.7 455.3 702.9 1095.1 4.5

sumEuler 79.0 77.3 66.9 67.8 69.1 82.9 85.06 135.9 222.02 3.3

worpitzky 108.8 104.2 79.6 88.5 91.9 104.2 111.6 145.7 178.6 2.2

maze 348.7 343.1 375.6 338.3 344.0 378.3 728.36 810.7 1527.9 4.5

mandelbrot 315.4 332.0 372.5 303.3 289.4 288.0 297.9 485.1 882.4 3.0

blackscholes 200.42 214.4 179.2 203.6 209.5 273.7 326.8 435.4 596.9 3.3

Geom Means. 3.3
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Fig. 5. Average allocation rate (normalised w.r.t. maximum average allocation rate)
for the hybrid GUMSMP system on 40 cores (in GB/s)

frequent. However, the GHC-SMP runtimes are still substantially higher than
the GUMSMP runtimes.

Figure 5 measures the amount of allocation per second with increasing core
numbers per PE. We explain the serious degradation in allocation rate as an
indirect consequence of the locking during GC, as discussed above.

While the synchronisation overhead for stop-the-world parallel GC is largely
independent of the live data set, the per-object locking overhead increases with
both higher core numbers and larger live data set. As a combination of both
overheads, the garbage collection phase becomes the constraining factor in the
allocation performance. This behaviour is indicated by the consistent drop in
the allocation rate beyond ca. 8–10 cores per PE.

Notably, the memory residency shown in Figure 6 matches the profile of
the GC percentage shown in Figure 4. This match underlines the fact that the
majority of additional work done during the GC for high core numbers was
required due to the size of the live data set in these configurations.

In summary, the combination of global synchronisation for GC and locking
overheads in the parallel, copying GC account for a significant bottleneck in
heavily allocating programs. This overhead, which becomes dominating with
larger live data sets, is the main reason for the drop in performance observed
in Table 1 and Figure 2. Notably, programs with a low allocation rate, such as
worpitzky, exhibit the smallest runtime improvement over pure shared memory
versions.

4 Performance on Multicore Clusters

GUMSMP was designed for clusters of multicore; whereby, the system can use
a shared heap on one node and distributed heaps across nodes. In our previous
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Fig. 6. Maximum memory residency (normalised w.r.t. maximum memory residency)
for the hybrid GUMSMP system on 40 cores

results [1], we evaluated the performance of GUMSMP on a cluster of up to
100 cores with fixed number of cores per PE.

In this section, we systematically investigate how to optimise the number of
cores per PE in a distributed memory cluster . In particular, we fix the total num-
ber of cores to be 84 and test the possible combinations of cores per PE and their
effect on performance. This serves as guidance for our ongoing work to optimise
the performance of GUMSMP on clusters of multicores. These measurements
are made on a homogeneous Beowulf cluster of multicores, where each node is an
8-core CPU (2 quad-core Xeon E5506 2.13GHz, with 256kB L2 and 4MB shared
L3 cache). All 32 nodes are connected via a non-specialised Gigabit ethernet
connection. All machines are running Linux CentOS 6.4. The implementation of
the GHC-SMP RTE is based on GHC 6.12.2, using GCC 4.4.7, and PVM 3.4.5
for message passing.

As indicated in Figure 7, using GUMSMP with 3 cores per PE instance con-
sistently performs better with divide-and-conquer programs, with a speedup of up
to 68 on 84 cores. Data-parallel programs still perform better using GUMSMP
with larger cores per PE, and achieve the best performance using 4 cores per PE
instance for sumEuler and 6 cores per PE instance for mandelbrotwith a speedup
of 65 and 21 respectively on 84 cores.

However, with increasing number of cores per PE instances, the performance
of divide-and-conquer programs degrades, as a consequence of the shared mem-
ory management discussed in the previous section.
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Fig. 7. Speedup for GUMSMP on the cluster of multicore with increasing numbers of
cores per PE. Note that in each case a total of 84 cores is used.

5 Related Work

The impact of non-uniform memory latencies on parallel performance has recently
been studied in several contexts. A comparative empirical study by Bergstrom [5],
running low-level benchmarks in the modified C language STREAM, summarises
that Intel Xeon architectures provide larger cross-processor bandwidth and suffer
less from NUMA penalties compared to the widely used AMD Opteron architec-
ture. This underlines the importance of NUMA on our measurements, using the
latter architecture.

The baseline for our work is Marlow et al.’s [14] implementation of paral-
lel, generational GC in GHC-SMP, which is the technology used in the main
branch of the GHC runtime system (as discussed in Section 2.1). This work was
extended to concurrent GC in [11]: in this implementation a GC thread runs
concurrently with mutator threads, avoiding the need for a stop-the-world GC.
The implementation features local heaps, parallel GC, in which each core has
its own private heap, collected independently of others. There is also a shared
heap, which is collected less frequently, using the parallel stop-the-world GC;
thereby leading to less synchronisation. While this design is desirable and the
new parallel GC achieves good performance improvements on up to 24 cores,
scalability is lower than expected, and the implementation is significantly more
complex than the current GC, which is of the parallel stop-the-world variety.
Therefore, these modifications have not been merged into the mainline GHC.

Efficient automatic memory management on NUMA architectures is a chal-
lenge for aggressively allocating languages, like declarative ones. One notable
system that tackles these challenges is the Manticore system for parallel ML,
with the garbage collector implemented by Auhagen et al. [3]. It combines a
split heap design with a three phase, semi-generational GC maximises locality
and minimises global synchronisation. This was demonstrated to scale effectively
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with good utilisation and improved performance over all available cores for a 48-
core AMD Opteron, and a 32-core Intel Xeon machines.

A similar trend can be observed in modern Java implementations. The
measurements by Gidra et al. [7] of several DaCapo benchmark programs imple-
mented in OpenJDK7 mirror our observations made for (shared-memory) paral-
lel Haskell programs: scalability is poor on a 48-core NUMA architecture, with a
stop-the-world collector representing the main bottleneck. They provided more
detailed measurements on the sources of overhead than we did, they identified
the scanning and copying phases of remote objects, i.e. objects in remote NUMA
regions, as the main overhead during GC, linking it to specific NUMA features.

ffect the performance. ects the scalability.
ffer) which is local to one GC thread to avoid locking for every in-copy object.

ffer (TLAB), a fraction of young generation space allocated to every application
thread for lock-free object allocation in the .However, there is no guarantee that
the physical memory for the GCLAB in use by a GC thread comes from the
local memory node. like remote scanning, lack of object aNffinity between GC
thread and in-copy object also causes this.

With a similar interest to our paper, Alnowaiser [2] studied locality char-
acteristics in two Java benchmarks is. This paper evaluated and analysed the
locality characteristics of a rooted sub-graph for NUMA GC using two DaCapo
and SPECjbb2005 benchmarks. While data locality is generally high, on aver-
age more than 80% of objects are co-located with the root, large, distributed
graphs suffer from being exposed to load balancing techniques that diminish
data locality. The author suggests modifications to the GC heuristic, using the
root location as locality heuristic for GC, and ensuring that GC is structured to
process the roots on the same memory node in one phase.

While the above papers mainly present observations on performance and scal-
ability, several authors have developed concrete improvements inside the RTE.
In particular, Terboven et al. [18] offers concrete recipes for the parallel program-
mer to enhance performance of OpenMP programs with task-level parallelism.
These recipes are designed to improve data-locality under several different work-
loads, and are based on extensive measurements of different task-level OpenMP
implementations, using a range of benchmark programs.

While the above paper achieves performance improvements through changes
on program level, Yi Su et al. [16] developed NUMA-aware, thread placement algo-
rithms inside an RTE for OpenMP, considering the critical path when addressing
NUMA latencies. They used on-line profiling of information obtained from hard-
ware counters to direct thread placement; thereby improving performance by min-
imising the critical path of OpenMP parallel regions. These algorithms have been
evaluated using four NPB OpenMP applications, achieving between an 8% to 26%
improvement over the default Linux thread placement algorithm.

6 Conclusions

We have investigated the impact of a NUMA memory model on the parallel
performance of languages with automated memory management using 7 Glasgow
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parallel Haskell benchmarks on a state-of-the-art platform. We show that beyond
10 NUMA cores it is beneficial to use distributed heaps, and specifically one heap
per NUMA region. Hence better performance is obtained for all benchmark
programs with the hybrid shared/distributed memory model provided by our
GUMSMP implementation.

We report the following as the main findings.

– GUMSMP’s performance, with a maximum of 5 cores per PE is consis-
tently better than a pure GHC-SMP execution, by a factor of up to 4. This
configuration amounts to using a single shared heap for each NUMA region.

– For large core numbers GC overheads in the shared-memory GHC-SMP
increase drastically, primarily due to the larger live heap set.

– The allocation rate of GHC-SMP is typically much smaller than that for
GUMSMP. We conjecture that this a combination of synchronisation over-
head in the stop-the-world parallel GC and locking overhead incurred to
prevent multiple GC threads from accidentally duplicating mutable objects
during parallel copying.

We observe best performance when using one shared heap per NUMA region,
which means in our measurements using 5 cores per PE in a configuration of 8
PEs, running on a hardware with 40 cores. These improvements occurred, despite
the fact that the RTE is not NUMA-aware, by simply structuring the heap into
several distributed heaps and relying on the operating system for the concrete
mapping. Further improvements should be possible with a tighter integration
of the RTE into the underlying operating system. It should also be noted that,
graph reduction based execution models, such as the one used in these systems,
incur frequent and unstructured memory access. Therefore, the relative impact
of different memory latencies is likely to be higher in our systems, and so, this
study can be seen as a stress test for modern RTEs in the presence of NUMA
architectures, contributing to studies of NUMA performance of languages with
highly dynamic memory usage, as outlined in the related work.

In future work, we plan to study ways to make the RTE NUMA-aware,
initially by directly mapping an RTE heap to a particular NUMA region. In
the longer term a more fine-grained mechanism would be desirable, where seg-
ments, or partitions, of the heap can be assigned to specific parts of the shared
memory. This paper, together with the source code of the benchmarks, and the
data set is available online at: http://www.macs.hw.ac.uk/∼dsg/projects/gph/
papers/abstracts/tfp14.html.
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