Send Statement Considered Harmful,
or High Level Coordination Constructs

Phil Trinder

School of Mathematical and Computer Sciences,
Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K.
trinder@macs.hw.ac.uk

Executive Summary

Engineering global or ubiquitous software requires the programmer to specify
and reason about the coordination of computations on large-scale dynamic net-
works. A key part of successful software engineering is to select a language at
the appropriate level of abstraction. Currently, while computation languages are
well-developed and available at a range of abstraction levels, together with cal-
culi for reasoning about them, coordination is less well developed. Almost all
systems are engineered using low level coordination, e.g. using individual sends
and receives, analogous to programming with GOTOs. Moreover, only low level
calculi are available to support reasoning about coordination. For example the 7
and ambient calculi only support reasoning at the level of individual operations,
e.g. send and receive. Such low level reasoning requires considerable effort, being
analogous to reasoning about computation at the level of GOTOs.

The challenge is to develop programming languages with powerful yet high
level coordination constructs for global ubiquitous systems (GUS), supported
by effective implementations and high level reasoning. Some high level coordina-
tion constructs already exist e.g. algorithmic skeletons, but additional constructs
are required to address the coordination requirements of global ubiquitous com-
puting. Higher level coordination reasoning will facilitate the construction of
dependable GUS, and example high level coordination identities are sketched in
section 4 below.

The challenge posed by developing an appropriate level of coordination ab-
straction is of similar scale to that posed by control abstraction in the 1960s,
and data abstraction in the 1980s and 1990s. The new coordination constructs
and implementations will form a bridge between two current grand challenges:
enabling the calculi developed in the Science for Global Ubiquitous Computing
(GC2)to be applied to the practical construction of Ubiquitous Systems (GC4).

Expected advances: Within 5 years we expect to see the design of new high
level coordination constructs for GUS. Some of these designs will be imple-
mented, possibly as extensions of existing programming languages. Some GUS
demonstrators will be constructed using the new constructs and evaluated in
comparison to existing lower level technologies. High level coordination calculi
will be developed, possibly as extensions of existing calculi, and used to prove
properties of programs written with the new constructs.

1 Introduction

Constructing correct and efficient sequential programming is already a chal-
lenging task. Classical parallel, distributed or mobile programming introduces
the additional challenge of coordinating computations correctly and effectively.
Coordination entails specifying aspects such as process management, commu-
nication, synchronisation, resource discovery, and mobility between locations.
Global or ubiquitous systems (GUS) introduce additional coordination aspects
such as self configuration on dynamic networks and sets of locations.

Five decades of Computer Science have demonstrated that a key part of
successful software engineering is to select a language at the appropriate level
of abstraction for the task in hand: we wouldn’t use an assembly language to
build a theorem prover. Computation languages are well-developed and available
at a range of levels of abstraction, e.g assemblers, procedural, object-oriented,
functional and constraint-logic programming languages. Moreover there are well-
developed calculi for specifying and reasoning about computations at different
levels of abstraction, e.g. weakest precondition for procedural languages, or equa-
tional reasoning for functional languages.

In contrast to the range of computation abstractions available, currently
there are only low and intermediate level coordination abstractions, and a lack
of appropriate high level coordination abstractions. Moreover existing abstrac-
tions are designed to coordinate parallel, distributed and mobile computations,
and global ubiquitous computing requires additional coordination, as discussed
below.

2 Low and Intermediate Level Coordination

Currently most parallel, distributed and mobile systems are constructed using
low level coordination constructs like Sockets, CORBA, OGSA [7] or Globus [6].
There are exceptions, e.g. the MPI library contains some algorithmic skele-
tons [5]. Low level coordination is very powerful, enabling the programmer to
specify arbitrary coordination, and may be essential for some applications.

Constructing software using low level, and to a lesser extent, intermediate
level, coordination constructs is highly undesirable for the majority of appli-
cations. For example specifying communication using unstructured sends and
receives is analogous to specifying computation using unstructured GOTO state-
ments. Moreover using low level constructs places a significant burden on the
programmer who must explicitly manage many, often relatively unimportant, co-
ordination details. This in turn encourages programmers to restrict themselves
to static, simple or regular coordination. It is hard to reason about programs
with low level coordination, not least because of the level of detail. Thus it is
hard to be sure that the program is correct, and hence to produce a dependable
GUS.

3 High Level Coordination for GUS

Some high level constructs have been developed for parallel and distributed
coordination.

— Remote procedure calls (RPCs), or remote method invocation, abstract over
a send;compute;receive sequence between client and server.

— Algorithmic skeletons are at a higher level, offering a fixed set of higher
order functions, or computational patterns, that combine computation and
coordination [3]. For example a parallel map skeleton, parMap, typically
abstracts over an arbitrary-length sequence of RPCs to different locations.

— Evaluation strategies allow the compositional and higher-order specification
of coordination [9]. Not only can almost all algorithmic skeletons be defined,
but also application-specific coordination.

— Erlang behaviours abstract over fault tolerant distributed coordination, e.g.
the supervisor behaviour is a declarative encapsulation of process monitoring
and recovery [1]. We write A sup (B,C) p to denote process A monitoring
processes B and C using recovery policy p.

Global ubiquitous computing requires additional coordination over those
found in a typical parallel, distributed and mobile system. Dynamic networks
and sets of locations, and mobile computations and devices require autonomy
or self configuration. Trust, security and privacy must be ensured. The scale
and duration of GUS will require the automatic management of many of these
coordination aspects, and yet it should be possible to manage key aspects of a
GUS.

Engineering scalable, dependable and predictable GUS will be facilitated by
languages with powerful yet high level coordination constructs, supported by
effective trusted and reliable implementations. Such languages will require so-
phisticated implementation technology to automatically manage low level coor-
dination details. This is a significant challenge: the high-performance community
has demonstrated the range and severity of issues with constructing systems that
effectively manage even the limited coordination required by parallelism on rel-
atively simple architectures [4].

4 Reasoning about Coordination

Existing calculi like the 7 and ambient calculi [8,2] enable reasoning about co-
ordination properties only at a low level, e.g. individual sends and receives. Rea-
soning at this level is tedious, and analogous to reasoning about computation
properties at the level of GOTOs.

The high level coordination constructs should have simple semantics to en-
able higher level reasoning. High level coordination calculi will include identities
familiar from lower level calculi. For example if =, denotes process network
equivalence, and f o|| g denotes parallel function composition where a stream of
results from g are piped to f, we have

foll(gollh) =5 (foll g) ol h

More importantly the calculi will contain higher level coordination identities, for
example the following process network equivalence for the parMap algorithmic
skeleton from section 3:

parMap(f ol| g) =p (parMap f) o|| (parMap g)

Let us define recovery equivalence, =,, as process network equivalence after
recovery from the failure of any process. If processes A, B and C don’t interact,
and allis the recovery policy that kills all supervised processes, then the following
identity holds for the Erlang supervisor behaviour from section 3:

A sup(B,C) all =, A sup(C, B) all

Such high level coordination identities make reasoning about coordination
properties far easier. For example it will be far easier to demonstrate that two
programs have equivalent process networks. Likewise coordination properties of
programs can be relatively easily transformed, e.g. to optimise process place-
ment, and analysed e.g. to identify potentially mobile computations. As with
reasoning about computation properties, there is the potential to build tools to
automate the reasoning about coordination.

5 Attacking the Challenge

The challenge of developing usable high level coordination abstractions for GUS
can be addressed in the following strands.

— A. Develop new high level coordination constructs to abstract over GUS co-
ordination aspects, including mobile computation, fault tolerance, trust/ se-
curity /privacy, self configuration, information provinence. Existing abstrac-
tions will guide the design of constructs for some aspects, but there are
currently no high level abstractions for other aspects. Indeed it may not be
possible to construct useful high level abstractions for some aspects. The
constructs must be both powerful enough to be useful and efficiently imple-
mentable.

— B. Developing high level coordination calculi. High level coordination rea-
soning requires coordination calculi over the high level constructs. The high
level calculi may be entirely new, or extensions of existing calculi. This strand
should interact with strand A, e.g. the high level constructs should be de-
signed to preserve useful identities.

— C. Construct effective implementations. The implementations must auto-
matically manage the low level coordination details abstracted in the high
level constructs. This will entail both static guarantees of properties, e.g. pri-
vacy or security, and also dynamic management of the sets of computations,
locations and network connections of a GUS. The implementation must be
effective, dependable and secure.

— D. Tools and methodologies to support the the engineering of substantial
GUS may be developed in the longer term.

References

1. J.L. Armstrong, S.R. Virding, M.C. Williams, and C. Wikstrom. Concurrent Pro-
gramming in Erlang. Prentice-Hall, 2nd edition, 1996.

2. L. Cardelli. Mobility and Security. In Proc. NATO Advanced Study Institute on
Foundations of secure Computation, pages 3—-37, Marktoberdorf, Germany, August
1999.

3. M.I. Cole. Algorithmic Skeletons: Structured Management of Parallel Computa-
tion. PhD thesis, University of Edinburgh, 1988. Also published in book form by
Pittman/MIT, 1989.

4. M.I. Cole. Bringing skeletons out of the closet. Parallel Computing, 2004. To
Appear.

5. Message Passing Interface Forum. Mpi: A message passing intrface standard. In-
ternational Journal of Supercomputer Application, 8(3-4):165-414, 1994.

6. I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kufmann, 1999.

7. 1. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. The physiology of
the grid. an open grid services architecture for distributed systems integra-
tion. Open Grid Service Infrastructure WG, Global Grid Forum, June 2002.
<URL:http: ://www.globus.org/research/papers/ogsa.pdf>.

8. R. Milner. Communicating and Mobile Systems: the w-Calculus. Cambridge Uni-
versity Press, May 1999.

9. P.W. Trinder, K. Hammond, H-W Loidl, and S.L. Peyton Jones. Algorithm +
Strategy = Parallelism. Journal of Functional Programming, 8(1):23-60, January
1998.

