Parallel Processing Letters,
© World Scientific Publishing Company

TOWARDS MOBILITY SKELETONS

ANDRE RAUBER DU BOIS and PHIL TRINDER
School of Mathematical and Computer Science, Heriot- Watt University
Riccarton, Edinburgh, EH14 JAS, UK

HANS-WOLFGANG LOIDL
Institut fir Informatik, Ludwig-Mazimilians- Universitat Minchen
D 80538 Miinchen, Germany

ABSTRACT

In a mobile computation language, programmers have control over the placement of
code or active computations across open networks, e.g. programs can migrate between
locations. Mobile computations are typically stateful and interact with the state at each
location in the network. We propose mobility skeletons, a library of parameterisable
functions that encapsulate common patterns of mobile computation. Mobility skele-
tons are analogous to, but very different from, algorithmic skeletons — parameterisable
functions encapsulating common patterns of parallel computation. We have identified
three common patterns of mobile computation, and implemented them as a library of
higher-order functions in a small extension of Haskell for mobility. Each such mobility
skeleton is defined and illustrated with an example. We show how mobility skeletons
can be composed and nested, and illustrate their use in a non-trivial case study: a
distributed meeting planner. Mobility skeletons are extensible: there is a small set of
mobility primitives, and medium-level abstractions such as remote evaluation can be
defined using them. New mobility skeletons can be defined using the medium and low
level abstractions.

1. Introduction

Network technology is pervasive and more and more software is executed on
multiple locations (or machines) for a variety of reasons. Parallel programs execute
parts of a program at different locations to reduce execution time. Distributed pro-
grams support interaction at multiple locations, e.g. clients accessing a database
server. Mobile programs [8,4], relocate code or computation in an open network,
e.g. a data mining program that visits a series of repositories to extract interest-
ing information. In an open network locations may dynamically join or leave the
network.

In addition to specifying a correct and efficient algorithm, parallel, distributed
or mobile programs must specify coordination, e.g. how the program is partitioned,
how parts of the program are placed in different locations, or how they communicate
and synchronise. The coordination can be specified at different levels of abstraction,
as illustrated in Table 1. At the lowest level the programmer explicitly controls
all aspects of coordination using primitives such as send and receive. Mid-level

2 Parallel Processing Letters

Table 1: Abstraction Levels for Distributed Memory Coordination

Parallelism Distribution Mobility
High Level skeletons, HPF Behaviours mobility skeletons
Medium Level | par, process networks RPC, RMI reval, rfork
Low Level send, receive send, receive | send, receive (MChannels)

abstractions encapsulate several coordination aspects into a single construct, e.g.
a Remote Method Invocation (RMI) encapsulates inter alia communication from
the client to the server, execution of a server method, and communication back to
the client. High-level abstractions aim to automatically control most, or even all,
aspects of coordination automatically. High level abstractions are highly desirable as
they simplify the programmer’s task and reuse correct and efficient implementations.

High level abstractions are best developed for parallelism, e.g. implicitly parallel
languages like HPF [11], or algorithmic skeletons [6]. Some high level abstractions
are now emerging for distributed languages, e.g. behaviours in the Erlang distributed
functional language are templates for fault-tolerant distributed programming [1].
This paper describes mobility skeletons, one of the first high-level abstractions pro-
posed for mobility. Mobility skeletons encapsulate common patterns of mobile co-
ordination as polymorphic higher-order functions.

Mobility skeletons are analogous to, but fundamentally different from, algorith-
mic skeletons [6] which encapsulate common patterns of parallel coordination as
higher-order functions. Most algorithmic skeletons abstract over pure computa-
tions in a closed or static set of locations. In contrast mobility skeletons abstract
over stateful (or impure) computations in an open network, i.e. a dynamic set of
locations. The stateful computations must be carefully managed, in our case using
Haskell monads, to preserve the compositional semantics of the mobility skeletons.
Moreover, while some mobile coordination patterns are similar to parallel coordi-
nation patterns, e.g. an mmap broadcasts a computation to be executed on a set of
locations, others are different, e.g. mzipper repeatedly communicates a computation
to prefixes of a sequence of locations.

In Section 2, we review our small extension of Concurrent Haskell for mobility,
mHaskell. In Section 3, we add another layer of abstraction in mHaskell, show-
ing how mobile channels can be used to implement primitives for remote thread
creation (rfork) and remote evaluation (reval). Next, in Section 4, we identify
three common patterns of mobile computation and implement them as higher order
functions, or mobility skeletons. We also demonstrate nesting and composition of
mobility skeletons. In Section 5, a case study is presented, where the skeletons are
used to implement a distributed meeting planner. Section 6 concludes.

2. Low Level Coordination: mHaskell Primitives

Mobile Haskell [2] (mHaskell), is a small extension of the purely functional lan-

TOWARDS MOBILITY SKELETONS 3

guage Haskell, for writing distributed mobile software. Mobile Haskell extends Con-
current Haskell [13], an extension supporting concurrent programming, with higher
order communication channels called Mobile Channels (MChannels). MChannels
allow the communication of arbitrary Haskell values including functions, computa-
tions (IO actions) and mobile channels.

To preserve the purely functional semantics of Haskell, stateful operations like
writing to a file or a channel, are embedded in a monad that encapsulates the state.
In particular, stateful or side-effecting computations are embedded in the IO monad
and termed IO actions. Haskell computations are first-class values: a function can
receive 10 actions as arguments, return actions as results, and actions can be com-
posed to generate new actions. Hence programs can manipulate computations to
generate new abstractions [13], as illustrated by the mobility skeletons in Section 4.

data MChannel a -- abstract

type HostName = String

type ChanName = String

newMChannel :: 10 (Mchannel a)

wri t eMChannel ;1 Mchannel a ->a -> 10 ()

r eadMChannel :: Mchannel a -> 10 a

regi ster Mchannel :: Mchannel a -> ChanNanme -> 10 ()

unr egi st er MChannel : : Mchannel a -> |)

| ookupMchannel ;. HostNane -> ChanNane -> | O (Maybe (Mchannel a))

Figure 1: Mobile Channels

Figure 1 shows the MChannel primitives. The newMChannel function is used to
create a mobile channel, and the functions writeMChannel and readMChannel are
used to write/read data from/to a channel. MChannels are synchronous, when a
value is written to a channel the current thread blocks until the value is received
in the remote host. In the same way, when a readMChannel is performed in an
empty MChannel, it will block until a value is received on that MChannel. The
functions registerMChannel and unregisterMChannel register/unregister chan-
nels in a name server. Once registered, a channel can be found by other programs
using lookupMChannel which retrieves a mobile channel from the name server. The
Maybe type in Haskell has two values: Nothing and Just a, so if the lookup finds a
MChannel registered with ChanName, it returns Just mchannel, or returns Nothing
otherwise. A name server is always running on every location (a host in the network
on which the mHaskell runtime system is active) of the system, and a channel is
always registered in the local name server with the registerMChannel function.
MChannels are single-reader channels, meaning that only the program that created
the MChannel can read values from it. Pure functional values are evaluated to
normal form before being communicated, but values of type IO are not executed,
as explained in [2]. In mHaskell, computations are copied between machines and no
sharing is preserved across machines. An operational semantics for the MChannel
primitives is given in [3].

Figure 2 depicts a pair of simple programs using MChannels. First a program

4 Parallel Processing Letters

Coomore).

A Tl
i1 -- 2.
i register M channel mv " myC" el lookupM Channel " ushas.hw.ac.uk" " myC"
Prog 1 3. Connection is estatjished =~ __
Prog 2
ushas.hw.ac.uk Ixtrinder.hw.ac.uk

Figure 2: Example using MChannels

running on a location called ushas registers a channel mv with the name "myC" in
its local name server. When registered, the channel can be seen by other locations
using the lookupMChannel primitive. After the lookup, the connection between
the two locations is established and communication is performed with the functions
writeMChannel and readMChannel.

2.1. Discovering Resources

One of the objectives of mobile programming is to better exploit the resources
available in a network. Hence, if a program migrates from one location of a network
to another, this program must be able to discover the resources available at the
destination. By resource, we mean anything that the mobile computation would
like to access in a remote host, from simple files to databases.

type ResName = String

registerRes :: a -> ResNane -> 10 ()
unregi sterRes :: ResName -> 10 ()
| ookupRes :: ResNane -> | O (Maybe a)

Figure 3: Primitives for resource discovery

Figure 3 presents the three mHaskell primitives for resource discovery and reg-
istration. All locations running mHaskell programs must also run a registration
service for resources. The registerRes function takes a name (ResName) and a
resource (of type a) and registers this resource with the name given. The function
unregisterRes unregisters a resource associated with a name, and lookupRes takes
a ResName and returns a resource registered with that name in the local registration
service. To avoid a type clash, if the programmer wants to register resources with
different types, she has to define an abstract data type that will hold the different
values that can be registered.

A better way to treat type clashes is to use dynamic types. The GHC [9]
Haskell compiler has basic support for dynamic types, providing operations for
injecting values of arbitrary types into a dynamically typed value, and operations
for converting dynamic values into a monomorphic type:
toDyn :: Typeable a => a -> Dynamic

TOWARDS MOBILITY SKELETONS 5

fromDyn :: Typeable a => Dynamic -> a -> a
fromDynamic :: Typeable a => Dynamic -> Maybe a

The following simple example shows how dynamic types can be used:
let list = [toDyn not,toDyn (id::Int->Int)] in

let myNot = fromDyn (head list) in

myNot True

In the program, 1ist has type [Dynamic]. Note that the polymorphic function
id :: a -> ahas to be type casted into a monomorphic type in order to became
a dynamic value.

3. Medium Level Coordination: Remote Thread Creation and Remote
Evaluation

Programming using MChannels is low level: the programmer has to specify de-
tails such as thread creation, communication and synchronisation of computations.
In this section we add another layer of abstraction to mHaskell by introducing two
new functions, one for remote thread creation (rfork), and another for remote
evaluation of computations (reval). These functions have straightforward imple-
mentations using MChannels, which are explained in Appendix A.

A thread can be created in a remote location with the rfork function:
rfork :: I0 () -> HostName -> I0 ()

It takes an IO action as an argument but instead of creating a local thread,
it forks a new thread on the remote host HostName to execute the action. It is
asynchronous: rfork does not wait until the remote thread finishes its execution
before returning.

A computation can be sent to be evaluated on a remote location using the reval
(remote evaluation) function:
reval :: I0 a -> HostName -> I0 a

It send its argument to be evaluated on a remote host and blocks until the result
of the evaluation is returned. The reval function has a simple implementation using
mobile channels and rfork (see Appendix A).

The rfork function could also be implemented in terms of reval using the
following identity:
rfork comp host = forkI0 (reval comp host >> return ())

A new local thread is forked (using forkIO) so rfork will not stay blocked
waiting for the result of reval. The (>>) operator is the monadic operation for
combining IO values [13].

The abstraction provided by reval is similar to that provided by Java™’s
RMI [10], the difference being that reval sends the whole computation (including
its code) to be evaluated on the remote host, and RMI uses proxies (stubs and
skeletons) in order to give access to remote methods.

4. High Level Coordination: Mobility Skeletons

6 Parallel Processing Letters

This section identifies three common patterns of mobile computation and im-
plements them as higher order functions, or Mobility Skeletons in mHaskell, using
reval and rfork from Section 3. While the first mobility skeleton (mmap) is analo-
gous to the algorithmic skeleton of a task farm, even though mmap does not evaluate
values in parallel, the second and third have no such correspondence.

4.1. mmap: Broadcast

A common pattern of mobile computation is to broadcast a computation to be
executed on a set of locations. The mmap skeleton (see Figure 4) broadcasts its first
argument to be executed on every host that is an element of its second argument.
It returns a list with the values returned from the remote executions.

()

host2 host3 host4
comp \ comp } { y/{
'es
res
res
map

host1
mmap comp [“host2”,”host3”,”host4”’]

Figure 4: The behaviour of mmap

map:: 10 b -> [HostNane] -> 10 [b] mmap_:: 1 Q) -> [HostNanme] -> 1 ()
mmap f hs = mapM (reval f) hs mmap_ f hs = mapM_ (rfork f) hs

Figure 5: The definition of the mmap and mmap_ skeletons

The implementation of mmap (see Figure 5) executes a remote evaluation of its
argument f on every host of the list hs. For some examples, it is useful to have a
simpler asynchronous version of mmap, that broadcasts the action to the locations,
without waiting for any results, this version is called mmap_ (see Figure 5).

As an example using mmap, we present a program that determines the load of all
locations in a network:
networkLoad :: [HostNames] -> I0 [Int]
networklLoad hosts = mmap getLocallLoad hosts

If all locations have a getLoad function, which returns the load of the location,
registered as a resource ("getLoad"):
registerRes getLoad "getLoad"
then the getLocalLoad function can be implemented as follows:

getLocalload :: I0 Int
getLocalLoad = do
res <- lookupRes '"getLoad"

TOWARDS MOBILITY SKELETONS 7

case res of
Just getLoad —> getLoad

This function, when called on a location, looks for a resource named "getLoad"
and executes it, returning the load of the current location.

4.2. mfold: Distributed Information Retrieval

A common pattern of mobility is a computation that visits a set of locations
performing an action at every location and combining the results (see Figure 6).
This pattern matches the concept of a distributed information retrieval (DIR) sys-
tem. A DIR application gathers information matching some specified criteria from
information sources dispersed in the network. This kind of application has been
considered “the killer application” for mobile languages [8].

mfold mfold

host2 host3 P host4
/
mfol ~ result
r'e

host1
mfold action op v [*host2”,”host3”,”host4”’]

Figure 6: The behaviour of mfold

An mHaskell skeleton with this behaviour could have the following type:
mfold :: I0 a -> (a -> a -> a) -> a -> [HostName] -> I0 a

It takes as arguments an action (of type I0 a) to be executed on every host, a
function to combine the results of these actions, an initial value, a list of locations
to visit, and returns the result of combining the values of type a. Notice that the
type resembles the classic function fold present in every functional language, that
combines the elements of a list using an operator; hence the name of the skeleton
is mfold. The mfold skeleton is implemented using a more general asynchronous
skeleton called mfold._ (see Figure 7).

nfold_:: IOa->(a->a->a) ->a->(a->10()) ->[HostNane] -> 10 ()
nfold_f op v final [] = final v
nfold_f op v final (h:hs) = rfork (code f op v final hs) h
where code f op v final hosts = do
v2 <- f
nfold_ f op (op v v2) final hosts

Figure 7: The definition of the mfold_ skeleton

The implementation of mfold then looks as follows:

mfold action op v hosts = do

8 Parallel Processing Letters

mch <- newMChannel

mfold_ action op v (\x -> writeMChannel mch x) hosts

readMChannel mch

As can be seen in Figure 7, mfold_ takes an extra argument that tells what
should be done with the result of the computation once the program has visited all
the hosts in the list: if the list of locations to be visited is empty, then it simply
applies the extra function to the result. If the list of locations to visit is not empty
the computation code is run on the head of the list. The function code executes
the action f on the current host and then does a recursive call to mfold_, combining
the current value with the result from the execution of f.

In the implementation of mfold, the extra function in mfold_ is used to send the
result of the computation back to the host that called mfold, through a channel.

As a simple example, mfold can be used to construct an application that com-
putes the total load of a network. Using the getLocalLoad function defined in the
previous section, totalLoad can be implemented as follows:
totalLoad :: [HostName] -> I0 Int
totalLoad hosts = mfold getLocalload (+) O hosts

The mobile function totalLoad executes getLocalLoad on every location of
hosts and combines the results produced on every host using the (+) operator.

We can modify the behaviour of the program just by modifying the arguments
passed to mfold. For example, this program:
list <- mfold (getLocalLoad >>= \x-> return [x]) (++) [l listoflocations

will collect the load of all the locations in a list, so that the load of the network
can be computed later.

Although some of the programs written using mmap can be expressed using mfold,
both skeletons have completely different operational behaviours. mfold always ex-
ecutes its continuation on the next location to be visited, while in mmap, the flow of
control stays on the location that made the call to it (as can be seen in Figures 4
and 6).

The mfold skeleton is very different from a parallel fold, while in the first the
list is used only to indicate to where the computation should move next, in the latter
the work is done by splitting its work list into a number of sublists that are then
broadcasted to the processors available, and the results of the fold are combined
using a parallel divide and conquer algorithm.

4.83. mzipper: Iteration

Another pattern of mobile computation is a computation that visits a sequence
of locations, looking for some value that all the locations have to agree with. The
value is tested against a predicate on every location, and if it fails, the computation
restarts, visiting the sequence of locations from the beginning with a new value, as
depicted in Figure 8.

As the computation has to move back and forth on the list of locations, the
skeleton is called mzipper (mobile zipper), an analogy to the function zipper [12],

TOWARDS MOBILITY SKELETONS 9

- B == --mzipper
e -mzipper .

2 N *\
@ meeey [: e [}
host2 host3 , 7 host4

v
mzipp result
¥’

host1
mzipper mch action pred [“host2”,”host3”,”host4”]

Figure 8: The behaviour of mzipper

that describes how to navigate on different data structures.

The mzipper template has the following type:

mzipper :: ([a]l -> I0 ([al,Maybe a)) ->
(a -> I0 Bool) -> [HostName] -> IO (Maybe a)

It takes as arguments a function that receives a list of values that the locations
disagreed in the past and returns a new value, a predicate that indicates if the
current location agrees with the current value, a list of locations to visit, and returns
the final value, if there exists one. The mzipper skeleton is also implemented using
an asynchronous skeleton called mzipper_, that takes an extra argument that tells
what it should do with the result once the last host is reached. The implementation
of mzipper_ is more complex than the one of the other skeletons, and is described
in Appendix B.

As an example, the mzipper skeleton can be used to implement a program that
keeps visiting locations on a network, and only returns when the load on all the
locations that it visited is below a certain threshold. If one of the locations has load
above the threshold, it starts visiting the locations again:
isLoadBelow :: Int -> [HostName] -> I0 Bool
isLoadBelow threshold hosts = do

res <- mzipper (myThreshold threshold) isBelowTh hosts
case res of
Nothing -> isLoadBelow threshold hosts
Just x -> return True
where
myThreshold = (...)
isBelowTh = (...)

The isLoadBelow function receives as an argument a threshold and a list of
locations to visit, and returns True when the load on all the locations is below the
threshold. It uses uses mzipper to check if all the locations in the network have
the appropriate load. Every time mzipper returns Nothing through the MChannel
mch, isLoadBelow restarts the search by calling itself. If mzipper returns a value, it
means that all the locations in the network, at a certain point, had the load under

10 Parallel Processing Letters

the threshold, and it can return True.

The work that is performed by mzipper on every location that it visits, is spec-
ified by the two locally defined functions isBelowTh, that is the predicate, and
myThreshold, that given a threshold, and the old values of the search, returns a
tuple with the old values and the new one.
isBelowTh :: Int -> IO Bool
isBelowTh th = do

load <- getlLocalLoad
return (load<th)
myThreshold :: Int -> [Int] -> I0 ([Int], Maybe Int)
myThreshold th list = do
load <- getLocalLoad
if (load < th) then (return ([1, Just th))
else (return ([],Nothing))

isBelowTh uses the previously defined function getLocalLoad to get the load of
the current location and compares it with the threshold. The myThreshold function
is used to restart the computation. Given a threshold and a list of old values, it
will always return the same threshold if the load of the current location is below the
threshold, and returns an empty list as the list of old values is never used in this
computation. As myThreshold is only called in the first location to be visited, in
order to start the computation again, it will return Nothing if the load in the current
location is not below the threshold. That happens because if the first location in
the list can’t start the computation, there is nothing else it can do. That is why the
isLoadBelow function has to call itself again every time mzipper returns Nothing.

4.4. Nesting and Composing Skeletons

One of the advantages of using a functional language to implement the mobility
skeletons, is that it facilitates composing and nesting skeletons in order to model
new behaviours. In this section we present examples that explain these concepts.

As an example of nesting, suppose that we have a list of locations that are
gateways to networks, and we want to compute the total load on those networks.
First, we could implement an IO action that asks the gateways for the hosts in their
local network, and then uses totalLoad, which uses mfold in its implementation,
to compute the load:

getTotalLoad :: I0 Int
getTotalLoad = do
res <- lookupRes "myLocations"
case res of
Just getMyLocations -> do
1<- getMyLocations
r<- totalLoad 1
return r

Then, to compute the load of the gateways, the programmer just has to broad-
cast getTotalLoad to the gateways:
result <- mmap getTotallLoad gateways

TOWARDS MOBILITY SKELETONS 11

Stateful computations in Haskell (e.g. mobile computations, and skeletons) are
always embedded in the IO monad, as discussed in Section 2. IO values are com-
posed using the (>>=) operator. For example, if the programmer wants to calculate
the load of a network and then broadcast this value to all the locations, she could
compose the totalload function with mmap_:

getLoadAndBC hosts = totalLoad hosts >>= \ load -> mmap_ (update load) hosts

where update updates a resource in all the hosts with the load of the network.
In fact, all the examples in this text in which the do notation [13] is used, are
compositions of IO values.

5. Case Study: The Distributed Meeting Planner

To demonstrate the usefulness of the abstractions presented in the previous sec-
tions, we show the development of a larger mobile application. The objective is to
demonstrate that mobile applications can be constructed easily using our mobility
skeletons, and that almost all the communication is encoded in the skeletons, sim-
plifying mobile programming. The application is a distributed meeting planner.
When a user wants to arrange a meeting with several others, she sends a mobile
computation that visits the locations of the people involved, trying to find a suitable
time.

In the next section, we present a version of the program using mzipper. In
Section 5.2, some of the problems of the meeting planner are discussed and a new
version using mfold is described.

5.1. A Version Using mzipper

The core of the application is a function called timeMeeting, that takes as an
argument a list of locations to visit and returns the time (time here is represented
as a String), that everyone agreed for the meeting, if there exists one.
timeMeeting :: [HostName] -> I0 (Maybe String)
timeMeeting hosts = mzipper getNewTime timeOK hosts

The function timeMeeting uses mzipper to visit the locations and check for
the right time for the meeting. The idea is that, mzipper will look for an empty
slot in the time table of the current location, the location that made the call to
timeMeeting, and then visit the other locations in the list to check if they agree
with the time. If one of the locations does not, then it will come back to the first
location and ask for a different time. mzipper will return once all the locations
agreed with a time, or when the first location does not have any other time to
suggest.

mzipper is called with two arguments: the getNewTime function that is used
every time mzipper needs to find a new time, and timeOK that is executed on every
location to check if the location agrees with the current time.

The getNewTime function receives as an argument the list of old times, and
returns a tuple containing the same list and a new time if there is one available:

12 Parallel Processing Letters

getNewTime :: [String]l -> I0 ([Stringl, Maybe String)
getNewTime oldtimes = do

ft <-lookupRes "newfreetime"

case ft of

Just dyn -> case (fromDynamic dyn) of
Just getFreeTimeIO -> do
res <- getFreeTimeI0 oldtimes
return (oldtimes,res)

getNewTime looks for a resource (the getFreeTimeIO function) registered in
the resource server with the name "newfreetime". This function exists on every
location that is running the meeting planner. It checks the local tables of the
program to see if there is a new time different from the ones that are in the oldtimes
list. Here it is possible to see that mzipper is used in a different way than in the
isLoadBelow example. As the computation now uses its old values to compute the
new ones, getNewTime always returns the old times in the tuple, while myThreshold
just returns an empty list.

As every location has its local copy of getFreeTimeIO (every location has a
different time table), it is considered a resource and it must be registered in the
resource server on every location so the mobile computation can find it:
main = do

registerRes (toDyn getFreeTimesI0) "freetimes"
registerRes (toDyn getFreeTimeI0) "newfreetime"
startUserInterface

When the meeting planner is started on every location, the first action that
it takes is to register its local resources. As in this case we have more than one
resource with different types registered (getFreeTimesIO is used by time0OK), we
need to register them as dynamic values using the toDyn function.

The second argument given to mzipper is timeOK :: string -> I0 Bool,
which is executed on every location to check if the current time is suitable. It just
looks for a resource called "freetimes", and executes it to get the free times of the
current location. Then, it checks if the current time for the meeting is included in
that list. Based on the result of this function, the mobile computation decides if it
has to migrate to the next host or to go back to the first one to ask for a new time.

Finally, once the application has the time for the meeting, it can broadcast the
time to all the locations using mmap_:

mmap_ (updateTime time) listofhosts

where updateTime is a function that updates the tables on all the hosts with the
time for the meeting.

5.2. Using mfold

In the previous implementation of the meeting planner, whenever one of the lo-
cations does not agree with the time for the meeting, the computation returns to the
first location and restarts the entire search. As every location already has a function
that returns all the free times available (getFreeTimesI0), the program could be

TOWARDS MOBILITY SKELETONS 13

optimised to carry not only one free time, but a list with all the free times available
from the first location. A function like combineStrings :: [String] -> [String]
-> [String] that, given two lists of strings, computes the intersection of these two
lists, could be used to combine the result produced by executing getFreeTimesIO
on all the locations that will attend to the meeting. With this optimisation in mind,
one could write a new definition for createMeeting:
createMeeting :: [HostName]l -> IO [String]
createMeeting hosts = do
myfreetimes <- getFreeTimesIO
times <- mfold getLocalTimes combineStrings myfreetimes hosts
return times
Now, createMeeting is described in terms of a mfold. It will visit all the
locations in hosts, executing getLocalTimes on them, and combining the results
produced on every host using combineStrings.
The getLocalTimes function looks for a resource called "freetimes", and re-
turns the result produced by its execution.
getLocalTimes = do
ft <-lookupRes "freetimes"
case ft of
Just getFreeTimesI0 -> getFreeTimesIO
Finally, as in the previous example, mmap_ can be used to broadcast the time of
the meeting to all the participants.
The mfold version of the meeting planner is more realistic because the time
table that the mobile program carries is small. If the time table is too large to be
communicated, e.g. a database, the mzipper version would be more appropriate.

6. Conclusions

We have proposed encapsulating common patterns of mobile code as higher-
order functions or mobility skeletons. While mobility skeletons are inspired by algo-
rithmic skeletons, which encapsulate patterns of parallel computation on a static set
of locations, they differ in several important aspects: mobility skeletons encapsu-
late the coordination of stateful computations, often describe different coordination
patterns from algorithmic skeletons, and are defined on open networks.

Mobility skeletons are implemented as a library of higher-order functions in a
small superset of Haskell. Mobility skeletons combine stateful computations using
monads, allowing the programmer to use familiar notation for the code executed on
each machine, retaining the semantics of the underlying purely-functional language,
and helping to reason about programs. An operational semantics for mHaskell,
based on monadic actions, is proposed in [3].

Features of functional languages, such as higher order functions and polymor-
phic type systems, make it easier for programmers to abstract over similar patterns
of computation, and although many mobile languages are based on the functional
paradigm, (e.g. [7,14,5]), as far as we know, no one tried to specify common commu-
nication behaviours in mobile programming as higher order functions, or skeletons.

14 Parallel Processing Letters

Mobility skeletons are easily parameterised, composed, nested and extended us-
ing standard monadic composition. The set of primitives for mobility is deliberately
kept small, and we have demonstrated how to build higher levels of abstraction, such
as remote thread creation and remote evaluation, on top of these primitives. As
a case study, we presented a distributed meeting planner, which demonstrates the
usability of mobility skeletons and the ability to hide the coordination structure
in mobile code. Although the skeletons were implemented in mHaskell, we believe
that the patterns presented here can be implemented in other mobile/distributed
languages, and we are currently porting the skeletons to Java.

As future work, we plan to investigate cost models for our mobility skeletons
to predict when and where computations should migrate to. We are currently in-
vestigating identities of our skeletons such as: mmap_ (£>>g) hs = (mmap_ f hs) >>
(mmap_ g hs) that can be proved using standard techniques, in this case structural
induction over the host list hs. For a real-world use of mobile code, security is
an important concern to prevent mobile code from performing malicious computa-
tions. In the long term we plan to employ proof-carrying-code techniques, where
a certificate about the behaviour of the mobile code is sent together with the code
itself. Currently, we are using such techniques for guaranteeing bounded resource
consumption for mobile code in a different context.

References

[1] J. Armstrong. Making reliable distributed systems in the presence of errors. PhD
thesis, Royal Institute of Technology, Stockholm, 2003.

[2] A. R. D. Bois, P. Trinder, and H.-W. Loidl. Implementing Mobile Haskell. In Trends
in Functional Programming, volume 4. Intellect, 2004.

[3] A. R.D. Bois, P. Trinder, and H.-W. Loidl. mHaskell: Mobile computation in a purely
functional language. In IFL 04, Luebeck, Germany, 2004.

[4] L. Cardelli. Abstractions for mobile computation. In Secure Internet Programming,
pages 51-94, 1999.

[5] H. Cejtin, S. Jagannathan, and R. Kelsey. Higher-order distributed objects. ACM
Transactions on Programming Languages and Systems (TOPLAS), 17(5):704-
739, 1995.

[6] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
Pitman, 1989.

[7] S. Conchon and F. L. Fessant. Jocaml: Mobile agents for Objective-Caml. In
ASA’99/MA’99, Palm Springs, CA, USA, 1999.

[8] A. Fuggetta, G. Picco, and G. Vigna. Understanding Code Mobility. Transactions on
Software Engineering, 24(5):342-361, May 1998.

[9] The Glasgow Haskell Compiler. http://www.haskell.org/ghc/, WWW page, 2004.

[10] W. Grosso. Java RMI. O’Reilly, 2001.
[11] High Performance Fortran. http://www.crpc.rice.edu/HPFF/, WWW page, 2004.

] G. Huet. The zipper. Journal of Functional Programming, 7(5):549-554, 1997.

] S. P. Jones. Tackling the awkward squad: monadic input/output, concurrency, ex-
ceptions, and foreign-language calls in Haskell. In Engineering theories of software
construction, pages 47-96. 10S Press, 2001.

[14] P. T. Wojciechowski. Nomadic Pict: Language and Infrastructure Design for Mo-

TOWARDS MOBILITY SKELETONS 15
bile Computation. PhD thesis, Wolfson College, University of Cambridge, 2000.

Appendix A Definition of rfork and reval

The rfork function can be implemented using MChannels. Suppose that every
location in the system also runs a remote fork server (Figure A.1). The startRFork

startRFork :: 10 () rfork :: 10O () -> HostNane -> 10 ()
start RFork = do rfork io host = do
nch <- newMChannel ch <- | ookupMchannel host host
name <- full Host Nane case ch of
regi st er MChannel nth name Just nnt ->do
rforkServer nth wri teMChannel nnt io
wher e Nothing -> error "rfork: There
rforkServer nch = do is no renote server
conp <- readMchannel nth runni ng"
forkl O comp

rforkServer nth

Figure A.1: The remote fork server and primitive

server creates a channel with the name of the location in which it is running. After
that, it keeps reading values from the channel and forking local threads with the
IO actions received. If all locations in the system are running this server, we can
implement the rfork primitive as in Figure A.1. The rfork function looks for
the channel registered in the startRFork server, and sends the computation to be
evaluated on the remote location host. The reval function (Figure A.2), uses rfork
to execute execMobile on the remote location. execMobile takes two arguments,
the first is the actual computation to be executed on the remote host, and the second
is a MChannel used to return the result of the computation back. The call to reval
blocks reading the value from the MChannel until it is sent by execMobile.

reval :: 10a -> HostNanme -> 10 a
reval job host = do
nch <- newMChannel
rfork (exechMbile job nth) host
result <- readMchannel nth
return result
wher e
execWbbile :: 1O a -> Mchannel a -> 10 ()
execMobil e job nth = do
resp <- job
wri t eMChannel nth resp

Figure A.2: The implementation of reval

Appendix B Definition of mzipper

The mzipper_ skeleton (Figure B.1) starts by checking if the first location to be
visited is the current location. In that case, it asks for the first value to be agreed,
using its argument action. As the search is just starting, the list of values on which

16 Parallel Processing Letters

the locations disagreed is empty. The action function should return a tuple with
the first element being the same list that it received as an argument if it is needed
for the computation, or an empty list otherwise, and the second is the value that
must be agreed. If a value is not found, it returns Nothing to the action final,
that should tell the skeleton what to do with the result. Otherwise the recursive
zipper function is called (rmzipper). It takes two extra arguments, the list and
the value. If the current location is not the first element of the list then we start
mzipper_ again, with the same arguments, on the head of the list.

neipper_::([a] -> 10 ([a], Maybe a)) -> (a -> 10 Bool) ->
(Maybe a -> 10 ()) -> [HostNanme] -> 10 ()
nei pper _ action pred final (fst:hosts) = do
host <- full Host Nanme
if (host == fst)
then (do
(I,mv) <- action []
case nv of
Not hing -> final Nothing
Just v ->rnzipper v | action pred final [fst] hosts)
el se (rfork (neipper_ action pred final (fst:hosts)) fst)
wher e
rnmeipper::a ->1[a] -> ([a] ->10([a],Maybe a)) -> (a->10Bool) ->
(Maybe a -> 10 ()) ->[HostNane]-> [HostNanme] -> 10 ()
rnei pper v ol dval ues action pred final oldhosts [] = final (Just v)
rmei pper old ol dvalues action pred final [] (host:hosts) = do
(I,mv) <- action ol dval ues
case nmv of
Not hing -> final Nothing
Just v -> rnzipper v I action pred final [host] hosts
rnei pper v (ol dval ues) action pred final ol dhosts (x:xs) =
rfork (code v oldvalues action pred final (x:oldhosts) xs) x
code v ol dvalues action pred final ol dhosts hosts= do
bool <- pred v
case bool of
True -> rnzipper v ol dvalues action pred final ol dhosts hosts
Fal se -> do
| et newhosts = (reverse ol dhosts) ++ hosts
rfork (rneipper v (v:oldvalues) action pred final [] newhosts)
(head newhost s)

Figure B.1: The definition of the mzipper_ skeleton

The local function rmzipper takes two lists of locations as arguments; the first
is the locations that were already visited and the second the ones yet to be visited.
The base case of rmzipper is when the list of already visited locations is empty,
meaning that a value was not found and the search has to start again. As before,
it looks for a new value using its argument action, and if there is no new value it
returns with Nothing. Otherwise, it continues the search by calling rmzipper again
and passing the new value to it as an argument.

The second case of rmzipper checks if the current location agrees with the
current value by using the predicate argument (pred). If it agrees, the search
continues to the next location, if it does not, the list of hosts to visit is recreated as
newhosts and the search starts again from the beginning.

