
Pricing Python Parallelism: a Dynamic Language
Cost Model for Heterogeneous Platforms

Abstract
Execution times may be reduced by offloading parallel loop
nests to a GPU. Auto-parallelizing compilers are common
for static languages, often using a cost model to determine
when the GPU execution speed will outweigh the offload
overheads. Nowadays scientific software is increasingly writ-
ten in dynamic languages and would benefit from compute
accelerators. The ALPyNA framework analyses moderately
complex Python loop nests and automatically JIT compiles
code for heterogeneous CPU and GPU architectures.

We present the first analytical costmodel for auto-parallelizing
loop nests in a dynamic language on heterogeneous architec-
tures. Predicting execution time in a language like Python is
extremely challenging, since aspects like the element types,
size of the iteration space, and amenability to parallelization
can only be determined at runtime. Hence the cost model
must be both staged, to combine compile and run-time in-
formation, and lightweight to minimize runtime overhead.
GPU execution time prediction must account for factors like
data transfer, block-structured execution, and starvation.
We show that a comparatively simple, staged analytical

model can accurately determine during execution when it is
profitable to offload a loop nest. We evaluate our model on
three heterogeneous platforms across 360 experiments with
12 loop-intensive Python benchmark programs. The results
show small misprediction intervals and a mean slowdown of
just 13.6%, relative to the optimal (oracular) offload strategy.

Keywords: parallelization, cost model, scripting languages,
GPU

ACM Reference Format:
. 2018. Pricing Python Parallelism: a Dynamic Language Cost Model
for Heterogeneous Platforms. InWoodstock ’18: ACM Symposium on
Neural Gaze Detection, June 03–05, 2018, Woodstock, NY . ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 Introduction
Dynamic scripting languages like Python are increasingly
popular, particularly for domain-specific scientific code writ-
ten by end users. Meanwhile compute accelerators, such
as GPUs, are increasingly available on commodity devices
at all scales. Much recent research effort has focused on
identifying parallelism in such end user programs and ex-
ploiting this parallel code on manycore hardware. Different
approaches include embedding domain-specific parallel code
in dynamic languages [20, 21] or using parallel APIs, pat-
terns and libraries [9, 12]. However, there has been little
focus on the automatic selective application of such paral-
lel optimizations. In prior work, coders are left to choose
manually which sections of their program should be paral-
lelized. Such techniques rely on the risky assumption that
the programmer knows best.

Rather than require that developers have parallel program-
ming expertise, our approach is to automatically parallelize
loop nests in vanilla Python on GPUs. The ALPyNA frame-
work has demonstrated significant reduction in runtimes of
large and moderately complex loop nests [15, 16] (Section 2).
However offload overheads like kernel compilation and data
transfer mean that offloading small loops is slower than CPU
execution.
The key technical contribution of this paper is a new pa-

rameterized, lightweight and staged cost model, the ALPyNA
Cost Model (ACM), that automatically and selectively applies
loop parallelization to minimize runtime (Section 3). This is
precisely what non-expert scripting programmers require on
current commodity platforms with multiple heterogeneous
compute resources.
While cost models for automatic compilation and paral-

lelization are common for static languages (Section 6), mod-
elling a dynamic language like Python poses significant chal-
lenges. Parallelizing compilers for static languages have far
more program information, can use profiling or heavyweight
offline analysis, and may speculatively generate code for al-
ternative execution platforms. Such techniques are severely
restricted in dynamic language implementations as so much
program information is determined only at runtime. For
example the parallel structure of a Python loop nest can
only be determined dynamically when iteration domains
are dynamic, and dependences cannot be resolved statically.
Moreover in a dynamically typed language the array element
types are dynamic, and these determine costs like GPU data
transfer times.

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY

Fortunately modern sophisticated dynamic language im-
plementations now provide the technologies to address auto-
parallelization challenges. For example the dynamically de-
termined safe loop nest can be JIT compiled for CPU or GPU;
likewise runtime introspection allows dynamic type informa-
tion to be extracted and used to parameterise the cost model.
To the best of our knowledge ACM is the first analytical
cost model that supports the automatic runtime exploitation
of GPUs in a dynamic language.
For each instance of a loop nest, ACM dynamically pre-

dicts the relative runtimes on alternative execution platforms
so that ALPyNA can select the fastest. ACM is staged, com-
bining compile-time analysis with runtime introspection in
the CPython interpreter to parameterise the static model.
The model is designed to be lightweight as it is evaluated at
runtime. The ACM models for interpreted and JIT-compiled
CPU execution are simple and relatively standard. In con-
trast the GPU model is both elaborate and more novel as it
accounts for key device costs, including the time to trans-
fer data to and from the device, block structured execution,
starvation effects etc. All of the platformmodels are paramet-
ric in key characteristics of the devices in a heterogeneous
platform, like warp size on the GPU.
An important scientific contribution is to show that a

comparatively simple staged analytical model can effectively
determine at runtime whether to offload a loop nest in a
dynamic language (Section 5). Comparatively simple cost
models for the parallel platforms suffice because the system
does not attempt to accurately predict absolute loop runtimes,
rather it compares the relative runtimes on the GPU and
CPU with interpretation or JIT compilation. Of course such
relative cost models are common for static languages (Section
6).

2 Parallelizing Python Loops with
ALPyNA

ALPyNA is an auto-parallelizing framework for heteroge-
neous architectures that parallelizes dense linear loop nests
written in vanilla Python [15, 16]. Linear loop nests consist
of statements in which array subscripts are linear expres-
sions of the loop iterator variables.While the examples below
are very simple, ALPyNA can analyze loop nests that are
moderately complex: the benchmarks in Section 5 demon-
strate ALPyNA parallelizing multiple loops in a program,
nested loops, perfect and imperfect loop nests, and nests
with control flow divergence.

2.1 Runtime Dependence Analysis
ALPyNA parallelization relies on analyzing the dependence
relationships between variables in the loop nests, as popu-
larised by Allen and Kennedy [18] for FORTRAN. The de-
pendence analysis uses standard techniques to solve systems
of linear equations [38] determined by loop domain limits

Stmt_S1

Stmt_S2

δi

δi

Figure 1. Dependence graph
for Listing 1 loop nest with it-
eration domain (i,j)← (32,1024)
and (k)← 64

Stmt_S1 δi

Stmt_S2

δi δi δio

δi

Figure 2. Dependence graph
for Listing 1 loop nest with it-
eration domain (i,j)← (32,1024)
and (k)← (8)

and array subscripts. When these domains are unknown at
compile time, a static compiler must conservatively assume
that dependences exist.

For simple loop nests, optimizing static compilers try and
create parallel and sequential variants. Execution of such
speculatively generated parallel variants is subject to guard
conditions being satisfied. Such systems, like MegaGuards
(Qunaibit et al[30]), are available for interpreted languages
like Python. However, generating multiple variants of loop
nests based on different combinations of dependence rela-
tionships quickly becomes unwieldy even if only a small
number of factors are unknown at compile time.

Listing 1. ALPyNA loop nest parallelization example
def l n _ f unc (arg_a , k , l i m i t s) :
im , jm = l i m i t s
for i in range (0 , im , 1) :

for j in range (0 , jm , 1) :
S t a t emen t − S1
arg_a [i +k , j] = arg_a [i , j] + 4
S t a t emen t − S2
arg_a [i +16 , j] = arg_a [i , j]

Consider the loop nest in Listing 1. The dependence re-
lationships between the two statements S1 and S2 is deter-
mined by loop bounds (im, jm), the loop invariant variable
‘k’ and the coefficients and constants in each array subscript.
Due to the unresolved loop domain sizes and non-iterator
variable within the array subscript on the LHS of S1, a purely
static compiler must conservatively generate sequential code.

Figure 1 shows the dependence graph for an instance of the
nested loops in Listing 1 having limits (im, jm) ← (32, 1024)
and (k) ← (64). All 32 × 1024 execution instances of State-
ment S1 can safely be executed in parallel because k > im.
For statement S2, executing the outer loop (Fi) sequentially
allows 1024 execution instances (corresponding to the inner
loop Fj) to be executed in parallel. Figure 2 shows the de-
pendence graph for the same loop nest with domain limits
(im, jm) ← (32, 1024) and variable (k) ← (8). As k < im the

2

Pricing Python Parallelism: a Dynamic Language Cost Model for Heterogeneous Platforms Woodstock ’18, June 03–05, 2018, Woodstock, NY

inner loop (Fj) may only be executed in parallel if the outer
loop (Fi) is executed sequentially. If the loop limits have the
values (im, jm) ← (16, 1024) and (k) ← (16), all instances of
statements S1 and S2 can be executed in parallel.
Primary contributions in this paper are the development

of a hybrid cost model that estimates the relative execution
time of such loops, and the integration of this cost model
into the ALPyNA system (Figure 3).

2.2 ALPyNA System Architecture
ALPyNA is not a whole program compiler: users invoke
loop analysis by passing marked functions with loop nests
in them to the system. ALPyNA isolates and analyzes these
loops and either JIT compiles for the CPU or generates GPU
kernels and schedules them while preserving dependence
relationships. Any Python statements between loop nests
are executed within the interpreter. It first parses loop nests
and performs loop normalization (i.e. transforms loops to
increment by unit stride) to facilitate dependence analysis.
Control flow divergence within loop nests is handled by con-
verting computational statements to predicated statements
using if-conversion. ALPyNA allows calls to pure intrinsic
functions within the loop body to aid computation. These
are mapped onto corresponding intrinsics supplied by the
Numba compiler (Section 2.3) for a particular target device.
A loop nest with computation that cannot be JIT compiled
by Numba is executed by the interpreter.

Figure 3 provides an overview of ALPyNA’s architecture,
incorporating the cost model extensions. The parser gen-
erates a very simple flat record structure of the loop nests
which are grouped into ‘loop landmarks’. Any loop limits
that cannot be statically determined are marked for runtime
analysis. The presence of variables within array subscripts
which are not loop iterators are also marked for runtime
analysis.

If all dependence relationships can be determined at com-
pile time, skeletal kernels and drivers are generated and
cached. During runtime, when the loop nest is invoked,
ALPyNA introspects the data types of the data being ac-
cessed within the loop nest and determines the types to be
patched into the skeletal kernels that have been generated.
These kernels are then compiled using Numba.

If a dependence relationship cannot be ascertained at com-
pile time, any dependence that can be statically derived is
memoized and the whole loop nest is marked for runtime
analysis and optimization. At runtime, ALPyNA intercepts
invocations of these loop nests. All relationships deferred to
runtime analysis are computed for each loop nest instance.

In the presence of unknown loop limits and other variables
(such as loop invariants), a static compiler would have to be
conservative and assume that dependences exist. In contrast
ALPyNA uses introspection to determine loop domain limits
and other variable relationships at runtime to aggressively
exploit potential parallelism. ALPyNA combines statically

derived dependences and those determined at runtime to
compute the overall dependence relationships in a loop nest.
The loop nest is then converted into a skeletal form to

pass into the code generator for each target architecture.
After the loop nest has been analyzed and transformed into
a skeletal structure, code is custom generated for the depen-
dence relationships that exist for an execution instance of
the loop nest. Code generated by ALPyNA after dependence
analysis is JIT compiled using Numba (Section 2.3).

2.3 Numba Compiler
ALPyNA uses the Numba [23] library to JIT compile and
execute loop nests. Numba is an LLVM based framework
that can dynamically compile Python functions. Normally,
programmers add a @jit decorator to a Python function
to compile it to CPU machine code. Numba also has the
@cuda.jit decorator syntax to provide access to CUDA bind-
ings. This enables programmers to write CUDA kernels for
GPU using restricted Python semantics and CUDA idioms.
For ALPyNA, developers provide undecorated Python

source code. After staged analysis/parallelization passes,
ALPyNA will eventually invoke Numba to JIT compile syn-
thesized Python code for the appropriate backend target de-
vice (CPU or GPU). Our new cost model (ACM) is intended
to guide the dynamic selection of target devcies.
Numba compiles code at runtime once the concrete data

types of the variables within the code are determined. While
automatic type inference is provided within Numba, the cost
of compiling and type-checking is expensive. Numba allows
programmers to optionally specify data types within the
@jit and @cuda.jit decorators. A compiled kernel is cached
to reduce execution time. Since ALPyNA generates a GPU
kernel for each statement, each loop invocation of a GPU
kernel (caused by sequential execution of a loop to maintain
a loop-carried dependence) would trigger automatic type-
inspection by Numba. This reduces performance by an order
of magnitude, and to ameliorate this ALPyNA performs type
inspection and supplies each kernel with the requisite types.
This enables Numba to re-use a previously cached kernel
without fresh type inspection.

2.4 GPGPU Programming Model
Current NVIDIA GPU architectures execute parallel threads
on parallel cores called a StreamingMultiprocessor (SM) [13].
Each SM has a large number of CUDA cores and potentially
multiple warp schedulers. Each warp scheduler schedules
threads for execution on a warp sized subset of CUDA cores
in an SM. Every thread within a warp executes an instruction
in lock-step on CUDA cores. An SM may also have a number
of shared caches [33].
This model is abstracted for the programmer as compu-

tational kernels executed in parallel on a GPU. An instance
of kernel execution is identified with a threadId and threads
are arranged into a threadblock. The number of threads

3

Woodstock ’18, June 03–05, 2018, Woodstock, NY

Parser

Python
loop nests

Static
Dependence

Analysis

Parallelisation

Statically derived
parallelisable
loop structure

ALPyNA API

Static Analysis (Warm-up phase) Runtime (Execution Phase)

User
executes

target loop nest

ALPyNA
Namespace

Run-time Analysis

Runtime
Type

Inspection

Runtime
Parallelisation

Dependence
structure
available at
compile time

Static Compilation Context Execution Context

Deferred
loop parallelisation

execute()

ALPyNA
execution

context

Return
result to
caller
context

Runtime
Dependence

Analysis

Compile time
partial results
reused

ALPyNA
kernel
cache

Numba
Dispatch

CUDA
Driver Call

Accelerator

Device

Partial
dependence

analysis
+ cost
Cache

hardware params

Statically determined
cost model

Generate
CPU / GPU

variant

Runtime
cost model

Generate
CPU / GPU

variant

JIT compile
@cuda.gpu

JIT compile
@ numba.cpu

Map : Loopnest to
(driver + kernels)

Text

Figure 3. Overall system architecture, showing how when dependences cannot be determined statically, we defer dependence
analysis to runtime, when kernels can be specialised to runtime dependences and domain sizes.

in a threadblock are limited, e.g. to 1024. The number of
threads executing instances of a kernel can be increased
by executing grids of equal-sized thread blocks. In CUDA,
threads are logically arranged along one, two, or three di-
mensional axes in a two tier structure of grids and blocks
[13, 26]. The actual threadId along a particular axis can be
dereferenced using simple two tier dereferencing seman-
tics (blockidaxis × blocksizeaxis + threadIdaxis). The three axis
thread hierarchy (x ,y, z) of GPGPU programming originate
from 3D graphics computation. Parallel threads in a thread
block are expected to be scheduled on the same SM [13].
Dependence theory states that if a dependence in a loop

nest is carried by a loop, executing this loop sequentially
allows any nested loops to be executed in parallel, so long as
they do not carry any other loop dependences [18]. ALPyNA
uses dependence analysis to parallelize such inner loops. It
generates a single GPU kernel for each loop nest statement.
This design enables the partial parallelisation of (i) imperfect
loop nests and (ii) loop nests with loop carried dependences
requiring sequential execution of some loops.

3 ALPyNA Cost Model
The ALPyNA Cost Model (ACM) determines which device
to execute a loop nest on, in a heterogeneous manycore
compute environment. It does so by using staging and a fam-
ily of lightweight models to compare the predicted relative
runtimes of loop nest instances on each execution device.

ALPyNA analyzes dependence relationships in a staged
manner. When all dependence relationships can be deter-
mined statically, untyped GPU kernels along with their do-
main sizes can be generated at compile time (Section 2.1).
However, loop domain values are often not known until run-
time, so the amount of potential parallelism in a loop nest
cannot be statically determined.

The heavyweight dependence analysis, optimization, and
cache access pattern analysis typically used in offline compil-
ers is too expensive for JIT compilation. Hence we introduce
a lightweight cost model to compile loop nests for heteroge-
neous environments featuring CPU+GPU compute devices.
Execution on GPU is worthwhile if the interpreted execution
time exceeds that of compiling for, transferring code and
data to/from, and executing on the device. The current cost
model accounts for transfer time and execution time but
omits compilation time (cf. Section 7).

Listing 2. Example abstract loop nest structure for cost mod-
elling
F1:for itrF1 in range(L(F1)):

S1
F2: for itrF2 in range(L(F2)):

. . .

FN : for itrFN in range(L(FN)):

Sj
SM

4

Pricing Python Parallelism: a Dynamic Language Cost Model for Heterogeneous Platforms Woodstock ’18, June 03–05, 2018, Woodstock, NY

Consider an imperfect loop nest as shown in Listing 2 com-
prising a set ofN Python for loop headersP = {F1,F2, . . . ,FN }.
The execution domain (i.e. number of iterations) of indexed
for loop Fi is denoted as L(Fi). The loop nest containsM
distinct Python statements to be executed; each statement is
represented as an indexed value Si , with 1 ≤ i ≤ M . State-
ments are restricted to assignments to variables or arrays.
Note that there is no particular correspondence between the
integer index of a for loop Fi and that of a statement Si .
Some loop bodies only contain nested loop bodies; others
may contain multiple statements.

We relate the for loops and statements in a loop nest, us-
ing the graph theoretic notion of dominance [24]. We desig-
nate the set of loop headers enclosing an arbitrary statement
s as D(s). In other words, D(s) is the set of loop headers
that dominate s . We designate the set of statements enclosed
within an loop header f as E(f). In other words, E(f) is the
set of statements dominated by f . D and E are duals in the
dominance relation, i.e.

f ∈ D(s) ⇐⇒ s ∈ E(f) (1)
The ACM assumes that loops conform to this style, with N

loop headers andM statements inside a single loop nest. Thus
the outermost loop header F1 in the original loop structure
always dominates all other loop headers and statements.
The form is not restrictive as multiple top level loops can be
modelled by introducing a top level loop to enclose them.

Listing 3. Running Example: Naïve Matrix Multiplication
(gemm)
def gemm(mA, mB, mC) :

for k in range (np . shape (mA) [1]) :
for i in range (np . shape (mA) [0]) :

for j in range (np . shape (mB) [1]) :
mC[i , j] = mC[i , j] + mA[i , k] ∗ mB[k , j]

The ACM is illustrated using the naïve matrix multipli-
cation (gemm) example shown in Listing 3. In the code, a
standard loop interchange optimisation pass using depen-
dence analysis has interchanged loop Fk from the innermost
to the outermost loop, enabling loops Fi and Fj to be safely
executed in parallel. Loop interchange is used by paralleliz-
ing compilers to maximize parallel execution of loops [18].

3.1 Modelling Interpreter Execution
Iint is a function that maps any individual loop nest statement
S j to an abstract cost, effectively a predicted execution time
in the CPython interpreter. Such values could be profiled
ahead-of-time. However, a novel feature of ACM is that all
costs are expressed relative to Iint, so the profiling never actu-
ally takes place. Cint is a function that predicts the total cost
of interpreting all instances of statement S j in the loop nest
as the product of Iint(Sj) and all of the iteration domain sizes,
Equation 2. This requires loop limits to have been resolved

to numerical constants, which may require runtime intro-
spection. Tint is a function that predicts the total execution
cost of the entire loop nest with top-level for loop header f
as the sum of the total execution costs of all statements in
the loop nest, Equation 3.

Cint(s) = Iint(s)
∏

f ∈D(s)

L(f) (2)

Tint(f) =
∑

s ∈E(f)

Cint(s) (3)

In our running example (Listing 3), all three loops Fk ,Fi
and Fj are executed sequentially in the interpreter. The over-
all abstract cost is proportional to the product of the loop
domain sizes.

3.2 Modelling JIT Compiled CPU Execution
When ALPyNA JIT compiles a loop nest targeting the CPU,
the cost model is very similar to that of the interpreter. Icpu
maps a loop nest statement to an abstract cost, and we per-
form one-time profiling to express Icpu in terms of Iint for
each statement (Section 3.4). Ccpu is a function that predicts
the total cost of executing all instances of a statement in
the loop nest as a product of the individual statement cost
and the loop domain limits, Equation 4. Tcpu is a function
that predicts the total execution cost of the entire loop nest,
Equation 5.

Ccpu(s) = Icpu(s)
∏

f ∈D(s)

L(f) (4)

Tcpu(f) =
∑

s ∈E(f)

Ccpu(s) (5)

Relating Icpu and Iint assumes that the JIT compiler only
compiles the loop into sequential binary instructions, and
does not vectorize the loop body for Single Instruction Mul-
tiple Data (SIMD) execution units on the CPU. We have also
verified that Numba does not automatically parallelize loop
nest execution to multiple cores on the CPU.

A single threaded JIT compiled CPU variant of the running
example (Listing 3) executes loops Fk ,Fi and Fj sequentially.
The abstract cost of execution is proportional to the product
of loop domain sizes.

3.3 Modelling GPU Execution
Dependence analysis determines which loops to execute
sequentially to maintain dependences between each state-
ment. In theory, all other loops can be executed in parallel.
Loops that must be executed sequentially are transformed
into a GPU kernel call within the interpreter and called se-
quentially maintaining dependence relationships. Every loop
instance of a statement which can be executed in parallel
is executed within a GPU kernel. However, current GPGPU
programming semantics restrict the number of dimensions

5

Woodstock ’18, June 03–05, 2018, Woodstock, NY

along which we can schedule threads to three (Section 2.4).
This means we can parallelize a triple nested for loop at best
using CUDA thread semantics alone.
To model the cost of executing a loop nest that has been

parallelized, the set of for loops enclosing each statement s
is split into distinct partitions:

1. Dseq(s) – the set of outer loop headers enclosing state-
ment s which must be executed sequentially, due to
dependences.

2. Dpar (s) – the set of all loop headers enclosing state-
ment s which can be executed in parallel because either
there are no loop-carried dependences or all loops car-
rying dependences are executed sequentially (the set
Dseq(s)). In general, the number of loops in Dpar (s)
may be greater than the number of parallel axes on
the GPU (i.e. three). To model this we further partition
the set Dpar (s) into :
a. Dgpu(s) – the set of loops that ALPyNA has mapped

to hardware axes. ALPyNA transforms each instance
of execution along these iteration domains into a
GPU kernel execution instance. On NVIDIA GP104
(Pascal microarchitecture) GPUs for example, each
block can only execute a maximum of 1024 threads.
ALPyNA calculates a thread hierarchy from the loop
domain sizes at run time and splits it into a tuple of
grid sizes and block sizes. The loop domains sched-
uled along the logical x,y,z hardware axes are in-
tended tomaximize parallel work [16] while meeting
the threads per block constraint.

b. Dgpu(s) – the set of all remaining loops that cannot
be mapped onto a GPU parallel axis, these are ex-
ecuted sequentially within each GPU kernel. This
can be done safely without synchronization because
ALPyNA transforms all loops which carry depen-
dences into sequential kernel invocations in the in-
terpreter.

In our running example (gemm–Listing 3) dependence
analysis determines that loop Fk carries both true 1 and
anti2 dependences. Executing Fk sequentially enables the
parallel execution of the inner loops Fi and Fj . As there are
only two parallel loops, ALPyNA does not execute any loops
sequentially within the generated GPU kernel. The loop in
Dseq(s) = {Fk } is executed sequentially by the interpreter
calling GPU kernels executing the computation represented
by loops Dgpu(s) = {Fi ,Fj } and Dgpu(s) = {∅}.
To model the parallel execution cost of a statement s

on a GPU, we measure the number of executions as the
product of the loop limits for the enclosing for loops, as
before. However unlike the interpreter and CPU models,
we now have a factor term to represent parallel execution,
and hence reduce predicted execution time. The function

1read-after-write
2write-after-read

GPU - (num of threads)

Ex
ec

ut
io

n
Ti

m
e(

m
s)

Cki crossover (X)

Profiling GPU kernel invocation cost

Cki - kernel invocation cost
Cgpu - kernel execution cost

Figure 4. ALPyNA profiles a very simple kernel to discover
the minimum work rate required to keep the GPU busy

{G(L(f)), f ∈ Dgpu(s)} calculates the grid size and maps a
loop domain to a GPU hardware axis. G maximises threads-
per-block to calculate the number of grids within a thread-
hierarchy.
While the number of threads allocated to execute on an

SM can be greater than the number of CUDA cores in the
SM, the maximum number of threads executing in parallel at
any one time in an SM is the product of the number of warp
schedulers per SM (denotedv) and the warp size (denotedw).
The block structure of parallelized GPU code means we need
to take into account precisely how the execution is mapped
onto SMs in a GPU (denoted u). For a statement s , we denote
the amount of work done in each GPU kernel invocation as
λexec(s) (Equation 6). Intuitively, if the GPU had an infinite
number of SMs, then term д.v .w would provide the parallel
speed-up. The ACM also calculates the cost of serializing
execution of thread blocks in excess of the actual number of
SMs.

λexec(s) =
⌈д
u

⌉
×

1
д.v .w

×
∏

f ∈Dgpu(s)

L(f) ×
∏

f ∈Dgpu(s)

L(f)

д =
∏

f ∈Dgpu(s)

G(L(f))

(6)
Modelling GPU Starvation. ALPyNA maintains loop-

carried dependences on code transformed for the GPU by
scheduling the outermost loop iterations to execute in the
CPython interpreter. The GPU executes JIT compiled binary
code much faster than the interpreter. If the interpreter exe-
cutes each kernel invocation faster than the GPU can execute
the kernel, each kernel is queued for execution on the GPU
and overall execution time is bound by kernel execution.
Otherwise, the GPU will finish each kernel before the inter-
preter can schedule the next one, and the GPU is starved of
work.

There are two cases to consider as shown in Equation 7.
If all the loops around a statement s are parallelizable, i.e.
Dseq(s) = ∅, the code is transformed into a single invocation
of a kernel that executes all loop iterations of D(s) on the

6

Pricing Python Parallelism: a Dynamic Language Cost Model for Heterogeneous Platforms Woodstock ’18, June 03–05, 2018, Woodstock, NY

GPU. Hence there is a single kernel invocation latency cost
Ckivm . Otherwise Dseq(s) , ∅ and the execution cost is
the greater of the kernel invocation or the GPU execution
cost. Here Igpu(s) is the cost of executing a single instance
of the compiled kernel that represents statement s . This
scenario arises in the running example (Listing 3) where
Dseq(s) = {Fk }.

Cgpu(s) =max
(
Ckivm , λexec (s).Igpu(s)

) ∏
f ∈Dseq(s)

L(f)

if Dseq(s) , ∅

Cgpu(s) =Ckivm + λexec (s).Igpu(s)

if Dseq(s) = ∅

(7)

Figure 4 depicts how for smaller amounts of parallel work,
the GPU kernel completes early and the interpreter loop
execution time dominates. However once there is enough
work in each kernel invocation to keep the GPU busy, GPU
execution time dominates. This threshold varies depending
on the relative performance of the GPU and the interpreter.
To ascertain the GPU invocation cost threshold for each

hardware setup, a very simple statement is profiled once
at installation time. We use a two dimensional loop where
only the inner loop can be parallelized. We profile this loop
nest in ALPyNA using varying domain sizes to arrive at the
GPU throttling threshold. The profiling starts at a parallel
domain size {L(f) = w | f ∈ Dpar (s)} and the domain size is
increased exponentially until the profiler detects execution
time has gone beyond its inflexion point. The profiler then
interpolates the number of threads at the inflection point
and calculates λexec (Equation 7) for the domain size at the
inflection point.
We seek to estimate the amount of GPU parallel work

(in terms of domain sizes) required to overcome the kernel
invocation cost Ckivm , and designate this value λX . At the
kernel invocation cost threshold, we assume the relationship

Ckivm ≡
(
λX × Igpu(s)

)
(8)

Profiling the simplest statement s to determine the cross-
over point λX , provides a maximal number of threads beyond
which GPU execution time will dominate for any statement s .
For a kernel representing more complex statements, this as-
sumption leads to the ACM selecting a higher, (conservative),
threshold of parallel work to offload to the GPU. Substituting
Ckivm into Equation 7 the estimated cost of executing each
kernel is shown in Equation 9.

Cgpu(s) =max (λx , λexec (s)) .Igpu(s).
∏

f ∈Dseq(s)

L(f)

if Dseq(s) , ∅

Cgpu(s) =(λx + λexec (s)).Igpu(s)

if Dseq(s) = ∅

(9)

The full cost of executing the loop nest with outermost
for loop f on the GPU is the summation in Equation 10
where Cxfer(GPU) is the data transfer cost outlined next.

Tgpu(f) = Cxfer(f) +
∑

s ∈D(f)

Cgpu(s) (10)

Modelling GPU transfer time. Executing on accelera-
tors like GPUs incurs overhead for transferring data between
the host CPU and the accelerator. We will see in Section 5
that loop nests with light computational work are especially
sensitive to the overheads of data transfer.
Following common practice we normalize data transfer

time against the estimated cost of executing a very simple
statement in the CPython interpreter, Iint(s). Bandwidth pro-
filing of the PCIe bus on which the GPU resides is performed
once at install time, along with the measurements of GPU
starvation factor λX (Section 3.3, Equation 8) and the CPU
JIT speed-up factor µ (Section 3.4, Equation 11).
While the transfer model is fairly standard, a novel fea-

ture is that it is staged. That is ALPyNA identifies the set
of vectors to be transferred to/from the GPU, and resolves
their types and sizes at runtime. These are combined with
the ahead-of-time bandwidth measurements to estimate the
transfer overhead, Cxfer(GPU).

3.4 Calibrating ACM
Like many cost models ACM takes parameters that charac-
terise the specific execution platform, e.g. CPython and the
Numba JIT compiler on a specific CPU, and CUDA on a spe-
cific GPU. Specifically the key cost equations, 2, 4 and 7 take
parameters representing the predicted runtime Iplatform(s) of
executing a statement s on a given platform, e.g. Icpu (s) in
Equation 4. The platform costs for a statement s are com-
puted relative to the predicted interpreter cost Iint(s).

Calibration is required to determine the value of the model
parameters for each execution platform, and this is achieved
as follows.
The cost of executing a JIT compiled statement relative

to the interpretation cost is profiled once at install time. A
very simple kernel similar to the one used to profile Ckivm
(Section 3.3) is used to relate the runtimes of JIT compiled,
and CPython interpreted code. The array size in the loop nest
is chosen to ensure that there is only one cache miss (on the
first iteration). The relative performance factor obtained is
designated as µ in Equation 11. This provides a close approx-
imation of the relative runtimes of compiled and interpreted

7

Woodstock ’18, June 03–05, 2018, Woodstock, NY

code without caching, and allows us to separately account
for caches when comparing CPU and GPU runtimes.

µ =
Iint(s)

Icpu (s)
(11)

The relative cost of GPU execution clearly depends on the
relative clock frequencies of the CPU and GPU, fcpu and fдpu .
Moreover, Armih et al [4] and Belikov et al [7] both report
the size of the last level cache as a significant factor while
comparing relative performance of data intensive programs
on heterogeneous platforms. The last level cache (L2) on
the GPU LCgpu is shared by all Symmetric Multiprocessors
(SMs). Each SM has its own set of L1 caches. For example
in the NVIDIA Pascal (GP104) each SM has two L1 caches
[33]. This cache sharing is represented by the factor σ =
num_SM×L1_caches_per_SM in Equation 12 that computes
relative GPU/CPU performance. There is no cache sharing
factor for the CPU as Numba JIT compiles code for a single
core and we assume that this core has exclusive use of the
L3 cache (LCcpu).

Icpu (s)

Igpu (s)
= ψ ≈

fдpu ×
(
LCgpu/σ

)
fcpu × LCcpu

(12)

Equation 13 shows how the cost of GPU execution relative
to the interpreter is directly computed as the product of
CPU/GPU cost and the interpreter/CPU ratio µ (Equation 11).

Iint(s)

Igpu (s)
≈ µ ×ψ (13)

Substituting Equations 11, 12 and 13 into Equations 2, 4
and 7 allows ALPyNA to compare the predicted runtimes
on each execution platform and select the platform with
minimum cost, i.e.min(Tint,Tcpu ,Tgpu).

3.5 ALPyNA Implementation
ACM is integrated into ALPyNA by annotating each state-
ment in the lightweight ‘loop landmarks’ data structure (Sec-
tion 2.2) with its relative cost when loop nest dependence
analysis takes place at runtime. ALPyNA’s runtime analysis
and introspection capabilities enable aggressive discovery
of opportunities to parallelize and estimate costs. This ap-
proach minimises overheads as the cost model is constructed
while resolving runtime dependences.

4 Experimental Setup
4.1 Benchmarks
ACM is evaluated using 12 loop-intensive benchmarks from
the BLAS routines in the Polybench suite [29], the Numba
benchmarks, and from domains like finance (black-scholes)
and digital signal processing (fbcorr).

The benchmarks represent a variety of characteristics that
test ACM’s prediction capabilities for a variety of moderately
complex loop nests as summarised in Table 1. Benchmarks

Benchmarks Loop Depth Stmts Control Flow
Divergence

Intrinsic
FunctionsTotal Parallel

Loops
black-scholes 1 1 12 ✓ ✓

conv-2d 4 2 1 ✗ ✗

conway 2 2 2 ✗ ✗

fbcorr 7 4 1 ✗ ✗

gemm 3 2 1 ✗ ✗

gemver (2,2,1,2) (2,1,1,1) 4 ✗ ✗

hilbert 2 2 1 ✗ ✗

jacobi 2 2 2 ✗ ✗

mandelbrot 3 2 3 ✓ ✓

saxpy 1 1 1 ✗ ✗

syr2k (2,3) (2,2) 2 ✗ ✗

vadd 1 1 1 ✗ ✗

Table 1. Benchmark characteristics described as the set of
loops surrounding each statement, e.g. syr2k has two loops
around the first statement and three around the second. Only
some loops are parallelized.

like saxpy and vadd are extremely simple: a single loop with
just a single statement, and are embarrassingly parallel. Con-
trol flow divergence is encountered in black-scholes andman-
delbrot. These loop nests also have pure (math) function calls
that are mapped onto CUDA intrinsics in GPU kernels. Ma-
trix multiplication (gemm) and conv-2d are perfect loop nests
(every statement is dominated by every loop in the loop nest)
but must execute some loops sequentially to maintain depen-
dence ordering. Imperfect loop nests occur in gemver and
syr2k

4.2 Hardware Platforms
The evaluation is conducted on a server grade machine (M1)
and typical desktops (M2, M3). M1 has a Xeon E5-2620v4
octa core CPU with a 20MB L3 cache and a clock frequency
of 2.1GHz that can be ‘Turboboost’ed to 3GHz. It has 16GB
(2× 8GB) DDR4 RAM with a memory bus speed of 2133MHz.

M2 has a Core i7-6700 quad core CPU with an 8MB L3
cache clock and a clock frequency of 3.4GHz, that can be
boosted to 3.9GHz. It has 16GB DDR4 (2× 8GB) RAM with a
memory bus speed of 2133MHz. In a third machine configu-
ration (M3) the CPU frequency of machine M2 is limited to
800MHz leaving all other parameters the same.
M1’s GPU is an NVIDIA Titan-XP (GP102) with a clock

frequency of 1.4GHz and 12GB of GDDR5 RAM. It has 30
SMs and a 3MB last level cache (L2).M2/M3 have an NVIDIA
GeForce GTX-1060 with a clock frequency of 1.5GHz and
3GB of GDDR5 RAM. It has 9 SMs and a 1.5MB L2 cache. In
both GPUs each SM has 128 CUDA cores, 4 warp schedulers
and two L1 caches [33]. Data transfer uses a PCI-Express
(PCIe 3.0) bus with the GPU as the only peripheral, and it
negotiates to use 16 channels (x16).

The experiments are conducted on similar software stacks
as follows (M1,M2/M3). A native x86–64 Linux kernel (v4.15,
v4.9); CPython interpreter (v3.6.9, v3.5.3); PyPy (v7.3.1); Numpy
(v1.13.3, v1.13.3); Numba (v0.34, v0.33); and CUDA (v8.0.61,

8

Pricing Python Parallelism: a Dynamic Language Cost Model for Heterogeneous Platforms Woodstock ’18, June 03–05, 2018, Woodstock, NY

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M
0

1

2

3

4

5

m
isp

re
di

ct
 p

en
al

ty

cpu cpu
cpu

cpu

gpu gpu gpu gpu gpu gpu

black-scholes

16 x 16
32 x 32

64 x 64
128 x 128

256 x 256
512 x 512

1K x 1K
2K x 2K

4K x 4K
8K x 8K

16K x 16K
0

1

2

3

4

5

m
isp

re
di

ct
 p

en
al

ty

cpu cpu cpu cpu

gpu

gpu gpu gpu gpu gpu gpu

convolution-2d

16 x 16
32 x 32

64 x 64
128 x 128

256 x 256
512 x 512

1K x 1K
0

1

2

3

4

5

m
isp

re
di

ct
 p

en
al

ty

cpu cpu cpu cpu cpu cpu gpu

conway

16x8x256x256
16x16x256x256

16x8x512x512
16x16x512x512

16x8x1Kx1K
16x16x1Kx1K

0

1

2

3

4

5

m
isp

re
di

ct
 p

en
al

ty

gpu gpu gpu gpu gpu gpu

fbcorr

16 x 16
32 x 32

64 x 64
128 x 128

256 x 256
512 x 512

1K x 1K
2K x 2K

0

1

2

3

4

5

m
isp

re
di

ct
 p

en
al

ty

cpu cpu cpu cpu
gpu

gpu gpu gpu

gemm

8 x 8
16 x 16

32 x 32
64 x 64

128 x 128
256 x 256

512 x 512
1K x 1K

2K x 2K
4K x 4K

8K x 8K
16K x 16K

0

1

2

3

4

5

m
isp

re
di

ct
 p

en
al

ty

cpu cpu cpu cpu cpu cpu cpu cpu cpu cpu cpu cpu

gemver

16 x 16
32 x 32

64 x 64
128 x 128

256 x 256
512 x 512

1K x 1K
2K x 2K

4K x 4K
0

1

2

3

4

5

m
isp

re
di

ct
 p

en
al

ty

cpu cpu cpu cpu cpu cpu gpu gpu gpu

hilbert

4 x 4 8 x 8
16 x 16

32 x 32
64 x 64

128 x 128
256 x 256

512 x 512
1K x 1K

2K x 2K
0

1

2

3

4

5

m
isp

re
di

ct
 p

en
al

ty
cpu cpu cpu cpu cpu cpu cpu cpu

gpu
gpu

jacobi

8 x 8
16 x 16

32 x 32
64 x 64

128 x 128
256 x 256

512 x 512
1K x 1K

0

1

2

3

4

5

m
isp

re
di

ct
 p

en
al

ty

cpu cpu cpu cpu cpu gpu gpu gpu

mandelbrot

1K 2K 4K 8K 16K 32K 64K
128K

256K
512K 1M 2M 4M 8M 16M 32M

0

2

4

6

8

10

m
isp

re
di

ct
 p

en
al

ty

cpu cpu cpu cpu cpu cpu cpu cpu cpu

gpu
gpu

gpu gpu gpu gpu gpu

saxpy

8 x 8
16 x 16

32 x 32
64 x 64

128 x 128
256 x 256

512 x 512
1K x 1K

2K x 2K
4K x 4K

0

1

2

3

4

5

m
isp

re
di

ct
 p

en
al

ty

cpu cpu cpu cpu cpu gpu gpu gpu gpu gpu

syr2k

1K 2K 4K 8K 16K 32K 64K
128K

256K
512K 1M 2M 4M 8M 16M

0

2

4

6

8

10

m
isp

re
di

ct
 p

en
al

ty

cpu cpu cpu cpu cpu cpu cpu cpu cpu

gpu
gpu

gpu gpu gpu gpu

vadd

Figure 5. ALPyNA Cost Model misprediction penalties for 12 loop-intensive benchmarks with varying domain sizes on
platform T1. Misprediction slowdown is the ratio of predicted device runtime and faster device runtime, so optimal is 1.0.

v8.0.44). We identify the combined hardware and software
stacks as target platforms T1, T2 and T3.

4.3 ACM Usage
Before using ACM on a target CPU/GPU platform the values
of λX , µ (Eqs. 11 and 8) and relative GPU bandwidth (Section
3.3) must be profiled. A 10% safety margin is used over the
predicted inflection point where the interpreter is able to
keep the GPU busy. The calculation of BW

Igpu
, i.e. data transfer

speeds in execution time units (Iint), is done while profiling
for the value µ to ensure consistency.

TheNumba compiler compiles and executes single threaded
code. During experimentation no other cores execute com-
putationally intensive code and hence the core can reach
maximum frequencies without being throttled.

The selection of CPU or GPU to target for JIT compilation
is dependent on the overall computation size, proportion
of parallel computation, and data movement costs. The ef-
fectiveness of ACM’s device selection for JIT compilation
is measured across a wide range of iteration domain sizes.
Iteration domain sizes are increased by doubling the loop
domain size of each loop within the benchmarks. Reported
runtimes are the arithmetic mean of 5 executions.

4.4 Comparative Baselines
For each domain size, execution time on the ACM predicted
device is compared with two baselines: (1) execution time

on the optimal device identified by an ‘oracle’ predictor; (2)
execution time on the device selected by a two-class support
vector machine (SVM), i.e. a representative supervised learn-
ing model. The SVM is trained on the 12 benchmarks using
per-benchmark leave-one-out cross-validation. We train sep-
arately for each of the three evaluation platforms. We use
the oracle predictor value to label training set instances. The
feature vector comprises static code structure metrics (cf.
Table 1), input size and dimensions, and raw execution times
on both target devices. All feature values are scaled with
min-max normalization to the range [0, 1]. (Codebase link
to be provided post-anonymisation).
PyPy [3] is a tracing JIT compiler to speed-up Python

execution. Execution time of CPU and GPU code generated
by ALPyNA for the 12 benchmarks (Section 4.1) is compared
to the execution time taken by PyPy with loop vectorisation
enabled. For each benchmark, PyPy is allowed to warm up
to enable tracing and JIT compilation before timing mea-
surements are taken. A timeout of five hours is used for
benchmark execution with PyPy.

5 Evaluation
GPU Speedups. Table 2 shows the range of speedups ob-
tained using the GPU for the benchmarks on each machine.
It shows that most benchmarks benefit from exploiting the
GPU at some iteration domain sizes; even those that show
no benefit can be useful ACM test cases as outlined below.

9

Woodstock ’18, June 03–05, 2018, Woodstock, NY

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

10 3

10 1

101

103

Ex
ec

 T
im

e
(s

ec
)

black-scholes
cpu-perf
gpu-perf

pypy-perf

16 x 16
32 x 32

64 x 64
128 x 128

256 x 256
512 x 512

1K x 1K
2K x 2K

4K x 4K
8K x 8K

16K x 16K

10 5

10 2

101

104

Ex
ec

 T
im

e
(s

ec
)

convolution-2d
cpu-perf
gpu-perf

pypy-perf

16 x 16
32 x 32

64 x 64
128 x 128

256 x 256
512 x 512

1K x 1K

10 5

10 2

101

Ex
ec

 T
im

e
(s

ec
)

conway
cpu-perf
gpu-perf

pypy-perf

16x8x256x256
16x16x256x256

16x8x512x512
16x16x512x512

16x8x1Kx1K
16x16x1Kx1K

10 1

101

103

105

Ex
ec

 T
im

e
(s

ec
)

fbcorr
cpu-perf
gpu-perf

pypy-perf

16 x 16
32 x 32

64 x 64
128 x 128

256 x 256
512 x 512

1K x 1K
2K x 2K

10 4

10 1

102

Ex
ec

 T
im

e
(s

ec
)

gemm
cpu-perf
gpu-perf

pypy-perf

8 x 8
16 x 16

32 x 32
64 x 64

128 x 128
256 x 256

512 x 512
1K x 1K

2K x 2K
4K x 4K

8K x 8K
16K x 16K

10 5

10 2

101

104

Ex
ec

 T
im

e
(s

ec
)

gemver
cpu-perf
gpu-perf

pypy-perf

16 x 16
32 x 32

64 x 64
128 x 128

256 x 256
512 x 512

1K x 1K
2K x 2K

4K x 4K

10 5

10 2

101

Ex
ec

 T
im

e
(s

ec
)

hilbert
cpu-perf
gpu-perf

pypy-perf

4 x 4 8 x 8
16 x 16

32 x 32
64 x 64

128 x 128
256 x 256

512 x 512
1K x 1K

2K x 2K

10 5

10 2

101

Ex
ec

 T
im

e
(s

ec
)

jacobi
cpu-perf
gpu-perf

pypy-perf

8 x 8
16 x 16

32 x 32
64 x 64

128 x 128
256 x 256

512 x 512
1K x 1K

10 3

100

103

Ex
ec

 T
im

e
(s

ec
)

mandelbrot
cpu-perf
gpu-perf

pypy-perf

1K 2K 4K 8K 16K 32K 64K
128K

256K
512K 1M 2M 4M 8M 16M 32M

10 5

10 2

101

Ex
ec

 T
im

e
(s

ec
)

saxpy
cpu-perf
gpu-perf

pypy-perf

8 x 8
16 x 16

32 x 32
64 x 64

128 x 128
256 x 256

512 x 512
1K x 1K

2K x 2K
4K x 4K

10 5

10 2

101

104

Ex
ec

 T
im

e
(s

ec
)

syr2k
cpu-perf
gpu-perf

pypy-perf

1K 2K 4K 8K 16K 32K 64K
128K

256K
512K 1M 2M 4M 8M 16M

10 5

10 2

101

Ex
ec

 T
im

e
(s

ec
)

vadd
cpu-perf
gpu-perf

pypy-perf

Figure 6. Misprediction intervals of ALPyNA Cost Model (shaded blue), an SVM predictor (shaded red), and both (shaded
purple) for 12 loop-intensive benchmarks with varying domain sizes on platform T1. ACM’s domain crossover point is
interpolated from the measured values. Execution time of ALPyNA’s CPU and GPU code is also compared with PyPy execution.
Execution time (y–axis) is plotted on a logarithmic scale.

Benchmark GPU speedup
T1: CPU/GPU
2960/1405MHz

T2: CPU/GPU
3900/1500MHz

T3: CPU/GPU
800/1500 MHz

black-scholes 1.20 – 3.86 1.04 – 2.39 1.40 – 5.60
conv-2d 1.19 – 4.73 1.08 – 2.03 1.48 – 7.02
conway na na 1.48
fbcorr 8.59 – 17.89 3.00 – 7.93 8.84 – 23.97
gemm 2.49 – 8.64 2.15 – 2.57 2.20 – 11.94
gemver 1.23 1.09 na
hilbert 1.55 na 1.28 – 2.38
jacobi na na 1.15
mandelbrot 1.98 – 9.90 1.56 – 4.74 1.96 – 12.81
saxpy na na na
syr2k 2.33 – 223.62 2.47 – 52.60 2.45 – 134.83
vadd na na na

Table 2. Range of ALPyNA GPU speedups across iteration
domain sizes. Some benchmarks have no speedup.

ACMMisprediction Penalty is reported in Figure 5 for
each of the 12 benchmarks on target platform T1. At each do-
main size it shows the platform device (CPU or GPU) selected
by the cost model, along with anymisprediction penalty. The
misprediction penalty is the ratio between runtime on the
selected device and runtime on the optimal device, so 1.0
is optimal. Note the logarithmic x-axis for relevant domain
sizes. ACM delivers similar misprediction penalties for the

benchmarks on T2 and T3, and corresponding mispredic-
tion penalty graphs are available in supplementary online
materials [5].

For all benchmarks and platforms Table 3 shows the geo-
metric mean penalties over all domain sizes and the maxi-
mum penalties. ACM provides entirely accurate predictions
for four benchmarks on T2 and T3 and for three on T1. The
mean penalties for different benchmarks vary from 1.0 (op-
timal) to 1.61, 1.39, and 1.86 for T1, T2, and T3 respectively.
The last row of Table 3 shows the mean penalty and mean
per-benchmark maximum penalty on each platform. The
geometric mean penalty across all our experiments is 1.136.

We observe the SVM mean penalty is worse than ACM on
each platform. Significant worst-case outliers for SVM maxi-
mum penalties contribute to high SVMmean per-benchmark
maximum penalty on each platform. This may indicate limi-
tations in the training set used for SVM classification.

Misprediction Intervals. Figure 6 shows CPU and GPU
benchmark runtimes on T1 with ACM and SVM mispredic-
tion intervals highlighted. Between measured domain sizes
the misprediction is interpolated. ACM delivers similar mis-
prediction intervals for the benchmarks on T2 and T3 [5].
Table 4 shows the relative proportion of each input domain
that is mispredicted. The mean misprediction proportion
across all benchmarks is 0.143. ACM has the same or smaller

10

Pricing Python Parallelism: a Dynamic Language Cost Model for Heterogeneous Platforms Woodstock ’18, June 03–05, 2018, Woodstock, NY

misprediction intervals than the SVM predictor for 5, 6 and
9 of the 12 benchmarks on T1, T2 and T3 respectively.
The ACM misprediction intervals are generally small for

benchmarks with sharply diverging CPU and GPU runtime
curves like conv-2d, gemm, mandelbrot and syr2k. The excep-
tions are black-scholes on T2 and T3, where ACMmispredicts
that the CPU execution will be faster over the initial range
before correctly selecting the GPU at medium to large do-
main sizes. For the benchmarks that have no domain sizes
where the GPU is faster, ACM correctly predicts this at all
domain sizes for gemver and conway, but mispredicts at large
domain sizes for saxpy and vadd.
Comparison with PyPy. Figure 6 also compares PyPy

execution time with ALPyNA CPU and GPU execution times
for each benchmark on platform T1. Both CPU and GPU
code generated by ALPyNA is faster than PyPy across all
domain sizes for 10 benchmarks on T1 and T3, and for 9
benchmarks on T2. For jacobi, PyPy is slower than ALPyNA
CPU execution across all domain sizes on T1, T2 and T3.

For jacobi PyPy is slower than ALPyNA CPU execution at
all domain sizes on T1, T2 and T3. It is faster than ALPyNA
GPU but slower than ALPyNA CPU at the two smallest iter-
ation domain sizes. For syr2k PyPy is slower than ALPyNA’s
CPU code and faster than ALPyNA’s GPU code at the small-
est four iteration domain sizes on all three platforms. The sit-
uation reverses at larger domain sizes where PyPy is slower
than ALPyNA’s GPU code but faster than ALPyNA’s CPU
code. For both jacobi and syr2k, utilising the device chosen
by ACM at each domain size is faster than PyPy.

Loop Nest Characteristics. The benchmarks represent
a range of different loop nests, and we investigate the impact
of these on the cost model.
In embarrassingly parallel loop nests, every loop domi-

nating a statement can safely be executed in parallel: black-
scholes, conway, hilbert jacobi, saxpy and vadd are in this
class. For some of these applications, the data transfer over-
head is so large, relative to the actual computation, that GPU
execution never outperforms CPU execution. This is partic-
ularly noticeable for single loops with tiny loop bodies that
iterate linearly over input arrays. Referring back to Table 1,
we observe that hilbert, jacobi, saxpy and vadd fall into this
category. This is reflected in these benchmarks’ performance
on all three platforms, where CPU execution is optimal across
all domain sizes. For instance, Figure 6 shows that parallel
GPU execution cannot match sequential CPU execution for
these simple embarrassingly parallel benchmarks, since data
transfer overhead is included in total execution time. This in-
terplay between data transfer overhead and GPU parallelism
has motivated the design of ACM; similar ideas are seen in
other cost models as outlined in Section 6.

Partially parallelizable loops have loop-carried dependences
that constrain some loops to be executed sequentially in the
CPython interpreter: con-2d, fbcorr, gemm, gemver, mandel-
brot and syr2k are in this class. For such loops the amount

of parallelism obtained is dependent on the domain sizes of
the parallelizable loops and the amount of work scheduled
on the GPU.

There is no clear difference between the ACM mispredic-
tion penalties and misprediction intervals for embarrasingly
and partially parallelizable loops.

6 Related Work
Execution time prediction has a very long history. Worst
case execution time (WCET) analysis aims to precisely and
conservatively predict absolute runtime by static analysis or
dynamic profiling [37]. To be lightweight ACM uses static
analysis as far as possible. However rather than predicting
absolute runtimes it compares the relative runtimes on a set
of heterogeneous compute platforms.
Cost models, or resource analyses, are commonly used

to predict runtimes in parallel systems, e.g. to inform task
scheduling. Trinder et al present a wide-ranging survey [34],
and using their classification ACM is an abstract relative
parallel cost model, based on heuristic linear equations, and
parameterized by a parallel implementation model of the
underlying hardware.

Static Languages. Loop nests have been widely and suc-
cessfully automatically parallelized in compiled languages,
e.g. [8]. Many auto-parallelizing compilers use a cost model
to determine what to parallelize. Compared with a dynamic
language like Python, compilers for static languages have
far more information about the loop nests.

A rapidly growing body of work studies GPU performance
prediction. For example [22] models standard GPU architec-
tures and, like ACM, derives parameterized mathematical
equations to estimate GPU kernel runtimes. There are a va-
riety of more sophisticated GPU performance prediction
techniques making use of analytical models like [6, 32].

Other approaches rely on the program being written as al-
gorithmic skeletons, e.g. the Grophecy tool [28] predicts GPU
runtime based on CPU runtime. Other predictions of GPU
runtime based on CPU profiling rely on machine learning,
e.g. [2] that builds a regression model for cross-architecture
performance prediction.
Using machine learning rather than derived analytical

models for GPU runtime prediction has become increasingly
common, e.g. [39]. However an empirical comparison with
analytical cost models shows that the analytical models pro-
vide greater accuracy [1]. Analytic models are parameterised
with hardware and program values, and ACM’s dynamic
analytic system determines some of these at runtime.
Currently there is intense interest in automatically exe-

cuting OpenMP loop nests on heterogeneous architectures.
Here, as in other auto-parallelization the importance of aug-
menting static analysis with runtime values is recognised,
e.g. [10]. This approach compiles parallel CPU and GPU code
for the loop nest and uses a staged cost model to select what

11

Woodstock ’18, June 03–05, 2018, Woodstock, NY

Benchmark

T1: CPU/GPU
2960/1405MHz

T2: CPU/GPU
3900/1500MH

T3: CPU/GPU
800/1500 MHz

ACM SVM ACM SVM ACM SVM
mean max mean max mean max mean max mean max mean max

black-scholes 1.16 2.36 1.03 1.40 1.39 2.39 1.05 1.59 1.86 5.59 2.56 5.60
conv-2d 1.07 2.20 1.68 4.73 1.00 1.00 1.27 2.04 1.00 1.00 2.35 7.02
conway 1.01 1.12 1.00 1.00 1.00 1.00 1.00 1.00 1.06 1.47 1.06 1.48
fbcorr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 14.74 23.97
gemm 1.07 1.70 1.91 8.64 1.00 1.39 1.39 2.57 1.00 1.00 1.97 11.95
gemver 1.01 1.22 1.00 1.00 1.01 1.11 1.00 1.00 1.00 1.00 1.01 1.12
hilbert 1.02 1.23 1.05 1.54 1.03 1.29 1.00 1.00 1.04 1.28 1.13 2.39
jacobi 1.12 2.05 1.00 1.00 1.10 2.61 1.00 1.00 1.03 1.41 1.00 1.00
mandelbrot 1.00 1.00 7.10 268.88 1.05 1.55 7.56 245.22 1.08 1.96 7.40 260.04
saxpy 1.56 4.43 1.00 1.00 1.35 3.61 1.00 1.00 1.12 1.73 1.00 1.00
syr2k 1.00 1.00 2.08 47.06 1.09 2.47 1.89 25.96 1.10 2.44 2.21 91.63
vadd 1.61 5.56 1.00 1.00 1.30 5.14 1.00 1.00 1.18 2.45 1.00 1.00
Geo.Mean 1.17 1.73 1.39 3.19 1.13 1.71 1.31 2.48 1.11 1.61 1.61 3.74

Table 3. ACM misprediction penalties for all benchmarks on all platforms: Geometric Mean Penalties across all input sizes,
and Maximum Penalties.

Benchmarks
Misprediction Range

ACM SVM
T1 T2 T3 T1 T2 T3

black-scholes 0.30 0.60 0.60 0.10 0.10 0.90
conv-2d 0.09 0.00 0.00 0.45 0.45 0.54
conway 0.14 0.00 0.14 0.00 0.00 0.14
fbcorr 0.00 0.00 0.00 0.00 0.00 1.0
gemm 0.13 0.00 0.00 0.38 0.38 0.38
gemver 0.08 0.08 0.00 0.00 0.00 0.08
hilbert 0.22 0.11 0.22 0.11 0.00 0.22
jacobi 0.20 0.10 0.10 0.00 0.00 0.00
mandelbrot 0.00 0.13 0.12 0.63 0.63 0.63
saxpy 0.43 0.25 0.25 0.00 0.00 0.00
syr2k 0.00 0.10 0.10 0.30 0.30 0.30
vadd 0.40 0.20 0.2 0.00 0.00 0.00
mean 0.16 0.13 0.14 0.16 0.15 0.35

Table 4. Ratio of mispredicted/correct ranges for all bench-
marks on platforms T1, T2 and T3 using ACM and an SVM
predictor

code to run. ACM is similarly staged, but ALPyNA uses JIT
compilation to dynamically create custom GPU kernels that
are tailored to the exact dependences that arise in each in-
stance of the loop nest. ACM also reflects the idea that the
execution schedule of the loops may change along with the
structure of the kernels.

Speculative parallelization of tightly nested loops in man-
aged language runtimes is an attractive approach to obtain
speed ups [30, 31, 36]. Leung et al [25] attempt to cost po-
tential execution on a GPU compared to a CPU. Extensive
profiling of absolute time required for execution of a Java
bytecode on CPU and GPU is used to arrive at an estimate for
GPU execution time. ACM uses a predictor parameterised
on the hardware characteristics of each device such as fre-
quency, cache sharing and also model runtime bottlenecks
such as starvation effects.

Some systems that target heterogeneous platforms exploit
sophisticated managed language runtimes. For example Tor-
nadoVM operates on annotated loop-intensive Java [11]. It
uses task graphs to express dependencies and selects be-
tween CPU, GPU and FPGA targets. It exhaustively samples
loop execution profiles for all available targets and selects
the best target for future scheduling. ACM and ALPyNA also
exploit Python’s sophisticated managed runtime, but (1) use
an analytical model where TornadoVM uses profiling and (2)
avoid eagerly generating code for all targets. That is, code is
only JIT compiled if ACM identifies the target as the best.

Some recent Dynamic Language compilers dynamically
generate code for heterogeneous compute devices. There
are various approaches to automatically select the most ap-
propriate compute device at runtime for particular program
fragments like methods or loop nests. Hayashi et al [14] and
Kim et al [19] study CPU and GPU execution of Java code and
advocate machine learning for selecting the target platform
for parallel stream API calls. Extracted features for input to
the trained machine learning model include the parallel loop
range, which must be acquired by runtime introspection as
in ACM.

Other researchers have recognized the importance of Python
for end user programming in scientific domains. For example
the Selective Embedded Just-in-Time Specialization (SEJITS)
project [17] enables expert users to embed domain-specific
optimizations for key computational kernels such as ma-
trix algebra. These optimizations are dynamically invoked
and high-performance (typically native C) code is generated
for the compute-intensive portions of the code. In contrast
ALPyNA does not require expert ‘intervention’ to generate
kernels and dynamically selects the execution platform.

12

Pricing Python Parallelism: a Dynamic Language Cost Model for Heterogeneous Platforms Woodstock ’18, June 03–05, 2018, Woodstock, NY

7 Conclusions
This paper presents the design, implementation and evalu-
ation of ACM, the first analytical cost model that supports
the automatic runtime exploitation of GPUs in a dynamic
language. The model is staged and lightweight, and is used
to select between compute devices to effectively parallelize
moderately complex Python loop nests on commodity het-
erogeneous platforms using the ALPyNA framework.

For each instance of a loop nest, ACMdynamically predicts
the relative runtimes on alternative devices so that ALPyNA
can select the fastest. Themodels for the CPython interpreter,
and for JIT compiled CPU execution are relatively standard,
but the GPU model is both novel and elaborate. It accounts
for key costs like data transfer time, and for starvation ef-
fects etc. All of the platform models are parametric in key
characteristics of the platforms, like cache size and sharing,
and warp size on the GPU (Section 3).

We report a systematic evaluation of ACM on three hetero-
geneous platforms using 12 standard loop-intensive Python
benchmarks, and covering a wide range of domain sizes (Sec-
tion 4). The cost model proves to be effective, with small
misprediction ranges (Table 3) and a mean misprediction
penalty of just 13.6% slowdown, relative to optimal, across
all benchmarks (Section 5). The cost model also outperforms
a trained SVM.

Future Work An immediate avenue for future work is to
evaluate the cost model on additional heterogeneous systems.
Currently ACM does not account for the overhead of runtime
compilation. Hence interpretive execution is never selected
over JIT compilation even when it would reduce runtime for
small iteration domains. For frequently executed kernels it
helps that Numba persists generated code in a compilation
cache. We expect it will be relatively easy to extend ACM
to account for runtime compilation overheads, e.g. using
models like [27].

ACM has been designed to be extensible and we envisage
extending ACM as underlying technologies improve. An ex-
tension might model GPU kernel fusion [35] if ALPyNA adds
supports for this. A further extensionmight model vectorized
execution on CPU or other parallel code generation.

References
[1] M. Amarís, R. Y. de Camargo, M. Dyab, A. Goldman, and D. Trystram.

2016. A comparison of GPU execution time prediction using machine
learning and analytical modeling. In NCA. 326–333. https://doi.org/
10.1109/NCA.2016.7778637

[2] N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu. 2015.
Cross-Architecture Performance Prediction (XAPP) Using CPU Code
to Predict GPU Performance. In Proc. MICRO. https://doi.org/10.1145/
2830772.2830780

[3] H. Ardö, C. F. Bolz, and M. Fijałkowski. 2012. Loop-Aware Optimiza-
tions in PyPy’s Tracing JIT. In Proc. DLS. https://doi.org/10.1145/
2384577.2384586

[4] K. Armih, G. Michaelson, and P. Trinder. 2011. Cache Size in a Cost
Model for Heterogeneous Skeletons. In Proc. HLPP. https://doi.org/10.

1145/2034751.2034755
[5] Authors of this paper. 2020. URL to Supplementary Material redacted.

Graphs similar to Fig.5 and 6 for platforms T2 and T3.
[6] S. Baghsorkhi, M. Delahaye, S. Patel, W. Gropp, and W. Hwu. 2010. An

Adaptive Performance Modeling Tool for GPU Architectures. In Proc.
PPoPP. https://doi.org/10.1145/1693453.1693470

[7] E. Belikov, H-W Loidl, G. Michaelson, and P. Trinder. 2012.
Architecture-aware cost modelling for parallel performance porta-
bility. In Software Engineering 2012. Workshopband.

[8] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, and M-Y Wu.
1994. Compiling Fortran 90D/HPF for distributed memory MIMD
computers. J. Parallel and Distrib. Comput. (1994).

[9] B. Catanzaro, M. Garland, and K. Keutzer. 2011. Copperhead: Com-
piling an Embedded Data Parallel Language. SIGPLAN Not. (2011).
https://doi.org/10.1145/2038037.1941562

[10] A. Chikin, J. N. Amaral, K. Ali, and E. Tiotto. 2019. Toward an Analyt-
ical Performance Model to Select between GPU and CPU Execution.
In Proc. IPDPS. https://doi.org/10.1109/IPDPSW.2019.00068

[11] J. Fumero, M. Papadimitriou, F. Zakkak, M. Xekalaki, J. Clarkson, and
C. Kotselidis. 2019. Dynamic Application Reconfiguration on Het-
erogeneous Hardware. In Proc. VEE. https://doi.org/10.1145/3313808.
3313819

[12] J. Fumero, M. Steuwer, L. Stadler, and C. Dubach. 2017. Just-In-Time
GPU Compilation for Interpreted Languages with Partial Evaluation.
In Proc. VEE. https://doi.org/10.1145/3050748.3050761

[13] Design Guide. 2013. Cuda C programming guide. NVIDIA, July (2013).
https://docs.nvidia.com/cuda/archive

[14] A. Hayashi, K. Ishizaki, G. Koblents, and V. Sarkar. 2015. Machine-
Learning-Based Performance Heuristics for Runtime CPU/GPU Selec-
tion. In Proc. PPPJ. https://doi.org/10.1145/2807426.2807429

[15] D. Jacob and J. Singer. 2019. ALPyNA: Acceleration of Loops in Python
for Novel Architectures. In Proc. ARRAY. https://doi.org/10.1145/
3315454.3329956

[16] D. Jacob, P. Trinder, and J. Singer. 2019. Python Programmers Have
GPUs Too: Automatic Python Loop Parallelization with Staged Depen-
dence Analysis. In Proc. DLS. https://doi.org/10.1145/3359619.3359743

[17] S. Kamil, D. Coetzee, and A. Fox. 2011. Bringing parallel performance
to Python with domain-specific selective embedded just-in-time spe-
cialization. In Conf. Python for Scientific Computing (SciPy).

[18] K. Kennedy and J. R. Allen. 2001. Optimizing Compilers for Modern
Architectures: A Dependence-Based Approach. Morgan Kaufmann.

[19] G. Kim, A. Hayashi, V. Sarkar, and G. Juckeland. 2018. Exploration of
Supervised Machine Learning Techniques for Runtime Selection of
CPU vs. GPU Execution in Java Programs. In Proc. WACCPD.

[20] A. Klöckner. 2014. Loo.Py: Transformation-Based Code Generation
for GPUs and CPUs. In Proc. ARRAY. https://doi.org/10.1145/2627373.
2627387

[21] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih.
2012. PyCUDA and PyOpenCL: A scripting-based approach to GPU
run-time code generatio. Parallel Comput. (2012). https://doi.org/10.
1016/j.parco.2011.09.001

[22] K. Kothapalli, R. Mukherjee, M. S. Rehman, S. Patidar, P. J. Narayanan,
and K. Srinathan. 2009. A performance prediction model for the CUDA
GPGPU platform. In Proc. HiPC. https://doi.org/10.1109/HIPC.2009.
5433179

[23] S. K. Lam, A. Pitrou, and S. Seibert. 2015. Numba: A LLVM-based
Python JIT compiler. In Proc. LLVM Compiler Infrastructure in HPC.
https://doi.org/10.1145/2833157.2833162

[24] T. Lengauer and R. Tarjan. 1979. A Fast Algorithm for Finding Dom-
inators in a Flowgraph. ACM Trans. Program. Lang. Syst. (1979).
https://doi.org/10.1145/357062.357071

[25] A. Leung, O. Lhoták, and G. Lashari. 2009. Automatic Parallelization
for Graphics Processing Units. In Proc. PPPJ. https://doi.org/10.1145/
1596655.1596670

13

https://doi.org/10.1109/NCA.2016.7778637
https://doi.org/10.1109/NCA.2016.7778637
https://doi.org/10.1145/2830772.2830780
https://doi.org/10.1145/2830772.2830780
https://doi.org/10.1145/2384577.2384586
https://doi.org/10.1145/2384577.2384586
https://doi.org/10.1145/2034751.2034755
https://doi.org/10.1145/2034751.2034755
https://doi.org/10.1145/1693453.1693470
https://doi.org/10.1145/2038037.1941562
https://doi.org/10.1109/IPDPSW.2019.00068
https://doi.org/10.1145/3313808.3313819
https://doi.org/10.1145/3313808.3313819
https://doi.org/10.1145/3050748.3050761
https://docs.nvidia.com/cuda/archive
https://doi.org/10.1145/2807426.2807429
https://doi.org/10.1145/3315454.3329956
https://doi.org/10.1145/3315454.3329956
https://doi.org/10.1145/3359619.3359743
https://doi.org/10.1145/2627373.2627387
https://doi.org/10.1145/2627373.2627387
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1109/HIPC.2009.5433179
https://doi.org/10.1109/HIPC.2009.5433179
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/357062.357071
https://doi.org/10.1145/1596655.1596670
https://doi.org/10.1145/1596655.1596670

Woodstock ’18, June 03–05, 2018, Woodstock, NY

[26] D. Luebke. 2008. CUDA: Scalable parallel programming for high-
performance scientific computing. In Proc. ISBI. https://doi.org/10.
1109/ISBI.2008.4541126

[27] Gang Luo, Tong Chen, and Hao Yu. 2007. Toward a progress indicator
for program compilation. Software: Practice and Experience (2007).
https://doi.org/10.1002/spe.792

[28] J. Meng, V. Morozov, K. Kumaran, V. Vishwanath, and T. Uram. 2011.
GROPHECY: GPU Performance Projection from CPU Code Skeletons.
In Proc. SC. https://doi.org/10.1145/2063384.2063402

[29] L-N Pouchet, U. Bondhugula, et al. 2020. The polybench benchmarks.
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench.

[30] M. Qunaibit, S. Brunthaler, Y. Na, S. Volckaert, and M. Franz. 2018.
Accelerating Dynamically-Typed Languages on Heterogeneous Plat-
forms Using Guards Optimization. In Proc. ECOOP. https://doi.org/10.
4230/LIPIcs.ECOOP.2018.16

[31] M. Samadi, A. Hormati, J. Lee, and S. Mahlke. 2012. Paragon: Collabo-
rative Speculative Loop Execution on GPU and CPU. In Proc. GPGPU.
https://doi.org/10.1145/2159430.2159438

[32] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. 2012. A Performance Anal-
ysis Framework for Identifying Potential Benefits in GPGPU Applica-
tions. SIGPLAN Not. (2012). https://doi.org/10.1145/2370036.2145819

[33] R. Smith. 2016. The NVIDIA GeForce GTX 1080 & GTX
1070 Founders Editions Review: Kicking Off the FinFET Genera-
tion. https://www.anandtech.com/show/10325/the-nvidia-geforce-
gtx-1080-and-1070-founders-edition-review/4.

[34] P. Trinder, M. Cole, K. Hammond, H-W Loidl, and G. J. Michaelson.
2013. Resource analyses for parallel and distributed coordination.
Concurrency and Computation: Practice and Experience (2013).

[35] G. Wang, Y. Lin, and W. Yi. 2010. Kernel fusion: An effective method
for better power efficiency on multithreaded GPU. In Proc. GreenCom-
CPSCom. https://doi.org/10.1109/GreenCom-CPSCom.2010.102

[36] Z. Wang, D. Powell, B. Franke, and M. O’Boyle. 2014. Exploitation of
GPUs for the Parallelisation of Probably Parallel Legacy Code. In Proc.
CC.

[37] R. Wilhelm, J Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, et al. 2008. The worst-
case execution-time problem—overview of methods and survey of
tools. ACM TECS (2008).

[38] M. Wolfe and U. Banerjee. 1987. Data dependence and its application
to parallel processing. Proc. IJPP (1987). https://doi.org/10.1007/
BF01379099

[39] G.Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, andD. Chiou. 2015.
GPGPU performance and power estimation using machine learning.
In HPCA. 564–576. https://doi.org/10.1109/HPCA.2015.7056063

14

https://doi.org/10.1109/ISBI.2008.4541126
https://doi.org/10.1109/ISBI.2008.4541126
https://doi.org/10.1002/spe.792
https://doi.org/10.1145/2063384.2063402
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench
https://doi.org/10.4230/LIPIcs.ECOOP.2018.16
https://doi.org/10.4230/LIPIcs.ECOOP.2018.16
https://doi.org/10.1145/2159430.2159438
https://doi.org/10.1145/2370036.2145819
https://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/4
https://www.anandtech.com/show/10325/the-nvidia-geforce-gtx-1080-and-1070-founders-edition-review/4
https://doi.org/10.1109/GreenCom-CPSCom.2010.102
https://doi.org/10.1007/BF01379099
https://doi.org/10.1007/BF01379099
https://doi.org/10.1109/HPCA.2015.7056063

	Abstract
	1 Introduction
	2 Parallelizing Python Loops with ALPyNA
	2.1 Runtime Dependence Analysis
	2.2 ALPyNA System Architecture
	2.3 Numba Compiler
	2.4 GPGPU Programming Model

	3 ALPyNA Cost Model
	3.1 Modelling Interpreter Execution
	3.2 Modelling JIT Compiled CPU Execution
	3.3 Modelling GPU Execution
	3.4 Calibrating ACM
	3.5 ALPyNA Implementation

	4 Experimental Setup
	4.1 Benchmarks
	4.2 Hardware Platforms
	4.3 ACM Usage
	4.4 Comparative Baselines

	5 Evaluation
	6 Related Work
	7 Conclusions
	References

