Typecasting Actors: from Akka to TAkka

Jiansen HE
University of Edinburgh

jilansen.he@ed.ac.uk

ABSTRACT

Scala supports actors and message passing with the Akka
library. Though Scala is statically typed, messages in Akka
are dynamically typed (that is, of type Any). The Akka de-
signers argue that using static types is “impossible” because
“actor behaviour is dynamic”, and, indeed, it is not clear
that important actor support, such as supervision or name
servers, can be implemented if messages are statically typed.
Here we present TAkka, a variant of Akka where messages
are statically typed, and show that it is possible to imple-
ment supervisors and name servers in such a framework. We
show it is possible to smoothly migrate from Akka to TAkka,
porting one module at a time. We show that TAkka can
support behavioural upgrades where the new message type
of an actor is a supertype of the old type. We demonstrate
the expressiveness of TAkka by rewriting approximately 20
Akka applications; the percentage of lines that need to be
changed varies from 44% (in a 25-line program) to 0.05% (in
a 27,000-line program), with a geometric mean of 8.5%. We
show that the execution speed, scalability, and throughput of
TAkka programs are comparable to those of Akka programs.

Categories and Subject Descriptors

D.1.3 [PROGRAMMING TECHNIQUES]: Concurrent Pro-
gramming; D.2.2 [Design Tools and Techniques]: Software
libraries

General Terms

Languages Design Performance Reliability

Keywords
Actor Programming, Type Checking, Fault Tolerance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions @acm.org.

Scala *14, July 28—29, 2014, Uppsala, Sweden
Copyright 2014 ACM 978-1-4503-2868-5/14/07$15.00.
http://dx.doi.org/10.1145/2637647.2637651 .

Philip Wadler
University of Edinburgh

wadler@inf.ed.ac.uk

23

Philip Trinder

University of Glasgow
Phil. Trinder@glasgow.ac.uk

1. INTRODUCTION

Can the benefits of static typing extend to message passing?

A distinguishing feature of Scala is its sophisticated static
type system. A distinguishing feature of modern computing
is its reliance on communication. Scala supports communi-
cation with the Akka library [21], partly inspired by Erlang
[1], which in turn is inspired by actors and message passing
[11]. However, these two features do not play well together—
messages in Akka are dynamically typed (thatis, of type Any).

There are sound reasons for this design. The Akka de-
signers argue that using static types is “impossible” because
“actor behaviour is dynamic” [13}[14]. The design of Akka is
inspired by the Erlang OTP Design Principles, including su-
pervision trees to ensure reliability, and Erlang is dynamically
typed. Since supervision is generic—a supervision frame-
work is instantiated to processes transmitting many types of
messages—it is not immediately clear whether static typing
is sensible. All supervised actors need to accept a fixed set of
system messages, such as Poison Pill (to kill a superised ac-
tor), and it is not clear how to incorporate these into statically
typed messages. An important part of distributed infrastruc-
ture is a name server, which maps names to actors, and while
it is easy to build a map from names to entities of dynamic
type, it is again not clear how to build a map to entities with
different static types.

This paper introduces TAkka, a variant of Akka with stat-
ically typed messages. It turns out that each of the issues
above can be resolved straightforwardly. Each actor is pa-
rameterised by the type of messages it handles. In addition,
each actor can also receive system messages, such as Poison
Pill, which are handled by the supervision framework. The
name server uses Scala “manifest” types to support a name
server that maps names to actors with different static types.

It is essential that a large program can be upgraded in-
crementally, one module at a time, rather than requiring a
monolithic change to all modules simultaneously—a princi-
ple we summarise by the motto “Evolution, not Revolution”.
TAkka is designed to support incremental change, and, in
particular, a service written in Akka can interact with a client
written in TAkka, and vice versa. Backward compatibility is
supported, because TAkka actors inherit from Akka actors.

In a system with multiple components, different compo-
nents may require different interfaces; since all messages are
received in the same mailbox, a naive approach would be to
set the type to the union of all the interfaces, causing each
component to see a type containing messages not intended
for it to use—an issue we dub the Type Pollution Problem.
Fortunately, the problem may be avoided by exploiting sub-

typing to publish a different interface to each layer.

To evaluate the expressiveness of our system, we rewrite
approximately 20 Akka applications in TAkka. The percent-
age of lines that need to be changed varies from 44% (in a
25-line program) to 0.05% (in a 27,000-line program), with a
geometric mean of 8.5%.

We confirm that Akka and TAkka have comparable perfor-
mance in terms of throughput, runtime, and scalability. We
compare the throughput of Play and Socko implementations
written in both systems, and show the throughput of Akka
and TAkka is on average within 8.75% of each other. We com-
pare the runtime and scalability of six BenchErl benchmarks,
and show that the runtimes of Akka and TAkka are on av-
erage within 8.89% of each other, and that they have similar
scalability profiles.

The paper makes the following contributions.

e We contrast Akka and TAkka, illustrating the differ-
ences with a simple application, a supervised calculator
(Section[2).

o Wereview the Akka API, and present the corresponding
TAkka API (Section[3).

e We describe the construction of a name server that maps
names to actors of different static types (Section [4).

e We demonstrate that TAkka supports the principle of
“Evolution, not Revolution”, by showing how Akka
and TAkka code for the supervised calculator can inter-
act (Section[).

o We illustrate the Type Pollution Problem and its solu-
tion on an instance of the Model-View-Controller pat-
tern (Section [6).

e We rewrite a score of Akka programs in TAkka, and
measure the differences in line count (Section[7).

e We compare the throughput of Play and Socko imple-
mentations written in both Akka and TAkka, and we
compare the runtime and performance of a half-dozen
BenchErl benchmarks written in both Akka and TAkka

(Section/[8).

Section[9] concludes.

2. ACTORS AND THEIR SUPERVISION

The Akka library [21] implements actor programming and
makes supervision obligatory. As an introduction to Akka,
Figure [1| defines a calculator. Each Actor defines a receive
method that reacts to incoming messages. Each ActorRef
references an actor, and may be sent messages with the !
operator. Our example program definesMultiplicationand
Division messages (lines 5-6), a Calculator actor which
receives them (lines 8-15), and instantiates a SafeCalculator
actor reference which is sent such messages (lines 29-35).
(The relation between Calculator and SafeCalculator is
explained below.)

Akka makes supervision obligatory by restricting the man-
ner of actor creation. Calling the actor0Of method of an actor
context creates a child actor supervised by that actor, form-
ing a tree structure (lines 23-24). There is a system-provided
guardian actor which serves as the root of the supervision
tree (lines 29-31). (Strictly speaking, actorOf is invoked on
an ActorContext or ActorSystem, and it is supplied with an
instance of the Props class to specify properties of the actor

24

to be created; details are given in Section [3.3]) Obligatory
supervision unifies the structure of actor deployment and
simplifies the work of system maintenance.

The simple calculator does not consider the problematic
case of dividing by 0, where an ArithmeticException will
be raised. We define a SafeCalculator as the supervisor
of Calculator. The receive method of the safe calculator
delegates any messages received to the calculator (line 25),
and defines a supervisor strategy that restarts the calculator
when an ArithmeticException is raised (lines 17-22).

In Akka 2.0 and later versions, an undefined message (line 40)
is discarded and an UnhandledMessage event is pushed to the
event stream of the actor system. The event stream may be
subscribed to by other actors who are interested in particu-
lar event messages. Our example program defines a handler
(lines 44—49) and subscribes to the UnhandledMessage events
(lines 37—39).

Figure2|gives an equivalent TAkka implementation. Code
that appears in the Akka version but not the TAkka version,
or vice versa, is coloured blue. The TAkka Actor class takes a
type parameter, M, which indicates the type of expected mes-
sages. Correspondingly, its message handler, typedReceive,
has type M => Unit. Similarly, a type parameter is added to
the Props class and the ActorRef class. An actor created from
an instance of Props[M] has Actor[M], whose corresponding
actor reference has type ActorRef[M]. Messages sent to an
actor reference of type ActorRef[M] must have type M.

Hence, developers only need to consider messages of the
expected type. An attempt to send a message of a type not
expected by the receiver is rejected at compile-time (line 36).
TAkka uses a typed name server, as explained in Section E}
When looking up an actor by name, the expected type is
provided, and if it does not match the type of the stored actor
reference then an error is raised at run-time (lines 46—47). In
the TAkka version, there is no need to define a handler for
unexpected messages.

3. LIBRARY DESIGN

This section elaborates the design of the TAkka library,
which provides type parameters for the Actor related classes
found in Akka. Figure [f] gives the Akka API, and Figure [4]
gives it TAkka counterpart. Implementation of the two APIs
are omitted in this paper.

3.1 Actor

A TAKkka actor has type Actor[M]. Unlike other actor li-
braries, every TAkka actor class takes a type parameter M
which specifies the type of messages it expects to receive.
The same type parameter is used as the input type of the re-
ceive function, the type parameter of the actor context and the
type parameter of the actor reference pointing to itself. TAkka
uses Scala Manifest to record type information required at
runtime. In Figure[d} each of the three actor-related classes —
ActorRef, Actor, and ActorContext — takes a manifest as
its immutable field to record the value of its type parameter.
The manifest is defined as an implicit parameter as Scala can
infer its value. The ActorRef class defines manifest explicitly
because its type parameter requires a contravariance anno-
tation. The Actor class and the ActorContext class define
manifest implicitly using Scala context bounds.

Notice that the typedReceive method in the TAkka Actor
class has a function type rather than a partial functionas
in Akka. Using a function type has the advantage of exhaus-

1 package sample.akka.SafeCalculator

> import akka.actor.{ActorRef, ActorSystem, Props, Actor}
s import akka.actor.UnhandledMessage

4

scase class Multiplication(m:Int, n:Int)

s case class Division(m:Int, n:Int)

s class Calculator extends Actor {

9 def receive = {

0 case Multiplication(m:Int, n:Int) =>

1 println(m +" * "+ n +" = "+ (m*n))
2 case Division(m:Int, n:Int) =>
3 println(m +" / "+ n +" = "+ (m/n))

L3

5}

s class SafeCalculator extends Actor {
7 override val supervisorStrategy =
8 OneForOneStrategy() {

P S

9 case _: ArithmeticException =>

0 println("ArithmeticException Raised to: "+self)
1 Restart

2 }

5 val child:ActorRef = context.actorOf(

4 Props[Calculator], "child")

25 def receive = { case m => child ! m }

2 }

27 object SafeCalculatorTest extends App {

25 val system = ActorSystem("MySystem™)

29 val calculator:ActorRef =

30 system.actorOf(Props[SafeCalculator],
31 "calculator™)

3 calculator ! Multiplication(3, 1)
31 calculator ! Division(10, 0)
5 calculator ! Division(10, 5)

37 val handler = system.actorOf(Props[MessageHandler])

38 system.eventStream.subscribe(handler,

39 classOf[UnhandledMessage]) ;

40 calculator ! "Hello"

11}

12

43

4 class MessageHandler extends Actor{

15 def receive = {

46 case UnhandledMessage(message, sender, recipient) =>

17 println("unhandled message: "+message);

8}

19 }

50

51 /* Terminal Output:

23 % 1=3

53 java.lang.ArithmeticException: / by zero

54 ArithmeticException Raised to:
Actor[akka://MySystem/user/calculator]

5510 / 5 = 2

56 unhandled message: Hello

3
57 %/

Figure 1: Akka Example: Supervised Calculator

25

1 package sample.takka.SafeCalculator

> import takka.actor.{ActorRef, ActorSystem, Props, Actor}
1 sealed trait Operation

scase class Multiplication(m:Int, n:Int) extends Operation
s case class Division(m:Int, n:Int) extends Operation

s class Calculator extends Actor[Operation]{

9 def typedReceive = {

0 case Multiplication(m:Int, n:Int) =>

1 println(m +" * "+ n +" = "+ (m*n))
2 case Division(m, n) =>
3 println(m +" / "+ n +" = "+ (m/n))

L}

5}

s class SafeCalculator extends Actor[Operation] {
7 override val supervisorStrategy =

1
1
1
1
1
1
1
1
18 OneForOneStrategy() {

19 case _: ArithmeticException =>
20 println("ArithmeticException Raised to: "+typedSelf)
21 Restart

}
val child:ActorRef[Operation] = typedContext.actorOf(
Props[Operation, Calculator], "child")
def typedReceive = { case m => child ! m }

N

2

S

}
7object SafeCalculatorTest extends App{
val system = ActorSystem("MySystem")
val calculator:ActorRef[Operation] =
system.actorOf (Props[Operation, SafeCalculator],
"calculator")

WoW NN NN NN NN
= 3 8 ® S <

SIS}

3 calculator ! Multiplication(3, 1)
31 calculator ! Division(10, 0)

35 calculator ! Division(10, 5)

3 // calculator ! "Hello"

37 // compile error: type mismatch; found :
8 // String("Hello") required:
0 // sample. takka.SupervisedCalculator.Operation

41 System.out.println("Name server test")

> val calMul = system.actorFor[Multiplication]

43 ("akka://MySystem/user/calculator™)
44 calMul ! Multiplication(3, 2)

45 Thread.sleep(1000)

46 val calStr = system.actorFor[String]

7 ("akka://MySystem/user/calculator")
48 // Exception raised before this line is reached

49 calStr ! "Hello"
50 }

51 /* Terminal Output:
23 *1=3

53 java.lang.ArithmeticException: / by zero
54 ArithmeticException Raised to:
Actor[akka://MySystem/user/calculator]

5510 / 5 = 2
56 Name server test
573 * 2 =6

58 Exception in thread "main" java.lang.Exception:
ActorRef[akka://MySystem/user/calculator] does not
exist or does not have type ActorRef[String]

50 */

Figure 2: TAkka Example: Supervised Calculator

1 package akka.actor

| abstract class ActorRef
> def !(message: Any):Unit

1 trait Actor
> def receive:PartialFunction[Any, Unit]
val self: ActorRef
1+ private val context: ActorContext
5 var supervisorStrategy: SupervisorStrategy

1 trait ActorContext
> def actorOf(props: Props): ActorRef

. def actorOf(props: Props, name: String): ActorRef
o def actorFor(path: String): ActorRef

s def setReceiveTimeout(timeout: Duration): Unit
9 def become(behavior: PartialFunction[Any, Unit],
10 discardOld:Boolean = true): Unit

2 def unbecome(): Unit

1 final case class Props(deploy: Deploy,
2 clazz: Class[_],

args: immutable.Seq[Any])

1 object Props extends Serializable
> def apply(creator: =>Actor): Props
def apply(actorClass: Class[_ <: Actor]): Props
. def apply[T <: Actor](Q)
5 (implicit arg®: Manifest[T]): Props

| abstract class SupervisorStrategy

> case class OneForOneStrategy(restart:Int =
3 time:Duration = Duration.Inf)
4 (decider: Throwable => Directive)
5 extends SupervisorStrategy

o case class OneForAllStrategy(restart:Int =
7 time:Duration = Duration.Inf)
8 (decider: Throwable => Directive)
9 extends SupervisorStrategy

-1,

-1,

Figure 3: Akka API

tiveness checks on its input if its input type is a sealed-trait
ADT. Section [7] will report examples we ported from Akka
for expressiveness checks. For all examples considered, there
is no problem when replacing a partial function with a total
function. We believe that exhaustiveness checks are helpful
in practice.

The TAkka Actor class inherits the Akka Actor trait to
minimize implementation effort. Users of the TAkka library,
however, do not need to use any Akka Actor AP Instead,
we encourage programmers to use the typed interface given
in Figure @] The limitation of using inheritance to imple-
ment TAkka actors is that Akka features are still available
to library users. Unfortunately, this limitation cannot be
overcome by using delegation because, as we have seen in
the SupervisedCalculator example, a child actor is created
by calling the actorOf method from its supervisor’s actor

26

1 package takka.actor

1

2

W N o=

1

1

1

N

4
5
6

8

9

case class OneForOneStrategy(restart:Int =

abstract class ActorRef[-M] (implicit mt:Manifest[M])
def !(message: M):Unit
def publishAs[SubM<:M]
(implicit smt:Manifest[SubM]):ActorRef[SubM]

abstract class Actor[M:Manifest] extends akka.actor.Actor
def typedReceive:M=>Unit
val typedSelf:ActorRef[M]
private val typedContext:ActorContext[M]
var supervisorStrategy: SupervisorStrategy

abstract class ActorContext[M:Manifest]
def actorOf [Msg] (props: Props[Msg])
(implicit mt: Manifest[Msg]): ActorRef[Msg]
def actorOf [Msg] (props: Props[Msg], name: String)
(implicit mt:Manifest[Msg]): ActorRef[Msg]
def actorFor [Msg] (path: String)
(implicit mt:Manifest[Msg]): ActorRef[Msg]
def setReceiveTimeout(timeout: Duration): Unit
def become[SupM >: M](behavior: SupM=>Unit)
(implicit smt:Manifest[SupM]):ActorRef[SupM]

> case class BehaviorUpdateException(smt:Manifest[_],

mt:Manifest[_]) extends
supertype of "+mt+".")

Exception(smt + "must be a

final case class Props[-T] (props: akka.actor.Props)

object Props extends Serializable
def apply[T](creator: => Actor[T]): Props[T]
def apply[T](actorClass: Class[_<: Actor[T]]):Props[T]
def apply[T, A<:Actor[T]]
(implicit arg®: Manifest[A]): Props[T]

abstract class SupervisorStrategy

],
time:Duration = Duration.Inf)
(decider: Throwable => Directive)
extends SupervisorStrategy

case class OneForAllStrategy(restart:Int =
time:Duration = Duration.Inf)
(decider: Throwable => Directive)
extends SupervisorStrategy

-1,

Figure 4: TAkka API

context, which is a private field of the supervisor. Actor
is the only TAkka class that is implemented using inheri-
tance. Other TAkka classes are either implemented by del-
egating tasks to Akka counterparts or rewritten in TAkka.
Re-implementing the TAkka Actor library would require a
similar amount of work as implementing the Akka Actor li-
brary.

3.2 Actor Reference

A reference to an actor of type Actor [M] has type ActorRe£[M].

An actor reference provides a ! method, through which users
can send a message to the referenced actor. Sending an actor
a message of unexpected type will raise an error at compile
time. By using type-parameterized actor references, the re-
ceiver does not need to worry about unexpected messages,
while senders can be sure that messages will be understood

1 package sample.akka

N

4

6

o

9
10
11
12
13
14
15
16
17
18
19
20
21

%)

48
49
50
51
52
54

import akka.actor.{ActorRef, ActorSystem, Props, Actor}

case class Multiplication(m:Int, n:Int)

case class Upgrade(advancedCalculator:
PartialFunction[Any,Unit])

class CalculatorServer extends Actor {
def receive = {
case Multiplication(m:Int, n:Int) =>
println(m +" * "+ n +" = "+ (m*n))
case Upgrade(advancedCalculator) =>
println("Upgrading ...")
context.become(advancedCalculator)
}
}

object CalculatorUpgrade extends App {
val system = ActorSystem("CalculatorSystem")
val simpleCal:ActorRef =
system.actorOf (Props[CalculatorServer],
"calculator™)

simpleCal ! Multiplication(5, 1)
case class Division(m:Int, n:Int)

def advancedCalculator:PartialFunction[Any,Unit] = {
case Multiplication(m:Int, n:Int) =>

println(m +" * "+ n +" = "+ (m*n))
case Division(m:Int, n:Int) =>
println(m +" / "+ n +" = "+ (m/n))

case Upgrade(_) =>
println("Upgraded.")

simpleCal ! Upgrade(advancedCalculator)

simpleCal ! Divison(10, 2)

val advancedCal = system.actorFor
("akka://CalculatorSystem/user/calculator")

advancedCal ! Multiplication(5, 3)

advancedCal ! Divison(10, 3)

advancedCal ! Upgrade(advancedCalculator)

7}

/* Terminal Output:
5%*1=5
Upgrading ...
10 /2=5
5% 3 =15
10 /3 =3
Upgraded.
:':/

Figure 5: Akka Example: Behaviour Upgrade

and processed, as long as the message is delivered.

An actor typcally responds to a finite set of different mes-
sages whereas our notion of actor reference only takes one
type parameter. In a type system that supports untagged
union types, no special extension is required. In a type system
which supports subtyping, ActorRef should be contravari-
antonits type argument M, denoted as ActorRef[-M] in Scala.
Consider the simple calculator defined in Figure[2} it is clear
that ActorRefis contravariantbecause ActorRef[Operation]
is a subtype of ActorRef[Division] though Division is a
subtype of Operation. Contravariance is crucial to avoid the
type pollution problem described in Section [

27

1 package sample.takka
> import takka.actor.{ActorRef, ActorSystem, Props, Actor}

4+trait Operation
5trait BasicOperation extends Operation
s case class Multiplication(m:Int, n:Int)
7 extends BasicOperation
s case class Upgrade[Op >: BasicOperation]
9 (advancedCalculator:0p=>Unit) extends
10 BasicOperation
11 class CalculatorServer extends Actor[BasicOperation] {
def typedReceive = {

case Multiplication(m:Int, n:Int) =>

println(m +" * "+ n +" = "+ (m*n))
15 case Upgrade(advancedCalculator) =>
16 println("Upgrading ...")
17 typedContext.become(advancedCalculator)
15}
19}
»1object CalculatorUpgrade extends App {
val system = ActorSystem("CalculatorSystem")
23 val simpleCal:ActorRef[BasicOperation] =
system.actorOf(Props[BasicOperation,
CalculatorServer], "calculator")

2

24

simpleCal ! Multiplication(5, 1)
case class Division(m:Int, n:Int) extends Operation

= 1

51 def advancedCalculator:Operation=>Unit
32 case Multiplication(m:Int, n:Int) =>

println(m +" * "+ n +" = "+ (m*n))
case Division(m:Int, n:Int) =>

4
35 println(m +" / "+ n +" = "+ (m/n))
6 case Upgrade(_) =>

37 println("Upgraded.")

38}

simpleCal ! Upgrade(advancedCalculator)

// simpleCal ! Divison(10, 2) // compile error

val advancedCal = system.actorFor[Operation]
("akka://CalculatorSystem/user/calculator")

advancedCal ! Multiplication(5, 3)

advancedCal ! Division(10, 3)

advancedCal ! Upgrade(advancedCalculator)

17 }

48 /* Terminal Output:
295 *1=2>5

50 Upgrading ...

51

525 % 3 =15

510 / 3 =3

54 Upgraded.

55 %/

Figure 6: TAkka Example: Behaviour Upgrade

For ease of use, ActorRef provides a publishAs method
that casts an actor reference to a version that only accepts
a subset of supported messages. The publishAs method
encapsulates the process of type casting ActorRef, a con-
travariant type. We believe that using the notation of the
publishAs method can be more intuitive than thinking about
contravariance and subtyping relationship when publishing
an actor reference as different types in a complex applica-
tion. In addition, type conversion using publishAs is stat-
ically type checked. More importantly, with the publishAs
method, users can give a supertype of an actor reference on
demand, without defining new types and recompiling af-

fected classes in the type hierarchy. The last advantage is
important in Scala because a library developer may not have
access to code written by others.

3.3 Props and Actor Context

The type Props denotes the properties of an actor. An
instance of type Props[M] is used when creating an actor
of type Actor[M]. Line 24 in Figures [T and [] initialises an
instance of Props using the last apply method in Figures
and [4] respectively. The code uses Scala syntactical sugar
that omits the method name apply and lets Scala provide the
value of manifest, which is an implicit parameter.

Unlike an actor reference, which is the interface for receiv-
ing messages, an actor context describes the actor’s view of
the outside world. Because each actor defines an independent
computation, an actor context is private to the correspond-
ing actor. From its actor context, an actor can (i) retrieve
an actor reference corresponding to a given actor path using
the actorFor method, (ii) create a child actor with a system-
generated or user-specified name using one of the actor0Of
methods, (iii) set a timeout denoting the time within which a
new message must be received using the setReceiveTimeout
method, and (iv) update its behaviours using the become
method.

3.4 Reusing Akka Supervisor Strategies
in TAkka

None of the supervisor strategies in Figure[require a type-
parameterized class during construction. Therefore, from the
perspective of API design, it is easy to reuse Akka supervisor
strategies in TAkka. As actors communicate with each other
by sending messages, system messages for supervision pur-
poses should be handled by all actors. To keep the APIsimple,
we separate the handler for system messages from the han-
dler for other messages. In retrospect, the type parameter of
the Actor class is not a supertype of system messages, whose
types are private API in TAkka. Crucially, our design avoids
the requirement for a union type, which is not provided by
Scala.

3.5 Behaviour Upgrades

Behaviour upgrades in Akka and TAkka can be done us-
ing one of two complementary techniques: using the become
method or defining an actor as a Finite State Machine (FSM).

The become method upgrades the behaviour of an actor.
After the upgrade, the actor might be able to process mes-
sages of more types. Figures[5|and [f| compare using become
in Akka and TAkka. Asnew subtypes can be introduced later
(line 39 in Figure[6), an actor can be upgraded to a version
that is able to receive more types of messages. However,
unlike the Akka version, behaviour upgrade in TAkka must
be backward compatible and cannot be rolled back. In other
words, an actor must evolve into a version that is at least
able to handle the original message patterns. The above de-
cision is made so that a service published to users will not be
unavailable later. Supporting behaviour upgrades in TAkka
also requires that there is a suitable supertype defined in ad-
vance. This requirement is a weakness compared to Akka,
which permits upgrading the behaviour to any syntactically
correct implementation.

An actor that implements the FSM trait switches between
predefined states. In each state, that actor may only react
to messages of a particular type, i.e. events associated with

28

that state, and discard messages of other types. Because the
internal state of an FSM is invisible to others, it accepts all
messages that may trigger an action. In other words, the type
of its actor reference does not change. The ATM simulator
example in Table [1|is implemented using the FSM trait. We
show that rewriting an FSM-based Akka application using
TAKKa is straightforward.

3.6 Related Work

Akka attempts to merge supervision and typed actors via
a TypedActor class whose instance is initialised in a spe-
cial way. A service of TypedActor object is invoked by
method invocation instead of message passing. The Akka
TypedActor class prevents some type errors but has two lim-
itations. Firstly, TypedActor does not permit behaviour up-
grade. Secondly, avoiding the type pollution problem (Sec-
tion[6) by using Akka typed actors is as same cumbersome as
using a simple object-oriented model, where supertypes need
to be defined in advance. In Scala, introducing a supertype in
a type hierarchy requires modification to all affected classes,
whose source code may not be accessible by application de-
velopers.

Alternative to the actor model, different concurrent pro-
gramming paradigms have been proposed. An important
category of concurrent programming model is channel based
communications, originated from CCS [16] and m-calculus
[19]. Models that support typed channels include the join-
calculus [7] and the typed m-calculus [19]. Another group of
concurrent programming model, which focuses on commu-
nication coordination, is the event loops model. Examples
of this model are the E programming language [15] and the
AsyncScala framework [18]. The E programming language
is dynamically typed. The Vat class in AsyncScala encapsu-
lates a process and takes a continuation as its input. Neither
the E language or the AsyncScala framework employs typed
messages.

4. TYPED NAME SERVER

An important part of distributed infrastructure is a name
server, which maps names to a dynamically typed value. A
name can be encoded as a Symbol in Scala so that names
which represent the same string have the same value. As
a value retrieved from a name server is dynamically typed, it
needs to be checked and cast to the expected type at the client
side before using it.

To overcome the limitations of the untyped name server,
we design a typed name server. A typed name server maps
each registered typed name to a value of the corresponding

1 case class TSymbol[T:Manifest](val s:Symbol) {

2 private [takka] val t:Manifest[_] = manifest[T]
override def hashCode():Int = s.hashCode()

4 override def equals(that: Any) :Boolean = {

case ts: TSymbol[_] => ts.t.equals(this.t) &&
ts.s.equals(this.s)

6 case _ => false

7 }

s}

o case class TValue[T:Manifest](val value:T){

10 private [takka] val t:Manifest[_] = manifest[T]

11}

Figure 7: TSymbol and TValue

N

4

6

8

package untype.nameserver
object NameServer
@throws (classOf[NamesExistException])
def set(name:Symbol, value:Any):Boolean
def unset(name:Symbol) :Boolean
def get(name:Symbol):Option[Any]
case class NamesExistException(name:Symbol)
extends Exception("Name "+name+" has been registered.™)

Figure 8: Dynamic Typed Name Server

type, and allows look-up of a value by giving a typed name. A
typed name, TSymbol, is a name shipped with a type descrip-
tor. A typed value, TValue, is a value shipped with a type
descriptor, which describes a super type of the most precise
type of that value. TSymbol and TValue can be defined as in
Figure [/} The APIs of a dynamic typed name server and a
typed name server are given in Figure [§|and [0 respectively.

Each TAkka actor system contains a typed name server.
The typed name server is used when the actor is created and
when an actor reference is requested. When an actor is cre-
ated, the actor records a map from a typed actor path and the
typed actor reference for the created actor. Upon retrieving
a typed actor reference, line 47 in Figure 2| for example, the
typed name server checks if the typed actor path matches any
record.

S. EVOLUTION, NOT REVOLUTION

Akka systems can be smoothly migrated to TAkka systems.
In other words, existing systems can evolve to introduce more
types, rather than requiring a revolution where all actors and
interactions must be typed. The above property is analo-
gous to adding generics to Java programs. Java generics are
carefully designed so that programs without generic types
can be partially replaced by an equivalent generic version
(evolution), rather than requiring generic types everywhere
(revolution) [17].

Section 2| presents how to define and use a safe calculator
in the Akka and TAkka systems respectively. Think of a
SafeCalculator acotor as a service and its reference as a
client interface. This section shows how to upgrade the Akka
version to the TAkka version gradually, either upgrading the
service implementation first or the client interface.

5.1 TAKkKka Service with Akka Client

It is often the case that an actor-based service is imple-
mented by one organization but used in a client application
implemented by another. Let us assume that a developer de-
cides to upgrade the service using TAkka actors, for example,
by upgrading the Socko Web Server [12], the Gatling stress
testing tool [6], or the core library of Play [22], as we do in
Section [/} Will the upgrade affect legacy client applications
built using the Akka library? Fortunately, no changes are
required at all.

As the TAkka Actor class inherits the Akka Actor class, it
can be used to create an Akka actor. For example, the ob-
ject akkaCal, created at line 5 in Figure is created from
a TAkka actor and used as an Akka actor reference. After
the service developer has upgraded all actors to equivalent
TAkka versions, the developer may want to start a TAkka
actor system. Until that time, the developer can create TAkka
actor references but publish their untyped version to users

29

4

6

8

package takka.nameserver
object NameServer
@throws(classOf[NamesExistException])
def set[T:Manifest] (name:TSymbol[T], value:T):Boolean
def unset[T:Manifest] (name:TSymbol[T]) :Boolean
def get[T:Manifest] (name:TSymbol[T]):Option[T]
case class NamesExistException(name:TSymbol[_])
extends Exception("Name "+name+" has been registered.")

Figure 9: Static Typed Name Server

who are working in the Akka environment (line 19). As a
result, no changes are required for a client application that
uses Akka actor references. Because an Akka actor refer-
ence accepts messages of any type, messages of unexpected
type may be sent to TAkka actors. As a result, handlers for
the UnhandledMessage event is required in a careful design
(line 10 and 20).

5.2 AkKka Service with TAkka Client

Sometimes developers want to update the client code or
API before upgrading the service implementation. For ex-
ample, a developer may not have access to the service im-
plementation; or the service implementation may be large, so
the developer may want to upgrade the library gradually.

Users can initialize a TAkka actor reference by providing an
Akka actor reference and a type parameter. In Figure[I1} we
re-use the Akka calculator, initialise it in an Akka actor sys-
tem, and obtain an Akka actor reference. Then, we wrap the
Akka actor reference as a TAkka actor reference, takkaCal,
which only accepts messages of type Operation.

6. THE TYPE POLLUTION PROBLEM

In a system with multiple components, different compo-
nents may require different interfaces; since all messages are
received in the same mailbox, a naive approach would be to
set the type to the union of all the interfaces, causing each
component to see a type containing messages not intended
for it to use —an issue we dub the Type Pollution Problem.

We illustrate the Type Pollution Problem and its solution
on an instance of the Model-View-Controller pattern [4]. The
Model and View have separate interfaces to the Controller,
and neither should see the interface used by the other. How-
ever, the naive approach would have the Controller message
type contain all the messages the Controller receives, from
both the Model and the View. A similar problem can occur
in a multi-tier architecture [8]], where an intermediary layer
interfaces with both the layer above and the layer below.

One solution to the type pollution problem is using sep-
arate channels for distinct parties. For instance, in Model-
View-Controller, one channel would communicate between
Model and Controller, and a distinct channel communicate
between Model and View. Programming models that sup-
port this solution includes the join-calculus [7] and the typed
ni-calculus [19]. Can we gain similar advantages for a system
based on actors rather than channels?

TAkka solves the type pollution problem with subtyp-
ing. The code outline in Figure [I2] summarises a Tic-Tac-
Toe example in the TAkka code repository [9], which uses
the Model-View-Controller pattern. Traits V2CMessage and
M2CMessage represent the types of messages expected by
the View and the Model respectively. Both are subtypes
of ControllerMsg, which represents the type of all mes-

| import sample.takka.SafeCalculator.SafeCalculator

N

;object TSAC extends App {

4

3

9N NN N e

I

6
28
2

30

val akkasystem = akka.actor.ActorSystem('"AkkaSystem")

val akkaCal = akkasystem.actorOf(
akka.actor.Props[SafeCalculator], "acal")

val handler = akkasystem.actorOf(
akka.actor.Props(new MessageHandler (akkasystem)))

akkasystem.eventStream.subscribe(handler,
classOf[UnhandledMessage]);

akkaCal ! Multiplication(3, 1)

akkaCal ! "Hello Akka"

val takkasystem =
takka.actor.ActorSystem("TAkkaSystem™)
val takkaCal = takkasystem.actorOf(
takka.actor.Props[String, TAkkaStringActor], "tcal™)

val untypedCal= takkaCal.untypedRef
takkasystem.system.eventStream. subscribe(
handler, classOf[UnhandledMessage]) ;
untypedCal ! Multiplication(3, 2)
untypedCal ! "Hello TAkka"
}

/% Terminal output:

3%1=23

unhandled message:Hello Akka
3%2=26

unhandled message:Hello TAkka
*/

Figure 10: TAkka Service with Akka Client

sages expected by the controller. In the code, the Controller
actor publishes itself at different types to the View actor
and the Model actor (lines 26-29), by sending appropriate
initialisation messages. In line 27, typedSelf is of type
ActorRef[ControllerMsg] while ModelSetController ex-
pects a parameter of type ActorRef[M2CMessage]. Since
ActorRef is contravariant in its type parameter, the call is
correct even if the call to publishAs is omitted; the call is to
make the programmer’s intent explicit and allows the com-
piler to catch more errors.

7. EXPRESSIVENESS

This section investigates whether the type discipline en-

forced by TAkka restricts the expressibility of Akka. Table E|

lists the examples used for expressiveness checks. Examples
are selected from QuviQ [2] and open source Akka projects
to ensure that the main requirements for actor programming
are not unintentionally neglected. Examples from QuviQ are
re-implemented using both Akka and TAkka. Examples from
Akka projects are re-implemented using TAkka. Following
standard practice, we assess the overall code modification
and code size by calculating the geometric mean of all exam-
ples [10]. The evaluation results in Table [I| show that when
porting an Akka program to TAkka, about 8.5% lines of code
need to be modified including additional type declarations.
Sometimes, the code size can be smaller because TAkka code
does not need to handle unexpected messages. On average,
the total program size of Akka and TAkka applications are
almost the same. Figure[[3|reports the same result in a Scatter
chart.

A type error is reported by the compiler when porting
the Socko example [12] from its Akka implementation to

30

| import sample.akka.SafeCalculator.SafeCalculator
;object ASTC extends App {

1+ val system = akka.actor.ActorSystem("AkkaSystem")

5 val akkaCal = system.actorOf(

6 akka.actor.Props[SafeCalculator], "calculator™)
7 val takkaCal = new takka.actor.ActorRef[Operation]{
8 val untypedRef = akkaCal

0 3}

10 takkaCal ! Multiplication(3, 1)

11 // takkaCal ! "Hello"

12// compile error: type mismatch;

13// found : String("Hello") required:

14// sample.takka.SupervisedCalculator.Operation
15 }

16 /* Terminal output:

173 % 1 =3

18 %/

Figure 11: Akka Service with TAkka Client

1 trait ControllerMessage

> trait V2CMessage extends ControllerMessage

3 // sub-classes of V2CMessage messages go here
1trait M2CMessage extends ControllerMessage
5// sub-classes of M2CMessage messages go here
s trait C2VMessage

7 case class ViewSetController

s (controller:ActorRef[V2CMessage]) extends C2VMessage
otrait C2MMessage

10 case class ModelSetController

11 (controller:ActorRef[M2CMessage]) extends C2MMessage
12

13class View extends Actor[C2VMessage] {

14+ private var controller:ActorRef[V2CMessage]
15 // rest of implementation

16 }

17 class Model extends Actor[C2MMessage] {
private var controller:ActorRef[M2CMessage]
19 // rest of implementation

20}

21

2 class Controller(model:ActorRef[C2MMessage],
23 view:ActorRef[C2VMessage])

extends Actor[ControllerMessage] {

25 override def preStart() = {

2 model ! ModelSetController
(typedSelf.publishAs[M2CMessage])

28 view ! ViewSetController
(typedSelf.publishAs[V2CMessage])

18

0}

31 // rest of implementation

Figure 12: Outline for Model-View-Controller

its equivalent TAkka implementation. Socko is a library for
building event-driven web services. The Socko designer de-
fines a SockoEvent class to be the supertype of all events.
One subtype of SockoEvent is Ht tpRequestEvent, represent-
ing events generated when an HTTP request is received. The
designer further implements subclasses of the Method class,
whose unapply method is intended to have an output of
type Option[HttpRequestEvent]. The Socko designer made
a type error in the method declaration so that the unapply
has output type Option[SockoEvent]. The type error is not
exposed in test examples because those examples only test
HTTP events. The design flaw is exposed when rewriting

Socko using TAkka.

Source Example Akka Code Modified % of TAkka Code % of
Lines TAkka Lines | Modified Code Lines Code Size
Small String Processor 25 11 44 22 88
Examples Supervised Calculator 38 11 29 41 108
Behaviour Upgrade 38 10 26 39 102
NQueens 235 6 3 236 100
BenchErl bang 93 8 8.6 94 101
Examples big 93 10 11 100 108
ehb 201 23 11 216 107
mbrot 125 8 6 130 104
ran 98 8 2.6 101 103
serialmsg 146 20 14 146 100
QuviQ []%[] ATM simulator 1148 199 17.3 1160 101
Elevator Controller 2850 172 9.3 2878 101
Ping Pong 67 13 194 67 100
Akka Dining Philosophers 189 23 12.1 189 100
Documentation | Distributed Calculator 250 43 17.2 250 100
Ilﬁl] Fault Tolerance 274 69 252 274 100
Other Barber Shop 24[] 754 104 13.7 751 99
Open EnMAS [5 1916 213 11.1 1909 100
Source Socko Web Server [12] 5024 227 45 5017 100
Akka Gatling [6] 1635 111 6.8 1623 99
Applications Play Core [22] 27095 15 0.05 27095 100
geometric mean 354.1 30.2 8.5 360.1 101.7

Table 1: Results of Expressiveness Evaluation

(a) Code Size: Absolute Lines (b) Code Size: Relative Lines

Figure 13: Code Size Evaluation

(a) Throughput: Play (b) Throughput: Socko

Figure 14: Throughput Benchmarks

31

(a) Bang

(d) MBrot

(b) Big

(e) RAN

(c) EHB

(f) SerialMsg

Figure 15: Runtime & Scalability Benchmarks

8. THROUGHPUT AND SCALABILITY

This section investigates whether managing type informa-
tion in TAkka reduces performance. The TAkka library is
built on Akka so that code for shared features can be re-used.
The three main sources of overheads in the TAkka implemen-
tation are: (i) the cost of adding an additional operational
layer on top of Akka code, (ii) the cost of constructing type
descriptors, and (iii) the cost of transmitting type descriptors
in distributed settings. We assess the effects of the above
overheads in terms of throughput and scalability.

The example used in the throughput benchmark is the
JSON serialization example [20]. The example was imple-
mented using Akka Play, TAkka Play, Akka Socko, and TAkka
Socko. All four versions of the web service are deployed to
Amazon EC2 Micro instances (t1.micro), each of which has
0.615GB memory. The throughput is tested with up to 16
EC2 Micro instances. For each number of EC2 instances, 10
rounds of throughput measurement are executed to gather
the average and standard deviation of the throughput. The
results reported in Figure [I4|{show that web servers built us-
ing the Akka-based library and the TAkka-based library have
very similar throughput.

We further investigate the speed-up of multi-node TAkka
applications by porting 6 BenchErl benchmarks [3] which
do not involve Erlang/OTP specific features. Each BenchErl
benchmark spawns one master process and many child pro-
cesses for a given task. Each child process performs a certain
amount of computation and reports the result to the master
process. The benchmarks are run on a 32 node Beowulf clus-
ter at Heriot-Watt University. Each Beowulf node comprises
eight Intel 5506 cores running at 2.13GHz. All machines run

32

under Linux CentOS 5.5. The Beowulf nodes are connected
with a Baystack 5510-48T switch.

Figures[15|reports the results of the BenchErl benchmarks.
We report the average and the standard deviation of the run-
time of each example. Depending on the ratio of the com-
putation time and the I/O time, benchmark examples scale
at different levels. In all examples, TAkka and Akka imple-
mentations have almost identical run-time and scalability. It
appears that the Akka and TAkka implementations of the
Big benchmark have different runtimes and overlapped poor
scalability. We do not understand why it is the only bench-
mark that seems to reveal a significant difference in terms of
runtime.

Figure 16: Benchmark: N-Queens Puzzle

In the BenchErl examples, child processes are asked to ex-
ecute the same computation a number of times. In contrast,
distributed and cluster computing techniques are often used
to solve a computationally expensive task by distributing
sub-tasks to independent nodes. To simulate such a scenario,
another benchmark, N-Queens Puzzle [23], is added. Finding
all solutions of an N-Queen Puzzle is an NP-hard problem.
Therefore, a suitable n makes the problem a good benchmark
to demonstrate the advantage of cluster and distributed pro-
gramming. Figure [16|reports the result when 7 is set to 14.
The result shows that both the Akka and TAkka implemen-
tation have good scalability and similar efficiency.

9. CONCLUSION

The Akka library accepts dynamically typed messages.
The TAkka library introduces a type-parameter for actor-
related classes. The additional type-parameter specifies the
communication interface of that actor. With the help of
type-parameterized actors, unexpected messages to actors
are rejected at compile time. We have shown that type-
parameterized actors can form supervision trees in the same
way as untyped actors (Section [3). We have shown that
adding type parameter does not restrict expressiveness, and
requires only small amounts of refactoring (Section [/). We
have shown that TAkka does not introduced performance
penalties (Section [8), with respect to throughput, efficiency,
and scalability. The above results are encouraging for the use
of types and supervision trees to implement reliable applica-
tions and improve the reliability of legacy applications with
little effort.

10. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the substantial help
they have received from many colleagues who have shared
their related results and ideas with us over the long period
during which this paper was in preparation. Benedict Ka-
vanagh and Danel Ahman for continuous comments and
discussions. The RELEASE team for giving us access to the
source code of the BenchErl benchmark examples. Thomas
Arts from Quviq.com and Francesco Cesarini from Erlang So-
lutions for providing the Erlang source code of two examples
used in their commercial training courses.

11. REFERENCES
[1] J. Armstrong. Programming Erlang: Software for a
Concurrent World. Pragmatic Bookshelf, 2007.

[2] T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing
telecoms software with quviq quickcheck. In
Proceedings of the 2006 ACM SIGPLAN workshop on
Erlang, ERLANG ’06, pages 2-10, New York, NY, USA,
2006. ACM.

O. Boudeville, F. Cesarini, N. Chechina, K. Lundin,

N. Papaspyrou, K. Sagonas, S. Thompson, P. Trinder,

and U. Wiger. Release: a high-level paradigm for

reliable large-scale server software. Symposium on

Trends in Functional Programming, July 2012.

S. Burbeck. Applications programming in

smalltalk-80(tm): How to use model-view-controller

(mvc), 1987.

[5] C.Doyle and M. Allen. EnMAS: A new tool for
multi-agent systems research and education. Midwest
Instruction and Computing Symposium, 2012.

3

—_—

[4

—_—

33

[6] Excilys Group. Gatling: stress tool.
http://gatling-tool.org/, 2012. Accessed on Oct 2012.

[7] C. Fournet and G. Gonthier. The join calculus: A
language for distributed mobile programming. In In
Proceedings of the Applied Semantics Summer School
(APPSEM), Caminha, pages 268-332. Springer-Verlag,
2000.

[8] M. Fowler. Patterns of enterprise application architecture.
Addison-Wesley Longman Publishing Co., Inc., 2002.

[9] J. HE. TAkka. https://github.com/Jiansen/TAkka,
2014. Accessed on May 2014.

[10] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach, 4th Edition.
Morgan Kaufmann, 4 edition, Sept. 2006.

[11] C. Hewitt, P. Bishop, and R. Steiger. A universal
modular actor formalism for artificial intelligence. In
Proceedings of the 3rd international joint conference on
Artificial intelligence, JCAI'73, pages 235-245, San
Francisco, CA, USA, 1973. Morgan Kaufmann
Publishers Inc.

[12] V.Imtarnasan and D. Bolton. SOCKO Web Server.
http://sockoweb.org/, 2012. Accessed on Oct 2012.

[13] R. Kuhn, J. Bonér, and P. Trinder. Typed akka actors.
private communication, 2012.

[14] R. Kuhn and P. Vlugter. Parameterising Actor with
Message type? https://groups.google.com/forum/
#!topic/akka-user/j-SgCS6]ZoE, 2011. Accessed on
17 Feb 2013.

[15] M. S. Miller, E. D. Tribble, and]. Shapiro. Concurrency
among strangers. In Trustworthy Global Computing,
pages 195-229. Springer, 2005.

[16] R. Milner. A calculus of communicating systems. 1980.

[17] M. Naftalin and P. Wadler. Java Generics and Collections,
chapter Chapter 5: Evolution, Not revolution. O'Reilly
Media, Inc., 2006.

[18] C. Plotnikov. AsyncScala. http://asyncobjects.
sourceforge.net/asyncscala/index.html, 2011.
Accessed on May 2014.

[19] D. Sangiorgi and D. Walker. The ri-Calculus: A Theory of

Mobile Processes. Cambridge University Press, New

York, NY, USA, 2001.

TechEmpower, Inc. Techempower web framework

benchmarks.

http://www.techempower.com/benchmarks/, 2013.

Accessed on July 2013.

Typesafe Inc. (a). Akka Documentation: Release 2.0.2.

http://doc.akka.io/docs/akka/2.0.2/Akka.pdf, 2012.

Accessed on Oct 2012.

Typesafe Inc. (b). Play 2.2 documentation.

http://www.playframework.com/documentation/2.2-

SNAPSHOT/Home, 2013. Accessed on July

2013.

Wikipedia. Eight queens puzzle. http:

//en.wikipedia.org/wiki/Eight_queens_puzzle,

2014. [Online; accessed 30-March-2014].

M. Zachrison. Barbershop.

https://github.com/cyberzac/BarberShop, 2012.

Accessed on Oct 2012.

[20]

[21

[

[22

[}

(23]

[24]

https://github.com/Jiansen/TAkka
https://groups.google.com/forum/#!topic/akka-user/j-SgCS6JZoE
https://groups.google.com/forum/#!topic/akka-user/j-SgCS6JZoE
http://asyncobjects.sourceforge.net/asyncscala/index.html
http://asyncobjects.sourceforge.net/asyncscala/index.html
http://en.wikipedia.org/wiki/Eight_queens_puzzle
http://en.wikipedia.org/wiki/Eight_queens_puzzle

