
Seq no more: Better Strategies for Parallel Haskell

Simon Marlow
Microsoft Research

simonmar@microsoft.com

Patrick Maier
Heriot-Watt University

P.Maier@hw.ac.uk

Hans-Wolfgang Loidl
Heriot-Watt University
H.W.Loidl@hw.ac.uk

Mustafa K Aswad
Heriot-Watt University

mka19@hw.ac.uk

Phil Trinder
Heriot-Watt University
P.W.Trinder@hw.ac.uk

Abstract
We present a complete redesign of Evaluation Strategies, a key ab-
straction for specifying pure, deterministic parallelism in Haskell.
Our new formulation preserves the compositionality and modular-
ity benefits of the original, while providing significant new HWL:
usability benefits. First, we introduce an evaluation-order monad
to provide clearer, more generic, and more efficient specification of
parallel evaluation. Secondly, the new formulation resolves a sub-
tle space management issue with the original strategies, allowing
parallelism (sparks) to be preserved while reclaiming heap asso-
ciated with superfluous parallelism. Related to this, the new for-
mulation provides far better support for speculative parallelism as
the garbage collector now prunes unneeded speculation. Finally,
the new formulation provides improved compositionality: we can
directly express parallelism embedded within lazy data structures,
producing more compositional strategies, and our basic strategies
are parametric in the coordination combinator, facilitating a richer
set of parallelism combinators.
We give measurements over a range of benchmarks demonstrating
that the runtime overheads of the new formulation relative to the
original are low, and the new strategies even yield slightly better
speedups on average than the original strategies.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.1.3 [Concurrent Programming]

General Terms Performance and Measurement

Keywords Parallel functional programming, strategies

1. Introduction
Evaluation strategies (?), or “strategies” for short, are a key ab-
straction for adding pure, deterministic, parallelism to Haskell pro-
grams. Using strategies, parallel specifications can be built up in
a compositional way, and the parallelism can be specified inde-
pendently of the main computation. Despite the apparent conflict

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

between lazy evaluation and the eagerness implied by parallelism,
evaluation strategies show that non-strictness and parallelism can
co-exist in a coherent programming model, and non-strictness even
has some advantages for parallel languages (??). Strategies have
been used for some 15 years in a number of parallel variants of
Haskell (???).

This paper presents a complete redesign of the strategy abstraction.
HWL: achieving a generalisation of custom-made abstractions for
parallelism to a general-purpose evaluation monad Our reformu-
lation preserves the key compositionality and modularity benefits
of the original strategies (Section 4), together with their low time
and space overheads (Section 6), while providing the following ad-
ditional benefits:

HWL: claim SeqList as a DeepSeq replacement?

HWL: more efficient spec. or easier to use spec?

• Clearer, more generic and more efficient specification of par-
allel evaluation. Describing a parallel algorithm requires speci-
fying an order of evaluation, something which the Haskell lan-
guage deliberately, and rightly, leaves unspecified. In the new
strategies we introduce an evaluation-order monad, allowing
the ordering of a set of evaluations to be specified in a perspicu-
ous and compositional way (Section 4). Moreover, by using Ap-
plicative Functors and the Traversable class (?), we can de-
fine generic regular strategies over data structures (Section 4.5).
Our framework also supports fusion, which allows the interme-
diate lists introduced by modular strategies to be eliminated by
the compiler (Section 4.8).

• The new strategies resolve a subtle space management issue
where the original strategies retain heap unnecessarily (Sec-
tion 3). The crux of the space management challenge is to
preserve parallelism (sparks), while being able to reclaim the
heap associated with superfluous parallelism. Our measure-
ments demonstrate improved space behaviour for existing par-
allel programs simply by switching to the new strategies (Sec-
tion 6). Furthermore, the new strategies support speculative par-
allelism with unnecessary speculative tasks being pruned auto-
matically by the garbage collector, something which was not
possible with original strategies.

• There is a class of important parallel coordination abstractions
that cannot be expressed as original strategies, but can be ex-
pressed in the new formulation. The feature that this class of
abstractions has in common is that they all embed parallelism
within lazy components of a data structure, a technique that
is essential for parallelising stream-processing pipelines. In the

original strategies we could write these functions, but they were
not instances of the strategy abstraction and so could not be
used compositionally. These drawbacks are resolved by the new
framework (Section 5.1).

• Motivated by wanting to have different versions of par to con-
trol locality in large architectures, the new formulation allows
for abstracting over the coordination combinator used (Sec-
tion 4.4).

Sadly, however, we must all pay for our lunch, and the new formu-
lation raises three issues.

• There is some extra complexity in the implementation HWL:
or: construction of new of strategies. However, many casual
users of the library are insulated from the changes: using and
composing strategies works exactly as before, modulo some
renaming. Only users who need to define their own strategies
will have to become familiar with the new idioms, and there
should now be fewer such users given that we provide generic
strategies over any Traversable data type.

• The original strategies provided a strong identity safety prop-
erty, namely that (‘using‘ s) is always an identity function
for any Strategy s. The new strategies cannot provide the same
guarantee, although the library strategies are identities, and the
combinators preserve the property. Safety can be regained at the
expense of expressiveness by making the strategy type abstract,
giving the programmer a choice of expressiveness/safety levels
(Section 5.4).

• To express control parallelism an original strategy may freely
spark expressions. The corresponding new strategy must care-
fully preserve any sparked expressions (Section 4.6).

The new strategies are incorporated in the Haskell parallel pack-
age1, and the version we describe in this paper will be released as
version 2.3HWL: or: 3.0. All the code for our benchmarks is avail-
able online (Section 6), and the results were obtained with a recent
development GHC snapshot (6.13 as of 20.5.2010).

2. Original Strategies
Pure parallelism in Haskell is achieved using only two primitives,
par and pseq, with the following types2:

par :: a -> b -> b
pseq :: a -> b -> b

The par combinator introduces a potential for parallel evaluation.
When par is applied to two arguments, it returns the value of its
second argument, while its first argument is possibly evaluated in
parallel. We say “possibly”, because as far as the program is con-
cerned, the result of par a b is always b; it makes no difference
to the meaning of the program whether a is evaluated in parallel or
not. We should think of par as an annotation; it merely hints to the
Haskell implementation that it might be beneficial to evaluate the
first argument in parallel.

What if the computation evaluated in parallel has the value ⊥,
or an error? Surely then it makes a difference to the meaning of
the program whether it is evaluated, or not? In fact it does not –

1 http://hackage.haskell.org/package/parallel
2 The original presentation used seq rather than pseq (?); however, Haskell
later adopted a seq operator but without the order-of-evaluation property
required for parallel execution (?). Hence, to avoid confusion with Haskell’s
seq, we now use pseq for expressing sequential ordering of evaluation.

the system is required to ensure that the semantics of par a b is
always b, regardless of the value of a, ⊥ or otherwise. In practice,
this isn’t a problem for typical Haskell implementations, as a lazy
computation can already have value ⊥.

It is not enough to provide par alone, because generally when sug-
gesting that something is to be evaluated in parallel, it is useful to
be able to say what it is to be evaluated in parallel with. Haskell
neither specifies nor requires a particular order of evaluation, so
normally the programmer has no control over this aspect of their
program’s execution. We have no control over when a particular
call to par will be evaluated, or what will be evaluated before or
after it (or indeed in parallel with it). This is the reason for pseq: a
call pseq a b introduces an order-of-evaluation requirement that
a is evaluated to weak-head normal form before evaluating b and
returning its value. HWL: maybe defer WHNF mentioning to high-
light “order” here The denotational semantics of pseq are

pseq a b = ⊥, if a = ⊥
= b, otherwise

and the operational semantics are that a must be evaluated to weak
head normal form before b is evaluated (?).

An example to illustrate the usage of par and pseq follows, using
the traditional Fibonacci function. More examples can be found in
the literature (??).

fib :: Int -> Int
fib n

| n <= 1 = 1
| otherwise = let

x = fib (n-1)
y = fib (n-2)

in
x ‘par‘ (y ‘pseq‘ x + y + 1)

The Fibonacci computation is shaped like a binary tree. At each
node of the computation we combine par and pseq to evaluate one
branch in parallel with the other branch. The pattern here is a com-
mon one: in x ‘par‘ (y ‘pseq‘ e), typically e involves both
x and y. The effect of this pattern is to cause x to be evaluated in
parallel with y. When the evaluation of y is complete, computation
proceeds by evaluating e. Here the pseq is used to control evalua-
tion order.

The parallelism here is independent of the number of processors;
every time par is evaluated it creates a new opportunity for some
work to be evaluated in parallel (a spark), but the implementation
is free to ignore these opportunities. Indeed typical usage of par
creates many more sparks than there are processors available to
execute them, and the surplus sparks are simply discarded by the
runtime system.

2.1 Strategies

The basic programming model described above provides the raw
material for expressing parallelism in Haskell. Building on this,
strategies were invented as an abstraction layer over par and pseq
to allow larger-scale parallel algorithms to be expressed.

Strategies are a remarkably simple idea. In the original formulation,
a strategy is a function of type a -> () for some a:

type Strategy a = a -> ()

Thus, a Strategy may evaluate its argument either in full or in part,
and it may only return () (or diverge). Crucially, using par and

http://hackage.haskell.org/package/parallel

pseq, a strategy may specify a recipe for evaluating its argument in
parallel.
Some basic strategies can be defined as follows.

r0 :: Strategy a
r0 x = ()

rwhnf :: Strategy a
rwhnf x = x ‘pseq‘ ()

rnf :: NFData a => Strategy a
-- rnf is a method in the class NFData

r0 is a strategy that evaluates nothing of its argument, rwhnf
evaluates its argument to weak-head normal form, and rnf eval-
uates its argument completely. The definition of rnf depends on
the structure of its argument, so it is defined using a type class
NFData, which has to be instantiated separately for each data type
(the strategies library provides instances for common types such as
Booleans, Integers, lists and tuples).
Strategies are applied with the using combinator:

using :: a -> Strategy a -> a
using x s = s x ‘pseq‘ x

So far we haven’t presented any strategies containing actual paral-
lelism. A simple one is parList, which applies a strategy to each
element of a list in parallel:

parList :: Strategy a -> Strategy [a]
parList strat [] = ()
parList strat (x:xs) = strat x ‘par‘

parList strat xs

The function parList illustrates the compositional nature of the
strategies abstraction: it takes as an argument a strategy to apply to
each list element, and returns a strategy for the whole list. The strat-
egy argument is typically used to specify the evaluation degree, that
is, how much each list element should be evaluated. For instance,
parList rwhnf causes each spark to evaluate its list element as
far as the top-level constructor, whereas parList rnf evaluates
the elements completely. Various evaluation degrees between these
two extremes are possible, such as evaluating the spine of a list (we
give examples later in Section 4.7).
The parList function can also be used to illustrate the modular
nature of strategies; for example,

parMap strat f xs = map f xs ‘using‘ parList strat

The parMap function takes a strategy strat, a function f, and a list
xs as arguments and maps the function f over the list in parallel,
applying strat to every element. Note how the construction of
the result with map, on the left of using, is separate from the
specification of the parallelism, on the right. This is a small-scale
example, but the idea also scales to much more elaborate settings
(?).
The key to the modularity is lazy evaluation. The argument to a
strategy can be a complex data structure with lazy components, or
even a lazily-created data structure, and this allows the algorithm
that creates the data structure to be separated from the strategy that
specifies how to evaluate it. It’s not a panacea: not all algorithms
lend themselves to being decomposed in this way, and the interme-
diate lazy data structure has costs of its own. Nevertheless, in many
cases the modularity benefits outweigh the costs, and sometimes
the intermediate data structure can be automatically eliminated by
the compiler (Section 4.8).

3. Space Management: Preserving Parallelism,
not Garbage

In this section we describe the main problem in the original strate-
gies formulation that prompted the redesign described in this pa-
per. The problem we are about to describe only came to light re-
cently (?).

To understand the problem we need to consider how par is im-
plemented. When the Haskell program evaluates the expression
par a b, the runtime system saves a pointer to the heap node rep-
resenting a in a data structure that we call a spark pool. For our
purposes, the spark pool is simply a set of pointers to heap objects
representing computations that have been sparked by par. The run-
time system from time to time removes objects from the pool in or-
der to evaluate them using idle processors, so-called lazy task cre-
ation (?). More details on the implementation of spark pools can be
found in ?; the particular implementation details are not important
here.

How should the storage management system, in particular the
garbage collector, treat the spark pool? There are two main alterna-
tives, which we call ROOT and WEAK respectively, following the
terminology of ?:

PWT: There is a 3rd alternative: the GC could use ROOT initially,
and if it fails to recover sufficient space it can then discard some
sparks. Kevin Hammond says a version of GRIP did this.

1. ROOT: entries in the spark pool should be considered implic-
itly live. That is, the spark pool is a source of roots for the
garbage collector.

2. WEAK: an entry in the spark pool is only alive if the object
to which it points is independently reachable. That is, the spark
pool contains weak pointers in the usual terminology.

In fact, both of these policies lead to problems with original strate-
gies. First, let us consider WEAK, and examine how it works with
the definition of parList in the previous section. The sparks cre-
ated by parList are all expressions of the form (strat x) for
some strategy strat applied to some list element x. Now, every
such expression is uniquely allocated for the sole purpose of be-
ing passed to par; the spark pool will contain references to many
expressions of the form (strat x), and in every case, the refer-
ence from the spark pool is the only reference to that expression
in the heap. So, by definition, if we adopt the WEAK policy then
every spark created by parList will be discarded by the garbage
collector, and we lose all the parallelism.

Moreover, there is no definition of parList that can avoid this
problem. The only value that the parList strategy can return is
(), so the only way that parList can create a reachable spark is
by sparking part of the structure it was originally given, such as
the list elements. For example, we can define a non-compositional
variant of parList that works:

parListWHNF :: Strategy [a]
parListWHNF [] = ()
parListWHNF (x:xs) = x ‘par‘ parListWHNF strat xs

But unfortunately we lose the compositional nature of strategies
that was so appealing about the original formulation.

So what about the alternative garbage collection policy, ROOT,
where we treat the spark pool as a source of roots? Considering
the parList example again, the spark pool would still contain
references to expressions of the form (strat x) in the heap,
but this time all the expressions will be retained by the garbage

collector, and no parallelism is lost. However, another problem
arises: what happens when there are not enough parallel processors
to evaluate all the sparks? The spark pool retains references to all
the (strat x) expressions, perhaps long after each x is no longer
required by the program and would otherwise be reclaimed by the
garbage collector.

In an attempt to retain potential parallelism, the storage manager
is retaining memory that should have been released: this is a space
leak, and can and does have dramatic performance implications3.
Even an innocuous parList or parMap can turn a program that
ran in constant space into one that requires linear heap. The ad-
verse effects tend to manifest when running parallel programs on a
single processor, because there are no spare processors to evaluate
the sparks and hence allow them to be removed from the spark pool.
However, effects are felt even when multiple processors are avail-
able: the garbage sparks occupy space in the spark pool that could
be used for real parallelism, and processors waste time evaluating
garbage sparks which erodes the overall speedup achieved.

It is tempting to think that perhaps we can solve the space leak by
only retaining sparks that share some data with the main program.
This is difficult to achieve, however, and in any case it is not clear
that it would be a robust solution to the problem: how much data
should be shared before we consider the spark to be alive?

3.1 Fizzled sparks

It is possible that a spark in the spark pool can refer to a com-
putation that has already been evaluated by the program. Perhaps
there were not enough processors to evaluate the spark in parallel,
and another thread ended up evaluating the computation during the
normal course of computing its results.

When a spark in the spark pool refers to a value, rather than
an unevaluated computation, we say the spark has fizzled; this
potential for parallel execution has expired (?). The runtime system
can, and should, remove fizzled sparks from the spark pool so that
the storage manager can release the memory they refer to, to avoid
the mutator wasting time evaluating useless sparks, and to make
more room for real potential parallelism in the spark pool.

This is all well and good, but note that in the original strategies for-
mulation, most sparks will never fizzle because they are expressions
of the form (strat x) that are unshared and hence can never be
evaluated by the main program. In contrast, the sparks generated
by the simpler non-compositional operation parListWHNF above
can fizzle, because in that case par is applied directly to a part of
the data structure, rather than to a new unshared expression, and
presumably the main program will proceed by evaluating the same
data structure itself.

3.2 Speculative parallelism

Sparking ought to support speculative parallelism, by which we
mean sparking an expression whose value is not known for certain
to be eventually required by the computation as a whole. Ideally,
speculative parallelism should be automatically pruned by the sys-
tem when it can be proven to be never needed.

Speculative parallelism can be created using par; the question is
whether speculative sparks are ever discarded. Under the ROOT
policy, a speculative spark that is never evaluated will become a
space leak, whereas under the WEAK policy unreachable specu-
lative sparks will be discarded and their heap reclaimed. In short,
only the WEAK policy supports speculation.

3 in fact, one unhappy user of GHC even reported this behaviour as a bug
(ticket 2185).

3.3 Summary

PM: Also, should we have this summarising table already here? It
declares the impact of the new strategies on GC policy before these
new strategies have been introduced.

SM: I did worry about the forward ref, yes. I’m open to suggestions.

The following table summarises the interaction between the choice
of GC policy (ROOT or WEAK), original strategies (Section 2) or
new strategies (Section 4), and speculative versus non-speculative
parallelism.

Strategies Parallelism ROOT WEAK
Original non-speculative space leaks lost parallelism
Original speculative space leaks lost parallelism
New non-speculative OK OK
New speculative space leaks OK

4. A New Formulation of Strategies
The difficulties with managing the space behaviour of sparks de-
scribed in Section 3 are rooted in the choice of the type for strategy
functions: if a strategy function returns the unit type (), then there
is no way for it to spark new expressions and to return them to the
caller, thus ensuring that the sparked expressions remain reachable
by the garbage collector.

The key idea in our reformulation is that a strategy returns a new
version of its argument, in which the sparked computations have
been embedded. For example, when sparking a new parallel task
of the form (strat x), rather than discarding this expression,
the strategy will now build a new version of the original data
structure with (strat x) in place of x. The caller will consume
the new data structure and discard the old, so that the parallel task
(strat x) remains reachable as long as the consumer requires
it. Furthermore, if the consumer evaluates (strat x) before it is
evaluated by a parallel thread, then the spark fizzles; superfluous
parallelism is discarded by the garbage collector, which is exactly
what we need.

Perhaps our strategies should be identity functions. However, the
simplest identity function, a -> a, is not a suitable candidate.
Functions of this type are necessarily strict, so we cannot express
r0, the strategy that performs no evaluation of its argument, as a
function of this type. To accomodate r0, the codomain has to be
lifted. We use a trivial lifting, Eval, and provide a way to unlift,
runEval.

type Strategy a = a -> Eval a

data Eval a = Done a

runEval :: Eval a -> a
runEval (Done a) = a

The rationale for the names will become clear shortly. Now we can
define some basic strategy combinators using the new type:

r0 :: Strategy a
r0 x = Done x

rseq :: Strategy a
rseq x = x ‘pseq‘ Done x

rpar :: Strategy a
rpar x = x ‘par‘ Done x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x ‘pseq‘ Done x

type Strategy a = a -> ()

using :: a -> Strategy a -> a
x ‘using‘ s = s x ‘pseq‘ x

r0 :: Strategy a
r0 x = ()

rwhnf :: Strategy a
rwhnf x = x ‘pseq‘ ()

rnf :: NFData a => Strategy a
-- rnf is a method in the class NFData

seqList :: Strategy a -> Strategy [a]
seqList s [] = ()
seqList s (x:xs) = s x ‘pseq‘ (seqList s xs)

parList :: Strategy a -> Strategy [a]
parList s [] = ()
parList s (x:xs) = s x ‘par‘ (parList s xs)

data Eval a = Done a

instance Monad Eval where
return x = Done x
Done x >>= k = k x

runEval :: Eval a -> a
runEval (Done x) = x

type Strategy a = a -> Eval a

using :: a -> Strategy a -> a
x ‘using‘ s = runEval (s x)

dot :: Strategy a -> Strategy a -> Strategy a
s2 ‘dot‘ s1 = s2 . runEval . s1

r0 :: Strategy a
r0 x = return x

rseq :: Strategy a
rseq x = x ‘pseq‘ return x

rdeepseq :: NFData a => Strategy a
rdeepseq x = rnf x ‘pseq‘ return x

rpar :: Strategy a
rpar x = x ‘par‘ return x

evalList :: Strategy a -> Strategy [a]
evalList s [] = return []
evalList s (x:xs) = do x’ <- s x; xs’ <- evalList s xs; return (x’:xs’)

parList :: Strategy a -> Strategy [a]
parList s = evalList (rpar ‘dot‘ s)

Figure 1. Like-for-like comparison of original strategies (left column) versus new strategies (right column).

The new basic strategies r0, rseq and rdeepseq are analogues
to the original strategies r0, rwhnf and rnf respectively (in fact,
rdeepseq uses the original rnf).

4.1 The Evaluation-order Monad

We can declare Eval to be a monad. There are two choices here:
either it is the standard identity monad, or it is a strict identity
monad. The latter turns out to be a much more useful choice:

instance Monad Eval where
return x = Done x
Done x >>= k = k x

The strict identity monad4 gives us a convenient and flexible nota-
tion for expressing evaluation order, i.e. the ordering between ap-
plications of rseq and rpar, which is exactly what we need for ex-
pressing basic parallel evaluation. For example, the following frag-
ment of fib:

let
x = fib (n-1)
y = fib (n-2)

in

4 this is in fact isomorphic to the Lift monad in the MonadLib pack-
age, http://hackage.haskell.org/packages/archive/monadLib/
3.6.1/doc/html/src/MonadLib.html

x ‘par‘ (y ‘pseq‘ x + y + 1)

can be rewritten as

runEval $ do
x <- rpar (fib (n-1))
y <- rseq (fib (n-2))
return (x + y + 1)

which clearly expresses the ordering between rpar and rseq,
using a notation that Haskell programmers will find familiar.

Programmers using the new strategies API no longer need to use
par and pseq to construct new strategies, instead they use the Eval
monad with rpar and rseq. The Eval monad raises the level of
abstraction for pseq and par; it makes fragments of evaluation-
order first class, and lets us compose them together. We should
think of the Eval monad as an Embedded Domain-Specific Lan-
guage (EDSL) for expressing evaluation order, embedding a little
evaluation-order-constrained language inside Haskell, which does
not have a strongly-defined evaluation order.

Figure 1 summarises the differences between the API for the orig-
inal strategies and the new strategies. Note that we have rede-
fined a few combinators using the monadic style consistently; using
return in place of Done, for example.

http://hackage.haskell.org/packages/archive/monadLib/3.6.1/doc/html/src/MonadLib.html
http://hackage.haskell.org/packages/archive/monadLib/3.6.1/doc/html/src/MonadLib.html

4.2 Eval, applicatively

An evaluation order is often something we want to impose on an
existing expression. Since Eval is a monad, it is also an Applicative
Functor (?):

instance Functor Eval where
fmap f x = x >>= return . f

instance Applicative Eval where
pure x = return x
(<*>) = ap

This means that we can use applicative notation for threading
“evaluation order” through an expression. Here’s a simple example:
in one of our benchmarks (Coins), a result value is defined as

res = append left right

and we wanted to spark left in parallel with right. We could
use the monadic syntax as we did for the fib example above, but
sometimes even the monadic syntax is too heavy, and obscures the
structure of the original code. The Applicative operators pure, <$>,
and <*>, let us rewrite the expression to include the parallelism,
without losing its structure:

res = runEval $ append <$> rpar left <*> rseq right

One might object that this is not a modular specification of paral-
lelism, and that would be a fair criticism. However, note that apart
from the introduction of rpar and rseq, the translation to applica-
tive style is mechanical, so this is a minimal and yet precise way to
add a little parallelism to an existing expression. We discuss how to
recover modularity in cases like this in Section 4.6.
Applicative notation fixes the ordering to be depth-first, so in cases
where depth-first is not appropriate the monadic syntax has to be
used.

4.3 Using Strategies

As with the original strategies, a strategy application operator is
provided:

using :: a -> Strategy a -> a
x ‘using‘ s = runEval (s x)

The using function is defined to have the lowest precedence and
associate to the left, that is e ‘using‘ s1 ‘using‘ s2 stands for
(e ‘using‘ s1) ‘using‘ s2. This stacking of strategies being
similar to the stacking of function applications, there is a strategy
composition dot such that

(e ‘using‘ s1) ‘using‘ s2 = e ‘using‘ (s2 ‘dot‘ s1)

Just like function composition, dot has highest precedence and
associates to the right, so the parentheses can be dropped from the
above equation.

4.4 Compositional Strategies over Data

We build strategies over data types by first constructing a basic
strategy for the data type, parameterised over strategies for the
components of the type. The basic strategy traverses the data type in
the Eval monad, applies the argument strategies to the components
in depth-first order, and builds a new instance of the type.
As an example, consider the Strategy combinator evalList, which
walks over a list and applies the argument strategy s to every
element:

evalList :: Strategy a -> Strategy [a]
evalList s [] = return []
evalList s (x:xs) = do x’ <- s x

xs’ <- evalList s xs
return (x’:xs’)

The evalList combinator generalises both parList and seqList
of original Strategies, and more besides. For example, parList is
obtained by composing the element strategy s with rpar:

parList :: Strategy a -> Strategy [a]
parList s = evalList (rpar ‘dot‘ s)

Original strategies had a seqList function, whereas we do not
provide a seqList in the new strategies. In fact, evalList is
equivalent to seqList, but it is not immediately obvious why this
should be so – seqList is defined in terms of pseq, but there are
no pseqs to be found in the definition of evalList. The purpose
of seqList is to apply the strategy s to each element of the list
in order from left to right, and it achieves this ordering by using
pseq at each step. In evalList, we achieve the same ordering,
but by using the Eval monad instead: the Eval monad explicitly
sequences the application of the strategy s to each list element in
order, so no pseqs are necessary.

We can specialise evalList in more ways. A number of new
parallel primitives are envisioned, for instance, a bounded par
that restricts locality, e.g. a spark with a low bound should be
executed “nearby”. An advantage of the new strategies that all these
primitives can be passed as parameters, saving code replication.

4.5 Generic Strategies

The Traversable class provides a convenient way to thread any
Applicative computation through the components of a data
structure in a depth-first manner, performing any effects on the
way whilst building a new data structure (?). This is exactly what
we need for defining strategies over regular data structures such
as lists and trees: i.e. a means of traversing the data structure using
Eval, applying a strategy at the leaves, and building a new structure
to return.

The method traverse has the following type:

traverse :: (Traversable t, Applicative f)
=> (a -> f b) -> t a -> f (t b)

This function is so generic it’s not immediately obvious how it can
be applied in our setting. However, if we specialise a -> f b to
Strategy a, then we get:

evalTraversable :: Traversable t
=> Strategy a
-> Strategy (t a)

evalTraversable = traverse

This is a generic parameterised Strategy for any Traversable
data type. It has evalList as an instance, and gives us strategies
for types like Maybe and Array for free. Adding parallelism to the
generic strategy is straightforward:

parTraversable :: Traversable t
=> Strategy a
-> Strategy (t a)

parTraversable s = evalTraversable (rpar ‘dot‘ s)

4.6 Modularity

The key modularity property we have is that e ‘using‘ s is ob-
servably equivalent to e, at least in so far as it is defined (the former
may be less defined than the latter). The point of this guarantee is
that someone who only wants to understand the algorithm can ig-
nore the strategies, i.e. every ‘using‘ s.

Of course, this property is only useful in cases where we can
actually make use of using. Some of the examples we have already
seen are not easily expressed with using; consider for example fib
from Sections 4.1:

runEval $ do
x <- rpar (fib (n-1))
y <- rseq (fib (n-2))
return (x + y + 1)

This kind of parallelism is known as control or task parallelism,
where the parallelism follows the control structure of the program.
However, we cannot consider this a modular specification of paral-
lelism, as it clearly interleaves the algorithm with the coordination.

We can write a modular version:

x + y + 1 ‘using‘ strat
where

x = fib (n-1)
y = fib (n-2)
strat v = runEval $ do rpar x; rseq y; return v

This strategy looks odd. We aren’t using the result of rpar, which
should raise the red flags: normally the result of rpar should be
embedded in the result returned, otherwise the spark is likely to be
discarded by the garbage collector, or become a space leak. How-
ever, it is acceptable to discard the result of rpar if the argument is
a variable, and that variable is already shared by the result, as it is
in this case.

This is a somewhat subtle rule-of-thumb, and the user may well pre-
fer the original direct definition using runEval. Note that the same
technique was possible with original strategies, although there we
had no option to use the more direct runEval style.

The technique is applied to a more realistic example in section 5.3.

4.7 Sequential Strategies

An important class of strategies specify only evaluation degree, i.e.
do evaluation only, and introduce no parallelism. Since they create
no sparks, there is no need for these strategies to rebuild the data
structure that they are passed. For example, if we were to define a
strategy that evaluates a list sequentially as follows:

forceList = evalList rseq

then the result is a strategy that is not only needlessly inefficient,
but worse, may overflow the stack on long lists because evalList
is not tail-recursive5.

Hence we treat the class of strategies that do evaluation only differ-
ently. The type SeqStrategy is a sequential strategy, and has the
same definition as original strategies:

type SeqStrategy a = a -> ()

5 one would typically not use parList on long lists as too many sparks
would be created, instead parBuffer tends to be more practical.

We make SeqStrategy a a “subtype” of Strategy a by provid-
ing an explicit upcast ins, which evaluates a sequential strategy
before returning the evaluated argument into the Eval monad.

ins :: SeqStrategy a -> Strategy a
ins ss x = ss x ‘pseq‘ return x

Like ordinary strategies, SeqStrategies can be combined, for
example:

seqList :: SeqStrategy a -> SeqStrategy [a]
seqList ss [] = ()
seqList ss (x:xs) = ss x ‘seq‘ seqList ss xs

As the order of evaluation of substructures is irrelevant here, these
combinators may use the ordinary Haskell seq operator instead of
pseq, granting the compiler more freedom to optimise the order
of evaluation. In constrast, the upcast ins must use pseq to force
evaluation of the sequential strategy before returning.
Finally, seqFoldable is the sequential strategies’ counterpart to
the generic strategy evalTraversable.

seqFoldable :: Foldable t => SeqStrategy a
-> SeqStrategy (t a)

seqFoldable ss = foldl’ (const ss) ()

seqFoldable strictly applies a strategy to all elements of a
Foldable data structure. Given the simpler return type of sequen-
tial strategies, seqFoldable is defined already for Foldable data
structures, which form a super class of the Traversable data
structures.
Sequential strategies are widely used, and the example below trans-
poses a list of matrices, each represented as a list of lists, in paral-
lel without evaluating the matrix elements. The sequential strategy
(seqList (seqList r0)) will evaluate just the shape of a ma-
trix, while the parMap specifies the parallel transpose (S.r0 here
is the SeqStrategies equivalent of r0):

parMap (ins (seqList (seqList S.r0))) transpose matrices

The detailed control of evaluation degree provided by sequen-
tial strategies may also be useful for tuning sequential programs.
In effect sequential strategies generalise existing abstractions like
DeepSeq.

4.8 Fusion

SM: I don’t think it belongs with advanced strategies, but maybe
we should have a place to collect together “performance consider-
ations” or something like that. HWL: Agree: stay and merge

Using strategies in a modular way often implies that an interme-
diate data structure is generated by the computation, filtered by
the strategy, and finally consumed upstream. Consider once again
parMap:

parMap :: Strategy b -> (a -> b) -> [a] -> [b]
parMap s f xs = map f xs ‘using‘ parList s

The list produced by map is consumed by parList, which gen-
erates another list to return to the caller of parMap. Furthermore,
there is an extra traversal: both map and parList traverse the com-
plete list.

Ideally we would like to have this intermediate structure and the
extra traversal be eliminated by the compiler. Fortunately, using
GHC it is almost trivial to arrange that this optimisation occurs:
GHC provides user-defined transformation rules, which are used to

implement list fusion between many of the standard list-producing
and consuming library functions. Our parList is defined in terms
of parTraverse, which is defined in terms of traverse, and the
list instance of traverse happens to be defined in terms of foldr.
The intermediate list between map and foldr is automatically re-
moved by GHC’s transformation rules, so in fact parMap compiles
to an efficient single-traversal loop.

Unfortunately, the measurements we report in Section 6 are with-
out the benefit of fusion as the standard Data.Traverse library
requires an extra annotation (an INLINE pragma on traverse).
However, we have verified that with the INLINE annotation in
place, fusion does occur as expected.

5. Advanced Strategies
HWL: Where possible use examples from the benchmarks to moti-
vate use

This section discusses how advanced features such as clustering,
buffering and parallel patterns, can be expressed in the new strate-
gies. Such features are essential for real parallel applications, and
are used in the kernels measured in Section 6.3.

5.1 Embedded Strategies: Rolling Buffers

Some parallel abstractions that are important for parallel perfor-
mance tuning rely on embedding parallelism inside a lazy data
structure, such that opportunities for parallel evaluation are created
“on demand” by the consumer of the data structure. The most com-
monly encountered example is a parallel buffer (?):

parBuffer :: Int -> Strategy a -> Strategy [a]

Informally the idea is that parBuffer n s xs yields a list in
which evaluation of the ith element induces parallel evaluation of
the i + nth element with the first n elements being evaluated in
parallel immediately. The result list must therefore be lazy, at least
beyond the first n elements.
In the original strategies, while parBuffer could be defined per-
fectly well, it could not be expressed as a Strategy, because it
returns a new list containing parallelism embedded in the lazy com-
ponents. That is, the type is

parBuffer :: Int -> Strategy a -> [a] -> [a]

This was an unfortunate wart, because it meant that parBuffer
could not be used as the argument to a paramterised strategy func-
tion and thus compositionality was diminished.

Fortunately embedded parallelism can be directly expressed in the
new strategy formulation, and so parBuffer and functions like it
are instances of the Strategy type.

A fully compositional implementation of parBuffer can be found
below. It implements a rolling buffer (with amortised constant over-
head) by means of the highly optimised functional queue data struc-
ture provided by Data.Sequence. The rolling buffer functionality
is provided by roll, which takes a functional queue (the buffer)
and a list of elements yet to go into the buffer, and returns a list
(via the Eval monad). Whenever the result list is demanded, roll
applies the strategy s to the first element z to go into the buffer
and sticks the result at the end of the queue (by calling q |> z’).
Then it pulls the first element y’ out of the queue (by matching
viewl ... against y’:<q’) and returns it as the head of the result
list while embedding the recursive call into the tail of the result list.

evalBuffer :: Int -> Strategy a -> Strategy [a]

evalBuffer n s xs =
roll (fromList (ys ‘using‘ evalList s)) zs
where

(ys,zs) = splitAt n xs
roll q [] = return (toList q)
roll q (z:zs) = do z’ <- s z

let y’:<q’ = viewl (q |> z’)
return (y’ : runEval (roll q’ zs))

parBuffer :: Int -> Strategy a -> Strategy [a]
parBuffer n s = evalBuffer n (rpar ‘dot‘ s)

HWL: names: list-, queue-based parBuffer?

5.2 Clustering

When tuning the performance of parallel programs it is often im-
portant to increase the size of parallel computation, i.e. to use a
coarser granularity, in order to achieve a good ratio of computation
versus coordination costs. Implementations often contain mecha-
nisms to automatically use coarser granularity on loaded proces-
sors. The scenario of fizzling sparks discussed in Section 3.1 is
such an example, because the work of a spark is performed by an
already running computation. However further improvements can
be obtained by explicitly controlling thread granularity, and in the
context of the original strategies we developed a range of cluster-
ing techniques (?). This section adapts these techniques for the new
strategies and extends them.

One obvious way to obtain a coarser granularity is to collect com-
putations on related elements of a data structure in “clusters.” The
evalClusteredBy function, defined below, takes two function ar-
guments for splitting the data into clusters (cluster) and for merg-
ing it again (decluster). This function comes with the following
proof obligation: decluster . cluster == id.

evalClusterBy :: (a -> b) -> (b -> a)
-> Strategy b -> Strategy a

evalClusterBy cluster decluster strat x
= return (decluster (cluster x ‘using‘ strat))

While such explicit clustering is very flexible, it is also intrusive
in always having to specify functions that are only used for tuning
the parallel performance. To simplify this interface, we define a
class Cluster containing cluster and decluster functions, as
well as a function lift that turns an operation over the original
data structure into one over such a clustered data structure. By
building on the Traversable class we get several operations for
free. Indirectly through the Functor class, we can use the fmap
function to lift an operation over the base type to one in the cluster
type. Again indirectly through the Foldable class, we can use the
fold function as the default definition for decluster. Finally, we
can define a function evalCluster, which hides the application
of clustering and declustering and which can be applied to any data
structure that is an instance of Traversable.

SM: a minor comment, but we should restrict the context to just the
essential superclasses, i.e. Functor, Foldable. HWL: Agreed; todo:
change Clustering and apps

class (Traversable c, Monoid a) => Cluster a c where
cluster :: Int -> a -> c a
decluster :: c a -> a
lift :: (a -> b) -> c a -> c b

lift = fmap -- c is a Functor, via Traversable
decluster = fold -- c is Foldable, via Traversable
-- we require: decluster . cluster n == id

As an example we provide an instance for lists. Notably, we only
have to provide a definition for the cluster function in the class.

-- instance for lists with clustering
instance Cluster [a] [] where

cluster = chunk

We want to specify the data structure, used for clustering, only
through the type with the possibility of using different clusterings
for different applications. However, the evalCluster function,
just like evalClusterBy, intentionally hides the cluster type. In
order to expose the cluster type constructor c in the type of an
evalCluster strategy, we make use of GADTs and introduce
the following wrapper, enabling the type system to infer c when
evalCluster is used.

data ClusterStrategy c a where
ClustStrat :: forall c a . Cluster c a =>

Strategy a -> ClusterStrategy c a

evalCluster :: forall a c . Cluster c a =>
Int -> ClusterStrategy c a -> Strategy a

evalCluster n (ClustStrat strat) =
evalClusterBy (cluster n) decluster stratC
where

stratC = evalTraversable strat :: Strategy (c a)

With this infrastructure we can now define a parMapCluster func-
tion that hides the calls to the clustering functions, but is still
generic in the cluster type. The latter is specified explicitly when
calling parMapCluster by instantiating its first argument to e.g.
ClusterStrategy [] [Int]. We call this implicit clustering.

parMapCluster :: forall c b a .
ClusterStrategy c [b] -> Int ->
(a -> b) -> [a] -> [b]

parMapCluster (ClustStrat strat) z f xs = map f xs
‘using‘ evalCluster z (ClustStrat (rpar ‘dot‘ strat)

:: ClusterStrategy c [b])

5.3 A Divide-and-conquer Pattern

One of the main strengths of strategies is the possibility of con-
structing abstractions over patterns of parallel computation. Thereby
all code specifying the coordination of the program is confined to
the pattern. Concrete applications can then instantiate the func-
tion parameters to get parallel execution for free. Such patterns are
commonly known as algorithmic skeletons (?).

As an example we give the implementation of a divide-and-conquer
pattern. It is parameterised by a function that specifies the operation
to be applied on atomic arguments (f), a function to (potentially)
divide the argument into two smaller values (divide), and a func-
tion to combine the results from the recursive calls (conquer). Ad-
ditionally, we provide a function threshold that is used to limit
the amount of parallelism, by using a sequential strategy for argu-
ments below the threshold.

SM: cleaned up a bit. do we really need to be strict when threshold
is reached? HWL: I thought we agree to use the ... return
(conquer l r) version above?

divConq :: (a -> b) -- compute the result
-> a -- the value
-> (a -> Bool) -- par threshold reached?
-> (b -> b -> b) -- combine results
-> (a -> Maybe (a,a)) -- divide
-> b

divConq f arg threshold conquer divide = go arg
where

go arg =
case divide arg of

Nothing -> f arg
Just (l0,r0) -> conquer l1 r1 ‘using‘ strat

where
l1 = go l0
r1 = go r0
strat x = do r l1; r r1; return x

where r | threshold arg = rseq
| otherwise = rpar

All coordination aspects of the function are encoded in the strategy
strat, which describes how the two subcomputations l1 and l2
should be evaluated. The thresholding predicate threshold pro-
vided by the caller places a bound on the depth of parallelism, and
this is used by strat to decide whether to spark both l1 and l2
or to evaluate them directly. The definition of divconq achieves
separation between the specifications of algorithm and parallelism,
the latter being confined entirely to the definition of strat.

5.4 Improving Safety

HWL: Maybe call these SafeStrategies to make clear that this
is not what’s currently implemented

HWL: Could be shortened, IMHO
The original strategy type a -> () embodies the key modularity
goal of separating computation and coordination. As any original
strategy can only ever return (), it can never change the result of
a computation, up to divergence. Unfortunately, the new strategy
type gives up this type safety. Strategies of the new a -> Eval a
type should be identity functions, i.e. only evaluate their argument
but never change its value, and we term this property identity safety.
However the type system cannot enforce this behaviour and it is all
too easy to accidentally write flawed strategies, for instance:

x:xs ‘using‘ \ _ -> parList rdeepseq xs

The intention of the programmer is to evaluate the tail of the list
in parallel when the list is demanded. The strategy will do that, but
then returns only the tail of the list.

Type checked identity safety for programmers can be restored for
programmers who are willing to restricted themselves to a set of
pre-defined and trusted strategy combinators. The idea, not cur-
rently implemented, is to make the strategy type abstract by wrap-
ping it with a newtype constructor S, and to provide a destructor
($$) that unwraps a strategy returning a function and is used like
function application $. The SafeStrategy module is adapted to
use S and $$ in the obvious way.

newtype SafeStrategy a = S (a -> Eval a)

($$) :: SafeStrategy a -> a -> Eval a
(S s) $$ x = s x

Both the strategy constructor and destructor are exported from
the SafeStrategies module, and programmers are free to trade
expressive power for type safety by choosing whether to import
these or to leave the type SafeStrategy abstract. If neither S nor
$$ are imported then programmers only gain access to a restricted
Strategy interface. Strategies can be built only with the predefined
identity-preserving strategy combinators, and applied only with
using. If $$ is imported without S then programmers gain access
to a richer, yet still restricted interface. They cannot write their
own strategies, so the type checker would reject the flawed strategy
above, but they can use the Eval monad directly and apply safe

strategies with $$. If both S and $$ are imported then the full
strategies interface is available.

PM: Is there a better name for the ”identity safety” property?
HWL: I like ”identity safety”; suggest to introduced it earlier in
the paper PWT: Added to introduction

6. Evaluation
This section discusses our measurements in detail, but first we
summarise the key results:

• For all programs, the speedup and runtime results with original
and new strategies are very similar, giving us confidence that
they specify the same parallel coordination for a range of pro-
grams and parallel paradigms (Figure 2).

• The speedups achieved with the new strategies are slightly
better compared to those with the original strategies: a mean
of 3.85 versus 3.72 across all applications (Columns 3 & 2 of
Table 2).

• The new strategies fix the space leak outlined in Section 3, and
better support speculative parallelism (Section 6.4).

• The overheads of the new strategies are low: mean sequential
run-time overhead is 1.91% (Table 1), and memory overheads
are low for most programs (Columns 8 – 11 of Table 2).

6.1 Apparatus

Our measurements are made on an eight-core, 8GB RAM, HP
XW6600 Workstation comprising two Intel Xeon 5410 quad-core
processors, each running at 2.33GHz. The benchmarks run under
Linux Fedora 7 using a recent development GHC snapshot (6.13
as of 20.5.2010), and parallel packages 1.1.0.1 and 2.3.0.0, for
original and new strategies respectively. The data points reported
are the median of 3 executions, and we measure up to 7 cores
as measurements on the 8th core are known to introduce some
variability.

HWL: Shorten

Our benchmarks are 10 parallel applications from a range of appli-
cation areas; some have previously been studied (?) and others are
taken from the GHC nofib suite and parallelised (?). The programs
are the computational kernels of realistic applications, cover a va-
riety of parallel paradigms, and employ several important parallel
programming techniques, such as thresholding to limit the amount
of parallelism generated, and clustering to obtain coarser thread
granularity.

HWL: TODO: take missing descriptions from (?)

Genetic aligns RNA sequences from related organisms, using
divide-and-conquer parallelism and (nested) data parallelism. Min-
iMax performs an alpha-beta search in a tree representing posi-
tions in a 2-player game. The program is divide-and-conquer style
and laziness is exploited to prune unnecessary subtrees. Queens,
solving the well-known n-queens problem, is implemented using
divide-and-conquer parallelism with an explicit threshold. LinSolv
finds an exact solution to a set of linear equations, employing the
data parallel multiple homomorphic images approach often used
in symbolic computation. Hidden performs hidden-line removal in
3D rendering and uses data parallelism via the parList strategy.
Maze searches for a path in a 2D maze and uses speculative data
parallelism. Sphere is a ray-tracer from the Haskell nofib suite, us-
ing nested data parallelism, implemented as parMaps. TransClos
finds all elements that are reachable via a given relation from a
given set of seed values, i.e. that are in the range of the transitive

Program Sequential ∆ Time (%)
Runtime Original New Paradigm

(seconds) Strategies Strategies
LinSolv 23.40 +0.90 +1.97 Nested Data par
Sphere 21.11 +4.78 +3.32 Nested Data par
MiniMax 36.98 +0.87 +3.22 D&C
Coins 42.49 +1.11 +2.12 D&C
Queens 25.51 +1.37 +6.12 D&C
Genetic 33.46 +2.96 +3.97 D&C Data par
MatMult 35.48 -1.35 -2.06 Data par
Hidden 41.49 +8.41 +2.70 Data par
Maze 40.93 -2.22 -3.59 Nested Data par
TransClos 83.13 +0.75 +1.68 Data par
Geom. Mean +1.72 +1.91

Table 1. Sequential Runtime Overheads HWL: recompute without
spect-pfib

closure of the given relation. The algorithm uses a queue-based
parBuffer over an infinite list. Coins computes the number of
ways of paying the given value from a given set of coins, using a
divide-and-conquer paradigm. MatMult performs matrix multipli-
cation using data parallelism with explicit clustering.

note:: All raw results are placed in /u1/pg/mka19/res24042010

6.2 Sequential Overhead

Table 1 shows the sequential runtime as baseline, and the differ-
ence of the 1 processor runtime with both original and new strate-
gies. For the new strategies, we encounter a runtime overhead of
at most +6.12% for the divide-and-conquer style Queens imple-
mentation. Notably, the data parallel programs have a fairly low
overhead, despite the additional traversal of a data structure to ex-
pose parallelism. Comparing the geometric mean of the runtime
overheads imposed by both strategies versions we encounter only a
slightly higher overhead for the new strategies: +1.91% compared
to +1.72% with the original strategies. This justifies the new strat-
egy approach of high-level generic abstractions. HWL: discuss

6.3 Parallel Performance

Speedups: Figure 2 compares the absolute speedup curves (i.e.
speedup relative to sequential runtime) for the applications with the
original and new strategies. Both the runtime curves (not reported
here) and speedup curves for the original and new strategies are
very similar. The pattern is repeated in more detailed analysis, e.g.
in Columns 2 and 3 of Table 2. We conclude that the original and
new strategies specify the same parallel coordination for a variety
of programs representing a range of parallel paradigms, and several
tuning techniques.

The top six programs in Table 2 have been carefully tuned for par-
allelism, and hence are most relevant when assessing the perfor-
mance of the new strategies. The mean speedups of these programs
are 5.38 for the original and 5.59 for the new strategies. The re-
maining applications have potential for additional performance tun-
ing, and yet none has a significantly lower speedup with the new
strategies.

HWL: To separate algorithmic from system issues impacting scal-
ability, we should also use the constructed examples here

Performance: Table 2 analyses in detail the speedups, number
of sparks and memory consumption of all applications, running on
7 cores of an 8 core machine with the original strategies and the
new strategies. The number of generated sparks was in all cases
virtually identical between original strategies and new strategies,

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7

S
pe

ed
up

Number of Cores

Original Strategies

LinSolv
TransClos

Sphere
MiniMax

Coins
Queens
MatMult
Genetic
Hidden

Maze

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7

S
pe

ed
up

Number of Cores

New Strategies

LinSolv
TransClos

Sphere
MiniMax

Coins
Queens
MatMult
Genetic
Hidden

Maze

Figure 2. Speedups of the Application Kernels with Original and New Strategies

Speedup Generated Converted Allocated Maximium
Sparks Sparks Heap Residency

Orig. New Orig. New Orig. New Orig. (MB) New ∆% Orig. (KB) New ∆%
LinSolv 6.59 6.44 7562 7562 7562 7562 6050.10 +0.15 7104.70 +3.87
Sphere 5.09 5.75 160 160 160 159 8632.30 -1.11 142303.30 -24.80
MiniMax 5.67 5.48 1464 1464 1464 163 30476.85 -0.01 98.05 -7.17
Coins 5.61 5.53 145925 146853 2702 1060 79833.20 +1.59 302.10 +20.36
Queens 4.58 5.49 1589 1563 1589 636 14903.30 -17.52 19134.50 -24.11
Genetic 4.95 4.94 659 672 659 172 12180.20 -6.73 493.90 +35.37
MatMult 2.68 2.71 30 30 30 29 13725.50 -2.93 31950.90 +0.00
Hidden 2.11 2.54 972 972 972 972 42908.40 -0.22 14325.00 -4.11
Maze 2.05 2.01 2723 2835 2525 481 194122.00 +7.74 71.20 -33.15
TransClos 1.80 1.72 1035 1035 1035 986 80039.40 -0.06 86.50 +11.91
Geom. Mean 3.72 3.85 -2.12 -4.32

Table 2. Speedups, Number of Sparks and Heap Consumption on 7 Cores

giving us further confidence that the two formulation are expressing
the same parallelism. Small differences in the number of generated
sparks arise because GHC has a non-deterministic execution model
in which a particular expression may be evaluated multiple times at
runtime (?).

In the cases where the new strategies exhibit poorer performance,
the reduction in speedup is still very small: from 5.67 to 5.48 in the
worst case for MiniMax. This reflects the low overhead associated
with the new strategies, quantified in the previous sub-section.

HWL: For Strat 2 the heap residency increases even more: factor
of 53; GC time doesn’t increase as much as for Strat 3 though; see
data in latex comments

Interestingly, the performance of the new strategies in the Queens
and Sphere programs is better than in the original strategies. Ex-
amining the heap consumption reveals that with the new strategies
the heap residency is significantly reduced: −24.11% for Queens
and−24.80% for Sphere. This results in a lower total garbage col-
lection time, which contributes to about half of the reduction in
runtime. The reduction in residency is accounted for by the im-
proved space behaviour of the new strategies: the space retained by
superfluous sparks is being reclaimed.

Granularity improvement: PWT: This para could be removed
or slashed to save space The comparison of generated versus con-
verted sparks in Table 2 demonstrates the runtime system’s ef-

fective handling of potential parallelism (sparks). Even when an
excessive number of sparks is generated, for example in Coins,
the runtime-system converts only a small fraction of these sparks.
As with any divide-and-conquer program, a thread generated for
a computation close to the root will itself evaluate potential child
computations, causing their corresponding sparks to fizzle. Hence
the granularity of the generated sparks is automatically made
coarser, and reducing overheads, as can be seen from the speedups
achieved. In general, the new strategies provide more opportunities
for sparks to fizzle, as discussed in Section 3. This shows up in a
lower number of converted sparks for all divide-and-conquer and
nested data parallel programs. For single-level data parallelism as
in Sphere, where sparks never share graph structures, there is little
or no reduction in the number of converted sparks.

6.4 Memory Management

Fixing the space leak: The new strategies fix the space leak out-
lined in Section 3. For example, the parallel raytracer reported as a
GHC bug for exhausting memory6 now terminates successfully. Al-
though this improvement is crucial for execution on small numbers
of cores, the heap measurements in Table 2 do not show a consis-
tent reduction in residency for the new strategies on 7 cores. In-
terpreting the parallel memory consumption figures is complicated

6 http://hackage.haskell.org/trac/ghc/ticket/2185

http://hackage.haskell.org/trac/ghc/ticket/2185

by a number of factors: the garbage sparks are often evaluated by
other cores and hence do not create a space leak on a single core;
changing the pattern of parallel execution changes residency; and
residency is recorded by sampling and hence is very sensitive to
small program changes.
SM: Where are the results for Spect-Pfib? SM: Was this with
WEAK or ROOT? Only WEAK will prune sparks. SM: We haven’t
said what converted sparks are.

Speculation: HWL: primes results are up-to-date but for a very
short run; hence poor speedups
To assess the effectiveness of the WEAK and ROOT garbage col-
lection policies, described in Section 3, for managing speculation
we use a program that applies drop to a parallelised list, computing
the number of primes up to a given value, thereby rendering the
sparks on the dropped list elements speculative:

sum $ map snd $ drop ((m1-m0) ‘quot‘ 2) $
([(n, length (primes n)) | n <- [m0..m1]]

‘using‘ parList rdeepseq)

With the WEAK policy almost all sparks of the original strategies
are discarded, as expected. With the new strategies 3195 out of
10001 are converted, 36% fewer than with the ROOT policy, al-
though this value changes considerably between executions. Most
importantly, the WEAK policy prunes 4998 sparks, almost all of
the 5000 speculative sparks. In contrast, the ROOT policy prunes
only 3202 sparks, all of them due to fizzling. For the small input
used with this program, the new strategies achieve a speedup of 1.3
on 7 cores, whereas with the original strategies starvation leads to
a slowdown. The memory residency with WEAK and ROOT poli-
cies is about the same because the generated parallelism is not very
heap intensive.
Our application kernels do not use substantial speculation and as
a result speedups with the WEAK policy are only slightly, but
consistently, better than with the ROOT policy (MiniMax, Maze).
Of course, the very inability of reclaiming speculative sparks with
the ROOT policy discouraged any applications using them on a
larger scale.
HWL: how much? HWL: Data on all programs?

7. Related Work
HWL: A lot of self-references; page numbers missing in bib file

Most parallel functional languages combine high level coordination
sublanguages with their high level computation language (?). A
range of high level coordination models have been used (?), and this
section relates the semi-explicit approach adopted by evaluation
strategies to other approaches.
Skeleton based coordination, as in (??), is popular in both impera-
tive and functional languages, and exploits a small set of predefined
skeletons. Each skeleton is a polymorphic higher-order function de-
scribing a common coordination pattern with an efficient parallel
implementation (?). As polymorphic higher-order functions, eval-
uation strategies are similar to skeletons, but there are some key
differences. Rather than a fixed set of skeletons, evaluation strate-
gies are readily combined to form new strategies. Moreover, where
skeletons are parameterised with computational arguments, a strat-
egy is typically applied to a computation.
Data parallel coordination, as in (??), supports the parallel eval-
uation of every element in a collection. This is a good match with
Haskell’s powerful constructs for bulk data types, in particular lists.
Data parallelism is often more implicit than HWL: control paral-
lelism with evaluation strategies: the programmer simply identifies

the collections to be evaluated in parallel. Strategies are more gen-
eral in that they can express both control parallelism and data par-
allelism, although in terms of performance Data Parallel Haskell is
designed to compile parallel programs down to highly optimised
low-level loops over arrays, and hence should achieve significantly
better absolute performance on data-parallel programs than would
be possible using strategies.

Entirely implicit coordination aims to minimise programmer input,
typically using either profiling as in (?) or parallel iteration as in (?).
Few entirely implicit approaches, other than parallel iteration have
delivered acceptable performance (?). Evaluation strategies provide
more general parallel coordination than loop parallelism.

HWL: phps cite Arvind’s pH Book (?)

8. Conclusion
The original strategies were developed in 1996 for Haskell 1.2, i.e.
before monads, and using a compiler with relatively tame optimi-
sations. The context for the new strategies is radically different.
Monads, supported by rich libraries and syntactic sugar like do-
notation, are now the preferred mechanism for sequencing compu-
tations, and are familiar to the rapidly growing Haskell user com-
munity. Applicative functors elegantly encode data structure traver-
sals. Finally, the aggressive use of optimisations in mature Haskell
implementations like GHC make bespoke efficiency specialisations
unnecessary.

The new strategy formulation capitalises on improved Haskell id-
ioms and implementations to provide a modular and compositional
notation for specifying pure deterministic parallelism. While it has
some minor drawbacks: being relatively complex, providing rela-
tively weak type safety, and requiring care to express control paral-
lelism, the advantages are many and substantial. It provides clear,
generic, and efficient specification of parallelism with low runtime
overheads. It resolves a subtle space management issue associated
with parallelism, better supports speculation, and is able to directly
express parallelism embedded within lazy data structures.

We plan to further enhance and formalise the identity safety of the
new strategies, following the direction discussed in Section 5.4.
Moreover the genericity of the new strategies could be improved
by automatically deriving instances of the NFData class, as for the
Traversable class.

Acknowledgments
Thanks to Greg Michaelson and Simon Peyton Jones for construc-
tive feedback. This research is supported by the EPSRC HPC-GAP
project (EP/G05553X), and the EU FP6 SCIEnce project (RII3-CT-
2005-026133).

	Introduction
	Original Strategies
	Strategies

	Space Management: Preserving Parallelism, not Garbage
	Fizzled sparks
	Speculative parallelism
	Summary

	A New Formulation of Strategies
	The Evaluation-order Monad
	Eval, applicatively
	Using Strategies
	Compositional Strategies over Data
	Generic Strategies
	Modularity
	Sequential Strategies
	Fusion

	Advanced Strategies
	Embedded Strategies: Rolling Buffers
	Clustering
	A Divide-and-conquer Pattern
	Improving Safety

	Evaluation
	Apparatus
	Sequential Overhead
	Parallel Performance
	Memory Management

	Related Work
	Conclusion

