
Implementing High-Level Parallelism on

Computational Grids

by

Abdallah Deeb I. Al Zain

Submitted for the Degree of

Doctor of Philosophy

at Heriot-Watt University

on Completion of Research in the

School of Mathematical and Computer Sciences

June 2006

This copy of the thesis has been supplied on the condition that anyone who consults it is

understood to recognise that the copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the prior

written consent of the author or the university (as may be appropriate).

2

I hereby declare that the work presented in this the-

sis was carried out by myself at Heriot-Watt University,

Edinburgh, except where due acknowledgement is made,

and has not been submitted for any other degree.

Abdallah Deeb I. Al Zain (Candidate)

Phil Trinder, Greg Michaelson (Supervisors)

Date

3

In the name of GOD, Most Gracious, Most Merciful,

�It is GOD Who brought you forth from the wombs

of your mothers when ye know nothing; and He gave

you hearing and sight and intelligence and affection:

that ye may give thanks (to GOD)� (Qur‘an, 16:78)

Abstract

Special purpose high performance computers are expensive and rare, but work-

station clusters are cheap and becoming common. Emerging technology offers the

opportunity to integrate clusters into a single high performance computer - a com-

putational Grid. The acceptance of computational Grids, however, is seriously

hampered by the difficulty of efficiently managing the parallelism in such het-

erogeneous clusters, with characteristics radically different from a conventional

high performance computer. To program this complex and dynamic architecture

effectively we propose to use a language with high-level constructs, GpH, and to

extend its runtime environment, Gum.

The first contribution of this thesis is to develop GRID-GUM1, an initial

port of Gum to computational Grids. Systematic evaluation shows that GRID-

GUM1 delivers acceptable speedups on relatively low latency and on homogeneous

computational Grids. However for high latency or heterogeneous computational

Grids poor load scheduling limits performance.

We next present an adaptive runtime environment GRID-GUM2, which in-

cludes monitoring mechanisms that determines static and dynamic properties of

the underlying clusters and an adaptive scheduling mechanism that dynamically

modifies parallel execution accordingly. To the best of our knowledge, GRID-

GUM2 is one of the first fully implemented virtual shared memory runtime en-

vironment on the Grid. Evaluating GRID-GUM2’s performance demonstrates

that virtual shared memory is feasible on computational Grids and that it can

deliver good speedups if combined with an aggressive dynamic load distribution

mechanism.

2

Acknowledgement

All praises are due to God for His boundless bounties and, in particular, for giving

me the good health and the strength of determination to enable me to carry out

this work.

I record my indebtedness to my great friend, mentor and supervisor, Greg

Michaelson. A second father to me through his friendship and support this thesis

was accomplished.

One of the sweetest fruits of life to me is Friendship, and for my last three

years in my PhD I have been blessed with a few true friends: The hospitable,

independent and warm loving brother to me Gonzalo Muyo and his lovely family

(Ana & Elena), an Epicurean by nature, whose purity of soul is unparalleled. The

mellifluous philosopher, with whom I disagreed sometimes but never argued. The,

whose enthusiasm for life sparked a wild laughter that proved the best medicine

for my heart in turbulent times; always by my side in happiness and sadness.

My dear Ioannis, a man endued with integrity and rare powers of endurance; our

problems always weighed less in our hearts once shared with each other. I can

not forget the warmth and hospitality you shown to me with no calculation, and

demonstrate how it is a greater pleasure to give than to receive

My Five years at Heriot-Watt introduced me to many friends who deserve a

special mentioned for having created the right atmosphere for me to keep going

on my research: Manuel Silva, Manuel Maarek, Simona Gagliardi, Andre De Bu

Bois, Gudmund Grov, and Margaret Robinson (my Scottish mum). To the best

time of my life I spent at 15 Mentone Terrace with the best flatmates Gonzalo

and Andre.

And here in Edinburgh, I found the ancient Greek’s gods have born like the

ancient goddess of Love, (Venus). I found this god is still alive today, like this

beautiful nymphs who I met and bewitched me: with her beautiful face, Eva, few

things in life are as worth as her beautiful eyes whom I so much loved! She is a

very special girl for whom my only regret is that I have not met her longtime ago.

It is impossible to describe in a few words my gratitude to her for the happiness

3

she gave me, and the simple but deep joys of sharing in Love.

It is now the time to focus on people and colleagues who were more directly

related with my PhD. I would like to thank my supervisor, Phil Trinder, for his

guidance and time-efficiency in dealing with my thesis and also for the financial

support which covered my tuition fees during my PhD. I am also indebted to Phil

Trinder for the fruitful weekly supervision meeting which helped me to finish this

thesis and made work motivation. I am very thankful to my supervisor Hans-

Wolfgang Loidl who has been an invaluable person to discuss the implementation

of GUM and many technical issues. Also I am much indebted again to my su-

pervisor Greg Michaelson for providing me with hands-on advice research-wise;

always supporting and encouraging. My office mates Ioannis, Andre, Xiao Yan,

and Zara have also made work pleasant at lab G.59. I am very grateful to the

people in the department of computing at Heriot-Watt University for providing

valuable assistance. I am very thankful to my examiners David Duke and Peter

King for their time and their useful comments. I am also grateful to many others,

all of whom can not be named.

And last but not least, to my parents who I register my profound gratitude

to them who have trained me, taught me, amongst other things, to take life easy

while encourage me to learn to face, on my own, the multi-faceted challenge of

life. To my brothers, my sister and their families for all their emotional support,

understanding and above all their limitless love. To my country which I have not

seen (Palestine) and to my people who are suffering unlawful occupation. This

thesis is therefore dedicated to them.

Contents

1 Introduction 12

1.1 Ethos . 12

1.2 Contributions . 12

1.3 Thesis Structure . 13

1.4 Authorship . 15

2 Background 16

2.1 Computational Grids . 16

2.1.1 Introduction . 16

2.1.2 Evolution . 17

2.1.3 Computational Grid Applications 20

2.1.4 Globus Toolkit . 22

2.1.5 Grid Layers . 25

2.1.6 Communication Libraries 25

2.2 Load Distribution . 28

2.2.1 Threads Compared with Processes 29

2.2.2 Static and Dynamic Load Distribution Subsystem 30

2.2.3 Centralised and Decentralised Load Distribution Subsystem 31

2.2.4 Cooperative and Non-Cooperative Load Distribution Sub-

system . 31

2.2.5 Thread Placement and Thread Migration 32

2.2.6 Mode of Operation in Dynamic Load Distribution 32

2.2.7 Grid Scheduling . 33

4

CONTENTS 5

2.2.8 Summary . 37

2.3 Functional Languages . 38

2.3.1 Parallelism or Concurrency 39

2.3.2 Classification . 39

2.3.3 Parallel Functional Language Mechanisms 40

2.3.4 Parallel Functional Programming 42

2.3.5 Parallel Control . 43

2.3.6 Parallel Functional Language 45

2.3.7 Parallel Functional Language Implementation 48

2.4 Gum - A Parallel Haskell Runtime 50

2.4.1 Introduction . 50

2.4.2 Initialisation and Termination 51

2.4.3 Thread Management . 52

2.4.4 Load Distribution . 54

2.4.5 Memory Management . 57

2.4.6 Communication . 58

2.5 Summary . 58

3 GRID-GUM1: an Initial Grid Port of Parallel Haskell 60

3.1 Introduction . 60

3.2 GRID-GUM1 . 61

3.2.1 Integration . 61

3.2.2 GRID-GUM1 Working Mechanism 62

3.3 GRID-GUM1 Evaluation . 64

3.3.1 Evaluation Framework . 64

3.3.2 Single Cluster . 66

3.3.3 Computational Grids: Low-Latency 69

3.3.4 Computational Grids: High-Latency 73

3.4 Conclusion . 78

4 Design of An Adaptive RTE for Computational Grids 80

4.1 Introduction . 80

CONTENTS 6

4.2 Shortcomings of GRID-GUM1 . 80

4.3 GRID-GUM2 . 82

4.4 Monitoring Mechanism of GRID-GUM2 85

4.4.1 Static Load Information 85

4.4.2 Dynamic Load Information 87

4.5 Adaptive Load Distribution of GRID-GUM2 90

4.5.1 Startup Mechanism . 90

4.5.2 Work Location Mechanism 92

4.5.3 Work Request Handling Mechanism 95

4.6 Summary . 98

5 GRID-GUM2 Evaluation 100

5.1 Introduction . 100

5.1.1 GRID-GUM1.1 . 100

5.2 Measurement Framework . 101

5.2.1 Hardware Apparatus . 101

5.2.2 Software Apparatus . 102

5.3 Low-Latency Computational Grid 103

5.3.1 Low-Latency: Heterogeneous Performance 103

5.3.2 Low-Latency: Homogeneous Performance 108

5.4 High-Latency Computational Grid 112

5.4.1 High-Latency: Heterogeneous Performance 112

5.4.2 High-Latency: Homogeneous Performance 120

5.5 Scalability . 126

5.5.1 raytracer . 127

5.5.2 parFib . 130

5.5.3 Summary . 132

5.6 Conclusion . 132

6 Conclusion 136

6.1 Contributions . 136

6.1.1 Contribution 1: Gum on the Grid 136

CONTENTS 7

6.1.2 Contribution 2: Design of an Adaptive RTE for Computa-

tional Grids . 138

6.1.3 Contribution 3: Evaluating GRID-GUM2’s Dynamic Load

Scheduling on Computational Grids 138

6.2 Limitations & Future Research Direction 140

A Measurement Framework 142

A.1 Hardware Apparatus . 142

A.2 Software Apparatus . 142

B Activity Profiles 145

B.1 Overall Activity Profile . 145

B.2 Per-PE Activity Profile . 146

Bibliography 146

List of Tables

2.1 Comparison of Scheduling Systems 37

3.2 Speedup on 16 PEs . 67

3.3 Dynamic Program Properties on 16 PEs 68

3.4 a) Heterogeneous low-latency Computational Grid 69

3.5 b) Heterogeneous Low-Latency Computational Grid 70

3.6 Low-Communication Degree Programs 74

3.7 High-Communication Degree Programs 75

4.8 A sketch of PEStatic Table for the PEs in Figure 4.13 87

5.9 Characteristics of Beowulf Clusters 101

5.10 Approximate Latency Between Clusters (ms) 101

5.11 Programs Characteristics and Performance 102

5.12 Performance on Heterogeneous Architecture 103

5.13 Variation Between GRID-GUM1 and GRID-GUM2 on 10 PEs . . 109

5.14 Dynamic Program Properties on 16 PEs 111

5.15 raytracer: Heterogeneous High-Latency Computational Grid . . 113

5.16 sumEuler: Heterogeneous High-Latency Computational Grid . . 115

5.17 queens: Heterogeneous High-Latency Computational Grid 118

5.18 raytracer: Homogeneous High-Latency Computational Grid . . 121

5.19 sumEuler: Homogeneous High-Latency Computational Grid . . . 123

5.20 queens: Homogeneous High-Latency Computational Grid 124

5.21 raytracer: Scalability in Gum and GRID-GUM1 127

5.22 raytracer: Scalability in GRID-GUM1 and GRID-GUM2 128

8

LIST OF TABLES 9

5.23 parFib: Scalability in GRID-GUM1 and GRID-GUM2 131

5.24 Summary comparison betweenGRID-GUM1,GRID-GUM1.1 and

GRID-GUM2 . 134

A.25 Characteristics of Beowulf Clusters 142

A.26 Approximate latency between clusters (ms) 143

List of Figures

2.1 Globus Toolkit resource management architecture [Glo05] 24

2.2 Layers in the Grid Architecture [FKT01] 25

2.3 Load distribution algorithm classification 29

2.4 Low- and High-watermark mechanisms for load distribution in GUM. 55

2.5 Fish/Schedule/Ack Sequence . 56

2.6 Transfer of graph structures . 57

3.7 GRID-GUM1 system architecture 63

3.8 GRID-GUM1 components architecture 64

3.9 Per-PE Activity Profile for raytracer 71

3.10 Overall Activity Profile for raytracer 72

3.11 Per-PE Activity Profile for linSolv in Homogeneous Computa-

tional Grids . 76

3.12 Overall-Activity Profile for linSolv in Homogeneous Computa-

tional Grids . 77

4.13 Computational Grids . 86

4.14 PEDynamic Table . 88

4.15 ComMap Table . 89

4.16 GRID-GUM1 Startup algorithm 90

4.17 GRID-GUM2 Startup Algorithm 91

4.18 GRID-GUM1 Work location Algorithm 92

4.19 GRID-GUM2 Work location Algorithm 93

4.20 GRID-GUM1 Work Request Handling Algorithm 95

10

LIST OF FIGURES 11

4.21 GRID-GUM2 work request handling algorithm 99

5.22 GRID-GUM1: raytracer with 350X350 Image on a Heteroge-

neous Computational Grid . 105

5.23 GRID-GUM1 with Thread Limitation: raytracer with 350X350

Image on Heterogeneous Computational Grid 106

5.24 GRID-GUM2: raytracer with 350X350 Image on Heterogeneous

Computational Grid . 107

5.25 GRID-GUM1 with Thread Limitation: raytracer with 500X500

Image on Heterogeneous Computational Grid 108

5.26 GRID-GUM1: linSolv on Heterogeneous Computational Grid . 109

5.27 GRID-GUM2: raytracer with 500X500 Image on Heterogeneous

Computational Grid . 110

5.28 GRID-GUM1: per-PE activity profile for raytracer on 41 PE . . 129

5.29 GRID-GUM2: per-PE activity profile for raytracer on 41 PE . . 129

5.30 raytracer: Gum, GRID-GUM1 & GRID-GUM2 131

Chapter 1

Introduction

1.1 Ethos

Special High Performance Computers are expensive and rare resources, but work-

station clusters are cheap and becoming common. Emerging Grid technology

offers the opportunity to integrate appropriately enabled high performance com-

puters into a single high performance computer, and pervasive clusters are an

obvious target. However, such architectures raise several technical challenges in-

cluding the following. A network of high performance computers is much harder

to utilise effectively than a typical dedicated, flat and homogeneous high perfor-

mance computer. Communication latency is much higher, and it may be com-

prised of heterogeneous components: typically a network of clusters of varying

sizes and performance. Moreover the interconnect is shared and hence the effec-

tive speed the architecture may vary unpredictably.

1.2 Contributions

The thesis proposes a novel framework to run a single large program on com-

putational Grids, with the associated challenges of partitioning the program

and managing communication and synchronisation between concurrent tasks. In

particular we propose in this thesis to use a language with high-level parallel co-

ordination (GpH) that abstracts over the complexities of the architecture, and

12

CHAPTER 1. INTRODUCTION 13

develop a runtime environment that automatically adapts the Grid architecture

(GRID-GUM2).

The thesis makes the following contributions.

1. The Gum runtime environment is modified for deployment over a wide

area network, realising GRID-GUM1 [AZTML03]. In addition, we conduct

a systematic series ofGRID-GUM1 performance measurements on different

configurations of computational Grids with widely varying latencies, and

programs with different communication degree, comparing the performance

under Pvm and Mpich communication libraries with the Grid implemen-

tation of the Mpi standard Mpich-G2 [AZTLM04].

2. To overcome the limitations of GRID-GUM1, GRID-GUM2 has been de-

signed with novel dynamic load scheduling mechanisms for shared hierar-

chical heterogeneous computational Grids. GRID-GUM2 is the first fully

implemented virtual shared memory runtime environment that dynamically

manages parallel execution on computational Grids. (Virtual shared mem-

ory is a programming model, allows processors on a distributed-memory

machine to be programmed as if they had shared memory, Section 2.4.5)

[AZTLM05, AZMLT04].

3. This thesis demonstrates that lightweight adaptive load distribution tech-

niques, like those in GRID-GUM2, can deliver good performance for a

typical set of applications on both high- and low- latency, and both homo-

geneous and heterogeneous computational Grids [AZTLM06].

1.3 Thesis Structure

The structure of this thesis is as follows.

CHAPTER 1. INTRODUCTION 14

Chapter 2 describes related work including Grid technology, load distribution,

functional language, and Gum, a parallel functional language runtime environ-

ment for GpH.

Chapter 3 details the design and implementation of adapting the Gum parallel

runtime environment for execution on the Globus Toolkit Grid middle-ware,

GRID-GUM1. It includes an evaluation of the performance ofGRID-GUM1 and

presents some of the first systematic performance measurements of several high-

level parallel programs on both homogeneous and heterogeneous computational

Grids.

Chapter 4 presents the design and the implementation of the new adaptive run-

time environment GRID-GUM2. In particular this chapter describes details of

GRID-GUM2’s monitoring mechanism and the adaptive load distribution mech-

anism.

Chapter 5 evaluatesGRID-GUM2 on a range of computational Grid architec-

tures and with programs with varying characteristics. It also demonstrates that

virtual shared memory (Section 2.4.5) is feasible on Grid architectures and that it

can deliver good speedups if combined with an aggressive dynamic load distribu-

tion mechanism. It also presents measurements that quantify the improvements

on a small, but realistic, Grid architecture. In particular, it evaluates the per-

formance of the new adaptive load distribution mechanism of GRID-GUM2 on a

range of computational Grid configurations. On relatively low latency networks

and homogeneous and heterogeneous architectures. Furthermore, on high latency

networks and homogeneous and heterogeneous architectures. Finally, it measures

GRID-GUM2’s scalability on a high latency heterogeneous architecture.

Chapter 6 summarises the original contributions to knowledge that this thesis

has made. Further research directions for improving effectiveness and efficiency

of high level parallelism in computational Grids are also identified.

CHAPTER 1. INTRODUCTION 15

1.4 Authorship

Unless otherwise stated, the work reported throughout this thesis including the

following research publications were done by the author with the contributions

of his supervisors Dr. P. W. Trinder, Dr. G. J. Michaelson and Dr. H-W. Loidl.

1. A. Al Zain, P. Trinder, H-W. Loidl and G. Michaelson. Managing Het-

erogeneity in a Grid Parallel Haskell. In Journal of Scalable Computing:

Practice and Experience, Vol 6, No 4, 2006.

2. A. Al Zain, P. Trinder, H-W. Loidl and G. Michaelson. Managing Hetero-

geneity in a Grid Parallel Haskell. In V. Sunderam, D. van Albada, P.

Sloot, J. Dongarra, editors, International Conference on Computer Science

(ICCS05), LNCS. Springer, 2005.

3. A. Al Zain, G. Michaelson, H-W. Loidl and P. Trinder. Improving Load Bal-

ance in a Grid-Enabled Parallel Haskell. In TFP’04 – International Work-

shop on Trends in Functional Programming, Draft Proceedings, München,

Germany, pp329–344, November 2004.

4. A. Al Zain, P. Trinder, H-W. Loidl and G. Michaelson. GRID-GUM: To-

wards Grid-enabled Haskell. In IFL’04 – International Workshop on the

Implementation of Functional Languages, Draft Proceedings, Lübeck, Ger-

many, pp221–238, September 2004.

5. A. Al Zain, P. Trinder, G. Michaelson and H-W. Loidl. GRID-GUM:

Haskell on Grids. In TFP’03 – International Workshop on Trends in

Functional Programming, Draft Proceedings, Edinburgh, UK, pp223–238,

September 2003.

Chapter 2

Background

2.1 Computational Grids

2.1.1 Introduction

The Grid is the computing and data management infrastructure that is intended

to provide the electronic underpinning for a global society in business, govern-

ment, research, science and entertainment [FK99b, For05, Glo05, BFH03a]. The

idea behind the Grid is to serve as an enabling technology for a broad set of

applications in different areas.

Driven by increasingly complex problems and propelled by increasingly pow-

erful technology, today’s science is as much based in computation, data analysis,

and collaboration as on the efforts of individual experimentalists and theorists.

But even as computer power, data storage and communication continue to grow

exponentially, computational resources are failing to keep up with what scientists

demand of them. Foster argues that personal computer in 2002 is as fast as a

supercomputer of 1990, but 10 years ago, biologists were happy to compute a sin-

gle molecular structure. Now, they want to calculate the structures of complex

assemblies of macromolecules and screen thousands of drugs candidates. Personal

computers now ship with up to 100 gigabytes of storage - as much as an entire

1990 supercomputer centre. By 2006, several physics projects will produce multi-

ple petabytes of data per year [Fos02a]. Some wide area networks now operate at

16

CHAPTER 2. BACKGROUND 17

155 megabits per second, three orders of magnitude faster than the state-of-the-

art 56 kilobits per seconds that connected U.S. supercomputer centres in 1985.

But to work with colleagues across the world on petabyte data sets, scientists

now demand tens of gigabits per second.

What many term the ’computational Grid’ offers a potential means of sur-

mounting these obstacles to progress. Built on the Internet and the World Wide

Web, the computational Grid is a new class of infrastructure. By providing

scalable, secure, high-performance mechanisms for discovering and negotiating

access to remote resources, the Grid promises to make it possible for scien-

tific collaborations to share resources on an unprecedented scale and for geo-

graphically distributed groups to work together in ways that previously impossi-

ble [FKT01, Fos02b].

2.1.2 Evolution

Computational Grids have evolved in three stages: first-generation systems that

were the forerunners of Grid computing as it recognised these days; second-

generation systems with a focus on middle-ware to support large-scale data and

computation; and third-generation systems in which the emphasis shifts to dis-

tributed global collaboration, a service-oriented approach and information layer

issues [DRBJ02].

The next three subsections discuss these three stages:

The First Generation (Early 1990s)

The first generation efforts started as projects to link supercomputing sites and

this approach was known as metacomputing. The typical objective of the meta-

computing projects was to provide computational resources to a range of high

performance applications. Two representative projects in the vanguard of this

type of technology were FAFNER [FAF05] and I-WAY [FGN+96].

CHAPTER 2. BACKGROUND 18

The Second Generation (Late 1990s)

The emphasis of the first generation efforts in Grid computing was in part driven

by the need to link supercomputing centre. Metacomputing, especially the I-WAY

project [DFP+96], successfully achieved this goal. However, today the Grid in-

frastructure is capable of binding together more than just a few specialised su-

percomputing centres. The improvement in the network technology allowed the

Grid to be viewed as a viable distributed infrastructure on a global scale that can

support diverse applications requiring large scale computation and data. This vi-

sion of the Grid was presented as middle-ware computing [FK99b]. Middle-ware

is generally considered to be the layer of software sandwiched between the oper-

ating system and applications. Recently, middle-ware computing reemerged as a

means of integrating software applications running in distributed heterogeneous

environment.

The most significant to date projects which present second generation can be

classified under:

• Grid core technology projects like Globus Toolkit [FK97], described in

Section 2.1.4, and Legion [GLFK98].

• Distributed object systems which include projects like Jini and RMI [Jin04]

and CORBA [AGG+99].

• Grid resource schedulers and brokers which include projects whose primary

focus is batching and resource scheduling like, Condor [Con05], the portable

batch system (PBS) [PBS05], the Sun Grid Engine (SGE) [SGE] and the

load sharing facility (LSF) [Com05, ZZWD93], and projects with general

perspective of Grid resource brokers and schedulers like storage resource

broker (SRB) [RM01] and Nimrod-G [BAG00, AGK00].

• Grid portals applications which allow scientists and researchers to access

resources specific to a particular domain of interest via a Web interface,

also provide access to Grid resources: NPACI HotPage [Hot05], SDSC

Grid port toolkit [SDS05] and Grid portal development kit [Kit05].

CHAPTER 2. BACKGROUND 19

• Integrated systems which include projects dedicated to a number of ex-

emplar high-performance wide-area applications. The most representative

projects are Cactus [ADF+01], DataGrid [Dat05], UNICORE [AS99] and

WebFlow [AFFH98, HAFF99].

• Peer-to Peer computing as implemented, for example, by Napster [Nap05],

Gnutella [Gnu05], Freenet [CSWH01] and project JXTA [JXT05].

In the second generation, the core software for the Grid has evolved from that

provided by the early vanguard offering, such as Globus Toolkit (GT1) and Le-

gion, which where dedicated to the provision of proprietary services to large and

computationally intensive high-performance applications, through to the more

generic and open deployment of (GT2). Alongside this core software, the sec-

ond generation also saw the development of a range of accompanying tools and

utilities, which were developed to provide high level services to both users and

applications.

The Third Generation (2002)

The second generation provided the interoperability that was essential to achieve

large scale computation. As further Grid solutions were explored, other aspects

of the engineering of the Grid became apparent. In order to build new Grid

applications it was desirable to be able to reuse existing components and infor-

mation resources and to assemble these components in a flexible manner. The

solutions involved increasing adoption of a service-oriented model which includes

Web services and agent-based computing and increasing attention to metadata.

The two main representative applications in the third generation are:

• World Wide Web Consortium (W3C) which aims to establish a web service

standards which include: SOAP (XML protocol), Web Services Descrip-

tion Language (WSDL) [WSD05] and Universal Description Discovery and

Integration (UDDI) [UDD05].

CHAPTER 2. BACKGROUND 20

• The Open Grid Services Architecture (OGSA) framework [FKNT02]. OGSA

presents the Globus-IBM vision for the conversions of Web services and

Grid computing.

In short, the third generation shifts the focus in describing the Grid as the

infrastructure of e-Science rather than the enabling technology of large-scale data

and computation.

At the start of this thesis in 2002 most of the third generation applications

were still under development and the ones were released were still unstable like

Globus Toolkit 3 (GT3). Due to this, this thesis uses the most reliable and fully

implemented application in the second generation, Globus Toolkit 2 (GT2) which

is fully described in Section 2.1.4.

2.1.3 Computational Grid Applications

This sub-section discuses the applications which use the most mature Grid sec-

ond generation implementations. According to Foster in [FK99a], one can identify

three broad major application classes for computational Grids:

• Distributed Supercomputing applications use Grids to aggregate substan-

tial computational resources in order to tackle a problem that cannot be

solved on a single system. For example, the accurate simulation of complex

physical processes which can require high spatial and temporal resolution in

order to resolve fine-scale detail. Distributed supercomputing has been used

sucessfully in cosmology [NBG+96], high-resolution ab initio computational

chemistry computations [NH96], and climate modeling [MMF+93].

• High-Throughput Computing applications where the Grid is used to sched-

ule large numbers of loosely coupled or in dependent tasks, with the goal of

putting unused processor cycles from idle workstations to work. The result

may as in distributed supercomputing , the focusing of available resources

on a single problem, but the independent nature of tasks involved leads to

CHAPTER 2. BACKGROUND 21

very different types of problems and problem-solving methods. The most

obvious example of a high-throughput system is the Condor System [BL99].

• Data-Intensive Computing applications where the focus is on synchronising

new information from data that is maintained in geographically distributed

repositories, digital libraries, and databases. This synthesis process is of-

ten computationally and communication intensive as well. An example

for data-intensive computing application is, high-energy physics experi-

ments which generates terabytes of data per day, or around a petabyte

per year [DFF+02].

There are other two application classes which are related to computational

Grids:

• On-Demand Computing applications which use Grid capabilities to meet

short-term requirements for resources that can not be cost-effectively or

conveniently located locally. These resources may be computation, software,

data repositories, specialised sensors, and so on. The NEOS [JC01] and

NetSolve [CD95] present examples of on-demand computing application.

• Collaborative Computing applications which are concerned primarily with

enabling and enhancing human-to-human interactions. Such applications

are often structured in terms of virtual shared space. Many collaborative

applications are concerned with enabling the shared use of computational

resources such as data archives and simulations. For example, the Boiler-

Maker system developed at Argonne National Laboratory allows multiple

users to collaborate on the design of emission control systems in industrial

incinerators [DFH+96].

This thesis targets distributed supercomputing applications. It focuses on solv-

ing large computational problems which requires lots of computation power. The

idea is to aggregate substantial computational resources in the Grid in order to

tackle each single problem. This methodology introduces new challenging issues

CHAPTER 2. BACKGROUND 22

including the need for an adaptive load distribution mechanism to schedule re-

sources of many PEs, latencies between these PEs, and achieving and maintaining

high levels of performance across heterogeneous systems. Broadly speaking this

thesis introduces one of the first fully implemented and tested adaptive load dis-

tribution mechanisms over a wide area network using a virtual shared memory to

tackle these challenging issues in computational Grid architecture as presented

in chapters 4 and 5.

2.1.4 Globus Toolkit

In this section, we provide a detailed description of the Globus Toolkit compu-

tational Grid implementation. Globus project is developing an integrated set

of basic grid services, termed the Globus Toolkit. The Globus approach differs

from the other computational Grid implementations described in Section 2.1.2,

in three ways [Fos99]:

• It provides a bag of services model, which allows applications to use Grid

services without having to adopt a particular programming model.

• It has provision of specialised mechanism that may coexist with, but some-

times replace, mechanisms provided by high performance computing appli-

cations.

• It includes support for an information based approach to meeting applica-

tion performance requirements.

For these reasons, and the stability, full implementation and the continuous

implementation support from the Globus Team [Glo05, AHS+], Globus Toolkit

has been chosen as the middle-ware implementation in this thesis.

The Globus Toolkit is open source software with an open architecture [FK97].

It is a collection of software components designed to support the development of

applications for high performance distributed computing environments [FK98b].

The three main components are:

CHAPTER 2. BACKGROUND 23

• Resource Management: allocation and management of Grid resources;

• Information Services: providing information about Grid resources;

• Data Management: accessing and managing data in a Grid environment.

All of these components use services provided by the Grid Security Infrastruc-

ture (GSI) protocol at the connection layer.

Grid Security Infrastructure (GSI)

As the Globus Toolkit can connect different sites over open networks to Grid

systems, there is the need for mechanisms that enable authentication and secure

communication. The bases for GSI are public key encryption, X.509 certificates

and the Secure Socket Layer communication protocol. The GSI implementation

of the Globus Toolkit conforms to the Generic Security Service API (GSS-API).

This is a standardised API for security systems from the Internet Engineering

Task Force (IETF) [WFK+04, WSF+03].

Resource Management

The Resource Management Architecture of the Globus Toolkit is a layered sys-

tem. It contains high-level global resource management services on top of local

resource allocation services. Figure 2.1 shows an overview of the components in

the resource management architecture. Three main components can be observed:

• An extensible Resource Specification Language (RSL) [RSL05] which pro-

vides a method for exchanging information about resource requirements

between all of the components in the Globus resource management archi-

tecture.

• An interface to all of the various local resource tools like LSF, NQE, LoadLeveler

and Condor. That interface is provided by the Globus Resource Allocation

Manager (GRAM) [ZKA04, Roy01].

CHAPTER 2. BACKGROUND 24

• The co-allocation service is named Dynamically-Updated Request Online

Coallocator (DUROC). It coordinates single requests that can span multiple

GRAMs [CFK99].

Local resource
managers

Broker

Co−allocator

RSL
Specification

Queries
& Info

RSL

RSL

RSL

Service
InformationApplication

GRAM GRAM GRAM

Easy−LLLSF NQE

Figure 2.1: Globus Toolkit resource management architecture [Glo05]

Information Management

The information management is implemented by the Globus Metacomputing Di-

rectory Service (MDS). It provides the necessary tools to build an LDAP-based

information infrastructure for computational Grids [Fit01, FvL98].

Data Management

A secure, high-performance and reliable data transfer protocol, that is optimised

for high-bandwidth wide-area networks is Data Management implementation. It

is called GridFTP and is based on FTP, but provides enhanced features required

by data and also computational Grid projects [ABK+05].

In general, Globus is similar to a distributed operating system with uniform

access to system features. Globus uses a standard application programming in-

terface (API) for sending data and work to other machines using RSL, which is

considered as a common notation for describing resource requirements.

CHAPTER 2. BACKGROUND 25

2.1.5 Grid Layers

This sub-section discusses the layer of Grid architecture, which follows the ”hour-

glass” model as described by Foster [FKT01]. Broadly speaking, the Grid archi-

tecture identifies the fundamental system components, specifies the purpose and

function of these components, and indicates how these components interact with

one another. Figure 2.2 defines a slim API for resource and connectivity proto-

cols, so that collective services have a simple interface to work with; on fabric

layer, many and often specialised resources are covered (e.g. storage, sensors), not

just the usual for parallel computing such as memory, CPU etc. The fabric layer

provides the resources that are shared by the Grid: CPU time, storage, sen-

sors. The connectivity layer defines the core communication and authentication

protocols required for Grid-specific multi-clusters transactions. In the resource

layer there are information protocols that tells us about the state of the resource

and management protocols that negotiate access to a resource. The collective

layer includes directory services, scheduling, data replication services, workload

management, col-laboratory services and monitoring services.

Figure 2.2: Layers in the Grid Architecture [FKT01]

2.1.6 Communication Libraries

The development of communication libraries influenced computation Grid [BFH03b].

During the 1980s and 1990s, application developers began to develop large-scale

CHAPTER 2. BACKGROUND 26

systems that pushed against the resource limits of even the fastest parallel com-

puters. Some groups began looking at distribution beyond the boundaries of the

machine as a way of achieving results for problems of larger and larger size. As

a conclusion of this, software for parallel computers focused on providing pow-

erful mechanisms for managing communication between PEs and development

and execution environment for parallel machine, and libraries like, Parallel Vir-

tual Machine (Pvm), and Message Passing Interface (Mpi) developed to support

communication for scalable applications [DFF+02].

Pvm

Pvm(Parallel Virtual Machine) emerged as one of the most popular cluster message-

passing systems in 1992 [GBD+94]. Although Pvm did not originally work on

nodes of multicomputers, more recently, multicomputer vendors have offered both

layered and native versions of Pvm for multicomputer message passing [GKP96].

Mpi

The Mpi (Message Passing Interface) Standard defines a library of routines that

implement the message passing model [GLS99]. These routines include point-

to-point communication functions, where a send operation is used to initiate a

data transfer between two concurrently executing program components, and a

matching receive operation which is used to extract that data from system data

structures into application memory space. It also provides collective operations

such as broadcast and reduction that explicitly involve multiple PEs. In direct

comparison, Mpi has a richer set of constructs than Pvm.

Mpich is a popular implementation of the Mpi standard [GLDS96]. It is a

high-performance, highly portable library originally developed as a collaborative

effort between Argonne National Laboratory and Mississippi State University. It

was one of the first widely available Mpi implementations

CHAPTER 2. BACKGROUND 27

Globus-enabled Mpi: Mpich-G

The Globus Toolkit enables access to various computational resources, but it can

not itself provide a convenient way to use several resources simultaneously, as dis-

cussed in Section 2.1.4. A Globus-enable version of Mpich, Mpich-G [FK98a], is

based on the Nexus Communication Library [FKT96]. The Nexus library was the

basis for all communications in Mpich-G. It supports multiple protocols includ-

ing a highly efficient TCP implementation and automatic data-type conversions

between different architectures. However, the Nexus Library delivers a poor per-

formance especially in intra-machine communication. For instance, in the case

of sending or receiving data, the data has to be copied from the application

buffer to the Nexus communication layer and vice versa. So there was a need for

improvement, addressed by a new library Mpich-G2.

Globus-enabled Mpi: Mpich-G2

The implementation of Globus Toolkit2, the most stable one and the one used in

this thesis, no longer uses the Nexus library. It is said to have re-implemented

the ’good’ parts of Nexus and improved the others [AHS+]

The Globus-enable version of Mpich, Mpich-G2 [FK98a], supported by the

Globus Toolkit since version 1.1.4 and conforms to the Mpi standard 1.1 with

some additional features of Mpi 2.0. In Mpich-G2, data flows between applica-

tions’ buffers without intermediate interfere from the communication layer, which

improves Mpich-G2 performance by decreasing latency [KTF03].

There are new features of Mpich-G2 that do not exist on other Mpich imple-

mentations, for instance the ability to specify the IP address or network interfaces

to be used, to specify IP port ranges if there are firewall issues and to tune the

TCP buffer sizes. All of these can be done in RSL as part of the job requirements.

In the case of computational Grid resources may be connected both by short dis-

tance and fast local network and by longer and wide area networks. Mpich-G2

separates communication methods into groups, each with similar properties based

on their performance. In turn Mpich-G2 is able to maximize communication over

CHAPTER 2. BACKGROUND 28

the fastest links and to minimise the communication over the slowest links.

2.2 Load Distribution

In computer systems in which the PEs possess localised memories and no shared

global memory exists, processing work must be transported from heavily loaded

PEs to lightly loaded PEs. The act of deciding upon what work should be moved

where is termed load distribution. A major design issue for software designed to

run on multi-clusters Grid architecture is the development of effective techniques

for the distribution of threads amongst the PEs.

Load distribution is only one branch of a family of global scheduling tech-

niques [CK88, CK95]. An alternative is task assignment which entails compile-

time decision-making about the destination of a thread. Such algorithms can be

derived by profiling, or heuristic prediction, but suffer from the unpredictability of

general programming, as well as from the flaws of modelling and the inadequacies

of heuristic identification.

The load distribution family of global scheduling techniques may be further

subdivided into load balancing and load scheduling [CK88, CK95, Gos91]. In the

former, an attempt is made to truly balance the load/utilisation of all PEs in

the multicomputer; the latter sub-categorisation of load distribution algorithms

requires no global balance, the goal is to equalise the load at a local level rather

than a global level.

This thesis is concerned with load sharing in a heterogeneous environment in

PE clusters levels and does not attempt to seek a global balance of load for all

PEs in the computational Grid.

The taxonomy of Casavant and Kuhl further subdivides load distribution as

shown in Figure 2.3 [CK88, CK95, SKH95, Der02]. However, before describing

those subsystems, it is important to define thread and processes and the differ-

ences between them.

CHAPTER 2. BACKGROUND 29

Static Dynamic

Load Distribution Algorithms

Decentralised

Non−cooperative

Centralised

Cooperative

Figure 2.3: Load distribution algorithm classification

2.2.1 Threads Compared with Processes

Threads are distinguished from processes in that processes are typically inde-

pendent, carry considerable state information and have separate address spaces,

as described by Hammond and Michaelson in [HM99]. Multiple threads, on the

other hand, typically share the state information of a single process, and share

memory and other resources directly.

In general, threads are a way for a program to split itself into two or more

simultaneously running tasks. In principle, multiple threads can be executed in

parallel on many computer systems. This multithreading generally occurs by

time slicing where a single processor switches between different threads or by

multiprocessing where threads are executed on separate processors. Threads are

similar to processes in this matter, but differ in the way that they share resources.

The related use of the term threads in this thesis is for threaded code, which

is a form consisting entirely of subroutine calls, written without the subroutine

call instruction, and processed by multiprocessing.

An advantage of a multi-threaded program is that it can operate faster on

computer systems that have multiple CPUs, CPUs with multiple cores, or across a

cluster of machines, or computational Grid (multi-clusters) environment. This is

because the threads of the program naturally lend themselves to truly concurrent

execution. In such a case, the programmer needs to be careful to avoid race

conditions, and other non-intuitive behaviours. In order for data to be correctly

CHAPTER 2. BACKGROUND 30

manipulated, threads will often need to rendezvous in time in order to process

the data in the correct order. Threads may also require atomic operations in

order to prevent common data from being simultaneously modified, or read while

in the process of being modified. Careless use of such primitives can lead to

deadlocks [Hyd, Wal].

Generally threads are implemented in one of two ways [LB96]: preemptive

multithreading, or cooperative multithreading. Preemptive multithreading is

generally considered the superior implementation, as it allows the system to de-

termine when a context switch should occur. Cooperative multithreading, on the

other hand, relies on the threads themselves to relinquish control once they are

at a stopping point. This can create problems if a thread is waiting for a resource

to become available. The disadvantage to preemptive multithreading is that the

system may make a context switch at an inappropriate time, causing priority in-

version or other bad effects which may be avoided by cooperative multithreading.

The thread implementation presented in this thesis is classified under cooperative

multithreading.

2.2.2 Static and Dynamic Load Distribution Subsystem

In static load distribution, PEs are assigned tasks at compile time, i.e. before

the execution begins. Information regarding task execution times and processing

resources is assumed to be known at compile time. Hence, a task is always

executed on the processor to which it is assigned. However, the execution time

of all of the tasks is not the same and over a period of time processing resources

in a Grid network may change [SWP90]. Therefore, static load distribution is

not appropriate for a computational Grid.

Static and dynamic load distribution algorithms are distinguished by the dy-

namic load distribution algorithm’s use of current state; behaviour of static load

distribution is pre-determined and the current load of a PE does not contribute

in the load distribution decisions. In contrast, dynamic load distribution [SKS92]

CHAPTER 2. BACKGROUND 31

assumes that limited knowledge about the processes and PEs is available a pri-

ori, and load distribution decisions are made during execution. The advantage of

dynamic load management over static load management is that the system need

not to be aware of the runtime behaviour of the applications before execution.

For this thesis, dynamic load distribution is particularly useful due to the Grid

architecture which consists of dynamic and hierarchal networks of workstations in

which the primary performance is maximising utilisation of the processing power

to minimise execution time of the applications.

2.2.3 Centralised and Decentralised Load Distribution Sub-

system

Under centralised load distribution one PE is the designated the load distributor

and all other tasks must keep this PE informed of their load. This activity not

only incurs a high communication load but also concentrates the load on the links

connecting the load distributor to the reminder of the network. In the context

of this thesis where the Grid architecture is the target, centralised policy is

very expensive due to the high latency between the PEs in the Grid network.

An additional factor in centralised load distribution is the vulnerability of the

central load distributing coordinator; failure of this PE results in termination of

load distribution activity.

Often a better approach for removing the load processing bottleneck of the

central load distributor is to decentralise load distribution and allow each PE to

be responsible for its own load distribution activity. In the decentralised load

distribution, each PE keeps its own local image of the system load.

2.2.4 Cooperative and Non-Cooperative Load Distribu-

tion Subsystem

Under a decentralised load distribution system, a PE may make choices about

the transfer of threads on its own or through dialogue with other PEs. Under this

dialogue, each PE passes its current load information to its neighbour at preset

CHAPTER 2. BACKGROUND 32

time intervals resulting in the dispersement of load information among all PE in

a short period of time and in a non-expensive way. A load distribution policy

that utilises dialogue in the decision making process is said to be cooperative load

distribution. The converse is termed a non-cooperative load distribution [Ros98].

2.2.5 Thread Placement and Thread Migration

Load distribution algorithms seek different characteristic in target threads. A

load distribution algorithm may transfer threads after they have begun execution

or before. The transfer of a thread after it has begun execution is called preemp-

tive transfer or thread migration. The transfer of a thread prior to commencing

its execution is called a non-preemptive transfer or thread placement/allocation.

Transferring a thread that has begun executing is more complex than moving

a thread yet to commence execution as the state of an evaluation, or partially

evaluated, thread is typically relatively large and intertwined [Esk89].

Gum (see Section 2.4) is designed to support thread migration but at the

beginning of this thesis thread allocation only had been presently implemented.

Du Bois [DB05, DBLT02] has recently implemented thread migration transfer for

Gum.

2.2.6 Mode of Operation in Dynamic Load Distribution

Dynamic load distribution algorithms can be separated into three classes depend-

ing upon the mode in which a task operates in order to facilitate load distribu-

tion [WM95, WM85]:

• sender-initiated algorithms,

• receiver-initiated algorithms,

• adaptive algorithms.

Sender-Initiated Load Distribution: Sender-initiated or active dynamic load

distribution algorithms [ELZ85, Loi98], are those in which an over-loaded PE

CHAPTER 2. BACKGROUND 33

searches for lightly loaded PE to which a thread may be transfered. Sender-

initiated strategies outperform their receiver-initiated counterparts when overall

system load is light to moderate. Although this gives a more even load distribu-

tion it may yield a deterioration in the performance if all PEs are equally loaded.

Through the rest of this thesis we use active load distribution term to refer to

sender-initiated load distribution.

Receiver-Initiated Load Distribution: Receiver-initiated or passive dynamic

load distribution, which is also sometimes called work stealing: in this type of dy-

namic load distribution lightly loaded PEs have to explicitly ask for work from

PEs with excess load. This strategy minimises the overhead during periods in

which all PEs are busy anyway. Gum (see Chapter 2.4) is a system of passive

load distribution, uses a “fishing” mechanism where requests are sent to a random

PE. Through the rest of this thesis we use passive load distribution term to refer

to receiver-initiated load distribution.

Adaptive Load Distribution: This the ideal case, a system that behaves in

an active manner when overall system load is light and in a passive manner when

overall system load is heavy. A system that alters its behaviour in such a manner

is called an adaptive dynamic load distribution [ELZ85].

This thesis presents a semi-adaptive load distribution where PEs switch from

passive manner to an active manner according to the load in different clusters as

described in chapter 4.

2.2.7 Grid Scheduling

Although computational Grids falls within the distributed parallel computing

domain, it has a lot of unique characteristics that make the scheduling in this

environment highly difficult. A special load distribution mechanism should be

implemented to overcome the challenging characteristics of computational Grid

to deliver the potential high performance services [Ber99].

CHAPTER 2. BACKGROUND 34

The grand challenges imposed by the computational Grid environment are

examined in the following:

Resource Heterogeneity

Computational Grids mainly have two categories of resources: networks and

computational resources. Heterogeneity exists in both of the two categories of

resources. First, networks used to interconnect these computational resources

may differ significantly in terms of their bandwidth and communication protocols.

Second, computational resources are usually heterogeneous in that these resources

may have different hardware, such as number of processor, physical memory, CPU

speed and so on. The heterogeneity results in differing capability of processing

jobs. Resources with different capability could not be considered uniformly. This

thesis presents an adequate load distribution mechanism which addresses the

heterogeneity and leverages the different computing power of diverse resources.

Resource Non-Dedication

Because of non-dedication of resources, resource usage contention is a major issue.

Competition may exist for both computational resources and interconnection net-

works. This thesis targets dedicated computational resources, which leaves only

the interconnection networks as non-dedicated. One consequence of the non-

dedicated interconnection network is that behaviour and performance can vary

over time. For example, in wide area networks, network characteristics such as

latency may be varying over time. Due to this the new implemented load dis-

tribution monitors the latency continuously through the execution time to avoid

high-latency communication.

Due to these challenging issues in the computational Grid environment, there

have been a number of efforts attempting to design scheduling systems, each

having its unique features.

CHAPTER 2. BACKGROUND 35

Application Awareness

Application awareness can be divided into two levels. First, application-level

scheduling which makes use of knowledge of applications as much as possible.

Such kind of scheduling results in custom schedulers for each application attempt-

ing to maximise application performance, measured as runtime or speedup, with

little regard to overall system performance. The complexity of application-level

scheduling is the order of the applications considered. The best known exam-

ple for application-level scheduling is AppLeS [BW97]. Second, resource-level

scheduling, which does not use much knowledge of Grid applications. In this

applications neither specify resource requirements nor provide application char-

acteristics. Condor is an example which uses resource-level scheduling [BL99].

The new implementation presented in this thesis also uses resource-level schedul-

ing.

Inter-Job Dependency

Given an application, the constituent jobs may be either dependent or indepen-

dent. The scheduling mechanism for a set of independent jobs differs significantly

from those for a set of dependent jobs. It is more complicated to schedule de-

pendent jobs. Among existing Grid scheduling systems, some are intended to

deal with independent jobs for simplifying the application model, for example,

Nimrod-G [BAG00, AGK00] and Legion [GLFK98]. The scheduling mechanism

presented in this thesis deals with dependent jobs.

Information Service

The scheduler determines the state information of all the resources in a computa-

tional Grid through the information service before making a scheduling decision.

Different scheduling mechanisms adopt different methodologies to provide infor-

mation service. There are three categories of information service:

• centralised, where there is a single entity that maintains the state informa-

tion of all resources. Globus MDS [ZFS03] is one example using a centralised

CHAPTER 2. BACKGROUND 36

scheme;

• decentralised, where every resource is responsible for maintaining its current

state information locally, and answering queries from different resources.

The decentralised scheme is suitable for large scale computational Grids,

however the large overhead should be carefully considered. NWS [Wol98]

uses the decentralised scheme;

• hybrid, under which scheme resources are aggregated into several groups.

Within each group, the centralised scheme is applied, and over the groups,

the decentralised scheme is applied.

In this thesis, we have adopted a decentralised mechanism for information

service.

Scheduler Organisation

The Grid scheduler organisation can be also classified as: centralised, decen-

tralised, and hierarchical.

In the centralised scheme, all tasks are sent to the centralised scheduler where

there is a queue for holding all the pending tasks. The decentralised scheme is

not very scalable with increasing number of resources. The central scheduler may

prove to be a bottleneck in some situation. In contrast, the decentralised scheme

distributes responsibility to every site (PE). Each site in the computational Grid

acts as both a scheduler and a computational resource. The tasks are submitted

to the local Grid scheduler where the task originated. Since the responsibility

of the scheduling is distributed, the failure of a single scheduler does not effect

others’ scheduling. In the hierarchical scheme, the scheduling process is shared

by different levels of schedulers. Resources here are organised in hierarchical

way, where the higher level resources manage the scheduling for the resources in

the lower level. Compared with the centralised scheduling, hierarchical scheduling

addresses the problem of single-point-of-failure. Nevertheless, it also retains some

of the advantages of the centralised scheme.

This thesis presents a decentralised scheduling organisation.

CHAPTER 2. BACKGROUND 37

Rescheduling

Rescheduling is an important technique used to enhance system reliability and

flexibility. Grid scheduling systems can be classified into two categories: one

with rescheduling support and the other without re-scheduling.

The load distribution mechanism presented in this thesis supports reschedul-

ing function.

2.2.8 Summary

Table 2.1 [ZHU02] compares the most common scheduling system on the Grid

with the new adaptive load distribution presented in this thesis, GRID-GUM2.

System Developer Resources Applications Scheduling
& Year

University single-domain centralised info,
Condor of Wiscon- Grid, single-job decentralised
[BL99] sin, Madi- non-dedicated, application scheduler, resche-

son (1988) non-time-shared duling-support

University multi-domain centralised info,
Condor-G of Wiscon- Grid, single-job decentralised
[FTL+01] sin, Madi- non-dedicated, application scheduler, resche-

son (2001) non-time-shared duling-support

University single-domain decentralised info,
AppLes of Califo- Grid, diverse decentralised,
[BW97] nia, Sand non-dedicated, applications scheduler, resche-

Diago(1996) time-shared duling-support

University single-domain centralised info,
Legion of Virginia Grid, diverse decentralised
[GLFK98] (1998) non-dedicated, applications scheduler, resche-

time-shared duling-support

Monash multi-domain soft centralised info,
Nimrod/G University Grid, Real-time decentralised
[AGK00] Australia non-dedicated, parametric scheduler, non-res-

(2000) time-shared study cheduling-support

GRID-GUM2

Heriot- multi-domain decentralised info,
Watt Grid, single-job decentralised
University dedicated, application scheduler, resche-
(2004) non-time-shared duling-support

Table 2.1: Comparison of Scheduling Systems

CHAPTER 2. BACKGROUND 38

2.3 Functional Languages

Functional languages are general purpose programming languages supporting pro-

gramming at a higher level of abstraction than conventional imperative languages

like C [KR88] and Fortran [CW88]. Functional programming languages express

computation in terms of pure functions. A program is expressed as a function

from its input to its output. These languages are usually describe as declarative

languages which involves specifying ’only’ what is to be computed while imper-

ative programming is prescriptive, specifying also the details the computation

steps.

Perhaps the most important advantage they have, as described by Hughes [Hug89],

are their powerful facilities for modular design. In particular higher order func-

tions enable common patterns of computation to be captured. This may be at

a relatively low level such as a function for applying another function element-

wise across a data structure or it may be the abstraction of a whole algorithm.

Conventional imperative languages do not usually include such powerful abstrac-

tion facilities. For example in languages like Pascal it is not possible to write

generic list processing functions. This is due to limitation of the type system

and limitation of procedural abstraction. Conventional languages are also more

limited in the kind of abstractions which may be defined and used. The better

the abstraction facilities a language offers, the more ways there are of breaking up

and hence solving a problem. Abstraction facilities are the key to modularisation

and hence to programming in the large. Thus functional languages are good for

programming in the large.

According to Roe [Roe91], there are at least two other benefits of functional

languages. The first is that there are mathematically tractable and hence they can

be reasoned about more easily than conventional languages. This is also makes

program derivation much easier. The second benefit is that functional programs

are amenable to parallel evaluation. This is one of the core of this thesis.

Examples of functional programming languages includes Haskell [PHA+99],

Miranda [Tur85, Tur86] and ML [AJ90]. There are also object-oriented functional

CHAPTER 2. BACKGROUND 39

languages, for example Clover [CB97, BC97] and Object Caml [LDG+01].

2.3.1 Parallelism or Concurrency

The terms concurrency and parallelism have sometimes been used interchangeably

in the past. Both types of system involve executing processes or tasks at the

same time. Modern usage [BA90] is, however, to use the term “concurrency”

for systems which involve a number of independent, but collaborating, processes,

such as graphical user interfaces or operating systems. The term “parallelism” is

used for systems involving the cooperation of a number of inter-dependent tasks

on a single activity.

The purpose of concurrency is to support abstraction and to improve security

by separating activities which are logically independent processes, but which may

take place simultaneously. The purpose of parallelism in contrast, is to improve

performance, usually in terms of speed, throughput or response time by creating

subtasks to deal with units of work [HM99].

In this thesis we are explicitly concerned about parallelism rather than con-

currency.

2.3.2 Classification

Functional languages are often classified, on the basis of their semantics, into

strict, non-strict and lenient [Loo99]. A function is strict in an argument x if,

whenever the value of x is undefined, the result of the function is also undefined. A

strict function is a partial function which is strict in at least one of its arguments.

A non-strict function is a partial function that may be defined even when one

of it arguments is not defined. Strict functional languages are therefore those

that support strict functions while non-strict languages are those that support

non-strict functions. Lenient languages combine the features of both strict and

non-strict languages: they support functions which can return results even when

their computation may not terminate.

CHAPTER 2. BACKGROUND 40

Lazy evaluation [PJCSH87, Par91, JCS89] is the implementation technique

often used to implement non-strict semantics. Lazy evaluation starts evaluating

the function’s arguments as and only when they are used. Lenient evaluation

starts the evaluation of the function in parallel with the evaluation of all the

arguments of the function. Lazy evaluation enables functional languages to ex-

press algorithms involving potentially infinite data structures succinctly. Such

algorithms are awkward to express in a language without lazy evaluation [Cli82].

Also laziness is an implementation technique that encompasses both normal

order evaluation (in that it pursues a leftmost outermost reduction strategy to

achieve weak head normal forms) and sharing (in that β-reduction is achieved

using call by need rather than call by name); the later is necessary so that for

example, in the expression λx.(x + x) the argument x is only evaluated once. In

practice, the normal order evaluation of function arguments also extends to data

constructors so that, for example, (1/0) : [] does not evaluate (1/0) unless, and

until, the head of the list is demanded [Cla99, MHC99].

2.3.3 Parallel Functional Language Mechanisms

Parallel Graph Reduction

An important evaluation mechanism for non-strict functional language is graph

reduction [Bar84]. One method for implementing the graph reduction data struc-

ture is to translate the program to combinators [CF58]. A key feature of this

method is that all free variables are abstracted from each function in the pro-

gram. The program is represented as a computation graph, with instances of

variables replaced by pointers to subgraphs which compute values. Graphs are

evaluated by repeatedly applying graph transformations until the graph is irre-

ducible. The irreducible final graph is the result of the computation.

According to Loidl [LTB01, Loi98], graph reduction has several advantages:

• It is easy to express sharing of program expressions by sharing in the graph;

CHAPTER 2. BACKGROUND 41

• a call-by-need evaluation can be easily implemented by overwriting the re-

duced node with its result;

• independent part of the graph can be evaluated in parallel.

From the parallel point of view the most important advantage of graph reduction

is the ease of expression of parallel computation. A parallel graph reduction model

can be very naturally expressed as a spark pool, i.e. a pool consisting of pointers

to unevaluated expressions (”thunks”), and a set of processors that take sparks

out of this pool and execute them by creating a thread, and independent process

performing standard graph reduction. These threads are kept and maintained in

a separate thread pool [AJ89, Loi98].

Skeletons

Skeletons or skeleton-based approaches define a set of parallel templates [Col89].

They are a popular parallel coordination construct. Typically, a language has a

small set of predefined skeletons, where each skeleton is a higher-order function

describing a common coordination pattern with an efficient parallel implementa-

tion [Col99].

The programmer writes the program using skeletons as appropriate. A par-

allelising compiler can then exploit the rules provided for each skeleton, in order

to produce an efficient parallel implementation of the program on the target ar-

chitecture.

From the functional programmer’s perspective, a skeleton is simply a normal

higher-order function. Each higher-order function is mapped to a different ab-

stract parallel process topology, with parameters specifying details of the tasks

that are to be performed.

Examples of well-developed systems using a skeleton-based approach for paral-

lelism are SCL [DGT96] and P3L [BDO+95]. Both systems define a coordination

language that can be freely combined with an arbitrary computation language. In

practice these systems often use C or FORTRAN as computation languages. As

CHAPTER 2. BACKGROUND 42

a crucial technique for the development of larger applications these languages al-

low the specification of data re-distribution to compose skeletons with conflicting

data distributions.

2.3.4 Parallel Functional Programming

Popular general-purpose languages lack parallelism primitives as part of the lan-

guage. Most often this factor necessitate the redesign of the algorithm and com-

plicate its translation to a program. Moreover, some object-oriented languages,

e.g. Simula [ND78] have no provision for parallelism, others, e.g. C++ [Str85],

have library extensions but needs explicit user specification. Ada [Geh84] and

Java [AG96] offer powerful parallelism primitives in the language but these are

constrained by the scourge of imperative programming: the management of state.

Each parallel task executes with shared variables. Consequently each task must

manage shared access to variables and synchronisation throughout the execution

which includes task termination.

Functional programming languages lack state, are referentially transparent,

and inherently possess many opportunities for parallel evaluation [Bac78].

In principle no syntactic constructs are necessary to identify parallelism in

a functional program, and no complex mechanisms are required for synchroni-

sation. As functional programs are free from side-effects, a sub-expression can

be executed in any order since its execution cannot affect the value of any other

sub-expression of the expression(s) in which it occurs.

Parallel implementation of functional languages continue to receive increas-

ing attention by researchers. Functional programming languages are arguably

the most suited to computational Grid hardware platforms because of their

clean semantics [Bar84, PJCSH87]. The programmer needs only to express the

algorithm in executable form and the parallelism can be inferred in array/list

element calculation, function argument evaluation, conditional expression evalu-

ation, evaluation of operands to operators, or sub-expression evaluation.

In short, the goal of parallel programming is to achieve higher performance,

CHAPTER 2. BACKGROUND 43

by reducing runtime. So the advantages of parallel programming with functional

languages can be summarised as follow:

• Functional programs designed for parallel evaluation may be reasoned about

in the same way as sequential programs.

• Parallel functional programs, unlike other parallel programs, need no com-

munication, synchronisation or mutual exclusion to be specified explicitly.

This all occurs implicitly in the program graph.

• Deadlock can only arise when the result of a program is undefined.

In a parallel setting, side-effects are an anathema to automatic or semi-

automatic parallelisation since they inhibit easy program decomposition into par-

allel tasks and introduce new dependencies between tasks which can be difficult

or impossible to disentangle without using explicit parallel control.

Because a purely functional language has no side-effects, it is relatively easy

to partition programs so that sub-programs can be executed in parallel. Any

computation which is needed to produce the result of the program may be run

as separate task. The control dependencies which are implicit in the language

serve to enforce any sequential behaviour, and also to limit the creation of excess

parallelism some extent.

2.3.5 Parallel Control

The two extremes of parallel control are typified by fully explicit approaches,

where all behavioural details are specified, including parallel partitioning, task

and data distribution, load management and communication, and fully implicit

fully approaches where the compiler make all such decisions. In between lies a

wide range of semi-implicit/explicit approaches.

Purely Implicit Approaches

The most implicit approaches, requiring least programmer input are exemplified

by pH [NPA92]. pH is an implicitly parallel language based on Haskell. The

CHAPTER 2. BACKGROUND 44

arguments to a function are evaluated in parallel, and each iteration of the parallel

loop-construct is similarly executed as a separate task.

Restricted Implicit Approaches

Restricted implicit approaches match certain language characteristics to desir-

able program properties. For example in the skeleton approach [Col99] certain

patterns of computation are recognised and matched with suitable templates of

parallel behaviour.

Controlled Parallelism

Annotation-based approaches may fall either side of the implicit/explicit divide.

If an annotation is a directive to the compiler, then this is clearly example of

explicit parallelism. If the annotation is a suggestion, however, that may perhaps

be checked by the compiler or even ignored entirely, then the construct lies more

in the realm of implicit parallelism. This is not merely a technical distinction:

in implicit parallel systems, overall control lies in the hand of the compiler and

runtime systems (which is automatic parallelism), whereas in an explicitly parallel

system overall control rests squarely in the hands of the programmer (which

manual parallelism)

Other controlled approaches include the evaluation strategies [THLP98] and

first class schedules [Mis94]. In these systems, functions are higher-order func-

tions that manipulate sequential or parallel program components to yield a more

complex parallel program behaviour, but whose definition is entirely within the

normal semantics of the sequential programming language. We refer to this ap-

proach in this thesis as semi-implicit parallelism.

CHAPTER 2. BACKGROUND 45

Explicit Approaches

In the explicit approach not only is every detail of parallel execution under the

programmer’s control, but it must be specified in the parallel program. In prin-

ciple, this allows a skilled programmer to produced a highly optimised paral-

lel program for some architecture. This is usually achieved by providing new

parallel control constructs to deal with parallel partitioning, communication,

and task placement, etc. The typical examples for explicit approach in func-

tional language are Caml with the Mpi message passing library and Concurrent

ML [Ser99, Nie99].

Semi-implicit parallel languages provide a few high-level constructs for control-

ling key coordination aspects, while automatically managing most coordination

aspects statically or dynamically. Historically annotations were commonly used

for semi-implicit coordination, but more recent languages provide compositional

language constructs. As a result, the distinction between semi-implicit coordi-

nation and coordination languages is now rather blurred, but the key difference

in the approach is that semi-implicit language aim for minimal explicit coordina-

tion. Due to this we proposed in this thesis to use a language with semi-implicit

parallel coordination, GpH.

2.3.6 Parallel Functional Language

This section compares the three parallel functional languages PMLS, GpH, and

Eden. The three languages have been chosen for the following reasons. Firstly to

be consistent with a high-level computation language we selected languages with

high level coordination and exclude languages with imperative or low-level coor-

dination. Secondly the languages represent a range of language designs, e.g. both

eager and lazy languages, and with coordination ranging from almost entirely im-

plicit (PMLS) to a language (Eden) in which processes can be manipulated by the

programmer. Thirdly the languages represent a range of implementation designs,

e.g. both those with predominantly static coordination (PMLS) and those with

CHAPTER 2. BACKGROUND 46

predominantly dynamic (GpH). Finally we have selected three of the relatively

few robust parallel functional languages available.

PMLS

Parallel ML with Skeletons (PMLS) is a parallelising compiler for the full purely

functional subset of Standard ML, that realises parallelism in higher-order func-

tions as algorithmic skeletons [MSBK01]. The PMLS system is based on skeletons

that seek to minimise programmer involvement in identifying and exploiting par-

allelism.

Since the only parallel constructions that are available to the programmer are

the higher-order functions that have been provided by the language, program-

mers must design parallel algorithms by adapting the sequential source to these

functions. The compiler and runtime system are jointly responsible for setting up

the corresponding process topologies, and for mapping processes to processors.

Higher-order functions may be given different behavioural interpretations when

compiling for different target architectures. This allows a single higher-order func-

tions to abstract over a range of possible parallel behaviours, which are selected

on the basis of concrete details such as communication latency, or the granular-

ity of the tasks to which the function is applied. In essence, skeletons modify

behaviours but not values.

The PMLS compiler generates parallel code solely from calls to map and fold.

No other SML constructs are provided or exploited for parallelism. However, the

system enables the introduction of new higher-order functions with new skeletons.

GpH

GpH [THLP98] is a modest conservative extension of Haskell98 [PHA+99] real-

ising a thread-based approach to parallelism. Thread-based approaches to par-

allelism allow parallel threads to be created, but do not provide mechanisms

to control those threads. Threads are thus managed entirely under runtime-

system control. By combining simple thread primitives with higher-order func-

tions, high-level abstractions can be constructed, such as the evaluation strategy

CHAPTER 2. BACKGROUND 47

approach [THLP98].

GpH provides parallel (par) and sequential (seq) composition as coordination

primitives. Denotationally, both compositions are projections onto the second ar-

gument. Operationally seq causes the first argument to be evaluated before the

second and par indicates that the first argument may be executed in parallel.

The latter operation is called the “sparking” of parallelism and is used in differ-

ent variants in many parallel languages. The runtime-system, however, is free

to ignore any available parallelism. In this model the programmer only has to

expose expressions in the program that can usefully be evaluated in parallel.

The runtime-system manages the details of the parallel execution such as thread

creation of communication.

Experience of implementing non-trivial programs in GpH shows that the un-

structured use of par and seq can lead to rather obscure programs. This problem

can be overcome with evaluation strategies [THLP98]: lazy, polymorphic, higher-

order functions controlling the evaluation degree and the parallelism of a Haskell

expression. Evaluation strategies provide a clean separation between coordina-

tion and computation. The driving philosophy is that it should be possible to

understand the computation specified by a function without considering its co-

ordination.

GpH programs are developed with an integrated suite of sequential and par-

allel software tools, based on the Glasgow Haskell Compiler (GHC) [PHH+93].

The tools for sequential software development include: the Hugs interpreter, for

fast development, the GHC compiler and sequential runtime system for opti-

mising compilation to sequential code; and sequential time and space profilers

integrated into GHC [SP95]. The tools for parallel software development include:

the GranSim parameterisable parallel simulator [HLP95] for flexible and accu-

rate simulation of the parallel behaviour on a range of parallel machines; the

GHC compiler and GUM parallel runtime system for parallel execution on mul-

tiprocessors; a set of visualisation tools for both GranSim and Gum, visualising

the activity of a parallel machine in several levels of detail; prototypes of more

detailed parallel profilers [KHT98].

CHAPTER 2. BACKGROUND 48

Eden

Eden [BLOP96] extends the lazy functional language Haskell by syntactic con-

structs to explicitly define and instantiate processes. In contrast to the previous

techniques, process-based approaches like Eden expose parallel tasks at the lan-

guage level. The programmer must then manage the tasks using the control

mechanisms provided in the language. Eden is explicit about process creation

and about the communication topology, but implicit about other control issues

such as sending and receiving messages, and process placement. Granularity is

under the programmer’s control because he/she decides which expressions must

be evaluated as parallel processes, and also some control of the load balancing is

possible at the programmer’s level.

Like GpH Eden is based on the Glasgow Haskell Compiler, and can use

the same sequential profiling utilities. For parallel profiling Eden provides a

simulator called Paradise [HPR00] which is based on GranSim, so that tuning

the performance of an Eden program is a similar process to that in GpH.

Parallel programming in Eden can be done by explicitly defining and instan-

tiating a process topology. This would be equivalent to sequential functional

programming with explicit recursion. Sometimes this is appropriate, but an

experienced functional programmer will try to use higher-order functions, i.e.

skeletons, as much as possible in order to reduce the amount of work and the

possibility of making mistakes. In a complex application both methods may be

simultaneously needed. The main difference between Eden and more traditional

skeleton-based languages, such as PMLS, is the fact that skeletons can be specified

within Eden itself. Thus, Eden serves both as a computation and coordination

language, providing a high degree of flexibility for the programmer.

2.3.7 Parallel Functional Language Implementation

PMLS: PMLS [MSBK01, TLP02] is an automatically parallelising compiler for

a pure subset of SML. The execution costs of functions are profiled by executing a

structural operational semantics. Based on this information a cost model for the

CHAPTER 2. BACKGROUND 49

available skeletons, possibly nested, is used to select a decomposition and mapping

of parallel threads. Measurements on a range of parallel machines including a

Beowulf cluster exhibit good speedups for programs such as matrix multiplication,

a ray tracer and a linear system solver [SMH01].

HDC: HDC [HL00] is a strictly-evaluated subset of Haskell with skeleton-based

coordination. HDC programs are compiled using a set of skeletons for common

higher-order functions, like fold and map and several forms of divide-and-conquer.

Unlikely Haskell, HDC does not implement type classes, and has strict seman-

tics to facilitate static thread placement. In summary, HDC has purely implicit

threads with implicit interaction. It is location independent, since parallelism is

not explicit in the program at all.

In HDC it is possible to achieve parallel execution of the program without

any changes. In tuning the performance of the parallel program, however it is

necessary to modify the code, so as to weaken data dependencies or to increase

granularity.

A particular focus of the HDC system is the time and space efficient static

thread placement. The compiler uses a library of skeletons to decompose a pro-

gram into parallel threads and place the threads on the available PEs. In contrast

languages such as GpH and Eden, use more flexible, but also more expensive, dy-

namic resource management.

DREAM: DREAM [BLOP97, LRS+03] is the parallel abstract graph-reduction

machine implementing Eden and is largely similar to Gum. The main difference

between Gum and DREAM is that in DREAM, the concept of a virtual shared

heap does not exist. In general, the main bottlenecks in Eden are due to the

packing and unpacking routines, which are not yet optimised. Moreover, as there

are not yet multicasting facilities in Eden, once a packet has been sent to a

process, the packing effort could be used in order to send the same packet to

other process.

CHAPTER 2. BACKGROUND 50

GUM: Gum (Graph reduction for a Unified Machine model) is a portable, par-

allel implementation of GpH and Eden [THM+96]. Gum was the first publicly-

released parallel implementation of any functional language. GUM was designed

and built to make parallel graph reduction more accessible to the wider commu-

nity, and of more practical use.

Gum uses an abstract message passing implementation, originally built around

the widely available PVM communication harness. In Gum, the units of com-

putation are called threads. Each thread evaluates an expression to weak head

normal form. Gum uses a graph reduction mechanism and in order to transfer

a subgraph from one PE to another, Gum uses sophisticated packing and un-

packing algorithms, which guarantee that all the links back to the original graph

are maintained and that the duplication of work is avoided. Gum uses a pas-

sive work distribution scheme, where PEs looking for work send out requests for

work [Cla99].

To synchronise multiple threads in Gum, a thread locks the node of the graph

when starting its evaluation, and other threads requesting that data will be added

to a blocking queue attached to the locked closure. Access to remote closures is

managed by new FetchMessage nodes, representing global indirections. On re-

questing the contents of such a node a message will be sent to the target processor

and the requesting thread will be added to a blocking queue [LRS+03].

2.4 Gum - A Parallel Haskell Runtime

2.4.1 Introduction

Gum (Graph reduction for a Unified Machine model) [HMP+95, THM+96] is

a portable, parallel implementation of the non-strict purely-functional program-

ming language Haskell. The Haskell compiler, in particularly GHC, in actual

fact, many compilers in one. By providing command line options when compiling

different facilities are enabled/disabled and different behaviours are exhibited.

When the -parallel option is provided on GHC command line, execution involves

CHAPTER 2. BACKGROUND 51

a runtime system that enables Gum.

Gum implements graph reduction using an abstract machine modelled on

GRIP [HP90, HP92]. GRIP consists of two types of processor: Processing El-

ements (PEs) which perform graph reduction, and Intelligent Memory Units

(IMUs) which hold the shared graph and manage global thread pool.

Although Gum had its inception on the specialised GRIP architecture, Gum

is now architecture neutral and portable. Earlier redesign of the GRIP reduction

system retained the IMUs, but in Gum these are removed by distributing the

global memory amongst all PEs, rather than IMUs, using a globalised address

space. Each PE has a local heap, which is independently garbage collected the

collection of all local heaps provides a virtual global heap.

This section describes the design of the Gum 4.06. The key concepts in the

design of Gum can identify in the following components:

• The initialisation and termination is responsible for controlling startup and

termination, Section 2.4.2.

• The thread management is responsible for deciding when to generate a new

thread and how to schedule the threads, Section 2.4.3.

• The load distribution is responsible for distributing the load in the parallel

system so that idle time of PEs is minimised, Section 2.4.4.

• The memory management is responsible for controlling access to remote

data and in Gum it implements a virtual shared heap, Section 2.4.5.

• The communication is responsible for transferring data and work between

PEs, Section 2.4.6.

The materials presented in this section have been summarised from [THM+96,

HMP+95, Loi02b, Loi02a, Loi98, Der02, LH96]

2.4.2 Initialisation and Termination

The first action of a parallel Haskell program in Gum is to create a Pvm manager

task, whose job is to control startup and termination. This manager task then

CHAPTER 2. BACKGROUND 52

spawns the required number of logical PEs as Pvm tasks, which Pvm maps to

the available processors. In this thesis, Gum has been adapted to run with Mpi

in particular Mpich and Mpich-G2, as a result of this the manager task job has

been passed to certain Mpi routines, as discussed in Section 3.2.1. Each PE task

then initialises itself: processing runtime arguments, allocating heap etc. Once

all PE tasks have initialised, and been informed of each others identity, one of

the PE-tasks is nominated as the main PE. The main PE then begins executing

the main thread of the Haskell program.

The program terminates when either the main thread completes, or encounters

an error. In either case a FINISH message is sent to the manager task, which in

turn broadcasts a FINISH message to all of the PE tasks. The manager waits for

each PE task to respond before terminating the program.

During execution each PE executes the following scheduling loop until it re-

ceives a FINISH message.

Main Scheduler:

1. Perform local garbage collection, if necessary.

2. Process any messages

3. If there are sparks or runnable threads then call the thread scheduler.

Otherwise send a FISH message requesting work, and block awaiting

incoming messages.

The inter-PE message protocol is completely asynchronous. When a PE sends

a message it does not await a reply; instead it simply continues or returns to the

main scheduler.

2.4.3 Thread Management

In Gum a thread is a virtual processor. It is represented by a (heap-allocated)

Thread State Object (TSO) containing slots for the thread’s registers. As the

CHAPTER 2. BACKGROUND 53

thread’s stack grows further Stack Objects are allocated and chained on to the

earlier ones.

Threads in Gum may be in any of the five states during execution:

• running,

• runnable: waiting to be scheduled,

• blocked: waiting for another thread to be complete,

• fetching: waiting for a value to arrive from a remote PE, or

• migrating: moving a thread form a busy PE to an idle PE.

Each PE has a pool of runnable threads, or rather TSOs, called its runnable

pool, which is consulted in step (3) of the scheduling loop given earlier. The

version of Gum used in this thesis does not support thread migration. Once a

thread has begun execution on a PE it cannot be moved to another PE.

When thread is chosen for execution it is run non-preemptively until either

space is exhausted, the thread blocks (either on another thread or accessing re-

mote data), or the thread completes. Compared with fair scheduling, this has the

advantage of tending to decrease both space usage and overall run-time [BRS94],

at the cost of making parallel and speculative execution rather harder.

Sparks

Parallelism is initiated explicitly in a GpH program by the par combinator. The

par combinator implements a form of parallel composition. Operationally, when

the expression x ’par’ e is evaluated, the heap object referred to by the variable

x is sparked, and then e is evaluated. Quite a common idiom (though by no means

the only way of using par) is to write

let x = f a b in x ’par’ e

where e mentions x. Here, a thunk representing the call f a b is allocated by the

let and then sparked by the par. It may thus be evaluated in parallel with e.

CHAPTER 2. BACKGROUND 54

Sparking a thunk is relatively cheap operation, consisting only of adding a

pointer to the thunk to the PE’s spark pool. A spark is an indication that a

thunk might usefully be evaluated in parallel, not that it must be evaluated in

parallel. Sparks may freely be discarded if they become too numerous.

Synchronisation

It is obviously desirable to prevent two threads from evaluating the same thunks

simultaneously, lest the work of doing so be duplicated. This synchronisation is

achieved as follows:

1. When a thread enters (starts to evaluate) a thunk, it overwrites the thunk

with a black hole. In fact, thunks are only overwritten with black holes when

a thread context switches. The advantage of this lazy black-holing is

that many thunks may have been entered and updated without ever being

black-holed.

2. When a thread enters a black hole, it saves its state in its TSO, attaches

its TSO to the queue of threads blocked on the black hole (the black hole’s

blocking queue), and enters the scheduler.

3. When a thread completes the evaluation of a thunk, it overwrites the latter

with its value (the update operation). When it does so, it moves any queued

TSOs to the runnable pool.

Notice that synchronisation costs are only incurred if two threads actually

collide. In particular, if a thread sparks a sub-expression, and then subsequently

evaluates that sub-expression before the spark has been into a thread and sched-

uled, then no synchronisation cost is incurred. In effect the putative child thread

is dynamically in-lined back into the parent, and the spark becomes an orphan.

2.4.4 Load Distribution

Gum’s load distribution mechanism has been designed to work in a flat architec-

ture with uniform PE speed and communication latency. One of the key elements

CHAPTER 2. BACKGROUND 55

of this thesis is to improve Gum’s load distribution mechanism to work in a com-

putational Grids environment that are hierarchical, heterogeneous and shared.

Gum’s load distribution works as follows.

If (and only if) a PE has nothing else to do, it tries to schedule a spark from its

spark pool, if there is one. The spark may by now have been an orphan, because

the thunk to which it refers may by now be evaluated, or be under evaluation by

another thread. If so, the PE simply discards the spark and tries the next spark

in first-in first-out (FIFO) order. If the PE finds a useful spark, it turns it into a

thread by allocating a fresh TSO, and starts executing it.

Gum has a simple way of controlling the load distribution by specifying a hard

limit on the total number of live threads, i.e. runnable or blocked threads. This

avoids activating a huge number of sparks in the rather common case, where a

newly activated thread needs remote data early on in its computation, therefore

blocking quickly. This way of specifying a limit on the total number of live threads

helps to improve the performance with some programs in a heterogeneous multi-

cluster environment, as will be discussed in Section 5.4.1.

Low Watermark

Spark Pool

High Watermark

Figure 2.4: Low- and High-watermark mechanisms for load distribution in GUM.

If there are no local sparks, then the PE seeks work from other PEs by launch-

ing a FISH message that ”swims” from PE to PE looking for available work.

Initially only the main PE is busy - has a runnable thread - and all other PEs

start fishing for work as soon as they begin execution. To provide better control

of the distribution of sparks, low- and high-watermarks for the spark pool have

been designed [Loi02a]. In this model the load distribution mechanism depends

on the emptiness of the spark pool as sketched in Figure 2.4. The low-watermark

CHAPTER 2. BACKGROUND 56

indicates how many sparks should always be kept local on a PE. If the number

of sparks falls below this mark, no sparks will be exported and the PE will try to

obtain new sparks from other PEs. The high-watermark indicates the maximum

number of sparks that should be held in a spark pool. If the number of sparks

exceeds this limit, the PE will start to off-load sparks to other processors without

being asked for work. The high-watermark has not been implemented in Gum

4.06, and the low-watermark has not been activated in this thesis as it has little

impact on performance [Loi01b].

When a FISH message is created, it is sent at random to some other PE.

If the recipient has no useful sparks, it increases the ”age” of the FISH, and

sends the FISH to another PE, again chosen at random. The ”age” of a FISH

limits the number of PEs that a FISH visits: having exceeded this limit, the

last PE visited returns the unsuccessful FISH to the originating PE. On receipt

of its own, starved, FISH the originating PE then delays briefly before lunching

another FISH. The purpose of the delay is to avoid swamping the machine with

FISH messages when there are only a few busy PEs. A PE only ever has a single

FISH outstanding.

FISHFISH

SCHEDULE <packet>

ACK

PE CPE BPE A

Figure 2.5: Fish/Schedule/Ack Sequence

If the PE that receives a FISH has a useful spark, it sends a SCHEDULE mes-

sage to the PE that originated the FISH, containing the sparked thunk packaged

with near by graph. The originating PE unpacks the graph, and adds the newly

acquired thunk to its local spark pool. An ACK message is then sent to record the

new location of the thunk sent in the SCHEDULE. Note that the originating PE

may no longer be idle because, before the SCHEDULE arrives, another incoming

CHAPTER 2. BACKGROUND 57

message may have unblocked some thread. A sequence of messages initiated by

a FISH is shown in Figure 2.5.

2.4.5 Memory Management

Parallel graph reduction proceeds on a shared program/data graph, so a primary

function of Gum is to manage the virtual shared memory in which the graph

resides. Gum uses a flat memory hierarchy, i.e. the access to any closure in one

PE’s heap is uniform. Every globally visible closure in the heap is identified via

a global address (GA), a globally unique identifier. Global indirection closures

(FetchMe) use the GA to identify the remote object. The mapping of GAs to local

heap addresses and vice versa is done via a hash table, the Global Indirection

Table (GIT), Figure 2.6.

GA1.6
GA1.3
GA1.4
GA1.5

GA1.1
GA1.2
GA1.3
GA1.4
GA1.5

GA2.1
GA2.2

GA1.6
GA1.3

PE 1 PE 2GIT GIT

Packet

Packed closureNormal Form (data)Fetchme (global indirection)Thunk (computation)

Heap Heap

Figure 2.6: Transfer of graph structures

Figure 2.6 elaborates on the allocation of GAs and the transfer of graph

structures on two PEs. This snapshot shows the heaps on two PEs after having

completed the transfer of the five closure graph with root GA2.1 on PE2 (originally

GA1.1 on PE1).

This design enables separate local Garbage Collection (GC) on each PE, pro-

vided that the GIT is rebuilt after every GC to map all live GAs to their new

addresses in the heap.

Note, that the mapping of global to local addresses is needed for determining

whether a copy of a newly imported graph structure already exists on that PE. In

CHAPTER 2. BACKGROUND 58

this case, the less evaluated version of the graph will become an indirection to the

evaluated version. This avoids duplicating data that might have been imported

via different PEs.

2.4.6 Communication

Gum utilises Pvm for communication via message passing and thus obtaining

portability. However, Gum is designed to be independent of the communication

library, and there are two aspects to this independence. The first is that Gum

only uses a small number of common communication patterns. Moreover, only

point-to-point communication is used during execution of the GpH program;

broadcast and barrier synchronisation are also used, but only during initialisation

and termination, and hence an effective implementation is not essential. The

second aspect of communication library independent is that a layered architecture

is used to isolate the use of communication routines to just 3 of the 150 modules in

the runtime system. This thesis exploited the Gum’s architecture-independence

from any specific communication libraries to construct different implementation

of Gum that uses Mpich and Mpich-g2, as outlined in Chapter 3.

2.5 Summary

Computational Grids, as presented early in this Chapter, potentially offer cheap

large-scale high-performance systems, but are a very challenging architecture, be-

ing heterogeneous, shared and hierarchical. Rather than requiring a programmer

to explicitly manage this complex environment, this thesis aims to program com-

putational Grids using a language with high-level parallel coordination that hides

the complexities of both the Grid infrastructure and the underlying hierarchical,

heterogeneous and shared architecture. This thesis use the parallel functional

language, GpH, with largely automatic management of parallel coordination.

GpH is currently used on classical HPCs and abstracts from low level coordi-

nation issues such as work and data distribution, and both thread communication

CHAPTER 2. BACKGROUND 59

and synchronisation. Moreover, GpH is an extension of the GHC sequential im-

plementation [Pey96] and is robust, publicly-available, and arguably the leading

parallel functional language implementation [LRS+03]. The high-level coordina-

tion in GpH is supported by a runtime environment, Gum. We view Gum as an

ideal platform to adapt to the heterogeneous high latency Grid environment as

it supports architecture independence, is readily ported and is implemented on

both high-latency Beowulf clusters and low-latency SUNServer SMPs [TL+00].

Gum’s effectiveness has been demonstrated by parallelising numerous large pro-

grams with a relatively small programming effort, achieving wall-clock speedups

over the equivalent optimised sequential programs.

This thesis presents GRID-GUM2, which is the distributed virtual shared-

memory implementation of GpH for computational Grids.

The system most closely related to our philosophy of semi-implicit manage-

ment of parallelism in a high level language is the ConCert system [Con04] and

the Hemlock compiler [Mur03], which translates a subset of ML to machine code,

for execution on a Grid architecture. In contrast to our work, parallelism is

expressed via explicit synchronisation.

Under the topic of metacomputing several projects, like Harness [BDF+99],

aim at providing functionality similar to GRID-GUM2. The characteristic dif-

ference to GRID-GUM2 is the automatic management of parallelism within one

parallel program.

Alt et al apply skeletons to computational Grids [ABG02]. This work focuses

on providing the application user with skeletons to capture common patterns of

Grid abstractions. However, GRID-GUM2 provides more general programming

language support for parallelism through an implementation that incorporates

new implicit dynamic coordination-management strategies. Aldinucci et al also

apply skeletons to computational Grids [ADD04]. This work focuses on provid-

ing a skeleton to centralise load management in the Grid environment. However,

GRID-GUM2 solves load scheduling on the Grid by developing a dynamic de-

centralised load schedule.

Chapter 3

GRID-GUM1: an Initial Grid

Port of Parallel Haskell

3.1 Introduction

This chapter describes the design and implementation of adapting the Gum par-

allel runtime system for execution on the Globus Toolkit Grid middle-ware,

GRID-GUM1. Gum and Globus Toolkit have been described in Chapter 2.4

and Section 2.1.4 respectively. We assess the performance of GRID-GUM1 and

present some of the first systematic performance measurements of several high-

level parallel programs on both homogeneous and heterogeneous computational

Grids.

In earlier work [LRS+03], Loidl et al compared the performance of GpH pro-

gram under Gum with C program. The benchmark program used in this compar-

ison is matMult. The parallel C version of matMult is implemented in C+Pvm

using the Gnu Multi-Precision library and the GNU C compiler. The comparison

on 16 PEs shows better performance only of a factor of 1.6 for C+Pvm pro-

gram relative to the GpH program. While the sequential performance of the C

program is better by a factor of 5, the speedup values progress in a similar way

as for the Gum program. In contrast, the parallel C+Pvm program size differs

substantially. It is a factor of 6 longer than the GpH program.

60

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL61

This chapter is structured as follows: Section 3.2 presents GRID-GUM1.

It discusses in Sub-Section 3.2.1 the Gum integration to Globus Toolkit Grid

middle-ware and in Sub-Section 3.2.2 the working mechanism of GRID-GUM1.

Section 3.3 evaluates the performance of GRID-GUM1. It compares in Sub-

Section 3.3.2 GRID-GUM1 performance in a single cluster with Gum implemen-

tations on Pvm and Mpi and analyses GRID-GUM1 performance in computa-

tional Grid architectures, with low-latency communication in Sub-Section 3.3.3

and high-latency communication in Sub-Section 3.3.4. Section 3.4 concludes and

discusses the behaviour and the weaknesses of GRID-GUM1.

3.2 GRID-GUM1

3.2.1 Integration

In developing GRID-GUM1, a crucial first step was to ensure that Gum could

seamlessly support GpH in computational Grids. In particular, it was impor-

tant to demonstrate conclusively that the high performance computer oriented

Gum communication layer could be modified to be used in computational Grids.

Gum’s communication layer is based on Pvm, however, the Globus Toolkit com-

munication is based on a special form of Mpi, Mpich-G2, discussed in Section

2.1.6. This leads to change the communication layer in Gum as a first step to-

wards implementing GRID-GUM1. From a communication point of view, one

can distinguish three different implementations of Gum: Gum/Pvm, Gum/Mpi

and Gum/Mpich-G2 (GRID-GUM1):

Gum/Pvm:

Gum/Pvm presents the original implementation of Gum. It uses Pvm for com-

munication. As distinctive feature, Gum/Pvm includes a system manager to

control the startup and the termination of the execution. At the startup, the

system manager spawns the PEs to start the execution. When the main thread

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL62

terminates, the mainPE indicates this by communicating with the system man-

ager which then initiates and coordinates the shutting down of all PEs.

Gum/Mpi:

Gum/Mpi is an intermediate implementation between Gum/Pvm and GRID-

GUM1. It uses the Mpich implementation of Mpi, for communication. Gum/Mpi

does not include a system manager. It uses Mpi libraries to control the startup

and the termination of the execution. At startup, Gum/Mpi calls mpi init()

to spawn the PEs to start the execution. At the end of the execution when the

main thread terminates, the mainPE calls mpi finish() to shut down all PEs.

Gum/Mpich-G2 (GRID-GUM1):

Gum/Mpich-G2 is Gum implementation over the Grid, GRID-GUM1. GRID-

GUM1’s communication layer is built around Mpich-G2, and hence the Globus

Toolkit as middle-ware. Like Gum/Mpi, GRID-GUM1 does not comprise a

system manager. It relies on Mpich-G2 to control the startup and the termina-

tion of execution. GRID-GUM1 uses the same communication management as

Gum/Pvm and Gum/Mpi and indeed all other managements are unchanged.

Figure 3.7 outlines howGRID-GUM1 integrates with the Grid’s layers, iden-

tified in Section 2.1.5. GRID-GUM1 is located above all layers provided by the

Globus Toolkit. It integrates with the Grid through the connectivity layer that

provides a unified distributed environments comprising the underlying Grid.

Such integration depends on the provision of Mpich-G2 to link GRID-GUM1

transparently to the Grid. The next Sub-Section describes in more detail how

GRID-GUM1 works and interacts with the Grid layers.

3.2.2 GRID-GUM1 Working Mechanism

Globus Toolkit requires a more elaborate machine configuration phase and this

has to be reflected in GRID-GUM1. Prior to start parallel execution on GRID-

GUM1, the user employs the Grid Security Infrastructure (GSI), described in

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL63

Grid−GUM

Computational Grid

runs−on

runs−on

GpH

Parallel Program

compiles−to

High Level Grid RTE

Grid Connective Layer

Figure 3.7: GRID-GUM1 system architecture

Section 2.1.4, to obtain a public-key proxy credential that is used to authenticate

the user to each site. Once authenticated, the user issues the Gum execution com-

mand to start the parallel execution. After this, GRID-GUM1 uses the standard

mpirun command in Mpich-G2 to request the creation of an Mpi computation.

The Mpich-G2 implementation of this command uses RSL scripts, identified

in Section 2.1.4, to describe the job. The implementation of the GRID-GUM1

driver has been changed to use mpirun to construct internally RSL scripts. The

RSL scripts identify resources (e.g., PE name, accessing port, certificate name),

specify requirements, and parameters (e.g., location of executables, command line

arguments, environment variables) for each. Then GRID-GUM1 passes the RSL

script to the Mpich-G2 library to spawn the specified number of PEs. Based

on the information found in the RSL script, Mpich-G2 calls a co-allocation li-

brary distributed with the Globus Toolkit, DUROC, illustrated in Section 2.1.4,

to start the parallel execution across the PEs specified in the RSL script. Once

the parallel execution has started GRID-GUM1 uses a Globus Toolkit service,

Global Access to Secondary Storage (GASS), through Mpich-G2 to direct stan-

dard output and error (stdout, stderr) streams to the user’s terminal. Figure 3.8

illustrates the GRID-GUM1’s computational Grid architecture identifying the

Mpich-G2 and Globus Toolkit components.

Finally, GRID-GUM1 is configured to perform parallel execution in which all

PEs are on the same side of a firewall and where PEs are on opposite sides of a

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL64

mpirun

globusrunGASS

��
Grid-GUM

������������������������������������
Grid-GUM�� 	�	�	�	�	�		�	�	�	�	�	

�
�
�
�

�
�
�
�

DUROC

Authenticates

Submit multiple jobs

Coordinates startup

resource specification
Generates

executable
Stages

. . .

PE1 PE3PE2 PE n

Grid-GUM Grid-GUM Grid-GUM

Figure 3.8: GRID-GUM1 components architecture

firewall. From a technical point of view,GRID-GUM1 uses the Globus Toolkit to

address the main two issues that arise in the presence of firewalls which job control

(e.g., start-up, and termination) and TCP messaging during execution. In a brief

description, to run parallel execution over firewalls using GRID-GUM1, system

administrators in each site have to open certain port numbers in the firewall,

which called controllable ephemeral ports in the Globus Toolkit documents, and

then GRID-GUM1 specify the port range has been opened with the environment

variable GLOBUS TCP PORT RANGE in the RSL scripts.

3.3 GRID-GUM1 Evaluation

3.3.1 Evaluation Framework

While there is some evidence that Pvm and Mpi offer comparable behaviours, it

was not known whether the additional Grid layers might add unacceptable over-

head costs toGRID-GUM1, rendering its use inappropriate for parallel functional

programming.

The measurements are presented in this chapter have been performed on five

Beowulfs clusters: three located at Heriot-Watt Riccarton campus (Edin1, Edin2,

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL65

and Edin3), a cluster located at Ludwig-Maximilians University Munich (Muni),

and a cluster located at Heriot-Watt Borders campus(SBC); see Appendix A.1

for more details.

The programs measured in this chapter are classified by the communication

degree, which is the number of messages the program sends per second, so we

can study the impact of the latency of the communication on program behaviour.

Six programs are measured in this experiment. Three have low-communication

degree,

• parFib: the parFib program computes the number of calls to the Fibonacci

function. The granularity of parFib can be controlled by specifying the

threshold for parallel invocation which help manage the computation size.

parFib is a divide-conquer program with regular parallelism.

• queens: the queens program places queen chess pieces on the chess board

so that they do not check each other. queens is a divide-conquer program

with regular parallelism.

• sumEuler: the sumEuler program computes the sum over the application

of the Euler totient function over an integer list. It is data parallel and

has a fairly cheap combination phase involving only a small amount of

communication. sumEuler has a high irregular parallelism.

and the other three have relatively high-communication degree,

• raytracer: the raytracer program calculates a 2D image of a scene of 3D

objects by tracing all rays in a window. In tracing a ray, the intersections

with the objects are computed. When an intersection is found, the ray is

reflected and the colour of the intersection point is computed based on the

strength of the ray and on the texture of the object’s material. raytracer is

data parallel program with high irregular parallelism. raytracer generates

most of the parallelism at the beginning of the execution.

• matMult: the matMult program multiples two matrices. Given two square

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL66

matrices of arbitrary precision integers A, B ∈ Z
n×n, n ∈ N find their prod-

uct, i.e. a matrix C ∈ Z
n×n such that Ci,j =

∑n

k=1
Ai,k ∗ Bk,j. matMult is a

divide-conquer program with regular parallelism.

• linSolv: the linSolv program finds an exact solution of a linear system of

equations of the form Ax = b where A ∈ Z
n×n, b ∈ Z

n, n ∈ N. linSolv is a

symbolic algebra problem with data parallel paradigm and limited irregular

parallelism.

The code of these programs can be obtained from [Loi01a].

All run-times in the coming tables represent the median of three executions

to ameliorate the impact of operating system and shared network interaction.

3.3.2 Single Cluster

This experiment investigates the impact of using different communication libraries

in the presence of additional Grid layer on the performance on a single cluster.

The measurements in this section have been performed on the Edin1 Beowulf

cluster. In Table 3.2, the second column shows the different Gum implementa-

tions using Pvm, Mpich and Mpich-G2 as communication library, respectively.

The third column records the sequential runtime, and the fourth column records

the parallel runtime on 16 PEs. The fifth and sixth columns record the wall-

clock and execution speedup. The wall-clock time is the execution time plus the

startup time. The seventh and the last columns show the percentage variance of

the wall-clock and execution speedup relative to the Gum/Pvm implementation

speedup.

Table 3.3 summarises the dynamic properties of the programs presented in

the experiments executed on a 16-processor Beowulf cluster. The second column

shows the different Gum implementation, with different communication library.

The third column records the total number of threads generated during the execu-

tion. The remaining columns show averages over all processors for the allocation

rate, i.e. the amount of local memory allocated per second of execution time, the

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL67

Program Comm Runtime Speedup %Variance
Name Library Seq 16 PE Wall Exec Wall Exec

sec sec Clock Clock
parFib Pvm 413.7 22.8 14.8 17.1

Mpi 409.4 20.5 6.8 19.8 54% -15%
Mpich-G2 465.1 26.3 2.3 17.6 84% -2%

sumEuler Pvm 1607.1 131.8 11.1 12.1
Mpi 1585.1 139.2 8.8 11.3 20% 6%
Mpich-G2 1598.1 188.1 3.5 8.4 68% 30%

raytracer Pvm 2855.4 315.3 8.9 9.6
Mpi 2782.7 365.2 7.8 8.9 12% 7%
Mpich-G2 2782.7 301.7 6.8 9.2 22% 4%

linSolv Pvm 834.2 102.6 6.5 8.9
Mpi 828.4 110.5 5.5 7.3 15% 17%
Mpich-G2 828.9 112.2 5.1 7.3 21% 17%

matMult Pvm 891.9 150.2 5.9 5.9
Mpi 891.9 191.9 4.6 4.6 21% 21%
Mpich-G2 916.3 292.6 3.1 5.0 47% 15%

queens Pvm 2802.7 375.1 7.4 7.4
Mpi 2802.7 390.9 7.1 7.1 4% 4%
Mpich-G2 2816.4 567.8 4.9 6.2 33% 16%

Table 3.2: Speedup on 16 PEs

communication degree, i.e. the number of packets sent per second of execution

time, and the average packet size, i.e. the size of packet in Byte.

The behaviour of GpH programs with the different Gum implementations as

shown in Table 3.2 consistently give the Gum/Pvm implementation the best wall-

clock speedup and GRID-GUM1 with Mpich-G2 using Globus Toolkit middle-

ware the worst. As shown in measurements in the Table 3.3, the average packet

size is relatively small for parFib, and sumEuler, and the wall-clock speedup

variance is big between the different Gum implementations for these programs.

For raytracer, matMult, and linSolv the average packet size is significantly

larger and the wall-clock speedup variance is smaller.

The main source of overhead for the communication is the time needed for

packing and unpacking in the communication libraries. Good performance for

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL68

Program Comm No of Alloc Comm Average
Name Library Threads Rate Degree Pkt Size

MB/s Msgs/s Byte
parFib Pvm 26595 55.3 65.5 5.5

Mpi 26595 52.7 58.0 5.5
Mpich-G2 26595 43.2 14.8 5.6

sumEuler Pvm 82 52.8 2.09 90.2
Mpi 82 47.9 1.4 90.3
Mpich-G2 82 45.7 0.7 90.2

raytracer Pvm 350 60.0 46.7 321.7
Mpi 350 61.4 45.5 320.4
Mpich-G2 350 49.5 62.9 323.0

linSolv Pvm 242 40.3 5.5 290.6
Mpi 242 40.8 3.1 300.1
Mpich-G2 242 26.5 2.5 276.3

matMult Pvm 144 39.0 67.3 208.8
Mpi 144 40.1 52.2 213.3
Mpich-G2 144 40.0 31.2 209.3

queens Pvm 24 38.8 0.2 851.8
Mpi 24 37.0 0.2 818.9
Mpich-G2 24 34.0 0.1 846.1

Table 3.3: Dynamic Program Properties on 16 PEs

small packets is important for Gum, since parallel functional programs have mas-

sive amounts of fine grained parallelism including many small messages. This is

untypical for general parallel applications, and Mpi implementations are usually

tuned for the common case of large packet sizes. However, the big difference

between Gum implementation of Pvm and Mpi on one side and GRID-GUM1

with Mpich-G2 in the other side is related to the extra startup security checking

overhead which Globus Toolkit middle-ware adds for Mpich-G2

A comparison of the execution-time speedup of the Gum implementations

with the different GpH programs shows that no implementation is always better

than the others. However, the differences in execution-time speedup are less

marked than the differences on the wall-clock speedup.

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL69

Summary

• For programs with long execution time the performance of Gum is inde-

pendent of the communication libraries (Table 3.2);

• GRID-GUM1 with Mpich-G2 has a high startup cost relative to Gum with

Pvm or Mpi (Table 3.2).

3.3.3 Computational Grids: Low-Latency

raytracer queens(13)
Speedup Runtime Speedup Runtime
F S Sec. F S Sec.

F 1.0 3.3 1483.3 1.0 3.2 719.5
S 0.3 1.0 4894.0 0.3 1.0 2324.7

FF 1.9 6.3 772.8 1.8 6.0 384.6
FS 1.2 4.0 1199.4 0.9 3.0 753.5

SS 0.5 1.8 2698.5 0.6 1.9 1176.9
SF 0.7 2.3 2106.1 1.0 3.4 666.3

FFF 2.7 8.9 545.1 2.8 9.3 249.5
FFS 2.0 6.7 728.6 0.9 3.0 768.2
FSS 1.4 4.8 1002.3 0.9 3.1 733.6

SSS 0.8 2.9 1663.0 0.9 2.9 795.7
SSF 1.4 4.6 1047.8 1.1 3.7 627.6
SFF 1.4 4.8 1002.1 1.5 4.8 478.3

Table 3.4: a) Heterogeneous low-latency Computational Grid

This experiment investigates the performance impact of executing GpH pro-

grams usingGRID-GUM1 on heterogeneous computational Grids with moderate

latency communication.

The measurements in Tables 3.4 and 3.5 useGRID-GUM1 on SBC and Edin3

Beowulf clusters. Each SBC machine is labelled S (Slow) and each Edin3 machine

is labelled F (Fast). Two programs are measured: raytracer with relatively

high-communication degree, and queens with relatively low-communication de-

gree. The first column shows different combinations of machines. The second and

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL70

raytracer queens(13)
Speedup Runtime Speedup Runtime
F S Sec. F S Sec.

FFFF 3.4 11.4 425.9 2.7 9.0 258.2
FFFS 2.7 9.0 538.8 1.4 4.8 483.0
FFSS 2.2 7.2 675.7 1.2 4.0 578.0
FSSS 1.7 5.8 833.1 1.2 4.1 561.6

SSSS 1.1 3.8 1280.9 0.9 3.1 741.6
SSSF 1.6 5.3 916.2 1.2 4.1 560.3
SSFF 1.4 4.8 1006.7 1.2 4.1 563.5
SFFF 1.4 4.6 1046.3 1.9 6.1 375.5

FFFFF 4.0 12.9 376.7 4.0 12.8 181.1
FFFFS 3.5 11.5 422.9 2.8 9.1 254.5
FFFSS 2.9 9.4 519.2 1.3 4.2 544.9
FFSSS 2.4 7.9 615.3 1.3 4.3 530.1
FSSSS 1.9 6.4 755.6 1.2 4.0 577.7

SSSSF 1.7 5.7 850.7 1.2 4.1 560.5
SSSFF 1.8 6.2 786.0 1.5 4.9 474.3
SSFFF 1.8 6.1 790.4 1.9 6.1 375.4
SFFFF 1.9 6.5 747.6 2.2 7.3 316.5

Table 3.5: b) Heterogeneous Low-Latency Computational Grid

the fifth columns record the speedup using F ’s sequential runtime for raytracer

and queens respectively. The third and the sixth columns records the speedup

using S’s sequential runtime, and the fourth and the last columns show the wall-

clock time. The first machine in the configuration string is where the program

starts.

Tables 3.4 and 3.5 show that, replacing a local machine S by a faster remote

machine F decreases the runtime and increases the speedup. For example in

Tables 3.4 and 3.5, SSS machines requires 1663.0s to finish the computation of

raytracer; however, if S machine has been replaced by F remote machine, the

runtime is decreased by 37%. Interestingly, this result supports the idea of using

a fast remote machine to improve the performance of a GpH parallel program,

and it shows that GRID-GUM1 can cope with moderate latency communication

without modification.

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL71

However, it is observable that GRID-GUM1, with its blind load distribution

(see Section 2.4.4), often gives unsatisfactory distribution in heterogeneous com-

putational Grids. For example, replacing one of the FFF machines by a slower

remote machine S increases the runtime of queens from 249.5s to 768.2s, i.e. by

a factor of three. Likewise, adding a slower remote machine S to two FF local

machines increases the runtime of queens from 384.6s to 768.2s i.e. by a factor

of two.

GRID-GUM1 shows relatively poor performance on heterogeneous compu-

tational Grids for many programs, and that is due to poor load distribution.

Figures 3.9 and 3.10 show GRID-GUM1 per-PE and overall activity profiles for

raytracer on homogeneous and heterogeneous computational Grids. A per-PE

activity profile shows the behaviour for each of the PEs (y-axis) over execu-

tion time (x-axis) as described in Section B.2. An overall activity profile shows

the behaviour of the program at each instant of its execution, as described in

Section B.1. Figures 3.9.a and 3.10.a depict the performance on homogeneous

computational Grids where all PEs have the same CPU speed. Figures 3.9.b

and 3.10.b depict the performance on heterogeneous computational Grids where

there are four fast machines (0-3) and four slow machines (4-7).

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s Wed Sep 14 13:49:52 BST 2005GUM

0

1

2

3

4

5

6

7

0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s Tue Oct 26 14:50:20 CEST 2004GUM

0

1

2

3

4

5

6

7

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k120.0 k140.0 k160.0 k180.0 k200.0 k220.0 k240.0 k260.0 k280.0 k300.0 k320.0 k340.0 k360.0 k

a) Homogeneous computational Grid b) Heterogeneous computational Grid

Figure 3.9: Per-PE Activity Profile for raytracer

All PEs in Figure 3.9.a are uniformly loaded, and finish at about the same

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL72

time, in contrast the PEs in Figure 3.9.b have numerous idle periods, and finish

at different times. Figure 3.9.a also shows idle periods at the beginning of the

computation, where only a small amount of parallelism is available, and blocking

on data that is remotely evaluated will cause the entire PE to remain idle until

new work is obtained (see the start of PE 6). Matching the profile in Figure 3.9.a,

the fast processors in Figure 3.9.b (0-3) show a better balanced load and finish

at about the same time. Towards the end only PE 3 has useful work, and the

mainPE 0 has to wait for it to finish. Considering the runtime of the heteroge-

neous computational Grids, 368.0s, is almost two times greater than the runtime

of the homogeneous computational Grids, 220.0s.

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s

running runnable fetching blocked migrating
0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

 cycles445519Runtime =

Average Parallelism = 7.1GrAnSim Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s

running runnable fetching blocked migrating
0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k120.0 k140.0 k160.0 k180.0 k200.0 k220.0 k240.0 k260.0 k280.0 k300.0 k320.0 k340.0 k360.0 k

ta
sk

s

0

5

10

15

20

25

30

35

40

45

 cycles368005Runtime =

Average Parallelism = 5.2GrAnSim

a) Homogeneous computational Grid b) Heterogeneous computational Grids

Figure 3.10: Overall Activity Profile for raytracer

Comparing the overall activity profiles in Figure 3.10.a and Figure 3.10.b

shows that number of runnable threads in the heterogeneous computational Grids

is far higher than the ones in the homogeneous computational Grids at each time

which proves that the deterioration in the performance of the heterogeneous case

is not related to the lack of parallelism in the GpH program. GRID-GUM1’s

blind load distribution allocates the same number of sparks to all PEs irrespec-

tive of CPU speed. This load distribution methodology lets PEs with slow CPU

speed accumulate sparks in the spark pool and activate those sparks as that all

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL73

PEs involved in the execution have the same capability of execution and eval-

uating sparks. Note that, once a spark is been activated it can not be moved

anywhere.

Summary:

• Replacing a local PE with a faster remote PE reduces execution time in all

cases (Tables 3.4 and 3.5);

• GRID-GUM1’s load distribution mechanism does not deliver good load

balancing in a heterogeneous computational Grids (Figures 3.9 and 3.10);

• In a moderate latency configuration, latency is not the dominating factor,

sinceGRID-GUM1 can overlap communication with computation, provided

a sufficient amount of parallelism is available (Tables 3.4 and 3.5).

• The final data collection is one reason for the poor load distribution, as

it causes the fast PEs to remain idle until the slow PEs finish their work

(Figures 3.9 and 3.10).

3.3.4 Computational Grids: High-Latency

This experiment investigates the performance of executing GpH programs us-

ing GRID-GUM1 on homogeneous computational Grids with a high-latency

communication. We measure programs with both low and high-communication

degrees.

The measurements in Table 3.6, and 3.7 use GRID-GUM1 on the Muni and

Edin2 Beowulf clusters. Each Muni machine is labelled M and each Edin2 ma-

chine is labelled E

Five programs have been tested: two programs with relatively low-communication

degree parFib, and sumEuler, and three programs with relatively high-communication

degree raytracer, linSolv, and matMult.

For programs with a low-communication degree, Table 3.6 shows that adding

a remote machine M decreases the runtime. Even on computational Grids over

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL74

parFib (45) sumEuler

Runtime Speedup Runtime Speedup
Sec. E M Sec. E M

M 867.5 1.2 1.0 3138.5 1.0 1.0

E 1070.1 1.0 0.8 3227.6 1.0 0.9
MM 431.0 2.2 2.0 1270.4 2.5 2.4
EM 480.6 2.2 1.8 1308.8 2.4 2.3
EE 536.8 1.9 1.6 1332.8 2.4 2.3

MMM 298.8 3.5 2.9 869.9 3.7 3.6
EMM 331.1 3.2 2.6 838.7 3.8 3.7
EEM 338.9 3.1 2.5 867.9 3.7 3.6
EEE 374.8 2.8 2.3 899.7 3.5 3.4

MMMM 241.9 4.4 3.5 629.7 5.1 4.9
EMMM 251.3 4.2 3.4 670.7 4.8 4.6
EEMM 268.0 3.9 3.2 665.8 4.8 4.7
EEEM 274.9 3.8 3.1 665.5 4.8 4.7
EEEE 292.9 3.6 2.9 662.2 4.8 4.7

MMMMM 205.9 5.0 4.2 523.2 6.1 5.9
EMMMM 212.7 5.0 4.0 544.0 5.9 5.7
EEMMM 226.2 4.7 3.8 553.7 5.8 5.6
EEEMM 224.7 4.7 3.8 620.8 5.1 5.0
EEEEM 234.0 4.5 3.7 588.4 5.4 5.3
EEEEE 251.3 4.2 3.4 570.8 5.6 5.4

Table 3.6: Low-Communication Degree Programs

relatively high-latency communications, the additional computational power out-

weighs the expensive but infrequent communication. It also shows that replacing

a local machine E by a remote machine M , yielding a EEM configuration, shows

little change in the runtime (3.5%). Furthermore, replacing a local machine E by

a remote machine M does not grossly deteriorate performance. For example, in

Table 3.6, in an EEE configuration sumEuler requires 899.7s to finish, machine

M is added EEEM the runtime decreases by 26.0%. In short, using remote ma-

chines in high-latency communications does not have impact on the performance

of low-communication degree programs.

Table 3.7 measures programs with a high-communication degree. Replacing

a local machine with a slightly faster remote machine increases the runtime and

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL75

raytracer matMult linSolv

Runtime Speedup Runtime Speedup Runtime Speedup
Sec. E M Sec. E M Sec. E M

M 903.8 1.1 1.0 265.8 0.9 1.0 290.0 1.0 1.0
E 1027.8 1.0 0.8 259.9 1.0 1.0 299.3 1.0 0.9

MM 548.6 1.8 1.4 228.8 1.1 1.1 196.5 1.5 1.4
EM 624.6 1.6 1.4 393.0 0.6 0.6 232.0 1.2 1.2
EE 545.7 1.8 1.6 227.8 1.1 1.1 164.9 1.8 1.7

MMM 383.7 2.6 2.3 133.0 1.9 1.9 139.4 2.1 2.0
EMM 535.8 1.9 1.6 297.7 0.8 0.8 231.8 1.2 1.2
EEM 494.9 2.0 1.8 201.9 1.2 1.3 141.1 2.1 2.0
EEE 387.5 2.6 2.3 137.8 1.8 1.9 136.8 2.1 2.1

MMMM 312.8 3.2 2.8 121.9 2.1 2.1 119.5 2.5 2.4
EMMM 497.6 2.0 1.8 295.0 0.8 0.9 142.5 2.1 2.0
EEMM 421.7 2.4 2.1 213.9 1.2 1.2 134.9 2.2 2.1
EEEM 377.9 2.7 2.3 145.9 1.7 1.8 120.9 2.4 2.3
EEEE 326.4 3.1 2.7 114.8 2.2 2.3 117.1 2.5 2.4

MMMMM 287.8 3.5 3.1 108.6 2.3 2.4 104.4 2.8 2.7
EMMMM 473.8 2.1 1.9 290.8 0.8 0.9 147.0 2.0 1.9
EEMMM 413.7 2.4 2.1 228.8 1.1 1.1 142.1 2.1 2.0
EEEMM 378.7 2.7 2.3 150.9 1.7 1.7 104.9 2.8 2.7
EEEEM 329.9 3.1 2.7 125.1 2.0 2.1 107.7 2.7 2.7
EEEEE 279.8 3.6 3.2 95.9 2.7 2.7 102.9 2.9 2.8

Table 3.7: High-Communication Degree Programs

decreases the speedup. For instance linSolv on two local machines EE takes

174.9s, but if one of the local machines is replaced by a remote machine EM ,

the runtime increases by 41.4%. Note that for all programs the runtime increases

when adding a remote machine in such a way. Furthermore, a configuration of

the form EMM . . . M is always worst among the configurations with the same

number of PEs. This is because the local machine E, which has all the work

in the beginning of the execution, has to communicate with the other machines

through a high-latency communication, which becomes a bottleneck in the ex-

ecution. Finally, configurations of the form E . . . E or M . . .M are usually the

best configurations, because all machines communicate with others through the

low-latency communication. Clearly, to minimise latency, a local communication

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL76

is preferable.

GRID-GUM1 shows relatively poor performance on high-latency computa-

tional Grids for many programs. For example, Figures 3.11 and 3.12 showGRID-

GUM1 per-PE and overall activity profiles for linSolv on a homogeneous low-

latency and a heterogeneous high-latency computational Grids. Figures 3.11.a

and 3.12.a depict the performance on homogeneous low-latency computational

Grids. Figures 3.11.b and 3.12.b depict the performance on heterogeneous high-

latency computational Grids where PE 0 & PE 1 and PE 2 & PE 3 are connected

pairwise by a low-latency communication, and with a high-latency communica-

tion between the pairs.

testLinSolv_mp.mpi 31 83 +RTS -qp4 -H64M -s Wed Jul 6 13:58:50 BST 2005GUM

0

1

2

3

0 5.0 k 10.0 k 15.0 k 20.0 k 25.0 k 30.0 k 35.0 k 40.0 k 45.0 k 50.0 k 55.0 k 60.0 k 65.0 k 70.0 k 75.0 k 80.0 k

testLinSolv_mp.mpi 31 83 +RTS -qp4 -H64M -s Wed Jul 6 14:06:34 BST 2005GUM

0

1

2

3

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k

a) Low-Latency Communication b) High-Latency Communication

Figure 3.11: Per-PE Activity Profile for linSolv in Homogeneous Computational
Grids

In Figure 3.11.b the PEs exhibit significantly more idle time, i.e. red colour

in the horizontal line, and complete at different times. In contrast, the work is

fairly evenly balanced in Figure 3.11.a. The idle time in Figure 3.11.b is due to

PEs waiting for data to without having other threads execute.

Matching the overall activity profiles in Figure 3.12.b and Figure 3.12.a show

the impact of the high-latency communication between PEs on the available run-

ning and runnable threads. In the high-latency setup, Figure 3.12.b shows bottle-

necks from about 35k cycles. This is due to the GRID-GUM1’s load distribution

mechanism in high-latency setup. GRID-GUM1’s load distribution mechanism

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL77

testLinSolv_mp.mpi 31 83 +RTS -qp4 -H64M -s

running runnable fetching blocked migrating
0 5.0 k 10.0 k 15.0 k 20.0 k 25.0 k 30.0 k 35.0 k 40.0 k 45.0 k 50.0 k 55.0 k 60.0 k 65.0 k 70.0 k 75.0 k 80.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

 cycles84612Runtime =

Average Parallelism = 3.5GrAnSim testLinSolv_mp.mpi 31 83 +RTS -qp4 -H64M -s

running runnable fetching blocked migrating
0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

 cycles122452Runtime =

Average Parallelism = 2.4GrAnSim

a) Low-Latency Communication b) High-Latency Communication

Figure 3.12: Overall-Activity Profile for linSolv in Homogeneous Computational
Grids

does not have any monitoring technique to control the messaging process. Mes-

sages in GRID-GUM1 flow between PEs regardless of the latency between them.

This results that PEs stay idle for fairly long time due to the reason that not

enough work had been accumulated and that means poor load distribution.

Summary

• For high-communication degree programs GRID-GUM1 delivers poor per-

formance on high-latency computational Grids (Table 3.7);

• For low-communication degree programs GRID-GUM1 can deliver good

performance on high-latency computational Grids (Table 3.6);

• The poor performance ofGRID-GUM1 on high-latency computational Grids

is primarily due to poor load distribution (Figures 3.11 and 3.12).

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL78

3.4 Conclusion

This chapter includes systematic measurements of the performance of GpH, one

of the few Grid-enabled high-level parallel languages, on a range of computa-

tional Grids. This chapter concludes that the GRID-GUM1 dynamic manage-

ment performs reasonably well even on moderate latency computational Grids.

Thus, even without elaborate mechanisms to track information about load and

latency, the memory management overhead does not become prohibitively ex-

pensive, and a model of semi-explicit parallelism can be used to exploit compu-

tational Grids. However, for programs with high-communication degree several

shortcomings of GRID-GUM1 are exposed.

More specifically, Tables 3.2 and 3.3 show that for programs with big execution-

time, the performance of Gum on a single cluster is largely independent of the

communication library used. While the overall differences in performance are

small, our measurements showed that Gum/Pvm gives the best speedups, be-

ing more efficient in handling many small messages, and GRID-GUM1 with

Mpich-G2 and using Globus Toolkit middle-ware performs worst, paying a higher

overhead due to the reliance on Globus Toolkit and its deeper protocol hier-

archy. Despite being designed for homogeneous computational Grids, GRID-

GUM1 delivers good and predictable speedups, on computational Grids with a

low-latency communication. In contrast, on computational Grids with a high-

latency communication, GRID-GUM1 only delivers acceptable speedups for low-

communication degree programs like queens (110.0 Byte/s), and little speedup

for high-communication degree programs like raytracer (30326.39 Byte/s).

In comparing the runtime behaviour on various configurations, we identified

two main problems. Several programs finish with an inherently sequential data

collection phase, which is stretched significantly on systems with higher latency.

Depending on the program, this can become a dominating factor and might mo-

tivate restructuring of the code. However, this is a program-dependent issue, and

we cannot hope to solve this problem purely in the runtime environment, using

a model of semi-explicit parallelism. A second problem is the poor load balance,

CHAPTER 3. GRID-GUM1: AN INITIAL GRID PORT OF PARALLEL HASKELL79

as discussed in Sections 3.3.3 and 3.3.4. GRID-GUM1’s load distribution mech-

anism has been designed to work in a flat architecture with uniform PE speed

and communication latency. In contrast, computational Grids are hierarchical,

heterogeneous and shared. Therefore, making the runtime environment aware of

the basic characteristics of the Grid-architecture, such as the speed of and the

latencies between machines, can be used to improve the load balancing policy in

system. Furthermore, these changes will be beneficial for all parallel programs,

since they are integrated on system- rather than program-level.

In the next chapter we propose a model where the PEs maintain dynamically

latency and load information to inform load management, so that work is only

sought from PEs which are known to be relatively heavily loaded, giving prefer-

ence to local cluster resources. To propagate the necessary information, we will

augment the messages in GRID-GUM2 to carry dynamic information about la-

tency and load between PEs, and hence between clusters. Such information will

be combined with static PE characteristics to determine relative loads.

Chapter 4

Design of An Adaptive RTE for

Computational Grids

4.1 Introduction

In this chapter, GRID-GUM2, an adaptive runtime environment for computa-

tional Grid architecture is presented. To the best of our knowledge, GRID-

GUM2 is the first fully implemented virtual shared memory runtime environment

on computational Grids. We demonstrate that virtual shared memory is feasi-

ble on computational Grids and that it can deliver good speedups if combined

with an aggressive dynamic load distribution mechanism. We present measure-

ments that quantify the improvements on small, but realistic, computational

Grids. The rest of this chapter discusses shortcomings of GRID-GUM1 in Sec-

tion 4.2, presents GRID-GUM2 in Section 4.3, adds a monitoring mechanism to

GRID-GUM2 in Section 4.4, and finally develops an adaptive load distribution

of GRID-GUM2 in Section 4.5.

4.2 Shortcomings of GRID-GUM1

In Chapter 3 we investigated the performance of GpH programs on GRID-

GUM1, with varying numbers of clusters and interconnection latencies in real

80

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS81

computational Grids. We found that GRID-GUM1 delivers good and pre-

dictable speedups for several configurations, in particular multiple homogeneous

clusters with a low-latency communication, but also on multiple clusters with

a high-latency communication for programs that perform little communication.

However on other configurations, including heterogeneous clusters,GRID-GUM1

gives poor performance due to poor load distribution (Sections 3.3.3 and 3.3.4).

GRID-GUM1 is a system of passive load distribution, which means a PE can

request work only if it is idle. It uses a ”fishing” mechanism, in which requests for

work are sent to random PEs. The advantage of this load distribution mechanism

is its simplicity. No load information needs to be calculated, sent, received or

stored. No heuristic functions are required to select which PE will receive the

FISH message. All that is required is a random number generator and knowledge

of the number of PEs participating in the computation.

The following disadvantages of GRID-GUM1’s load distribution are exacer-

bated in computational Grids.

i. Firstly (eager fishing), sending a FISH message occurs every-time a PE

is idle regardless of the PE’s capabilities (CPU speed in this case). In

heterogeneous computational Grids, if all PEs send FISH messages without

monitoring control, the network is flooded with FISH messages. Valuable

work might be stolen by weak PEs, leaving strong PEs idle. Additionally,

the FISH messages can increase overall latency by saturating the network

with messages. Such an increase in latency increases not only the time to

find work, but also the time to send data to a PE blocked on another PE.

ii. Secondly (dumb fishing), the destination of the FISH message is random.

There is, therefore no guarantee that the FISH message will be sent to a

PE with work to donate, in preference of a PE with no work. In fact there

is no guarantee that the message will reach an given PE at all. In computa-

tional Grids danger of missing PEs with work is typically, computational

Grids contains a large number of PEs and an only slightly larger number

of units of work. This shows that Gum was designed for a high ratio of

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS82

work/PEs. Thus, in GRID-GUM1 a FISH message could bounce back and

forth between a small group of PEs which do not have work to donate.

iii. Thirdly (remote fishing), the random destination of the FISH message might

bring work from remote PEs through high-latency communication. Obtain-

ing work from a PE with high-latency communication increases idle time.

When searching for work, preference should be given to local PEs.

iv. Fourthly (fixed-size fishing), the recipient PE of the FISH message has no

flexibility in deciding the amount of work that should be donated to idle

PE. The fishing PE might be a local PE or belong to a remote cluster which

can be a powerful cluster or a weak cluster according to the number of PEs.

The amount of work returned to the fishing PE should not be the same in

all cases. The recipient PE has to study the load and the capability of the

fishing PE and then decide how much work should be send back.

v. Lastly (blind-start fishing), the blind way of nominating the main PE which

controls the initialisation and termination of the program and the start of

the execution of the main thread (see Section 2.4.2) in GRID-GUM1. The

main PE is always chosen as the first PE in the PE list. All PEs at the

beginning of the execution seek work by sending FISH messages to the

main PE, in the extreme scenario, the main PE has relatively slow CPU

speed and is located in a remote cluster with few PEs. That means most

of the PEs have to obtain work from the main PE through high-latency

communication, which has negative impact on the performance.

4.3 GRID-GUM2

Based on the results in Chapter 3 and the discussions in Section 4.2, it is essential

to modifyGRID-GUM1 for execution on computational Grids, (GRID-GUM2).

GRID-GUM2 is a virtual shared memory runtime environment built over compu-

tational Grids. It is designed to monitor loads, latencies and physical character-

istics like CPU speed in computational Grids. GRID-GUM2 uses the monitored

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS83

information to provide a good load distribution over computational Grids using

the following policies:

• An idle PE sends a FISH message only to a PE that has high load relative

to its CPU speed.

• PEs have a preference for obtaining work from PEs that currently have

low-latency communication.

• The recipient PE switches from passive to active load distribution if a FISH

message is received from another cluster.

• GRID-GUM2 starts the computation in the biggest cluster which has more

PEs with fast CPU speeds than the other clusters.

GRID-GUM2 is designed to work in a closed computational Grid, which

means it is not possible for other machines to join the computation after it has

started. Also it is tuned for a setup typically found in high-performance clusters.

It is designed to work most effectively in: a) non-shared machines where only one

program can execute at a time, b) dedicated machines which means the machines

are fully booked for a specific program, and finally c) non-preemptive, which

means once the program started on such resources, it can not be preempted until

it completes the execution.

The GRID-GUM2 mechanism has two main components: information col-

lection and adaptive load distribution. Information collection is supported by

a monitoring mechanism to provide the current state information of the com-

putational Grid. The monitoring mechanism operates during the whole course

of execution. It collects static information like CPU speed and IP addresses

at program start up, and dynamic information such as load and latency during

execution. Adaptive load distribution of GRID-GUM2 comprises the following

aspects:

• Resource-level load distribution: programs executed inGRID-GUM2 do not

required specific resource. Idle PEs then use load distribution mechanism

to seek work from PEs relatively heavily loaded.

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS84

• Dependent load distribution: GRID-GUM2 aims for an efficient load dis-

tribution mechanism to a single parallel program with dependent tasks.

• Decentralised information services: GRID-GUM2 maintains a decentralised

scheme where every PE is responsible for maintaining state information of

some nearby PEs and sharing it with other PEs.

• Dynamic load distribution: GRID-GUM2 assumes that limited knowledge

about the load and PEs are available a priori, and load distribution deci-

sions have to be made during the execution.

• Decentralised load distribution organisation: GRID-GUM2 distributes the

load distribution decision to every PE. Therefore, each PE acts as both a

load distributer and a computational resource.

• Redistribution support: GRID-GUM2 supports work placement which en-

hance system reliability and flexibility.

• Adaptive load distribution: GRID-GUM2 is a mainly passive load distribu-

tion system where lightly loaded PEs have to explicitly ask for work from

PEs with excess load. However, if an idle PE requests work from a PE resid-

ing outside its cluster and the request originated from a relatively powerful

cluster, GRID-GUM2 changes from a passive to an active system and the

recipient PE sends more work to the idle PE.

The GRID-GUM2 implementation uses the original implementation of Gum

memory management based on a virtual shared heap, described in Section 2.4.5.

The communication libraries in GRID-GUM2 are built around Mpich-G2 and

hence the Globus Toolkit as middle-ware, these are inherited fromGRID-GUM1.

GRID-GUM2 presents a new load distribution to improve the performance on

computational Grids. The load distribution is supported by a new monitoring

mechanism.

The salient features of the monitoring mechanism and the load distribution

of GRID-GUM2 are explained in the following sections.

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS85

4.4 Monitoring Mechanism of GRID-GUM2

The monitoring mechanism used by GRID-GUM2 is designed to be simple and

effective in a computational Grid architecture. The information monitored by

GRID-GUM2 comprises of two types of information:

• static load information which includes CPU speed, the number of clusters

and the number of PEs in each cluster, and

• dynamic load information which includes the number of sparks in each PE

(load) and the latency between PEs.

This information is used by the new adaptive load distribution to improve the

performance ofGRID-GUM2. The following sections describe how the static and

dynamic information are collected and made available on all the PEs and how

the new load distribution profits from these information.

4.4.1 Static Load Information

Each PE maintains static load information about PEs and clusters that partici-

pating in the computation in a local table PEStatic. The information in PEStatic

is collected only once at the beginning of the execution. Figure 4.8 shows a sketch

of PEStatic table for the PEs in Figure 4.13

At the beginning of the execution, each PE collects and registers its PEId,

CPU speed and IP address in the PEStatic table. PEId is a unique number

generated by the communication library, Mpich-G2, described in Section 2.1.6,

to distinguish between PEs in the case of sending and receiving messages. CPU

speed and IP address are collected from the local system files "/proc/cpuInfo"

and "/etc/hosts" respectively. After collecting the CPU speed and IP address,

each PE broadcasts its current available static information (PEId, CPU speed

and IP address) to the other PEs in the computational Grids.

PEStatic table stores a starting clock time for each PE to help in estimating

the latencies between PEs as described later in this section. Hence, the starting

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS86

clock time is considered to be different between PEs in different geographical loca-

tion, also some PEs have different setup time than others within the same cluster.

PEs synchronises their starting clock time at the moment when all PEs are at

the same execution level. In more details, the starting clock time is synchronised

when PEId, CPU speed and IP address have been broadcast to all PEs. Each PE

stores its starting clock time locally in the PEStatic table under startClockTime,

and then broadcasts it to the other PEs.

The adaptive load distribution of GRID-GUM2 clusters PEs statically ac-

cording to the IP address, and nominates a main PE to control the starting and

the termination of the execution. Section 4.5 explains howGRID-GUM2 clusters

PEs and chooses the main PE. The cluster Id and the nominee main PE are

stored in PEStatic table under clusterId and theMainPE respectively. Table 4.8

sketches PEStatic Table for the computational Grids presented in Figure 4.13.

Network
Private

Network
Private

PE6

LAN

Internet

Internet

Internet

Cluster A Cluster B

Cluster C Cluster D

PE5
switch

switch

PE1

PE0

switch

switch
PE4

PE3

PE8PE7
PE9 PE10

PE11

PE12

PE14

PE13

Campus

Figure 4.13: Computational Grids

The PEStatic table in each PE carries a full static information about all PEs

in the computational Grids before the start of the execution of the main thread.

The adaptive load distribution in GRID-GUM2 uses these static information to

improve the performance of a parallel program in the computational Grids as

described in section 4.5.

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS87

PE- cluster- PE- cluster- PE- the- start-
Id Id CPU- CPU- IP- Main- Clock-

Speed Speed Address PE Time
0 1 568.2 3343.6 xxx.xxx.149.456 5 12:01:05.01
1 1 560.4 3343.6 xxx.xxx.149.456 5 12:01:05.11
2 1 569.8 3343.6 xxx.xxx.149.456 5 12:01:05.01
3 1 561.8 3343.6 xxx.xxx.149.456 5 12:01:05.20
4 1 565.5 3343.6 xxx.xxx.149.456 5 12:01:05.50
5 2 2569.9 12834.1 xxx.xxx.256.456 5 11:01:04.45
6 2 2563.4 12834.1 xxx.xxx.256.456 5 11:01:04.11
7 2 2565.6 12834.1 xxx.xxx.256.456 5 11:01:04.81
8 2 2566.2 12834.1 xxx.xxx.256.456 5 11:01:04.76
9 2 2569.0 12834.1 xxx.xxx.256.456 5 11:01:04.80

10 3 1802.1 5407.0 xxx.xxx.566.149 5 13:01:15.41
11 3 1800.9 5407.0 xxx.xxx.566.149 5 13:01:15.50
12 3 1804.0 5407.0 xxx.xxx.566.149 5 13:01:15.23
13 1 258.2 3343.6 xxx.xxx.149.456 5 12:01:05.44
14 1 259.7 3343.6 xxx.xxx.149.456 5 12:01:05.28

Table 4.8: A sketch of PEStatic Table for the PEs in Figure 4.13

4.4.2 Dynamic Load Information

Dynamic information is maintained in two tables, PEDynamic and ComMap. PE-

Dynamic and ComMap contain partial dynamic information about processes and

communication respectively. This information is exchanged in FISH messages.

PEDynamic: Load Information

Figure 4.14 sketches the PEDynamic table. It lists load information of all PEs.

As discussed in Section 4.3, GRID-GUM2 is designed to work most effectively

in a dedicated system which means the machines are fully booked for a specific

program. Thus, the PEDynamic table collects the load of the executing program,

instead of monitoring the external load. Moreover, monitoring the entire load of

a PE is not a sophisticated task. Many languages like C have built-in libraries

which monitor external load. Due to this, the PE load is presented by the num-

ber of sparks in the spark pool. This is indicated in the PEDynamic table by

the noOfSparks. As explained in Section 2.4.3, the spark represents a potential

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS88

parallelism.

PE

1

3

4

noOfSparks

14:13:49

14:13:59

14:12:22

2000

3000

10000

timeStamp

Figure 4.14: PEDynamic Table

The load information in PEDynamic must be maintained dynamically, but

it is prohibitively expensive to regularly broadcast complete load information to

every PE in large computational Grids. The monitoring mechanism of GRID-

GUM2 uses a lightweight approach maintaining partial dynamic load information

at almost no cost. Each PE maintains its load information in the PEDynamic

table and a time stamp (timeStamp) to avoid replacing recent load information

with old. To circulate the load information over the computational Grids the

PEDynamic table is included with every message sent between PEs. The receiving

PE of the PEDynamic table updates its table with more recent information by

comparing the timeStamp record in the receiving PEDynamic table with the local

one. The additional cost of sending the PEDynamic table is minimal for the high

bandwidth interconnects in a typical computational Grids. At the beginning of

the execution the PEDynamic table lacks load information about PEs. However

shortly after the start of the execution, the exchanging of messages between PEs

gradually increase the level of load information in the PEDynamic in each PE.

ComMap: Communication Latency

In a computational Grid with PEs distributed over a wide area network, latency

increases and gets less predictable. Drum et al [DR00] conclude that, along with

the improvement of global communication infrastructures, the available band-

width increases, however, this is not true for latency time (in fact the latency

time might decrease but not in the same magnitude of bandwidth and computing

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS89

power increase). Hence, the monitoring mechanism of GRID-GUM2 monitors

only latency between PEs in the ComMap table. Figure 4.15 sketches ComMap

table.

PE

0.75 msec1

Latency

6 10.00 msec

3 2.05 msec

Figure 4.15: ComMap Table

Each PE collects in its local ComMap table the latency information from

every PE in the computational Grids dynamically and in a lazy fashion during

the course of the execution. The latency is calculated by measuring message send

and receive times as time elapsed. Every time a PE sends a message, it attaches

the message send time to the message. The recipient PE records the the message

receive time to calculate the latency.

Each of the send and receive PEs use its local clock to record the message

send and receive time. In computational Grids the local clock of the PEs are

not synchronised. To overcome this problem, the recipient PE synchronises the

message send and receive times using the start clock time which recorded in the

PEStatic table as identified before in Section 4.4.1. The recipient PE calculates

after how long the message is been generated according to the execution time of

the program by subtracting the sending PE start clock time from the message send

time. After that the recipient PE calculates the message send time according to

its local clock time by adding the result of the last subtraction to its start clock

time. Finally, the recipient PE calculates the latency by subtracting the new

message send time from the message receive time.

The ComMap table profits from the broadcast of the static information at

the beginning of the program to calculate initial values of latencies. The latency

values in the ComMap Table are sorted directly after any update. The idea is to

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS90

keep PEs with low-latency values on the top of the table. Due to the sorting in

the ComMap Table, PEs are ranked according to their priority for communication

when there is a need to seek work from another PE.

4.5 Adaptive Load Distribution of GRID-GUM2

The adaptive load distribution of GRID-GUM2 deals with:

• startup,

• work locating, and

• work request handling mechanisms.

Each of these mechanisms now will be discussed.

4.5.1 Startup Mechanism

The startup mechanism in GRID-GUM1, as shown in Figure 4.16, is based on

nominating always PE0 as the main PE to start the execution of the main thread.

In computational Grids, PE0 might have slow CPU speed and be located in a

remote cluster with few PEs. That means, as explained in Section 4.2, most

of the PEs have to obtain work from PE0 through high-latency communication,

which has a negative impact on performance.

mainPE = PE0
IF mainPE THEN

start computation
ELSE

send FISH message to mainPE

Figure 4.16: GRID-GUM1 Startup algorithm

In contrast, the adaptive load distribution in GRID-GUM2 nominates the

main PE, by finding the PE with the fastest CPU speed within the cluster which

has the biggest clusterCpuSpeeds in the PEStatic table. Figure 4.17 illustrates

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS91

the startup mechanism in GRID-GUM2 in pseudocode, the bold font is used to

show the new adaptive load distribution.

collect static Info in PEStatic Table
broadcast static Info to all PEs
calculate and store latencies to all PE in ascending order in

ComMap Table
cluster PEs statically
find mainPE
broadcast clusterId and mainPE to all PEs
IF mainPE THEN

collect load Info in PEDynamic Table
start computation

ELSE
initial load Info = 0

in PEDynamic Table
send FISH message to mainPE

Figure 4.17: GRID-GUM2 Startup Algorithm

The startup mechanism in GRID-GUM2 clusters PEs statically according to

the IP address. PEs that share the same last two subnets are classified as they

are in the same cluster and have the same clusterId in the PEStatic table. For

instance as depicted in Figure 4.13 and Table 4.8 PEs in cluster A and Cluster B

have been classified under the same cluster. After that, GRID-GUM2 calculates

the total CPU speed for each cluster and stores it under clusterCpuSpeeds in

the PEStatic table, see Table 4.8 for example. At this moment it selects the

nominee main PE according to the criteria explained before. As show in Table

4.8 the main PE is the PE with PEId 5, PE5, which is the fastest PE in cluster 2

which has the biggest clusterCpuSpeeds of all clusters. The nominee main PE is

stored in PEStatic table under theMainPE. Finally before theMainPE starts the

execution, it broadcasts clusterId, clusterCpuSpeeds and theMainPE to all PEs

in the computational Grids.

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS92

4.5.2 Work Location Mechanism

The work location mechanism in GRID-GUM1 identifies randomly a destination

PE to donate work, as shown in Figure 4.18. GRID-GUM1 adopts a crude policy

of work location by forcing all PEs to choose PE0 (the main PE) as a destination

of the FISH message until PE0 fails to donate any work. At that moment PEs

choose randomly a destination PE for their FISH messages.

IF idle (localPE) THEN
IF runnable thread THEN
evaluate new thread

ELSE
IF spark in spark pool THEN

activate new spark
FI

FI
IF noOfSpark < low-watermark THEN
IF last SCHEDULE from mainPE THEN

destPE = mainPE
ELSE

destPE = random PE from PEs list
FI
send FISH to destPE

FI

FI

Figure 4.18: GRID-GUM1 Work location Algorithm

The GRID-GUM1 policy of work location is not scalable especially in com-

putational Grids with increasing number of PEs. This policy raises the disad-

vantages explained in Section 4.2.

However, the adaptive load distribution of GRID-GUM2 follows a different

policy for work location mechanism. It uses static information about CPU speeds

and dynamic information about loads and latencies to source work from PEs that

have high load relative to their CPU speeds and with preference for a PE with

low-latency communication. Figure 4.19 illustrates the work location mechanism

in GRID-GUM2 in pseudocode level, the bold font is used to show the new

adaptive load distribution.

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS93

IF idle THEN
IF runnable thread THEN
evaluate new thread

ELSE
IF spark in spark pool THEN

activate new spark
FI

IF noOfSpark < low-watermark THEN
update local load Info in PEDynamic Table
calculate localRatio = (localSpeed/localLoad)
sort latencies in ascending order in ComMap Table
FOR each PE in comMap Table
calculate destRatio = (destSpeed/destLoad)
IF localRatio > destRatio THEN

attach to FISH: messageSendTime, PEDynamic Table
FI
send FISH to destPE
break

end FOR
IF NOT mainPE AND NO FISH message sent THEN
destPE = mainPE
attach to FISH: messageSendTime, PEDynamic Table
send FISH to destPE

FI
FI

FI

Figure 4.19: GRID-GUM2 Work location Algorithm

In GRID-GUM1 and GRID-GUM2, if a PE is idle, then firstly it should

check if there is any thread waiting to be evaluated in the thread pool. If there

are no threads to be evaluated, it checks if there is any spark can be activated

in the spark pool. In the case when there are no sparks to be activated or the

number of sparks in the spark pool are below the low-water mark, the PE has

to seek work from another PE. In GRID-GUM1, the PE sends a FISH message

randomly to another PE seeking work. However, in GRID-GUM2 the PE has

to find a proper destination PE according to the available static and dynamic

information in PEStatic and PEDynamic tables respectively.

In GRID-GUM2, according to Figure 4.13 and Table 4.8, if PE0 in cluster

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS94

A needs to send a FISH message it updates its local PEDynamic table with its

current load. Then it calculates its localRatio, which is the relative load (noOf-

Sparks) to the CPU speed, from PEDynamic and PEStatic tables respectively.

The records in the ComMap table are sorted in ascending order according to the

latency values. After that, PE0 selects the first PE in the ComMap table, PE1

in cluster A, which should have the lowest latency communication with PE0.

Before PE0 sends FISH message to PE1, it examines PE1 capability of donating

work to PE0, by calculating destRatio of PE1, which is the ratio between the CPU

speed and loads from PEStatic and PEDynamic tables respectively. To approve

sending the FISH message to seek work to PE1 from PE0 is that PE0’s localRatio

should be greater than PE1’s destRatio. If PE1 appears to be incapable to donate

work to PE0, PE0 goes back and selects the next PE in the ComMap table. In the

case when all PEs in the ComMap table prove to be incapable to donate work

to PE0 according to the CPU speeds and the loads information, PE0 sends FISH

message to the main PE (PE5). The reason that PE0 sends the FISH message to

the main PE as a final solution for searching of a destination PE are:

• it might be the beginning of the execution and the only PE that has work

at this stage is the main PE,

• the main PE might have more precise information about loads in other PEs

due to its centralisation role at the beginning of the execution.

In GRID-GUM2, a FISH message before is sent, it has to be tagged with the

message send time and the local PE PEDynamic table. So the recipient PE can

update its PEDynamic table and calculate the latency with the sending PE.

The work location mechanism inGRID-GUM2 has the advantage of encourag-

ing PEs to obtain work and hence data from PEs that currently have low-latency

communication. It also has the advantage of changing the behaviour of PEs to

be less aggressive for seeking and accumulating work from PEs that have faster

CPU speed. That means, PEs with slow CPU speed source work from PEs have

the same slow CPU speed or from PEs with fast CPU speed but they are heavily

loaded relative to their CPU speed. As a result this work location mechanism

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS95

decreases the total amount of communication and specially through high-latency

communication which certainly improves the performance.

4.5.3 Work Request Handling Mechanism

The work request handling mechanism in GRID-GUM1 follows a naive policy.

As shown in Figure 4.20, if a PE receives a FISH message, it searches for a spark

in the spark pool and, if available, sends the spark to the PE in which the FISH

message was originally generated in a SCHEDULE message. If the spark pool

is empty and the FISH message has not exceeded its age limit, the recipient

PE forwards the FISH message randomly to another PE. Otherwise the FISH

message is returned back to the original PE.

IF received FISH THEN
IF sparks available THEN
send spark in SCHEDULE to originPE

ELSE
IF FISH exceeded age THEN

return back to originPE
ELSE

send FISH to random PE
FI

FI

FI

Figure 4.20: GRID-GUM1 Work Request Handling Algorithm

As discussed in Section 4.2, GRID-GUM1’s blind and strictly passive mech-

anism of work request handling is based on either returning constantly a single

spark or forwarding the FISH message randomly to another PE. In addition to

the disadvantages thar are from forwarding the fish message randomly to another

PE, one can distinguish two more non-scalable scenarios caused by returning

constantly a single spark:

• From Figure 4.13 and Table 4.8, PE9 in cluster C, which is idle, sends a

FISH message to PE11 in cluster D which is heavily loaded. PE9 and PE11

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS96

reside in two different clusters and are connected via high-latency commu-

nication. In addition to that, PE9 has faster CPU speed than PE11 and the

total CPU speed of cluster C is greater than total CPU speed of cluster

D. Furthermore, PEs in cluster C likely to be lightly loaded; cluster C

is idle. If PE11 sends a SCHEDULE message with a single spark, which is

the case in GRID-GUM1, to PE9, cluster C will remain idle and PEs re-

side in cluster C has to obtain work remotely from outside the cluster via

high-latency communication. If all PEs in cluster C obtain work remotely

through high-latency communication that will certainly impinge upon the

total performance.

• Conversely to the previous case, if PE11 in cluster D, which is idle in this

case, sends a FISH message to PE9 in cluster C. PE9 has spare spark(s) in

the spark pool, but it is not heavily loaded to its CPU speed. UnderGRID-

GUM1 work request handling mechanism, PE9 sends a SCHEDULE message

with a spark to PE11. This scheduling decision degrades performance for

two reasons:

– the spark may be fished back by another PE in cluster C before

PE11 starts activating it due its slow performance, and that requires

extra communication via high-latency communication which have a

non-scalable impact in the performance, or

– PE11 might activate the spark directly after it received it, and all this

happen at the end of the program, this means all PEs might have to

wait until PE11 had finished the evaluation, which might take longer

than if the spark has not been fished from PE9.

The work request handling in GRID-GUM2 introduces a new mechanism to

minimise the intra-cluster (high-latency) communications. Figure 4.21 introduces

the work request handling mechanism in GRID-GUM2 in pseudocode level, the

bold font is used to show the new adaptive load distribution.

Work request handling mechanism in GRID-GUM2 operates as follow:

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS97

At the beginning, the recipient PE profits from the message send time and

PEDynamic table attached to the message to calculate latency with the send-

ing PE and updates its PEDynamic table with recent load information. The

recipient PE uses the load and the CPU speed information from PEDynamic

and PEStatic tables respectively to calculate the relative load to the CPU speed

for both the local PE (localRatio) and the original PE (originRatio), and this

comparison is due to the possibility the FISH message has been forward from

another PE different than the original one. If the localRatio appears to be less

than the originRatio, that means the recipient PE is heavily loaded relative to

its CPU speed. In this case, if the recipient PE and the original PE reside in

two different clusters, according to the clusterId in the PEStatic table, the re-

cipient PE examines the relative load for local cluster (localClusterRatio) and

the original cluster (originClusterRatio). If the localClusterRatio appears to be

greater than originClusterRatio, the recipient PE considers itself and the original

PE as they reside in the same cluster and sends a SCHEDULE message with a

single spark to the original PE. Conversely, if the originClusterRatio is greater

than localClusterRatio, the recipient PE splits the local work with the original

PE according to the total CPU speeds in both original cluster and local cluster.

Under these circumstances, the number of sparks are sent with the SCHEDULE

message is the ratio of the half local load multiply by the total CPU speeds of the

original cluster, to the summation of total CPU speeds in the original cluster and

the local cluster, unless the result of this ratio is less than one, the recipient PE

sends a SCHEDULE message with a single spark. In the other cases where the

local PE does not have work to donate, or the localRatio is greater than the orig-

inRatio, the recipient PE examines the FISH message age, if it has not exceeded

its age limit, then it forwards the FISH message, with send message time and

local PEDynamic table, using the work allocation mechanism in GRID-GUM2,

to another PE. However, if the FISH message has exceeded its age limit, the local

PE returns the unsuccessful FISH to the original PE.

To summarise, the work request handling mechanism inGRID-GUM2 is based

on using the static and dynamic information about the recipient and the original

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS98

PEs and their clusters to deal with cases where is no work available in the cluster

of the original PE. The important point resides in switching from passive to active

mode by involving the recipient PE in the scheduling decision, this shows that

GRID-GUM2 does not follow a strict passive load distribution. The recipient PE

has to examine the capabilities and the loads of the original cluster and compare it

with the local cluster capabilities and loads. Broadly speaking, the work request

handling mechanise in GRID-GUM2 distinguish between two scenarios:

• if the FISH message originated from relatively powerful cluster, then mul-

tiple sparks are returned in the SCHEDULE message;

• if the FISH message originated from a relatively weak cluster then the

request is served as usual, i.e. as a single spark.

4.6 Summary

GRID-GUM2’s adaptive load distribution mechanism may be summarised thus:

• Idle PEs aim to obtain work from a PE that is heavily loaded.

• A PE only sends work to a fishing PE only if its relative load less than the

fishing PE.

• Idle PEs prefer to obtain work from PEs that currently have low-latency

communication.

• A PE switches from a passive mode to an active mode when it receives a

FISH message out of the cluster.

• The main PE is nominated at the beginning of the execution as the fastest

PE within the biggest cluster.

CHAPTER 4. DESIGN OF AN ADAPTIVE RTE FOR COMPUTATIONAL GRIDS99

IF received FISH THEN
update ComMap and PEDynamic Tables with FISH’s latency

and load data
IF sparks available THEN
calculate localRatio, originRatio
IF originRatio > localRatio THEN
IF originPE and localPE has same clusterId THEN

send spark in SCHEDULE to originPE + Dynamic Info.
ELSE

calculate localClusterRatio and originClusterRatio
IF originClusterRatio > localClusterRatio THEN

calculate noOfSparksToSend
FI
IF noOfSparksToSend < 1 OR
originClusterRatio < localClusterRatio THEN
send spark in SCHEDULE to originPE + Dynamic Info.

ELSE
send (noOfSparksToSend) spark(s) to originPE
+Dynamic Info.

FI
FI

FI
ELSIF originRatio < localRatio THEN
IF FISH exceeded age THEN

return back to originPE + Dynamic Info.
ELSE
FOR each PE in comMap Table

calculate destRatio
IF originRatio > destRatio THEN
send FISH to destPE + Dynamic Info.
break

FI
end FOR
IF NOT mainPE AND NO FISH message sent THEN
send FISH to mainPE + Dynamic Info.

FI
FI
FI

FI

Figure 4.21: GRID-GUM2 work request handling algorithm

Chapter 5

GRID-GUM2 Evaluation

5.1 Introduction

This Chapter evaluates the performance of the new adaptive load distribution

mechanism, GRID-GUM2, on a range of computational Grid configurations:

On relatively low-latency communications, we measure performance on:

• homogeneous architectures

• heterogeneous architecture

On high-latency communications, we measure performance on:

• homogeneous architecture

• heterogeneous architecture

Finally, we measureGRID-GUM2’s scalability on a high-latency heterogeneous

architecture.

5.1.1 GRID-GUM1.1

A special implementation of GRID-GUM2, GRID-GUM1.1, is used in this eval-

uation to study the contribution of the static information, CPU speed, on per-

formance. GRID-GUM1.1 uses CPU speed information to choose the mainPE as

100

CHAPTER 5. GRID-GUM2 EVALUATION 101

the PE with the fastest CPU speed. Moreover, it uses the CPU speed informa-

tion to prevent PEs with slow CPU speed from extracting work from PEs with

faster CPU speed unless the latter is the mainPE. Unlike GRID-GUM2, GRID-

GUM1.1 does not collect or employ the loads and latencies information. CPU

speed information is passed to GRID-GUM1.1 through an external file which is

provided by the user.

5.2 Measurement Framework

5.2.1 Hardware Apparatus

The measurements have been performed on five Beowulfs clusters: three located

at Heriot-Watt Riccarton campus (Edin1, Edin2, and Edin3), a cluster located at

Ludwig-Maximilians University Munich (Muni), and a cluster located at Heriot-

Watt Borders campus(SBC); see Tables 5.9 and 5.10 for the characteristic of these

Beowulfs.

Beowulfs
CPU Cache Memory

PEs
Speed MHz kB Total kB

Edin1 534 128 254856 32
Edin2 1395 256 191164 6
Edin3 1816 512 247816 10
Muni 1529 256 515500 7
SBC 933 256 110292 4

Table 5.9: Characteristics of Beowulf Clusters

Edin1 Edin2 Edin3 SBC Muni

Edin1 0.20 0.27 0.35 2.03 35.8
Edin2 0.27 0.15 0.20 2.03 35.8
Edin3 0.35 0.20 0.20 2.03 35.8
SBC 2.03 2.03 2.03 0.15 32.8
Muni 35.8 35.8 35.8 32.8 0.13

Table 5.10: Approximate Latency Between Clusters (ms)

CHAPTER 5. GRID-GUM2 EVALUATION 102

5.2.2 Software Apparatus

Six programs are measured in this experiment. The parFib computes Fibonacci

numbers. The sumEuler program computes the sum over the application of the

Euler totient function over an integer list. The queens program places chess

pieces on a board. The raytracer calculates a 2D image of a given scene of

3D objects by tracing all rays in a given scene of 3D objects by tracing all rays

in a given grid, or window. The matMult multiples two matrices. The linSolv

program finds an exact solution of a linear system of equations. For more details

about these programs see Appendix A.2

Program Application Area Paradigm Regularity

queens Hustric Search Div-Conq. Regular
parFib Numeric Div-Conq. Regular
linSolv Symbolic algebra Data Par. Limit irreg.
sumEuler Numeric Analysis Data Par. Irregular
matMult Numeric Div-Conq. Irregular
raytracer Graphic Data Par. High irreg.

Table 5.11: Programs Characteristics and Performance

Three programs have regular parallelism queens, parFib and matMult; three

programs have irregular parallelism sumEuler, linSolv and raytracer. Pro-

grams with regular parallelism generate threads which have approximately the

same cost of computation. Programs with irregular parallelism generate threads

which require different cost of computation. Moreover, irregular-parallel pro-

grams generate threads at different stages through the course of execution. Among

these six programs, queens, sumEuler and linSolv have relatively low-communication

degree, and parFib, matMult and raytracer have relatively high-communication

degree, Table 5.11.

CHAPTER 5. GRID-GUM2 EVALUATION 103

5.3 Low-Latency Computational Grid

5.3.1 Low-Latency: Heterogeneous Performance

First we investigate the performance impact of using the adaptive load distribu-

tion ofGRID-GUM2 on heterogeneous computational architecture with moderate

latency communication.

The measurements in Table 5.12 use GRID-GUM1 and GRID-GUM2 on

4 PEs from Edin1 and and 4 PEs from Edin2 Beowulf In the table, the sec-

ond and third columns record the run-time in seconds using GRID-GUM1 and

GRID-GUM2 respectively. The last column shows the percentage improvement

of GRID-GUM2. All run-times in this experiment represent the median of three

executions to ameliorate the impact of operating system and shared network in-

teraction.

Program Run-time (s) Improvement %
GRID-GUM1 GRID-GUM2

raytracer 1340 572 57%
queens 668 310 53%

sumEuler 570 279 51%
linSolv 217 180 17%
matMult 94 86 9%
parFib 136 134 1%

Table 5.12: Performance on Heterogeneous Architecture

Measurements in Table 5.12 show that GRID-GUM2 outperforms GRID-

GUM1 on multiple heterogeneous clusters with moderate latency communication

as far as the execution time is concerned. However, these measurements indicate

a poor improvement with parFib and matMult. This is due to the characteristics

of these programs. parFib is a perfect program. It has high levels of parallelism

and a low-communication degree. Thus, parFib manages heterogeneity under

GRID-GUM1 without the need of an adaptive load distribution, which leaves

GRID-GUM2 with no possibility of improvement. In contrast, matMult is not a

perfect parallel program, scaling only up to 4 PEs [LRS+03]. This is due to the

CHAPTER 5. GRID-GUM2 EVALUATION 104

limited parallelism generated from the program. Thus, matMult under GRID-

GUM2 has a modest improvement of 9%. GRID-GUM2 selects the 4 fast PEs

from Edin2 Beowulf cluster to carry the computation. However, due to the lack of

parallelism, the 4 Edin1 PEs remain with no work, thus, the possible improvement

of matMult under GRID-GUM2 is limited.

linSolv scores a modest improvement under GRID-GUM2 of 17%. The

limited irregular parallelism and the low-communication degree in linSolv helps

GRID-GUM1 overcome the heterogeneous architecture without an adaptive load

distribution mechanism. Due to this, the gains from using the adaptive load

distribution of GRID-GUM2 to improve linSolv is partially limited.

The programs raytracer, queens and sumEuler show the highest improve-

ment under GRID-GUM2; more than 50%. This is because of the low degree of

parallelism, which means the small number of threads, in these programs which

make them more sensitive to a heterogeneous architecture and dependable on an

adaptive load distribution to score a good improvement. Through the rest of

this sub-section we study in more details the behaviour of raytracer heteroge-

neous computational Grid architecture, due to its high irregular parallelism and

high-communication degree.

raytracer, as explained before, has highly irregular execution, and conse-

quently is very sensitive to changes in parallel environment. Figure 5.221 shows

per-PE and overall activity profiles for raytracer, with execution on four fast

machines (0,2,4,6), and four slow machines (1,3,5,7). A per-PE activity profile

shows the behaviour for each of the PEs (y-axis) over execution time (x-axis), as

described in Section B.2. An overall activity profile shows the behaviour of the

program at each instant of its execution, as described in Section B.1.

Figure 5.22.a shows a poor load distribution ofGRID-GUM1 with raytracer

to calculate an image with resolution 350X350. PEs have numerous idle period

and finish at different time. From Figure 5.22.b, it is observable that there are a

considerable number of runnable threads waiting to be evaluated for most of the

execution time. This may explain the poor load distribution in GRID-GUM1.

CHAPTER 5. GRID-GUM2 EVALUATION 105

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s Thu Mar 10 14:49:57 GMT 2005GUM

0

1

2

3

4

5

6

7

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k 240.0 k 260.0 k 280.0 k 300.0 k 320.0 k 340.0 k 360.0 k

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s

running runnable fetching blocked migrating
0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k120.0 k140.0 k160.0 k180.0 k200.0 k220.0 k240.0 k260.0 k280.0 k300.0 k320.0 k340.0 k360.0 k

ta
sk

s

0

5

10

15

20

25

30

35

40

45

 cycles368005Runtime =

Average Parallelism = 5.2GrAnSim

a) Per-PE activity profile b) Overall activity profile

Figure 5.22: GRID-GUM1: raytracer with 350X350 Image on a Heterogeneous
Computational Grid

PEs with slow CPU speed in a heterogeneous architecture in GRID-GUM1 show

the same demand of seeking work as PEs with fast CPU speed. This suggests

that PEs with slow CPU speed accumulate and activate sparks at the PEs have

fast CPU speed. If a spark has been activated, it remains in its local PE as a

runnable or blocked thread in the thread pool and it can not be evaluated by

another PE. PEs have different capabilities of evaluating their own threads so

many runnable threads are waiting to be evaluated while some PEs are idle.

GRID-GUM1 provides explicit control over the load distribution by specifying

a hard limit on the total number of live threads, i.e. runnable or blocked threads.

Figure 5.23 shows per-PE and overall activity profiles for raytracer to calculate

an image with resolution 350X350. GRID-GUM1 in this experiment uses a hard

limit of 1 on the total number of live threads in the thread pool.

In Figure 5.23, GRID-GUM1 with thread limitation shows an efficient load

distribution in a heterogeneous architecture with a moderate latency commu-

nication. It completes the image manipulation in 327 s, while the version of

GRID-GUM1 which does not employ thread limitation requires 441 s. As ex-

pected for the same problem GRID-GUM2 has similar performance, i.e. 338 s,

with GRID-GUM1 using thread limitation as depicted in Figure 5.24.

However, GRID-GUM1’s load distribution efficiency declines when the size

CHAPTER 5. GRID-GUM2 EVALUATION 106

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -qt1 -H32M -s Thu Mar 10 15:00:37 GMT 2005GUM

0

1

2

3

4

5

6

7

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -qt1 -H32M -s

running runnable fetching blocked migrating
0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

 cycles234626Runtime =

Average Parallelism = 7.2GrAnSim

a) Per-PE activity profile b) Overall activity profile

Figure 5.23: GRID-GUM1 with Thread Limitation: raytracer with 350X350
Image on Heterogeneous Computational Grid

of the input increases even with thread limitation. Figure 5.25 shows per-PE

and overall activity profiles for raytracer to calculate an image with resolution

500X500. GRID-GUM1 in this experiment uses a hard limit of 1 on the total

number of live threads in the thread pool.

The PEs in Figure 5.25.a finish at the same time, but they still have numerous

idle periods which reduces performance. These idle periods are caused by the

dependencies between threads in raytracer. These dependencies are affected

badly by the thread limitation, which causes PEs to remain idle waiting for

certain threads to be evaluated. Figure 5.25.b shows that the idle periods are not

caused by lack of tasks to be evaluated. Generally speaking, thread limitation

has a serious impact on many programs’ performance.

Figure 5.26 shows per-PE profiles for linSolv with and without thread limita-

tion on 8 homogeneous machines from Edin1 Beowulf cluster. GRID-GUM1 de-

livers better performance with linSolv without using thread limitation. GRID-

GUM1 requires 2802 s to finish linSolv computation using thread limitation, but

when thread limitation is excludedGRID-GUM1 requires only 1521 s is required.

However, GRID-GUM2 shows more effective load distribution in a heteroge-

neous architecture in comparison with GRID-GUM1. Figure 5.27 shows per-PE

and overall activity profiles for raytracer to calculate an image with resolution

CHAPTER 5. GRID-GUM2 EVALUATION 107

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s Wed Sep 14 17:36:05 BST 2005GUM

0

1

2

3

4

5

6

7

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k 240.0 k

Main_mp.mpi 12 2 350 350 UK4 +RTS -qp8 -H32M -s

running runnable fetching blocked migrating
0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k 240.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

 cycles247869Runtime =

Average Parallelism = 7.2GrAnSim

a) Per-PE activity profile b) Overall activity profile

Figure 5.24: GRID-GUM2: raytracer with 350X350 Image on Heterogeneous
Computational Grid

500X500.

PEs in Figure 5.27.a are fairly balanced and finish at about the same time.

Figure 5.27.b shows that GRID-GUM2 scores good average parallelism in 8 PEs,

6.9, and generates enough tasks for all PEs at each instant of the execution

time. Finally, GRID-GUM2 outperforms GRID-GUM1 with thread limitation

in raytracer when the image resolution increases from 350X350 to 500X500.

The execution time for GRID-GUM2 and GRID-GUM1 with thread limitation

is 572 s and 814 s, respectively.

Summary

• GRID-GUM2 effectively manages the parallel execution of our test pro-

grams on heterogeneous computational Grid architecture (Table 5.12);

• Thread limitation improves the performance of GRID-GUM1 on hetero-

geneous computational Grid architecture for most of our test programs

(Figures 5.23 and 5.26);

• GRID-GUM2 outperformsGRID-GUM1 regardless of the thread limitation

especially when the input size is relatively big (Figures 5.25 and 5.27).

CHAPTER 5. GRID-GUM2 EVALUATION 108

Main_mp.mpi 12 5 500 500 UK4 +RTS -qp8 -qt1 -H32M -s Wed Sep 14 18:22:50 BST 2005GUM

0

1

2

3

4

5

6

7

0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k 500.0 k 550.0 k 600.0 k

Main_mp.mpi 12 5 500 500 UK4 +RTS -qp8 -qt1 -H32M -s

running runnable fetching blocked migrating
0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k 500.0 k 550.0 k 600.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

 cycles647985Runtime =

Average Parallelism = 5.4GrAnSim

a) Per-PE activity profile b) Overall activity profile

Figure 5.25: GRID-GUM1 with Thread Limitation: raytracer with 500X500
Image on Heterogeneous Computational Grid

5.3.2 Low-Latency: Homogeneous Performance

This experiment investigates the performance impact of the adaptive load dis-

tribution of GRID-GUM2 on a low-latency homogeneous computational Grid

architecture.

Variability

The measurements in Table 5.13 have been performed on 10 PEs from the Edin1

cluster. In Table 5.13, the second and fifth columns record the mean of 50 runs

in seconds. The third and sixth columns show the variance of the 50 runs. The

fourth and seventh columns present the percentage variance relative to the mean.

The last column shows the percentage improvement inGRID-GUM2’s percentage

ratio between variance and mean to GRID-GUM1’s percentage ratio between

variance and mean.

Table 5.13 shows that GRID-GUM1 has unpredictable variance in the re-

sults especially with programs with irregular parallelism. In Table 5.13, the

programs with regular parallelism show less percentage variation, 23% in queens

and 26.7% in parFib. However, the programs with irregular parallelism show

a higher percentage ratio between the variance and mean, 47% in sumEuler,

CHAPTER 5. GRID-GUM2 EVALUATION 109

testLinSolv_mp.mpi 31 81 +RTS -qp8 -qt1 -H128M -s Fri Sep 16 14:22:41 BST 2005GUM

0

1

2

3

4

5

6

7

0 200.0 k 400.0 k 600.0 k 800.0 k 1.0 M 1.2 M 1.4 M 1.6 M 1.8 M 2.0 M 2.2 M 2.4 M 2.6 M

testLinSolv_mp.mpi 31 81 +RTS -qp8 -H128M -s Fri Sep 16 11:51:07 BST 2005GUM

0

1

2

3

4

5

6

7

0 200.0 k 400.0 k 600.0 k 800.0 k 1.0 M 1.2 M 1.4 M

a) With thread limitation b) With no thread limitation

Figure 5.26: GRID-GUM1: linSolv on Heterogeneous Computational Grid

Program GRID-GUM1 GRID-GUM2 Impr%

Name Mean Var Var% Mean Var Var%
Rtime(s) Rtime(s)

queens 648.97 149.9 23.0% 649.59 2.62 0.4% 98%
parFib 84.91 22.68 26.7% 88.85 3.65 4.1% 84%
linSolv 176.21 63.82 36.2% 149.82 7.20 4.8% 86%
sumEuler 117.82 55.43 47.0% 116.28 20.33 17.4% 63%
raytracer 476.93 168.15 35.2% 448.53 27.93 6.2% 82%

Table 5.13: Variation Between GRID-GUM1 and GRID-GUM2 on 10 PEs

36.2% in linSolv and 35.2% in raytracer. The unpredictable behaviour in

GRID-GUM1 is due to its load distribution mechanism which is based on a naive

blind fishing mechanism, as explained in Section 4.2. If the idle PE in GRID-

GUM1 chooses randomly the right PE to donate work, the performance certainly

improves; in contrast, if the idle PE picks the wrong PE to donate work, the

performance deteriorates. So it all depends on the random choice of the fishing

PE which caused the wide variance in the program behaviour.

However, GRID-GUM2 shows less variable behaviour in comparison with

GRID-GUM1’s behaviour. In Table 5.13, queens and parFib show an improve-

ment of 98% and 84% respectively. sumEuler, linSolv and raytracer, which

have irregular parallelism, show improvements of 63%, 66% and 82% respectively.

CHAPTER 5. GRID-GUM2 EVALUATION 110

Main_mp.mpi 12 5 500 500 UK4 +RTS -qp8 -H32M -s Wed Sep 14 18:25:35 BST 2005GUM

0

1

2

3

4

5

6

7

0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k

Main_mp.mpi 12 5 500 500 UK4 +RTS -qp8 -H32M -s

running runnable fetching blocked migrating
0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

 cycles470757Runtime =

Average Parallelism = 6.9GrAnSim

a) Per-PE activity profile b) Overall activity profile

Figure 5.27: GRID-GUM2: raytracer with 500X500 Image on Heterogeneous
Computational Grid

It is notably that raytracer and linSolv have less variable performance than

sumEuler. That is due to, raytracer and linSolv running for a longer time

than sumEuler which more fully up data the load information in GRID-GUM2.

Moreover, the parallel implementation of raytracer is based on generating most

of the parallelism at the beginning of the execution.

Overheads

The second part of the the measurements in this section are presented in Ta-

ble 5.14. These measurements have been performed on 16 PEs from Edin1 Be-

owulf cluster. Moreover, all runtimes in this experiment represent the median of

three executions, to ameliorate the impact of operating system and shared net-

work interaction. The first and second columns show the program name and the

different runtime environment implementation. In the second column GG1 and

GG2 stand for GRID-GUM1 and GRID-GUM2 respectively. The third column

records the total number of threads generated during the execution. The remain-

ing columns show averages over all processors for the maximal heap residency

(i.e. the maximum amount of heap that is alive at garbage collection time) the

allocation rate (i.e. the amount of local memory allocated per second of execution

time) the communication degree (i.e. the number of massages sent per second of

CHAPTER 5. GRID-GUM2 EVALUATION 111

execution time) and the average packet size (i.e. the size of packet in Byte).

Program RTE No of Max Heap Alloc Comm Average

Name Threads Residency Rate Degree Pkt Size

(KB) (MB/s) (Msgs/s) (Byte)

parFib GG1 26595 5.12 55.3 15.55 5.58
GG2 26595 5.12 43.2 14.87 5.60

sumEuler GG1 82 62.4 52.8 2.09 90.26
‘ GG2 82 62.4 45.7 0.73 90.28
raytracer GG1 350 538.6 60.0 62.72 321.75

GG2 350 538.6 49.5 46.93 323.00
linSolv GG1 242 437.2 40.3 5.50 290.67

GG2 242 437.2 26.5 2.54 276.37
matMult GG1 144 4.3 39.0 67.30 208.85

GG2 144 4.3 40.0 31.29 209.37
queens GG1 24 2.03 38.8 0.26 851.85

GG2 24 2.03 34.0 0.13 846.17

Table 5.14: Dynamic Program Properties on 16 PEs

Table 5.14 shows that the adaptive load distribution of GRID-GUM2 de-

creases the communication degree. This is due to the dynamic and static infor-

mation about load, latencies and CPU speed which are provided byGRID-GUM2.

This information assists the programs to accomplish the computation without ex-

changing many messages. However, the rest of the programs’ dynamic properties

remain unchanged. For instance, the number of threads and the maximum heap

residency remain without any change between GRID-GUM1 and GRID-GUM2.

The allocation rates and average packet sizes have very minor changes. These

are due to the impact of the operating system and the shared network. In short,

the new adaptive load distribution of GRID-GUM2 acts in an independent way

of collecting and maintaining the dynamic and static information. Due to this

the programs have the same thread and packet behaviour without any changes

in the dynamic properties.

CHAPTER 5. GRID-GUM2 EVALUATION 112

Summary

• Programs under GRID-GUM2 have less variance in the performance than

under GRID-GUM1 (Table 5.13).

• GRID-GUM2 retains a very light overhead which does not effect the pro-

gram’s dynamic properties (Table 5.14).

The measurements in both this section and in Chapter 3 clearly show that,

among all our benchmark programs only raytracer, sumEuler and queens ex-

hibit sensitivity to high-latency and heterogeneous computational Grid architec-

tures. Due to this, the experiment in the following sections (Sections 5.4 and 5.5)

throughly investigate the behaviour of those programs under different computa-

tional Grid architectures.

5.4 High-Latency Computational Grid

This section study the performance impact of the adaptive load distribution of

GRID-GUM2 on homogeneous and heterogeneous computational Grid architec-

tures with high-latency network.

All run-times in this experiment represent the median of three executions to

ameliorate the impact of operating system and shared network interaction.

5.4.1 High-Latency: Heterogeneous Performance

The measurements in Tables 5.15 (raytracer), 5.16 (sumEuler) and 5.17 (queens)

are performed on two heterogeneous Beowulf clusters, Edin1 and Muni. PEs in

the Edin1 Beowulf cluster have slower CPU speed than those in the Muni Be-

owulf cluster. Moreover, Edin1 and Muni Beowulf clusters are connected over a

high-latency communication, for more details see Tables 5.9 and 5.10.

In Tables 5.15, 5.16 and 5.17, each Edin1 machine is labelled E and each Muni

machine is labelled M . The first and second columns show case number and dif-

ferent combination of PEs from Edin1 and Muni Beowulf clusters respectively.

CHAPTER 5. GRID-GUM2 EVALUATION 113

The third, fourth and sixth columns record the run-time in seconds for GRID-

GUM1 (GG1), GRID-GUM1.1 (GG1.1) and GRID-GUM2 (GG2) respectively.

The fifth column shows the static information (CPU speed) contribution to the

performance change under GRID-GUM1.1 in comparison with GRID-GUM1.

The seventh column indicates the dynamic information (loads and latencies) con-

tribution to the change under GRID-GUM2. The last column reports the total

performance change of using static and dynamic information in the adaptive load

distribution of GRID-GUM2 in comparison with GRID-GUM1.

raytracer

C
as

e

GG1 GG1.1
Static

GG2
Dynamic Total

Impr Impr Impr

1 1E3M 1658 748 54% 716 2% 56%
2 1E4M 1490 689 53% 583 7% 60%
3 1E2M 1607 975 39% 848 8% 47%
4 2E3M 1223 745 39% 716 2% 41%
5 2E2M 1396 965 30% 909 4% 34%
6 3E2M 1254 983 21% 961 2% 23%
7 1E1M 1934 1678 13% 1689 0% 13%
8 2E1M 1778 1687 5% 1326 20% 25%
9 3E1M 1495 1832 -22% 1305 34% 12%
10 4E1M 1296 1597 -23% 1236 27% 4%

Table 5.15: raytracer: Heterogeneous High-Latency Computational Grid

In Table 5.15, GRID-GUM1.1 (GG1.1) shows a substantial improvement in

the cases (1, 2, 3, 4) where the number of fast PEs (M) is more than the number

of slower PEs (E).

For instance, in case 1 GRID-GUM1.1 decreases the run-time required to

finish the raytracer computation in four PEs (1E3M), one local E PE and

three remote M PEs, from 1658 s to 748 s, with improvement of 54%. However,

the behaviour become worst underGRID-GUM1.1 if the number of PEs with slow

CPU speed (E) is greater than the number of PEs with faster CPU speed (M),

CHAPTER 5. GRID-GUM2 EVALUATION 114

cases (6, 8, 9, 10).

For instance, in case 10 GRID-GUM1.1 increases the run-time required to

finish the raytracer computation in five PEs (4E1M), four local E PEs and one

remote M PE, from 1296 s to 1597 s, with a degradation of −23%. This behaviour

of raytracer under GRID-GUM1.1 is related to the high-latency communica-

tion. In a configuration of the form (xEyM), where x > y, cases (6, 8, 9, 10),

GRID-GUM1.1 nominates the mainPE from M PEs. In this case, E PEs have

to seek work during the course of the execution from M PE(s), with no restric-

tion, through high-latency communication. In programs like raytracer with

relatively high-communication degree, a high-latency communication has a ma-

jor impact on GRID-GUM1.1 performance due to the number of messages that

are exchanged over the high-latency communication, as shown in the cases 10

(4E1M), 9 (3E1M) and 8 (2E1M).

As depicted in the seventh column in Table 5.15, use of dynamic information of

loads and latencies produced byGRID-GUM2 inspires the performance improve-

ment. However, this improvement varies according to the number of remote and

local PEs and their CPU speed. In a configuration of the form (xEyM), where

x < y, dynamic information has a limited contribution to the performance.

For instance, in case 2 to finish the computation of raytracer in five PEs

(1E4M), one local E PE and four remote M PEs, GRID-GUM1 requires 1490 s.

Using only static information in the adaptive load distribution helps to improve

the performance with the same configuration asGRID-GUM1.1 by 53%. The dy-

namic information contributes little improvement, 7%. Under this configuration

(1E4M), GRID-GUM2 nominates the mainPE from the M PEs. That means

there is only one PE which needs to seek work remotely over a high-latency com-

munication. Moreover, this PE has a relatively slow CPU speed which means

it requires less work to keep busy. Thus, this PE exchanges fewer messages es-

pecially over a high-latency communication. In contrast, for configurations of

the form (xEyM), where x > y, the dynamic information has a greater contri-

bution to the performance. For instance, in case 9 to finish the computation

of raytracer with three local PEs with slow CPU speed and one remote PE

CHAPTER 5. GRID-GUM2 EVALUATION 115

with faster CPU speed (3E1M), GRID-GUM1 requires 1495 s. Using only the

static information under GRID-GUM1.1, the performance deteriorates by 22%.

However, the dynamic information contributes by improving the performance

overall by 34%. The dynamic information in this case helps the adaptive load

distribution of GRID-GUM2 to nominate the mainPE from among the E PEs,

decreasing the number of PEs which are required to seek work over a high-latency

communication. In addition to that, GRID-GUM2 uses the loads information to

transfer enough work to a M PE, to decrease the number of messages over a high-

latency communication. In this case, the dynamic information in the adaptive

load distribution demonstrates an important role in improving the performance.

Broadly speaking, the static and dynamic information of the adaptive load

distribution ofGRID-GUM2 seems essential to bring an improvement of the per-

formance of a program with relatively high-communication degree and irregular

parallelism like raytracer. For instance, in case 2, to finish the computation of

raytracer in five PEs (1E4M), GRID-GUM1 requires 1490 s. However, GRID-

GUM2 requires only 583 s, an improvement of 60%.

sumEuler

C
as

e

GG1 GG1.1
Static

GG2
Dynamic Total

Impr Impr Impr

1 2E2M 247 181 27% 168 5% 32%
2 1E4M 183 144 21% 131 7% 28%
3 1E1M 480 384 20% 351 7% 27%
4 1E3M 189 151 20% 149 1% 21%
5 2E3M 229 199 13% 173 11% 24%
6 1E2M 214 195 9% 175 9% 18%
7 3E2M 219 223 -2% 189 16% 14%
8 3E1M 306 318 -4% 282 11% 8%
9 2E1M 305 326 -6% 292 10% 4%
10 4E1M 305 325 -6% 290 10% 5%

Table 5.16: sumEuler: Heterogeneous High-Latency Computational Grid

CHAPTER 5. GRID-GUM2 EVALUATION 116

In Table 5.16, the performance of sumEuler under GRID-GUM1.1 (GG1.1)

shows a major improvement in the cases where the number of fast M PEs is

more or equal than the number of slower E PEs.

For instance, in case 1 GRID-GUM1.1 decreases the run-time required to

finish the sumEuler computation in four PEs (2E2M), two local PEs with slow

CPU speed and two PEs with faster CPU speed, from 247 s to 181 s, with

improvement of 27%. GRID-GUM1.1 nominates the mainPE from M PEs. In

this case, GRID-GUM1.1 benefits from M PEs with fast CPU speed to improve

the performance of sumEuler, due to all work being located in the M PEs side.

Thus, M PEs can quickly accumulate enough work before remote E PEs with slow

CPU speed start fishing. In addition, E PEs seek work remotely over high-latency

communication. However, the impact of this is negligible due to sumEuler’s

low-communication degree. However, GRID-GUM1.1 progress declines when the

number of E PEs with slow CPU speed increases in comparison with the number

of M PEs with fast CPU speed.

For instance, in case 10 GRID-GUM1.1 increases the run-time required to

finish the sumEuler computation in five PEs (4E1M), four local PEs with slow

CPU speed and one remote PE with faster CPU speed, from 305 s to 325 s, with

a negative improvement of −6%. GRID-GUM1.1 results have been detrimentally

effected by the irregular parallelism of sumEuler especially if the number of PEs

with slow CPU speed is greater than the number of PEs with fast CPU speed.

In a configuration of the form, (xEyM), where x > y, GRID-GUM1.1 blindly

distributes the work equally between E PEs and M PE(s). Due to the irregular

parallelism in sumEuler, the tasks distributed between E PEs and M PEs have

different costs of computation. Moreover, those tasks generate other tasks at

different stages through the course of execution. GRID-GUM1.1’s uninformed

load distribution can not assist M PEs with fast CPU speed to send the fish

messages to the right PE. In addition, E PEs act as aggressively as M PEs at the

beginning to accumulate work. This leaves E PEs heavily loaded in relation to

their CPU speed. The main drawback to this situation under GRID-GUM1.1 is

that M PEs can not find the correct destination for its fish messages. Moreover,

CHAPTER 5. GRID-GUM2 EVALUATION 117

the E PEs might activate all the tasks are received to threads which prevent

other PEs from having access to those tasks.

In the seventh column in Table 5.16, the dynamic information of loads and

latencies shows a positive impact on the performance. The improvement of using

the dynamic information with sumEuler lies in a small range between 1% and

16%, and this is due to sumEuler’s program properties. sumEuler has a relatively

low-communication degree, which demonstrates the limitations of latencies infor-

mation. However, irregular parallelism of sumEuler supports the need of using

the dynamic information of loads to improve the performance especially when

there are groups of PEs of slow CPU speed and fast CPU speed. As depicted

in the Table 5.16 the dynamic information improves the performances by 16% in

comparison to GRID-GUM1.1 in case 7 using five PEs (3E2M), three local E

PEs and two remote M PEs.

In general, the adaptive load distribution of GRID-GUM2, shows a major

improvement on sumEuler performance, 32%. GRID-GUM2 employs both CPU

speed, static information, and loads and latencies, dynamic information, to dis-

tribute works between PEs according to the load and CPU speed for each PE

and the number of PEs can communicate with them through a low-latency com-

munication. For instance, sumEuler under GRID-GUM2 requires only 168 s to

finish the computation which requires under GRID-GUM1 247 s using four PEs

(2E2M), two local PEs with slow CPU speed and two remote PEs with fast CPU

speed. In this case, GRID-GUM2 allows the 2E PEs to accumulate enough work

regarding their CPU speed and the total available amount of work. Thus, the

2M PEs have enough work to keep them busy until the end of the computation.

However, in some cases GRID-GUM2 shows only a modest improvement

against GRID-GUM1. For instance, in case 10 sumEuler under GRID-GUM2

requires 290 s to finish the computation which requires 305 s underGRID-GUM1

using five PEs (4E1M), four local PEs and one remote PE. This leaves GRID-

GUM2 with 4% improvement. In this case, GRID-GUM2 favours the four local

E PEs to finish the computation. Thus, it nominates the mainPE from the E

PEs and grands the remote M PE with enough work to keep it busy until the

CHAPTER 5. GRID-GUM2 EVALUATION 118

end of the computation. This strategy helps to decrease the communication over

high-latency communication, but has the drawback of isolating the M PE. M PE

could finish its computation earlier, however, due to the lazy passive mechanism

of exchanging the dynamic information, the M PE assumes that other E PEs can

not contribute to its request of work according to the available loads information.

Due to this, the M PEs contribution to improve the performance is decreased.

queens

C
as

e

GG1 GG1.1
Static

GG2
Dynamic Total

Impr Impr Impr

1 1E4M 421 324 23% 295 6% 29%
2 2E3M 536 412 23% 346 12% 35%
3 1E3M 573 444 22% 388 10% 32%
4 1E2M 614 482 21% 451 5% 26%
5 3E2M 621 495 20% 465 5% 25%
6 2E2M 630 500 20% 460 6% 26%
7 3E1M 684 560 18% 498 9% 27%
8 4E1M 632 530 16% 454 12% 28%
9 2E1M 789 659 16% 639 3% 19%
10 1E1M 821 699 14% 665 5% 19%

Table 5.17: queens: Heterogeneous High-Latency Computational Grid

In Table 5.17, GRID-GUM1.1 (GG1.1) shows an improvement in all cases.

For instance in case 1GRID-GUM1.1 shows some improvement againstGRID-

GUM1. It decreases the run-time required to finish the queens computation in

five PEs (1E4M), one local PE with slow CPU speed and four remote PEs with

faster CPU speed, from 421 s to 324 s, with improvement of 23%. However,

GRID-GUM1.1 shows less improvement in case 10. It decreases the run-time re-

quired to finish the computation in two PEs, one local PE with slow CPU speed

and one remote PE with fast CPU speed (1E1M), from 821 s to 699 s with

improvement of 14%.

The behaviour of queens under GRID-GUM1.1 is mainly affected by the

number of PE(s) with fast CPU speed which participate in the computation.

CHAPTER 5. GRID-GUM2 EVALUATION 119

GRID-GUM1.1 always favours PEs with fast CPU speed to start and finish the

computation, even if the PE with fast CPU speed is a remote PE. This could

work effectively with queens, due to queens’ communication and parallelism reg-

ularity. queens, as explained before, has a relatively low-communication degree.

Due to this, the high-latency between PEs has a marginal impact on the perfor-

mance. In addition, queens’ regular parallelism enables GRID-GUM1.1 to show

improvement in all cases.

As depicted in the seventh column in Table 5.17, the dynamic information of

loads and latencies shows modest improvement on the performance.

For instance in case 2, to finish the computation of queens in five PEs

(2E3M), two local PEs with slow CPU speed and three remote PEs with faster

CPU speed, GRID-GUM1.1 requires 412 s. Nevertheless, under GRID-GUM2

queens requires 346 s with improvement of 12% in comparison to the performance

under GRID-GUM1.1. In this case, GRID-GUM2 assists the two E PEs with

slow CPU speed to get enough work, whose are neglected under GRID-GUM1.1.

However, this improvement is depressed when fewer PEs with fast CPU speed

participate in the computation.

For instance in case 9, to finish the computation of queens in three PEs

(2E1M), two local PEs with slow CPU speed and one PE with faster CPU speed,

under GRID-GUM1.1 requires 659 s. GRID-GUM2 supports queens to finish

the computation on 639 s with a very modest improvement of 3% compared to

GRID-GUM1.1. The dynamic information in GRID-GUM2 assists PEs to send

the FISH messages to the PE with enough work to contribute to the performance

with preference to PEs connected over low-latency communication. Moreover, the

dynamic information supports GRID-GUM2 to distribute the work between PEs

according to the amount of work available and the PE’s CPU speed. However,

queens generates relatively few tasks, moreover, these tasks likely to have the

same weight of computation. All these explain the modest impact of the dynamic

information in GRID-GUM2 on the performance.

In brief, Table 5.17 shows that, the static and dynamic information of the

CHAPTER 5. GRID-GUM2 EVALUATION 120

adaptive load distribution of GRID-GUM2 has contributed to improve the per-

formance of queens in multi heterogeneous clusters on high-latency communica-

tion

.

Summary

• GRID-GUM2 outperformsGRID-GUM1 on heterogeneous high-latency ar-

chitecture on our test programs (Tables 5.15, 5.16 and 5.17).

• For raytracer which has relatively high-communication degree and high

irregular parallelism, GRID-GUM2 achieves a substantial improvement of

up to 60% under heterogeneous high-latency architecture (Table 5.15).

• Under the same architecture, for both programs with relatively low-communication

degree (sumEuler and queens), GRID-GUM2 achieves modest improve-

ment of up to 31% and 35% with sumEuler and queens respectively (Ta-

bles 5.16 and 5.17).

• GRID-GUM2 achieves less variability in the improvement with queens,

with low-communication degree and regular parallelism, compare with raytracer,

with high-communication degree and irregular parallelism. On heteroge-

neous high-latency architecture queens’s performance is improved between

19% and 35%, however, raytracer’s performance is improved between 4%

and 60% (Tables 5.17 and 5.15).

5.4.2 High-Latency: Homogeneous Performance

This experiment investigates the performance impact of the adaptive load distri-

bution of GRID-GUM2 on high-latency homogeneous architecture.

This experiment does not include measurements from the GRID-GUM1.1

implementation, due to the similarity in the performance under GRID-GUM1.

Static information on performance has little impact on the homogeneous archi-

tecture used in this experiment. Thus, most of the improvements gain under this

CHAPTER 5. GRID-GUM2 EVALUATION 121

architecture are from the dynamic information of loads and latencies.

The measurements in Tables 5.18 (raytracer), 5.19 (sumEuler) and 5.20

(queens) are performed on two homogeneous Beowulf clusters connected with

high-latency communication, the Muni and Edin2 Beowulf clusters described in

Tables 5.9 and 5.10. Each Edin2 machine is labelled E and each Muni machine

is labelled M .

raytracer

In Table 5.18, the first and second columns show case number and different com-

binations of PEs. The third and fourth columns record the run-time in seconds

for GRID-GUM1 and GRID-GUM2 respectively. The last column shows the

percentage improvement in GRID-GUM2 run-time.

C
as

e Run-time s
Impr%

GRID-GUM1 GRID-GUM2

1 1E4M 995 617 38%
2 1E3M 1066 728 32%
3 2E3M 911 703 23%
4 1E2M 1088 892 18%
5 2E2M 952 843 11%
6 2E1M 1007 926 8%
7 1E1M 1842 1687 8%
8 3E1M 852 786 8%
9 4E1M 668 642 4%
10 3E2M 772 754 2%

Table 5.18: raytracer: Homogeneous High-Latency Computational Grid

In Table 5.18, GRID-GUM2 shows improvement in the run-time under differ-

ent configurations of local and remote PEs in comparison with GRID-GUM1’s

performance, for instance, in case 2 raytracer on GRID-GUM1 using four PEs

(1E3M), one local PE from Edin2 cluster and three remote PEs from Muni

cluster, requires 1066 s. However, raytracer on GRID-GUM2 using the same

CHAPTER 5. GRID-GUM2 EVALUATION 122

configuration (1E3M) requires only 728 s with an improvement of 32% in the run-

time. Furthermore, GRID-GUM2 in a configuration of the form xEyM , where

x < y, has the highest improvement against GRID-GUM1. This is because in

GRID-GUM1, the main PE is always selected as the first PE in the list, which

has to be a E PE in this case. This suggests that the remote M PEs have to

communicate through a high-latency communication with the main PE, which

has all the work at the beginning of the execution, to obtain work, which becomes

a bottleneck in the execution. However, GRID-GUM2 prevents this bottleneck

and decreases communication through high-latency as will be explained next.

The adaptive load distribution of GRID-GUM2 in a configuration of the form

xEyM , where x < y, nominates the main PE from the M remote group PEs.

By this nomination, the number of PE(s) required to obtain work through the

high-latency communication decreases. Moreover, in GRID-GUM2 for the same

configuration, if a E PE sends a FISH message to a M PE, the M PE grants the

E PE with enough work, depending on the amount of work available in M and E

PEs and the number of M PEs (y) and E PEs (x) (as explained in Section 4.5),

to decrease the amount of communication through high-latency communication.

In short, Table 5.18 shows that, GRID-GUM2 outperforms GRID-GUM1 on

high-latency homogeneous architecture for raytracer, with high-communication

degree and high irregular parallelism.

In Tables 5.19 (sumEuler) and 5.20 (queens) the first column shows differ-

ent combinations of PEs. The second and third columns record the run-time

in seconds for GRID-GUM1 and GRID-GUM2 respectively. The last column

shows the percentage improvement in GRID-GUM2 run-time. In this exper-

iment queens and sumEuler show modest improvements under GRID-GUM2.

This is due to the nature of these programs. sumEuler and queens have rela-

tively low-communication degree, thus, the impact of high-latency communication

is limited.

CHAPTER 5. GRID-GUM2 EVALUATION 123

sumEuler

In Table 5.19, GRID-GUM2 shows more improvements against GRID-GUM1

with sumEuler than with queens in Table 5.20. This is due to the parallelism

regularity in sumEuler and queens. sumEuler is based on a highly irregular

parallelism which increases the need of an adaptive load distribution on a homo-

geneous high-latency architecture more than for queens which is based on regular

parallelism.

C
as

e Run-time s
Impr%

GRID-GUM1 GRID-GUM2

1 2E2M 182 128 30%
2 3E2M 179 127 29%
3 2E3M 163 126 23%
4 2E1M 204 165 19%
5 1E4M 138 112 19%
6 4E1M 175 143 18%
7 1E3M 141 118 16%
8 3E1M 158 145 8%
9 1E1M 212 200 6%
10 1E2M 151 144 5%

Table 5.19: sumEuler: Homogeneous High-Latency Computational Grid

In Table 5.19, GRID-GUM2 outperforms GRID-GUM1. For instance, in case

1, GRID-GUM1 requires 182 s to finish the computation of sumEuler using four

PEs (2E2M), two local E PEs and two remote M PEs. However, GRID-GUM2

requires only 128 s to finish the same computation using the same configuration

(2E2M) with improvement of 30%. In this case, GRID-GUM2 chooses PEs to

use the available dynamic information about loads and latencies to obtain work

from PEs are known to be heavily loaded with preference to PEs known to have

low-communication latency. Due to this, PEs spend less time seeking work and

send less messages through the high-latency communication which result in the

improvement of the performance on homogeneous architecture even if the program

has relatively low-communication degree like sumEuler.

CHAPTER 5. GRID-GUM2 EVALUATION 124

In cases 9 and 10 sumEuler shows modest improvement under GRID-GUM2

of 6% and 5% respectively. This due to the combination of local E PE(s) and

remote M PE(s) which participate in the computation. The lazy mechanism is

used inGRID-GUM2 to distribute dynamic information is less effective in a small

set of PEs with relatively low-communication degree programs. This mechanism

in a small set of combination of local and remote PEs might supply a PE with an

initial dynamic information which shows that other PEs do not have enough work

to share with the current PE. Thus, a PE with this incomplete and out-of-date

dynamic information might finish its computation earlier than the rest of the PEs

and stop seeking work, considering that other PEs do not have work to share.

In short, regarding the characteristic of the low-communication degree in

sumEuler, GRID-GUM2 shows a good improvement to the performance in com-

parison to GRID-GUM1. In addition, despite the lazy way of distributing the

dynamic information under GRID-GUM1, the performance of sumEuler has not

been impinge under any cases.

queens

C
as

e Run-time s
Impr%

GRID-GUM1 GRID-GUM2

1 3E1M 365 333 9%
2 4E1M 319 295 8%
3 1E1M 521 484 7%
4 2E1M 388 370 5%
5 3E2M 272 258 5%
6 1E2M 375 356 5%
7 2E2M 314 298 5%
8 2E3M 276 269 2%
9 1E3M 302 296 2%
10 1E4M 261 263 0%

Table 5.20: queens: Homogeneous High-Latency Computational Grid

CHAPTER 5. GRID-GUM2 EVALUATION 125

In Table 5.20,GRID-GUM2 scores modest improvements againstGRID-GUM1

with queens. The improvements lay between 9% and 0%. The number of local

E PEs and remote M PEs effect directly the improvement. For instance in cases

1 and 2 where the number of local E PEs are more than the number of M PE(s),

queens scores better improvement under GRID-GUM2 compared with the cases

8, 9 and 10 where the number of remote M PEs is more than local E PE(s). This

is because the remote M PEs are slightly faster (1529 MHz) than the local E

PEs (1395 MHz). Thus, in the cases where the number of M PEs is more than

the number of E PEs the adaptive load distribution of GRID-GUM2 nominates

the mainPE from the remote M PEs . This nomination decreases the improve-

ment due to the possible delay in the startup. If the mainPE is nominated from

the remote M PEs, the local E PE(s) which participate in the computation has

to wait until the remote mainPE starts the computation. In a high-latency ar-

chitecture this delay is remarkable especially in a program like queens which

has regular parallelism and relatively low-communication degree, which does not

leave a much possible improvement to GRID-GUM2.

Broadly speaking, in a homogeneous computational Grid architecture, a blind

load distribution mechanism, similar to the load distribution in GRID-GUM1,

delivers an improvement in the performance of programs with low-communication

degree and regular parallelism like queens.

Summary

• The measurements in this section suggest that GRID-GUM2 outperforms

GRID-GUM1 on homogeneous high-latency computational Grid architec-

tures on our example programs;

• The performance of raytracer, with high-communication degree, shows

an improvement of up to 37% using GRID-GUM2 on homogeneous high-

latency architectures (Table 5.18);

• Under the same architectures, the performance of sumEuler, with low-

communication degree and irregular parallelism, shows an improvement of

CHAPTER 5. GRID-GUM2 EVALUATION 126

up to 30% using GRID-GUM2 (Table 5.19);

• However, GRID-GUM2 scores the lowest improvement of up to 9% with

queens, which has low-communication degree and regular parallelism, on

homogeneous high-latency architectures; due to the little impact of this

architecture in queens’s performance, which leaves little possibility for im-

provement, (Table 5.20).

5.5 Scalability

This section studies the scalability of the GRID-GUM2 load distribution mech-

anism on heterogeneous architecture over high-latency communication. This ex-

periment has the following limitations:

• Most of the functional parallel algorithms which are available, including the

ones have been used in this thesis, do not scale to a large Grid environ-

ment, due to the lack of parallelism generated during the execution. These

programs were originally implemented to work on conventional high perfor-

mance computers which were built around a limited number of PEs. This

limitation can be recognised from the raytracer’s results in this section.

• The number of PEs were available to be used in this experiment was limited

by the number of PEs available in the cooperated sites, Edin1 (E) 30, Edin2

(E2) 5, and Muni (M) 6.

In Tables 5.21 (raytracer), 5.23 (parFib) and 5.22 (raytracer), the mea-

surements are performed in three heterogeneous Beowulf clusters, Edin1 and

Edin2, which are connected over a low-latency communication, and Muni, which

is connected with the other two clusters over a high-latency communication. For

more details see Tables 5.9 and 5.10. Each Edin1 machine is labelled E, each

Edin2 machine is labelled E2 and each Muni machine is labelled M .

In Table 5.21 the first column shows case number. The second and fifth

columns present number of PEs from Edin1 Beowulf cluster used with Gum and

CHAPTER 5. GRID-GUM2 EVALUATION 127

different combinations of PEs from Edin1, Edin2 and Muni Beowulf clusters used

with GRID-GUM1 respectively. The third and sixth columns record runtime in

seconds under Gum andGRID-GUM1 respectively. The fourth and last columns

indicate the speedup under Gum and GRID-GUM1.

In Tables 5.22 and 5.23, the first and second columns show case number and

different combinations of PEs from Edin1, Edin2 and Muni Beowulf clusters.

The third and fifth columns record the run-time in seconds forGRID-GUM1 and

GRID-GUM2 respectively. The fourth and last columns indicate the speedup.

In these measurements the input size used with raytracer and parFib is

relatively large, due to this, it was very hard to run these programs sequentially

to calculate the speedup. Hence, the sequential run for raytracer is computed

from the run-time of 7E from Table 5.21 under Gum and for parFib is computed

from the runtime of 6E1M from Table 5.23 under GRID-GUM1.

5.5.1 raytracer

C
as

e raytracer

Gum GRID-GUM1
Rtime s Speedup Rtime s Speedup

1 7E 2609 7 6E1M 2530 7
2 14E 2168 8 12E2M 2185 8
3 21E 1860 10 18E3M 1824 10
4 28E 1771 10 24E4M 1776 10
5 30E 1762 10
6 30E5M 1666 11
7 5E230E6M 1652 11

Table 5.21: raytracer: Scalability in Gum and GRID-GUM1

The raytracer performance in Table 5.21 shows that replacing local E PE

with remote M PE, using high-latency communication, does not deteriorate the

performance. In the first four cases, Gum and GRID-GUM1 score the same

speedup, although, case 1 and 3 show better performance under GRID-GUM1

CHAPTER 5. GRID-GUM2 EVALUATION 128

due to the fast M PEs participating in the computation. In contrast, case 2 and 4

show better performance under Gum in comparison to GRID-GUM1 due to the

low-latency communication between PEs and the small time required for startup.

However, Gum scalability is limited within a single cluster. As shown in the

Table, Gum can only scale up to thirty PEs which is the size of Edin1 Beowulf

cluster, which limited the improvement. In contrastGRID-GUM1 can scale with

cluster size and uses PEs from other clusters to improve the performance as

shown in case 6 and 7. These results support the idea of using Grid-emergent

technology to improve the performance of parallel programs.

C
as

e raytracer

GRID-GUM1 Speedup GRID-GUM2 Speedup

1 6E1M 2530 7 2470 7
2 12E2M 2185 8 1752 10
3 18E3M 1824 10 1527 12
4 24E4M 1776 10 1359 13
5 30E5M 1666 11 1278 14
6 5E230E6M 1652 11 1133 16

Table 5.22: raytracer: Scalability in GRID-GUM1 and GRID-GUM2

In Table 5.22, GRID-GUM2 outperforms GRID-GUM1 under different config-

urations of heterogeneous PEs using relatively a large set number of PEs with

raytracer to calculate an image with resolution 800X800. For instance in case

6, raytracer on GRID-GUM1 using 41 PEs (5E230E6M), five PEs from Edin2,

thirty PEs from Edin1 and six PEs from Muni Beowulf clusters, scores a speedup

of 11, however,GRID-GUM2 increases the speedup of raytracer under the same

configuration to 16. This improvement shows the capabilities of the adaptive load

distribution of GRID-GUM2 to improve the performance in a large set of PEs.

Figures 5.28, and 5.29 depict the per-PE profile of GRID-GUM1 and GRID-

GUM2 performance presented in case 6 in Table 5.22 respectively.

In Figure 5.28, PEs have numerous idle periods, and finish at different time.

In addition, all PEs except PE0 stop at 30% of the execution time. As explained

CHAPTER 5. GRID-GUM2 EVALUATION 129

Main_mp.mpi 12 2 800 800 UK4 +RTS -qp41 -qt1 -H32M -s Thu Oct 6 16:23:36 BST 2005GUM

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0 200.0 k 400.0 k 600.0 k 800.0 k 1.0 M 1.2 M

Figure 5.28: GRID-GUM1: per-PE activity profile for raytracer on 41 PE

before, this behaviour is due to the blind load distribution of GRID-GUM1.

PEs under GRID-GUM1 send FISH messages to random destinations. There is,

therefore no guarantee that a FISH message will be sent to a PE with work to

donate in preference to a PE with no work; in fact there is no guarantee that the

message will reach an arbitrary PE at all. As in the case with a relatively large

number of PEs, the probability is higher, and it might be the case, that the FISH

message bounces back and forth between a small group of PEs which do not have

work to donate.

Main_mp.mpi 12 2 800 800 UK4 +RTS -qp41 -qt1 -H32M -s Thu Oct 6 16:24:02 BST 2005GUM

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k 500.0 k 550.0 k 600.0 k 650.0 k 700.0 k 750.0 k 800.0 k 850.0 k

Figure 5.29: GRID-GUM2: per-PE activity profile for raytracer on 41 PE

CHAPTER 5. GRID-GUM2 EVALUATION 130

In Figure 5.29, PEs only stop after almost 70% of the execution time. How-

ever, PEs still have some idle periods, is due to a combination of PEs and program

characteristics. In a multi-cluster Grid environment, especially with a relatively

large set of PEs, latency causes significantly different startup times and delays in

the initial work request of the individual PEs. In addition, the raytracer pro-

gram generates all parallelism at the beginning of the computation. Each of the

parallel threads needs the input data early on in the computation. Therefore the

thread will block almost immediately, fetching remote data, and the now idle PE

will ask for additional work. GRID-GUM2 controls the load distribution by en-

couraging PEs with slow CPU speed to be less aggressive for accumulating sparks.

This avoids PEs with slow CPU speed from activating a huge number of sparks.

However, it potentially increases idleness among PEs with slow CPU speed. In

the execution shown in Figure 5.29 the 5 Edin2 PEs (PE0, PE22, PE23, PE24,

PE25) and 6 Muni PEs (PE26, PE27, PE28, PE29, PE31, PE32) obtain the

available parallelism and show a fairly balanced load and finish at about the

same time. The other PEs with slow CPU speed remain with some idle periods,

and are unable to extract extra work from PEs with fast CPU speed until they

finish their current computation. Moreover, at the end of the computation, all

PEs require data initially held on the mainPE without having sparks available,

which explain the tail on PE0 at the end of the execution. Despite all these

GRID-GUM2 improves the performance by 31%.

Figure 5.30 plots the speedup of raytracer under Gum, GRID-GUM1 and

GRID-GUM2. As depicted in the figure, Gum shows limited capability to scale

using as many PEs as GRID-GUM1 and GRID-GUM2. GRID-GUM1’s load

distribution is incapable to use the available computation power resources to

improve the parallel program performance, in contrast to GRID-GUM2.

5.5.2 parFib

Table 5.23 presents the performance of parFib under GRID-GUM1 and GRID-

GUM2. parFib has a relatively low-communication degree compare to raytracer,

CHAPTER 5. GRID-GUM2 EVALUATION 131

0

3

6

9

12

15

7 14 21 28 35

S
pe

ed
up

PEs

raytracer, Speedup

GUM
Grid-GUM

Grid-GUM2

Figure 5.30: raytracer: Gum, GRID-GUM1 & GRID-GUM2

it sends approximately 14 Msgs/s (Table 5.14). Moreover, parFib has highly

regular parallelism and it generates packets with small size (5.8 Byte). In fact,

parFib is a perfect program which can manage heterogeneity and high-latency in

computational Grid architectures without relying on an adaptive load distribu-

tion. Due to this, parFib shows a good performance under GRID-GUM1’s blind

load distribution.

This experiment explores the impact of using GRID-GUM2’s adaptive load

distribution with a perfect program like parFib in heterogeneous computational

Grid architecture over high-latency communication.

C
as

e parFib
Impr%

GRID-GUM1 Speedup GRID-GUM2 Speedup

1 6E1M 3995 7 3737 7 0%
2 12E2M 1993 14 2003 14 0%
3 18E3M 1545 18 1494 19 5%
4 24E4M 1237 23 1276 22 -4%
5 30E5M 1142 24 1147 24 0%
6 5E230E6M 1040 27 1004 28 4%

Table 5.23: parFib: Scalability in GRID-GUM1 and GRID-GUM2

In Table 5.23, parFib depicts the same performance underGRID-GUM1 and

GRID-GUM2. Case 3, 4, and 6 show marginal differences in the performance

CHAPTER 5. GRID-GUM2 EVALUATION 132

within the range of −4% and +5%, due to the impact of operating system and

shared communication interaction.

The measurements in Table 5.23 shows the effectiveness of the light-weight

implementation of the monitoring mechanism in GRID-GUM2. It also shows

that the adaptive load distribution of GRID-GUM2 does not have a negative

impact on the performance of a program which can independently score a good

performance in computational Grid architecture.

5.5.3 Summary

• The experiment in this section exhibits that, emerging Grid technology

offers the opportunity to improve performance by integrating PEs from dif-

ferent clusters located in different geographical places into a computational

Grid architecture (Table 5.21 and Figure 5.30)

• The measurements in the section show that, GRID-GUM2 improves the

performance of raytracer in a relatively large scale set of PEs (Table 5.22)

• The experiment of running parFib in a large scale architecture suggests

that GRID-GUM2 has a light-weight monitoring implementation and does

not effect the performance of (Table 5.23).

5.6 Conclusion

This chapter includes systematic measurements of the performance of GpH par-

allel programs using the adaptive load distribution of GRID-GUM2, on a range

of computational Grid architectures. We conclude that the new adaptive load

distribution of GRID-GUM2 improves parallel performance for a typical set of

applications running on homogeneous and heterogeneous computational Grids

architectures over high and low-latency communications. However, the adaptive

load distribution ofGRID-GUM2 has different impact in the performance for dif-

ferent configurations of latency and heterogeneity, and programs characteristics,

i.e. communication degree and regularity of parallelism.

CHAPTER 5. GRID-GUM2 EVALUATION 133

Broadly speaking, we conclude that, with appropriate load management strate-

gies, acceptable performance can be obtained on computational Grid architec-

tures from a distributed virtual shared heap implementation of a high-level par-

allel language, as shown in Table 5.24.

Table 5.24 compares the performance of our benchmark programs usingGRID-

GUM1, GRID-GUM1.1 and GRID-GUM2. The first column shows the program

name. The second and third columns present the program characteristics, par-

allelism regularity and communication degree, respectively. The fourth and fifth

columns include the framework test environment specification, latency and ar-

chitecture heterogeneity or homogeneity. The sixth, seventh and eighth columns

report the performance of GRID-GUM1 (GG1), GRID-GUM1.1 (GG1.1) and

GRID-GUM2 (GG2). In this comparison, we rate our performance from 3 (best)

to 1 (worst).

We can conclude from Table 5.24:

• GRID-GUM2 improves the performance of the benchmark programs with

irregular parallelism on heterogeneous architecture.

• GRID-GUM2 improves the performance of all benchmark programs except

the programs with regular parallelism and low-communication degree on

high-latency and homogeneous computational Grids.

• GRID-GUM2 improves the performance of the benchmark programs with

irregular parallelism on low-latency and homogeneous computational Grids

and sustain the same performance with the benchmark programs with reg-

ular parallelism.

• GRID-GUM2 shows the same improvement asGRID-GUM1.1 with regular

parallelism program with heterogeneous architecture.

• GRID-GUM1.1 improves the performance of the benchmark programs with

irregular parallelism with heterogeneous architecture.

CHAPTER 5. GRID-GUM2 EVALUATION 134

Program
Characteristic Framework

GG1 GG1.1 GG2
regularity Comm. Latency Archit.

raytracer Irreg. High

High Hetr. 1 2 3
High Hom. 1 1 2
Low Hetr. 1 2 3
Low Hom. 1 1 2

sumEuler Irreg. Low

High Hetr. 1 2 3
High Hom. 1 1 2
Low Hetr. 1 2 3
Low Hom. 1 1 2

linSolv Irreg. Low

High Hetr. 1 2 3
High Hom. 1 1 2
Low Hetr. 1 2 3
Low Hom. 1 1 2

matMult Reg. High

High Hetr. 1 2 2
High Hom. 1 1 2
Low Hetr. 1 2 2
Low Hom. 1 1 1

queens Reg. Low

High Hetr. 1 2 2
High Hom. 1 1 1
Low Hetr. 1 2 2
Low Hom. 1 1 1

parFib Reg. Low

High Hetr. 1 2 2
High Hom. 1 1 1
Low Hetr. 1 2 2
Low Hom. 1 1 1

Table 5.24: Summary comparison between GRID-GUM1, GRID-GUM1.1 and
GRID-GUM2

More specifically, Tables 5.15 and 5.18 show that the adaptive load distribu-

tion of GRID-GUM2 can give significant improvements with raytracer, which

has high-communication degree and high irregular parallelism, on high-latency

heterogeneous and homogeneous computational Grids. This improvement is

modest with sumEuler, which has relatively low-communication degree and irreg-

ular parallelism, as depicted in Tables 5.16 and 5.19. Finally, queens, which has

relatively low-communication degree and regular parallelism, shows less improve-

ment under GRID-GUM2 for high-latency communication under homogeneous

CHAPTER 5. GRID-GUM2 EVALUATION 135

and heterogeneous architecture as shown in Tables 5.20 and 5.17. The perfor-

mance of the programs with relatively low-communication degree, like sumEuler

and queens, are less effected by the high-latency communication. Due to this, the

possible improvement that can be achieved by the adaptive load distribution of

GRID-GUM2 is limited. Moreover, the improvement possibilities decrease when

the program is based on regular parallelism, like queens.

However, the adaptive load distribution of GRID-GUM2 improves the per-

formance significantly on low-latency heterogeneous computational Grids. Most

of the programs exhibit an improvement of over 50%, (raytracer 57%, queens

53%, and sumEuler 51%), as depicted in Table 5.12.

Moreover, as shown in Table 5.14 on low-latency homogeneous computational

Grids, the monitoring and adaptive load distribution of GRID-GUM2 retains a

very light overhead. Although GRID-GUM2 reduces the communication degree

other dynamic properties of the programs remain unchanged. The communication

degree decreases under GRID-GUM2 due to the dynamic and static information

are supplied by the monitoring mechanism in GRID-GUM2, which assist PEs to

seek work in the right place, thus the communication degrees are decreased.

Finally, the adaptive load distribution of GRID-GUM2 reduces all programs

run-time. This is due to the accuracy of the monitored dynamic and static in-

formation which assist PEs to locate work from heavily loaded PEs. Thus, the

adaptive load distribution ofGRID-GUM2 delivers more predictable performance

in comparison to the load distribution of GRID-GUM1 as shown in Table 5.13.

Chapter 6

Conclusion

6.1 Contributions

Computational Grids are an emerging technology that manage and integrate re-

sources and services distributed across multiple control domains. Computational

Grids are comprised of large-scale networks of computers and many offer huge

computational power, but currently suffer from a lack of automatic management

of parallelism. In this thesis we have shown that with dynamic, implicit task man-

agement it becomes possible to exploit complex parallelism within applications

and thus to speed-up their execution. This approach differs from many of today’s

Grid applications which are largely restricted to parallelising independent jobs ,

executing the same computation on different data items.

More specifically, this thesis has used GpH, a language with high-level parallel

coordination that abstracts over the complexities of the architecture. Based on

the Gum runtime environment for GpH we have developed a novel runtime en-

vironment for computational Grids, GRID-GUM2, that automatically monitors

and manages the load distribution on computational Grids.

6.1.1 Contribution 1: Gum on the Grid

The thesis first modified the Gum runtime environment for deployment over a

wide area network, realising GRID-GUM1 [AZTML03]. In addition, the thesis

136

CHAPTER 6. CONCLUSION 137

reports a systematic series of GRID-GUM1 performance measurements on dif-

ferent configurations of computational Grids with widely varying latencies and

programs with different communication degree. It also compares the performance

under PVM and MPICH communication libraries with the Grid implementation

of the MPI standardMPICH-G2 [AZTLM04].

In developingGRID-GUM2, a crucial first step was to port Gum to the Globus

Grid implementation. In particular, it was important to demonstrate conclu-

sively that the HPC-oriented Gum communication layer could be adapted for

computational Grids. Gum’s communication layer is based on Pvm, however,

the Globus Toolkit communication is based on a special form of Mpi, Mpich-

G2. This led to change the communication layer in Gum as a first step towards

implementing GRID-GUM1. (Section 3.2)

There have been few systematic measurements of high-level parallel languages

on computational Grids [Con04, Mur03, GAL+02]. The measurements ofGRID-

GUM1 show that the performance of substantial programs on a single cluster

is independent of the underlying communication library. On multiple Grid-

enabled clusters with a low latency interconnect, GRID-GUM1 delivers good

and predictable speedups.

In contrast, on clusters with a high latency interconnect GRID-GUM1 only

delivers acceptable speedups for programs that perform little communication.

Poor load balance is identified as the performance bottleneck (Section 3.3).

We conclude that to give good performance for a high level language on a

shared hierarchical heterogeneous architecture like a Grid, more elaborate RTE

techniques are required to control work distribution and distributed memory man-

agement (Section 3.4).

CHAPTER 6. CONCLUSION 138

6.1.2 Contribution 2: Design of an Adaptive RTE for

Computational Grids

The thesis presents the design of the GRID-GUM2 RTE with novel load bal-

ancing mechanisms for shared hierarchical heterogeneous architectures. GRID-

GUM2 is the first fully implemented virtual shared memory RTE that dynamically

manages parallel execution on computational Grids [AZTLM05, AZMLT04].

GRID-GUM2 extends GRID-GUM1’s simple dynamic adaptive mechanisms

to reflect both differences in the underlying process elements and network char-

acteristics, and dynamic changes in external processing and communication loads

in computational Grids (Section 4.3).

GRID-GUM2, unlike traditional high performance computing environments,

automatically manages key coordination aspects such as task placement and com-

munication and synchronisation within a program in computational Grids. The

management policies of GRID-GUM2 is informed by the static properties (Sec-

tion 4.4.1) e.g. moving more work to larger or faster cluster and dynamic proper-

ties, (Section 4.4.2) e.g. lightly-loaded clusters become aggressive about seeking

work. GRID-GUM2 is extended to manage the hierarchical architecture, e.g.

seeking work within a cluster before looking outside. The mechanisms are de-

centralised, obtain complete static information during start up, and then cheaply

propagating partial dynamic information during execution (Section 4.5).

6.1.3 Contribution 3: Evaluating GRID-GUM2’s Dynamic

Load Scheduling on Computational Grids

This thesis demonstrates that lightweight adaptive load distribution techniques,

like those inGRID-GUM2, can deliver good performance for a typical set of appli-

cations on both high- and low- latency, and both homogeneous and heterogeneous

computational Grids [AZTLM06].

CHAPTER 6. CONCLUSION 139

Systematic measurements have been conducted into the performance of GpH

parallel programs, which do not contain code for explicit coordination of paral-

lelism, using the automatic and adaptive load distribution of GRID-GUM2, on

a range of computational Grids.

Broadly speaking, the experiments presented in Chapter 5 show that GRID-

GUM2’s new load distribution mechanism improves the performance of all pre-

sented programs in this thesis, as shown in Table 5.24.

More specifically, the experiments suggest that, on high-latency networks in

a heterogeneous and homogeneous architecture, the adaptive load distribution of

GRID-GUM2 (Section 5.4):

• shows significant improvements for program with high-communication de-

gree and high irregular parallelism (e.g. raytracer);

• gives modest improvement for programs with relatively low-communication

degree and irregular parallelism (e.g. sumEuler);

• shows little improvement for programs with relatively low-communication

degree and regular parallelism (e.g. queens).

However, on the low-latency network in a heterogeneous architecture the adap-

tive load distribution of GRID-GUM2 improves the performance significantly,

with some programs exhibiting an improvement of over 50%, (raytracer 57%,

queens 53%, and sumEuler 51%) (Section 5.3.1).

Moreover, on the low-latency in a homogeneous architecture, programs under

GRID-GUM2 have less variance in the performance than under GRID-GUM1.

GRID-GUM2 shows good scalability and retains a very light overhead which does

not effect the program’s dynamic properties (Section 5.3.2).

In short, this thesis concludes that, with appropriate load management strate-

gies, acceptable performance can be obtained on computational Grids from a

distributed virtual shared heap implementation of a high-level parallel language

without explicit constructs for coordinating the parallel evaluation.

CHAPTER 6. CONCLUSION 140

6.2 Limitations & Future Research Direction

The current work has the following limitations,

• All the programs measured in this thesis can be classified as medium scale

parallel programs.

• The security mechanism used in this thesis is inherited from Globus Toolkit.

Moreover, it focuses on user authentication and is based on trust towards

the user. There are no program-based security mechanism.

• The implementation presented in this thesis, (GRID-GUM2), uses the com-

munication library Mpich-G2 because of the support and services from the

Globus Toolkit. However, Mpich-G2 suffers from being a closed system,

which means it is impossible to introduce a new PE to the computation

after it started. Due to this, GRID-GUM2 restricted to be a closed system.

• This thesis does not introduce any fault tolerant mechanism. If a PE fails

for some reason then the entire computation may fail.

There are several avenues to extend this research and address the limitations

has been identified.

Larger Algorithms: The first avenue is to implement a large parallel algo-

rithm for more experiments to show scalability in computational Grids. An

ongoing project (SCIEnce - Symbolic Computation Infrastructure for Europe EU

FP VI I3-026133) will start on April/2006 and will integrate symbolic computa-

tion tools with computational Grids usingGRID-GUM2 to tackle new problems

that cut across the traditional divisions between system specialities. Symbolic

computer algorithms are likely to exhibit characteristics that fit well to GRID-

GUM2 (highly irregular).

Program-Based Security: Another possible avenue is to implement a pro-

gram based security mechanism to analyse program behaviour to decide whether

CHAPTER 6. CONCLUSION 141

to permit execution of the code. For example, to enhanced program based secu-

rity, certificates of bounded resource consumption should be attached to the code

sent between PEs in the network and checked by a resource protection component

before executing the code.

Open System The third avenue to be explored is to target different commu-

nication libraries than Mpich-G2, to enable GRID-GUM2 to be an open sys-

tem. Possibility includes using an optimised version of Pvm for computational

Grids [MS99, SK03].

Fault Tolerance Future research must tackle the problem of fault tolerance

especially in computational Grids. GRID-GUM2 could benefit from the side-

effect freed nature of functional language. One reason is that large part of the

program are pure, i.e. without side effects. Side effects amount to updating

the global program state and their absence means that the damage by a failing

computation is confined. Moreover, if an error is detected, pure computations can

be automatically restarted without the danger of making multiple updates. A

second potential benefit of high-level language technology is that fault tolerance

is global property affecting all operations of the virtual machine underlying a

language, and enforcing such property is easier with a high level virtual machine.

To investigate these potential benefits GRID-GUM2 could have a new runtime

system level of fault tolerance [TPL00].

Appendix A

Measurement Framework

A.1 Hardware Apparatus

The measurements have been performed on five Beowulf clusters: three located

at Heriot-Watt Riccarton campus (Edin1, Edin2, and Edin3), a cluster located at

Ludwig-Maximilians University Munich (Muni), and a cluster located at Heriot-

Watt boarder campus(SBC); see Tables 5.9 and 5.10 for the characteristic of these

Beowulfs.

Beowulfs CPU Cache Memory
Speed MHz kB Total kB

Edin1 534 128 254856
Edin2 1395 256 191164
Edin3 1816 512 247816
Muni 1529 256 515500
SBC 933 256 110292

Table A.25: Characteristics of Beowulf Clusters

A.2 Software Apparatus

The programs measured in this experiment are classified by the communication

degree, which is the number of messages the program sends per second, so we

can study the impact of the latency of the network on program behaviour. Six

142

APPENDIX A. MEASUREMENT FRAMEWORK 143

Edin1 Edin2 Edin3 SBC Muni

Edin1 0.20 0.27 0.35 2.03 35.8
Edin2 0.27 0.15 0.20 2.03 35.8
Edin3 0.35 0.20 0.20 2.03 35.8
SBC 2.03 2.03 2.03 0.15 32.8
Muni 35.8 35.8 35.8 32.8 0.13

Table A.26: Approximate latency between clusters (ms)

programs are measured in this experiment. Three have low communication de-

gree, parFib, queens and sumEuler, and the other three have relatively high

communication degree, raytracer, matMult, and linSolv.

parFib:

The parFib program computes the number of calls to the Fibonacci function. The

granularity of parFib can be controlled by specifying the threshold for parallel

invocation which help manage the computation size. parFib is a divide-conquer

program with regular parallelism.

sumEuler:

The sumEuler program computes the sum over the application of the Euler totient

function over an integer list. It is data parallel and has a fairly cheap combination

phase involving only a small amount of communication. sumEuler has a high

irregular parallelism.

queens:

The queens program places queen chess pieces on the chess board so that they

do not check each other. queens is a divide-conquer program with regular paral-

lelism.

APPENDIX A. MEASUREMENT FRAMEWORK 144

raytracer:

The raytracer program calculates a 2D image of a scene of 3D objects by tracing

all rays in a window. In tracing a ray, the intersections with the objects are

computed. When an intersection is found, the ray is reflected and the colour

of the intersection point is computed based on the strength of the ray and on

the texture of the object’s material. raytracer is data parallel program with

high irregular parallelism. raytracer generates most of the parallelism at the

beginning of the execution.

matMult:

The matMult program multiples two matrices. Given two square matrices of

arbitrary precision integers A, B ∈ Z
n×n, n ∈ N find their product, i.e. a matrix

C ∈ Z
n×n such that Ci,j =

∑n

k=1
Ai,k ∗Bk,j. matMult is a divide-conquer program

with regular parallelism.

linSolv:

The linSolv program finds an exact solution of a linear system of equations of

the form Ax = b where A ∈ Z
n×n, b ∈ Z

n, n ∈ N. linSolv is a symbolic algebra

problem with data parallel paradigm and limited irregular parallelism.

Appendix B

Activity Profiles

The aim of the activity profiles to summarise the activity of the machine during

the computation in one graph. In order to give the programmer the possibility

of examining the program execution in more detail.

B.1 Overall Activity Profile

The idea of the overall activity profile is to present a global picture of the compu-

tation. In particular, it shows the utilisation of the machine at each point. The

overall activity profile separates the threads into five different classes:

• running threads, i.e. threads that are currently performing a reduction,

which are shown as a green area in the graph,

• runnable threads, i.e. threads that could be executed but that have not

found an idle PE, which are shown as an amber area in the graph,

• blocked threads, i.e. threads that wait for a result that is being computed

by another thread, which are shown as a red area in the graph.

• fetching threads, i.e. threads that are currently fetching data from a remote

PE, which are shown as a light blue area in the graph,

• migration threads, i.e. threads that are currently being transferred from a

busy PE to an idle PE, which are shown as a dark blue area in the graph.

145

APPENDIX B. ACTIVITY PROFILES 146

The overall activity profile shows the number of threads (y-axis) in each class

during execution time (x-axis).

B.2 Per-PE Activity Profile

The idea of the per-PE activity profile is to show the most important pieces of

information about each PE in one graph. Therefor it is easy to compare the

behaviour of the different PEs and to spot imbalances in the computation. This

profile is often used to study runtime-system issues like the load balance in the

system and is therefore most useful in a system-oriented view of parallelism. This

profile can be regarded as a ”load focusing” profile.

The per-PE activity profile shows one strip for each of the PEs. Each of the

strips encodes three pieces of information:

• If the PE is active the strip appears in some shade of green, and if it is idle

it appears in red.

• The load is measured by the number of runnable threads on the PE. A high

load is shown by a dark shade of green.

• The number of blocked threads on the PE is shown by the thickness of a

blue bar at the bottom of each strip.

Bibliography

[ABG02] M. Alt, H Bischof, and S. Gorlatch. Program Development for Compu-

tational Grids Using Skeletons and Performance Prediction. In CMPP’02

— Int. Workshop on Constructive Methods for Parallel Programming.

Dagstuhl, Berlin, June 2002.

[ABK+05] B. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, I. Dumitrescu,

C.and Raicu, and I. Foster. The Globus Striped GridFTP Framework and

Server. In High Performance Distributed Computing Conference (HPDC

14), November 2005.

[ADD04] M. Aldinucci, M. Dnelutto, and Dünnweber. Optimization Techniques

for Implementing Parallel Sckeletons in Grid Environments. In CMPP’04

— Intl. Workshop on Constructive Methods for Parallel Programming,

Stirling, Scotland, July 2004.

[ADF+01] G. Allen, T. Dramlitsch, I. Foster, N.T. Karonis, M. Ripeanu, E. Sei-

del, and B. Toonen. Supporting efficient execution in heterogeneous dis-

tributed computing environments with cactus and globus. In Supercom-

puting ’01: Proceedings of the 2001 ACM/IEEE conference on Supercom-

puting (CDROM), pages 52–52, New York, NY, USA, 2001. ACM Press.

[AFFH98] E. Akarsu, G.C. Fox, W. Furmanski, and T. Haupt. WebFlow: high-level

programming environment and visual authoring toolkit for high perfor-

mance distributed computing. In Supercomputing ’98: Proceedings of the

1998 ACM/IEEE conference on Supercomputing (CDROM), pages 1–7,

Washington, DC, USA, 1998. IEEE Computer Society.

147

BIBLIOGRAPHY 148

[AG96] K. Arnold and J. Gosling. The Java Programming Language. Addison-

Wesley, 1996.

[AGG+99] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. R. Kohn, L. McInnes,

S. R. Parker, and B. A. Smolinski. Toward a Common Component Archi-

tecture for High-Performance Scientific Computing. In Proceeding of the

8th High Performance Distributed Computing (HPDC), 1999.

[AGK00] D. Abramson, J. Giddy, and L. Kotler. High Performance Parametric

Modeling with Nimrod/G: Killer Application for the Global Grid? In

IPDPS ’00: Proceedings of the 14th International Symposium on Parallel

and Distributed Processing, pages 520–528, Washington, DC, USA, 2000.

IEEE Computer Society.

[AHS+] R. J. Allan, D. Hanlon, G. Smith, R. F. Fowler, and C. Gree-

nough. A globus developers’ guide with installation and mainte-

nance hints. Technical report. Draft from 14 September 2001,

<URL:http://esc.dl.ac.uk/StarterKit/PS/globus guide.ps/>,

fetch on May/2002.

[AJ89] L. Augustsson and T. Johnsson. Parallel Graph Reduction with the 〈v,G〉-

machine. In FPCA’89 — Conference on Functional Programming Lan-

guages and Computer Architecture, pages 202–213, Imperial College, Lon-

don, UK, September 1989. ACM Press.

[AJ90] L. Augustsson and T. Johnsson. Lazy ML User’s Manual. System Manual,

1990.

[AS99] J. Almond and D. Snelling. UNICORE: uniform access to supercomputing

as an element of electronic commerce. Future General Computer System,

15(5-6):539–548, 1999.

[AZMLT04] A. Al Zain, G. Michaelson, H-W. Loidl, and P. Trinder. Improving Load

Balance in a Grid-enabled Parallel Haskell. In TFP’04 — Intl. Workshop

on Trends in Functional Programming, Draft Proceedings, München, Ger-

many, November 2004.

BIBLIOGRAPHY 149

[AZTLM04] A. Al Zain, P. Trinder, H-W. Loidl, and G. Michaelson. Grid-GUM: To-

wards Grid-Enabled Haskell. In IFL’04 — Intl. Workshop on the Imple-

mentation of Functional Languages, Draft Proceedings, Lübeck, Germany,

September 2004.

[AZTLM05] A. Al Zain, P. Trinder, H.-W. Loidl, and G. Michaelson. Managing Het-

erogeneity in a Grid Parallel Haskell . In V. Sunderam, D. van Albada,

P. Sloot, and J. Dongarra, editors, International Conference on Compu-

tational Science (ICCS 2005), LNCS. Springer, 2005. to appear.

[AZTLM06] A. Al Zain, P. Trinder, H.-W. Loidl, and G. Michaelson. Managing Het-

erogeneity in a Grid Parallel Haskell. Journal of Scalable Computing:

Practice and Experience, 6(4), 2006.

[AZTML03] A. Al Zain, P. Trinder, G. Michaelson, and H-W. Loidl. Grid-GUM:

Haskell on Grids. In TFP’03 — Intl. Workshop on Trends in Functional

Programming, Draft Proceedings, Edinburgh, UK, September 2003.

[BA90] H. Ben-Ari, editor. Principles of Concurrent and Distributed Program-

ming. Printce Hall, Englewood Cliffs, 1990.

[Bac78] J. Backus. Can programming be liberated from the von Neumann style?:

a functional style and its algebra of programs. Commun. ACM, 21(8):613–

641, 1978.

[BAG00] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An Architecture for a

Resource Management and Scheduling System in a Global Computational

Grid. In HPC ASIA’2000 China. IEEE CS Press, USA, 2000.

[Bar84] H. P. Barendregt. The Lambda-Calculus: Its Syntax and Semantics. North

Holland, 1984.

[BC97] L. Braine and C. Clack. An Object-Oriented Functional Approach to

Information Systems Engineering. In CaiSE’97 - Fourth Doctoral Con-

sortium on Advanced Information Systems Engineering, 1997.

BIBLIOGRAPHY 150

[BDF+99] M. Beck, J. Dongarra, G. Fagg, A. Geist, P. Gray, M. Kohl, J.a

nd Migliardi, K. Moore, T. Moore, P. Papadopoulos, S. Scott, and V. Sun-

deram. HARNESS: A Next Generation Distributed Virtual Machine. Fu-

ture Generation Computer Systems, 15(5/6):571–582, October 1999. Spe-

cial Issue on Metacomputing.

[BDO+95] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L:

A Structured High Level Programming Language and its Structured Sup-

port. Concurrency — Practice and Experience, 7(3):225–255, May 1995.

[Ber99] F. Berman. High-Performance Schedulers. In I. Foster and C. Kessel-

man, editors, The Grid: Blueprint for a New Computing Infrastructure,

chapter 12, pages 279–311. Morgan Kufmann, 1999.

[BFH03a] F. Berman, G. Fox, and T. Hey. Grid Computing: Making the Global

Infrastructure a Reality. Chichester: John Wiley & Sons, 2003.

[BFH03b] F. Berman, G. Fox, and T. Hey. The Grid: past, present, future. In

F. Berman, G. Fox, and A. Hey, editors, Grid Computing - Making the

Global Infrastructure a Reality, pages 9–50, West Sussex, England, 2003.

John Wiley & Sons, Ltd.

[BL99] J. Basney and M. Livny. High Performance Cluster Computing, volume 1,

chapter Deploying a High Throughput Computing Cluster. Prentice-Hall,

1999.

[BLOP96] S. Breitinger, R. Loogen, Y. Ortega Malln, and R. Pea Maŕı. Eden —

The Paradise of Functional Concurrent Programming. In EuroPar’96 —

European Conf. on Parallel Processing, LNCS 1123, pages 710–713, Lyon,

France, 1996. Springer.

[BLOP97] S. Breitinger, R. Loogen, Y. Ortega Mallén, and R. Peña Maŕı. The

Eden Coordination Model for Distributed Memory Systems. In HIPS’97

— Workshop on High-level Parallel Programming Models, pages 120–124,

Geneva, Switzerland, 1997. IEEE Computer Science Press.

BIBLIOGRAPHY 151

[BRS94] F.W. Burton and V.J. Rayward-Smith. Worst Case Scheduling for Parallel

Functional Programming. Journal of Functional Programming, 4(1):65–

75, January 1994.

[BW97] F. Berman and R. Wolski. The AppLeS Project: A Status Report. Tech-

nical report, May 1997. 8th NEC Research Symposium, Berlin, Germany.

[CB97] C. Clack and L. Braine. Introducing CLOVER: an Object Oriented

Functional Language. In Werner Kluge, editor, Implementation of Func-

tional Languages, 8th International Workshop, Bad Godesberg, Germany,

September 1996, Selected Papers, number 1268 in Lecture Notes in Com-

puter Science. Springer Verlag, 1997.

[CD95] H. Casanova and J. Dongarra. Netsolv:a network server for solving com-

putational science problems. Technical Report CS-95-313, University of

Tennessee, 1995.

[CF58] H. Curry and R. Feys. Combinatory Logic, volume 1. North Holland,

1958.

[CFK99] K. Czajkowski, I. Foster, and C. Kesselman. Resource Co-Allocation in

Computational Grids. In HPDC ’99: Proceedings of the The Eighth IEEE

International Symposium on High Performance Distributed Computing,

page 37, Washington, DC, USA, 1999. IEEE Computer Society.

[CK88] T. L. Casavant and J. G. Kuhl. A Taxonomy of Scheduling in General-

Purpose Distribution Computing Systems. IEEE Transactions on Soft-

ware Engineering, 14(2):141–154, 1988.

[CK95] T. L. Casavant and J. G. Kuhl. A Taxonomy of Scheduling in General-

Purpose Distribution Computing Systems . In A. Shirazi, A. R. Hurson,

and K. M. Kavi, editors, Scheduling and Load Balancing in Parallel and

Distributed Systems, IEEE Transactions on Software Engineering, 1995.

[Cla99] C. Clack. Realisations for Non-Strict Langauges. In K. Hammond and

G. Michaelson, editors, Research Directions in Parallel Functional Pro-

gramming, chapter 6, pages 149–187. Springer-Verlag, 1999.

BIBLIOGRAPHY 152

[Cli82] W. Clinger. Nondeterministic Call by Need is Neither Lazy Nor by Name.

In LFP’82 — Conf on LISP and Functional Programming, pages 226–234,

Pittsburgh, PA, 1982.

[Col89] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Com-

putation. Research Monographs in Parallel and Distributed Computing.

The MIT Press, Cambridge, MA, 1989.

[Col99] M. Cole. Algorithmic Skeletons. In K. Hammond and G. Michaelson, edi-

tors, Research Directions in Parallel Functional Programming, chapter 13,

pages 289–304. Springer-Verlag, 1999.

[Com05] Platform Computing, 2005. <URL:http://www.platform.com/>.

[Con04] The ConCert Project. WWW page, 2004.

http://www-2.cs.cmu.edu/ concert/.

[Con05] Condor, 2005. <URL:http://www.cs.wisc.edu/condor/>.

[CSWH01] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freenet: A Distributed

Anonymous Information Storage and Retrieval System. In ICSI Workshop

on Design Issues in Anonymity and Unobservability, 2001.

[CW88] R. G. Clark and L. B. Wilson. Comparative Programming Languages.

Addison-Wesley, 1988.

[Dat05] DataGrid, 2005. <URL:http://eu-datagrid.Web.cern.ch/>.

[DB05] A. R. Du Bois. Mobile Computation in a Purely Functional Language. PhD

thesis, School of Mathematic and Computer Science, Computer Science

Department, Heriot-Watt University, Edinburgh, Scotland, 2005.

[DBLT02] A. R. Du Bois, H-W. Loidl, and P. Trinder. Thread Migration in a Parallel

Graph Reducer. In IFL’02 — Intl. Workshop on the Implementation of

Functional Languages. Springer-Verlag, LNCS 2670, 2002.

[Der02] J. Dermoudy. Effective Runtime Management of Parallelism in a Func-

tional Programming Context. PhD thesis, University of Tasmania, 2002.

Under assessment.

BIBLIOGRAPHY 153

[DFF+02] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and

A. White, editors. The Sourcebook of Parallel Computing. Morgan Kuf-

mann, San Francisco, CA, USA, 2002.

[DFH+96] D. Diachin, L. Freitag, D. Heath, J. Herzog, W. Michels, and P. Plass-

mann. Remote engineering tools for the design of pollution control systems

for commercial boilers. International Journal of Supercomputer Applica-

tions, 10(2):208–218, 1996.

[DFP+96] T. A. DeFanti, I. Foster, M. E. Papka, R. Stevens, and T. Kuhfuss.

Overview of the I-WAY: Wide-Area Visual Supercomputing. j-IJSAHPC,

10(2/3):123–131, Summer/Fall 1996.

[DGT96] J. Darlington, Y. Guo, and H.W. To. Structured Parallel Programming:

Theory meets Practice. In R. Milner and I. Wand, editors, Research Di-

rections in Computer Science. Cambridge University Press, 1996.

[DR00] P. Drum and G Rackl. Applying and Monitoring Latency-Based Meta-

computing Infrastructures . In ICPP Workshops, IEEE, pages 181–188,

2000.

[DRBJ02] D. De Roure, M. A. Baker, and N. R. Jennings. The Evolution of the

Grid. International Journal Computation and Currency: Practice and

Experience, June 2002.

[ELZ85] D. L. Eager, E. D. Lazowska, and J. Zahorjan. A comparison of receiver-

initiated and sender-initiated adaptive load sharing (extended abstract).

In SIGMETRICS ’85: Proceedings of the 1985 ACM SIGMETRICS con-

ference on Measurement and modeling of computer systems, pages 1–3,

New York, NY, USA, 1985. ACM Press.

[Esk89] M.R. Eskicioglu. Design Issues of Process Migration Facilities in Dis-

tributed Systems. In IEEE Technical Comittee on Operating Systems

Newsletter, pages 3–13, Winter 1989.

[FAF05] FAFNER, 2005. <URL:http://www.npac.syr.edu/factoring.html/>.

BIBLIOGRAPHY 154

[FGN+96] I. Foster, J. Geisler, B. Nickless, W. Smith, and S. Tuecke. Software infras-

tructure for the I-WAY high-performance distributed computing experi-

ment. In HPDC ’96: Proceedings of the High Performance Distributed

Computing (HPDC ’96), pages 562–571, Washington, DC, USA, 1996.

IEEE Computer Society.

[Fit01] S. Fitzgerald. Grid Information Services for Distributed Resource Sharing.

In HPDC ’01: Proceedings of the 10th IEEE International Symposium on

High Performance Distributed Computing (HPDC-10’01), pages 181–194,

Washington, DC, USA, 2001. IEEE Computer Society.

[FK97] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure

Toolkit. The International Journal of Supercomputer Applications and

High Performance Computing, 11(2):115–128, 1997.

[FK98a] I. Foster and N. Karonis. A Grid-Enabled MPI: Message Passing in Het-

erogeneous Distributed Computing Systems. In SC’98: High Performance

Networking and Computing: Proceedings of ACM IEEE SC98 Conference,

pages 7–13, Orange County Convention Center, Orlando, Florida, USA,

November 1998.

[FK98b] I. Foster and C. Kesselman. The Globus Project: A Status Report. In

HCW ’98: Proceedings of the Seventh Heterogeneous Computing Work-

shop, page 4. IEEE Computer Society, 1998.

[FK99a] I. Foster and C. Kesselman. Computational Grid. In I. Foster and

C. Kesselman, editors, The Grid: Blueprint for a New Computing In-

frastructure, San Francisco, CA, USA, 1999. Morgan-Kaufman. Chapter

2.

[FK99b] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New

Computing Infrastructure. Morgan Kaufmann, San Francisco, CA, USA,

1999.

[FKNT02] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The Phys-

iology of the Grid: Open Grid Services Architecture for Dis-

tributed Systems Integration. February 2002. published in

BIBLIOGRAPHY 155

Open Grid Service Infrastructure WG, Global Grid Forum (GGF),

<URL:http:://www.globus.org/research/papers/ogsa.pdf>.

[FKT96] I. Foster, C. Kesselman, and S. Tuecke. The Nexus Approach to In-

tegrating Multithreading and Communication. Journal of Parallel and

Distributed Computing, 37(1):70–82, 1996.

[FKT01] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the

Grid: Enabling Scalable Virtual Organizations. International Journal of

High performance computation Applications, 2001.

[For05] The Global Grid Forum. , 2005. <URL:http://www.gridforum.org/>.

[Fos99] I. Foster. The Grid: Blueprint for a New Computing Infrastructure, chap-

ter Globus Toolkit. Morgan-Kaufman, San Francisco, CA, USA, 1999.

[Fos02a] I. Foster. The Grid: A new infrastructure for 21st century science. In

Physics Today, USA, 2002. American Institute of Physics.

[Fos02b] I. Foster. What is the Grid? A Three Point Checklist. Daily news

and information for the global grid community, 1(6), July 22 2002.

<URL:http://www.gridtoday.com/02/0722/100136.html>.

[FTL+01] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-

G: A Computation Management Agent for Multi-Institutional Grids. In

HPDC10 — Tenth International Symposium on High Performance Dis-

tributed Computing. IEEE Press, August 2001.

[FvL98] I. Foster and G. von Laszewski. Usage of LDAP in Globus. Technical

report, Mathematics and Computer Science Division, Argonne National

Laboratory, 1998.

[GAL+02] T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Seidel,

and J. Shalf. The Cactus Framework and Toolkit: Design and Applica-

tions. In VECPAR’2002 — International Conference on Vector and Par-

allel Processing, volume 2565 of LNCS, pages 197–227, Porto, Portugal,

June 26-28, 2002. Springer-Verlag.

BIBLIOGRAPHY 156

[GBD+94] Al Geist, Adam Beguelin, Jack Dongerra, Weicheng Jiang, Robert

Manchek, and Vaidy Sunderam. PVM: Parallel Virtual Machine. MIT,

1994.

[Geh84] N. Gehani. Ada- Concurent Programming. Prentice-Hall International,

1984.

[GKP96] G. A. Geist, J.A. Kohl, and P. M. Papadopoulos. PVM and MPI: A

comparison of features. Calculateurs Parallels, 8(2), 1996.

[GLDS96] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,

portable implementation of the MPI Message-Passing Interface standard.

Parallel Computing, 22(6):789–828, 1996.

[GLFK98] A.S. Grimshaw, M.J. Lewis, A.J. Ferrari, and J.F. Karpovich. Architec-

tural Support for Extensibility and Autonomy in Wide-Area Distributed

Object Systems. Technical Report CS-98-12, Department of Computer

Science, University of Virginia, 1998.

[Glo05] Globus, 2005. <URL:http://www.globus.org/toolkit/>.

[GLS99] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable

Parallel Programming with the Message-Passing Interface. MIT, second

edition, 1999.

[Gnu05] Gnutella, 2005. <URL:http://www.gnutella.co.uk/>.

[Gos91] A. Goscinski, editor. Distributed Operating System: The Logical Design.

Addison-Wesley, 1991.

[HAFF99] T. Haupt, E. Akarsu, G. Fox, and W. Furmanski. Web based metacom-

puting. Future Gener. Comput. Syst., 15(5-6):735–743, 1999.

[HL00] C. Herrmann and C. Lengauer. HDC: A Higher-Order Language for

Divide-and-Conquer. Parallel Processing Letters, 10(2–3):239–250, 2000.

[HLP95] K. Hammond, H-W. Loidl, and A. Partridge. Visualising Granularity

in Parallel Programs: A Graphical Winnowing System for Haskell. In

HPFC’95 — Conf. on High Performance Functional Computing, pages

208–221, Denver, CO, Apr 10–12, 1995.

BIBLIOGRAPHY 157

[HM99] K. Hammond and G. Michaelson. Research Directions in Parallel Func-

tional Programming, chapter Introduction. Springer-Verlag, 1999.

[HMP+95] K. Hammond, J.S. Mattson Jr., A.S Partridge, S.L. Peyton Jones, and

P.W. Trinder. GUM: a Portable Parallel Implementation of Haskell. In

IFL’95 — Intl Workshop on the Parallel Implementation of Functional

Languages, September 1995.

[Hot05] HotPage, 2005. <URL:http://www.hotpage.npaci.edu/>.

[HP90] K. Hammond and S.L. Peyton Jones. Some Early Experiments on the

GRIP Parallel Reducer. In IFL’90 — Intl. Workshop on the Parallel

Implementation of Functional Languages, pages 51–72, Nijmegen, The

Netherlands, June 1990.

[HP92] K. Hammond and S.L. Peyton Jones. Profiling Scheduling Strategies on

the GRIP Multiprocessor. In IFL’92 — Intl. . Workshop on the Parallel

Implementation of Functional Languages, pages 73–98, RWTH Aachen,

Germany, September 1992.

[HPR00] F. Hernández, R. Peña, and F. Rubio. From GranSim to Paradise.

In SFP’00 — Scottish Functional Programming Workshop, volume 2 of

Trends in Functional Programming, pages 11–19, St Andrews, Scotland,

Jul 26–28, 2000. Intellect.

[Hug89] J. Hughes. Why Functional Programming Matters. Computer Journal,

32(2):98–107, 1989.

[Hyd] P. Hyde. Java Thread Programming. Sams. ISBN 0-672-31585-8.

[JC01] M. E. Jerrell and W. A. Campione. The network-enabled op-

timization system (neos) - a means of solving optimization prob-

lems over the internet. Computing in Economics and Finance

2001 87, Society for Computational Economics, 2001. available at

http://ideas.repec.org/p/sce/scecf1/87.html.

[JCS89] Simon L. Peyton Jones, Chris D. Clack, and Jon Salkild. High-

performance parallel graph reduction. In Eddy Odijk, Martin Rem, and

BIBLIOGRAPHY 158

Jean-Claude Syre, editors, PARLE (1), volume 365 of Lecture Notes in

Computer Science, pages 193–206. Springer, 1989.

[Jin04] Jini, 2004. <URL:http://www.jini.org/>.

[JXT05] JXTA, 2005. <URL:http://www.jxta.org/>.

[KHT98] D.J. King, J. Hall, and P.W. Trinder. A Strategic Profiler for Glasgow

Parallel Haskell. In IFL’98 — Intl. Workshop on the Implementation of

Functional Languages, volume 1595 of LNCS, pages 88–102, London, UK,

Sep 9–11, September 1998.

[Kit05] NLANR Grid Portal Development Kit, 2005.

<URL:http://dast.nlanr.net/Features/GridPortal/>.

[KR88] B. W. Kernighan and D. M. Ritchie. The C Programming Language.

Prentice-Hall International, 1988.

[KTF03] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: a grid-enabled imple-

mentation of the message passing interface. Journal Parallel Distributed

Computing, 63(5):551–563, 2003.

[LB96] B. Lewis and D. J. Berg. Threads Primer: A Guide to Multithreaded

Programming. Prentice Hall, 1996. ISBN 0-3443698-9.

[LDG+01] X. Leroy, D. Doligez, J. Garrigue, D. Reḿy, and D. Vouillon. The object

caml system release 3.02 document and user manual. Technical report,

Intitut National de Recherche en Informatique et en Automatique, 2001.

[LH96] H-W. Loidl and K. Hammond. Making a Packet: Cost-Effective Commu-

nication for a Parallel Graph Reducer. In IFL’96 — Intl. Workshop on

the Implementation of Functional Languages, LNCS 1268, pages 184–199,

Bonn/Bad-Godesberg, Germany, September 1996. Springer.

[Loi98] H-W. Loidl. Granularity in Large-Scale Parallel Functional Programming.

PhD thesis, Department of Computing Science, University of Glasgow,

March 1998.

[Loi01a] H-W. Loidl. Glasgow Parallel Haskell. WWW page, January 2001.

<URL:http://www.cee.hw.ac.uk/~dsg/gph/>.

BIBLIOGRAPHY 159

[Loi01b] H-W. Loidl. The Efficiency of Parallel Graph Reduction on a Loosely-

coupled Multiprocessor. In SFP’01 — Scottish Functional Programming

Workshop, Trends in Functional Programming, Stirling, Scotland, August

22–24, 2001, 2001. Intellect.

[Loi02a] H-W. Loidl. Load balancing in a parallel graph reducer. In Kevin Ham-

mond and Sharon Curtis, editors, Trends in Functional Programming,

volume 3, pages 63–74, Bristol, UK, 2002. Intellect.

[Loi02b] H-W. Loidl. The Virtual Shared Memory Performance of a Parallel Graph

Reducer. In CCGrid 2002 — Intl. Symp. on Cluster Computing and the

Grid, pages 311–318, Berlin, Germany, May 2002. IEEE Press.

[Loo99] R. Loogen. Programming Language Constructs. In K. Hammond and

G. Michaelson, editors, Research Directions in Parallel Functional Pro-

gramming, chapter 3, pages 63–92. Springer-Verlag, 1999.

[LRS+03] H-W. Loidl, F. Rubio Diez, N.R. Scaife, K. Hammon d, U. Klusik,

R. Loogen, G.J. Michaelson, R. Horiguchi, S. a nd Pena Mari, S.M. Priebe,

A.J. Rebon Portillo, and P. W. Trinder. Comparing Parallel Functional

Languages: Programming and Performance. Higher-order and Symbolic

Computation, 16(3):203–251, 2003.

[LTB01] H-W. Loidl, P.W. Trinder, and C. Butz. Tuning Task Granularity and

Data Locality of Data Parallel GpH Programs. Parallel Processing Letters,

11(4):471–486, December 2001.

[MHC99] G. Michaelson, K. Hammond, and C. Clack. Foundations. In K. Hammond

and G. Michaelson, editors, Research Directions in Parallel Functional

Programming, chapter 2, pages 31–61. Springer-Verlag, 1999.

[Mis94] J. Misra. A Structure for Parallel Recursion. ACM TOPLAS, 16(6), 1994.

[MMF+93] C. Mechoso, C.-C. Ma, J. Farrara, J. Spahr, and R. Moore. Parallelization

and distribution of a coupled atmosphere-ocean general circulation model.

Monthly Weather Review, 121(7):2062–2076, 1993.

BIBLIOGRAPHY 160

[MS99] M. Migliardi and V. S. Sunderam. PVM Emulation in the Harness Meta-

computing System: A Plug-in Based Approach. In Proceedings of the

6th European PVM/MPI Users’ Group Meeting on Recent Advances in

Parallel Virtual Machine and Message Passing Interface, pages 117–124,

London, UK, 1999. Springer-Verlag.

[MSBK01] G. Michaelson, N. Scaife, P. Bristow, and P. King. Nested Algorithmic

Skeletons from Higher Order Functions. Parallel Algorithms and Appli-

cations, 16:181–206, 2001. Special Issue on High Level Models and Lan-

guages for Parallel Processing.

[Mur03] T. Murphy VII. Hemlock and the ConCert v2 Framework. Talk at

Carnegie Mellon University, 2003.

[Nap05] Napster, 2005. <URL:http://www.napster.com/>.

[NBG+96] M. Norman, P. Beckman, Bryan G., J. Dubinski, D. Gannon, L. Hernquist,

K. Keahey, J. Ostriker, J. Shalf, J. Welling, and S. Yang. Galaxies Collide

on the I-WAY: An Example of Heterogeneous Wide-Area Collaborative

Supercomputing. International Journal of Supercomputer Applications,

10(2/3):132–144, 1996.

[ND78] K. Nygaard and O. J. Dahl. The development of the SIMULA languages.

In HOPL-1: The first ACM SIGPLAN conference on History of program-

ming languages, pages 245–272, New York, NY, USA, 1978. ACM Press.

[NH96] J. Nieplocha and R. J. Harrison. Shared Memory NUMA Programming

on I-WAY. In Proc. of the Fifth IEEE Int’l Symp. on High Performance

Distributed Computing (HPDC-5), 1996.

[Nie99] F. Nielson. Validating Programs in Concurrent ML. In K. Hammond

and G. Michaelson, editors, Research Directions in Parallel Functional

Programming, chapter 17, pages 361–377. Springer-Verlag, 1999.

[NPA92] R. S. Nikhil, G. M. Papadopoulos, and Arvind. *T: A Multithreaded

Massively Parallel Architecture. In 19th ACM Annual Symposium on

Computer Architecture, pages 156–167, 1992.

BIBLIOGRAPHY 161

[Par91] A. Partridge. Speculative Evaluation in Parallel Implementations of Lazy

Functional Languages. PhD thesis, University of Tasmania, 1991.

[PBS05] Portable Batch System PBS, 2005. <URL:http://www.openpbs.org/>.

[Pey96] S.L. Peyton Jones. Compiling Haskell by Program Transformation: a

Report from the Trenches. In ESOP’96, volume 1058 of Lecture Notes in

Computer Science, pages 18–44, Linköping, Sweden, April 22–24, 1996.

Springer.

[PHA+99] S.L. Peyton Jones, J. Hughes, L. Augustsson, D. Barton, B. Boutel,

W. Burton, J. Fasel, K. Hammond, R. Hinze, P. Hudak, T. Johnsson,

M. Jones, J. Launchbury, E. Meijer, J. Peterson, A. Reid, C. Runciman,

and P. Wadler. Haskell 98: A Non-strict, Purely Functional Language.

Electronic document available on-line at http://www.haskell.org/, Febru-

ary 1999.

[PHH+93] S.L. Peyton Jones, C.V. Hall, K. Hammond, W.D. Partain, and P.L.

Wadler. The Glasgow Haskell Compiler: a Technical Overview. In Joint

Framework for Information Technology Technical Conference, pages 249–

257, Keele, UK, March 1993.

[PJCSH87] S.L. Peyton Jones, C. Clack, J. Salkild, and M. Hardie. GRIP — a High-

Performance Architecture for Parallel Graph Reduction. In Intl. Conf. on

Functional Programming Languages and Computer Architecture, LNCS

274, pages 98–112, Portland, Oregon, 1987. Springer-Verlag.

[RM01] A. Rajasekar and R. Moore. Data and Metadata Collections for Scientific

Applications. In HPCN Europe 2001: Proceedings of the 9th International

Conference on High-Performance Computing and Networking, pages 72–

80, London, UK, 2001. Springer-Verlag.

[Roe91] P. Roe. Parallel Programming Using Functional Languages. PhD thesis,

Department of Computer Science, University of Glasgow, 1991.

BIBLIOGRAPHY 162

[Ros98] L. J. Rosenberg. Implementation and Evaluation of Load Distributing

Techniques Applied to a Java-Capable Locally Distributed System. Tech-

nical report, School of Electrical Engineering and Computer Science, Uni-

versity of Tasmania, 1998.

[Roy01] A. J. Roy. End-to-end quality of service for high-end applications. PhD

thesis, Argonne National Laboratory, 2001.

[RSL05] Resource Specification Language RSL, 2005.

<URL:http://www.globus.org/gram/rsl spec1.html/>.

[SDS05] GridPort Toolkit SDSC, 2005. <URL:http://www.gridport.npaci.edu/>.

[Ser99] J. Serot. Explicit Parallelism. In K. Hammond and G. Michaelson, edi-

tors, Research Directions in Parallel Functional Programming, chapter 18,

pages 379–396. Springer-Verlag, 1999.

[SGE] Sun Grid Engine SGE. <URL:http://www.sun.com/software/Gridware/>.

[SK03] G. Sipos and P. Kacsuk. Executing and Monitoring PVM Programs

in Computational Grids with Jini. In Jack Dongarra, Domenico

Laforenza, and Salvatore Orlando, editors, PVM/MPI, volume 2840

of Lecture Notes in Computer Science, pages 570–576. Springer, 2003.

http://springerlink.metapress.com/openurl.asp?genre=article&issn=0302-

9743&volume=2840&spage=570.

[SKH95] B. A. Shirazi, K. M. Kavi, and A. R. Hurson, editors. Scheduling and Load

Balancing in Parallel and Distributed Systems. IEEE Computer Society

Press, Los Alamitos, CA, USA, 1995.

[SKS92] N.G. Shivaratri, P. Krueger, and M. Singhal. Load Distribution for Locally

Distributed Systems. Journal of Computer, 25(12):33–44, December 1992.

[SMH01] N. Scaife, G. Michaelson, and S. Horiguchi. Comparative Cross-Platform

Performance Results from a Parallelizing SML Compiler. In IFL’01 —

Intl. Workshop on the Implementation of Functional Languages, volume

2312 of LNCS, pages 138–154, Stockholm, Sweden, Sep 24–26, 2001.

BIBLIOGRAPHY 163

[SP95] P.M. Sansom and S.L. Peyton Jones. Time and Space Profiling for Non-

Strict, Higher-Order Functional Languages. In POPL’95 — Symp. on

Principles of Programming Languages, pages 355–366, San Francisco, CA,

Jan 23–25, 1995. ACM Press.

[Str85] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1985.

[SWP90] B. Shirazi, M. Wang, and G. Pathak. Analysis and Evaluation of Heuristic

Methods for Static Task Scheduling. Journal of Parallel and Distributed

Computing, 10:222–232, 1990.

[THLP98] P.W. Trinder, K. Hammond, H-W. Loidl, and S.L. Peyton Jones. Algo-

rithm + Strategy = Parallelism. J. of Functional Programming, 8(1):23–

60, January 1998.

[THM+96] P.W. Trinder, K. Hammond, J.S. Mattson Jr., A.S Partridge, and S.L.

Peyton Jones. GUM: a Portable Parallel Implementation of Haskell. In

PLDI’96 — Programming Languages Design and Implementation, pages

79–88, Philadelphia, PA, USA, May 1996.

[TL+00] P.W. Trinder, H-W. Loidl, et al. The Multi-Architecture Performance

of the Parallel Functional Language GPH. In A. Bode, T. Ludwig, and

R. Wismüller, editors, Euro-Par 2000 — Parallel Processing, LNCS 1900,

pages 739–743, Munich, Germany, 2000. Springer-Verlag.

[TLP02] P.W. Trinder, H-W. Loidl, and R.F. Pointon. Parallel and Distributed

Haskells. Journal of Functional Programming, 12(4&5):469–510, July

2002. Special Issue on Haskell.

[TPL00] P.W. Trinder, R.F. Pointon, and H-W. Loidl. Towards Runtime System

Level Fault Tolerance for a Distributed Functional Language. In SFP’00

— Scottish Functional Programming Workshop, volume 2 of Trends in

Functional Programming, pages 103–113, St Andrews, Scotland, Jul 26–

28, 2000. Intellect.

[Tur85] D. A. Turner. Miranda: a non-strict functional language with polymorphic

types. In Proc. of a conference on Functional programming languages and

BIBLIOGRAPHY 164

computer architecture, pages 1–16, New York, NY, USA, 1985. Springer-

Verlag New York, Inc.

[Tur86] D. Turner. An overview of Miranda. SIGPLAN Not., 21(12):158–166,

1986.

[UDD05] UDDI, 2005. <URL:http://www.uddi.org/>.

[Wal] M. Walmsley. Multi-Threaded Programming in C++. Springer. ISBN

1-85233-146-1.

[WFK+04] V. Welch, I. Foster, C. Kesselman, O. Mulmo, L. Pearlman, S. Tuecke,

J. Gawor, and F. Meder, S.and Siebenlist. X.509 Proxy Certificates for

Dynamic Delegation. In 3rd Annual PKI R&D Workshop, 2004.

[WM85] Y-T. Wang and R. J. T Morris. Load Sharing in Distributed Systems .

IEEE Transactions on Software Engineering, 34(3):204–217, 1985.

[WM95] Y-T. Wang and R. J. T. Morris. Load Sharing in Distributed Systems

. In A. Shirazi, A. R. Hurson, and K. M. Kavi, editors, Scheduling and

Load Balancing in Parallel and Distributed Systems, IEEE Transactions

on Software Engineering, pages 7–20. ACM, 1995.

[Wol98] R. Wolski. Dynamically Forecasting Network Performance Using the Net-

work Weather Service. Journal of Cluster Computing, 1:119–132, January

1998.

[WSD05] Web Services Desciption Langauge WSDL, 2005. Version 1.1 W3C Note

15, March, 2001, <URL:http://www.w3.org/TR/wsdl/>.

[WSF+03] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor,

C. Kesselman, S. Meder, L. Pearlman, and S. Tuecke. Security for Grid

Services. In In International Symposium High Performance Distributed

Computing, pages 48–57, Seattle, WA, June 2003.

[ZFS03] X. Zhang, J. L. Freschl, and J. M. Schopf. A Performance Study of Mon-

itoring and Information Services for Distributed Systems. In HPDC’03:

BIBLIOGRAPHY 165

Proceeding of the 12th IEEE International Symposium on High perfro-

mance Distributed Computing, pages 270–282, Washington, DCm, USA,

2003. IEEE Computer Society.

[ZHU02] Y. ZHU. A Survey on Grid Scheduling System. Technical report, Depart-

ment of Computer Science, Hong Kong University of Science and Tech-

nology, 2002.

[ZKA04] H. Zhang, K. Keahey, and W. E. Allcock. Providing Data Transfer with

QoS as Agreement-Based Service. In International Conference on Ser-

vices Computing, pages 344–353, Shanghai, China, September 2004. IEEE

Computer Society.

[ZZWD93] S. Zhou, X. Zheng, J. Wang, and P. Delisle. Utopia: a Load Sharing Fa-

cility for Large, Heterogeneous Distributed Computer Systems. Software

- Practise and Experience, 23(12):1305–1336, 1993.

