
A Comparative Evaluation of Three Mobile Languages

Zara Field
Heriot-Watt University
Edinburgh, Scotland

E-mail: zf1@macs.hw.ac.uk

P. W. Trinder
Heriot-Watt University
Edinburgh, Scotland

E-mail: trinder@macs.hw.ac.uk

André Rauber Du Bois
School of Informatics

Catholic University of Pelotas
E-mail: dubois@ucpal.tche.br

Abstract

Expressive and efficient mobile code languages are essential
for the rapid construction of mobile systems. This paper provides
a qualitative and quantitative comparative evaluation of three mo-
bile code languages: Java Voyager, JoCaml and mHaskell. The
languages evaluated represent a spectrum, having different pro-
gramming paradigms and supporting different classes of mobil-
ity. The comparison is based on a non-trivial meeting scheduler
case study that uses two common patterns of mobile computa-
tion: distributed information retrieval and multicast. Illustrated
by the meeting scheduler, the languages are compared for pro-
gramming model, security, language interoperability and perfor-
mance on networks of 2, 4, 6 and 8 locations.

1. Introduction

This paper provides a qualitative and quantitative comparative
evaluation of three mobile code languages. Java Voyager [8] is
a weak mobile language for the Java programming platform (see
section 2), with an object-orientated (OO) computational model
that performs communication through method invocations. Jo-
Caml [5] and mHaskell [3] are both research languages, where
communication is performed by message passing on channels.
JoCaml provides strong mobility with an impure functional/OO
computational model based on the join-calculus, while mHaskell
provides weak mobility, is purely high-level functional and encom-
passes mobility skeletons for mobility coordination [4].

The development of a non-trivial mobile application, a meet-
ing scheduler, facilitates the practical assessment of the languages
by providing a basis for comparing their performance and pro-
grammability. This application has been chosen as it encapsulates
two common patterns of distributed programming, distributed in-
formation retrieval and multicast, that have the potential to benefit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

from code mobility. Additional features of the languages, includ-
ing security and language interoperability are also assessed.

The remainder of this paper is structured as follows. Section
2 introduces code mobility and provides the classification of code
mobility used in the paper. Section 3 gives a brief review of mo-
bile code design paradigms and is followed in section 4 by an
introduction to the three mobile code languages included in this
comparative evaluation. Section 5 details the example application
used as a basis for comparison and provides an overview of the
implementation details in each of the languages. Section 6 covers
the comparative evaluation and a conclusion and summary table
of findings is given in section 7. Future directions for the work
presented in this paper are also addressed.

2. Mobility in Mobile Code Languages

Traditionally, programs, or more generally executing compu-
tational units are statically bound to their initiating environment
for the lifetime of the process. Even where code is dynamically
linked, the linked code still belongs to the initiating environment.
The difference with mobile code technologies is that they can al-
low a code segment, its state and data space to be relocated to
another executing environment. The proportion of the executing
unit that can be moved provides for a means of classifying the al-
ternative mobility mechanisms [1].

Strong mobility, as found in JoCaml, enables migration of
both code and execution state of an executing unit to another envi-
ronment, where execution state can include execution stack, mem-
ory, program counter and state of open files. This form of mobility
is facilitated by migration and remote cloning mechanisms.

Weak Mobility, as provided by Java Voyager and mHaskell,
enables the transfer of code, with some optional initialisation data,
but no execution state. The mechanisms that allow for this mo-
bility allow either for the complete transfer of code to a new ex-
ecuting environment or simply link the code dynamically. Addi-
tionally, the direction of the code transfer can either be fetched
(pulled) by an executing unit or shipping (pushed) from one unit
to another, the type of code transferred can either be a fragment of
code required to be linked to an already executing unit or act as
stand-alone code which would instantiate a new executing unit.

3. Mobile Code Design Paradigms

Mobile code paradigms have evolved from the concept of ac-
tive clients consuming the services of a passive server. As illus-

trated below, the differences lie in the location of the different
components during the execution of a service.

Client-server: In this traditional design paradigm, a passive
server offers a set of predefined services and statically resides at
a specific location, along with all components required to execute
the services. Clients, located at remote locations, actively interact
with the server when requesting a service.

Remote Evaluation (REV): In this paradigm, one location has
the code to perform a service but does not have the required re-
sources, which are located at another remote location. The loca-
tion with the code migrates the code to the location with the re-
sources. The location with the resources uses its computational
component to execute the code locally and uses the resources as
instructed. The results are then sent back to the initiating location
with a final interaction.

Code on Demand (COD): This paradigm assumes that one
location contains the computational power and the required re-
sources but lacks the code to perform the service. This location
would interact with another that has the code, and the required
code would be returned.

Mobile Agent (MA): The mobile agent paradigm assumes that
one location has some of the resources and the code, but needs
other resources to perform the service. An agent from this lo-
cation migrates to another location, bringing code and possibly
some results already produced by the resources located there. Af-
ter it has moved to the other location it completes execution with
the resources there, through local interactions. Whereas the other
paradigms transfer code between the components, MA transfers a
whole computational component, with state, the code and some of
the resources required, to the other remote location [2].

4. Mobile Code Languages

Mobile code languages employ remote programming whereby
a machine can supply and customise procedures to be performed
on remote locations. Each mobile code language employs alter-
native computational and coordination models, primitives and ab-
stractions when providing this mobility. The languages chosen for
this comparative evaluation were chosen for their relative differ-
ences, as illustrated in table 1.

Java Voyager is an agent enhanced Object Request Broker
(ORB) for Java from Recursion Software Inc. [8]. Object mo-
bility, communication and migration are encapsulated by remote
services that include interface generator, dynamic proxy gener-
ator and distributed garbage collection. Remote objects can be
instantiated on separate JVM’s with the remote class loading fa-
cility. The Voyager Universal Gateway automatically translates
remote object messages between CORBA, RMI, COM/DCOM,
SOAP and XML and new messaging protocols can be ’plugged in’
once public. Object communication is provided through a variety
of messaging patterns including synchronous, one-way, delayed-
synchronous and asynchronous. A naming service can also be
used to register and locate objects, which also supports the JNDI,
CORBA and RMI naming services.

JoCaml is a mobile agent based system developed during
the MOSCOVA project conducted by INRIA. The JoCaml (func-
tional/imperative) language is based on the Join-Calculus [6] and
combines primitives of Join-calculus with Objective Caml. Jo-
Caml extends OCaml with concurrency, message-passing and
message based synchronization. It facilitates the development of

distributed, concurrent and mobile agent based systems wherein
distribution abstractions are expressed using simple primitives
taken from Join-Calculus.

Mobile Haskell (mHaskell) [3] is an extension of Haskell.
It supports mobile computation by extending Concurrent Haskell
with higher order communication channels, Mobile Channels
(mChannels), that are synchronous and permit the communica-
tion of arbitrary Haskell values including functions, IO actions and
channels. Mobility Skeletons, a small extension to mHaskell, are
a library of higher-order parameterisable functions which control
most, if not all aspects of coordination for three identified mobile
computation patterns [4]. Unlike, JoCaml and Java Voyager, mo-
bility skeletons provide a higher level of abstraction and eliminate
the need for the programmer to provide mobility coordination al-
gorithms.

5. Example Mobile Application: Meeting
Scheduler

To compare the three mobile languages, the same meeting
scheduler application has been developed in Java Voyager, JoCaml
and mHaskell.

Scheduling meetings is a routine and time consuming organ-
isational task, often complicated by communication delays and
schedule conflicts. Automatic meeting schedulers are designed
to reduce user intervention and thus reduce the time required to
schedule a meeting. Meeting schedulers currently on the market,
like Microsoft Outlook and IBM Lotus Notes 6 adopt the client-
server paradigm. All processing is performed on a central machine
that systematically retrieves the calendars for all peers involved
and finally distributes the result, through multicast e-mail. Al-
though this method is effective, it does not exploit the capabilities
of a distributed architecture and code mobility. Scalability also be-
comes an issue as centralised execution on the calendar server can
create bottlenecks.

Design of Mobile Automatic Meeting Scheduler
A mobile, automatic meeting scheduler is designed that ex-

ploits code mobility by distributing computation load and reduc-
ing network interactions. Users request a meeting and the sched-
uler automatically checks the availability of peers by sequentially
migrating to their respective calendar locations, which could be
located on a desktop PC or mobile device, performing availability
assessments through local interactions. When the first common
time is identified for all peers, a meeting allocation will be multi-
cast that automatically updates the calendars.

In practice, a mobile agent is dispatched from a source com-
puter to accomplish the scheduling task. The agent carries with it
the computational component for the scheduling task and interme-
diate results as it proceeds autonomously and independently from
each execution environment (calendar location) to the next. The
scheduling agent is created at the location of the person intending
to schedule a meeting. At this point a list of peers is provided by
the user, which represents an itinerary for the scheduling agent.

The agent’s behaviour is depicted in figure 1. Upon creation at
host 1, the agent accesses the local calendar for a list of free times
available. These intermediate free times are then transmitted with
the agent to the next location (host 2), where it resumes execution
and performs an intersection with the free times locally obtained at
the new location. The agent traverses the list of locations perform-
ing an intersection between the locally obtained list of free times

2

Coordination Model
Language Computational Model Mobility Primitives Communication Method Mobile Paradigms Calculus

Java Voyager Object-Orientated Weak moveTo Method Invocation MA, REV, COD N/A
JoCaml Functional/ Strong go Message Passing MA, REV, Join-

Object-Orientated on Channels COD Calculus
mHaskell Functional Weak channels Message Passing MA, REV N/A

on Channels

Table 1. Mobile Code Languages

Figure 1. Distributed Information Retrieval us-
ing Mobile Agents

Figure 2. Multicast using Remote Evaluation

and the result of the previous intersection. At the last location, the
first free time from the resulting list is sent back to the initiating
program at the source machine (host 1). This is a common pat-
tern of distributed programming known as distributed information
retrieval (DIR).

Figure 2 shows how the initiating program, after receiving the
result, multicasts it to all peer calendars. A synchronous multi-
cast method provides confirmation that the calendars have been
updated. This is achieved using the Remote Evaluation (REV)
paradigm as the computation used to update the calendars is mi-
grated to the specific locations and a result returned to provide
confirmation.

Implementations
This section describes the implementation of the meeting

scheduler in each language.
Java Voyager Implementation: This implementation, each

calendar is represented by a calendar object, residing on a re-
mote machine, that contains implementation code for the meth-
ods to retrieve free time slots. Each calendar is bound to a unique
name and registered in the Java Voyager namespace for subsequent
lookup. The scheduling agent is implemented through a serializ-
able ScheduleAgent class that includes the methods for invok-
ing the local methods of the calendars, an intersection method and

a method for returning the result to the main program. A user pro-
vided list of names is used to lookup and create a list of calendar
locations from the namespace, which then acts as the itinerary for
the scheduling agent.

A mobile agent facet of the ScheduleAgent is obtained us-
ing the Agent.of() method from the Java Voyager IAgent
interface. The Java Voyager primitive moveTo(), that is passed
the itinerary and a user defined method doWork, is then called
on the agent facet that forces it to move to the first location in
the itinerary. The callback method doWork() is responsible for
resuming the agents execution at the new location, invoking the
scheduling methods, storing the intermediate results and initiating
migration to the next location in the itinerary. When the agent has
migrated to the last calendar object and returned the final result
to the main program, it is set to autonomous, indicating that it is
ready for distributed garbage collection.

Java Voyager mobile objects, an alternative to Voyager agents,
were used to perform the REV multicast update. A mobility facet
of a serializable MobileUpdater object containing the meth-
ods for updating a calendar, is obtained with the method Mo-
bility.of() from the Voyager IMobile interface. The mo-
bile object is then moved to the remote location with the method
moveTo() from the IMobile interface, the update method in-
voked and the confirmation returned. The program continues to
loop through the list of locations until an update object has been
sent to every location.

JoCaml Implementation: In this implementation, each cal-
endar is a standalone program residing on a remote location and
contains a simple function for obtaining free times from the locally
stored calendar. Both the name of the calendar and the function to
obtain the free times are registered with the JoCaml name server
for subsequent lookup.

The main scheduler program contains the definition of a loca-
tion that is used to represent a JoCaml unit of mobility that can be
moved from one calendar location to another. This mobile loca-
tion acts as a container for functions used to perform the schedul-
ing task at each calendar location, trigger the migration to the next
location and finally return the result. The recursive function to per-
form the DIR takes as its parameters a list containing the names of
the locations it is to visit and a list of free slots used in the ini-
tial intersection. Subsequently, the function takes the first name
from the list of names and performs a lookup in the name server.
It then migrates to this location using the JoCaml go primitive.
Once at the new location, a lookup is performed that returns the
function to retrieve the free slots for that particular location’s cal-
endar. An intersection method is performed and the result passed
as a parameter to the recursive DIR call along with the remainder
of the calendar locations list. Migration to the next location is then
initiated.

When the mobile agent has migrated to the last calendar lo-
cation and performed the intersection, the first common time and

3

the list of locations is passed to a JoCaml channel residing on the
initial location and home of the agent. A mobile location that con-
tains functions to update a calendar is then created that migrates
to the first calendar location in the list, performs an update and re-
turns the confirmation. Once this update has been completed, the
function is called again. This remote evaluation process continues
to create a mobile location and send it to the respective calendar
location to update until all calendars have been updated.

mHaskell Implementation: mHaskell incorporates mobility
skeletons that can be used to encode the communications required
in a mobile computation (section 4). The meeting scheduler used
uses first the mfold skeleton to identify a free slot common in
all calendars with the mobile agent paradigm and finally mmap
to multicast the result by remotely evaluating an update for each
location in the list of locations that it receives as an argument [4].

In practice, each location hosts a local calendar resource that is
registered with a local resource server and a function that returns
all the free times available. Each location also runs a remote fork
server that creates a mChannel with the name of the location in
which it is running. This mChannel can later be looked up and
serve as the destination location in a call to the rfork function
that sends a computation to the mChannel and the reval func-
tion that executes a computation on a remote location and returns
a result.

When the user chooses to schedule a meeting, a function is
called that takes a list of locations to visit and creates a new chan-
nel mch that will be used to send back the result of the distributed
computation. The function then uses the mfold skeleton and
passes as its arguments the channel mch for returning the result of
the whole computation, the scheduling function to be performed
at each location, a function to intersect the results and a list that
contains the locations to visit. The function then traverses each of
the locations calling the scheduling function, performing the inter-
section and initiating migration to the next location.

Finally, when the first free time has been returned from the last
location, the mmap skeleton is responsible for remotely evaluating
the update function on every location within the list of locations.

6. Comparative Evaluation
6.1 Performance

To compare performance, the Java Voyager, JoCaml and
mHaskell meeting schedulers were measured 10 times on net-
works of 2, 4, 6 and 8 locations. The timings obtained were for
the time it took to visit all calendars (DIR) and the time to multi-
cast the result (multicast). All three implementations were tested
on the same set of Unix machines (Intel(R) Pentium(R) 4 CPU 3.2
GHz / 490MB with a 100Mb/sec. ethernet connection speed) in a
quiet local network, where machine speed inconsistencies and net-
work traffic were minimal. The current experiments ignore factors
such as program size and memory consumption. Tables 2 and 3
report the median and range of execution times for the distributed
information retrieval of the free times (DIR) and the multicast of
the results for each language. As a measure of scalability, figures 3
and 4 plot the median distributed information retrieval (DIR) and
multicast execution times against the number of locations. The
following discussion is based on these tables and figures.

Jocaml Performance: JoCaml execution times for both DIR
and multicast increase approximately linearly with the number of
locations, with the multicast execution times being slightly more
than for the DIR. As expected, a higher multicast was time re-

Locations 2 4 6 8
JoCaml
Median. 0.058 0.132 0.221 0.299
Range 0.002 0.007 0.086 0.072
Java Voyager
Median 0.284 0.513 0.707 0.928
Range 0.225 0.598 0.797 0.353
mHaskell
Median 2.915 5.528 11.225 17.485
Range 0.123 0.021 0.170 0.128

Table 2. DIR Execution Times (secs.)

Locations 2 4 6 8
JoCaml
Median. 0.058 0.132 0.221 0.299
Range 0.002 0.007 0.086 0.072
Java Voyager
Median 0.284 0.513 0.707 0.928
Range 0.225 0.598 0.797 0.353
mHaskell
Median 2.915 5.528 11.225 17.485
Range 0.123 0.021 0.170 0.128

Table 3. Multicast Execution Times (secs.)

quired for the creation of multiple objects and the sending of multi-
ple messages for the update method adopted. Variability in perfor-
mance appears to increase super-linearly with additional locations
involved. When 2 locations are involved the range is only 2ms,
however when 6 locations are involved the range is over 100ms.

Java Voyager Performance: Initial Java Voyager execution
times are considerably higher than subsequent executions. This
’cold start’ cost is likely to be the time taken to start the Java
Voyager daemon and load the class files. Therefore, the results
presented here are ’warm starts’, i.e. after the initial penalty. Ex-
ecution times for both DIR and multicast again increase approx-
imately linearly with the number of locations involved, with the
multicast times being slightly more than the DIR. Again, as in the
JoCaml implementation, higher multicast execution times are re-
quired for the creation of the update objects, calling the update
method and returning a confirmation. Variability would appear to
increase super-linearly, although drops considerably with 8 loca-
tions.

mHaskell Performance: A super-linear increase in DIR exe-
cution times and an approximately linear increase in multicast is
displayed, however, the multicast times are less than the DIR. This
could be attributed to the additional DIR execution time required
for maintaining the state of the agent before it migrates to the next
location and the subsequent unpacking of the state and computa-
tion. The range of executions times is approximately uniform with
increasing locations involved. This suggests that the mHaskell im-
plementation provides the most reliable performance.

Performance Comparison
JoCaml achieves the best performance at nearly 4 to 8 times
faster than Java Voyager and between 30 to 50 times faster than
mHaskell. There are a number of factors that attribute to these
results.

JoCaml is a compiled, strict language and hence faster than the
interpreted Java Voyager implementation and the ’lazy’ mHaskell
implementation. Moreover, JoCaml has an optimised implementa-
tion for strong mobility. It uses OCaml primitives for serialization,
provides access to the thread stack and has a number of stack man-
agement optimisations.

Java Voyager uses Java Object Serialization and RMI for mo-

4

Figure 3. Median DIR using MA (secs.)

Figure 4. Median Multicast using REV (secs.)

bility, both of which are efficient and well-developed methods for
marshalling, demarshalling and invoking the methods of trans-
mitted objects. Also, Java Voyager only permits weak mobility.
Modifications to the JVM that would permit accessing, saving and
restoring the execution state of threads would provide for strong
mobility. However, this solution would jeopardise one of the most
useful features of Java, portability across platforms. Java Voy-
ager would also appear to implement resource reuse mechanisms,
which further increases performance.

mHaskell is implemented in a purely functional lazy lan-
guage(Haskell), wherein even the best compilers for lazy lan-
guages are slower than the worst compilers for strict languages.
mHaskell is also implemented using graph reduction, which re-
quires double traversal of the graph. The byte code generated is
communicated over TCP, then needs to be unpacked at the des-
tination. The creation of mChannels may also attribute to the
higher execution times. When a mChannel is created, a Concur-
rent Haskell Channel (CHC) is also created and used as the means
for communication between the program and the mobile runtime
system. However, possible extensions to mHaskell have been pro-
posed that could increase its overall performance in addition to
providing strong mobility [15].

Overall, the mechanisms used in both Java Voyager and Jo-
Caml to enable mobility are more efficient than those provided
in mHaskell. These mechanisms also benefit from the continual
refinements designed to increase their performance. However, it
terms of variability of results (i.e. the range), mHaskell is the most
consistent of the three languages with Java Voyager being the least.

6.2 Programming Model
The programming model determines the ease with which one

can develop a mobile code system, aided by the migration primi-
tives provided, location and migration transparency, memory man-
agement and failure handling. The numbers of lines of code re-
quired to implement mobility and return the result of an update
are also counted as a measurement of distributed transparency.

The Java Voyager programming model forces the use of inter-
faces and implementation classes, which provides for a more struc-
tured design of a system, where MA, REV and COD paradigms
(section 3) are permitted. Table 4 shows that the Java Voyager
meeting scheduler requires 18 lines of mobile coordination code.
Migration transparency is achieved when migrating objects leave
forwarder objects at the location it is about to leave, creating a for-
warding chain whereby messages sent to the migrating object at
an old location are then forwarded to the new location. Java Voy-
ager benefits from the extensive Java exception facilities and also
extends these with around 16 of its own that deal with migration
exceptions. Java Voyagers Distributed Garbage Collection (DGC)
sits on top of Java Garbage Collection. Java Voyager ORB is re-
sponsible for all remote references transparently and runs every 2
minutes updating the tables of references. When there are no refer-
ences, the connection to the object is released and the object can be
garbage collected. Mobile agents can also have their autonomity
set to false, thus allowing for their remote garbage collection.

The JoCaml programming model is relatively powerful as it si-
multaneously supports functional, imperative and OO paradigms.
It is heterogeneous, allowing agents to migrate from one platform
to another. It benefits from the extended OCaml libraries for stan-
dard functions and has low level access to the system through a va-
riety of Unix system calls. Table 4 shows that the JoCaml meeting
scheduler requires 12 lines of mobile coordination code. The mo-
bility primitives fully provide location and migration transparency.
This transparency is achieved through the name server that main-
tains a table of object names and locations and updates it auto-
matically when the registered object has been moved. Applets can
be developed in JoCaml, permitting COD programming. JoCaml
provides limited mechanisms for exception handling and recovery
from partial failures. It provides an abstract model of failure and
failure detection expressed in terms of locations (agents), however
there is no predefined recovery mechanism and so is left under the
control of the programmer. Although this does not provide for fail-
ure transparency it does offer leeway to increase the reliability of
the program.

The mHaskell programming model uses very high-level ab-
stractions of mobile coordination, mobility skeletons. Mobility
skeletons encapsulate common patterns of mobile computation
and the development of the system required only 6 lines of mo-
bile coordination code. Location transparency is absent as the pro-
grammer needs to have advance knowledge of the location of each
resource and the current implementation does not appear to allow
for the migration transparency of mobile objects. mHaskell pro-
vides mechanisms for local exceptions, however these cannot be
extended to a distributed setting. The mHaskell implementation
can also be extended for distributed garbage collection.

6.3 Security
This section describes the security features of each of the lan-

guages and is restricted to the provision of access control mech-
anisms and language safety. Mobile agent security is outside the
scope of this paper.

5

Java Voyager provides a centralised Java Voyager Security
Manager, based on the Java Security Manager, which can define
and implement security policies for foreign or migrating object
access control. Policy files or protection domains can be used
to specify what permissions are granted to specific code sources
or code signed by specific persons. User authentication and ac-
cess control is also available that can be extended to provide SSL
(Secure Socket Layer). Java Voyager transports also provide data
security and integrity with SOCKS, HTTP tunneling and Custom
transports.

JoCaml has no security model or access control mechanisms.
Communication over channels is unprotected and provides no
guarantee of data security or integrity. However, JoCaml is safe
at the language level as it employs strong static typing based on an
inference system.

mHaskell provides no security model or access control mecha-
nisms. However, it is safe at the language level as it employs static
typing.

6.4 Language Interoperability
Large distributed systems are typically engineered in more than

one language, and hence language interoperation is essential. The
following section provides an overview of the language interoper-
ability of Java Voyager, JoCaml and mHaskell.

The Java Voyager Universal ORB provides connectivity to
CORBA, DCOM and RMI client and servers through a variety of
protocols. However, it remains Java centric and does not interop-
erate with any other language.

JoCaml (OCaml) is interoperable with the C language that pro-
vides extensive libraries and it is therefore possible to interface
with languages that offer a C interface. However, this interopera-
tion between OCaml and C can raise difficulties when dealing with
garbage collection, machine representation of data and the sharing
of common resources and requires special consideration.

mHaskell also provides libraries for interfacing with C,
through the Haskell foreign Function Interface. HaskellDirect, an
IDL compiler, allows full access to Microsoft’s COM library. It
can also interface with the Java Native Interface (JNI) and invoke
Java code, but Java cannot invoke Haskell code. Haskell can also
interface with CORBA and XML and work continues to increase
its interoperability.

7. Conclusion and Future Work

Three mobile languages representing a spectrum of the tech-
nologies avaliable have been comparatively evaluated for pro-
gramming paradigm, security, language interoperation amd per-
formance. The evaluation is based on implementations of a non-
trivial meeting scheduler application. Table 4 suggests that Java
Voyager is the most complete mobile language. Not only does it
allow for the use of all three mobile code paradigms discussed,
mobile applications in Java Voyager can also be fused with tra-
ditional distributed paradigms, as Java Voyager is interoperable
with many existing distributed Java technologies. The inherent
security of the Java language and runtime is enhanced with Java
Voyagers Security Manager that allows for both efficient access
control mechanisms and secure communications. Although Java
Voyager only supports weak mobility effective serialization tech-
niques are used to simulate strong mobility.

JoCaml has a concise and powerful programming model and

Java Voyager JoCaml mHaskell
Performance Rank 2nd. 1st. 3rd.
Mobility Weak Strong Weak
Calculus N/A Join-Calculus N/A
Lines of Code 18 12 6
for Mobililty
Mobile Paradigms MA, REV, MA, REV, MA, REV
Embodied COD COD
Platform Heterogenity Yes Yes Yes
Agent Creation Local/Remote Local Local
Agent Life Span Function Yes No No
Security Yes No No
Distributed Failure Yes Partial Possible
Handling
Remote Resource Access Yes Yes Yes
Location Transparency Good Good N/A
Migration Transparency Good Good N/A
Communication type Method Message Message

Invocation passing on passing on
channels channels

Language Interoperability No (java centric) Yes Yes
Version 4.7 Beta version Prototype

2000

Table 4. Language Comparison Summary

provides the best performance. However, as a research language,
these features are of lesser importance than performance.

While mHaskell mobility skeletons provide very high-level,
and hence concise mobile coordination (Table 4), it is also the
slowest language. This is unsurprising because, as a research lan-
guage, performance has not been optimised. More significantly,
mHaskell lacks important features (Table 4).

We will extend this work by further investiagting common
patterns of distributed mobile programming, formalising them as
mobility ’design patterns’ [7] that will be extended with object-
orientated mobility skeletons.

8. References
[1] G. V. Alfonso Fuggetta, Gian Pietro Picco. Understanding code

mobility. IEEE Transactions on Software Engineering,
24(5):342–361, May 1998.

[2] A. Carzaniga, G. P. Picco, and G. Vigna. Designing distributed
applications with mobile code paradigms. In ICSE ’97: Proceedings
of the 19th international conference on Software engineering, pages
22–32, New York, NY, USA, 1997. ACM Press.

[3] A. R. Du Bois, P. Trinder, and H.-W. Loidl. mHaskell: mobile
computation in a purely functional language. Journal of Universal
Computer Science, 11(7):1234–1254, 2005.

[4] A. R. Du Bois, P. Trinder, and H.-W. Loidl. Towards Mobility
Skeletons. Parallel Processing Letters, 15(3):273–288, 2005.

[5] C. Fournet, F. L. Fessant, L. Maranget, and A. Schmitt. Jocaml: a
language for concurrent distributed and mobile programming.

[6] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A
calculus of mobile agents. In Proceedings of the 7th International
Conference on Concurrency Theory (CONCUR’96), pages 406–421.
Springer-Verlag, 1996.

[7] E. Gamma, R. Helm, and R. Johnson. Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional
Computing Series. Addison-Wesley, 1995.

[8] R. S. Inc. http://www.recursionsw.com/voyager.htm, January 2006.

6

