
High-Performance Computer Algebra:
A Hecke Algebra Case Study

Patrick Maier1, Daria Livesey2, Hans-Wolfgang Loidl3, and Phil Trinder1

1 School of Computing Science, University of Glasgow, Glasgow, UK
2 School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK

3 School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, UK

Abstract. We describe the first ever parallelisation of an algebraic computation
at modern HPC scale. Our case study poses challenges typical of the domain: it
is a multi-phase application with dynamic task creation and irregular parallelism
over complex control and data structures.

Our starting point is a sequential algorithm for finding invariant bilinear forms
in the representation theory of Hecke algebras, implemented in the GAP compu-
tational group theory system. After optimising the sequential code we develop a
parallel algorithm that exploits the new skeleton-based SGP2 framework to par-
allelise the three most computationally-intensive phases. To this end we develop
a new domain-specific skeleton, parBufferTryReduce. We report good par-
allel performance both on a commodity cluster and on a national HPC, delivering
speedups up to 548 over the optimised sequential implementation on 1024 cores.

1 Introduction

Computational algebra is an important area of symbolic computation with many com-
plex and expensive computations that would benefit from parallel execution. The area is
served by a variety of systems, many specialising in some mathematical domain, for ex-
ample GAP [7], a computational algebra system (CAS) specifically designed for group
theory and combinatorics.

Some discrete mathematical problems are embarrassingly parallel, and this has been
exploited for years even at Internet scale, e. g. the “Great Internet Mersenne Prime
Search”. Other problems have more complex coordination patterns and both parallel
algorithms and parallel CAS implementations have been developed, e. g. ParGAP [5].
Many parallel algebraic computations exhibit high degrees of irregularity, at multiple
levels, with numbers and sizes of tasks varying enormously (up to 5 orders of magni-
tude) [16]. They tend to use complex user-defined data structures, exhibit highly dy-
namic memory usage and complex control flow, often exploiting recursion. They make
little, if any, use of floating-point operations.

This combination of characteristics means that symbolic computations are not well
suited to conventional HPC paradigms with their emphasis on iteration over floating
point arrays, and has motivated the development of scalable domain-specific scheduling
and management frameworks like SymGrid-Par [16] and SymGridPar2 (SGP2) [20].

This paper outlines the first ever modern HPC-scale parallelisation of a problem in
computational group theory, namely finding the invariant bilinear forms of Hecke al-
gebra representations. These bilinear forms, and Hecke algebras more generally, are an

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 415–426, 2014.
c© Springer International Publishing Switzerland 2014

416 P. Maier et al.

important tool in the study of symmetries that arise in many branches of mathematics,
e. g. in topology and knot theory, with applications in theoretical physics and chemistry.

Our starting point is a sequential algorithm for computing bilinear forms, imple-
mented in GAP. Prior to parallelising, we optimise the sequential algorithm, reducing
sequential runtime by a factor of 350 (Section 2).1 The paper makes the following re-
search contributions.

(1) The development of a parallel algorithm for finding above bilinear forms. The
parallelisation exploits the new SGP2 framework designed for scalable GAP compu-
tations. Core elements of SGP2 are a set of algorithmic skeletons, implemented in the
parallel Haskell DSL HdpH [21], and a GAP binding for Haskell. We parallelise the
three most time-consuming phases of the algorithm: (a) solving homomorphic images
of linear systems over finite fields, (b) solving interpolation problems over rationals, and
(c) bilinear invariance check (over polynomial matrices). All algebraic computations are
performed by sequential GAP instances and coordinated by HdpH (Section 4).

(2) Some SGP2 skeletons are generic, e. g. the parMap parallel map of a function
over a list. Other skeletons are specific to the algebraic domain. Specifically to compute
with homomorphic images, a technique that is typical for a large class of algebraic
algorithms, we have developed a new algebraic skeleton parBufferTryReduce that
repeatedly checks whether the homomorphic results accumulated thus far are sufficient
to reconstruct the final result (Section 3).

(3) Many mathematicians have access to commodity clusters rather than HPCs, so
SGP2 is designed for both. We report good speedup and efficiency for a range of bilin-
ear form problems, both on a Beowulf cluster and on medium-scale configurations of
the HECToR UK supercomputer [12]. For example, one problem instance achieves a
speedup of 548, coordinating 992 GAP instances on 1024 cores (Section 5).

2 Algorithm for Finding Invariant Bilinear Forms

Background. Using the terminology of [8], let R = Z[x, x−1] be the ring of Laurent
polynomials in an indeterminate x. For the purpose of this paper, it suffices to know
that a Hecke algebra2 H is an R-algebra with a basis {Tw | w ∈ W} over R, where W
is a finite Coxeter group with set of generators S. In this paper, we only consider Hecke
algebras of type Em (m = 6, 7, 8), that is, W is the exceptional Coxeter group Em, and
the cardinality of the set of generators S is m.

An n-dimensional representation ρ of a Hecke algebra H is an R-algebra homo-
morphism from H to Mn(R), the R-algebra of n × n matrices over R. Note that ρ is
generated by the matrices ρ(Ts), s ∈ S. H is known to have a finite number of so-called
cell representations ρ. Moreover, Howlett and Yin [13] have brought each of these cell
representations ρ into a form where all m matrices ρ(Ts) are sparse.

Graham and Lehrer [11] and Geck [8] show that for any given ρ there exists a non-
trivial symmetric matrix Q ∈ Mn(R), unique up to scalar multiplication, such that

1 Such dramatic optimisations are not unusual in computer algebra as the typical high-level pre-
sentation of computational mathematics often omits opportunities for sequential optimisation.

2 More precisely, H is a one-parameter generic Iwahori-Hecke algebra.

High-Performance Computer Algebra: A Hecke Algebra Case Study 417

Q · ρ(Ts) = ρ(Ts)
T ·Q (1)

for all generators ρ(Ts). We call Q the matrix of an invariant bilinear form.
Depending on the representation ρ, finding the invariant bilinear form Q may require

substantial computation. For each algebra type, the table below lists the number of cell
representations ρ, the range of dimensions of ρ and the range of spreads of degree
bounds of Laurent polynomials in Q. These numbers (and hence the difficulty of the
problem) vary by several orders of magnitude.

Hecke algebra type E6 E7 E8

number of cell representations ρ 25 60 112
dimension of ρ 6–90 7–512 8–7168
spread of degree bounds of polynomials in Q 29–54 45–95 65–185

Sequential Algorithm for Computing Q. In principle,Q can be computed by viewing
Equation (1) as a system of linear equations and solving for the entries of Q. However,
solving linear systems over Z[x, x−1] is too expensive to obtain solutions for high di-
mensional representations.

Instead, we solve the problem by interpolation. We view each entry of Q as a Laurent
polynomial with u− l+1 unknown coefficients, where u− l+1 is the spread between
lower degree bound l and upper degree bound u. Solving Equation (1) at u− l+1 data
points will provide enough information to compute the unknown coefficients by solving
linear systems over the rationals instead of Z[x, x−1]. To avoid computing with very
large rational numbers (due to polynomials of high degree), we solve homomorphic
images of Equation (1) modulo small primes and use the Chinese Remainder Theorem
to recover the rational values.

The algorithm takes as input m generators ρ(Ts) of dimension n, lower and upper
degree bounds l and u, and a finite set of small primes P . From the degree bounds, we
construct a set Vlu of u− l+1 small integers (excluding zero) to be used as data points
for interpolation. The primes in P must be chosen large enough not to divide any of the
integers in Vlu. The algorithm runs in three phases:

1. For all p ∈ P and v ∈ Vlu, GENERATE a modular interpolated solution Qvp of (1)
by instantiating the unknown x with v and solving the resulting system modulo p.

2. For all v ∈ Vlu, REDUCE the modular matrices Qvp by rational Chinese remain-
dering and obtain a rational interpolated solution Qv of (1). Construct each Laurent
polynomial qij in Q by gathering the (i, j)-entries of all Qv and solving a rational
linear system for the coefficients qij . Since Q is symmetric, there are (n + 1)n/2
such systems, each of dimension u− l + 1.

3. For all generators ρ(Ts), CHECK that the resulting Q satisfies (1) over Z[x, x−1].

After some (offline) pre-processing, the theory of Hecke algebras admits a particularly
efficient way to GENERATE Qvp. Instead of solving a linear system, the rows of Qvp are
computed by a spinning basis algorithm [9,17], multiplying, or spinning, the basis vec-
tor e of a pre-determined one-dimensional sub-space with n pre-determined products
of the generators ρ(Ts).

418 P. Maier et al.

We observe that Q often has many identical entries. Therefore, the gather step of the
REDUCE phase filters duplicates to avoid repeatedly solving the same linear systems.
Typically, avoiding duplicates reduces the workload of REDUCE by a factor of 5 to 10.

Sequential Optimisations. Profiling the GAP code on Hecke algebras of type E6 lead
to a number of improvements. The three most important ones are:

1. Avoiding unnecessary copying during the GENERATE phase by reducing the size
of lambda abstractions encoding the generators.

2. Reducing the memory footprint by storing generators in a sparse matrix format.
3. Spinning the basis more efficiently by exploiting associativity.

For type E6 these optimisations reduced sequential runtime of the algorithm (cumulative
over all representations) by a factor of about 350, and the memory footprint by an order
of magnitude from several GB to hundreds of MB.

3 The SymGridPar2 Framework

SGP2 System Architecture. GAP [7] is the leading free system for computational
discrete algebra. It is designed to be natural to use for mathematicians; to be powerful
and flexible for experts and to be freely extensible so that it can encompass new math-
ematics. GAP supports very efficient linear algebra over small finite fields, multiple
representations of groups, subgroups, cosets and different types of group elements, and
backtrack search algorithms for permutation groups.

This case study used the most recent stable GAP distribution, GAP 4.6, which does
not support parallelism. Hence the sequential GAP 4.6 instances are coordinated over
the network by a distributed middleware, the SymGridPar2 (SGP2) framework [20].
The middleware occupies one core per multicore node and controls (via a RPC-like
protocol) independent GAP 4.6 instances running on the remaining cores (Figure 1).

SGP2 itself is implemented in HdpH [21], a domain-specific language (DSL) for
distributed-memory task parallelism, embedded in Haskell. SGP2 consists of two parts:
(1) a GAP binding, enabling calls from HdpH to GAP, including automatic marshaling,
and (2) a number of general-purpose and domain-specific parallel skeletons.

GAP GAP GAP GAP GAPGAP

multicoremulticore

...

R
P

C

multicore

SymGridPar2

Fig. 1. SGP2 system architecture

High-Performance Computer Algebra: A Hecke Algebra Case Study 419

-- HdpH types
type Par a -- parallel computation, returns result of type ’a’
type Closure a -- serialisable value/computation of type ’a’
type Task a= Closure (Par (Closure a)) -- serialisable parallel computation

-- returning serialisable result of type ’a’

-- sample general-purpose skeletons
parMap :: Closure (a → b) → [Closure a] → Par [Closure b]
parReduce :: Closure (a → a → a) → [Closure a] → Par (Closure a)

-- novel domain-specific skeleton; repeatedly reduces the results of a lazy list of input tasks
-- until the reducer computes a result
parBufferTryReduce :: ([Closure a] → Par (Maybe (Closure b))) -- reducer

→ Int -- reducer batch size
→ Int -- number tasks eval’d in parallel
→ [Task a] -- lazy list of input tasks
→ Par (Maybe (Closure b)) -- result

Fig. 2. HdpH types and some SymGridPar2 skeleton signatures

SGP2 Programming Model. HdpH is a monadic DSL, embedding a high-level co-
ordination language into Haskell. Figure 2 introduces two central types of the HdpH
DSL: Par, the monad type constructor for parallel computations, and Closure, the
type constructor for serialisable values including unevaluated computations, or thunks.
A Task is defined as a serialisable monadic computation returning a serialisable result.
Thanks to serialisability, tasks and their results can be distributed over the network, and
HdpH exploits this to provide automatic load management by work stealing.

At the lowest level, HdpH exposes fork/join style primitives for parallel program-
ming. Using the primitives the HdpH library defines a number of general-purpose poly-
morphic skeletons (Figure 2), e. g. parallel maps (applying a function closure to a list
of closures, in parallel) and reductions. The skeletons evaluate their input lists strictly
as they coordinate monadic computations, and hence are unsuitable for computing with
potentially infinite lazy lists.

Our case study requires solving an unknown number of subproblems in parallel until
there are enough intermediate results to construct the solution. More specifically, the
algorithm of Section 2 requires the use of an unknown number of primes in the GEN-
ERATE phase. A typical Haskell program would parametrise the GENERATE phase with
an infinite lazy list of primes, and rely on demand from the REDUCE phase to decide
how many primes are actually needed. As the monadic context of HdpH precludes lazy
lists, we capture this domain-specific pattern3 in a new skeleton that combines a task
farm with a reducer.

The new parBufferTryReduce skeleton takes as input (in reverse order) a lazy
list of tasks, the number of tasks to evaluate in parallel, the reducer batch size and the re-
ducer function. A call to parBufferTryReduce f b n tasks continually forks
from the head of list tasks, aiming to keep n tasks under evaluation, accumulating a
list accu of intermediate results (not necessarily in the order of tasks). The reducer f
is executed every time the length of accu is a multiple of the batch size b. The skeleton

3 This pattern is common in algebraic computations that generate modular subproblems, e. g.
linear system solving based on modular arithmetic and Chinese remaindering.

420 P. Maier et al.

returns a result as soon as the reducer finds one; it returns Nothing only if the reducer
fails to produce a result even after all tasks are evaluated.

The HdpH DSL greatly simplifies developing domain-specific skeletons, particu-
larly skeletons with complex parallel coordination such as parBufferTryReduce.
A case in point is the implementation of the latter spanning less than 90 lines of code.

4 Parallel Algorithm for Finding Invariant Bilinear Forms

Each of the three phases of the sequential algorithm (Section 2) contains significant
amounts of parallelism. Deciding what and how to parallelise is guided by the ratio
between computation and communication costs on the distributed target architectures.

Parallel Phases. Figure 3 shows the parallel structure of the algorithm to compute Q,
with lower and upper degree bounds l and u, for an n-dimensional cell representation
given by m generators ρ(Ts); P is the set of primes used in the GENERATE phase.

The GENERATE phase forks |P |(u− l+1) parallel tasks, each taking as input a pair
of integers (p, v) ∈ P × Vlu, where Vlu is defined as in Section 2. Each task runs the
spinning basis algorithm to compute an n × n matrix Qvp of integers modulo p. Thus
the input size of GENERATE tasks is small and constant but the output size is quadratic
in the dimension.

The REDUCE phase first constructs k ≤ (n + 1)n/2 interpolation problems by
Chinese remaindering and filtering duplicates, then forks k parallel tasks solving the
interpolation problems. Each task takes as input a vector of u − l + 1 rational values,
solves a linear system of u− l + 1 equations over the rationals, and returns a vector of
u− l+1 polynomial coefficients. Thus input and output size of REDUCE tasks depend
(linearly) on the degree spread (and on the size of the rational numbers, which depends
on the choice of P .)

The CHECK phase forks m parallel tasks, each checking the validity of Equation (1)
w. r. t. one generator ρ(Ts). To this end, each task requires as input the whole matrix Q,
i. e. (n + 1)n/2 polynomials with up to u − l + 1 rational coefficients. Thus the input
size of CHECK tasks is quadratic in the dimension and linear in the degree spread (and
depends on the size of the rational coefficients), whereas the output is a single bit.

Overall Coordination. Figure 3 depicts a parallel structure where REDUCE synchro-
nises on the completion of GENERATE, which depends on the set of primes P . Instead,

polynomial matrix mult

m tasks

rational linear solve

<= (n+1)*n/2 tasks

GENERATE CHECKREDUCE

|P|*(u−l+1) tasks

modular basis spin

filter duplicates
Chinese remainder;

Fig. 3. Structure of parallel algorithm for computing invariant bilinear forms Q

High-Performance Computer Algebra: A Hecke Algebra Case Study 421

the parBufferTryReduce skeleton (Section 3) decouples GENERATE from RE-
DUCE: The list tasks is a (possibly lazy and infinite) list of GENERATE tasks, the
reducer f runs the REDUCE phase followed by the CHECK phase, and the batch size b
determines the frequency of (attempted) reductions.

Note that most tasks in Figure 3 run on GAP workers and have a small memory foot-
print. However, the big task constructing the interpolation problems at the beginning of
the REDUCE phase is executed on a dedicated GAP instance, the GAP master, because
it must gather all Qvp matrices and mangle them simultaneously, which may require
substantial amounts of memory.

5 Evaluation of Parallel Performance

We evaluate the parallel algorithm (Section 4) on all cell representations (reps) for
Hecke algebra of type E7 and on the smaller reps of type E8. The reps for type E6 don’t
warrant parallel execution as their sequential runtimes are less than 150s. We evaluate
on three different architectures:

– up to 16 nodes of a commodity cluster (Beowulf, 8 cores/node, 2.0GHz Intel Xeon
CPUs, 12GB RAM/node, Gigabit Ethernet),

– up to 32 nodes of a Cray XE6 (HECToR [12], 32 cores/node, 2.3GHz AMD Inter-
lagos CPUs, 32GB RAM/node, Cray Gemini interconnect), and

– a large memory NUMA server (Cantor, 48 cores, 2.8GHz AMD Opteron CPUs,
512GB RAM).

Figure 4 displays our results, organised into 2 columns: to the left data about the E7 reps
3 to 60, to the right about the E8 reps 3 to 16; reps 1 and 2 for E7 resp. E8 are trivial and
easy to solve sequentially.

Problem size. The top row of Figure 4 plots the representations’ dimensions and degree
spreads (right y-axis) as well as the numbers of GENERATE and REDUCE tasks (left y-
axis); recall that the number of CHECK tasks is constant at 7 and 8, respectively.

We observe that the number of GENERATE tasks tracks the degree spreads curve,
whereas the number of REDUCE tasks oscillates by an order of magnitude or more
though its trend is rising with the dimension.

To obtain reproducible results, the set of primes was chosen somewhat bigger than
minimal, and the batch size parameter of the parBufferTryReduce skeleton was
set so high that the reducer runs only once, after the GENERATE phase is completed.

Runtime. The second row of Figure 4 plots parallel runtimes, on 16 Beowulf nodes
(using 15 * 7 + 1 = 106 GAP workers) in the case of E7, and on Cantor (using 40
GAP workers) in the case of E8. The graph for E8 also plots the total work, i. e. the
cumulative runtime of all tasks, and the time spent in the sequential part of the REDUCE

phase. The graph for E7 only plots the parallel work, i. e. the cumulative runtime of all
parallel tasks.4 The reported times reflect single experiments as a statistically significant
number of repetitions would be prohibitively expensive.

4 We failed to record the runtime of the sequential REDUCE step for E7, thus can’t provide total
work; parallel work is an under-approximation.

422 P. Maier et al.

Fig. 4. Performance of parallel algorithm for finding invariant bilinear forms Q, E7 to the left, E8

to the right. Top to bottom: problem size, runtime, speedup, size of GAP tasks.

High-Performance Computer Algebra: A Hecke Algebra Case Study 423

We observe that the amount of (total, parallel, sequential) work and the parallel run-
time oscillate noisily due to the dramatic oscillation in the number of REDUCE tasks.
The trend of work and runtime appears to grow with the dimension; the degree spread
appears to have no influence.

Speedup. The third row of Figure 4 plots speedups on 16 Beowulf nodes (E7, using 106
GAP workers) and on Cantor (E8, using 40 GAP workers).

Since sequential runtimes are not available, we compute speedups w. r. t. parallel
work (for E7) or total work (for E8). This method systematically underestimates the true
speedup (particularly for E7) as it fails to account for some of the costs of sequential
execution, e. g. more time spent on sequential garbage collection.

We observe that most E7 reps up to 22 are too small to produce significant speedups
on 16 Beowulf nodes. Reps 39 and above, and particularly reps above 55, suffer from
Amdahl’s law due to significant time spent in the sequential part of REDUCE. Similarly,
the E8 reps up to 5 are too small for good speedups on Cantor. However, we cannot
observe the effect of Amdahl’s law for E8; there is so much parallel work that speedups
for reps 11 to 16 are close to the maximum of 40× despite rep 16 spending more than
1000 seconds in the sequential phase.

For the E7 reps 23 to 38, we also investigate strong scaling from 4 to 8 to 16 Beowulf
nodes. We observe that speedup oscillations increase with scale, i. e. some representa-
tions scale, others don’t; best speedup (53×) is achieved for rep 38, corresponding to
a best case efficiency of 50%. The picture is similar for the E8 reps 11 to 15 when
investigating strong scaling from 4 to 32 nodes on HECToR; rep 11 achieves the top
speedup of 548×, top efficiency of 55%, but the other reps do not scale so well. Note
that for multi-phase symbolic computations with irregular and dynamic parallelism an
efficiency of 40% is good, as previously reported on smaller architectures [15,16,26].

Task size. The bottom row of Figure 4 shows the average, minimum and maximum
runtimes of GENERATE, REDUCE and CHECK tasks; the time recorded is GAP compute
time, excluding communication and marshaling overheads.5

We observe that CHECK tasks are generally expensive but regular, and REDUCE tasks
are largely regular, with only some reps showing moderate irregularity (E7 rep 48 is an
outlier). However, GENERATE tasks are wildly irregular, varying by at least two orders
of magnitude. The average cost of GENERATE and CHECK tasks appears to grow with
the dimension, whereas the cost of REDUCE tasks appears to depend strongly on the
degree spread.

Limitations. Two issues preclude solving the remaining E8 reps with the current algo-
rithm. First, the sequential time spent in the REDUCE phase, which grows quadratically
with the dimension, obliterates speedups beyond dimension 200 (for E7). The parallel
algorithm needs to be redesigned to scale to dimensions between 1000 and 2000 (which
are typical of E8), let alone the maximum of 7168.

5 Overheads for calling GAP, including marshaling and data transfer, vary with task input and
output size. For E7 GENERATE tasks on Beowulf, for instance, overheads generally stay two
orders of magnitude below average task size, ranging from about 10−4 to about 0.1 seconds.

424 P. Maier et al.

The second issue is the memory consumption, growing quadratically in the dimen-
sion, of the GAP master at the start of the REDUCE phase. The 12GB RAM of a Beowulf
node prove insufficient already from E8 rep 12, dimension 168.

6 Related Work

Computational Algebra Skeletons. This paper gives further evidence to the success of
a parallel pattern, or skeleton, approach [2] in the domain of computational mathemat-
ics. We combine specialist domain knowledge, in the area of computational group the-
ory, with language and systems knowledge, specifically for high-level orchestration of
parallelism on large-scale clusters. This continues our work on domain-specific parallel
patterns for symbolic computation, and some recent examples are as follows. We have
designed a parallel Orbit, that achieves a speedup of up to 36 on a 64-core machine [14];
a critical-pair-completion pattern, with the Gröbner Bases computation as one instance
that achieves a speedup of 6.9 on an 8-core machine; and the multiple-homomorphic
images pattern, that achieves speedups of up to 11.9 on a 16-node cluster [18].

Parallel Computational Algebra. Several computer algebra systems offer dedicated
support for parallelism (see [10, Sec 2.18] and [25]). Distributed Maple [26] provides a
portable Java-based communication layer to permit interaction of Maple instances over
a network. It uses future-based language constructs for synchronisation and communi-
cation, and has been used to parallelise several computational geometry algorithms. The
Sugarbush [1] system is another distributed-memory extension of Maple, which uses
Linda as coordination language. A distributed-memory parallel extension to GAP is the
GAPMPI [3] package, which provides access to MPI functionality from within GAP. In
contrast to this model of explicit message passing, our approach provides higher level
abstractions, such as the parBufferTryReduce skeleton.

The TOP-C system provides task-oriented parallelism on top of a distributed shared-
memory system [4], implementing several symbolic applications, including parallel
computations over Hecke algebras [6] on networks of SPARC workstations.

Several efforts of parallelising computational algebra have targeted previous gen-
erations of HPC architectures. Sibert et al [27] describe the implementation of basic
arithmetic over finite fields on a Connection Machine. Roch et al [24] discuss the im-
plementation and performance of a parallel Gröbner basis algorithm on the Floating
Point System hypercube Tesseract 20 with 16 nodes. Another parallel Gröbner basis
algorithm is implemented on a Cray Y-MP by Neun and Melenek [23] and later on a
Connection Machine by Loustaunau and Wang [19]. We are not aware of any other
work within the last 20 years that targets HPC for computational algebra.

More recently main-stream computer algebra systems have developed interfaces for
large-scale distribution, aiming to exploit Grid infrastructures [22]. The community
effort of defining a protocol for symbolic data exchange on such infrastructures allows
interchange between different computer algebra systems [16]. In contrast to these Grid-
based infrastructures, our technology targets massively parallel supercomputers.

High-Performance Computer Algebra: A Hecke Algebra Case Study 425

Invariant Bilinear Forms for Hecke Algebra Representations. The invariant bilin-
ear forms Q carry data that enables us to find so-called Jantzen filtrations [17], which
simplify the general understanding of transformations of Hecke algebra representations.

Such bilinear forms Q for Hecke algebras of type E7 and E8 have previously been
computed by Geck and Müller in an ad-hoc way; their paper [9] describes the math-
ematical basis for their approach but does not consider parallelism or evaluate perfor-
mance. This paper and [17] are part of an ongoing project, started by Geck, to build a
systematic GAP database of bilinear forms Q for Hecke algebras of type E6,E7 and E8.

7 Conclusion

We have described what we believe is the first ever parallelisation of an algebraic com-
putation on a modern HPC. The computation of invariant bilinear forms for Hecke
algebra representations is multi-phase and exhibits irregular parallelism over the com-
plex control and data structures typical of computer algebra. The parallelisation ex-
ploits the new skeleton-based SGP2 framework and required the development of a new
domain-specific skeleton, parBufferTryReduce. The performance on a medium-
scale HPC configuration and a commodity cluster is good, if noisy, reflecting the
complexity of the problems solved. For example, for medium-size Hecke algebra rep-
resentations (23 to 38) of type E7 we obtain speedups of between 25 and 53 on 16
Beowulf nodes (128 cores, 106 GAP workers). For small E8 representations (11 to 15)
we obtain speedups of between 116 and 548 on 32 HECToR nodes (1024 cores, 992
GAP workers).

In related and ongoing work we report good performance results for small algebraic
kernels on far larger HPC configurations, e. g. weak scaling of the sumEuler kernel
(summing up Euler’s ϕ function over large intervals) on up to 32K HECToR cores [20].
Core failures are predicted to rise along with the number of cores. To insure large and
expensive symbolic computations against core failures, we have implemented and are
evaluating automatic recovery of idempotent computations in SGP2 [28].

Acknowledgements. This research was supported by the grants HPC-GAP (EPSRC
EP/G05553X), AJITPar (EPSRC EP/L000687/1), RELEASE (EU FP7-ICT 287510).

References

1. Char, B.W.: Progress report on a system for general-purpose parallel symbolic algebraic
computation. In: ISSAC 1990, Tokyo, Japan, pp. 96–103. ACM Press (1990)

2. Cole, M.I.: Algorithmic Skeletons: Structured Management of Parallel Computation. MIT
Press (1989)

3. Cooperman, G.: GAP/MPI: Writing parallel programs in GAP easily. Tech. rep., Northeast-
ern University, Boston, USA (1998)

4. Cooperman, G.: TOP-C: Task-oriented parallel C for distributed and shared memory. In:
Cooperman, G., Jessen, E., Michler, G.O. (eds.) Workshop on Wide Area Networks and
High Performance Computing. LNCIS, vol. 249, pp. 109–117. Springer, London (1999)

426 P. Maier et al.

5. Cooperman, G.: Parallel GAP: Mature interactive parallel computing. In: Groups and Com-
putation III, Columbus, OH, USA, pp. 123–138. De Gruyter (2001)

6. Cooperman, G., Tselman, M.: New sequential and parallel algorithms for generating high di-
mension Hecke algebras using the condensation technique. In: ISSAC 1996, Zürich, Switzer-
land, pp. 155–160. ACM Press (1996)

7. GAP Group: GAP – groups, algorithms, and programming (2007),
http://www.gap-system.org

8. Geck, M.: Hecke algebras of finite type are cellular. Invent. Math. 169, 501–517 (2007)
9. Geck, M., Müller, J.: James’ conjecture for Hecke algebras of exceptional type, I. J. Alge-

bra 321(11), 3274–3298 (2009)
10. Grabmeier, J., Kaltofen, E., Weispfenning, V.: Computer Algebra Handbook. Springer (2003)
11. Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)
12. HECToR: UK National Supercomputing Service, www.hector.ac.uk
13. Howlett, R.B.: W-graphs for the irreducible representations of the Hecke algebras of type E7

and E8, private communication with J. Michel (December 2003)
14. Janjic, V., et al.: Space exploration using parallel orbits. In: Advances in Parallel Computing,

ParCo 2013, Munich, Germany, vol. 25, pp. 225–232. IOS Press (2014)
15. Konovalov, A., Linton, S.: Parallel computations in modular group algebras. In: PASCO

2010, Grenoble, France, pp. 141–149. ACM Press (2010)
16. Linton, S., et al.: Easy composition of symbolic computation software using SCSCP. J. Symb.

Comput. 49, 19–95 (2013)
17. Livesey, D.: High Performance Computations with Hecke Algebras: Bilinear Forms and

Jantzen Filtrations. Ph.D. thesis, University of Aberdeen (2014)
18. Loidl, H.W., et al.: Comparing parallel functional languages: Programming and performance.

Higher-order and Symbolic Computation 16(3), 203–251 (2003)
19. Loustaunau, P., Wang, P.Y.: Towards efficient parallelizations of a computer algebra algo-

rithm. In: Frontiers of Massively Parallel Computation, McLean, VA, USA, pp. 67–74. IEEE
(1992)

20. Maier, P., Stewart, R., Trinder, P.W.: Reliable scalable symbolic computation: The design of
SymGridPar2. Computer Languages, Systems & Structures 40(1), 19–35 (2014)

21. Maier, P., Trinder, P.: Implementing a high-level distributed-memory parallel Haskell in
Haskell. In: Gill, A., Hage, J. (eds.) IFL 2011. LNCS, vol. 7257, pp. 35–50. Springer,
Heidelberg (2012)

22. Maple Grid Computing Toolbox,
http://www.maplesoft.com/products/toolboxes/GridComputing

23. Neun, W., Melenk, H.: Very large Gröbner basis calculations. In: Zippel, R.E. (ed.) CAP
1990. LNCS, vol. 584, pp. 89–99. Springer, Heidelberg (1992)

24. Roch, J.L., Sénéchaud, P., Françoise Siebert-Roch, F., Villard, G.: Computer algebra on
MIMD machine. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 423–439. Springer,
Heidelberg (1989)

25. Roch, J.L., Villard, G.: Parallel computer algebra. Tech. rep., IMAG, France, tutorial at
ISSAC 1997 (1997)

26. Schreiner, W., Mittermaier, C., Bosa, K.: Distributed Maple: parallel computer algebra in
networked environments. J. Symb. Comput. 35(3), 305–347 (2003)

27. Sibert, E.E., Mattson, H.F., Jackson, P.: Finite field arithmetic using the Connection Machine.
In: Zippel, R.E. (ed.) CAP 1990. LNCS, vol. 584, pp. 51–61. Springer, Heidelberg (1992)

28. Stewart, R.: Reliable Massively Parallel Symbolic Computing: Fault Tolerance for a Dis-
tributed Haskell. Ph.D. thesis, Heriot-Watt University (2013)

http://www.gap-system.org
www.hector.ac.uk
http://www.maplesoft.com/products/toolboxes/GridComputing

	High-Performance Computer Algebra:A Hecke Algebra Case Study
	1 Introduction
	2 Algorithm for Finding Invariant Bilinear Forms
	3 The SymGridPar2 Framework
	4 Parallel Algorithm for Finding Invariant Bilinear Forms
	5 Evaluation of Parallel Performance
	6 Related Work
	7 Conclusion
	References

