
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Evaluating a High-Level Parallel Language (GpH)
for Computational GRIDs

A. D. Al Zain P. W. Trinder G. J. Michaelson H-W. Loidl

Abstract— Computational Grids potentially offer low cost,
readily available, and large-scale high-performance platforms.
For the parallel execution of programs, however, computational
GRIDs pose serious challenges: they are heterogeneous, and
have hierarchical and often shared interconnects, with high and
variable latencies between clusters.

This paper investigates whether a programming language
with high-level parallel coordination and a Distributed Shared
Memory model (DSM) can deliver good, and scalable, perfor-
mance on a range of computational GRID configurations. The
high-level language, Glasgow parallel Haskell (GpH), abstracts
over the architectural complexities of the computational GRID,
and we have developed GRID-GUM2, a sophisticated grid-specific
implementation of GpH, to produce the first high-level DSM
parallel language implementation for computational GRIDs.

We report a systematic performance evaluation of GRID-
GUM2 on combinations of high/low and homo/hetero-geneous
computational GRIDs. We measure the performance of a small set
of kernel parallel programs representing a variety of application
areas, two parallel paradigms, and ranges of communication
degree and parallel irregularity. We investigate GRID-GUM2’s
performance scalability on medium-scale heterogeneous and
high-latency computational GRIDs, and analyse the performance
with respect to the program characteristics of communication
frequency and degree of irregular parallelism.

Index Terms— Concurrent, distributed, and parallel languages;
Grid Computing; Functional Languages;

I. INTRODUCTION

HARDWARE price/performance ratios make cluster com-
puting increasingly attractive. Moreover, emerging GRID

technology [1] offers the potential to connect these ubiquitous
clusters to form a computational GRID: a low-cost, yet large-
scale high performance platform. Clusters and computational
GRIDs are most commonly used to execute large numbers
of independent sequential programs, e.g. under Condor [2] or
LSF Platform [3]. For such systems the computational resource
available to a single program is bounded by the most powerful
machine in the network. In contrast we consider the parallel
execution of a single program on a computational GRID,
where the computational resource available to a program
is the sum of all the resources on the network. The key
technical distinction from high-throughput computing is the
dependencies between the components of the parallel program:
they must communicate and synchronise.

Computational GRIDs are much harder to utilise effectively
for parallelism than a classical high-performance computer
(HPC). A classical HPC typically comprises a large number
of homogeneous processing elements (PEs), communicating
using an interconnect with uniform, and relatively low, latency.
Typically, PEs and interconnect are dedicated to the sole use
of the program for its entire execution. An SPMD model of

parallel programming, supported by standard communication
libraries like MPI [4] is the dominant parallel programming
paradigm. In contrast, a computational GRID is typically
heterogeneous in the sense that it combines clusters of varying
sizes and different clusters typically contain PEs with different
performance. Moreover the interconnects are highly variable,
with different latencies within, and between, each cluster.
Moreover the interconnect between clusters is typically both
high-latency and shared, and as a consequence communication
latency may vary unpredictably during program execution. We
argue that such an architecture is too complex and dynamic
for programmers to readily manage at a relatively low-level,
e.g. using SPMD.

Despite the challenges, the attraction of computational
GRIDs as low cost, readily available and large-scale high-
performance architecture has encouraged a number of groups
to develop parallel execution environments. The most common
approach is to specify the parallelism at a low level, although
some higher-level parallel models have been used, e.g. algo-
rithmic skeletons [5], as detailed in Section II.

We advocate specifying parallelism on computational
GRIDs in a language with high-level coordination and a
Distributed Shared Memory model (DSM). Such a language
abstracts over the architectural complexities of a computational
GRID: the programmer controls only a few key parallel
coordination aspects, and the remaining coordination aspects
and virtual shared memory are dynamically managed by a
sophisticated runtime environment. The language investigated
here is Glasgow parallel Haskell (GPH) [6], and its GUM

runtime environment has been engineered to deliver good
performance on classical HPCs and clusters [7]. We have
previously shown that a direct port of GUM to a the GRID,
GRID-GUM1, only reliably provides good performance for low-
latency homogeneous GRIDs, and that load management limits
performance [8]. To overcome the limitations of GRID-GUM1
we have designed and implemented GRID-GUM2 with novel
dynamic load scheduling mechanisms that record and use both
static and dynamic information about the computational GRID.
We have also reported preliminary performance measurements
on heterogeneous computational GRIDs [8].

This paper investigates whether a high-level DSM paral-
lel programming paradigm can deliver good, scalable, per-
formance for a variety of applications on combinations
of high/low and homo/hetero-geneous computational GRIDs.
That is, we present a systematic evaluation of the GRID-

GUM2 implementation of GPH, the first virtual shared-memory
parallel language for computational GRIDs. The investigation
uses six kernel parallel programs from a range of application
areas, e.g. AI and Symbolic Algebra, with data-parallel and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

divide-and-conquer parallel paradigms, and with a range of
dynamic properties like communication frequency and degrees
of irregular parallelism.

The remainder of the paper is structured as follows. Sec-
tion II describes related work. Section III describes the GPH
language and its GUM runtime environment designed for a
single HPC or cluster. Section IV summarises the design and
performance of an initial port of GUM to the GRID, GRID-

GUM1. Section V outlines the design of GRID-GUM2 with
new load management mechanisms. Section VI evaluates the
performance of GRID-GUM2 on a low latency heterogeneous,
and homogeneous, computational GRIDs. Section VII evalu-
ates the performance of GRID-GUM2 on high latency heteroge-
neous, and homogeneous, computational GRIDs. Section VIII
investigates the performance scalability of the GRID-GUM2
load distribution mechanisms on high-latency heterogeneous
computational GRIDs. Section IX analyses the relative per-
formance of all programs under GRID-GUM1 and GRID-GUM2
on combinations of low/high latency and homo/heterogeneous
computational GRIDs with respect to their communications
behaviour and degree of irregular parallelism. Section X
concludes.

II. RELATED WORK

A. High-level Parallel Coordination

A parallel program must specify both computation - a
correct and efficient algorithm, and coordination - how to
organise the computations across the PEs. Coordination typi-
cally includes aspects such as thread creation, placement, and
synchronisation. The computation aspect of a parallel program
may be specified at a range of levels of abstraction, e.g.
relatively low level like assembler or C, or at a high level
like SML or Haskell98.

Like the computation aspect, the coordination aspect of a
parallel program may be specified at a range of levels of
abstraction, and we use the characterisation of coordination
abstraction levels from [9]. In a language with explicit par-
allelism, a programmer may explicitly create and place each
thread, and communicate and synchronise between threads.
For example, the MPI [4] and PVM [10] libraries support
coordination at this level. In languages with semi-explicit
parallelism like GPH or Eden, the programmer specifies only
a few key coordination aspects, e.g. what threads to create,
and the language implementation automatically manages the
remaining coordination aspects. In an implicitly-parallel lan-
guage like High Performance Fortran [11] or PMLS [12], the
programmer specifies no coordination aspects as the paral-
lelism is implicit in the language semantics.

The great advantage of high-level, i.e. semi-explicit or
implicit, parallel coordination is that it frees the programmer
from specifying low-level coordination details. The disadvan-
tages are that automatic coordination management complicates
the operational semantics, makes the performance of programs
opaque, is hard to implement, and is frequently less effective
than hand-crafted coordination. In these languages, the low-
level coordination may be managed solely by the compiler
as in PMLS [12], solely by the runtime environment as in

GPH [13], or by both as in Eden [14]. Whichever mechanism
is chosen, the implementation of sophisticated automatic co-
ordination management is arduous, and there have been many
more designs for semi-explicit and implicit parallel languages
than well-engineered implementations.

B. Computational GRIDs

The GRID is an emerging large-scale distributed computing
architecture that enables the collaborative use of computing
resources owned and managed by multiple organisations [15].
Multiple networked machines, often from different adminis-
trative domains, are linked into a virtual architecture. The
resources of any of the networked machines are available
to computations on the virtual architecture, as governed by
service level agreements. The architecture is hierarchical with
a number of layers. The Globus [16] and Legion [17] projects
have been the most important realisations of the GRID infras-
tructure.

GRIDs are used for a variety of purposes, including on-
demand computing, and collaborative computing [18]. By this
classification we employ computational GRIDs, which aggre-
gate substantial computational resources to tackle problems
that cannot be solved on a single system. A computational
GRID typically comprises a number of high performance
computers, often clusters, connected by a shared wide area
network. Such an architecture has a number of challenging
properties. It is heterogeneous in that the number of PEs,
and the speed of the PEs, in each cluster may be different.
There is an hierarchy of communication latencies, with com-
munication to PEs at remote clusters being slowest, to PEs
at nearby clusters being slow, and to PEs within the same
cluster being fastest. Moreover, as the wide area network is
shared, communication latency may vary unpredictably during
program execution.

Currently computational GRIDs are most commonly used
to execute large numbers of independent sequential programs,
supported by a number of systems including Condor [2],
Maui [19], Legion [17]. In such systems the computational
power available for a single program is bounded by the speed
of the fastest PE in the GRID. Moreover, ASSIST and KOALA
are prototype systems. In contrast the challenge we address
is to effectively execute components of a single program in
parallel on a computational GRID. Under parallel evaluation
the computational power available to a program is bounded
by sum of all PEs in the GRID.

The dominant parallelism paradigm for classical high per-
formance computers is the Single Program Multiple Data
(SPMD) [20]. The paradigm is supported by standard com-
munication libraries like MPI [4], giving portability between
parallel architectures. In SPMD, and related paradigms like
BSP [21], all PEs are initialised to the same set of invocable
processes and no computations are transferred dynamically.
Instead, the same effect is achieved by dynamically changing
the patterns of process invocation across PEs.

An SPMD approach is impractical for computational GRIDs
where, in principle, an arbitrary number of PEs may be
available to a program. Populating all potential PEs is very

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

wasteful. A first alternative is true dynamic process mobility,
but the process granularity for an arbitrary program, especially
in a typical coarse grained imperative parallel program, may
not be suitable.

C. Low-level GRID Parallelism

A number of paradigms that are more dynamic than SPMD
have been proposed for GRID Parallelism, the majority requir-
ing the programmer to provide dynamic low level coordina-
tion. Harness [22] (Heterogeneous Adaptable Reconfigurable
Networked Systems) focuses on dynamic, adaptive resource
management and even provides facilities for dynamically split-
ting and merging of distributed virtual machines. Compared
to the more classical use of static machine configurations
over the lifetime of a parallel program, this approach provides
increased scalability of the system, combining heterogeneous
sets of machines. Within the context of GRID-computing,
Harness supports defining a personalised subset of a GRID-
infrastructure and treating it as a unified network. Furthermore,
it is possible to use plug-ins for system components such as
job scheduling or memory management, effectively generating
instances of the virtual machine customised for the underlying
architecture.

The ConCert system [23] has a similar philosophy to
GPH, using ML as a high level computation language. The
Hemlock compiler translates an ML subset to machine code
for execution on a computational GRID. In contrast to our
work, however, the parallel coordination in ConCert is largely
explicit, with primitives to explicitly spawn and synchronise
tasks. This reflects ConCert’s distributed memory model im-
plemented by mobile code units (chords). Where the DSM
parallel graph rewriting enables a relatively simple denota-
tional and operational semantics for GPH [24], ConCert uses
a modal lambda calculus [25].

To achieve good parallel performance on a variety of
different machines, the AEOS paradigm (Automated Empir-
ical Optimisation of Software) has been proposed [26]. The
essence of this paradigm is to provide several implementations
of an operation, and to use empirical data such as runtime mea-
surements, to decide which version to choose. For example,
to select cut-off values in recursive functions depending on
processor speed. However, in the AEOS paradigm the adaption
of the software has to be done by a program, not automatically
by the system, as we propose in our research.

We argue that low-level, or explicit, parallel programming
paradigms are not appropriate for GRID parallelism computing
as the architecture is too complex and dynamic for program-
mers to readily manage.

D. Distributed Shared Memory

One means of providing high-level coordination is to ab-
stract over the memory architecture of a distributed system,
i.e. to enable a thread at one PE to transparently access data
residing on other PEs. Such a Distributed Shared Memory
(DSM) model may be implemented in hardware, by the
operating system, or by a programming language. There are
a large number of research systems, and [27] gives a useful

summary, classified by the unit of memory managed: i.e.
location, page, or object.

The key issue with DSM systems is to efficiently maintain
a coherent view of the ‘shared’ memory in the presence of
concurrent updates on multiple PEs. A coherence protocol,
chosen in accordance with some consistency model, maintains
memory coherence. For example MESI is a simple and well-
known coherence protocol, named after the memory object
tags used: Modified, Exclusive, Shared and Invalid. Because
declarative languages like GPH and single-assignment lan-
guages restrict where updates can occur, their coherence
protocols can be far simpler than in conventional languages
that allow unrestricted updates.

Because the costs of maintaining consistency rise with the
number of PEs, DSM has previously been used mainly on clus-
ters, i.e. relatively small scale systems. Example cluster DSM
systems include Kerrighed [28] and TreadMarks [29]. Recently
there has been considerable research interest in DSM systems
for various types of GRIDs, including computational GRIDs.
For example Teamster is a DSM system for computational
GRIDs with rather low-level coordination, and thus far only
measured on small-scale GRIDs [30]. In contrast GPH has the
potential to utilise large scale computational GRIDs, and we
report measurements on medium-scale GRIDs in section VIII.

Our GPH language supports a DSM model, and research
contributions of this paper include proposing mechanisms for
supporting DSM on the dynamic heterogeneous computational
GRID architectures, and measuring how well such a DSM
model scales on a computational GRID. A GPH program is
represented as a graph that the GUM runtime environment
maintains in distributed virtual shared-memory. Parallelism is
introduced by rewriting multiple graph nodes simultaneously
on multiple PEs. The coherence of the graph is maintained
using specific graph-rewriting protocols, e.g. blocking any
thread that demands the value of a graph node that is currently
under evaluation.

Our GPH language has the potential to utilise large
scale computational GRIDs, and we report measurements on
medium-scale GRIDs in section VIII

E. Other High-level GRID Parallel Paradigms

Currently there is much interest in developing high-level
paradigms that reduce the effort of GRID parallel program-
ming. Much of the work is relatively immature, with systems
currently under development, or being prototyped. A range of
high-level paradigms are being explored, as outlined below.

High-level coordination languages/frameworks are being
used to compose grid applications from large scale compo-
nents, for example the ASSIST [31] and GrADS [32] projects.
The key idea is that the coordination language or framework
automatically manages the GRID complexities like resource
heterogeneity, availability, network latency. The components,
which may be sequential or parallel, require minimal changes
to be deployed on the GRID. In contrast our approach describes
the computation, as well as the coordination in a single high
level language, Glasgow parallel Haskell (GPH) [6].

Algorithmic skeletons are being used to provide high-level
parallelism on computational GRIDs. The essence of the idea is

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

to provide a library of higher-order functions that encapsulate
common patterns of parallel GRID computation. Parallel appli-
cations are constructed by parameterising a suitable skeleton
with sequential functional units. Examples of this approach
include work groups lead by Danelutto [33] [34], Cole [35]
and Gorlatch [5]. In contrast to the fixed set of skeletons, it
is possible to define new coordination constructs in GPH, as
outlined in section III-A.

Perhaps the approach most closely related to ours is to port
a high level distributed programming language to the GRID.
Both Ibis [36] and Gorlatch’s group [37], [38] port Java to
the GRID and use Remote Method Invocation (RMI) as the
programming abstraction. Coordination in GPH is higher-level
than RMI and more extensible.

Our approach is unique both in adopting a DSM model,
and in specifying parallelism in a high-level language, GPH.
GPH abstracts over the architectural complexities of a com-
putational GRID. That is, the programmer controls only a few
key parallel coordination aspects using high-level evaluation
strategies, as outlined in section III-A. The remaining coordi-
nation aspects are dynamically managed by a sophisticated
runtime environment, GRID-GUM2, specifically designed for
computational GRIDs. GPH provides higher-level coordination
than the other GRID parallel programming languages described
in the previous section.

III. GPH AND GUM

A. Glasgow Parallel Haskell (GPH)

GPH is a semi-explicit parallel functional language, en-
abling the programmer to specify parallelism with relatively
little effort using high level parallel coordination constructs.
It is a modest and conservative extension of Haskell 98, a
non-strict purely-functional programming language [6]. GPH
extends Haskell 98 with a parallel composition par, and
an expression e1 `par` e2 (here we use Haskell’s infix
operator notation) has the same value as e2. Its dynamic effect
is to indicate that e1 could be evaluated by a new parallel
thread, with the parent thread continuing evaluation of e2.
Results from e1’s evaluation are available in e2 which shares
subgraphs evaluated in e1 e.g. through common variables.
GPH programs also sequence the evaluation of expressions
using the seq sequential composition. For example a parallel
naive nfib function, based on the fibonacci function, can be
written as follows.

parfib 0 = 1
parfib 1 = 1
parfib n = nf2 ‘par‘ (nf1 ‘seq‘ (nf1+nf2+1))

where nf1 = parfib (n-1)
nf2 = parfib (n-2)

Higher-level coordination is provided using evaluation
strategies: higher-order polymorphic functions that use par
and seq combinators to introduce and control parallelism.
For example, using applies a strategy to an expression to
control its evaluation.

using :: a -> Strategy a -> a
using x s = s x ‘seq‘ x

Hence the parMap parallel map function below applies the
function f to all of the elements of the list xs in parallel.

parMap is implemented using the parList and rnf strate-
gies. The parList function evaluates the elements of a list
in parallel to the degree specified by its argument, in this case,
to normal form using the rnf strategy. parList and rnf
have a straightforward implementations using par and seq.

parMap f xs = map f xs ‘using‘ parList rnf

Specifying parallel coordination at such a high level substan-
tially frees the programmer from considering specific aspects
of teh underlying architecture. We argue that this is of great
benefit for computational GRIDs where the architecture is very
complex. As a more substantial example Appendix D shows
the GPH sumEuler program used in the measurements in later
sections. Here the programmer does not need to adapt the pro-
gram to different computational GRID architectures, and only
needs to structure the sumTotient function appropriately
and add the architecture neutral evaluation strategy in the last
line of the function. A thorough account of how to engineer
efficient parallel programs in GPH is given in [39]. The cost
of providing the programmer with such high-level abstraction
is that GPH requires an elaborate runtime environment to dy-
namically manage parallel execution on complex architectures,
and these are described next.

B. GUM - A Parallel Haskell Runtime Environment

GUM is a portable, parallel runtime environment (RTE)
for GPH. GUM implements a specific DSM model of par-
allel execution, namely graph reduction on a distributed, but
virtually shared, graph. Graph segments are communicated
in a message passing architecture designed to provide an
architecture neutral and portable runtime environment. Here
we describe the key components for a GRID context, namely
program initialisation and load distribution, for GUM 4.06
using the PVM communications library [10]. A full description
of GUM is available in [13].

C. GUM Program Initialisation

When a GPH program is launched under GUM, it initially
creates a PVM manager task, whose job is to control startup
and termination. This manager task then spawns the required
number of logical PEs as PVM tasks, which PVM maps to
the available processors. Each PE task then initialises itself:
processing runtime arguments, allocating heap etc. Once all
PE tasks have initialised, and been informed of each other’s
identity, one of the PE-tasks is nominated at random as the
main PE. The main PE then begins executing the main thread
of the Haskell program.

D. GUM Thread Management

The unit of computation in GUM is a lightweight thread,
and each logical PE is an operating system process that co-
schedules multiple lightweight threads as outlined below and
detailed in [13]. Threads are automatically synchronised using
the graph structure, and each PE maintains a pool of runnable
threads. Parallelism is initiated by the par combinator. Oper-
ationally, when the expression x ’par’ e is evaluated, the
heap object referred to by the variable x is sparked, and then

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

e is evaluated. By design sparking a reducable expression,
or thunk is relatively cheap operation, and sparks may freely
be discarded if they become too numerous. If a PE is idle, a
spark may be converted to a thread and executed. Threads are
more heavyweight than sparks as they must record the current
execution state.

E. GUM Load Distribution

GUM uses dynamic, decentralised, and blind load man-
agement. The load distribution mechanism is designed for a
flat architecture with uniform PE speed and communication
latency, and works as follow. If (and only if) a PE has no
runnable threads, it creates a thread to execute from a spark
in its spark pool, if there is one.

If there are no local sparks, then the PE sends a FISH
message to a PE chosen at random. A FISH message requests
work and specifies the PE requesting work. The random
selection of a PE to seek work from is termed blind load
distribution, as no attempt is made to seek work from a ’good’
source of work.

If a FISH recipient has an empty spark pool it forwards the
FISH to another PE chosen at random. If a FISH recipient has
a spark it sends it to the source PE as a SCHEDULE message.
If the PE that receives a FISH has a useful spark, it sends
a SCHEDULE message to the PE that originated the FISH,
containing the sparked thunk packaged with nearby graph. The
originating PE unpacks the graph, and adds the newly-acquired
thunk to its local spark pool. To maintain the virtual graph, an
ACK message is then sent to record the new location of the
thunk.

F. GUM Performance

The GUM implementation of GPH delivers good perfor-
mance for a range of parallel benchmark applications on a va-
riety of parallel architectures, including shared and distributed-
memory architectures [39]. GUM’s performance is also com-
parable with other mature parallel functional languages [7].

GUM can also deliver comparable performance to conven-
tional parallel paradigms. For example [7] compares the per-
formance of a GPH and a C with PVM matrix multiplication
programs. The program multiplies square matrices of arbitrary
precision integers, and the C program uses the Gnu Multi-
Precision library and the GNU C compiler. The sequential C
program is 5 times faster, but the GPH program has better
speedups and on 16 PEs the C+PVM program is just 1.6

times faster than the GPH program. The sizes of the GPH
and C+PVM programs differ substantially, though: the C+PVM

program is 6 times longer than the GPH program.

IV. GRID-GUM1

A. GRID-GUM1 Architecture

GRID-GUM1 is a port of GUM to the GRID [8]. The key
part of the port is to utilise the MPICH-G2 communication
library [40] in the GUM communication layer. MPICH-G2
in turn uses the Globus Toolkit middle-ware, as illustrated in
Figure 1.

Grid−GUM

Computational Grid

runs−on

runs−on

GpH

Parallel Program

compiles−to

High Level Grid RTE

Grid Connective Layer

Fig. 1. GRID-GUM1 System Architecture

program
Runtime

SpeedupSeq 16 PE
sec sec

parFib 465.1 26.3 17.6
sumEuler 1598.1 188.1 8.4
raytracer 2782.7 301.7 9.2
linSolv 828.9 112.2 7.3
matMult 916.3 292.6 5.0
queens 2816.4 567.8 6.2

TABLE I

GRID-GUM1 SPEEDUPS ON A 16-PE HOMOGENEOUS LOW-LATENCY

COMPUTATIONAL GRID

B. GRID-GUM1 Performance

The following section summarises GRID-GUM1 results
from [8]. It reports measurements of the suite of programs
characterised in Appendix B, where a key characteristic of
the programs is the communication degree, i.e. the number of
messages transmitted per unit execution time. The programs
are measured on the collection of GRID-enabled Beowulf
clusters specified in Appendix A.

Table I shows that for programs with a sufficiently large
execution time, GRID-GUM1 can deliver good speedups on
homogeneous computational GRIDs with relatively low com-
munication latency. The measurements are performed on the
Edin1 Beowulf cluster, and the fourth column records the
relative speedup 1.

In contrast, on heterogeneous computational GRIDs, or
those with high communication latency, GRID-GUM1 only de-
livers acceptable speedups for low-communication degree pro-
grams like queens, and little speedup for high-communication
degree programs like raytracer. Table II illustrates the impact
of heterogeneity, and shows that adding even a single slow
machine to a 5-PE cluster dramatically reduces speedup,
e.g. from 4.0 to 2.8 for queens. The measurements use the
relatively slow SBC (S) and relatively fast Edin3 (F) Beowulf
clusters described in Table XIV. The first column shows the
GRID configuration e.g. FFSSS is a configuration with two fast
machines and three slow machines. The first machine in the
configuration string is where the program starts. The second

1Absolute speedup is defined with respect to sequential execution and
relative speedup is defined with respect to execution of parallel code on a
single processing element. Absolute and relative speedups for GUM, together
with sequential and parallel efficiency measure are reported in [13].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Config.
Mean raytracer queens(13)
CPU Rtime Speedup Rtime Speedup
(MHz) Sec. F S Sec. F S

FFFFF 1816 376.7 4.0 12.9 181.1 4.0 12.8
FFFFS 1639 422.9 3.5 11.5 254.5 2.8 9.1
FFFSS 1462 519.2 2.9 9.4 544.9 1.3 4.2
FFSSS 1286 615.3 2.4 7.9 530.1 1.3 4.3
FSSSS 1109 755.6 1.9 6.4 577.7 1.2 4.0
SSSSF 1109 850.7 1.7 5.7 560.5 1.2 4.1
SSSFF 1286 786.0 1.8 6.2 474.3 1.5 4.9
SSFFF 1462 790.4 1.8 6.1 375.4 1.9 6.1
SFFFF 1639 747.6 1.9 6.5 316.5 2.2 7.3

TABLE II

GRID-GUM1 SPEEDUPS ON HETEROGENEOUS LOW-LATENCY

COMPUTATIONAL GRIDS

Config.
Mean parFib(45) sumEuler
Latency Rtime Speedup Rtime Speedup
(ms) Sec. E M Sec. E M

MMMMM 0.13 205.9 5.0 4.2 523.2 6.1 5.9
EMMMM 14.3 212.7 5.0 4.0 544.0 5.9 5.7
EEMMM 21.5 226.2 4.7 3.8 553.7 5.8 5.6
EEEMM 21.5 224.7 4.7 3.8 620.8 5.1 5.0
EEEEM 14.4 234.0 4.5 3.7 588.4 5.4 5.3
EEEEE 0.15 251.3 4.2 3.4 570.8 5.6 5.4

TABLE III

LOW COMMUNICATION DEGREE PROGRAMS:GRID-GUM1 SPEEDUPS

ON HOMOGENEOUS HIGH-LATENCY COMPUTATIONAL GRIDS

columns shows the mean CPU speed of that configuration. As
a measure of heterogeneity, the standard deviations of CPU
speeds in all configurations is between 353 and 432 MHz.
The third and the sixth columns record the speedup using F ’s
sequential runtime for raytracer and queens respectively. The
fourth and the seventh columns records the speedup using S’s
sequential runtime, and the fifth and the last columns show
the wall-clock execution times.

Tables III and IV show an example of the impact of
high communications interconnect. The measurements in both
tables are undertaken on the Muni and Edin2 Beowulf clusters
described in Table XIV. Each Muni machine is labeled M and
each Edin2 machine is labeled E. Table III shows that low
communication-degree programs parFib and sumEuler deliver
good speedups on a range of high-latency computational
GRIDs. However, Table IV shows that high communication-
degree programs like raytracer, matMult and linSolv all
deliver poor speedups. The columns in the table are as before,
except that the second column reports the mean latency of
the GRID configuration. The variation in latency is similar for
all configurations, i.e. the standard deviation of the interPE
latencies is approximately 17ms.

V. GRID-GUM2: AN ADAPTIVE RTE FOR COMPUTATIONAL

GRIDS

A. GRID-GUM2 Design

To address the shortcomings of GRID-GUM1, we have de-
signed and implemented a revised GPH runtime environment
for computational GRIDs,GRID-GUM2. TheGRID-GUM2 design

Config.
Mean raytracer matMult linSolv
Laten Rtime Spdup Rtime Spdup Rtime Spdup
(ms) Sec. E M Sec. E M Sec. E M

MMMMM 0.13 287.8 3.5 3.1 108.6 2.3 2.4 104.4 2.8 2.7
EMMMM 14.3 473.8 2.1 1.9 290.8 0.8 0.9 147.0 2.0 1.9
EEMMM 21.5 413.7 2.4 2.1 228.8 1.1 1.1 142.1 2.1 2.0
EEEMM 21.5 378.7 2.7 2.3 150.9 1.7 1.7 104.9 2.8 2.7
EEEEM 14.4 329.9 3.1 2.7 125.1 2.0 2.1 107.7 2.7 2.7
EEEEE 0.15 279.8 3.6 3.2 95.9 2.7 2.7 102.9 2.9 2.8

TABLE IV

HIGH COMMUNICATION DEGREE PROGRAMS:GRID-GUM1 SPEEDUPS

ON HOMOGENEOUS HIGH-LATENCY COMPUTATIONAL GRIDS

is described in full in [8]. InGRID-GUM2 each PE dynamically
maintains latency and load information to inform load manage-
ment, so that work is only sought from PEs which are known
to be relatively heavily loaded, and to give preference to local
cluster resources. To propagate the necessary information,
we augment the messages in GRID-GUM1 to carry dynamic
information about latency and load between PEs, and hence
between clusters. Such information is combined with static PE
characteristics to determine relative loads. To the best of our
knowledge, GRID-GUM2 is the first fully implemented virtual
shared memory runtime environment on computational GRIDs.

The new load distribution mechanism in GRID-GUM2 has
two main components: information collection and adaptive
load distribution. The information collection component ob-
tains both static information, like CPU speed of every PE,
at program startup, and dynamic information throughout the
execution. Example dynamic information is the current load
of every PE, and the communication latency from this PE to
every other PE. The dynamic information is timestamped and
partial, and is cheaply propagated between PEs whenever they
communicate.

The adaptive load distribution mechanisms utilise the static
and dynamic information, and the following are the key new
policies.

• An idle PE only seeks work from (sends a FISH message
to) a PE that has high load relative to its CPU speed.

• PEs have a preference for obtaining work from PEs that
currently have low communication latency.

• In response to a message seeking work (a FISH message)
from a remote, or high communications latency, PE the
recipient sends additional work if possible. The intention
being to offset the high latency, e.g. between clusters,
with bandwidth.

• GRID-GUM2 starts the computation in the ’biggest’ cluster,
i.e. the cluster with the largest sum of CPU speeds over
all PEs in the cluster.

In summary, GRID-GUM2 incorporates bespoke lightweight
mechanisms for reducing communication, and measuring and
managing load, rather than using generic GRID services. GRID

connective layer services provide communication between, and
authentication of, the PEs. GRID-GUM2 is designed to work
in a closed computational GRID, i.e. it is not possible for
other machines to join the computation after it has started.
Moreover it is tuned for a common high-performance setup,
i.e. to be most effective on: a) dedicated computational GRID

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

Program GRID-GUM1 GRID-GUM2 Variance
Mean Var Var% Mean Var Var% Reduction
Rtime Rtime
(s) (s)

queens 648.97 149.9 23.0% 649.59 2.62 0.4% 98%
parFib 84.91 22.68 26.7% 88.85 3.65 4.1% 84%
linSolv 176.21 63.82 36.2% 149.82 7.20 4.8% 86%
sumEuler 117.82 55.43 47.0% 116.28 20.33 17.4% 63%
raytracer 476.93 168.15 35.2% 448.53 27.93 6.2% 82%

TABLE V

GRID-GUM1 ANDGRID-GUM2 PERFORMANCE VARIATION ON 10 PES

where only one program is executed at a time, and b) a non-
preemptive environment: each program executes to completion
without interruption.

VI. GRID-GUM2 ON LOW-LATENCY COMPUTATIONAL

GRIDS

The following sections evaluate the performance of the
new adaptive load distribution mechanism in GRID-GUM2 on
low-latency heterogeneous, and homogeneous, computational
GRIDs.

A. Low-Latency Homogeneous Performance

Section IV-B showed that GRID-GUM1 already delivers
good performance on low-latency homogeneous computational
Grids [8]. Columns 2 and 5 of Table V show that GRID-

GUM2 maintains this good performance, and sometimes makes
a small improvement. The remainder of this section compares
the overheads and performance variability of GRID-GUM1 and
GRID-GUM2.

1) Variability: The measurements in Table V have been
performed on 10 PEs from the Edin1 cluster. In Table V,
the second and fifth columns record the mean of 50 runs
in seconds. The third and sixth columns show the variance
of the 50 runs. The fourth and seventh columns present the
percentage variance relative to the mean. The last column
shows the percentage reduction in variance.

Table V shows that GRID-GUM1 gives highly variable per-
formance, especially for programs with irregular parallelism.
In Table V, the programs with regular parallelism show less
variation, e.g. 23% in queens and 26.7% in parFib. However,
the programs with irregular parallelism show greater variation,
e.g. 47% in sumEuler, 36.2% in linSolv and 35.2% in
raytracer.

The unpredictable behaviour inGRID-GUM1 is due to its load
distribution mechanism which is based on a naive, random and
blind fishing mechanism, as discussed in III-B. Performance
is good when idleGRID-GUM1 PEs are ’lucky’ in their random
selection of a PE to request work from. Performance is poor,
however, if the idle PEs chose the wrong PE to request work
from.

In contrast to GRID-GUM1, the adaptive mechanisms in
GRID-GUM2 result in far less performance variation. In Ta-
ble V, queens and parFib show improvements in percentage
variance of 98% and 84% respectively. sumEuler, linSolv and
raytracer, which have irregular parallelism, show improve-
ments of 63%, 66% and 82% respectively.

Program RTE No of Max Alloc Comm Aver.
Threads Heap Rate Degree Pkt

Resid. (MB/s) (Msgs/s) Size
(KB) (Byte)

parF
ib GG1 26595 5.12 55.3 15.55 5.6

GG2 26595 5.12 43.2 14.87 5.6

sumE
uler GG1 82 62.4 52.8 2.09 90.3

‘ GG2 82 62.4 45.7 0.73 90.3

rayt
race

r GG1 350 538.6 60.0 62.72 321.8
GG2 350 538.6 49.5 46.93 323.0

linS
olv GG1 242 437.2 40.3 5.50 290.7

GG2 242 437.2 26.5 2.54 276.4

matM
ult GG1 144 4.3 39.0 67.30 208.9

GG2 144 4.3 40.0 31.29 209.4

quee
ns GG1 24 2.03 38.8 0.26 851.9

GG2 24 2.03 34.0 0.13 846.2

TABLE VI

GRID-GUM1 ANDGRID-GUM2 OVERHEADS ON 16 PES

2) Overheads: Table VI compares the overheads induced
by GRID-GUM1 and GRID-GUM2 for the six programs. These
measurements are made on 16 PEs from Edin1 Beowulf cluster
and the runtimes reported are the median of three executions,
to ameliorate the impact of operating system and shared
network interaction. In the second column GG1 and GG2
stand for GRID-GUM1 and GRID-GUM2 respectively. The third
column records the total number of threads generated during
the execution. The remaining columns show averages over all
processors for the maximal heap residency (i.e. the maximum
amount of heap that is alive at garbage collection time) the
allocation rate (i.e. the amount of local memory allocated per
second of execution time) the communication degree (i.e. the
number of massages sent per second of execution time) and
the average packet size (i.e. the size of packet in Byte).

Table VI shows that, except for communication degree,
GRID-GUM1 and GRID-GUM2 have similar overheads. GRID-

GUM2 decreases the communication degree by using infor-
mation about load, latencies and CPU speeds to reduce the
number of work-locating FISH messages.

3) Low-latency Homogeneous GRID Performance Sum-
mary:

• GRID-GUM2 maintains this good performance of GRID-

GUM1 on Low-latency Homogeneous GRIDs, and some-
times makes a small improvement (Columns 2 and 5 of
Table V).

• GRID-GUM2 programs exhibit far less performance vari-
ance thanGRID-GUM1: reducing variation by at least 63%
for all programs measured (Column 8 of Table V).

• GRID-GUM2 retains a very light overhead which does not
effect the program’s dynamic properties (Table VI).

B. Low-Latency Heterogeneous Performance

Table VII reproduces measurements of GRID-GUM1 and
GRID-GUM2 performance on heterogeneous computational
GRIDs with moderate communication latency from [8]. The
measurements compare runtimes on a small heterogeneous
cluster formed from 4 PEs from Edin1 and and 4 PEs from
Edin2 Beowulf clusters. The runtimes reported are the median

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

of three executions to ameliorate the impact of operating
system and shared network interaction.

Program Run-time (s) Improvement
GRID-GUM1 GRID-GUM2

raytracer 1340 572 57%
queens 668 310 53%

sumEuler 570 279 51%
linSolv 217 180 17%
matMult 94 86 9%
parFib 136 134 1%

TABLE VII

GRID-GUM1 ANDGRID-GUM2 PERFORMANCE ON LOW-LATENCY

HETEROGENEOUS COMPUTATIONAL GRIDS

Table VII shows that GRID-GUM2 outperforms GRID-GUM1
on low-latency heterogeneous computational GRIDs. linSolv
scores a modest improvement under GRID-GUM2 of 17%.
The limited irregular parallelism and the low-communication
degree in linSolv helps GRID-GUM1 overcome the hetero-
geneous architecture without an adaptive load distribution
mechanism. Due to this, the gains from using the adaptive load
distribution of GRID-GUM2 to improve linSolv are limited.

GRID-GUM2 maintains the good parallel performance of
parFib under GRID-GUM1 reported in Table I, but cannot
significantly improve it. Likewise, GRID-GUM2 cannot signif-
icantly improve matMult due to inherent limitations on the
parallelism [7].

Programs with a low degree of parallelism are most sensi-
tive to a heterogeneous architecture, because an appropriate
placement of the small number of threads is essential for
good performance. Indeed the low parallelism-degree pro-
grams: raytracer, queens and sumEuler, show the greatest
improvement underGRID-GUM2, each improving by more than
50%.

1) Low-latency Heterogeneous GRID Performance Sum-
mary: Table VII shows the following points.

• Compared with GRID-GUM1, GRID-GUM2 improves the
performance of 5 of the 6 programs, and maintains the
good performance of the 6th (parFib).

• Only certain programs are sensitive to low-latency hetero-
geneous computational GRIDs: some like parFib already
give good performance, while others like matMult are
already at some performance bound.

• GRID-GUM2 improves the performance of low
parallelism-degree programs by more than 50%.

VII. GRID-GUM2 ON HIGH-LATENCY COMPUTATIONAL

GRIDS

The following sections evaluate the performance of GRID-

GUM2 on high-latency heterogeneous, and homogeneous, com-
putational GRIDs.

A. High-Latency Homogeneous Performance

Table VIII compares the performance of raytracer under
GRID-GUM1 and GRID-GUM2 on all combinations of homoge-
neous GRIDs with up to 5 PEs. The configurations combine

PEs from two very similar clusters with high-latency intercon-
nect, namely the Muni and Edin2 Beowulf clusters described
in Tables XIV and XV. Each Edin2 machine is labeled E and
each Muni machine is labeled M .

In Table VIII, the first and second columns show case
number and GRID configuration. The third column presents
the mean communication latency. The fourth and fifth columns
record the run-time in seconds for GRID-GUM1 (GG1) and
GRID-GUM2 (GG2) respectively. The last column shows the
percentage improvement in GRID-GUM2 run-time.

C
as

e Config. Mean Runtimes Impr%
Latency (ms) GG1 GG2

1 1E4M 14.4 995 617 38%
2 1E3M 17.9 1066 728 32%
3 2E3M 21.5 911 703 23%
4 1E2M 23.9 1088 892 18%
5 2E2M 23.9 952 843 11%
6 2E1M 23.9 1007 926 8%
7 1E1M 35.8 1842 1687 8%
8 3E1M 18.0 852 786 8%
9 4E1M 14.4 668 642 4%

10 3E2M 21.5 772 754 2%

TABLE VIII

HOMOGENEOUS HIGH-LATENCY COMPUTATIONAL GRIDS (raytracer)

GRID-GUM2 improves raytracer performance on each of
the high-latency homogeneous GRID configurations in Ta-
ble VIII. For raytracer, as for sumEuler and queens, GRID-

GUM2 has the greatest improvement against GRID-GUM1 on
configurations of the form xEyM , where x < y. This is
because in GRID-GUM1, the first PE is selected as the main
PE, an E PE in this case. In consequence the larger number
of remote M PEs must communicate with the main PE through
the high-latency interconnect. In contrast, in this configuration
GRID-GUM2 selects the main PE from the remote group of M

PEs, and hence a smaller number of PE(s) require to obtain
work through the high-latency interconnect. Moreover when a
FISH is sent over the high-latency interconnect, more work is
returned as described in V.

In summary, Table VIII shows that,GRID-GUM2 outperforms
GRID-GUM1 on high-latency homogeneous architecture for
raytracer, a program with high-communication degree and
highly irregular parallelism.

1) Additional High Latency Homogeneous Measurements:
We have made similar measurements to those reported above
for the queens and sumEuler programs [41]. GRID-GUM2
improves performance on all high-latency homogeneous GRID

configurations measured for both programs, with a maximum
improvement of 30% for sumEuler and a maximum improve-
ment of 9% for queens.

2) High-latency Homogeneous GRID Performance Sum-
mary:

• GRID-GUM2 outperforms GRID-GUM1 on all of the homo-
geneous high-latency computational GRID architectures
for all three sensitive programs (Table VIII,Section VII-
A.1).

• GRID-GUM2 improves the performance of programs with
a range of parallel behaviours. raytracer, with high-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

communication degree, shows an improvement of up to
37% (Table VIII). sumEuler, with low-communication
degree and irregular parallelism, shows an improvement
of up to 30%. queens, with low-communication degree
and regular parallelism exhibits least improvement of up
to 9% (Section VII-A.1).

B. High-Latency Heterogeneous Performance

High-Latency Heterogeneous computational GRIDs are the
most challenging architecture. As the previous section showed
that raytracer, queens and sumEuler are the programs that
are sensitive to heterogeneity, this section investigates the
behaviour of these programs on heterogeneous computational
GRIDs.

Table IX compares the performance of raytracer under
GRID-GUM1 and GRID-GUM2 on all non-trivial heterogeneous
GRIDs with up to 5 PEs. The improvements are analysed to
identify the improvements due to the use of static and of dy-
namic information, using the GRID-GUM1.1 experimental run-
time environment outlined in Appendix C. The measurements
in Table IX are performed on two heterogeneous Beowulf clus-
ters, Edin1 and Muni. PEs in the Edin1 Beowulf cluster have
slower CPU speed than those in the Muni Beowulf cluster.
Moreover, Edin1 and Muni Beowulf clusters are connected
over a high-latency interconnect as detailed in Tables XIV
and XV.

In Table IX each Edin1 machine is labeled E and each
Muni machine is labeled M . The first and second columns
show case number and different combination of PEs from
Edin1 and Muni Beowulf clusters respectively. The third and
fourth columns report the mean CPU speed and mean latency
for the configuration. As before, the variation in latency and
CPU speeds is similar for all configurations, with standard
deviations of approximately 17ms and 470MHz respectively.
The fifth, sixth and seventh columns record the run-time in
seconds for GRID-GUM1 (GG1), GRID-GUM1.1 (GG1.1) and
GRID-GUM2 (GG2) respectively. The seventh column shows
the static information (CPU speed) contribution to the perfor-
mance change under GRID-GUM1.1 in comparison with GRID-

GUM1. The ninth column indicates the dynamic information
(loads and latencies) contribution to the change under GRID-

GUM2. The last column reports the total performance change
using both static and dynamic information in GRID-GUM2 in
comparison with GRID-GUM1.

The additional static information enables a substantial im-
provement when there are more fast PEs (M) than slow
PEs (E), i.e. cases 1, 2, 3, 4. For instance, in case 1 GRID-

GUM1.1 reduces runtime by 54%. However, the improvement
due to static information is less when there are more slow
PEs than fast PEs, cases (6, 8, 9, 10), and may even degrade
performance. For instance, in case 10 GRID-GUM1.1 increases
the run-time by 23%. This behaviour of raytracer under
GRID-GUM1.1 is related to the high-latency communication. In
a configuration of the form (xEyM), where x > y, cases (6, 8,
9, 10), GRID-GUM1.1 nominates the mainPE from M PEs. In
this case, E PEs have to seek work during the course of the
execution from M PE(s) through high-latency interconnect.

C
as

e

Config. Mean GG1 GG1.1 Static GG2 Dynamic Total

Laten. CPU
Rtim

e
Rtim

e
Impr

Rtim
e

Impr
Impr

Spd

1 1E4M 14.4 1330.0 1490 689 53% 583 7% 60%
2 1E3M 17.9 1280.5 1658 748 54% 716 2% 56%
3 1E2M 23.9 1197.3 1607 975 39% 848 8% 47%
4 2E3M 21.5 1131.0 1223 745 39% 716 2% 41%
5 2E2M 23.9 1031.5 1396 965 30% 909 4% 34%
6 2E1M 23.9 865.7 1778 1687 5% 1326 20% 25%
7 3E2M 21.5 932.0 1254 983 21% 961 2% 23%
8 1E1M 35.8 1031.5 1934 1678 13% 1689 0% 13%
9 3E1M 18.0 782.7 1495 1832 -22% 1305 34% 12%
10 4E1M 14.4 733.0 1296 1597 -23% 1236 27% 4%

TABLE IX

raytracer: HETEROGENEOUS HIGH-LATENCY COMPUTATIONAL GRID

Hence for programs with a relatively high-communication
degree like raytracer, high-latency communication has a
major impact on GRID-GUM1.1 performance.

The seventh column of Table IX shows that the use of
dynamic load and latency information inGRID-GUM2 improves
performance an all of the GRID configurations. The improve-
ment varies according to the number of remote and local PEs
and their CPU speed. If there are fewer slow PEs than fast
((xEyM), where x < y), the dynamic information makes
a limited contribution to the performance. For instance, in
case 1 the dynamic information improves performance by
only 7%. In contrast, if there are more slow PEs than fast
((xEyM), where x > y), the dynamic information has a
greater contribution to the performance. For instance, in case
9 the dynamic information improves performance by 34%. In
this case the dynamic information is used to nominate the
mainPE from among the E PEs, decreasing the number of
PEs required to seek work over the high-latency interconnect,
and load information is used to transfer larger amounts of
work over the high-latency interconnect, thereby reducing the
number of messages.

Broadly speaking, both static and dynamic information
contribute to theGRID-GUM2 performance gains for a program
like raytracer with relatively high-communication degree and
irregular parallelism. For instance, in case 1, to finish the
computation of raytracer in five PEs (1E4M), GRID-GUM1
requires 1490s. However, GRID-GUM2 requires only 583s, an
improvement of 60%.

1) Additional High Latency Heterogeneous Measurements:
We have made similar measurements to those reported above
for the queens and sumEuler programs [41]. For sumEuler

there is a maximum total improvement of GRID-GUM2 over
GRID-GUM1 of 32%, and maximum static and dynamic im-
provements of 27% and 16% respectively. For queens there
is a maximum total improvement of GRID-GUM2 over GRID-

GUM1 of 35%, and maximum static and dynamic improve-
ments of 23% and 12% respectively.

2) High-latency Heterogeneous GRID Performance Sum-
mary:

• Compared with GRID-GUM1, GRID-GUM2 improves the
performance of all three programs on all heterogeneous
high-latency GRID configurations measured (Column 10
of Table IX, Section VII-B.1).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

• GRID-GUM2’s static information gives substantial im-
provements when there are more fast PEs than slow PEs,
but less when there are more slow PEs than fast PEs
(Column 7 of Table IX).

• GRID-GUM2’s dynamic load and latency information im-
proves performance on all of the heterogeneous high-
latency GRID configurations measured. The improvement
is greater if there are more slow PEs than fast, and less
if there are more fast machines than slow (Column 7 of
Table IX).

• For a program with a high-communication degree,
raytracer, GRID-GUM2 delivers a substantial maxi-
mum improvement of 60%, whereas for both programs
with relatively low-communication degree (sumEuler and
queens) more modest improvements of 31% and 35%
(Section VII-B.1).

VIII. SCALABILITY

This subsection investigates the performance scalability of
the GRID-GUM2 load distribution mechanism on the most
challenging GRID configuration, namely a high-latency het-
erogeneous computational GRID. The measurements in this
section are made on three heterogeneous Beowulf clusters:
Edin1 and Edin2 connected over a low-latency interconnect,
and Muni connected with the other two clusters over a high-
latency interconnect, as specified in Tables XIV and XV.
Because of the relative cluster sizes, many configurations have
6 Edin1 PEs for every Muni PE.

The experiments have the following limitations:
• The programs in Table XVI were designed for smaller

scale high performance computers, and only some of
them generate sufficient parallelism to utilise medium-
scale, and large-scale, computational GRIDs.

• The number of PEs available for these experiments at the
cooperating sites were limited: Edin1 (E) 30 PEs, Edin2
(E2) 5 PEs, and Muni (M) 6 PEs.

A. raytracer

The raytracer is a realistic parallel program with limited
amounts of highly-irregular parallelism and a relatively high
communication degree (Table XVI). Table X compares the
scalability of raytracer program under GUM andGRID-GUM1.
The table shows that GUM and GRID-GUM1 deliver very
similar performance up to 28PEs, even although GRID-GUM1
is executing on a high-latency heterogeneous computational
GRID. More significantly, the last two cases show that when
the size of the local cluster limits the GUM speedups, GRID-

GUM1 can scale further using PEs in a remote cluster.
The GRID configurations measured in this section have

very similar mean CPU speeds and latencies, namely 676Mhz
and approximately 9.2ms. Likewise the configurations have
very similar variations in CPU speed and communications
latency, namely approximately 360MHz and 15.5ms respec-
tively. Moreover, the input size to the raytracer and parFib

programs is large, and hence it is not possible to obtain
a sequential runtime. As a result the sequential runtime,
and hence both relative speedups and parallel efficiency, are

computed from the runtime on a 7 PE configuration. That
is the raytracer runtime from the 7E row of Table X, the
parFib from the 6E1M GRID-GUM2 row of Table XII.

Table XI compares the scalability and parallel efficiency of
the raytracer program under GRID-GUM1 and GRID-GUM2
on a high latency heterogeneous computational GRID. The
efficiency comparison of the two cluster results relies on the
similarity of the architectures, i.e. 6 Edinburgh PEs for every
Munich PE, and obviates the requirement for a sophisticated
calculation of heterogenous efficiency. The table shows that
GRID-GUM2 always improves on GRID-GUM1 performance.
Moreover, although the speedup improvement is modest on
small GRIDs it increases with GRID size. For example on
the largest, 41-PE, configuration GRID-GUM2 gives a 46%
improvement: i.e. a runtime of 1133s compared with 1652s
for GRID-GUM1.

Although GRID-GUM2 is always more efficient than GRID-

GUM1, the absolute efficiency ofGRID-GUM2 falls significantly
to just 38% on a 35 PE cluster. While some of the loss of
efficiency is attributable to the high-level DSM programming
model, reader’s should recall that raytracer is a challenging
program, i.e. exhibiting highly-irregular parallelism and high
levels of communication, executing on a challenging architec-
ture: a high latency heterogeneous GRID. Section IV suggests
that better speedups and efficiency would be obtained on either
an homogeneous GRID, or a low latency GRID. Moreover
Table XII reports rather better efficiency for a less challenging
program.

C
as

e No GUM GRID-GUM1
PEs Config. Rtime Spdup Config. Rtime Spdup

1 7 7E 2609 7 6E1M 2530 7
2 14 14E 2168 8 12E2M 2185 8
3 21 21E 1860 10 18E3M 1824 10
4 28 28E 1771 10 24E4M 1776 10
5 30 30E 1762 10
6 35 30E5M 1666 11
7 41 5E230E6M 1652 11

TABLE X

GUM ANDGRID-GUM1 SCALABILITY (raytracer)

C
as

e No
Config.

GRID-GUM1 GRID-GUM2
PEs Rtime Spdup Eff. Rtime Spdup Eff.

1 7 6E1M 2530 7 97% 2470 7 100%
2 14 12E2M 2185 8 56% 1752 10 70%
3 21 18E3M 1824 10 45% 1527 12 53%
4 28 24E4M 1776 10 34% 1359 13 45%
5 35 30E5M 1666 11 29% 1278 14 38%
6 41 5E230E6M 1652 11 1133 16

TABLE XI

GRID-GUM1 ANDGRID-GUM2 SCALABILITY (raytracer)

B. parFib

In contrast to the realistic raytracer program, parFib is an
ideal parallel program with very large potential parallelism and
a low communication degree (Table XVI). Table XII compares

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

the scalability and efficiency of parFib under GRID-GUM1 and
GRID-GUM2 on a high latency heterogeneous computational
GRID. It shows that both GRID-GUM1 and GRID-GUM2 deliver
good, and very similar speedups. The speedups is excellent up
to 21 PEs, but declines thereafter. Speedup is still increasing
even between 35 and 41 PEs, with a maximum speedup of
at least 27 on 41 PEs. GRID-GUM2 is again always more
efficient thanGRID-GUM1. Moreover while the drop in absolute
efficiency to 65% on 35 PEs is substantial it is far less than
for the challenging raytracer. Section IV suggests that even
better speedups and efficiency would be obtained on either an
homogeneous GRID, or a low latency GRID.

The good GRID-GUM1 performance reported in Table XII
demonstrates that sophisticated load distribution is not required
for parFib. That the GRID-GUM2 performance is so similar
to the GRID-GUM1 performance shows that even on medium-
scale computational GRIDs, the overheads of GRID-GUM2’s
load distribution mechanism remain minimal.

C
as

e No Config. GRID-GUM1 GRID-GUM2 Impr%PEs Rtime Spdup Eff. Rtime Spdup Eff.

1 7 6E1M 3995 7 93% 3737 7 100% 0%
2 14 12E2M 1993 14 93% 2003 14 93% 0%
3 21 18E3M 1545 18 80% 1494 19 83% 5%
4 28 24E4M 1237 23 75% 1276 22 73% -4%
5 35 30E5M 1142 24 65% 1147 24 65% 0%
6 41 5E230E6M 1040 27 1004 28 4%

TABLE XII

GRID-GUM1 ANDGRID-GUM2 SCALABILITY (parFib)

C. Scalability Summary

• The experiments in this subsection show that emerging
GRID technology offers the opportunity to improve per-
formance by integrating remote heterogeneous clusters
into a computational GRID (Table X).

• The measurements in Tables XI and XII show that the
parallel performance of GRID-GUM2 scales to medium
scale heterogeneous high-latency computational GRIDs:
41 PEs in three clusters, and (Table XI) continues to
deliver significant performance benefits over GRID-GUM1
for a realistic program.

• The measurements of parFib, a program with near-ideal
parallel behaviour, show show that the overheads of
GRID-GUM2 load management are relatively low, even on
medium scale computational GRIDs (Table XII).

IX. GRID-GUM2 PERFORMANCE ANALYSIS

This section analyses the performance of the benchmark
programs under GRID-GUM1, GRID-GUM1.1 and GRID-GUM2
on combinations of high/low and homo/hetero-geneous com-
putational GRIDs with respect to their communications be-
haviour and degree of irregular parallelism. In table XIII, the
second and third columns present the program characteristics,
parallelism regularity and communication degree, respectively.
The fourth and fifth columns give the GRID latency and
homo/hetero-geneity. The sixth, seventh and eighth columns

Pro
gr

am

R
eg

ul

C
om

m GRID Config.

G
G

1

G
G

1.
1

G
G

2

C
as

e

Lat. Archit.

ra
yt
ra
ce
r

Ir
re

g

H
ig

h

High Hetr 1 2 3 1
High Hom 1 1 2 2
Low Hetr 1 2 3 3
Low Hom 1 1 2 4

su
mE
ul
er

Ir
re

g

L
ow

High Hetr 1 2 3 5
High Hom 1 1 2 6
Low Hetr 1 2 3 7
Low Hom 1 1 2 8

li
nS
ol
v

Ir
re

g

L
ow

High Hetr 1 2 3 9
High Hom 1 1 2 10
Low Hetr 1 2 3 11
Low Hom 1 1 2 12

ma
tM
ul
t

R
eg

H
ig

h

High Hetr 1 2 2 13
High Hom 1 1 2 14
Low Hetr 1 2 2 15
Low Hom 1 1 1 16

qu
ee
ns

R
eg

L
ow

High Hetr 1 2 2 17
High Hom 1 1 1 18
Low Hetr 1 2 2 19
Low Hom 1 1 1 20

pa
rF
ib

R
eg

L
ow

High Hetr 1 2 2 21
High Hom 1 1 1 22
Low Hetr 1 2 2 23
Low Hom 1 1 1 24

TABLE XIII

COMPARATIVE PERFORMANCE SUMMARY:GRID-GUM1,

GRID-GUM1.1 ANDGRID-GUM2

rank the performance of GRID-GUM1 (GG1), GRID-GUM1.1
(GG1.1) and GRID-GUM2 (GG2) respectively from 3 (best)
to 1 (worst). The last column presents the case number.

We make the following conclusions from Table XIII.

• GRID-GUM2’s dynamic adaptive load management tech-
niques are effective: they improve or maintain the per-
formance of all the benchmark programs on all GRID

configurations (Column 8).
• Sophisticated load management is not required to effec-

tively parallelise regularly-parallel programs on homoge-
neous computational GRIDs. That is, GRID-GUM2 does
not reliably improve the performance of these programs
(Cases 14,16,18,20,22 and 24).

• Static information is the key to effectively parallelis-
ing regularly-parallel programs on heterogeneous com-
putational GRIDs: GRID-GUM2 shows the same im-
provement as GRID-GUM1.1 for these programs (Cases
13,15,17,19,21 and 23).

In summary, not only does the adaptive load distribution of
GRID-GUM2 deliver more predictable performance than GRID-

GUM1 as shown in Table V, but it also reduces the runtime of
all programs.

X. CONCLUSION

A. Summary

We have presented a systematic evaluation of the per-
formance of GPH, the first DSM language with high-level
parallel coordination on computational GRIDs. We report both
absolute performance and performance relative to GRID-GUM1
and GUM, and the latter has previously been compared with
conventional parallel technology (C with PVM). In essence

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

we have demonstrated that a high-level DSM parallel pro-
gramming paradigm can deliver good parallel performance
for a variety of applications on a range of high/low latency
and homo/hetero-geneous computational GRIDs. Moreover,
the performance scales to medium-scale computational GRIDs.
The core of our approach to achieving good performance
from this class of parallel language is a sophisticated runtime
environment with aggressive and dynamic load management
mechanism.

We have summarised earlier work outlining GRID-GUM1,
a port of the GUM runtime environment for GPH, origi-
nally designed for a single high performance computer, to
computational GRIDs; showing that GRID-GUM1 only reliably
delivered good performance on low-latency homogeneous
computational GRIDs; that poor load management limitsGRID-

GUM1 performance; and outlining the design of GRID-GUM2,
a new runtime environment incorporating new adaptive load
management techniques.

The evaluation of GRID-GUM2 performance covers combi-
nations of high/low latency, and homo/hetero-geneous com-
putational GRIDs, with the results outlined in the paragraphs
below. Unsurprisingly GRID-GUM2 gives greatest performance
improvements on the most challenging combination: a 60%
improvement on a heterogeneous high latency computational
GRID (Table IX).

On low latency homogeneous computational GRIDs, Ta-
ble V shows how GRID-GUM2 maintains the good perfor-
mance of GRID-GUM1 reported in Table I (Section VI-A).
On low latency heterogeneous computational GRIDs GRID-

GUM2 improves the performance of 5 out of 6 programs and
maintains the good performance of the 6th, although only
certain programs are sensitive to heterogeneity (Section VI-B).
On high latency homogeneous computational GRIDs GRID-

GUM2 improves the performance of all three programs on
all GRID configurations measured (Section VII-A). On high
latency heterogeneous computational GRIDs GRID-GUM2 im-
proves the performance of all three sensitive programs on all
GRID configurations measured (Section VII-B).

The scalability measurements consider the most challeng-
ing, but most common, computational GRIDs: heterogeneous
high-latency GRIDs. The results show that GRID-GUM2 per-
formance scales to medium scale heterogeneous high-latency
computational GRIDs, e.g. delivering a speedup of 28 on 41
PEs in three clusters, although efficiency falls to just 65%
on this challenging architecture (Section VIII). The relative
performance of the programs on all combinations of low/high
latency and homo/heterogeneous computational GRIDs has
been analysed with respect to their communications behaviour
and degree of irregular parallelism. The analysis shows that
GRID-GUM2’s dynamic adaptive load management techniques
are effective as they improve or maintain the performance
of all the benchmark programs on all GRID configurations
(Section IX).

B. Limitations and Future Work

The current work has the following limitations. The parallel
programs measured are small and medium-scale kernels. The

scalability ofGRID-GUM2 has only been measured on medium-
scale computational GRIDs. GRID-GUM2 inherits limited and
user-authentication biased security mechanisms from Globus

Toolkit. GRID-GUM2 inherits a restriction to closed systems,
i.e. executing on a fixed set of PEs, from the MPICH-G2
communications library. Currently GRID-GUM2 has no fault
tolerance mechanisms: if any PE or communication link fails
then the entire computation may fail.

There are several avenues to extend this research and
address the limitations. One avenue is to implement larger
parallel programs, and our current work entails parallelising
large computer algebra computations as part of the SCIEnce
project (Symbolic Computation Infrastructure for Europe EU
FP VI I3-026133). A second research avenue is to investigate
the scalability of GRID-GUM2 on large-scale computational
GRIDs, e.g. with 100s of PEs. Such a GRID is likely to be
heterogeneous and high-latency, and we hope to make these
measurements in the SCIEnce project.

Another future research avenue is to implement a program-
based security mechanism to analyse program behaviour to
decide whether to permit execution of the code. For example,
to enhance program based security, certificates of bounded
resource consumption could be attached to the code sent
between PEs in the network and checked by a resource
protection component before executing the code. Using a
communication library other than MPICH-G2 would enable
GRID-GUM2 to support open systems, and possibilities include
using an optimised version of PVM for computational GRIDs,
e.g. [42].

A rather more challenging task would be to tackle the
problem of fault tolerant parallel execution on computational
GRIDs. Here GRID-GUM2 could benefit from the statelessness
of functional programs. Statefulness amounts to updating the
global program state and its absence means that the damage
caused by a failing computation is confined. Moreover, if
an error is detected, pure computations can be automatically
restarted without the danger of making multiple updates. A
second potential benefit of high-level language technology is
that fault tolerance is a global property affecting all operations
of the virtual machine underlying a language, and enforcing
such property is easier with a high level virtual machine like
GRID-GUM2. Indeed, runtime environment level fault tolerance
has been proposed for GUM [43].

REFERENCES

[1] I. Foster and C. Kesselman, “Computational Grids,” The Grid: Blueprint
for a Future Computing Infrastructure, 1998.

[2] J. Basney and M. Livny, High Performance Cluster Computing.
Prentice-Hall, 1999, vol. 1, ch. Deploying a High Throughput Com-
puting Cluster.

[3] S. Zhou, X. Zheng, J. Wang, and P. Delisle, “Utopia: a Load Sharing
Facility for Large, Heterogeneous Distributed Computer Systems,” Soft-
ware - Practise and Experience, vol. 23, no. 12, pp. 1305–1336, 1993.

[4] MPI-Forum, “MPI: A message passing intrface standard,” International
Journal of Supercomputer Application, vol. 8, no. 3–4, pp. 165–414,
1994.

[5] M. Alt, H. Bischof, and S. Gorlatch, “Program Development for
Computational Grids Using Skeletons and Performance Prediction,”
in CMPP’02 — Int. Workshop on Constructive Methods for Parallel
Programming. Dagstuhl, Berlin, June 2002.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

[6] P. Trinder, K. Hammond, H.-W. Loidl, and S. Peyton Jones,
“Algorithm + Strategy = Parallelism,” J. of Functional Programming,
vol. 8, no. 1, pp. 23–60, January 1998. [Online]. Available:
http://www.macs.hw.ac.uk/˜dsg/gph/papers/ps/strategies.ps.gz

[7] H.-W. Loidl, F. Rubio Diez, N. Scaife, K. Hammond, U. Klusik,
R. Loogen, G. Michaelson, S. Horiguchi, R. Pena Mari, S. Priebe,
A. Rebon Portillo, and P. Trinder, “Comparing Parallel Functional
Languages: Programming and Performance,” Higher-order and Symbolic
Computation, vol. 16, no. 3, pp. 203–251, 2003.

[8] A. Al Zain, P. Trinder, H.-W. Loidl, and G. Michaelson, “Managing Het-
erogeneity in a Grid Parallel Haskell,” Journal of Scalable Computing:
Practice and Experience, vol. 6, no. 4, 2006.

[9] R. Loogen, “Programming Language Constructs,” in Research Di-
rections in Parallel Functional Programming, K. Hammond and
G. Michaelson, Eds. Springer-Verlag, 1999, pp. 63–91.

[10] A. Geist, A. Beguelin, J. Dongerra, W. Jiang, R. Manchek, and V. Sun-
deram, PVM: Parallel Virtual Machine. MIT, 1994.

[11] D. B. Loveman, “High performance fortran,” IEEE Parallel Distrib.
Technol., vol. 1, no. 1, pp. 25–42, 1993.

[12] G. Michaelson, N. Scaife, P. Bristow, and P. King, “Nested Algorith-
mic Skeletons from Higher Order Functions,” Parallel Algorithms and
Applications, vol. 16, pp. 181–206, 2001.

[13] P. Trinder, K. Hammond, J. Mattson Jr., A. Partridge, and S. Peyton
Jones, “GUM: a Portable Parallel Implementation of Haskell,” in
PLDI’96 — Programming Languages Design and Implementation,
Philadelphia, PA, USA, May 1996, pp. 79–88. [Online]. Available:
http://www.macs.hw.ac.uk/˜dsg/gph/papers/ps/gum.ps.gz

[14] S. Breitinger, R. Loogen, Y. Ortega Malln, and R. Pea Marı́, “Eden —
The Paradise of Functional Concurrent Programming,” in EuroPar’96
— European Conf. on Parallel Processing, ser. LNCS 1123. Lyon,
France: Springer, 1996, pp. 710–713.

[15] I. Foster and C. Kesselman, Eds., The Grid: Blueprint for a New Com-
puting Infrastructure. San Francisco, CA, USA: Morgan Kaufmann,
1999.

[16] Globus, 2005, <URL:http://www.globus.org/toolkit/>.
[17] A. Grimshaw and W. Wulf, “The Legion Vision of a World-Wide Virtual

Computer,” Communications of the ACM, vol. 40, no. 1, pp. 39–45,
1997.

[18] F. Berman, G. Fox, and T. Hey, “The Grid: past, present, future,” in Grid
Computing - Making the Global Infrastructure a Reality, F. Berman,
G. Fox, and A. Hey, Eds. West Sussex, England: John Wiley & Sons,
Ltd, 2003, pp. 9–50.

[19] D. Jackson, “Advanced Scheduling of Linux Clusters using Maui,” in
USENIX’99, 1999.

[20] E. Smirni and E. Rosti, “Modelling Speedup of SPMD Applications
on the Intel Paragon: A Case Study,” in HPCN’95 High Performance
Computing and Networks, Languages and Computer Architecture, Mi-
lan, Italy, 1995.

[21] L. Valiant, “A Bridging Model for Parallel Computation,” Communica-
tions of the ACM, vol. 33, no. 8, pp. 103–, Aug. 1990.

[22] M. Beck, J. Dongarra, G. Fagg, A. Geist, P. Gray, M. Kohl, J.a
nd Migliardi, K. Moore, T. Moore, P. Papadopoulos, S. Scott, and
V. Sunderam, “HARNESS: A Next Generation Distributed Virtual
Machine,” Future Generation Computer Systems, vol. 15, no. 5/6, pp.
571–582, Oct. 1999, special Issue on Metacomputing.

[23] B.-Y. Evan Chang, K. Crary, M. DeLap, R. Harper, J. Liszka, T. Murphy
VII, and F. Pfenning, “Trustless Grid Computing in ConCert,” in In
Proceedings of the GRID 2002 Workshop, vol. 2536 of LNCS. Springer-
Verlag, 2001.

[24] C. Baker-Finch, D. King, J. Hall, and P. Trinder, “An Operational
Semantics for Parallel Lazy Evaluation,” in ICFP’00 — International
Conference on Functional Programming. Montreal, Canada: ACM
Press, Sept. 2000, pp. 162–173.

[25] T. Murphy VII, K. Crary, and R. Harper, “Distributed Control Flow with
Classical Modal Logic,” in Proceedings of 19th International Workshop
on Computer Science Logic (CSL 2005), ser. LNCS 3634. Springer,
July 2005, pp. 51–69.

[26] R. Whaley, A. Petitet, and J. Dongarra, “Automated Empirical Optimisa-
tions of Software and the ATLAS Project,” Parallel Computing, vol. 27,
pp. 3–35, 2001.

[27] “Distributed Shared Memory Home Pages,” WWW page, 2006,
http://www.ics.uci.edu/ javid/dsm.html/.

[28] C. Morin, P. Gallard, R. Lottiaux, and G. Valle, “Design and imple-
mentations of ninf: towards a global computing infrastructure,” Future
Gener. Comput. Syst., vol. 20, no. 2, 2004.

[29] Y. Hu, H. Lu, A. Cox, and W. Zwaenepoel, “OpenMP for Networks of
SMPs,” Journal of Parallel and Distributed Computing, vol. 60, no. 12,
pp. 1512–1530, 2000.

[30] T.-Y. Liang, C.-Y. Wu, J.-B. Chang, and C.-K. Shieh, “Teamster-G: a
grid-enabled software DSM system,” in CCGRID 2005, 2005, pp. 905–
912.

[31] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo,
“ASSIST as a research framework for high-performance Grid program-
ming environments,” in Grid Computing: Software environments and
Tools, J. C. Cunha and O. F. Rana, Eds. Springer, Jan. 2006.

[32] F. Berman, A. Chien, J. Cooper, K.and Dongarra, I. Foster, D. Gannon,
L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed,
and L. W. R. Torczon, “The GrADS Project: Software Support for High-
Level Grid Application Development,” Int. Journal of High Performance
Computing Applications, vol. 15, no. 4, pp. 327–344, 2001.

[33] M. Aldinucci, M. Danelutto, and Dünnweber, “Optimization Tech-
niques for Implementing Parallel Sckeletons in Grid Environments,”
in CMPP’04 — Intl. Workshop on Constructive Methods for Parallel
Programming, Stirling, Scotland, July 2004.

[34] M. Aldinucci and M. Danelutto, “Advanced skeleton programming
systems,” Parallel Computing, 2006, to appear. [Online]. Available:
http://www.di.unipi.it/ aldinuc/papers.html

[35] M. Cole, “Bringing skeletons out of the closet: a pragmatic manifesto
for skeletal parallel programming,” Parallel Comput., vol. 30, no. 3, pp.
389–406, 2004.

[36] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Ja-
cobs, T. Kielmann, and H. E. Bal, “Ibis: a flexible and efficient Java
based grid programming environment,” Concurrency and Computation:
Practice and Experience, vol. 17, no. 7-8, pp. 1079–1107, June 2005.

[37] J. Dunnweber, M. Alt, and S. Gorlatch, “Apis for grid programming
using higher order components,” in GGF12 - The Twelfth Global
Grid Forum, Brussels, Belgium, T. Kielmann, S. Pickles, and
S. J. Cox, Eds., September 2004. [Online]. Available: http://pvs.uni-
muenster.de/pvs/mitarbeiter/jan/adgggf04.html

[38] M. Alt and S. Gorlatch, “Adapting java rmi for grid computing,”
Future Generation Computer Systems, vol. 21, no. 5, pp. 699–707,
2005. [Online]. Available: http://pvs.uni-muenster.de/pvs/publikationen/

[39] H.-W. Loidl, P. W. Trinder, K. Hammond, S. B. Junaidu,
R. G. Morgan, and S. L. Peyton Jones, “Engineering Parallel
Symbolic Programs in GPH,” Concurrency — Practice and
Experience, vol. 11, pp. 701–752, 1999. [Online]. Available:
http://www.macs.hw.ac.uk/˜dsg/gph/papers/ps/cpe-gph.ps.gz

[40] N. Karonis, B. Toonen, and I. Foster, “MPICH-G2: a grid-enabled
implementation of the message passing interface,” Journal Parallel
Distributed Computing, vol. 63, no. 5, pp. 551–563, 2003.

[41] A. Al Zain, “Implementing High-Level Parallelism on
Computational GRIDs,” Ph.D. dissertation, School of Math-
ematical and Computer Sciences, Heriot-Watt University,
Edinburgh, Scotland, UK, April 2006. [Online]. Available:
http://www.macs.hw.ac.uk/ trinder/theses/AlZainAbstract.html

[42] G. Sipos and P. Kacsuk, “Executing and Monitoring PVM Programs
in Computational Grids with Jini.” in PVM/MPI, ser. Lecture
Notes in Computer Science, J. Dongarra, D. Laforenza, and
S. Orlando, Eds., vol. 2840. Springer, 2003, pp. 570–576,
http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-
9743&volume=2840&spage=570.

[43] P. Trinder, R. Pointon, and H.-W. Loidl, “Towards Runtime System Level
Fault Tolerance for a Distributed Functional Language,” in SFP’00 —
Scottish Functional Programming Workshop, ser. Trends in Functional
Programming, vol. 2. St Andrews, Scotland, Jul 26–28: Intellect, 2000,
pp. 103–113.

APPENDIX

A. Hardware Apparatus

The measurements have been performed on five Be-
owulf clusters: three located at Heriot-Watt Riccarton campus
(Edin1, Edin2, and Edin3), a cluster located at Ludwig-
Maximilians University, Munich (Muni), and a cluster located
at Heriot-Watt Borders campus(SBC); see Tables XIV and XV
for the characteristic of these Beowulfs.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

Beowulfs
CPU Cache Memory

PEsSpeed MHz kB Total kB

Edin1 534 128 254856 32
Edin2 1395 256 191164 6
Edin3 1816 512 247816 10
Muni 1529 256 515500 7
SBC 933 256 110292 4

TABLE XIV

BEOWULF CLUSTER ARCHITECTURES

Edin1 Edin2 Edin3 SBC Muni

Edin1 0.20 0.27 0.35 2.03 35.8
Edin2 0.27 0.15 0.20 2.03 35.8
Edin3 0.35 0.20 0.20 2.03 35.8
SBC 2.03 2.03 2.03 0.15 32.8
Muni 35.8 35.8 35.8 32.8 0.13

TABLE XV

APPROXIMATE INTER-CLUSTER LATENCIES (MS)

B. Software Apparatus

Table XVI summarises the characteristics of the six pro-
grams measured. parFib computes Fibonacci numbers. The
sumEuler program computes the sum over the application of
the Euler totient function over an integer list. The queens

program places chess pieces on a board. The raytracer

calculates a 2D image of a given scene of 3D objects by
tracing all rays in a given scene of 3D objects by tracing all
rays in a given grid, or window. The matMult multiples two
matrices. The linSolv program finds an exact solution of a
linear system of equations.

Three of the programs have regular parallelism queens,
parFib and matMult; three programs have irregular parallelism
sumEuler, linSolv and raytracer. Programs with regular
parallelism generate threads which have approximately the
same cost of computation. Programs with irregular parallelism
generate threads with varying cost of computation. Moreover,
irregular-parallel programs generate threads at different stages
through the course of execution. Of the programs, queens,
sumEuler and linSolv have relatively low-communication
degrees, i.e. perform relatively little communication per unit

Program

Application

Paradigm
Regularity

Comm Source
Degree Lines
PKT/S Code

Area (SLOC)

quee
ns AI

Div-.
Regul

0.2
21

Conq. low

parF
ib Numeric

Div-
Regul

65.5
22

Conq. high

linS
olv Symbolic Data Limit 5.5

121
Algebra Par. Irreg. low

sumE
uler

Numerical Data
Irreg.

2.09
31

Analysis Par. low

matM
ult Numeric

Div-
Irreg.

67.3
43

Conq. high

rayt
race

r
Vision

Data High 46.7
80

Par. irreg. high

TABLE XVI

PROGRAM CHARACTERISTICS

execution time, whereas parFib, matMult and raytracer have
relatively high-communication degree, as shown in column 6
of Table VI.

C. GRID-GUM1.1

A special implementation of GRID-GUM2, GRID-GUM1.1, is
used to study the performance impact of the static information,
namely the CPU speed of every PE in the GRID. GRID-

GUM1.1 uses CPU speed information to choose a fast PE as
the mainPE where the program starts, and to prevent slow PEs
from extracting work from faster PEs unless the latter is the
mainPE. UnlikeGRID-GUM2,GRID-GUM1.1 does not collect or
use dynamic information on PE loads and latencies.

D. GPH Example: sumEuler

As a non-trivial example of the GPH language, the complete
code for the sumEuler program outlined in Table XVI is given
below. The only evaluation strategy required to parallelise the
program is in the last line of the sumTotient function.

-- This program calculates the sum of Euler
-- totients between a lower and an upper limit,
-- using fixed precision integers.

module Main(main) where

import System(getArgs)
import Strategies

-- Primary Functions: sumTotient & euler

sumTotient :: Int -> Int -> Int -> Int
sumTotient lower upper c =

sum (map (sum . map euler)
(splitAtN c [upper, upper-1 .. lower])
‘using‘ parList rnf)

euler :: Int -> Int
euler n = length (filter (relprime n) [1 .. n-1])

-- Auxiliary Functions

relprime :: Int -> Int -> Bool
relprime x y = hcf x y == 1

hcf :: Int -> Int -> Int
hcf x 0 = x
hcf x y = hcf y (rem x y)

mkList :: Int -> Int -> [Int]
mkList lower upper =

reverse (enumFromTo lower upper)

splitAtN :: Int -> [a] -> [[a]]
splitAtN n [] = []
splitAtN n xs = ys : splitAtN n zs

where (ys,zs) = splitAt n xs
--
-- Interface Section
--
main = do args <- getArgs

let
lower = read (args!!0) :: Int
upper = read (args!!1) :: Int
c = read (args!!2) :: Int

putStrLn ("Sum of Totients between [" ++
(show lower) ++ ".." ++
(show upper) ++ "] is " ++
show (sumTotient

lower upper c))

