
Easy Composition of Symbolic Computation

Software using SCSCP:

A New Lingua Franca

for Symbolic Computation

S. Linton a, K. Hammond a, A. Konovalov a, C. Brown a,
P.W. Trinder b, H.-W. Loidl b, P. Horn c, D. Roozemond d

aSchool of Computer Science, University of St Andrews, St Andrews, Fife, KY16 9SX, Scotland

bSchool of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, EH14 4AS, Scotland

cFachbereich Mathematik, Universität Kassel, Heinrich Plett Straße 40, 34132 Kassel, Germany

dSchool of Mathematics and Statistics, Carslaw F07, University of Sydney NSW 2006 Australia

Abstract

We present the results of the first four years of the European research project SCIEnce – Symbolic
Computation Infrastructure in Europe (http://www.symbolic-computation.org), which aims to
provide key infrastructure for symbolic computation research. A primary outcome of the project
is that we have developed a new way of combining computer algebra systems using the Symbolic
Computation Software Composability Protocol (SCSCP), in which both protocol messages and
data are encoded in the OpenMath format. We describe the SCSCP middleware and APIs,
outline implementations for various Computer Algebra Systems (CAS), and show how SCSCP-
compliant components may be combined to solve scientific problems that cannot be solved
within a single CAS, or may be organised into a system for distributed parallel computations.
Additionally, we present several domain-specific parallel skeletons that capture commonly used
symbolic computations. To ease use and to maximise inter-operability, these skeletons themselves
are provided as SCSCP services and take SCSCP services as arguments.

Key words: OpenMath, SCSCP, interface, coordination, parallelism, skeletons, SymGrid-Par,
CASH

? “SCIEnce – Symbolic Computation Infrastructure in Europe” (www.symbolic-computation.org) is
supported by EU FP6 grant RII3-CT-2005-026133.

Preprint submitted to Elsevier 2 June 2011

1. Introduction

A key requirement in symbolic computation is to efficiently combine computer algebra
systems (CAS) in order to collectively solve complex problems that cannot be easily
addressed by any single system on its own. In addition, there is often a requirement to
have a CAS as a back-end for mathematical databases and web/grid/cloud services, or to
combine multiple instances of the same or different CAS as part of a parallel computation.

There are many possible combinations of CAS that are both useful and valuable. Ex-
amples include: GAP and Maple in CHEVIE for handling generic character tables (Geck
et al., 1996); Maple and the PVS theorem prover to obtain more reliable results (Adams
et al., 2001); GAP and nauty in GRAPE for fast graph automorphisms (Soicher, 2004);
and GAP as a service for the ECLiPSe constraint programming system for symmetry-
breaking in search (Gent et al., 2003). In all these cases, interfacing to a CAS that
already possesses the required functionality is far less work than re-implementing the
functionality in the “home” system.

Even within a single CAS, users may need to combine local and remote instances of
the CAS for a number of reasons, including: accessing remote system features that are
not supported in the local operating system; accessing large (and changing) databases;
remote access to the latest development version of the CAS or to a configuration at
the user’s home institution; licensing restrictions permitting only online services, etc. A
common quick solution is to cut-and-paste between telnet sessions and web browsers. It
would, however, be both more efficient and more flexible to combine local and remote
computations so that remotely obtained results can be plugged immediately into the
locally running CAS.

CAS authors have attempted to address these user needs in various ways. For example,
a CAS may write input files for another program and invoke it; the other program will
then write input to the CAS in a file and exit; and finally, the CAS will read this input and
return a result. This works, but has fairly serious limitations. A better setup might allow
the CAS to interact with other programs while they run and provide a separate interface
to each possible external system. The SAGE system (Stein et al., 2010) is essentially built
around this approach. However, achieving this is a major programming challenge, and
an interface will break as soon as the other system changes its I/O format, for example.

Furthermore, individual CPU cores have essentially stopped increasing in power, but
multicore systems are becoming more numerous. A typical workstation now has 4 to 8
cores, and this is only the beginning of the multicore/manycore revolution (Held et al.,
2006). If we want to solve larger problems in future, it is essential for us to exploit
multiple processors in a way that gives good parallelism for minimal programmer/user
effort.

The EU Framework 6 SCIEnce project “SCIEnce – Symbolic Computation Infrastruc-
ture in Europe” is a major 6-year project that brings together CAS developers and experts
in computational algebra, OpenMath, and parallel computations. It aims to address the
problems outlined above by designing a common standard interface that may be used for
combining computer algebra systems (and any other compatible software). Our vision is
an easy, robust and reliable way for users to create and consume services implemented
in any compatible system, ranging from generic services (e.g. evaluation of a string or an
OpenMath object) to specialised ones (e.g. a lookup in a specific database; or executing a
certain procedure). We have developed a simple lightweight XML-based remote procedure

2

Fig. 1. SCSCP framework

call protocol called SCSCP (Symbolic Computation Software Composability Protocol) in
which both data and instructions are represented as OpenMath objects. SCSCP is now
implemented in several computer algebra systems (see Section 2.2 for an overview) and
has APIs that make it easy to add SCSCP interfaces to more systems and to develop
SCSCP middleware that can translate SCSCP services to a variety of possible clients (see
Figure 1; arrows correspond to the SCSCP communication). The full specification of SC-
SCP can be found online at http://www.symbolic-computation.org/scscp. Another
important outcome of the project is the development of middleware for parallel compu-
tations, SymGrid-Par, which is capable of orchestrating SCSCP-compliant systems into
a heterogeneous system for distributed parallel computations (Section 6.4).

This paper extends our earlier ISSAC 2010 paper (Linton et al., 2010). One of its
major enhancements is the presentation of the SCSCP API for Haskell and CASH (the
Computer Algebra SHell) as an example of an application that can be built on this API.
The main contributions of this paper are as follows:

(1) We show how the SCSCP interface can be used to connect different computer al-
gebra systems. Specifically, we demonstrate this approach using several different
examples that collectively show the flexibility of the SCSCP approach and demon-
strate some SCSCP-specific features and benefits.

(2) We introduce CASH, the Computer Algebra SHell, and show how it can be used to
integrate Haskell applications and a CAS, giving examples that show how CASH
can be used to call a CAS from Haskell and vice-versa.

(3) We show how to use small-scale parallelism from the CASH command-line to pro-
totype parallel code.

(4) We show how to define domain-specific, large-scale parallel skeletons for computer
algebra in the Eden dialect of Haskell. In particular, we describe new multiple
homomorphic images and orbit skeletons.

(5) We expose these parallel skeletons as SymGrid-Par services, that can be called
directly both from the CASH shell and from within the shell of an SCSCP-compliant
computer algebra client.

3

We give an overview of these tools below. First, we briefly characterise the underpin-
ning OpenMath data encoding and the SCSCP protocol (Section 2). Then we outline
SCSCP interfaces in two different systems, one open source and one commercial, and
provide references for existing implementations in other systems (Section 3). After that
we describe several examples that demonstrate the flexibility of the SCSCP approach and
some SCSCP specific features and benefits (Section 4). In Section 5, we introduce CASH,
the Computer Algebra SHell: an interactive API for calling computer algebra systems
from Haskell, and vice-versa. We introduce several SCSCP-compliant tools for parallel
computations in various environments (Section 6) and present domain-specific, parallel
skeletons, building on the SCSCP interface (Section 7), before concluding (Section 8).

2. A Computer Algebra Lingua Franca

In order to connect different CAS it is necessary to speak a common language, i.e.,
to agree on a common way of marshalling mathematical semantics. The obvious choice
is OpenMath (Buswell et al., 2004), a well-established standard that has previously been
used in similar contexts (Caprotti and Cohen, 1999; Caprotti et al., 2000). In order to
actually use this in practice, it is also necessary to agree on a suitable communication
protocol that allows for, e.g., executing computations on a remote system or defining
remote objects. The protocol developed in the SCIEnce project is called SCSCP, the
Symbolic Computation Software Composability Protocol (Freundt et al., 2009c).

2.1. OpenMath

OpenMath is a flexible language for describing mathematical objects. The entire Open-
Math semantics is encapsulated in terms of symbols which are defined in Content Dictio-
naries (CDs) and which are strictly separated from the language itself. So, for example,
the “normal” addition operation falls under the name plus in the arith1 CD. OpenMath
was designed to be efficiently used by computers, and may be represented using several
different encodings. The XML representation is the most commonly used, but there also
exists a binary representation and a more human-readable representation called Popcorn
(Horn and Roozemond, 2009). A large number of CDs are available at the OpenMath
website http://www.openmath.org, such as polyd1 for multivariate polynomials, group4
for cosets and conjugacy classes, etc.

2.2. SCSCP

Figure 2 classifies the OpenMath symbols that have been defined for SCSCP into several
groups (Freundt et al., 2009a). SCSCP is built around three types of messages that send
remote procedure calls and either return the result or report a failure. Messages have
identifiers, and may carry additional information, such as call options and information
messages or standard error reports. Special procedures are used to discover information
about the procedures that are provided by the SCSCP server, and these are supported
by special symbols. SCSCP also allows remote objects to be handled by reference so that
clients may work with objects of a type that do not exist in their own system at all (see
the example in Section 4.2). For example, to represent the number of conjugacy classes
of a group only a knowledge of integers is required, not a knowledge of groups.

4

Fig. 2. Symbols defined in OpenMath content dictionaries for SCSCP

The SCSCP protocol is socket-based and by default uses TCP/IP port number 26133,
as assigned by the Internet Assigned Numbers Authority (IANA). It has been described
in earlier publications (Freundt et al., 2008, 2009b; Horn and Roozemond, 2009) and its
specification (version 1.3 at the moment of writing) is freely available online (Freundt
et al., 2009c). The advantage of supporting SCSCP is that any system that implements
SCSCP can immediately connect to all other SCSCP-compliant systems, and may be
used as the building block for more advanced cluster and grid/cloud infrastructures (see
Section 6). This avoids the need for special cases and minimizes repeated effort.

3. Building blocks for CAS composition

In this section, we briefly describe the implementation of the SCSCP protocol for two
systems: GAP (GAP Group, 2008) and MuPAD (SciFace Software, 2007). The main aim
of this section is to show that SCSCP is a standard that may be implemented in different
ways by different CAS, taking into account their own design principles.

3.1. GAP

In the GAP system, support for OpenMath and SCSCP is implemented in two GAP
packages: OpenMath and SCSCP. The OpenMath package (Costantini et al., 2010) is an
OpenMath phrasebook for GAP: it converts OpenMath to GAP and vice versa, and
provides a framework that users may extend with their own private content dictionaries.
The SCSCP package (Konovalov and Linton, 2010b) implements SCSCP, using the GAP
packages OpenMath, IO (Neunhöffer, 2010) and GAPDoc (Lübeck and Neunhöffer, 2008).
It ensures SCSCP communication using three types of messages as outlined on Figure 2
and allows to run GAP as either an SCSCP server or an SCSCP client. The server may
be started interactively from the GAP session or as a GAP daemon. When the server
accepts a connection from the client, it starts the “accept-evaluate-return” loop, which:

(1) accepts the "procedure call" message and looks up the appropriate GAP function
(which should be declared by the service provider as an SCSCP procedure);

5

(2) evaluates the result (or produces a side-effect); and
(3) either replies with the "procedure completed" message or returns an error in the

"procedure terminated" message.
The SCSCP client performs the following basic actions:

(1) establishes connection with the server;
(2) sends the "procedure call" message to the server;
(3) either waits for the completion of the procedure call (blocking version) or checks

its completion later (non-blocking version); and
(4) fetches the result from a "procedure completed" message or enters the break loop

in the case of a "procedure terminated" message.
We have used this basic functionality to build a set of instructions for parallel computa-
tions using the SCSCP framework. This allows the user to send several procedure calls
in parallel and then collect all results, or to pick up the first available result. We have
also implemented the master-worker parallel skeleton in the same way (see Section 6.2).

A demo SCSCP server can be tried at chrystal.mcs.st-andrews.ac.uk, port 26133.
It runs the development version of the GAP system plus a selection of public GAP pack-
ages. Further details, downloads, and a manual with examples are available online (Kono-
valov and Linton, 2010b).

3.2. MuPAD

There are two main aspects to the MuPAD SCSCP support: the MuPAD OpenMath
package (Horn, 2010) and the SCSCP server wrapper for MuPAD. The former offers the
ability to parse, generate, and handle OpenMath in MuPAD and to consume SCSCP
services, the latter provides access to MuPAD’s mathematical abilities as an SCSCP
service. The current MuPAD end-user license agreement, however, does not generally
allow providing MuPAD computational facilities over the network. We therefore focus on
the open-source OpenMath package, which can be freely downloaded (Horn, 2010).

OpenMath Parsing and Generation: Two functions are available to convert an OpenMath
XML string into a tree of MuPAD OpenMath:: objects: OpenMath::parse(str) which
parses the string str, and OpenMath::parseFile(fname) which reads and parses the
file named fname. Conversely, a MuPAD expression can be converted into its OpenMath
representation using generate::OpenMath. Note that it is not necessary to directly use
OpenMath in MuPAD if the SCSCP connection described below is used: the package
takes care of marshaling and unmarshaling in a way that is completely transparent to
the MuPAD user.

SCSCP Client Connection: The call s := SCSCP(host, port) creates an SCSCP con-
nection object that can subsequently be used to send commands to the SCSCP server.
Note that the actual connection is initiated on construction by starting the Java program
WUPSI (Horn and Roozemond, 2010a) which is bundled with the OpenMath package. This
uses an asynchronous message-exchange mode, and can therefore be used to introduce
background computations. The command s::compute(. . .) can then be used to actually
compute something on the server (s(. . .) is equivalent). Note that it may be necessary to
wrap the parameter in hold(...) to prevent premature evaluation on the client side. The
connection may also be used asynchronously via the send and retrieve commands: a :=
s::send(...) returns an integer which may be used to identify the computation. The

6

CAS
or

C/C++/
Haskell/

Java/etc.
application

SCSCP
server

Built-in
OpenMath

Tools
or

OpenMath
and

SCSCP
API

Web
appli-
cation

Web
service
client

CAS 2

SCSCP
client

Grid or
cloud

middle-
ware

Web
service
client

Grid
or cloud
middle-

ware

SCSCP
client

SCSCP messages

SCSCP messages

SCSCP
messages

Interrupt signal

Interrupt signal

HTTP
or SOAP
requests

Interrupt
signal

Open
Math
tools

CAS 3

Web
service
client

Open
Math
and

SCSCP
API

C/C++/
Haskell/
Java/etc.

appli-
cation

SCSCP
client

Open
Math
and

SCSCP
API

HTTP
or SOAP
requests

HTTP
or SOAP
requests

Interrupt signal

SCSCP messages

W
eb

 s
er

vi
ce

s
se

rv
er

Se
rv

er
 b

ac
k-

en
d

(S
C

SC
P

cl
ie

nt
)

Fig. 3. Combining software applications using SCSCP

result may subsequently be retrieved using s::retrieve(a). Normally, retrieve will
return FAIL if the result of the computation is not yet computed, but a second parameter
may be supplied in order to force the call to block.

3.3. Other Implementations of SCSCP

The SCIEnce project has produced a Java library (Horn and Roozemond, 2010b)
that acts as a reference implementation for systems developers who would like to imple-
ment SCSCP for their own systems. This library is freely available under the Apache2
license. In addition to GAP and MuPAD, SCSCP has also been implemented in two
other systems participating in the SCIEnce project: KANT (Freundt and Lesseni, 2010)
and Maple (Maplesoft, 2010) (the latter implementation is currently a research proto-
type and not available in the Maple release). There are third-party implementations for
TRIP (Gastineau, 2009), Magma (Cannon and Bosma, 2008) (as a wrapper application,
by D. Roozemond), and Macaulay2 (Grayson and Stillman, 2010) (as Macaulay2 pack-
ages OpenMath and SCSCP by D. Roozemond), a prototype SCSCP client for the Coq
proof assistant (Komendantsky et al., 2010) and a prototype SCSCP client for the Math-
ematica system by P. Horn. As intended, SCSCP thus allows a large range of CAS and
other software applications to interact in various contexts as described on Figure 3.

4. Examples of CAS-to-CAS communication

In this section we provide a number of examples which demonstrate the features
and benefits of SCSCP, such as flexible design, composition of different CAS, working

7

Fig. 4. Three approaches to group identification service

with remote objects and speeding up computations. More examples can be found in
e.g. (Freundt et al., 2009b, 2008) and on the web sites for the individual systems or their
SCSCP extensions.

4.1. GAP

In order to illustrate the flexibility of our approach, we will describe three possible
ways to set up GAP SCSCP server as outlined in 3.1 to provide different procedures for
the same kind of problems.

The GAP Small Groups Library (Besche et al., 2008) contains all groups of orders
up to 2000, except groups of order 1024. The GAP command SmallGroup(n,i) returns
the i-th group of order n. Moreover, for any group G of order 1 ≤ |G| ≤ 2000 where
|G| 6∈ {512, 1024}, GAP can determine its library number : the pair [n,i] such that G
is isomorphic to SmallGroup(n,i). This is in particular the most efficient way to check
whether two groups of “small” order are isomorphic or not. Let us consider now how
we can provide a group identification service with SCSCP. When designing an SCSCP
procedure to identify small groups, we first need to decide how the client should transmit
a group to the server. Figure 4 describes three possible scenarios (there may be more),
and for each of those we will outline simple steps needed for the design and provision of
the SCSCP services within the provided framework.

Case 1. A client supports permutation groups (for example, a client is a minimalistic
GAP installation without the Small Groups Library). In this case the conversion of the
group to and from OpenMath will be performed straightforwardly, so that the service
provider only needs to declare the function IdGroup as an SCSCP procedure (under the
same or different name) before starting the server:

gap> InstallSCSCPprocedure("IdGroup",IdGroup);

InstallSCSCPprocedure : IdGroup installed.

The client may then call this, obtaining a record with the result in its object component:

8

gap> EvaluateBySCSCP("IdGroup",[SymmetricGroup(6)],"scscp.st-and.ac.uk",26133);

rec(attributes := [["call_id", "hp0SE18S"]], object := [720, 763])

Case 2. A client supports matrices, but not matrix groups. In this case, the service
provider may declare the SCSCP procedure IdGroupByGens which constructs a group
generated by its arguments and return its library number:

gap> IdGroupByGens := gens -> IdGroup(Group(gens));;

gap> InstallSCSCPprocedure("IdGroupByGens",IdGroupByGens);

InstallSCSCPprocedure : IdGroupByGens installed.

Note that validity of any input and the applicability of the IdGroup method to the
constructed group will be automatically checked by GAP during the execution of the
procedure on the SCSCP server, so there is no need to add such checks to this procedure
(though they may be added to produce more a informative error message).

Case 3. A client supports groups in some specialised representation (for example, groups
given by pc-presentation in GAP). Indeed, for groups of order 512 the Small Groups Li-
brary contains all 10494213 non-isomorphic groups of this order and allows the user to
retrieve any group by its library number, but it does not provide an identification fa-
cility. However, the GAP package ANUPQ (O’Brien et al., 2006) provides a function
IdStandardPresented512Group that performs the latter task. Because the ANUPQ
package only works in a UNIX environment it is useful to design an SCSCP service
for identification of groups of order 512 that can be called from within GAP sessions
running on other platforms (note that the client version of the SCSCP package for GAP
does work under Windows). Now the problem reduces to the encoding of such a group
in OpenMath. Should it, for example, be converted into a permutation representation,
which can be encoded using existing content dictionaries or should we develop a new
content dictionary for groups in such a representation? Luckily, the SCSCP protocol pro-
vides enough freedom for the user to select his/her own data representation. Since we
are interfacing between two copies of the GAP system, we are free to use a GAP-specific
data format, namely the pcgs code, an integer that describes the polycyclic generating
sequence (pcgs) of the group, to pass the data to the server (see the GAP manual and
(Besche and Eick, 1999) for more details).

First we create a function that takes the pcgs code of a group of order 512 and returns
the number of this group in the GAP Small Groups library and declare it as an SCSCP
procedure with the same name:

gap> IdGroup512 := function(code)

> local G, F, H;

> G := PcGroupCode(code, 512);

> F := PqStandardPresentation(G);

> H := PcGroupFpGroup(F);

> return IdStandardPresented512Group(H);

> end;;

gap> InstallSCSCPprocedure("IdGroup512",IdGroup512);

InstallSCSCPprocedure : IdGroup512 installed.

For convenience, the client may be supplied with a function that is specialised to use the
correct server port, and which checks that the transmitted group is indeed of order 512:

9

gap> IdGroup512Remote:=function(G)

> local code, result;

> if Size(G)<>512 then Error("|G|<>512\n");fi;

> code := CodePcGroup(G);

> result := EvaluateBySCSCP("IdGroup512",[code],"scscp.st-and.ac.uk",26133);

> return result.object;

> end;;

Now the call to IdGroup512Remote returns the result in the standard IdGroup notation:

gap> IdGroup512Remote(DihedralGroup(512));

[512, 2042]

4.2. GAP and Macaulay2

We now consider interaction between GAP and Macaulay2 (Grayson and Stillman,
2010). Macaulay2 is “a software system devoted to supporting research in algebraic geom-
etry and commutative algebra,” that is particularly well known for its efficient procedures
for Gröbner bases. We have implemented OpenMath and the SCSCP protocol as pack-
ages in the Macaulay2 system, and they have been available in the stable branch since
late 2009. All support for OpenMath symbols was implemented directly in the Macaulay2
language, to allow for easy maintenance and extensibility. Macaulay2 is fully SCSCP 1.3
compatible and can act both as a server and as a client. The server is multithreaded
so it can serve many clients at the same time, and supports storing and retrieving of
remote objects. The client was designed in such a way as to disclose remote computation
using SCSCP with minimal interaction from the user. It supports convenient creation
and handling of remote objects, as demonstrated below.

An example of a GAP client calling a Macaulay2 server for the Gröbner basis computa-
tion, has been described before (Freundt et al., 2008). Although this 2008 implementation
used a prototype wrapper implementation of an SCSCP server for Macaulay2 — rather
than the full internal implementation that we have now — it nicely demonstrates the
possible gain of connecting computer algebra systems using SCSCP.

Below we present an example (produced using the current implementation) of a
Macaulay2 SCSCP client calling a remote GAP server. We assume the GAP server has
been started (it could even be set up by another GAP expert rather than the Macaulay2
user who may be unfamiliar with GAP). We present only the Macaulay2 side of the ex-
ample in what follows. First, we load the OpenMath and SCSCP packages and establish
a connection to the GAP server that accepts and evaluates OpenMath objects.

i1 : loadPackage "SCSCP"; loadPackage "OpenMath";

i3 : GAP = newConnection "127.0.0.1"

o3 = SCSCP Connection to GAP (4.dev) on scscp.st-and.ac.uk:26133

o3 : SCSCPConnection

We demonstrate the conversion of an arithmetic operation to OpenMath syntax (note
the abbreviated form Macaulay2 uses to improve legibility of XML expressions), and
evaluate that expression in GAP.

10

i4 : openMath 1+2

o4 = <OMA

<OMS cd="arith1" name="plus"

<OMI "1"

<OMI "2"

o4 : XMLnode

i5 : GAP <== openMath 1 + 2

o5 = 3

We then create two matrices in Macaulay2 (suppressing the output of the creation of the
second one), and create a remote object G in GAP representing the group they generate.

i6 : m1 = id_(QQ^10)^{1,6,2,7,3,8,4,9,5,0}

o6 = | 0 1 0 0 0 0 0 0 0 0 |

| 0 0 0 0 0 0 1 0 0 0 |

| 0 0 1 0 0 0 0 0 0 0 |

| 0 0 0 0 0 0 0 1 0 0 |

| 0 0 0 1 0 0 0 0 0 0 |

| 0 0 0 0 0 0 0 0 1 0 |

| 0 0 0 0 1 0 0 0 0 0 |

| 0 0 0 0 0 0 0 0 0 1 |

| 0 0 0 0 0 1 0 0 0 0 |

| 1 0 0 0 0 0 0 0 0 0 |

10 10

o6 : Matrix QQ <--- QQ

i7 : m2 = id_(QQ^10)^{1,0,2,3,4,5,6,7,8,9};

i8 : G = GAP <=== matrixGroup({m1,m2})

o8 = << Remote GAP object >>

o8 : RemoteObject

So at this point in the example G is a remote object: Macaulay2 does not have any
real information about it, but the remote server (GAP) knows it is a group with some
generating matrices. When we ask for the size of the group, Macaulay2 simply creates a
new object representing the order of G. Finally, evaluating this object in GAP gives the
number of elements in the group generated by those matrices.

i9 : size G

o9 = << Remote GAP object >>

o9 : RemoteObject

i10 : GAP <== size G

o10 = 10080

One of the most important features of this example is that, despite the fact that Macaulay2
has no support for groups at all, using OpenMath and SCSCP we can still create an object
that represents a group and obtain useful information about it.

4.3. MuPAD

OpenMath and SCSCP have been implemented in MuPAD in the OpenMath package.
First, we demonstrate the conversion of 1+ a sin(x) to OpenMath, both as an “internal”
OpenMath object, and as its XML representation.

11

>> package("OpenMath"):

>> 1+a*sin(x)

a*sin(x) + 1

>> om := OpenMath(%)

arith1.plus(1, arith1.times(transc1.sin($x), $a))

>> OpenMath::toXml(om)

<OMA>

<OMS cd=’arith1’ name=’plus’/>

<OMI>1</OMI>

<OMA>

<OMS cd=’arith1’ name=’times’/>

<OMA>

<OMS cd=’transc1’ name=’sin’/>

<OMV name=’x’/>

</OMA>

<OMV name=’a’/>

</OMA>

</OMA>

Now we consider factoring the product of two shifted Swinnerton-Dyer polynomials. This
particular polynomial, p in the transcript below, has 49 terms and is of degree 96. It takes
38 seconds to factor if we let MuPAD perform this calculation by itself:

>> swindyer := proc(plist) [input abbreviated]

>> R := Dom::UnivariatePolynomial(x,Dom::Rational):

>> p1 := R(swindyer([2,3,5,7,11])):

>> p2 := R(subs(swindyer([2,3,5,7,13,17])),x=3*x-2):

>> p := p1 * p2:

>> nterms(p), degree(p)

49, 96

>> st := time(): F1 := factor(p): time()-st

38431

Now we establish an SCSCP connection to a machine 400km away running KANT
(Daberkow et al., 1997). Again, the KANT server may have been setup by a KANT
expert, and the current user only needs to be aware of the MuPAD side of the transac-
tion. Using this remote server to factor the polynomial is much faster:

>> package("OpenMath"):

>> kant := SCSCP("scscp.math.tu-berlin.de",26133):

>> st:=rtime():

>> F2:=kant::compute(hold(factor)(p)):

>> rtime()-st

1221

Establishing the connection, marshalling and unmarshalling the objects, sending them
over the network, and the actual KANT computation took only 1.2 seconds in total.

This demonstrates the flexibility of the SCSCP approach: the most appropriate system
can be used for each task. Users are no longer restricted to performing all aspects of a
required computation in a single system that may provide substandard support for some
of the required operations.

12

5. CASH: the Computer Algebra SHell

CASH (the Computer Algebra SHell) (Brown et al., 2010) is an interface that provides
direct access to SCSCP-based CA services from an interactive Haskell shell (Peyton Jones
and Hammond, 2003). The main benefit to the CA user is the immediate availability of
cutting-edge programming language features and a rich set of libraries and tools, provided
by a very active research community. CASH provides a simple and effective interface for
CAS users to parallelise their algorithms employing easy-to-use parallelism primitives for
either small- or large-scale distribution (see Section 6.3 where we develop several domain-
specific skeletons written in Haskell, suitable for large-scale distribution). Finally, CASH
profits from a highly optimising compiler, the Glasgow Haskell Compiler (GHC), in terms
of sequential program performance.

CASH uses the GHCi interpreter, which is part of the Glasgow Haskell Compiler
(GHC) distribution (GHC Team, 2010), to provide a Haskell-side shell for accessing
computer algebra systems via SCSCP. The underlying libraries provide SCSCP and
OpenMath APIs, commands to be used from the interactive front-end to establish a
connection to, and interact with, an SCSCP-enabled system, and support for datatypes
not natively available in Haskell, e.g., elements of finite fields.

For example, in the CASH shell we may define two matrices m1 and m2 over the
prime field GF (3). In all CASH examples we use GAP as the underlying CAS. Wherever
possible we use the same notation that is used in GAP, so here Z(3) denotes the generator
of the multiplicative group of GF (3).

*Cash> let m1 = [[Z(3)^0, Z(3)^0],[Z(3),0*Z(3)]]

*Cash> let m2 = [[Z(3), Z(3)],[Z(3),0*Z(3)]]

Now we can use CASH to compute in GAP multiplicative groups generated by each
of these two matrices and then determine their intersection. Note that actual SCSCP
calls are embedded into group and intersection, and that in this particular example
the GAP server provides an SCSCP procedure for intersection that returns the result
as a list of elements (if you run the same example in GAP, the result would be displayed
as <group of 2x2 matrices of size 2 in characteristic 3>).

*Cash> group(m1)

Group([[[Z(3)^0, Z(3)^0], [Z(3), 0*Z(3)]]])

*Cash> group(m2)

Group([[[Z(3), Z(3)], [Z(3), 0*Z(3)]]])

*Cash> intersection(group(m1), group(m2))

[[[Z(3)^0, 0*Z(3)], [0*Z(3), Z(3)^0]],

[[Z(3), 0*Z(3)], [0*Z(3), Z(3)]]]

Here, the result of each call to group operation is a remote object (as specified in SCSCP),
existing in the GAP server and only conveniently displayed by CASH as Group(...).

We now give two examples of using CASH that show the usefulness of being able to
call CAS functionality from a Haskell environment without having to step out of the
functional paradigm.

13

5.1. Example: Greatest Common Divisor

In this section we give an example of how to use CA functionality directly from
CASH. We initialise the SCSCP session, specifying the host and the port number for the
connection. Then we define two input polynomials p1 and p2 and demonstrate that we
can factorise them and compute their GCD in Haskell using the polynomial arithmetic in
GAP. Note that this code uses a factorisation function on the GAP side, but implements
a simple version of the GCD algorithm on the Haskell side.

*Cash> initServer (server "localhost" (Just 26133))

*Cash> let p1 = polyFromString "x_1^3-x_1"

*Cash> factors p1

[x_1-1,x_1,x_1+1]

*Cash> let p2 = polyFromString "x_1^2+x_1"

*Cash> factors p2

[x_1,x_1+1]

*Cash> myGcd p1 p2

x_1^2+x_1

Our implementation of a generic greatest common divisor (GCD) function, myGcd,
first calls existing factorisation functions in the CAS (here, GAP) and then combines
the results in Haskell (although in a real application it would be possible to simply call
GCD in GAP). The approach taken here highlights some important design features: first,
we use Haskell’s overloading mechanism to define a generic GCD implementation; and
second, the compute-intensive parts, that is, the factorisation and polynomial operations,
are all delegated to the underpinning CAS. The myGcd algorithm first performs, as we will
explain further, two SCSCP calls to factorize its inputs x and y. It then calls bagInter
(see below) on the Haskell side, to identify all the common factors. Finally, the GCD
is computed by folding the generic multiplication operation, implemented as another
SCSCP call over the list of common factors (if it is non-empty).

-- generic GCD computation

myGcd :: (Num a, Factorisable a) => a -> a -> a

myGcd x y = let xs = factors x

ys = factors y

zs = xs ‘bagInter‘ ys

in if null zs then fromInteger 1 else foldl1 (*) zs

-- intersection on multi-sets (bags)

bagInter :: (Eq a) => [a] -> [a] -> [a]

bagInter [] _ = []

bagInter (x:xs) ys | elem x ys = x:(bagInter xs (delete x ys))

| otherwise = bagInter xs ys

Marshalling and Unmarshalling Polynomials: The first issue that we face is how to mar-
shal/unmarshal polynomials. While there are several OpenMath content dictionaries for
polynomials, SCSCP does not restrict our freedom to choose our own data represen-
tation. For the purposes of this example we simply implement Polynomials as Haskell
Strings, which will be easily converted by GAP to polynomials. Admittedly, this limits
the inter-operability of the algorithm, but on the other hand also reduces the marshalling
overhead. We define polynomials as part of the OMType type which represents the abstract
syntax tree for Haskell OpenMath types:

14

data OMType = List [OMType] | Rational [OMType] | Matrix [OMType]

| MatrixRow [OMType] | Mul FiniteField Int

| Power FiniteField Int | Num Integer

| Polynomial String

| ...

data FiniteField = PrimEl Int

For these polynomials as strings, we implement their addition and multiplication via calls
to the corresponding procedures scscp WS ProdPoly and scscp WS SumPoly available at
the GAP SCSCP server. These calls use the call2 wrapper function, which implicitly
applies the CASH functions toOM/fromOM to convert data to/from values of type OMType.

instance Num (OMType) where

(*) p1@(Polynomial _) p2@(Polynomial _) = call2 scscp_WS_ProdPoly p1 p2

(*) ...

(+) p1@(Polynomial _) p2@(Polynomial _) = call2 scscp_WS_SumPoly p1 p2

(+) ...

We can finally write Haskell code calling GAP to factorise polynomials. We create the
class Factorisable containing a single function factors returning a list of all factors
of its argument, and define an instance of this class for polynomials that invokes the
corresponding GAP procedure:

class Factorisable a where

factors :: a -> [a]

instance Factorisable (OMType) where

factors = call1 scscp_WS_Factors

5.2. A Linear System Solver using Multiple Homomorphic Images

We now show how CASH can connect to GAP to run more serious computer algebra
computations. Given a linear system of equations over arbitrary precision integers, rep-
resented as a matrix A ∈ Zn×n and a vector b ∈ Zn, n ∈ N, we want to find a vector
x ∈ Zn such that Ax = b, if such x exists. A potential problem in solving a system of
linear equations such as this is that the values in the matrix tend to become very large,
meaning that even simple arithmetic operations can become expensive to compute. A
well-known common way to avoid this is to generate new matrices modulo each prime
from a fixed list of prime numbers, find the solutions to these smaller problems, and
finally combine these solutions using the Chinese Remainder algorithm (CRA) (Knuth,
1997, Ch.4, pp.286–291).

A generalisation of this technique became known as the Multiple Homomorphic Images
approach (Lauer, 1982), consisting of the following three stages (the names in brackets
refer to the Haskell skeleton below):

(1) map the input data into several homomorphic images (fwd);
(2) compute the solution in each of these images (sol); and
(3) combine the results of all images to a result in the original domain (comb).

In this case, the original domain is the set of (arbitrary precision) integers Z, and the
homomorphic images are integers modulo p, denoted by Zp, with p being a prime number.
If a set of suitable primes is chosen, then cheap fixed-precision arithmetic can be used for
each of the homomorphic images. It is only necessary to use expensive arbitrary precision

15

arithmetic in the combination phase, when applying the CRA in Step (3). Thus, this is
already a very efficient sequential algorithm. It is straightforward to define a skeleton in
Haskell to compute multiple homomorphic images:

multHomImg :: (Integer -> OMType -> OMType) ->

(Integer -> OMType -> OMType) ->

([Integer] -> OMType -> OMType) ->

[Integer] -> OMType -> OMType

multHomImg fwd sol comb ps x = res

where xList = zipWith fwd ps (repeat x)

resList = zipWith sol ps xList

res = comb ps (toOMMatrix resList)

Each of the local definitions, xList, resList and res are the result of one of the three
steps above.

The Linear Solver: We can use this skeleton to define a linear system solver:

linearSolver :: [Integer] -> [[Integer]] -> [Integer] -> OMType

linearSolver ps ms vs

= multHomImg (call2 scscp_WS_Mod) (call2 scscp_WS_Sol)

(call2 scscp_WS_CRA) ps

(toOMList ((toMatrix ms):[toOMList (map toNum vs)]))

The functions scscp WS Mod, scscp WS Sol and scscp WS CRA are calls to the appropriate
procedures available at the GAP SCSCP server: scscp WS Mod reduces the matrix and the
vector modulo the given prime number. scscp WS Sol computes the solution for a matrix
and vector modulo the prime number p in the field of p elements. Finally, scscp WS CRA
combines the resulting vectors using GAP’s built-in Chinese Remainder algorithm.

As an example, we will generate a random 1000x1000 matrix and a solution vector of
length 1000, compute m*v to get b (note overloading of (*) so that the matrix-vector
multiplication is actually performed in GAP), and then test the solution in CASH:

*Cash> let m = generateMatrix(1000)

*Cash> let v = generateVector(1000)

*Cash> let b = m * v

*Cash> (linearSolver [1009, 10007, 100003, 1000003] m b) == v

True

6. Infrastructure for parallel computations

In contrast to notations for numerical computations, which have an emphasis on float-
ing point arithmetic, monolithic arrays, and programmer-controlled memory allocation,
symbolic computing has an emphasis on functional notations, greater interactivity, very
high-level programming abstractions, complex data structures, automatic memory man-
agement, etc. With this different evolutionary path, it is not surprising that symbolic
computation has parallelisation requirements that differ significantly from those for tra-
ditional numerical high-performance computing. In particular, parallel symbolic compu-
tations are often highly irregular, need to exploit more complex data structures than

16

their numerical counterparts, and exhibit sophisticated computational patterns that are
only just being identified.

We have developed a number of tools that exploit the capabilities of SCSCP for mar-
shalling/unmarshalling symbolic data as part of a parallel computation, outlined below:
SPSD (a middleware written in Java using the SCSCP API); the master-worker skeleton
implemented directly in GAP; and a general programmable framework for parallelism,
SymGrid-Par. These provide increasing levels of capability and scalability.

6.1. WUPSI/SPSD

The Java framework outlined in Section 3.3 has been used to construct WUPSI, an
integrating software component that is a universal Popcorn SCSCP Interface providing
several different technologies for interacting with SCSCP clients and servers. One of these
is the Simple Parallel SCSCP Dispatcher (SPSD), which allows very simple patterns like
parallel map or zip to be used on different SCSCP servers simultaneously. The paral-
lelization functionality is offered as an SCSCP service itself, so it can be invoked not
only from the WUPSI command line, but also by any other SCSCP client. Since WUPSI
and all parts of it are open source and freely available, they can be exploited to build
whatever infrastructure seems necessary for a specific use case.

6.2. GAP Master-Worker Skeleton

Using the SCSCP package for GAP, it is possible to send requests to multiple services
to execute them in parallel (or to wait until the fastest result is available), and extend
the basic functionality to implement more complex scenarios. One example is the master-
worker skeleton, included in the SCSCP package and implemented purely in GAP. The
client (i.e. master, which orchestrates the computation) works in any system that is able
to run GAP, and it may even orchestrate both GAP-based and other SCSCP servers,
exploiting SCSCP mechanisms such as transient content dictionaries to define OpenMath
symbols for a particular operation that exists on a specific SCSCP server, and remote
objects to keep references to objects that may be supported only on the other CAS. It is
quite robust, especially for stateless services: if a server (i.e. worker) is lost, it will resubmit
the request to another available server. Furthermore, it allows new workers (from a
previously declared pool of potential workers) to be added during the computation. It has
flexible configuration options and produces parallel trace files that can be visualised in
EdenTV (Berthold and Loogen, 2007). The master-worker skeleton shows almost linear
speedup (e.g. 7.5 on 8 cores) on irregular applications with low task granularity and no
nested parallelism. The SCSCP package manual (Konovalov and Linton, 2010b) contains
further details and examples. See also (Eick and Konovalov, 2011; Konovalov and Linton,
2010a) for two examples of using the package to deal with concrete research problems.

6.3. Prototyping Parallelism in CASH

In this section we will discuss how to easily use parallelism on the CASH command-
line, using the primitives of Glasgow Parallel Haskell (GpH) (Trinder et al., 1998) and
provided by GHC’s parallel-1.1.0.1 package. In contrast to the distributed-memory
implementation of Eden (Loogen et al., 2005), this uses a version of the runtime-system
that is optimised for shared-memory parallelism. It therefore represents a model of small-
scale parallelism, which is convenient for the use in an interactive shell running on a

17

multi-core machine. We envision this model to be used for prototyping parallel code, or
for asynchronously launching parallel computations, benefitting from the implicit syn-
chronisation on shared variables on the Haskell side. For more complex parallel, symbolic
applications, we develop domain-specific skeletons in the subsequent sections.

As a first example we want to demonstrate the following property of resultants of
univariate polynomials: Res(pr, q) = Res(p, q)Res(r, q). We first generate three random
(univariate) polynomials, p, q and r, each of degree 17. Assuming the resultant com-
putation to be expensive, we want to perform all three calls to it in parallel. We can
easily achieve this, by using the binary par combinator in GpH. It launches a parallel
computation for its first argument 1 , and returns the value of the second argument as
a result, thus achieving parallel composition. Analogously, the pseq combinator evalu-
ates both arguments sequentially. Synchronisation between the parallel computations via
the shared variables z1, z2 and z3 is handled automatically by the underlying runtime-
system. With these primitives, and using a function resultantPoly which directly calls
an SCSCP service for performing the actual resultant computation, we can do the above
test, using three parallel computations as follows:

*Cash> s’init 26133

*Cash> let p = mkRandPoly 17 ; q = mkRandPoly 17 ; r = mkRandPoly 17

*Cash> let pr=p*r

*Cash> let z1 = resultantPoly pr q

*Cash> let z2 = resultantPoly p q

*Cash> let z3 = resultantPoly r q

*Cash> z1 ‘par‘ z2 ‘par‘ z3 ‘pseq‘ z1==z2*z3

True

Returning to our earlier example, we parallelise the myGcd function, by simply attaching
a strategy to the top-level let expression, adding only one line of code to the sequential
version.

parGcd :: (Num a, Factorisable a, NFData a) => a -> a -> a

parGcd x y = let

xs = factors x

ys = factors y

zs = xs ‘bagInter‘ ys

in

if null zs then fromInteger 1 else foldl1 (*) zs

‘using‘ \ res -> rnf xs ‘par‘ rnf ys ‘pseq‘ rnf res

This strategy, in the using clause, specifies that the lists xs and ys, returning the
factors of the inputs x and y, should be evaluated in parallel. In these simple examples,
a direct use of the par and pseq primitives is sufficient. For more complex parallelism,
evaluation strategies can specify parallelism, evaluation order and evaluation degree. The
latter two aspects are deliberately undefined in Haskell. When defining a concrete parallel
execution, however, it often becomes desirable to be explicit about them. For example,
the rnf function above specifies a complete evaluation of a data type to normal form.

1 In fact, in GpH all parallelism is optional, and might be ignored by the runtime system in the case of
massive amounts of parallelism. On an idle machine, however, all parallelism will be realised.

18

We can now test our parallel function as follows:

*Cash> parGcd (9827329124::Integer) (83428881::Integer)

1

*Cash> parGcd (17*9827329124::Integer) (17*83428881::Integer)

17

6.4. SymGrid-Par

SymGrid (Hammond et al., 2007) provides a new framework for symbolic compu-
tations on computational Grids: distributed parallel systems built from geographically-
dispersed parallel clusters of possibly heterogeneous machines. It builds on and extends
standard Globus toolkit capabilities (Foster, 2005), offering support for discovering and
accessing Web and Grid-based symbolic computing services (SymGrid-Services) (Cârstea
et al., 2007) and for orchestrating symbolic components into Grid-enabled applications
(SymGrid-Par) (Al Zain et al., 2007). Both components build on SCSCP in an essential
way. This section focuses on SymGrid-Par, which aims to orchestrate multiple sequential
symbolic computing engines into a single coherent parallel system.

Implementation details: SymGrid-Par (Figure 5) provides high-level parallel coordina-
tion of symbolic components into a single application. Each component executes within
an instance of a Grid-enabled engine, which can be geographically distributed to form a
wide-area computational grid, built as a loosely-coupled collection of Grid-enabled clus-
ters, with components linked using SCSCP. SymGrid-Par has been designed to achieve
a high degree of flexibility in constructing a platform for high-performance, distributed
symbolic computation, including multiple CAS. It has three main components:
• The Client. The end user works in his/her own familiar programming environment,

so avoiding needing to learn a new CAS, or a new language to exploit parallelism. We
can imagine here the client being, for example, CASH, connecting through the Haskell
middleware coordination layer to the computer algebra systems. The coordination layer
is completely hidden from the CASH end user, and they work exactly as they would
dealing directly with computer algebra systems. For example, the CASH client could
send an SCSCP request to the coordination server to use the multiple homomorphic
images skeleton as described in Section 5.2.

• The Coordination Server. This middleware provides parallelised services and par-
allel skeletons to the client. The client may invoke these skeletons as standard higher-
order functions. The Coordination Server then delegates work (usually calls to ex-
pensive computational algebra routines) to the Computation Server, which is another
SCSCP-compliant computer algebra system. Currently the Coordination Server is im-
plemented in Haskell, allowing the user to exploit polymorphism, purity and higher-
order functions for effective implementation of high-performance parallelism. In this
example, the Coordination Server executes the Eden multiple homomorphic images
skeleton as described in Section 7.1, creating GAP instances as separate worker pro-
cesses.

• The Computation Server. This component is typically a dedicated computer alge-
bra system, e.g. GAP. Each server handles the requests that are sent to it, sending the
results back to the coordination layer for processing. Finally, the coordination layer
returns the result to the client.

19

Haskell
Coordination

Server

Eden GpH

OpenMath Parallel
Skeletons

Socket

Socket

Server

OpenMath
Socket

Socket

ClientOpenMath

SCSCP

SCSCP

Server

OpenMath
Socket

Server

OpenMath
SocketGAP

KANT

Maple

Computer Algebra Server

Computer Algebra Server

Computer Algebra Server

Haskell MiddleWare

Client: CASH/GAP

Fig. 5. SymGrid-Par Design Overview

7. Domain-specific parallel skeletons for symbolic computation

One of the advantages of using a modern functional language for coordinating compu-
tation is the ease with which parallel patterns of computation, so-called skeletons (Cole,
1989), can be constructed. In particular, the SymGrid-Par infrastructure provides paral-
lel variants of common higher order functions, such as parMap, parZipWith, parFold and
parMapFold, implemented in the Eden parallel dialect of Haskell (Loogen et al., 2005).
By using these skeletons with concrete, SCSCP-based services the end user can easily
create parallel applications without having to be an expert in parallel programming.

In this section we discuss two domain-specific skeletons for symbolic computation in
more detail. They encode parallel implementations of frequently used computer algebra
functions, and provide them as parallel SCSCP services in the SymGrid-Par infrastruc-
ture as discussed in Section 6.4. Making a Haskell-side parallel skeleton directly accessible
to the CA user in this way is one major advantage of our design, since most computer
algebra systems have limited, if any, support for parallelism.

7.1. Parallelising multiple homomorphic images skeleton

In this section we use Eden to parallelise the multiple homomorphic images skeleton
from Section 5.2. Eden provides a model of large-scale distributed computation and

20

Worker WorkerWorker

Distribute

[(Tid,a)]

Merge

[a] [b]

[(Pid, (Tid, b))]
Fig. 6. The workpool skeleton

primarily targets parallel clusters. Using Eden, we can simply transform the original
skeleton, which called the sequential zipWith function, into an equivalent parallel version
that uses parZipWith instead.

multHomImg fwd sol comb ps x = res where

xList = zipWith fwd ps (repeat x)

resL = parZipWith sol ps xList

res = comb ps (toOMMatrix resL)

A parallel zipWith skeleton: The parZipWith skeleton uses a workpool approach (Klusik
et al., 2001), as shown in Figure 6. Workpools are commonly used where tasks have
varying granularities, to dynamically balance the allocation of tasks to processors.

parZipWith f l1 l2 = newTasks where

(newReqs, newTasks) = ...

workerProcs = [process (zip [pe,pe..] . (worker f)) | pe <- [1..noPe]]

worker f [] = []

worker f ((v1, v2) : ts) = (f v1 v2) : worker f ts

The parZipWith skeleton creates one worker process for each available processor (PE),
where each worker process applies f to a pair (v1, v2). Each of these processes is
executed in parallel using the Eden process construct. The function workerProcs defines
this set of worker processes, pairing each result with the id of the PE that produced it.
This is used by the skeleton to determine which PEs have surplus capacity.

(newReqs, newTasks) = (unzip . merge) (zipWith (#) workerProcs

(distributeLists (l1, l2) requests))

requests = (concat (replicate 2 [1..noPe])) ++ newReqs

21

The skeleton pairs the input tasks (the pairs of arguments to the worker function f) with
a list of requests. The requests value is a list of process ids that is used to map tasks
to processes. Each task is paired with a process id using the distributeLists function
and these ids are then used to assign the task to the corresponding Eden process. The
results of executing the tasks on the processes are merged using Eden’s non-deterministic
merge operation, and then unzipped to give the lists of new requests, newReq, and new
tasks, newTasks. The distributeLists function simply accumulates the tasks for each
PE in an ordered list so that these can be passed on to the correct worker process.

distributeLists tasks reqs = [taskList reqs tasks n | n <- [1..noPe]]

where

taskList (r:rs) (v1:vs1, v2:vs2) pe

| pe == r = (v1, v2) : (taskList rs (vs1, vs2) pe)

| otherwise = taskList rs (vs1, vs2) pe

taskList _ _ _ = []

Note that the GAP functions scscp WS Sol and scscp WS CRA used in 5.2 must be mod-
ified for this example to take into account not only solution vectors but also primes for
which they were obtained.

Performance: In order to demonstrate the effectiveness of the parallel performance of
the skeleton, we tested it on several sample matrices of 200 x 200 17-digit integers.
Experiments show a 1.795 speedup on 2 cores over the original sequential version of the
skeleton discussed in Section 5.2. Clearly, these early results show that the skeleton can be
used to increase the performance of the linear solver; and, more importantly, the speedup
shows that parallel skeletons can be an effective way of increasing the CAS performance.

7.2. The Orbit Skeleton

Orbit computation is one of the fundamental algorithms in computer algebra. It ex-
plores the solution space first applying a set of given generators to a given initial element
of the domain, and then iteratively applying same generators to previously unseen images
coming from the previous iteration until no new images can be produced.

The Parallel Orbit Skeleton: An algorithm can usually be parallelised in many different
ways. The most appropriate technique depends on the structure of the algorithm, the
granularity of the input data, the characteristics of the underlying parallel machine ex-
ecuting the program, and many other factors. For the initial Orbit skeleton, we employ
an approach that is suitable for irregular parallelism. Irregular parallelism occurs when
the granularity of tasks varies significantly and/or when tasks cannot easily be derived
from the structure of the program or data. This can happen, for example, when the size
of the input cannot be guaranteed to be evenly distributed over the parallel architecture;
or when the input is highly dynamic, for example if it changes on each iteration. In the
case of the Orbit algorithm, irregularity will arise both from the changing set of inputs,
and because generators will have widely varying computation costs, depending on the
input that they are applied to. Figure 8 shows the implementation of the Orbit skeleton
as a workpool.

An obvious parallelisation is to distribute the queue of tasks to the available processing
elements and then to merge the results into the central queue for subsequent processing.

22

W WW

Distribute

Task

Accumulated
Set

merge

Filter Duplicates input

[Task]

Fig. 7. A General Parallel Orbit.

Each worker process receives a task from its queue; computes the result of that task;
and returns the result, which may be used to produce new tasks. The Orbit scheme is
shown in Figure 7 and its skeleton implementation in Figure 8. In order to implement the
Orbit skeleton, we generalise the workpool approach, adding a number of new features:

(1) the result of the workers must be accumulated and checked for duplicates;
(2) non-duplicate results are used as new tasks;
(3) the orbit terminates once there can be no more tasks.
In Figure 8 orbitPar is defined to take (as its arguments):

• prefetch: a default argument passed in by CASH to spawn the Eden processes;
• orbitfun: a function defining an actual single orbit computation;
• gens: a list of generating functions which are fed as an argument to orbitfun;
• init: an initial seed that is used to initiate the orbit computation.
Parallel computation is performed by equally distributing the tasks that are released by
the filter addNewTask to the workers (toWorkers) via a distribution function distribute.
The results of the workers are merged using the Eden merge operation, and passed to
the next iteration of the addNewTask function. Rather than assigning equal numbers of
tasks to each worker, distribute allocates the tasks to the workers that are known to
be idle. Each input task is paired with the id of the worker that is executing it. When
the task completes, the worker id is returned to the distribute operation, so that a new
task may be allocated to the now idle worker. In order to terminate the orbit a count, c
has been incorporated into addNewTask, to count the tasks released and returned by the
task queue. If the task is not a duplicate, then it is released, and the count is incremented
by the amount of generators, nGen, since orbitFun will always return nGen new tasks.
If a task is a duplicate, then it is not released, but the count is decremented since there
is then one fewer task in the queue. Once the count reaches zero, there are no new tasks
to be considered and the orbit may terminate.

23

orbitPar prefetch orbitfun gens init = dat

where

nGens = length gens

(newReqs, newTasks) = (unzip . merge) new

new = zipWith (#) workerProcs (toWorker dat)

dat = (addNewTask empty (init’ ++ newTasks)

(length init’))

initialReqs = concat (replicate prefetch

[1..noPe])

init’ = take noPe (cycle init)

addNewTask set (t:ts) c

| not (t ‘member‘ set)

= t : addNewTask (Data.Set.insert t set)

ts c’

| c <= 1 = []

| otherwise = addNewTask set ts (c-1)

where c’ = (c-1) + nGens

workerProcs = [process (zip [n,n..] .

(concat . (Data.List.map

(orbitfun gens))))

| n <- [1..noPe]]

toWorker tasks = distribute tasks requests

requests = initialReqs ++ newReqs

distribute :: [t] -> [Int] -> [[t]]

distribute tasks reqs = [taskList reqs tasks n

| n<-[1..noPe]]

where taskList (r:rs) (t:ts) pe | pe == r

= t:(taskList rs ts pe)

| otherwise

= taskList rs ts pe

taskList _ _ _ = []

Fig. 8. The Definition of the Parallel Orbit Skeleton with Balanced Task Distribution
(Workpool).

In order to improve the efficiency of the orbit computation, we have modelled the
accumulator set in terms of the standard Haskell Data.Set set representation. The im-
plementation of Set is based on sized balanced binary trees (or trees of bounded bal-
ance) (Adams, 1993). This allows us both to check for membership and to insert a new
member into the Set in O(log n) time.

Calling Orbit from GAP: Now we demonstrate the effectiveness of the Orbit in a simple
example with a matrix group over a finite field. To call the Orbit skeleton from GAP
client, first we define a wrapper function for the GAP client:

ParOrbit:=function(gen_fct, start_list)

local res;

res:=EvaluateBySCSCP("CS_Orbit", [gen_fct, start_list],

SCSCPclientHost, SCSCPclientPort);

return res.object;

end;

24

In order to call the ParOrbit wrapper from GAP, we must also define some generators
that will be used to generate new elements in the Orbit. The Haskell coordination ensures
that the worker generators are executed on GAP worker nodes, via the SCSCP interface.
We therefore define two generating functions, Fin1 and Fin2, using a global variable mg
to compute the image of their argument:

mg := SL(3,3);

Fin1:=function(x) return (x ^ mg.1); end;

Fin2:=function(x) return (x ^ mg.2); end;

We then install these procedures as SCSCP services:

InstallSCSCPprocedure("WS_Fin1", Fin1);

InstallSCSCPprocedure("WS_Fin2", Fin2);

This allows us to call the Orbit with our wrapper function from the GAP shell passing
a vector over GF (3) as the seeded value:

gap> ParOrbit(["WS_Fin1", "WS_Fin2"], [AsList(GF(3))]);

[[0*Z(3), Z(3)^0, Z(3)], [Z(3), Z(3)^0, 0*Z(3)], [Z(3), 0*Z(3), 0*Z(3)],

[Z(3), Z(3), 0*Z(3)], [Z(3), 0*Z(3), Z(3)],[0*Z(3), 0*Z(3), Z(3)],

... / some output lines omitted /...

[0*Z(3), 0*Z(3), Z(3)^0],[0*Z(3), Z(3), 0*Z(3)]]

Performance: As we mentioned above, initial results of the Orbit over a pure Haskell
represenation (no link to GAP) recorded a superlinear speedup of over 8.295 on 8
cores (Brown and Hammond, 2010). The skeleton is still in its preliminary stages, and
we intend to tune the algorithm further to allow effective parallelisation of both GAP
and SCSCP examples.

8. Conclusions

We have presented a framework for combining computer algebra systems using a
newly-developed remote procedure call protocol SCSCP (Symbolic Computation Soft-
ware Composability Protocol). By defining common data and task interfaces for all sys-
tems, we allow complex computations to be constructed by orchestrating heterogeneous
distributed components into a single symbolic application. Any system supporting SC-
SCP can immediately connect to all other SCSCP-compliant systems, thus avoiding the
need for special cases and minimizing wasted effort. Furthermore, if some CAS changes
its internal format then it only needs to update one interface, namely that to the SCSCP
protocol (instead of as many interfaces as there are programs it connects to). This change
can be completely transparent to the other CAS that connects to it.

We have demonstrated several examples of setting up communication between differ-
ent CAS, thus exhibiting SCSCP benefits and features including its flexible design, the
ability to solve problems that cannot be solved in the “home” system, and the possibil-
ity of speeding up computations by sending requests to a faster CAS. We have shown
how sequential systems can be combined into heterogeneous parallel systems that can
deliver good parallel performance using the SymGrid-Par framework. We have presented
several domain-specific, parallel skeletons, capturing frequently used symbolic computa-
tions. The parallel implementations of these skeletons are provided as SCSCP services
by the SymGrid-Par framework, and therefore easily accessible from other CASs.

25

SCSCP uses an OpenMath representation to encode both the transmitted data and the
protocol instructions, and may be supported not only by a CAS, but by any other software
as well. To achieve this, it is necessary only to support SCSCP messages according to
the protocol specification, while the support of particular OpenMath constructions and
objects is dictated only by the nature of the application. This support may consequently
be limited to a few basic OpenMath data types and a small set of application-relevant
symbols. For example, a Java applet to display the lattice of subgroups of a group may
be able to draw diagrams for partially ordered sets without any support for the group-
theoretical OpenMath CDs. Other possible applications may include a web or SCSCP
interface to a mathematical database, or, as an extreme proof-of-concept, even a server
providing access to a computer algebra system through an Internet Relay Chat bot.

Additionally, SCSCP-compliant middleware may look inside an SCSCP message, ex-
tracting all necessary technical information from its outer levels and taking the embedded
OpenMath objects as a “black box”.

By interfacing SymGrid-Par to the CASH front-end client, we have allowed computer
algebra to be easily combined with functional programming. This brings cutting edge
programming language technology to the CA field, without the laborious process of inte-
grating this technology into existing CASs. In particular, we have demonstrated the use
of overloading and higher-order functions in Haskell to simplify the development of CA
code. We have used this interface to exploit extensions of Haskell, supporting both small-
scale and large-scale parallelism. The examples demonstrate the prototyping of parallel
code in an interactive shell using GpH (Trinder et al., 1998), as well as the development
of larger parallel applications, using Eden (Loogen et al., 2005) and a skeletons approach.

A fruitful area of collaboration between the symbolic computation and functional
programming communities would be the integration of the standardised mathematical
objects and operations, described in this paper, into a general purpose programming
language. On the Haskell side, there is active effort involved in developing such a class
hierarchy in the form of a “Numeric Prelude” for Haskell (Thurston et al., 2010). However,
this covers only a small fraction of the functionality provided by state-of-the-art CA
systems. Another interesting direction of future work would be to use Haskell’s type
classes and sophisticated type system in order to provide enhanced type safety. Encoding
advanced properties, such as the sizes of data structures, is a particularly active research
area in the Haskell community and would be of immediate benefit to the CA community.

We have already seen examples of SCSCP-compliant software that were created outside
the SCIEnce project and we hope that we will have more of them in the future. We
anticipate that existing and emerging SCSCP APIs will be useful here as templates for
new SCSCP implementations. In conclusion, SCSCP is a powerful and flexible framework
for combining CAS, and we encourage developers to cooperate with us in adding SCSCP
support to their software.

Acknowledgements

We would like to acknowledge the fruitful collaborative work of all the partners and
CAS developers who have been involved in the SCIEnce project. In particular we would
like to thank Abyd Al Zain and Jost Berthold, who were heavily involved in the devel-
opment of SymGrid-Par.

26

References

Adams, A., Dunstan, M., Gottliebsen, H., Kelsey, T., Martin, U., Owre, S., 2001. Com-
puter Algebra meets Automated Theorem Proving: Integrating Maple and PVS. In:
Proc. TPHOLs 2001: Intl. Conf. on Theorem Proving in Higher Order Logics, Springer
LNCS 2152. pp. 27–42.

Adams, S., 1993. Efficient Sets - a Balancing Act. Journal Functional Programming 3 (4),
553–561.

Al Zain, A., Hammond, K., Trinder, P., Linton, S., Loidl, H.-W., Costantini, M., 2007.
SymGrid-Par: Designing a Framework for Executing Computational Algebra Systems
on Computational Grids. In: Proc. ICCS ’07: 7th Intl. Conf. on Computational Science,
Springer LNCS 4488. pp. 617–624.

Berthold, J., Loogen, R., 2007. Visualizing Parallel Functional Program Runs: Case Stud-
ies with the eden trace viewer. In: Proc. PARCO 2007: Intl. Conf. on Parallel Com-
puting: Architectures, Algorithms and Applications. Vol. 15 of Advances in Parallel
Computing. IOS Press, pp. 121–128.

Besche, H., Eick, B., 1999. Construction of Finite Groups. J. Symbolic Comput. 27 (4),
387–404.

Besche, H., Eick, B., O’Brien, E., 2008. The Small Groups Library. http://www-public.
tu-bs.de:8080/∼beick/soft/small/small.html.

Brown, C., Hammond, K., 2010. Ever-Decreasing Circles: a Skeleton for Parallel Orbit
Calculations in Eden. In: TFP10 — Symposium on Trends in Functional Programming
Draft Proceedings. Oklahoma.

Brown, C., Loidl, H.-W., Berthold, J., Sep. 2010. Improving your CASH flow: The Com-
puter Algebra SHell. In: IFL’10: Symposium on Implementation and Application of
Functional Languages. Springer, Alphen aan den Rijn, the Netherlands, to appear.

Buswell, S., Caprotti, O., Carlisle, D., Dewar, M., Gaëtano, M., Kohlhase, M. (Eds.),
2004. The OpenMath Standard, Version 2.0. http://www.openmath.org/.

Cannon, J., Bosma, W., 2008. Handbook of Magma Functions, Edition 2.15. School of
Mathematics and Statistics, University of Sydney http://magma.maths.usyd.edu.au.

Caprotti, O., Cohen, A., September 1999. Connecting Proof Checkers and Computer
Algebra using OpenMath. In: The 12th International Conference on Theorem Proving
in Higher Order Logic. Nice, France, pp. 109–112.

Caprotti, O., Cohen, A., Riem, M., 2000. Java Phrasebooks for Computer Algebra and
Automated Deduction. In: SIGSAM Bulletin, 2000. Special Issue on OpenMath. pp.
33–37.

Cârstea, A., Fr̂ıncu, M., Macariu, G., Petcu, D., Hammond, K., 2007. Generic Access
to Web and Grid-based Symbolic Computing Services: the SymGrid-Services Frame-
work. In: Proc. ISPDC 07: Intl. Symp. on Parallel and Distributed Computing, Castle
Hagenberg, Austria, IEEE Press. pp. 143–150.

Cole, M., 1989. Algorithmic Skeletons: Structure Management of Parallel Computations.
MIT Press.

Costantini, M., Konovalov, A., Solomon, A., 2010. OpenMath – OpenMath functionality
in GAP, Version 10.1. GAP package. http://www.cs.st-andrews.ac.uk/∼alexk/
openmath.htm.

Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M., Wildanger,
K., 1997. KANT V4. J. Symbolic Comput. 24 (3-4), 267–283, Computational Algebra
and Number Theory, 1993.

27

Eick, B., Konovalov, A., 2011. The Modular Isomorphism Problem for the Groups of Or-
der 512. In: Groups St. Andrews 2009. London Math. Soc. Lecture Note Ser. Accepted.

Foster, I., 2005. Globus Toolkit Version 4: Software for Service-Oriented Systems. In:
Jin, H., Reed, D., Jiang, W. (Eds.), Network and Parallel Computing. Vol. 3779 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 2–13.

Freundt, S., Horn, P., Konovalov, A., Lesseni, S., Linton, S., Roozemond, D., 2009a.
OpenMath Content Dictionaries scscp1 and scscp2. http://www.win.tue.nl/
SCIEnce/cds/scscp1.html, http://www.win.tue.nl/SCIEnce/cds/scscp2.html.

Freundt, S., Horn, P., Konovalov, A., Lesseni, S., Linton, S., Roozemond, D., 2009b.
OpenMath in SCIEnce: Evolving of Symbolic Computation Interaction, in James H.
Davenport, ed.: 22nd OpenMath Workshop; July 2009.

Freundt, S., Horn, P., Konovalov, A., Linton, S., Roozemond, D., 2008. Symbolic com-
putation software composability. In: AISC/MKM/Calculemus, Springer LNCS 5144.
pp. 285–295.

Freundt, S., Horn, P., Konovalov, A., Linton, S., Roozemond, D., 2009c. Symbolic
Computation Software Composability Protocol (SCSCP) specification, Version 1.3.
http://www.symbolic-computation.org/scscp.

Freundt, S., Lesseni, S., 2010. autokash – KANT 4 SCSCP Package, Version 3.1. http:
//www.math.tu-berlin.de/∼kant/kantscscp.html.

GAP Group, 2008. GAP – Groups, Algorithms, and Programming, Version 4.4.12. http:
//www.gap-system.org.

Gastineau, M., 2009. SCSCP C Library – A C/C++ library for Symbolic Computa-
tion Software Composibility Protocol, Version 0.6.0. IMCCE, http://www.imcce.fr/
Equipes/ASD/trip/scscp/.

Geck, M., Hiss, G., Lübeck, F., Malle, G., Pfeiffer, G., 1996. CHEVIE – A System for
Computing and Processing Generic Character Tables for Finite Groups of Lie type,
Weyl Groups and Hecke algebras. Appl. Algebra Engrg. Comm. Comput. 7, 175–210.

Gent, I., Harvey, W., Kelsey, T., Linton, S., 2003. Generic SBDD Using Computational
Group Theory. In: Proc. CP 2003: Intl. Conf. on Principles and Practice of Constraint
Programming, Kinsale, Ireland. pp. 333–347.

GHC Team, 2010. GHC — The Glasgow Haskell Compiler. Web page, http://www.
haskell.org/ghc/.

Grayson, D., Stillman, M., 2010. Macaulay2, a Software System for Research in Algebraic
Geometry, Version 1.4. http://www.math.uiuc.edu/Macaulay2/.

Hammond, K., Al Zain, A., Cooperman, G., Petcu, D., Trinder, P., August 2007. Sym-
Grid: a Framework for Symbolic Computation on the Grid. In: Proc. EuroPar’07.
LNCS. Rennes, France, pp. 457–466.

Held, J., Bautista, J., Koehi, S., 2006. From a Few Cores to Many: A Tera-Scale Comput-
ing Research Overview. Intel Corporation, http://download.intel.com/research/
platform/terascale/terascale overview paper.pdf.

Horn, P., 2010. MuPAD OpenMath Package. http://mupad.symcomp.org/.
Horn, P., Roozemond, D., 2009. OpenMath in SCIEnce: SCSCP and POPCORN. In: In-

telligent Computer Mathematics – MKM 2009. Vol. 5625 of Lecture Notes in Artificial
intelligence. Springer, pp. 474–479.

Horn, P., Roozemond, D., 2010a. Java Library for SCSCP and OpenMath. http://java.
symcomp.org/.

28

Horn, P., Roozemond, D., 2010b. WUPSI –Universal Popcorn SCSCP Interface. http:
//java.symcomp.org/wupsi.html.

Klusik, U., Loogen, R., Priebe, S., Rubio, F., 2001. Implementation Skeletons in Eden:
Low-Effort Parallel Programming. In: Proc. IFL ’00: 12th International Workshop on
Impl. of Functional Languages. LNCS 2011 Springer-Verlag, pp. 71–88.

Knuth, D. E., 1997. The Art of Computer Programming. Vol. 2: Seminumerical Algo-
rithms, 3rd Edition. Addison-Wesley.

Komendantsky, V., Konovalov, A., Linton, S., 2010. Interfacing Coq + SSReflect with
GAP. In: Proceedings of 9th International Workshop On User Interfaces for Theorem
Provers. UITP ’10. Accepted.

Konovalov, A., Linton, S., 2010a. Parallel Computations in Modular Group Algebras. In:
Proceedings of the 4th International Workshop on Parallel and Symbolic Computation.
PASCO ’10. ACM, New York, NY, USA, pp. 141–149.

Konovalov, A., Linton, S., 2010b. SCSCP – Symbolic Computation Software Composabil-
ity Protocol, Version 1.2. GAP package. http://www.cs.st-andrews.ac.uk/∼alexk/
scscp.htm.

Lauer, M., 1982. Computing by Homomorphic Images. In: Computer Algebra — Symbolic
and Algebraic Computation. Springer-Verlag, pp. 139–168.

Linton, S., Hammond, K., Konovalov, A., Al Zain, A. D., Trinder, P., Horn, P., Rooze-
mond, D., 2010. Easy Composition of Symbolic Computation Software: a New Lingua
Franca for Symbolic Computation. In: Proceedings of the 2010 International Sympo-
sium on Symbolic and Algebraic Computation. ISSAC ’10. ACM, New York, NY, USA,
pp. 339–346.

Loogen, R., Ortega-Mallén, Y., Peña-Maŕı, R., 2005. Parallel Functional Programming
in Eden. Journal of Functional Programming 15 (3), 431–475.

Lübeck, F., Neunhöffer, M., 2008. GAPDoc – A Meta Package for GAP Documentation,
Version 1.2. GAP package. http://www.math.rwth-aachen.de/∼Frank.Luebeck/
GAPDoc.

Maplesoft, 2010. Maple 14. http://www.maplesoft.com/.
Neunhöffer, M., 2010. IO – Bindings for low level C library IO, Version 3.1. GAP pack-

age. http://www-groups.mcs.st-and.ac.uk/∼neunhoef/Computer/Software/Gap/
io.html.

O’Brien, E., Nickel, W., Gamble, G., 2006. ANUPQ – ANU p-Quotient, Version 3.0.
GAP package. http://www.math.rwth-aachen.de/∼Greg.Gamble/ANUPQ/.

Peyton Jones, S., Hammond, K., December 2003. Haskell 98 Language and Libraries, the
Revised Report. Cambridge University Press.

SciFace Software, 2007. MuPAD Pro 4.0.6. http://www.gap-system.org.
Soicher, L., 2004. Computing with Graphs and Groups. In: Topics in Algebraic Graph

Theory. Cambridge University Press, pp. 250–266.
Stein, W., et al., 2010. Sage Mathematics Software (Version 4.6). The Sage Development

Team, http://www.sagemath.org.
Thurston, D., Thielemann, H., Johansson, M., 2010. Numeric prelude (0.2). http://
www.haskell.org/haskellwiki/Numeric\ Prelude.

Trinder, P., Hammond, K., Loidl, H.-W., Peyton Jones, S., Jan. 1998. Algorithm +
Strategy = Parallelism. J. of Functional Programming 8 (1), 23–60.

29

