
Low-Pain, High-Gain Multicore Programming in Haskell
Coordinating Irregular Symbolic Computations on MultiCore Architectures

A. Al Zain
P. Trinder M. Aswad

G. Michaelson
Computer Science Department, MACS,
Heriot-Watt University, Edinburgh, UK
{ceeatia,trinder,mka19,greg}@macs.hw.ac.uk

K. Hammond
School of Computer Science,

University of St Andrews,
St Andrews, UK

kh@cs.st-and.ac.uk

J. Berthold
FB Mathematik und Informatik,
Philipps-Universität, Marburg,
D-35032 Marburg, Germany

berthold@mathematik.uni-marburg.de

Abstract
With the emergence of commodity multicore architectures, exploit-
ing tightly-coupled parallelism has become increasingly important.
Functional programming languages, such as Haskell, are, in princi-
ple, well placed to take advantage of this trend, offering the ability
to easily identify large amounts of fine-grained parallelism. Unfor-
tunately, obtaining real performance benefits has often proved hard
to realise in practice.

This paper reports on a new approach using middleware that has
been constructed using the Eden parallel dialect of Haskell. Our
approach is “low pain” in the sense that the programmer constructs
a parallel program by inserting a small number of higher-order
algorithmic skeletons at key points in the program. It is “high
gain” in the sense that we are able to get good parallel speedups.
Our approach is unusual in that we do not attempt to use shared
memory directly, but rather coordinate parallel computations using
a message-passing implementation. This approach has a number of
advantages. Firstly, coordination, i.e. locking and communication,
is both confined to limited shared memory areas, essentially the
communication buffers, and is also isolated within well-understood
libraries. Secondly, the coarse thread granularity that we obtain
reduces coordination overheads, so locks are normally needed only
on (relatively large) messages, and not on individual data items,
as is often the case for simple shared-memory implementations.
Finally, cache coherency requirements are reduced since individual
tasks do not share caches, and can garbage collect independently.

We report results for two representative computational algebra
problems. Computational algebra is a challenging application area
that has not been widely studied in the general parallelism commu-
nity. Computational algebra applications have high computational
demands, and are, in principle, often suitable for parallel execution,
but usually display a high degree of irregularity in terms of both
task and data structure. This makes it difficult to construct parallel
applications that perform well in practice. Using our system, we are
able to obtain both extremely good processor utilisation (97%) and
very good absolute speedups (up to 7.7) on an eight-core machine.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DAMP’09, January 20, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-419-5/09/01. . . $5.00

Categories and Subject Descriptors C.1.2 [Multiple Data Stream
Architectures (Multiprocessors)]: [Parallel processors]; D.1.3
[Parallel Programming]; D.3.2 [Language Classification]: Con-
current, distributed, and parallel languages; G.4 [Mathematical
Software]; I.1 [Symbolic and Algebraic Manipulation]

General Terms Experimentation, Measurement, Performance.

Keywords Haskell, Eden, Multicore Parallelism, Algorithmic
Skeletons, Computational Algebra, GAP.

1. Introduction
Multicore architectures are becoming increasingly common, and
are projected to become still more pervasive. However, effectively
utilising the tightly-coupled parallelism provided by these architec-
tures is proving to be a significant challenge (34). This paper reports
preliminary results from a new approach to multicore programming
using Haskell-based parallel algorithmic skeletons, that exploits an
underlying message-passing implementation to map independent,
communicating threads onto multiple cores. We demonstrate the
effectiveness of the approach by showing how it can be used to
effectively coordinate a number of sequential computational com-
ponents, written in the GAP computational algebra system (30), on
a multicore architecture.

Unlike much other work on multicore parallelism, we concen-
trate exclusively on coordinating computational components us-
ing a high-level declarative parallel programming model (algorith-
mic skeletons) that exposes ultra-lightweight threads. Our approach
exploits sophisticated parallel middleware that dynamically cre-
ates and controls processes and threads, that automatically man-
ages communication and synchronisation, and that independently
performs garbage collection of data within each parallel process.
In contrast to the lightweight communication and synchronisation
used by most parallel languages targeting shared-memory archi-
tectures1, Eden uses relatively heavyweight message-passing. The
specific research contributions of this paper are:

i) we advocate the use of a semi-explicit parallel functional pro-
gramming model, using high-level parallel skeletons, for multi-
core architectures;

ii) we show how such a programming model, realised in the Eden
parallel dialect of Haskell (38), can coordinate sequential com-
putations written in GAP on a multicore architecture;

1 Erlang (6; 23) is the notable exception.

iii) we demonstrate the first multicore performance results for such
a system, showing that it achieves processor utilization up to
97% and speedups of up to 7.7 on an eight-core machine;

iv) we investigate the minimum thread granularity where our rel-
atively heavyweight parallel programming model can deliver
good performance on multicore architectures; and

v) we demonstrate, by example, that using our high-level parallel
programming model, minimal effort is required to gain accept-
able parallelism on multicore architectures for suitably high-
grained symbolic computations.

2. Overview
As mentioned above, one of the most interesting aspects of our
approach is that we use parallel Haskell as a coordination lan-
guage (31). As shown in Figure 1, rather than (re)-implementing
the algorithms that we wish to parallelise using parallel Haskell,
we use the SymGrid-Par middleware (written in parallel Haskell)
to coordinate essentially-unchanged sequential procedures written
in some computational language (here, GAP, but, in principle, any
computational language, including C, C++ or Java), into a coherent
parallel application. In this way, we obtain the key advantages of
declarative parallelism, namely the simple specification and correct
implementation of parallelism (47), while still supporting existing
sequential application code and libraries. Existing end-users will
thus be easily able to migrate to multicore architectures, without
significant reimplementation or language design effort on the part
of the sequential language implementor.

This is an attractive proposition since it, at a stroke, almost
eliminates the barrier to entry to multicore programming for many
users and implementors (it is necessary to support data mar-
shalling/unmarshalling, and remote procedure call over some sim-
ple intra-core communication mechanism, but this can be as simple
as a function call, or pipe). The primary cost lies in potentially high
(and, on a multicore, apparently unnecessary) data marshalling
and unmarshalling costs, plus overheads associated with calling
message-passing libraries. Somewhat surprisingly, the results pre-
sented in this paper, and elsewhere (9), suggest that these over-
heads can be negligible, even for quite fine-grained parallel appli-
cations, and that multicore systems provide effective latency-hiding
mechanisms for message construction. In fact, we have shown else-
where (9), that our implementation is highly competitive with, and,

SymGrid-Par

Core 1

SymGrid-Par

Core 2

SymGrid-Par

Core 3

SymGrid-Par

Core 4

Figure 1. Using Haskell as a Coordination Language on a Multi-
core Platform

SymGrid−Par

DREAM

EDEN

GUM

GpH

GAP

MapleMupad

Kant

Parallel Haskell
Algebra Systems

Computational

Figure 2. Structure of the SymGrid-Par Middleware

in some cases, superior to, an implementation of a very similar par-
allel Haskell using a shared heap. Although we are in the process
of producing a shared-heap implementation of the Eden language
constructs we describe here, we do not yet, however, have directly
comparable results that we can report. We therefore conjecture,
based on our other results using a shared-heap implementation, that
there will usually be little performance difference between the two
technologies on small numbers of cores, that the message-passing
implementation will show significant advantages for most applica-
tions beyond 4-8 cores, and that there may be significant advantages
for some communication-intensive applications even on 2-4 cores.

2.1 The GAP Computational Algebra System
Computational algebra has played an important role in a number
of notable mathematical developments, for example in the clas-
sification of finite simple groups. It is essential in several areas
of mathematics which apply to computer science, such as formal
languages, coding theory, or cryptography. Computational alge-
bra applications are typically characterised by complex and ex-
pensive computations that would benefit from parallel computa-
tion, but which may exhibit a high degree of irregularity in terms
of both data- and computational-structures. Application develop-
ers are typically mathematicians or other domain experts, who may
not possess parallel expertise or have the time/inclination to learn
complicated parallel systems interfaces. Our work aims to support
this application irregularity in a seamless and transparent fashion,
by providing easy-to-use coordination middleware (SymGrid-Par)
that supports dynamic task allocation, load re-balancing and task
migration GAP (30) is a free-to-use, open source system for com-
putational discrete algebra, which focuses on computational group
theory. It provides a high-level domain-specific programming lan-
guage, a library of algebraic functions, and libraries of common
algebraic objects. GAP is used in research and teaching for study-
ing groups and their representations, rings, vector spaces, algebras,
and combinatorial structures.

2.2 The SymGrid-Par Middleware
We have built our implementation on the SymGrid-Par mid-
dleware (2), whose primary purpose is to orchestrate sequential
computational algebra components into a (possibly parallel) Grid-
enabled application. In the full SymGrid-Par design, components
communicate using the OpenMath data-exchange protocol (41),
an XML-based data description format, designed specifically to
represent computational mathematical objects which may be dis-
tributed across a wide-area, heterogeneous computational Grid. We
have adapted SymGrid-Par to our multicore test environment in
order to explore whether we can obtain good performance for par-
allel symbolic computations on a multicore system. In this paper,
we will not discuss the wider capabilities of SymGrid-Par on more
general computational Grids.

SymGrid-Par (Figure 2) is built around parallel implementa-
tions of GUM (49; 3) (the runtime implementation of Glasgow Par-
allel Haskell (GPH) (50)) and DREAM (the runtime implemen-
tation of Eden (38)). Both GPH and Eden are well-established
semi-explicit parallel extensions to Haskell. These two Haskell
dialects provide various high-level parallelism services including
support for ultra-light-weight threads, virtual shared-memory man-
agement, scheduling support, automatic thread placement, auto-
matic datatype-specific marshalling/unmarshalling, explicit pro-
cess control, implicit communication, load-based thread throttling,
and thread migration. As will be illustrated later, SymGrid-Par
thus provides a flexible, adaptive environment for managing par-
allelism at various degrees of granularity.

SymGrid-Par exploits the capabilities of the Eden and GPH
systems by layering a simple API over their basic functionality,
that can be exploited by various computational algebra systems.
In this paper, we consider only the interfaces to/from the GAP
system (30). By using SymGrid-Par, we achieve a clear separation
of concerns: the parallel Haskell systems deal with issues of thread
creation/coordination and orchestrate the GAP engines to work on
the application as a whole; while each instance of the GAP engine
deals solely with the execution of individual GAP computations.

2.3 Linking GAP and SymGrid-Par
We exploit a set of interfaces to link Haskell with a number of
different computational algebra systems. Each processing element
(PE) is an instance of a Haskell graph reduction engine interfaces
to an instance of a computational algebra system engine, sending
commands to the engine to execute symbolic computations, and
receiving the results of running those computations, using a well-
defined communication protocol based on the OpenMath standard
for transmitting mathematical data. The main Haskell functions we
provide to interface to GAP are:

gapEval :: String -> [GAPObject] -> GAPObject
gapEvalN :: String -> [GAPObject] -> [GAPObject]
string2GAPExpr :: String -> GAPObject
gapExpr2String :: GAPObject -> String

Here, gapEval and gapEvalN allow Haskell programs to in-
voke GAP functions by giving a function name (as a String)
plus a list of function parameters of type GAPObject; gapEvalN
is used to invoke GAP functions that return more than one ob-
ject; and string2GAPExpr/gapExpr2String respectively con-
vert GAP objects to/from Haskell Strings, from which they may
be converted to/from the appropriate internal data formats using
read/show. Similar operations are provided for each of the other
computational algebra systems that we interface to.

2.4 Parallel Skeletons for Symbolic Computing
We have implemented a set of parallel skeletons for symbolic com-
puting using Eden. These skeletons can be called directly from
within the computational steering interface for our computational
algebra target systems. The only difference seen by the user of the
computational algebra system is in the use of such a skeleton: the
SymGrid-Par implementation and automatic coordination is com-
pletely transparent to the end-user, except in providing a (hope-
fully good) parallelisation of their program. Many of the skeletons
we have used so far are fairly standard (17; 18), and are based on
commonly-used sequential higher-order functions.

parMap:: (a->b) -> [a] -> [b]
parZipWith:: (a->b->c) ->[a] -> [b] -> [c]
parReduce:: (a->b->b) -> b -> [a] -> b
parMapReduce:: (c->[(d,a)]) -> (d->[a]->b) -> [c]->[(d,b)]
masterWorker:: (a->([a],b))-> [a] -> [b]

...

 m:1

workerworker

master

[task]

[result]

[task]

[task] [result]

[result]

Figure 3. The masterWorker computation scheme.

So, for example, parMap is semantically equivalent to a conven-
tional map, but differs operationally in applying its function ar-
gument to each element of the list argument in parallel. Simi-
larly, parZipWith is a parallel version of the standard zipWith
function; parReduce is a parallel variant of a standard fold(r)
function; parMapReduce combines elements of parMap and
parReduce, first generating a list of key-value pairs from every
input item (in parallel), before reducing each set of values for one
key across these intermediate results. The masterWorker skele-
ton generates a set of worker processes to apply the given function
parameter in parallel to a set of input tasks (Figure 3). A master pro-
cess distributes the tasks to worker processes on demand, including
any new tasks that are generated by the workers when producing
output. This implementation of the masterWorker skeleton pro-
vides dynamic load-balancing between workers, since newly cre-
ated tasks will be automatically distributed to idle worker processes
on demand. In addition to its obvious uses, the masterWorker
skeleton can also be used to implement parallel backtracking and
branch-and-bound algorithms by exploiting the ability of worker
processes to dynamically produce and enqueue new tasks (8). Fi-
nally, our parMapReduce skeleton is similar to the Map-Reduce
“programming model” that has recently been advocated by, inter-
alia, Google (21; 36). In addition to these standard skeletons, we
have also identified several computational patterns that are com-
monly found in symbolic computing systems. We intend to pro-
duce algorithmic skeletons to capture these patterns in the near fu-
ture and to deploy these in suitable demonstrator applications taken
from the domain of computational algebra.

3. Implementation using the Eden Parallel
Haskell Dialect

The SymGrid-Par interfaces and skeletons described above have
been implemented using Eden (10), a parallel Haskell extension
for distributed memory systems that provides explicit control over
process creation. Eden is implemented as an extension of the stan-
dard Glasgow Haskell compiler, GHC (26; 44). It comprises a few
changes to the GHC front-end to handle parallel process creation
and other Eden language extensions, plus major modifications to
the GHC runtime environment. When run in parallel, Eden starts
multiple instances of the sequential GHC runtime system, each act-
ing as a PE. These instances communicate with each other both
for synchronisation, and to exchange data. Typically, there will be
one such instance per physical core in a multicore system. The
implementation of the Eden communication system uses standard
message-passing libraries – currently, either PVM or MPI because
of their widespread availability and high portability.

3.1 The Eden Language and the SymGrid-Par Programming
Model

Eden allows process abstractions to be defined using the process

function. Processes created in this way can then be instantiated (i.e.
executed) on remote processors using the (#) operator.

process :: (Trans a, Trans b) => (a -> b) -> Process a b
(#) :: (Trans a, Trans b) => Process a b -> a -> b

Evaluating (process f) # arg for a given function f leads to the
creation of a new process on a remote PE. This process evaluates
the application of function f to its single argument arg. The ar-
gument is first evaluated to normal form on the original PE and
then sent to the new process through a communication channel.
Both the argument and the result are defined to be members of the
Haskell class of transmissible data objects, Trans, a class that ex-
cludes function objects, and other data objects that may contain
functions. Processes are encapsulated units of computation which
communicate their inputs and results via channels. If the input or
output of a process is a tuple, each component of the tuple will be
evaluated and communicated by its own independent thread. Lists
will be communicated element by element, values of other types
will be communicated in single messages. All communication be-
tween processes is managed automatically by the system and is
completely hidden from the programmer. This mechanism makes
it possible to avoid sharing data through demands on an implicitly
shared heap (as in done in GpH, for example): all the data that is
needed by a process is either communicated through the explicit
argument, or is evaluated by the process as part of its normal exe-
cution process.

Since Eden is a purely functional language, parallel skeletons
can easily be expressed using higher-order functions. The program-
ming model that is visible to the SymGrid-Par user is therefore
not Eden, but is rather the user-level interface to the library of pre-
defined skeletons. By using the skeleton programming model, we
have simplified high-level parallel programming, eliminating the
need to consider when messages are passed, how data is packed
into buffers etc. For example, parReduce can be implemented as
shown below.

parReduce f neutral list = foldr f neutral subRs
where subRs = spawn (process (foldr f neutral)) subls

subls = splitIntoN noPE list

spawn :: Process a b -> [a] -> [b] -- kicks off processes
spawn p inputs = ... -- for whole input set

3.2 The Parallel Implementation Model
At first glance, it may seem somewhat curious to map a distributed
memory programming model with a message-passing implemen-
tation onto a multicore machine, where data may be exchanged
between cores simply using shared memory. We believe, how-
ever, that in addition to the expediency of exploiting an existing
message-passing implementation, combining Eden with a library of
predefined skeletons yields a good match both to the programmer
requirements, and to the capabilities of current multicore machines.

As described above, Eden processes never share heap and com-
municate entirely by message-passing. This allows us to construct
completely independent sub-heaps for each parallel process. The
Eden processes that are being executed will contain linkages to
other sub-heaps via implicit Eden communication channels. These
channels have the property that all communicated data is always
fully evaluated. In a shared-memory system, this has significant
advantages for cache coherency, since no heap needs to be shared.
This kind of heap separation also completely eliminates the need
for any locking at the thread level: only message buffers need to be
locked; this can be done on a point-to-point basis (so eliminating
a global hotspot); and locks are only obtained when data is actu-
ally required (demand-driven locking). We regard this as an impor-
tant contribution: in many parallel (multicore) systems, locking is
a major cost and reducing locking is therefore potentially highly
significant.

Our approach also allows completely independent garbage col-
lection for each process. This eliminates a global pause during ex-
ecution, both improving overall runtimes, and reducing visible de-
lays for interactive/reactive systems. We anticipate that, using our
system, application performance will scale well on future systems,
which are likely to comprise considerably more cores per chip, and
which may use hierarchical cache architectures. When scaling up,
shared-memory models typically run into major performance prob-
lems on such architectures due to locking and cache coherence is-
sues (48).

4. Parallel Symbolic Computation Exemplars
In this paper, we consider two representative computational algebra
problems, liouville and smallGroup. These problems have been
chosen since they are typical of a wide variety of real computational
algebra problem, possessing interesting computational structures
that may be amenable to parallelisation, while also processing
large amounts of structured data. Moreover, both problems can
be expressed in a simple and easily understood way. Generally,
we expect the Haskell components to be provided by the systems
programmer (usually in the form of skeletons that are called from
the GAP code, or from the computational steering interface), and
only the GAP code to be written by the applications programmer
or end-user. The details of the implementation that we have given
above, and the Haskell code that we show below, should not be
given to or written by the typical applications programmer.

4.1 The Summatory Liouville function, liouville

For an integer n, the Liouville function λ(n) is equal to (−1)r(n),
where r(n) is the number of prime factors of n, counted according
to their multiplicity, with r(1) = 0. The summatory Liouville’s
function, L(x), is the sum of values of Liouville(n) for all n from
[1..x]. In Haskell, the coordination part of the kernel of the parallel
liouville function is2:

l :: Integer -> Integer -> Int -> [(Integer,Integer)]
l lower upper c = sumL (myMakeList c lower upper)

sumL :: [(Integer,Integer)] -> Int -> [(Integer,Integer)]
sumL mylist c = mySum ((masterWorker liouville) mylist)

liouville :: (Integer,Integer) ->
((Integer, Integer),(Integer,Integer))

liouville (lower,upper) =
let
l = map gapObject2Integer (gapEvalN "gapLiouville"

[integer2GapObject lower,integer2GapObject upper])
in ((head l, last l), (lower,upper))

and the GAP computation part (defined by a GAP end-user) is:

LiouvilleFunction:=function(n)
if n=1 then return 1;
elif Length(FactorsInt(n)) mod 2=0 then return 1;
else return -1;
fi;

end;

gapLiouville := function(n, x)
local total, max, s, list;
s := LiouvilleFunction(n);
total:= s; max:= s; n:= n+1;
while n <= x do

s := LiouvilleFunction(n); total := total + s;
if (max < total) then max:= total; fi;
n := n+1;

od;

2 The full definition may be found at http://www.macs.hw.ac.uk/

~ceeatia/liouville.hs

list := [total, max]; return list;
end;

The implementation splits the whole sum into partial sums to be
computed in parallel. myMakeList generates a special list which
contains the boundaries of each partial sum. sumL relies on the
masterWorker skeleton to apply the liouville function to each
interval in parallel. The Haskell liouville functions calls the
GAP function gapLiouville to calculate the partial sum for the
given intervals. This function returns the interval boundary, the
partial sum and the highest sum in the interval. mySum calculates
the total sum for all partial intervals. For each interval, it also adds
the total sum of the prior intervals to the highest sum to determine
whether there is a positive sum from this interval. Finally, mySum
returns the total sum plus indications for those intervals that have
been determined to have a positive sum.

4.2 Small Finite Group Search, smallGroup
The smallGroup program searches for finite groups that have some
given property, in this case, that the average order of the elements is
an integer. The order of the groups must be no greater than a given
constant, n, The kernel of the smallGroup program is divided into
a coordination part in Haskell3:

smGrpSearch :: Int -> Int -> [(Int,Int)]
smGrpSearch lo hi = concat(map(ifmatch) (predSmGrp [lo..hi]))

predSmGrp :: (Int,Int) ->(Int,Int,Bool)
predSmGrp (i,n) = (i,n,(gapObject2String (gapEval

"IntAvgOrder" [int2GapObject n, int2GapObject i])) == ‘‘true’’)

ifmatch :: ((Int,Int) -> (Int,Int,Bool)) -> Int -> [(Int, Int)]
ifmatch predSmGrp n=

[(i,n) | (i,n,b) <-(masterWorker predSmGrp
[(i,n) | i<- [1 .. nrSmGrps n]]),b]

nrSmGrps :: Int -> Int
nrSmGrps n=gapObject2Int(gapEval "NrSmallGroups"[int2GapObject n])

plus a computational part written in GAP:

IntAvgOrder := function(n,i)
local cc, sum, c, g;

sum:=0; g:=SmallGroup(n,i); cc:= ConjugacyClasses(g);
for c in cc do

sum:=sum + Size(c)*Order(Representative(c));
od;
return(sum mod Size(g)) = 0;

end;

smallGroupsSearch := function(N, IntAvgOrder)
local hits, n, i,g;

hits:=[];
for n in [1..N] do

for i in [1..NrSmallGroups(n)] do
if IntAvgOrder(n,i) then Add(hits,[n,i]);
fi;

od;
od;
return hits;

end;

There are two obvious places to introduce data parallelism: i) the
smGrpSearch function generates a list of integers between a low
value (lo) and a high value (hi), applying predSmGrp to each
integer; and ii) the ifmatch function relies on the masterWorker
skeleton to generate a set of hierarchical master worker tasks to
calculate IntAvgOrder in GAP.

3 The full definition may be found at http://www.macs.hw.ac.uk/

~ceeatia/smallGroup.hs

There are also two levels of irregularity in the parallel structure:
firstly, the number of groups of a given order varies enormously;
and secondly there are significant variations in the cost of comput-
ing the conjugacy classes of each group.

5. MultiCore Performance Results
Our measurements are performed on an eight-core Dell PowerEdge
2950 machine located at the University of St Andrews (ardbeg).
This machine is constructed from two quad-core Intel Xeon 5355
processors running at 2.66GHz. ardbeg has a 1333MHz front-
side bus, and 16GB of fully-buffered 667MHz DIMMs. It runs
CentOS Linux 4.5 (kernel version 2.6.9-55), and uses the current
development version of Eden based on GHC-6.8.2.

5.1 liouville Performance

No Rtime Spdup CPU
PEs Utilis.

1 526s 1 92.8%
2 264s 1.9 89.6%
3 178s 2.9 93.1%
4 132s 3.9 92.0%
5 106s 4.9 90.7%
6 89s 5.9 90.7%
7 76s 6.9 89.4%
8 68s 7.7 88.9%

Table 1. Parallel performance
of liouville [1 . . . 25×106)]

PE Proc Thr Mesages
Sent Recv

#1 4 36 270476 270449
#2 3 3 31988 31985
#3 3 3 33359 33356
#4 3 3 31542 31539
#5 3 3 33309 33306
#6 3 3 32709 32706
#7 3 3 33517 33514
#8 3 3 33244 33241

Table 2. Per-PE performance
of liouville [1 . . . 25×106]

Table 1 shows the performance of the summatory liouville function
for arguments ranging between 1 and 25×106. The first column
shows the number of PEs that are involved in the computation; the
second and third columns show the runtime and speedup; the final
column shows overall CPU utilisation, as a percentage of the avail-
able processors. In order to reduce the impact of operating system
and other effects, all runtimes shown in this paper are the mean of
five measured times. We can clearly see that we obtain good per-
formance, with speedups over the sequential GAP system of up to
7.7 on eight cores, and CPU utilisation of up to 93.1%. The maxi-
mum utilisation occurs when three cores are used, after which there
is a slight degradation to 88.9% utilisation on eight cores. There
is essentially no parallel overhead on one core: the SymGrid-Par
middleware simply needs to start the liouville computation in GAP
and then to record the final result that is communicated to it (an
integer).

Table 2 shows the individual performance of each of the eight
PEs for the final case, when all eight cores are active on the liouville
program. The first column identifies the PE of interest; the second
and third columns show the number of processes and threads that
are generated by the PE; and the fourth and last columns show
the number of messages sent/received by each PE, respectively.
Besides the main process on PE 1, one Eden process on every PE is
involved in coordinating precisely one GAP evaluation engine, and
may give rise to several runtime threads. Two more – very short –
processes per PE are responsible for setting up and shutting down
the GAP-Haskell interface. Overall, we can see that there is an even
distribution of processes and threads on each PE apart from #1 (the
master PE), the one where the master process of masterWorker
resides. The messages show a typical master-worker behaviour,
where a similar number of messages are sent and received by each
worker process. Overall, all but the master PE sends and receives
around 32,000 messages (approx. 3MB in total, or 42KB/s). The
master process on PE #1 sends and receives all tasks for the worker
processes, resulting in around 270,000 messages (approx. 27MB in

Running Idle fetching

Figure 4. per-PE Activity Profile for liouville

total, or 350KB/s). In our setup of eight PEs, this is acceptable. If
the master-worker system was scaled up to larger numbers of PEs,
a hierarchical implementation might be needed, however.

Figure 4 shows the per-PE activity profile for liouville on eight
PEs (each of which is mapped to a different core), plotting the
behaviour of each of the PEs (y-axis) against execution time (x-
axis). Each PE is visualised as a horizontal line. The colour of
these lines changes depending on the state of the PE: a mid shade
of gray (green in a colour profile) indicating a running PE; gaps or
darker shade in the horizontal lines (red areas in the colour profile)
indicating blocked processes; and black (blue in a colour profile)
indicating PEs that do not run any process. As already indicated by
the high CPU-usage, the performance is good overall, with active
processes on all PEs throughout most of the computation.

Figure 5. Per-Process Coordination Profile for liouville

The processes and their exact role in the parallel computation
become clear in Figure 5, which visualizes the behaviour of each
process in the program (y-axis) over execution time (x-axis). As
before, the behaviour of each process is visualised as a horizontal
line: a mid shade of gray (green in a colour profile) indicating
that the process is involved in coordinating a GAP task; and a
darker shade (red areas in the colour profile) indicating that the
process is running. During coordination, the Haskell process is not

No Rtime Spdup CPU
PEs Utilis.

1 480s 1 96.0%
2 246s 1.9 96.0%
3 165s 2.9 98.6%
4 125s 3.8 98.0%
5 104s 4.6 99.2%
6 91s 5.2 98,7%
7 82s 5.8 98.3%
8 76s 6.3 97.0%

Table 3. Parallel performance
of smallGroup [1. . .350]

PE Proc Thr Mesages
Sent Recv

#1 4 5969 83796 80628
#2 3 352 9912 9560
#3 3 352 9729 9377
#4 3 352 9521 9369
#5 3 352 9483 9131
#6 3 352 9626 9274
#7 3 352 9262 8910
#8 3 352 9355 8903

Table 4. Per-PE Performance
of smallGroup [1. . .350]

active, but is suspended waiting for GAP to complete the required
computation.

We can see from this diagram that the main task (process #1) is
active throughout the execution, taking the master role in the skele-
ton. One process is created on each PE at the start of the program
(#2–#9) to set up the GAP-Haskell interface. The computation it-
self is carried out by processes #10–#17, again one per PE. Each of
these processes receives tasks, forward them to the GAP instance
running on the same node and communicates results back to the
master. As the predominantly green plot shows, these processes
spend most of their time waiting for the external GAP calls to com-
plete, and thus do not impose significant execution overheads. Fi-
nally, we see a final set of eight processes, #18-#25 which perform
a controlled GAP shutdown before the Haskell program terminates.
It is obvious from Figure 5 that the Eden processes do not incur sig-
nificant overhead over the GAP tasks, since they are only actively
executing for a small part of the total execution time (shown in red).
It is also clear that coordination activities are spread evenly across
the execution of the program.

5.2 smallGroup Performance
Table 3 shows the performance of the smallGroup program on a
sequence of group orders between 1 and 350. As shown by Fig-
ure 6, the number of groups of the given order varies enormously
(by 5 orders of magnitude), and this, in turn, directly impacts the
granularity of the tasks that are created, leading to highly irregular
parallelism. As before, the first column shows the number of cores
that are involved in the computation; the second and third columns
show corresponding runtimes and speedups; and the final column
shows overall CPU utilisation, as a percentage of the available pro-
cessors. Our results show that we can achieve real speedups over
sequential GAP of up to 6.3 on eight cores, with a maximum utili-
sation of 99.2% at five cores. As with liouville, utilisation tails off
with an increasing number of cores, falling to 97% at eight cores.

1

10

100

1000

10000

50 100 150 200 250 300 350

N
um

be
r

of
 G

ro
up

s

Group Order

Figure 6. Number of Groups of Orders in the range [1. . .350]

Running Idle fetching

Figure 7. Per-PE (Per-Core) Activity Profile for smallGroup

The higher utilisation, but lower absolute speedup than for liouville
suggests that some processor performance is devoted to coordina-
tion overhead.

Table 4 shows the individual performance of each of the eight
PEs for the smallGroup program. As with liouville, there is an
even distribution of processes and threads on each PE apart from
#1 (the master PE). Also as with liouville, a similar number of
messages are sent and received by each PE apart from the master.
Overall, each PE apart from the master sends and receives around
9000 messages. The master PE sends and receives around 80000
messages. This is consistent with the liouville example, where the
master PE also sends/receives almost nine times as many messages
as each of the other PEs. Finally, Figure 7 shows the per-PE (or per-
core) activity profile for smallGroup on eight PEs. As for liouville,
we observe good overall performance. However, there are easily
discernible periods towards the start and end of execution where all
PEs are involved in transmitting data, and therefore are not actively
searching for groups.

5.3 Discussion of Overall Performance Results
Tables 1 and 3 show that SymGrid-Par delivers good performance
for both programs on varying numbers of cores. For both programs,
we obtain a speedup of 1.9 on two PEs; and we obtain speedups of
7.7 and 6.3 on eight PEs for the summatory liouville function and
smallGroup search, respectively. Moreover, we also achieve good
overall CPU utilisation.

The good performance that we obtain for SymGrid-Par on
multicore architecture is mainly due to the way that it deals with
lightweight threads. More precisely, while the SymGrid-Par skele-
tons produce relatively fine-grained programs, which could then
potentially swamp the system (43), the skeletons we have used in-
crease granularity by combining smaller threads into larger compu-
tational units, so avoiding swamping and improving overall perfor-
mance in multicore architecture using message-passing implemen-
tation. As shown in Tables 2 and 4, we generate 63 parallel threads
from summatory liouville function and 8433 parallel threads from
smallGroup search. SymGrid-Par generates different number of
threads according to the problem’s irregularity and potential par-
allelism. As discussed in Section 4.2, the smallGroup program is
far more irregular than the liouville program and our system there-
fore generates more threads in order to maximise the parallelism in
this case. smallGroup and liouville also have significant amounts of
communication: on eight PEs (cores) smallGroup transmits 3892
message per second, and liouville transmits 14709 messages per

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 24 26 28 30 32 34 36 38 40

Sp
ee

du
p

Threshold

Fabonacci (Threshold vs Speedup)

1 PES
2 PES
3 PES
4 PES
6 PES
8 PES

Figure 8. Fibonacci(51), speedup versus threshold

Cores No. of Thread Thread
Threads Granularity (ms) Granularity (Mcycles)

1 2097152 0.32 0.53
2 1048576 0.24 0.56
3 699051 0.24 0.57
4 524288 0.25 0.57
6 349525 0.25 0.57
8 262144 0.25 0.57

Table 5. Performance analysis of Fibonacci with threshold 30

second. This is handled efficiently by our message-passing imple-
mentation in multicore architecture.

Garbage collection and memory management designs play a
key role in obtaining good multicore performance. In contrast
with many designs for shared-memory systems, implementing
SymGrid-Par on top of Eden processes allows each PE (core) to
garbage collect its own heap independently, i.e. without synchro-
nising with other PEs. This reduces memory contention between
the cores during garbage collection, which can be a major prob-
lem with multicore implementations. For our examples, the garbage
collector and memory management system is well-exercised, with
smallGroup allocating 2.2GB of heap memory; and liouville allo-
cating 308MB of heap, on our eight core machine.

As shown in Tables 2 and 4, all PEs apart from the main
one generate the same number of processes and threads, and
send/receive very similar numbers of messages. The exception for
PE #1 is due to the way that workload management is handled
in SymGrid-Par, and especially in the masterWorker skeleton
that was used in our experiments. After the initial setup phase,
PE #1 calls the skeleton and executes the master process, which
distributes the entire task-set to the respective worker processes. It
thus participates in virtually every communication. As explained
above, more sophisticated implementations of the master-worker
skeleton could circumvent the potential communication bottleneck
when scaling up to a larger number of cores (8). Finally, Figures 4
and 7 show that all PEs are uniformly loaded, finish at the same
time and include few idle periods. The idle periods shown here are
due to PEs waiting for data to be evaluated, without having any
other threads to be executed. It is obvious from the figures that all
eight PEs are fully used throughout the computation.

6. MultiCore Thread Granularity
The preceding section shows that the Eden-based SymGrid-Par
framework can effectively parallelise relatively coarse-grained
computations for multicore architecture. A question arises, how-
ever, over precisely how coarse-grained each thread needs to be in

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 10 100 1000 10000

Sp
ee

du
p

Chunk Size

 Clausify (Chunk vs speedup)

1 PES
2 PES
3 PES
4 PES
6 PES
8 PES

Figure 9. Clausify(50000), speedup versus chunk size

Cores No. of Thread Thread
Threads Granularity (ms) Granularity (Mcycles)

1 12500 27.92 65.07
2 6250 25.39 59.17
3 4167 24.75 57.7
4 3125 24.44 56.94
6 2084 24.04 56.02
8 1563 22.78 53.08

Table 6. Performance analysis of Clausify with chunk-size 4

order for us to obtain acceptable speedups. The answer to this ques-
tion entails balancing two dynamic properties of a parallel program,
namely the thread granularity and amount of communication.

We have addressed this question by undertaking a limit study
that uses a naı̈ve recursive Fibonacci function. This function has a
divide-and-conquer recursive definition. In the parallel implemen-
tation, we generate parallel threads down to a certain threshold.
Each leaf thread then runs sequentially to produce the Fibonacci
function of some argument, before the results are combined to give
an overall solution. This solution requires minimal communication:
each sequential thread takes a single Int argument and generates a
single Int result (the Fibonacci function of its argument). Figure 8
plots the speedup for 1-8 cores, given different threshold settings. It
shows how speedup varies against thread granularity, as determined
by the threshold parameter. All speedup curves show a steady in-
crease in speedup as the threshold is increased up to 30, and are
stable thereafter. For instance, on eight cores, when the threshold
was changed from 24 to 40, speedup improved from 4.84 to 7.90
and on two cores the speedup improved from 1.23 to 2.00. Table 5
analyse the performance of Fibonacci given an input of 51 and a
threshold 30. The first column shows the number of cores that are
involved in the computation; the second column reports the num-
ber of threads that are generated; and the third and fourth columns,
respectively, show the execution time for each thread in millisec-
onds and Mcycles (Millions of clock cycles). We conclude that a
minimum thread granularity of the order of 1ms (1 Mcycles) is re-
quired to gain good parallel performance from a message-passing
semi-explicit functional language like Eden on a multicore similar
to ardbeg.

However, typical programs will communicate more data per
thread than our rather ideal Fibonacci example, and coarser gran-
ularities may then be needed to offset the communication time.
As an example involving more communication per thread, we con-
sider the Clausify program from the nofib benchmark suite (42).
Clausify parses logical propositions and puts them in clausal

form. From a parallel perspective, this is a classical data-parallel
program. We use a parameter (chunk size to control the granular-
ity of the threads that are created by varying the number of items
that evaluated in each data parallel task. Figure 9 shows speedup
for this program plotted against various chunk sizes. It is clear
that while the choice of chunk size (and hence granularity) has
some impact on performance, there is not the linear relationship
that we observed with the Fibonacci function. On eight PEs, we
observe a variation in speedup ranging from 4.77 to 8.38; and on
two PEs we observe variation between 1.00 and 1.84, with exces-
sively large or small chunk sizes both having a negative impact on
performance. The knee of the graph occurs with a chunk size of 4.
Table 6 shows that different number of threads are generated ac-
cording to the number of PEs that are involved in the computation.
However, the granularity of the threads that are generated is sim-
ilar regardless of the number of cores (varying between 23ms on
one core and 28 ms on eight cores). This suggests that we should
aim for a thread granularity of around 30 ms or 70 Mcycles if we
wish to obtain effective parallelism for Clausify. These results
are consistent with others that we have obtained for another data-
parallel program: the Rewrite program (also from the nofib suite)
requires a minimum thread granularity of 28 ms or =̃66 Mcycles.
The code for our examples can be found at http://www.macs.
hw.ac.uk/~ceeatia/\{fibonacci,clausify\}.hs.

7. Related Work
7.1 Parallelism in Multicore Architecture
The recent trend towards multicore architectures has sparked a
significant amount of new work that is aimed at exploring novel
programming models and runtime systems for such architectures
(e.g. (35; 14; 12; 25; 27; 34; 5; 15)). This work has exploited a
number of different approaches.

• Parallel libraries, such as Pthreads (37) and Phoenix (45), pro-
vide the programmer with the ability to express parallelism di-
rectly. In fact, Phoenix is an implementation of Google MapRe-
duce for shared-memory systems. The Phoenix runtime auto-
matically manages thread creation, dynamic task scheduling,
data partitioning. The Phoenix runtime system is implemented
on top of the Pthreads library.
More advanced systems, such as Cilk (25) or OpenMP (16),
provide higher level parallelisation primitives, including a
mechanism to automatically schedule parallelism for perfor-
mance, and support for nested parallelism (22). However, ac-
cording to Bridges (11), this approach provides little support to
help achieve correct or effective parallelism. For instance, the
Cilk inlet directive is similar to the Commutative directive,
in ensuring correct execution of code in a non-deterministic
fashion. However, inlet is meant to serially update state upon
return from a spawned function, while Commutative is meant
to facilitate parallelism by removing serialisation. Clearly, it
would be easy to use the wrong construct.

• One system that has taken a similar message-passing ap-
proach to that we have described for our implementation is
Erlang (6; 23). We have been able to find very few published
performance results for Erlang multicore implementations, and
those we have found seem unreliable (for example, a speedup
of 18 on eight cores suggests a fundamental problem with the
underlying sequential implementation!). We have also been un-
able to find much implementation detail: we surmise that Er-
lang threads are probably mapped directly to operating system
threads, created Unlike our approach, we do know that all com-
munication/thread synchronisation in Erlang is explicit, using
send and receive primitives. Using the approach we have de-

scribed, many of the low-level and complex details that must be
dealt with in Erlang or other explicitly parallel notations (mar-
shalling/unmarshalling complex data structures, thread alloca-
tion, communication, thread synchronisation, deadlock avoid-
ance etc., are managed automatically in our system). As with
the parallel libraries approach, Erlang provides little or no sup-
port for achieving correct or effective parallelism.
While there are well-known and obvious differences between
Haskell and Erlang — Haskell is statically-typed, but non-strict,
where Erlang is dynamically typed, but strict — we are not con-
vinced that these will have a major impact on the programming
model we have used, except perhaps in sequential performance.
Because it is dynamically typed, for example, the Erlang imple-
mentation lacks some optimisations that are possible in Haskell.
More significant is our general approach of treating Haskell as
a coordination language with algorithmic skeletons used to in-
troduce parallelism, that is then mapped automatically to multi-
core threads executing sequential program components. We find
it especially significant that, using our approach, we have been
able to obtain real speedups for sequential code fragments on
multicore, and that this parallelism has been expressed in an es-
sentially declarative way (using parallel algorithmic skeletons).

• An alternative technique is to use either implicit or explicit
memory transactions (14; 34; 1). Some such approaches require
an explicit step to make locations or objects part of a transac-
tion, while other approaches make the memory operation be-
haviour implicit. Implicit transactions require either compiler
or hardware support. Both of those techniques have been pro-
posed to help the programmer express parallelism in an easier
manner.
For example, Harris and Fraser (32) added a conditional critical
region (CCR) statement of the form atomic (E) {S} to Java.
This automatically executes S when the expression E evaluates
to true. Harris, Marlow and Peyton Jones subsequently (33)
applied a similar software transactional memory approach to
Concurrent Haskell, adding a transaction monad to Concurrent
Haskell and introducing composable memory transactions with
operations to block and compose nested transactions
Grossman et al (29) observe some problems with “weak atom-
icity” that can arise with some software transactional memory
approaches. They note that conditional critical regions provide
a way to write multiple statements so that they appear to occur
atomically to the entire system: either all of the CCR is guaran-
teed to have executed or none of it will have. In addition to these
correctness issues, memory transaction techniques can also suf-
fer from poor performance. For example, Zilles and Flint (51)
clearly indicate the difficulties and challenge of improving per-
formance using memory transactions alone, and Harris, Marlow
and Peyton Jones (34) report poor and highly variable parallel
performance, using memory transaction techniques on shared-
memory machines.

• In contrast to the task-parallel approach we have described in
this paper, where parallelism is exposed from the program’s
control flow by applying a series of skeletons, data-parallel
approaches expose parallelism by evaluating elements of bulk
data structures in parallel. Where a program has a regular, data-
driven structure, this can be a useful technique. Indeed, the
parMap skeleton described above follows essentially such a
pattern.
Data-parallel implementations are beginning to be applied in a
multicore setting. For example, Data-Parallel Haskell (15) pro-
vides parallel arrays and special parallel operations to handle
them. Static rewrites are used to eliminate unnecessary con-

version steps. The optimising compilation follows sound math-
ematical rules, and is in the process of being implemented
in GHC. Good results are reported for typical data-parallel
problems (such as sparse matrix multiplication), with relative
speedup of up to 3.8 on a quad-core Intel Xeon (similar to the
figures that we obtain), 6.8 on an eight-processor AMD Opteron
NUMA machine (using a HyperTransport bus), or up to 12.9 on
a sixteen-processor Sun UltraSparc IV+ shared-memory ma-
chine. A similar approach is taken by Fluet et al. (24) who
embed nested data-parallel constructs into an explicitly paral-
lel Concurrent ML setting.
Data-parallelism is, however, primarily suited for regular, data-
driven parallelism, and clearly cannot capture all forms of paral-
lel programming, such as the irregular task parallelism we have
shown for smallGroup. Interestingly, when the AMD is recon-
figured as a sixteen-core shared-memory machine (8 dual-core
processors connected via the HyperTransport bus), performance
on the sparse matrix example drops to less than a factor of seven
speedup on sixteen cores, and only a factor of 4.8 on eight cores.
This is apparently because the data parallel approach taken by
Chakravarty et al, is not a good match to the non-uniform mem-
ory architecture used in this machine – the non-uniformity is
lessened when the machine is configured to use only one of the
two cores that are available on each processor. We speculate
that since it is designed for such an environment, our approach
would be better able to cope with the peculiarities of such an
architecture.

In contrast to most of the approaches described above, we fo-
cus on exploiting message-passing and virtual shared-memory us-
ing multicore architecture to give an effective implementation of
declarative parallelism. The closest parallel to our work is Har-
ris and Singh’s (35) attempt to parallelise the nofib benchmark
suite (42) using SMP-GHC. Harris and Singh use a “lock-free”
mechanism (34) and profiling and recompiling techniques to gain
parallelism for a multicore architecture, whereas we use message-
passing with message-level locking. Using their approach, Harris
and Singh report a maximum parallelism of 1.8 using a quad-core
architecture for the hidden program. This is, in fact, the best per-
formance result that has been obtained from either attempt to ob-
tain multicore parallelism using SMP-GHC, and other performance
results are highly variable. In contrast, we present a consistent
speedup of a factor of 7.7 on an eight-core architecture for real
computational mathematical algebra applications.

7.2 Other Parallel Implementations of Symbolic
Computation Systems

Work on parallel symbolic computation dates back to at least the
early 1990s – Roch and Villard (46) provide a good general sur-
vey of early research. Within this general area, significant research
has been undertaken to parallelise specific computational algebra
algorithms, notably term re-writing and Gröbner basis completion
(e.g. (4; 13)). A number of one-off parallel programs have also been
developed for specific algebraic computations, mainly in represen-
tation theory (40). We are not aware of any implementations of
these systems that specifically target multicore architectures, how-
ever. While several symbolic computation systems include some
form of operator to introduce parallelism (e.g. parallel GCL, which
supports Maxima (19), parallel Maple (7), or parallel GAP (20)),
very few production parallel algorithms have been produced. This
is partly due to the complexities involved in programming such al-
gorithms using explicit parallelism, which are accidental for many
programmers in this domain. It is also partly due to the lack of
generalised support for communication, distribution etc, in these
systems. By abstracting over such issues, and providing system-

independent coordination of parallel programs, our approach con-
siderably simplifies the process of constructing parallel computa-
tional algebra systems.

7.3 Other Systems Linking Parallel Functional Languages
and Computer Algebra Systems

There have been a few previous attempts that have aimed to link
parallel functional programming languages with computer algebra
systems. For example, the GHC-Maple interface (28) and the Eden-
Maple system (39) both link parallel implementations of Haskell
with the widely-used Maple system. None of these systems is
in widespread use at present, none supports the broad range of
computational algebra systems we are targeting, has the support of
the developers of those systems, and none has yet achieved similar
multicore results to those reported here.

8. Conclusions
We have introduced a high-level parallel programming model using
algorithmic skeletons with a Haskell-based message-passing im-
plementation to coordinate sequential computational algebra com-
ponents on a multicore architecture. Unlike many other approaches
to parallel programming, the approach is “low pain” in the sense
that the programmer constructs a parallel program by inserting a
small number of algorithmic skeletons at a few key points in the
program. In contrast with some other approaches, notably those
based on software transactional memory, our approach is also
“high gain”. In fact, despite being much more general, it delivers
speedups that are as good as, or better than a data-parallel Haskell
implementation on a multicore machine. It is perhaps surpris-
ing that an implementation using relatively heavyweight message-
passing, more commonly associated with distributed memory ar-
chitectures, can achieve such good performance on a multicore ar-
chitecture. Our results, however, show that our approach delivers
achieve extremely good utilisation on a typical eight-core machine,
with excellent speedups over the sequential version of the same
program. For two real symbolic applications running under the
widely-used GAP computational algebra system, we have shown
that we can achieve processor utilisation up to 97% and speedup
of up to 7.7 on our eight-core testbed machine. This contrasts with
typical shared-memory approaches, which can struggle to achieve
50% utilisation on a quad-core machine (34) and represents highly
desirable performance gains for GAP users, especially at minimal
user effort.

We have investigated the the minimum thread granularity where
our relatively heavyweight parallel programming model can deliver
good performance on multicore architectures. From a limit study
we conclude that a minimum thread granularity of the order of 1
Mcycle is required, corresponding to 1ms on our target architec-
ture. Most parallel programs communicate far more data than such
ideal programs, and greater thread granularity is required to offset
the communication time. Measurement of programs that undertake
more communication suggests that a thread granularity of approxi-
mately 70 Mcycles, or 30ms on our target architecture, is required
to achieve good parallel performance.

The key reasons for the unusually good parallel performance of
our implementation is that all coordination activities (mainly lock-
ing and communication) are both coarse-grained and confined to
well-understood libraries. This significantly reduces the need for
fine-grained speculative locking that is found in many multicore
implementations – it is only necessary to lock items that are actu-
ally shared, and, since we are communicating substantial subgraphs
rather than individual nodes, a single lock suffices for many data
items.

In addition to good performance, our approach carries major
advantages for developers of parallel applications. In particular, no

changes need to be made to the highly-optimised sequential engine
that is used to execute the application. Rather we coordinate mul-
tiple instances of each engine to execute our parallel application.
The middleware then maps threads to the available engines, dy-
namically rebalancing the workload, and throttling the creation of
threads, as required by the application. This gives a powerful, yet
highly general approach: we can use a single parallel system to co-
ordinate computations that are written in a variety of computational
algebra systems. Moreover, our work is not restricted to symbolic
computations, but can, in principle, be applied to a wide variety of
application domains.

It might be argued that any parallel program that delivers good
performance on a distributed-memory parallel architecture could be
expected to deliver even better performance on a shared-memory
architecture as communication costs are so much lower. However
such a simple argument ignores crucial memory, synchronisation
and threading aspects of the parallel architecture. A multicore par-
allel language implementation must manage memory effectively:
if the maximum residency required by all cores exceeds the physi-
cal memory then performance will be destroyed by virtual memory
costs. Both memory allocation and distributed garbage collection
must be efficient, some key issues are that garbage collection on
one core must not require substantial synchronisation with other
cores, and unused references between cores must eventually re-
covered. Eden addresses these issues by applying a distributed-
memory model ab initio, so that all cores have disjoint heaps.
In a multicore parallel language implementation, the synchroni-
sation required to pass messages must not induce contention in
the underlying architecture. Eden devolves this issue to the PVM
communications library. The performance results show that we do
achieve good contention. Finally, given the high latency induced
by message-passing, a multicore parallel language implementation
must provide lightweight multi-threading to utilise the cores effec-
tively during communication.

9. Future Work
There are a number of obvious avenues for us to explore. Firstly, we
have shown that our results scale well to the largest multicore sys-
tem that we were able to access (an eight-core Intel Xeon server),
giving utilisation up to 97% on eight cores. Now that 16-core ma-
chines are becoming available, it would be interesting to determine
whether our results extend to these larger machines, or whether the
slight tailing off in utilisation that we observe with the eight-core
machine will be accentuated if additional cores are added.

Secondly, we have only considered a single computational al-
gebra host system, GAP. It would be interesting to see whether our
results also apply to other systems such as Maple or Mathematica.
We are in the process of constructing a generic interface to compu-
tational algebra systems as part of the SCIEnce project, and hope
to report such results in due course.

Thirdly, the programs we have orchestrated are relatively
coarse-grained, and a message-passing architecture will only de-
liver good performance if the task and communication granularity
is sufficiently large to offset the overheads of communicating and
synchronising on the messages. We are currently exploring this de-
sign space to identify the minimum task and communication gran-
ularity for common multicore architectures. While we have gained
good performance by using a master-worker skeleton to map irreg-
ular fine-grained parallel tasks to larger computational units (PEs),
it would be interesting to see whether our results will also hold for
programs that directly manage finer-grained threads. It would also
be interesting to compare our results directly with those that have
been obtained for software transactional memory and data-parallel
approaches.

Acknowledgments
This research is generously supported by the European Union
Framework 6 grant RII3-CT-2005-026133 SCIEnce: Symbolic
Computing Infrastructure in Europe; and by the UK Engineer-
ing and Physical Sciences Research Council (EPSRC) grant
EP/F030592/1 (Islay).

References
[1] A-R Adl-Tabatabai, B.T. Lewis, V. Menon, B.R. Murphy, B. Saha, and

T. Shpeisman. Compiler and Runtime Support for Efficient Software
Transactional Memory. In PLDI ’06: Proceedings of the 2006 ACM
SIGPLAN conference on Programming language design and imple-
mentation, pages 26–37, New York, NY, USA, 2006. ACM.

[2] A. Al Zain, P. Trinder, K. Hammond, and S. Linton. Orchestrating
Computational Algebra Components into a High-Performance Parallel
System. In Proc. 2008 IEEE International Symposium on Parallel and
Distributed Computing with Applications (ISPA ’08), 2008.

[3] A. Al Zain, P. Trinder, H-W. Loidl, and G. Michaelson. Evaluating
a High-Level Parallel Language (GpH) for Computational GRIDs.
IEEE Transactions on Parallel and Distributed Systems, 19(2):219–
233, 2008.

[4] B. Amrheim, O. Gloor, and W. Küchlin. A Case Study of Multi-
threaded Gröbner Basis Completion. In Proc. ISSAC ’96: Interna-
tional Symposium on Symbolic and Algebraic Computation, pages 95–
102. ACM Press, 1996.

[5] C.K. Anand and W. Kahl. A Domain-Specific Language for the Gener-
ation of Optimized SIMD-Parallel Assembly Code. SQRL Report 43,
Software Quality Research Laboratory, McMaster University, May
2007. available from http://sqrl.mcmaster.ca/sqrl reports.html.

[6] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent
Programming in ERLANG. Prentice Hall, 2nd edition, 1996.

[7] L. Bernardin. Maple on a Massively Parallel, Distributed Memory
Machine. In Proc. PASCO ’97: Intl. Symp. on Parallel Symbolic
Computation, pages 217–222. ACM Press, 1997.

[8] J. Berthold, M. Dieterle, R. Loogen, and S. Priebe. Hierarchical
Master-Worker Skeletons. In Paul Hudak and David Scott Warren,
editors, PADL, volume 4902 of Lecture Notes in Computer Science,
pages 248–264. Springer, 2008.

[9] J. Berthold, S. Marlow, A. Al Zain, and K. Hammond. Comparing and
Optimising Parallel Haskell Implementation. In Sven-Bodo Scholz,
editor, IFL’08 — Implementation and Application of Functional Lan-
guages 20th International Symposium, Draft Proceedings, pages 223–
240, Hetfield, Hertfordshire, UK, September 2008. Technical Report
No. 474.

[10] S. Breitinger, R. Loogen, Y. Ortega Malln, and R. Pea Marı́. Eden —
The Paradise of Functional Concurrent Programming. In EuroPar’96
— European Conf. on Parallel Processing, LNCS 1123, pages 710–
713, Lyon, France, 1996. Springer.

[11] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August.
Revisiting the Sequential Programming Model for Multi-Core. In
MICRO ’07: Proceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 69–84, Washington,
DC, USA, 2007. IEEE Computer Society.

[12] Broadcom Corp. BCM1250 Multiprocessor. Technical report, Broad-
com Corporation, April 2002.

[13] R. Bündgen, M. Göbel, and W. Küchlin. Multi-Threaded AC Term
Re-writing. In Proc. PASCO’94: Intl. Symp. on Parallel Symbolic
Computation, volume 5, pages 84–93. World Scientific, 1994.

[14] B. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. Cao Minh,
C. Kozyrakis, and K. Olukotun. The atomos transactional program-
ming language. In ACM SIGPLAN 2006 Conference on Programming
Language Design and Implementation. Jun 2006.

[15] M.M.T. Chakravarty, R. Leshchinskiy, S.L. Peyton Jones, G. Keller,
and S. Marlow. Data Parallel Haskell: a Status Report. In DAMP’07:
Workshop on Declarative Aspects of Multicore Programming), Nice,
France, 2007. ACM Press.

[16] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP: Portable
Shared Memory Parallel Programming (Scientific and Engineering
Computation). The MIT Press, 2007.

[17] M.I. Cole. Algorithmic Skeletons: Structured Management of Parallel
Computation. The MIT Press, Cambridge, MA, 1989.

[18] M.I. Cole. Algorithmic Skeletons. In K. Hammond and G. Michael-
son, editors, Research Directions in Parallel Functional Program-
ming, chapter 13, pages 289–304. Springer-Verlag, 1999.

[19] G. Cooperman. STAR/MPI: Binding a Parallel Library to Interactive
Symbolic Algebra Systems. In Proc. ISSAC ’95: International Sym-
posium on Symbolic and Algebraic Computation, volume 249 of Lec-
ture Notes in Control and Information Sciences, pages 126–132. ACM
Press, 1995.

[20] G. Cooperman. GAP/MPI: Facilitating Parallelism. In Proc. DIMACS
Workshop on Groups and Computation II, volume 28 of DIMACS
Series in Discrete Maths. and Theoretical Comp. Sci., pages 69–84.
AMS, 1997.

[21] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM, 51(1):107–113, 2008.

[22] A. Duran, M. Gonzàlez, and J. Corbalán. Automatic Thread Distribu-
tion for Nested Parallelism in OpenMP. In 19th Annual International
Conference on Supercomputing (ICS ’05), pages 121–130, New York,
NY, USA, 2005. ACM.

[23] Ericsson Utvecklings AB. Erlang Home Page.

[24] M. Fluet, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao. Manticore:
A Heterogeneous Parallel Language. In DAMP’07: Workshop on
Declarative Aspects of Multicore Programming, Nice, France, 2007.

[25] M. Frigo, C.E. Leiserson, and K.H. Randall. The Implementation
of the Cilk-5 Multithreaded Language. In PLDI’98 — Conf. on
Programming Language, Design and Implementation, volume 33 of
ACM SIGPLAN Notices, pages 212–223. ACM Press, 1998.

[26] GHC. http://www.haskell.org/ghc/.

[27] M.I. Gordon, W. Thies, M. Karczmarek, J. Lin, A.S. Meli, A.A. Lamb,
C. Leger, J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe.
A Stream Compiler for Communication-Exposed Architectures. In
ASPLOS-X: 10th international Conference on Architectural Support
for Programming Languages and Operating Systems, pages 291–303,
New York, NY, USA, 2002. ACM.

[28] The GHC-Maple Interface, http://www.risc .uni-linz.ac.at/
software/ghc-maple/.

[29] D. Grossman, J. Manson, and W. Pugh. What do High-Level Memory
Models mean for Transactions? In MSPC ’06: 2006 workshop on
Memory System Performance and Correctness, pages 62–69, New
York, NY, USA, 2006. ACM.

[30] The GAP Group. GAP – Groups, Algorithms, and Programming,
2007. http://www.gap-system.org.

[31] K. Hammond and G. Michaelson. Research Directions in Paral-
lel Functional Programming, chapter Introduction. Springer-Verlag,
1999.

[32] T. Harris and K. Fraser. Language Support for Lightweight Transac-
tions. SIGPLAN Not., 38(11):388–402, 2003.

[33] T. Harris, S. Marlow, and S. Peyton Jones. Composable Memory
Transactions. In PPoPP 2005: Principles and Practice of Parallel
Programming.

[34] T. Harris, S. Marlow, and S. Peyton Jones. Haskell on a Shared-
Memory Multiprocessor. In Proc. Haskell ’05: 2005 ACM SIGPLAN
Workshop on Haskell, pages 49–61. ACM Press, September 2005.

[35] T. Harris and S. Singh. Feedback Directed Implicit Parallelism. In
ICFP ’07: 2007 ACM SIGPLAN International Conference on Func-
tional Programming, pages 251–264, New York, NY, USA, 2007.
ACM.

[36] R. Lämmel. Google’s MapReduce Programming Model – Revisited.
Sci. Comput. Program, 70(1):1–30, 2008.

[37] B. Lewis and D.J. Berg. Multithreaded Programming with Pthreads.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1998.

[38] R. Loogen, Y. Ortega-Mallén, and R. Peña-Marı́. Parallel Func-
tional Programming in Eden. Journal of Functional Programming,
15(3):431–475, 2005.

[39] R. Martı́nez and R. Pena. Building an Interface Between Eden and
Maple. In Proc. IFL 2003, Springer-Verlag LNCS 3145, pages 135–
151, 2004.

[40] G. O. Michler. High Performance Computations in Group Represen-
tation Theory. Preprint, Institut für Experimentelle Mathematik, Uni-
verisität GH Essen,, 1998.

[41] The OpenMath Standard, Version 2.0, http://www.openmath.
org/.

[42] W. Partain. The nofib Benchmark Suite of Haskell Programs. In
Proc. 1992 Glasgow Workshop on Functional Programming, pages
195–202, London, UK, 1993. Springer-Verlag.

[43] S.L. Peyton Jones, C. Clack, J. Salkild, and M. Hardie. GRIP —
a High-Performance Architecture for Parallel Graph Reduction. In
Intl. Conf. on Functional Programming Languages and Computer
Architecture (FPCA ’87), LNCS 274, pages 98–112, Portland, Oregon,
September 1987. Springer-Verlag.

[44] S.L. Peyton Jones, C.V. Hall, K. Hammond, W.D. Partain, and P.L.
Wadler. The Glasgow Haskell Compiler: a Technical Overview. In
Proc. JFIT (Joint Framework for Information Technology) Technical
Conference, pages 249–257, Keele, UK, March 1993.

[45] C Ranger, R. Raghuraman, A. Penmetsa, G.R. Bradski, and
C. Kozyrakis. Evaluating MapReduce for Multi-core and Multipro-
cessor Systems. In HPCA ’07: 2007 IEEE 13th International Sym-
posium on High Performance Computer Architecture, pages 13–24.
IEEE Computer Society, 2007.

[46] L. Roch and G. Villard. Parallel computer algebra. In Proc. ISSAC ’97:
International Symposium on Symbolic and Algebraic Computation.
Preprint IMAG Grenoble France, 1997.

[47] H. Sutter and J. Larus. Software and the concurrency revolution.
Queue, 3(7):54–62, 2005.

[48] Tian Tian and Chiu-Pi Shih. Software Techniques for Shared-Cache
Multi-Core Systems, 2007. Online article in Intel developer commu-
nity.

[49] P. Trinder, K. Hammond, J.S. Mattson Jr., A.S Partridge, and S.L.
Peyton Jones. GUM: a Portable Parallel Implementation of Haskell.
In Proc. PLDI’96, pages 79–88, Philadelphia, PA, USA, May 1996.

[50] P.W. Trinder, K. Hammond, H.-W. Loidl, and S.L. Peyton Jones.
Algorithm + Strategy = Parallelism. J. Functional Programming,
8(1):23–60, January 1998.

[51] C. Zilles and D. Flint. Challenges to Providing Performance Isolation
in Transactional Memories. In Workshop on Duplicating, Deconstruct-
ing, and Debunking. 2005.

