Mobile Computation
in a Purely Functional

Language

by
André Rauber Du Bois

Submitted for the Degree of
Doctor of Philosophy
at Heriot-Watt University
on Completion of Research in the
School of Mathematical and Computer Sciences

May 2006

This copy of the thesis has been supplied on the condition that anyone who consults it is
understood to recognise that the copyright rests with its author and that no quotation from the
thesis and no information derived from it may be published without the prior written consent

of the author or the university (as may be appropriate).

I hereby declare that the work presented in this thesis was
carried out by myself at Heriot-Watt University, Edinburgh,
except where due acknowledgement is made, and has not

been submitted for any other degree.

André Rauber Du Bois (Candidate)

Phil Trinder (Supervisor)

Date

Abstract

In mobile programs, computations can move, or be moved, over a network to better
utilise the available resources. Mobile languages may be implicit or ezplicit. In implicit
mobile languages computations are moved automatically by the runtime system of the
language. This kind of mobility is usually exploited in small distributed systems, e.g.,
parallel systems running on a cluster of machines with equal capabilities. Ezplicit mobile
languages give the programmer control over the placement of active computations and
execute on open networks where programs can join and leave the distributed system.

This dissertation investigates purely functional mobile languages, making the fol-
lowing contributions:

Implementing and evaluating implicit mobility in a purely functional language: Semi-
explicit parallel functional languages usually have automatic mechanisms for the distri-
bution of potential work, i.e., unevaluated expressions. In these systems, it is common
for some processors to be idle while others have many runnable threads. The perfor-
mance of these systems can be improved if besides potential work, threads can also
be migrated. The GUM runtime system that supports parallel Haskell variants has
been extended with a thread migration mechanism. Migrating a thread incurs sig-
nificant execution cost and the system implemented uses a sophisticated mechanism
to choose when to migrate threads. Measurements of nontrivial programs on a high-
latency cluster architecture show that thread migration can improve the performance
of data-parallel and divide-and-conquer programs with low processor utilisation.

The design, implementation and evaluation of a purely functional language with
explicit mobility: The thesis proposes, implements and evaluates mHaskell, a Haskell
extension for distributed mobile programming. It is the first purely functional explicitly
mobile language, and extends Concurrent Haskell with mobile channels (MChannels)
and a set of low-level primitives. MChannels are higher-order, single-reader communi-
cation channels that allow the communication of any Haskell value including functions
and channels. MChannels provide weak mobility, i.e., the means to start new compu-
tations on remote locations. An operational semantics for the mHaskell primitives is
given. Programming with MChannels is low-level: the programmer has to specify as-

pects such as communication and synchronisation of computations, and if mobile values

are not carefully managed, e.g., using dynamic types, type errors may occur at runtime.
Conventional medium-level abstractions for mobile computation such as remote thread
creation and remote evaluation are readily defined in mHaskell, using Haskell’s first-
class computations. Strong mobility is defined as the combination of weak mobility,
higher-order channels and first-class continuations.

Proposing, implementing and demonstrating new high-level mobile coordination ab-
stractions, mobility skeletons: Analogous to algorithmic skeletons for parallelism, mo-
bility skeletons are higher-order polymorphic functions encapsulating common patterns
of mobile computation. However mobility skeletons are different from algorithmic skele-
tons as where the latter abstract over pure computations in a closed or static set of
locations, mobility skeletons abstract over stateful computations in an open network.
The range of mHaskell abstractions have been used to implement both conventional
mobile applications, such as a distributed meeting planner and a stateless web-server,
and sophisticated mobile applications. The latter includes a mobile agent system with

location independent communication and distributed asynchronous exceptions.

Contents

1 Introduction

1.1 Mobility in Programming Languages
1.2 Mobile Functional Programming
1.3 Purely Functional Languages
1.4 Contributions of this Thesis,
1.5 What is not covered by this dissertation
1.6 Outline of Dissertation
1.7 Publications L

2 Mobile Computation

2.1 Introductory Mobility Concepts
2.2 Early Works on Mobile Computation
2.2.1 Process Migration
2.2.2 Code Mobility o
2.3 Implicit Mobile Computation
2.3.1 Parallel Functional Programming
2.4 Explicit Mobile Computation
2.4.1 Characteristics of Languages for Mobile Computation
2.4.2 Advantages of Mobile Languages
2.5 Calculi for Mobility
2.5.1 m-Calculus
2.5.2 Other models for mobility
2.6 SUMMATY e e e e e e e e e

3 Thread Migration in a Parallel Graph Reducer

CONTENTS

3.2 The GUM Virtual Machine
3.2.1 Imtroduction L.,
3.2.2 The GUM Runtime System
3.2.3 Memory Management
3.24 GraphPacking

3.3 Implementing Thread Migration
3.3.1 Scheduler
3.3.2 Communication Protocol
3.3.3 Thread Packing

3.4 Performance Measurements
3.4.1 Performance Improvement
342 Variability L
343 Overheads Lo o

3.5 Related Work oL

3.6 Summaryl e e

4 Monads and Stateful Computations in Haskell

41 Monads e e e
4.2 MonadicIO oo
4.2.1 Concurrent Haskell
4.3 Semantics of Monadic 10 and Concurrency
43.1 BasicIO. e
4.3.2 Concurrency and MVars
4.4 Summaryo a e e e e e e e e e

5 Mobile Haskell

5.1 mHaskell Design,
5.1.1 MChannels oo
5.1.2 Discovering Resources
5.1.3 A Simple Example,

5.1.4 Evaluating Expressions Before Communication

5.1.5 Sharing Properties
5.1.6 Single-Reader Channels

5.2 Operational Semantics

35
35
36
38
40
41
41
42
43
45
45
48
49
50
52

54
54
o7
60
61
61
64
67

CONTENTS

5.3 The Implementation

5.3.1 Introduction

5.3.2 Packing Routines o oL
5.3.3 Communicating User Defined Types
5.3.4 Evaluating Expressions
5.3.5 Implementation of MChannels
5.3.6 mHaskell’s performance
54 Related Worko
54.1 Them-Calculus
5.4.2 Mobility in Haskell Extensions
5.4.3 Functional Mobile Languages
5.5 Summary e e e e e

6 Coordination Abstractions for Mobile Computation
6.1 Medium Level Coordination
6.1.1 Remote Thread Creation
6.1.2 Remote Evaluation L0
6.2 High Level Coordination: Mobility Skeletons
6.2.1 mmap: Broadcast
6.2.2 mfold: Distributed Information Retrieval
6.2.3 mzipper: Iteration
6.2.4 Nesting and Composing Skeletons
6.3 Strong Mobility
6.3.1 Continuation Monad00
6.3.2 ThemoveTo operation
6.3.3 Example 1: Simple strong mobility
6.3.4 Example 2: mobile tree search
6.3.5 Example 3: mfold 0oL
6.4 Summary e

7 Mobile Applications

7.1 Case Study: The Distributed Meeting Planner

7.1.1 A Version Us
7.1.2 Using mfold

ing mzipper

80
80
80
83
83
85
85
86
86
89
91
97

98
100
100
101
102
103
104
107
111
112
114
116
116
117
118
118

CONTENTS

7.2 Case Study: A Stateless Web Server
7.2.1 Stateless Servers o
7.2.2 A Stateless Web Server o oL
723 ACounter.
7.2.4 A Distributed Web Server

7.3 Case Study: A Mobile-Agent Platform
7.3.1 The Docking System
7.3.2 Finding Resources
7.3.3 Communication oo
7.3.4 Locating and Killing Agents

T4 Summaryo e e e e

8 Conclusions and Future Work
8.1 Contributions e
8.2 Future Work L
8.3 Discussion e

A mmap_ as a Template Design Pattern

Bibliography

126
126
127
128
129
132
132
135
136
136
137

139
139
141
143

145

145

List of Tables

2.1

3.2
3.3
3.4
3.5

5.6

6.7

Parallel, Distributed and Mobile Systems 24
SumEuler Runtime(s) with/without Migration 45
Maze Runtimes(s) with/without Migration 48
Queens Runtimes(s) with/without Migration 50
Migration Overheadso oo 50
Comparing Functional Languages for Mobile Computation 96
Abstraction Levels for Distributed Memory Coordination 99

List of Figures

2.1
2.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24

Network load reduction with mobile computation 26
Syntax of the m-Calculus 28
Activity Profile of sumEuler, a Program with Migratable Threads. . . . 33

GPHprimitives and Evaluation Strategies 35
Interaction of the Components of a GUM PE. 37
Spark Distribution in GUM 38
Distributed Shared Heap 39
Fetching Graph L 39
Graph Packing 40
Thread Migration in GUM 42
Transfer of a Thread (TSO) between PEs. 43
Speedups for sumEuler oL 46
Speedups for Maze Lo oL 47
Speedups for Queens Lo 49
Monad Laws o e e 59
The Monad class o o i i e 59
The donotation 57
The IO data type o o 57
Basic IO operations 58
The >>=operator e 58
Concurrency primitiveso 60
Example using threads L oL 61
MVars e e 61
Example using threads and MVars 62

LIST OF FIGURES 9

4.25
4.26
4.27
4.28
4.29
4.30
4.31

5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43
5.44
5.45
5.46
5.47
5.48

6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56

Syntax of a Basic Stateful Functional Language 62
Basic Transition Rules oL, 63
Example of evaluation using transitionrules 64
Extended Syntax for Concurrency 65
Extended Transition Rules for Concurrency and MVars 65
Structural congruence, and structural transitions 66
Example of evaluation using the rules for MVars 66
mHaskell is an extension of Concurrent Haskell 69
Mobile Channels oL 70
Example using MChannels 0., 70
Example using MChannels 71
Primitives for resource discoveryo oL 71
Program that computes the load of a network 73
Code for the server oL o 74
Graph for let (a,b,c) = £ x, 74
Machines 2 and 3 cannot communicate if Machine 1 crashes 76
Extended syntactic and semantic domains of the language with MChannels 77

Transition rules for the language with MChannels. 78
Example of evaluation using the semantics 79
The Byte-Code Object oL 81
Evaluation of thunks usingseq 84
m-Calculus Channels implemented in mHaskell 88
Location Tree and Migration 92
Simple mobile program in JoCaml 93
Transition rule for rfork. 0oL 100
The remote fork servero Lo oo 101
The rfork function oL oL 101
The implementation of reval L. 102
Shortened version of the program that computes the load of a network . 102

The behaviour of mmap L o 103
The definition of the mmap skeleton 104
The definition of the mmap_skeleton 104

LIST OF FIGURES 10

6.57 The getLocalLoad function 105
6.58 The behaviour of mfold 105
6.59 The definition of the mfold_skeleton 106
6.60 The definition of the mfold skeleton 106
6.61 The behaviour of mzipper 107
6.62 The definition of the mzipper_skeleton 109
6.63 The definition of the mzipper skeleton 110
6.64 The moveTo function 116
6.65 Simple Strong Mobility Example00 0L 116
6.66 Tree search using strong mobility 117
6.67 Tree search using weak mobility L. 118
6.68 Searchingina Tree oo 118
6.69 mfold._ using strong mobility o 0 oL 119
6.70 mfold using a mobile thread o oL 119
7.71 The Distributed Meeting Planner 122
7.72 The counter example o oo 126
7.73 Receiving code froma client o000 128
7.74 Receiving code from a cliento oL 129
7.75 The thread farm server o L. 130
7.76 Mobile Agent Platform 0 L. 133
7.77 Processing messages sent by theagent 133
7.78 The processMigration function 134
7.79 The Post-Office o o 136
7.80 Killing a Mobile Agent L oL 137
A.81 mmap_ as a Template Design Pattern 146
A.82 Extending the Mmap_Class 146

A.83 Using the Mmap_Class o v i i i ittt 147

Chapter 1

Introduction

Networks are increasingly pervasive, hence a large number of programming languages
have libraries or primitives for distributed programming, including functional lan-
guages as Erlang [Erl06], Clean [vWPO02], Haskell, [FHO1, PTL00], OCaml [CF99],
and Scheme [CJK95].

Researchers are investigating the possibility of exploiting the computational power
and resources available in global networks [FKTO01, Car0l]. One way of using the
resources available on both local and global networks are mobile computation lan-
guages [Car99, FPV98, Kir01]. In languages that support mobile computation, ex-
ecuting computations can move in the network in order to better use the resources
available in it. Basically a mobile program can transport its state and code to another
location in the network, where it resumes execution [LO99]. Mobile computations may
be a user application or an autonomous mobile program such as an agent. While a
mobile agent can migrate anywhere on the Internet, active applications, processes or
threads, typically migrate in a local cluster of computers [MDW99].

Languages that support ezplicit mobile computation enable the programmer to
control the placement of active computations and execute on open networks, i.e., a
network where locations, or machines, can dynamically join and leave the computation.
These mobile computations are typically stateful and interact with the state at each
location. In #mplicit mobile programs, running processes are moved automatically by

the runtime system of the language, e.g., for load balancing.

11

CHAPTER 1. INTRODUCTION 12

1.1 Mobility in Programming Languages

Mobility is about physical and logical computing entities that move [MDW99], i.e.,
mobile computers and mobile programs. Although both subjects are related, this dis-
sertation focuses on logical mobility, or mobile languages. Mobile languages can be
classified based on which entity determines the move. Mobile languages may have

implicit or explicit mobility:

e Implicit: The main idea of implicit mobility is to automatically move an executing
computation/process/thread from one location in the network to another, and it
is most commonly used in parallel systems to reduce runtime. Implicit mobility
is typically exploited in small systems such as a single cluster or LAN [MDW99],
but with the increasing popularity of GRID computing [FKT01], it is now being
used in larger scale networks, e.g. [ZTMLO05].

e FEzxplicit: Explicit mobile languages give the programmer control over the place-
ment of active computations, and execute on open systems. In an explicit mobile
language a computation, i.e., state and code of a program, can move from one

location to another, where its execution is completed.

To summarise, implicit mobility is exploited in small networks or clusters (closed

systems) and explicit mobility is exploited in Internet-scale networks (open systems).

1.2 Mobile Functional Programming

Functional languages aggregate several characteristics that are also important for mo-
bile computation languages, and as a consequence, many mobile languages are based on
a functional language, e.g., Facile [Kna95], Jocaml [CF99], Kali [CJK95], Tube [Hal97],
etc. The characteristics are as follows:

Higher Order Languages: A language for mobile code must provide abstractions
that allow mobile code to be identified and used within the language. For example,
a language for mobile agents should provide a primitive that identifies the code that
is going to migrate, and a reference to this code can be used in a program to pass it
as an argument to functions, to execute it, or to communicate it through a network

connection [Kna95]. The higher order nature of functional languages already provides a

CHAPTER 1. INTRODUCTION 13

way of manipulating code within the language: functions are first class citizens, which
means that functions can receive functions as arguments, return functions as the result
of a computation and data structures can contain functions as elements. Thus its
natural to think that a communication library for a functional language should allow
the programmer to send functions through a network connection.

Support for Defining High Level Abstractions: From basic primitives, the
user of functional languages can compose and generate new abstractions that model
with more clarity the problem being solved [Hug89]. Examples of these abstractions in-
clude evaluation strategies for parallel and distributed programming [THLP98, PTL00],
Skeletons for parallel programming [Col89] and abstractions for concurrent [PJGF96]
and distributed programming [FHO1].

Formal Reasoning: Purely functional languages are based on well-understood
computational models which helps formal reasoning. Such formal foundations also fa-
cilitate formal analyses of the programs (e.g., non-determinism, cost, granularity). Cer-
tainly would be interesting to adapt these analyses for mobile computation programs.
For example, non-determinism analyses (e.g., [PS02]), aim to identify the source of
non-determinism in the program and how it might affect other parts of the program.
The same kind of analyses could be modified to identify the sources of mobility in
the program. This information could then be used by the compiler to optimise code

generation for mobility.

1.3 Purely Functional Languages

In purely functional languages, especially those with non-strict semantics, an expres-
sion can be evaluated in any order without affecting the semantics [JH93]. This char-
acteristic was exploited in several extensions for parallel computation in functional
languages like Haskell (for a survey on parallel extensions of Haskell the reader should
refer to [TLP02]). This also means that, in a language with implicit mobility, running
threads can be reallocated in order to better use the processors available.

The objective of an explicitly mobile program is usually to exploit the resources
available at specific locations. Resources include databases, programs, or specific hard-
ware. As a result mobile programs are usually stateful and in a pure language must be

carefully managed to preserve referential transparency. This is in contrast to parallel

CHAPTER 1. INTRODUCTION 14

functional languages, where stateless computations are freely distributed across loca-
tions to reduce runtime. In [PJW93], Peyton-Jones and Wadler presented the use of
monads [Mog89] to specify stateful computations in Haskell. Stateful operations are en-
capsulated inside of an abstract data type of I/O actions. Functions can receive actions
as an argument, return actions as a result, and actions can be glued together to gener-
ate new actions. Hence in Haskell computations are first-class values, and the purely
functional part of the language can still be used to write programs that manipulate

computations generating new abstractions in the language.

1.4 Contributions of this Thesis

The objective of this dissertation is to investigate the use of a purely functional language
in the development of systems that use mobile computation. The research described in

this dissertation has made the following contributions:

e The Design, Implementation and Evaluation of an implicit mobile sys-
tem [DBLT03]: To support high level coordination, parallel functional languages
need effective and automatic work distribution mechanisms. Many implementa-
tions distribute potential work, i.e., sparks or closures (unevaluated expressions),
but there is good evidence that the performance of certain classes of programs
can be improved if current work, or threads, are also distributed. Migrating a
thread incurs significant execution cost and requires careful scheduling and an
elaborate implementation. In Chapter 3, we describe the design, implementation
and performance of thread migration in the GUM runtime system [THM™96] un-
derlying Glasgow parallel Haskell (GPH) [THLP98]. Measurements of nontrivial
programs on a high-latency cluster architecture show that thread migration can
improve the performance of data-parallel and divide-and-conquer programs with

low processor utilisation.

e The Design and Implementation of an Explicitly-Mobile Language
[DBTL03, DBTL04a, DBTLO05a): Mobile Haskell (mHaskell) is a small extension
of the purely functional language Haskell for writing distributed mobile soft-

ware. mHaskell extends Concurrent Haskell [PJGF96], an extension supporting

CHAPTER 1. INTRODUCTION 15

concurrent programming, with higher order communication channels called Mo-
bile Channels (MChannels). MChannels allow the communication of arbitrary
Haskell values including functions, computations (IO actions) and mobile chan-
nels. Stateful or side-effecting computations, such as the communication of values,
are embedded in the IO monad, to retain the purely functional nature of the lan-
guage. As a specification, an operational semantics for MChannels is given, based

on previous work on semantics for IO actions [PJ01, MPJMRO1].

e The Design, Implementation and Evaluation of Mobility Skeletons,
Higher-Order Abstractions of Common Mobile Coordination Patterns
[DBTL04b, DBTLO05¢c]: Programming using MChannels is low level: the program-
mer has to specify details such as thread creation, communication and synchroni-
sation of computations and if mobile values are not carefully managed (e.g., using
dynamic types), type errors may appear at runtime. To make mobile program-
ming easier we have implemented, using MChannels, mid-level constructs for weak
mobility, such as remote thread creation and remote evaluation, and also higher
level constructs called Mobility Skeletons. Mobility Skeletons are higher-order

functions that encapsulate common patterns of mobile computation.

e Strong Mobility Using Weak Mobility and a Continuation Monad
[DBTLO5b]: Monadic programming is a powerful way of describing new abstrac-
tions in a functional programming language [Wad95]. Using a continuation monad
and MChannels we describe a new way of implementing Strong Mobility (explicit
thread migration) in a functional language. As concurrent actions in Haskell are
already in a monad, the system described here, can be easily used in combination

with Concurrent Haskell.
It is expected that the work presented here may help in the development of new
commercial technology for distributed mobile programming.
1.5 What is not covered by this dissertation

This thesis does not cover the following subjects:
Security and Safety: One of the main aims of mobile computation is to share

resources among the participants of a distributed system. In order to obtain the

CHAPTER 1. INTRODUCTION 16

advantages of mobile computation safety (received computation should not be the
cause of runtime errors that may prevent the program to present its expected be-
haviour) and security (protection against malicious code) must be considered. En-
forcing safety and security through extended type systems is an active research area
[Kir01, AGH'04, Tho97]. This dissertation focuses mainly on how to express mobility
of computations in a purely functional language. It is possible that security and safety
could be provided in a lower level of the system, i.e., the runtime system, and not in
the programming language constructs. The last Chapter of this text discusses how the
system described here could be extend to support some level of security and safety.
Mobile Modules: A key issue in a mobile language is to control how much code
moves, e.g., should primitives for addition and printing be copied? If the complete
representation of the computation is not communicated, the mobile code must dynami-
cally link to code at the destination location. Mobile Haskell provides a simple means of
controlling mobility: only modules compiled to byte code are communicated. Modules
like the prelude that are compiled to machine code are not communicated, and dynam-
ically linked. The security and safety issues of dynamically linking mobile code have
been much studied, e.g., [Sew01, SLWT04], and although not currently implemented,

some of these techniques could be incorporated into mHaskell.

1.6 Outline of Dissertation

In Chapter 2 we present the main mobility concepts. In Chapter 3, we describe the de-
sign, implementation and evaluation of a system for automatic thread migration in the
GUM [THM™96] runtime system that is the implementation of three parallel Haskell
extensions, namely Eden [BLOMP97], GPH (Glasgow Parallel Haskell) [THLP98] and
GDH (Glasgow Distributed Haskell) [PTL00]. We demonstrate that in a high-latency
cluster of machines automatic thread migration can reduce the run time of non trivial
parallel programs with low processor utilisation. Chapter 4, reviews Monads and how
IO and concurrency can be expressed in a purely functional language. Chapter 5, de-
scribes mHaskell, an extension for explicit mobile programming in the purely functional
language Haskell. We describe the basic primitives of the language - called MChannels,

discuss the design decisions, and its implementation. Finally we give an operational

CHAPTER 1. INTRODUCTION 17

semantics for MChannels based on previous work on semantics for IO monadic compu-
tations. Chapter 6 shows that MChannels can be used to implement higher level ab-
stractions for mobility, such as remote thread creation and remote evaluation, Mobility
Skeletons and Strong Mobility. Chapter 7, presents three case studies that demonstrate
that the abstractions designed in Chapter 6 can help to implement traditional mobile
applications such as a distributed meeting planner, a stateless web server and a mobile

agents system. Chapter 8 presents conclusions and future work.

1.7 Publications

Some of the work described in this dissertation has been published:

e André R. Du Bois, Phil Trinder and Hans-Wolfgang Loidl. mHaskell: mobile
computation in a purely functional language. Journal of Universal Computer

Science. 11(7):1234-1254, Springer/Knowledge Centre, 2005.

e André R. Du Bois, Phil Trinder and Hans-Wolfgang Loidl. Towards Mobility
Skeletons. Parallel Processing Letters, 15(3):273-288, 2005.

e André R. Du Bois, Phil Trinder and Hans-Wolfgang Loidl. Implementing mobile
Haskell, In Trends in Functional Programming, vol. 4, pages 79-94. Intellect
Books, 2004.

e André R. Du Bois, Phil Trinder and Hans-Wolfgang Loidl. Towards a Mobile
Haskell. In Proc. of the 12th International Workshop on Functional and (Con-
straint) Logic Programming (WFLP 2003), p. 102-116, 2003.

e André R. Du Bois, Hans-Wolfgang Loidl and Phil Trinder. Thread Migration in a
Parallel Graph Reducer. In Implementation of Functional Languages. Springer-

Verlag, LNCS 2670, pages 199-214, 2002.

Chapter 2

Mobile Computation

2.1 Introductory Mobility Concepts

Mobile computations are logical computing entities that can migrate in a network
[MDW99]. Examples include a user program that moves between locations in a network
in order to use the processing power available, or a mobile agent, i.e., an application
that migrates to act on behalf of its owner.

Mobility related terms can have different meanings depending on the research area.
The hardware community usually relates the term mobility to the mobility of physical
devices like laptops, notebooks and palm computers, while the software community
relates it to programs or code that can move between locations. To avoid this confu-
sion Luca Cardelli proposed that physical mobility (mobile hardware) should be called
mobile computing while virtual mobility or mobility of software should be called mobile
computation [Car99]. This thesis focuses on the latter form of mobility, although there
is a strong connection between both areas: mobile computing can benefit from the use
of mobile computation, as described later in this Chapter.

Another term that has many different meanings is mobile agent. In this dissertation,
the term mobile agent is used to mean mobile computation with some autonomy (i.e., it
decides when it should move), that when migrates, takes with it its code, data, thread
state and resumes execution at a new location.

Mobile computation can be further classified in terms of which entity decides what
is going to migrate:

Implicit Mobile Computation: Occurs when the system (e.g., operating system

18

CHAPTER 2. MOBILE COMPUTATION 19

or the runtime system of the language in use) decides to automatically migrate running
computations.

Explicit Mobile Computation: Occurs when the programmer controls the place-
ment of code and active computations in a network. Programming languages that give
that kind of control to programmers are called mobile languages.

The key benefits of mobile computation are the ability to move toward a desired
resource and improved flexibility [MDW99]:

Moving Toward a Desired Resource: By accessing data or resources locally,
performance can be improved in many cases. For example, in a system with implicit
mobility, computations can be moved to an lightly loaded computer, or with explicit
mobility, a computation could choose to move closer to a database server to avoid the
use of remote queries.

Improved Flexibility: Which means easier reconfiguration or improved reliability.
For example, a parallel system with automatic parallelisation can correct a poor initial
load balancing by migrating tasks to idle processors in the network. In a system with
explicit mobility, a computation can be sent to a server in order to increase the services
provided by that server.

There are three different implementation models for moving code and computa-

tions [Car97]:

e Mowving Text: the source text of a program is sent over a network connection
and interpreted on a remote host. This model can be easily implemented in any
interpreted language. The context of the computation in the original location,
i.e., network connections, state of the program, is lost and must be restarted at

the destination location.

o Moving Byte-Code: Byte-code is compiled code generated for an abstract ma-
chine. It is faster to execute and communicate than moving text, but it is just

another representation for the source code.

e Moving Closures: A closure is not only the code for the application but also the
contexrt in which it was executing in the original location. A closure contains
the code and the state of the computation. The state may contain network
connections, the stack of the current thread and registers and other things needed

to restart a computation on a remote location.

CHAPTER 2. MOBILE COMPUTATION 20

The first two models are usually referred as mobile code and the the third as mobile

computation.

2.2 Early Works on Mobile Computation

The idea of mobility is not really new, several different kinds of mobility have been
used for many years, for example, process migration and code mobility. Here we review

some of these early work.

2.2.1 Process Migration

In the late 1970s process migration in operating systems was an active research area.
Process Migration is transferring a running process from one machine to another. A
process is an operating system abstraction that encompasses code, data, and operat-
ing system state associated with a running application [MDW99]. The objective of
introducing process migration in the operating system level was to achieve better load
balancing and to support fault tolerance. Process migration is one form of implicit
mobility, is transparent to the user and is not under the control of the programmer.
The operating system decides when the process should be migrated. Many operating
systems were designed to support process migration, some well known examples are

Mach [BRS'85], MOSIX [BL98] and Sprite [OCD*88].

2.2.2 Code Mobility

PostScript[TW85] and SQL[GW99] are two examples of mobile code systems that are
widely used. PostScript documents are code descriptions of documents that are sent
to printers through a network, where they are then executed to generate the desired
output. PostScript documents are usually smaller than the documents that they gener-
ate when executed on the printer, thus in this case the use of PostScript saves network
traffic. Another advantage is that PostScript documents work like a common language
between different printers and applications.

SQL is a database query language. Client programs often connect to database
servers and send SQL queries to be evaluated by the server. When dealing with large
databases this client /server architecture reduces network usage compared to duplicating

in the clients the data held by the servers.

CHAPTER 2. MOBILE COMPUTATION 21

Java Applets are another common mobile code application [Fla99]. Java Applets
are byte code programs that are downloaded from web servers together with web doc-
uments and are executed in a web browser, giving a dynamic behaviour to web pages.
Java Applets are programs written in the Java language [F1a99] and compiled into Java

Virtual Machine [LY99] byte code, which must be supported by the web browsers.

2.3 Implicit Mobile Computation

Automatic migration of active computations in a small scale network has the following
key benefits [MDW99]:

Load distribution: a heavily loaded computer can offload a subset of its active
processes to idle nodes.

Fault tolerance: the system might detect a partial failure in one of the nodes
(e.g., memory, disk) and migrate a running program to another node in the network
for it to finish execution.

Improved Locality: a computation can be moved closer to the resources it needs
to access (e.g., databases, processing power).

Implementing process migration at the operating system level, as described in sec-
tion 2.2.1, can involve fairly complex modifications to the operating system. Research
has addressed the problem by providing migration at a higher level in the system,
or at user level, in migration packages such as Condor [LLM88] and Emerald [SJ95].
In both, mobility is implemented entirely as a user-space mechanism. This produces
a more maintainable and portable mechanism than working at the operating system

level.

2.3.1 Parallel Functional Programming

Purely functional languages have good potential for parallelism. Because of referen-
tial transparency, computations can be evaluated in any order without affecting the
semantics. The lack of side-effects makes it possible to evaluate subexpressions of a
program in parallel without any risk of interference [JH93]. Furthermore, pure lan-
guages are easier to reason about, parallel semantics are easily developed, and the
programs are amenable to program derivation and optimisations by transformation of

the code [TLP02].

CHAPTER 2. MOBILE COMPUTATION 22

Many parallel functional languages have semi-explicit parallelism, where the pro-
grammer only indicates what computations could be run in parallel and the compiler
or RTS of the language decides when and where these expressions could be evaluated.
The problem with this automatic approach for load balancing of tasks is that a bad
initial allocation of tasks can ruin the parallelism of the program. However a poor load
balance may be corrected by using thread migration. Having referential transparency
in the language also means that, in a language with implicit mobility, running threads
can be reallocated in order to better use the processors available, without affecting the

result of the computation.

2.4 Explicit Mobile Computation

The main difference between mobile languages and the early works on simple code
mobility and process migration lies in which entity determines the migration. Mobile
languages give the programmer the ability to express when and where computation or
code should move, whereas in implicit code mobility or process migration, code and
state of the computation are moved by an external entity (i.e., a distributed operating
system decides to migrate a process because of the high load of one processor or a
postscript (code) document is sent to the printer).

In [FPV98], the authors introduce a basic classification for explicit code mobility in

which they define the concepts of Strong Mobility and Weak Mobility.

Weak Mobility is the ability to move only code from one machine to another.
With weak mobility two cases can arise: in the first model a program running in a
machine links the incoming code dynamically and executes it, and in the second model

a new thread is started to run the incoming code.

Strong Mobility is the ability to move code together with the execution state
of the program, or moving computations. The execution is suspended, transmitted to
the destination site, and resumed there [CPV97]. In [Car01], Cardelli gives a classi-
fication for strong mobility based on the way that the programs treat active network

connections:

o Computation: is the ability of migrating code together with the context of its

CHAPTER 2. MOBILE COMPUTATION 23

execution. The context may include data, execution state and active network

connections, which are kept on transmission.

e Agents: An Agent can move to a locations carrying its context, but is self-
contained, i.e., they do not communicate remotely, rather they move to some

location and communicate locally when they get there.

Many strong mobile systems aim to provide what is called Transparent Migration

[Sek99]:

Transparent Migration: Migration is called transparent if the execution of a mi-
grating program is resumed at a destination site with exactly the same execution state
as that of the migration time [Sek99]. A language that supports transparent migration
usually provides a simple operation (like the go operation of Telescript[TV96], or move
to of Nomadic Pict [Woj00]), that indicates at which point in the code the migration
should occur. All low level operations like packing, marshaling and shipping of data
are handled by the RTS of the language.

Systems that do not support transparent migration usually use mechanisms like re-
mote evaluation to express mobility. Remote evaluation [Vol96] is an extension to RPC
[Sri95] that allows the execution of code in a remote computer. A remote evaluation

can be expressed like this:

y := at location eval f(x)

This request evaluates the function application f(z) on the remote host location.
There are several variants of remote evaluation that are implemented in many different
languages, e.g., Kali [CJK95], GDH [PTLO00] and the Tube System [Hal97].

Mobile systems implemented using explicit mobility differ significantly from tradi-
tional parallel and distributed systems, as can be seen in table 5.6. In parallel systems
there is usually a static set of locations where a program is executed and the only
objective is to speed up the execution of a single stateless program. The code for the

application is already present in all the locations and no code is exchanged between

CHAPTER 2. MOBILE COMPUTATION 24

Table 2.1: Parallel, Distributed and Mobile Systems

Locations What is Migrated Objective
Parallel Static Data Speed up of a single program
Distributed | Dynamic Data and Control Client/Server applications
Mobile Dynamic | Data, Control and Code | Distributed applications where
there is no distinction between
clients and servers

locations, there is only data mobility i.e., simple values like numbers and strings can
be communicated. Distributed systems support the interaction of different programs
running on different locations. The set of locations is dynamic: programs can join and
leave the computation at any time. Computations are stateful as they have to inter-
act with resources available at servers. Besides data mobility, distributed systems also
provide control mobility [Car97], e.g., using RPC when a thread of control executing
at one node calls a remote procedure, the control is passed to another thread at some
other location. When the remote thread resumes execution, the control returns to the
first location. No code is moved, only control and the data that is the argument for the
remote procedure. Mobile computation on the other hand, is based on the movement
of code and not the execution of code already available on remote locations. The code
is moved together with control and the data representing the state of the computa-
tion. Another difference is that in distributed applications usually there are servers
that provide services, and clients that connect to servers to request services. In mobile
applications there is no distinction between clients and servers. A mobile computation

that implements a service can migrate in order to use resources on remote locations.

2.4.1 Characteristics of Languages for Mobile Computation

Mobile Computation is a fairly new area, but it seems that researchers already agree
that a language that supports mobile computation should have at least the following

properties [Kna95, CPV97, FPV98, Kir01, Car99]:

e Location-aware: In a mobile language, code mobility usually occurs when the
program needs to access non-local resources. Thus, the programmer must be able
to explicitly say to where the computation must be moved. This notion of locality
does not need to be restricted to the name of machines in a network, for example,

it could be related to the names of the resources that the programmer wants to

CHAPTER 2. MOBILE COMPUTATION 25

access. The notion of locality is important in a mobile language because inter-
acting with local resources in most cases is completely different from interacting

with remote ones [CPV97].

o Mobility Primitives: Mobility of code and computation must be under the pro-
grammer’s control [FPV98]. The language must provide abstractions and mecha-
nisms for programmers to indicate when computations should be migrated. This
property is closely related to the previous one. If a program is aware of its loca-
tion and it must move to use non-local resources, the programmer must have the
power to specify in which cases computations and code should migrate to new

locations.

o Code mobility is exploited on an Internet-Scale [FPV98]: Mobile languages should
operate in large scale systems where networks are composed of heterogeneous
hosts and it should support open systems in which multiple executing programs
interact using a predefined protocol, as opposed to closed systems where there is

a static set of programs and locations [TLP02].

We can also identify some implementation properties of particular importance for mo-

bile computation:

e Architecture Neutral: As mentioned before, mobile code is beneficial for large-
scale distributed systems. Mobile programs, like agents, can work as a common
language in heterogeneous systems [Kna95], provided that all systems can inter-
pret the primitives of the language. Hence the runtime system of the language
must provide functionalities that abstract over architecture specific code, like data
marshaling and the use a portable format of executable code, e.g., an architecture

neutral byte code.

e Security: One of the main aims of mobile computation is to share resources
among the participants of a distributed system. In order to obtain the advantages
of mobile computation safety (received computation should not be the cause of
errors that may prevent the program to present its expected behaviour) and
security (against malicious code) must be considered. These languages must in
some way identify and restrict the execution of programs which are potentially

dangerous [Kir01].

CHAPTER 2. MOBILE COMPUTATION 26

2.4.2 Advantages of Mobile Languages

Mobile computation offers some advantages over traditional programming paradigms
for distributed programming, overcoming some of the limitations of the client/server

approach. Here we present some of these advantages [MDW99, FPV98]:

- -
M m D,_g_ Migration [
e e

A—// - |
\\‘s - |
I
- Migrqtipp_ R

- =) — DA_ —7/

Host A Host B Host A Host B

Figure 2.1: Network load reduction with mobile computation

o Quercoming limitations of a client computer: limitations such as memory size,
processing power, low-bandwidth and storage may be overcome by sending com-
putations to be executed remotely. Mobile computation can also help in reducing
network traffic as many remote accesses to resources can be turn into local ac-
cesses plus the migration (as can be seen in Figure 2.1). For example, sending
a computation to a database server in some cases will generate less traffic than

making lots of remote queries.

e (Customisation: It is very hard to modify a client-server architecture. Servers
usually provide a fixed set of functionalities through which clients can interact
with it. Often, clients may need extra functionalities and the only way of making
them available is to upgrade the server with the new interface needed. With
mobile computation, the server interface can be kept to a minimum set of core
functionalities that seldom need to be modified. Clients can then send code to the
server that uses this interface in order to provide the services they need. In the
same way, mobile computation can help in maintaining and extending distributed
software. In a distributed application, when a new functionality needs to be

added, the new software must be installed or patched at each site. This probably

CHAPTER 2. MOBILE COMPUTATION 27

involves stopping the system and human intervention. Using mobile code, these

new functionalities can be added on demand, once they are needed by the sites.

e Adaptability: Mobile computation can have the autonomy needed in order to
adapt to changes in the heterogeneous environment to which the nodes of a net-
work may be connected. For example, a mobile agent can identify and change its

behaviour in order to cope with broken or low-bandwidth links.

e Inherent survivability: As a mobile computation can carry both state and the
code of the action it is performing, it has a higher-degree of fault tolerance as a
result [FPV98]. When a partial failure is detected (e.g., disk failure), the compu-
tation can move to another location where it resumes execution. Furthermore, in
a traditional client-server architecture, the state of the computation is distributed
between clients and servers, while in a mobile language the state is always carried
by the mobile computation, making it easier to recover from failures locally as

there is no need for knowledge of the global state.

e Representing a disconnected user: A user can send a computation to do some
work inside a network and then disconnect, and collect the results later when
he is connected again. This is one of the advantages that mobile computation

provides for the users of mobile computing devices.

o A new paradigm for development of distributed systems: Making an analogy to
the real world, many applications can be expressed using the idea of entities that
move in order to achieve some goal. For example, a travelling salesmen that visits
customers or a buyer who visits stores in order to find cheap prices, can all be
represented as computations that visit hosts in the network in order to achieve

some goal.

There are also some problems in the adoption of mobile code technologies. Some-
times migrating computations can be very expensive, e.g., if the objective of the com-
putation is just to communicate a simple value like an integer. In some mobile agent
languages an agent can not open network connections with remote hosts, if it wants
to communicate a value, it must migrate to the remote host where the value is then

delivered.

CHAPTER 2. MOBILE COMPUTATION 28

The main obstacle to the acceptance of mobile computation for commercial appli-
cations is security [Car97]. As discussed in section 2.4.1, a real world implementation

of a mobile language should provide safety and security

2.5 Calculi for Mobility

Much research has been done on developing calculi to specify different aspects of mo-
bility. Here we present the m-calculus one of the first of its kind, that is a mathematical
model of the changing connectivity of interactive systems [Mil99]. Next we discuss

some extensions to m-calculus that address different aspects of mobility.

2.5.1 m-Calculus

The w-Calculus [Mil99], is a process algebra in which processes interact by sending
communication links to each other. The process that receives a link can then use this
link to communicate with other processes.

The calculus has two kinds of entities - concurrent processes (P and @ in Figure 2.2)
and communication channels. Channels are identified by globally unique names, that
can be freshly created and communicated between processes. A process that receives
a channel can then use this channel for communication.

In figure 2.2 we present the syntax of a simple asynchronous version of the =-

Calculus. The term () represents an inactive process. P|Q represents two concurrently

PQ:= () nil
PlQ parallel composition of P and @
Tl output v on channel z
z?p — P input from channel z

z?7+p — P replicated input from channel z
new z in P new channel name creation

Figure 2.2: Syntax of the m-Calculus

active processes. A process term z!v sends the name v on channel z. The term z7p — P
waits to receive a name on z, then substitutes p in P with this name after reception,
and continues with P. We write {a/p}P for the process term obtained by replacing all

free occurrences of p in P by a. Using new zin P ensures that x is a new channel in P.

CHAPTER 2. MOBILE COMPUTATION 29

A replicated input =7 * p — P is used to represent a server that after reading a value
from z is ready to accept a new input; it behaves as an arbitrary number of parallel
copies of z7p — P.

The w-calculus models important issues of distributed systems such as concurrency
and communication. In early process algebras like CCS [Mil89] and CSP [Hoa85] the
model of communication relies on a static connection between processes. The w-calculus
is based on the idea of naming and communication of channel names. As processes can
create new names, and communicate these names to other processes, the model reflects
the dynamic nature of the communication between processes/threads in a concurrent
system. The m-calculus is a model for concurrency, but it also models the message-
passing paradigm for network communication. Processes can be seen as running pro-
grams connected in a physical network represented by the channels. In a network using
Internet protocols, programs can only communicate if they know the the IP and Port
number of the destination, while in the m-calculus, processes communicate if they know
the name of a channel in which the destination is waiting for messages.

The m-calculus is a first-order calculus, meaning that mobility is achieved by allow-
ing transmission of names (name mobility), but not arbitrary terms. One of the main
reasons for this design choice is the belief that the communication of names is enough
to model communication involving processes, as described in [San01]. Furthermore, the
mobility of links as provided by the m-calculus is expressive enough to simulate mobility
of processes, as explained in [Mil99].

The m-calculus, besides being a model of mobility, is also a basic model of com-
putation, based on the notion of interaction [Mil99], in the same sense as the -

calculus [Bar84] is a basic model of computation based on mathematical functions.

2.5.2 Other models for mobility

A natural extension to the basic w-calculus would be to allow other objects besides
names to be communicated through channels, as for example tuples in the polyadic
w-calculus [Mil93].

One important issue for distributed computing that is not addressed by the =-
calculus is the notion of locality, or physical distribution of processes on different sites.
Many variants of the w-calculus were proposed in order to study different aspects of

distributed communication, here we present some of them:

CHAPTER 2. MOBILE COMPUTATION 30

e Distributed-n [Sew98], adds the notion of channel location and process migration
from the distributed join calculus [FGLT96], to the asynchronous 7-calculus. It is
used to study how locality restrictions on the use of capabilities can be enforced

by a static type system.

e Nomadic-7 [Uny01], is used to study a distributed infrastructure for mobile
agents. The calculus has first-order channels and primitives for the migration
of agents. This calculus is the basis for a programming language called Nomadic-

Pict [Woj00], which is discussed in more detail in Chapter 4.

e The Ambient Calculus by Cardelli and Gordon [Car99], is used to model mobility
between different security domains. An ambient is a bounded location that may
contain processes and other Ambients. An ambient can move as a whole, in and

out of other ambients.

e The Distributed Join Calculus [FGLT96], extends the Join Calculus [FG96] with
locations and primitives for mobility. Locations in the calculus can have processes
and sublocations, thus locations, as ambients in the ambient-calculus, can be seen
as a tree structure. When a location moves to another site, it takes with it its
sub-locations. The Distributed join calculus is the basis for the Jocaml [CF99]

language, discussed in more detail in Chapter 4.

2.6 Summary

In this chapter we reviewed early work on mobility and presented the main concepts
of mobile computation. In the mobile computation paradigm a software that starts its
execution in one location in a network can halt its execution, and migrate to another
location where it continues to execute. Mobile computation can be implicit, where
computations are automatically migrated by the system, e.g., runtime system of the
language, for better load balancing of tasks, or ezplicit where a mobile language provides
primitives that the programmer can use to choose when migration will occur.

There are many advantages for using mobile computation technology. Mobile com-
putation helps sharing resources available in both small and large scale networks, and it
also supports a more flexible form of distributed systems where non-local computations

do not need to be known in advance at the execution site [Tho97]. Mobile computation

CHAPTER 2. MOBILE COMPUTATION 31

can also, depending on the application scenario, reduce network load by moving the
code closer to the data it uses.

There has been a lot of work in defining a formal foundation for mobile computation
and many calculi based on the m-calculus were designed for this purpose.

In the next Chapters the concepts presented in this background Chapter are applied

in the design of purely functional mobile languages.

Chapter 3

Thread Migration in a Parallel
Graph Reducer

The potential of functional languages to support parallelism with minimal programmer
intervention has been long recognised [Weg71], but has only recently been realised
using sophisticated language implementations, e.g., [HP90, THM 96, BLOMP97]. In
purely functional languages, subexpressions of a given term can be evaluated at any
order without the risk of interference [JH93], and this is exploited in many parallel
functional languages, e.g., Haskell [TLP02]. Therefore, in a language with implicit
mobility, running threads can be reallocated to improve processor utilisation without
affecting the result of the computation.

Parallel functional languages typically generate massive, but fine-grained, paral-
lelism and an implementation must have effective mechanisms to distribute work across
the parallel machine. In many models potential work is easily and cheaply distributed,
e.g., in graph reduction a spark is simply a reference to an unevaluated closure in the
graph. On receiving a potential work item an idle processor will create a thread to
perform the computation. Threads are more heavy weight than sparks as they have an
execution state, typically including stack(s) and a set of registers.

The performance of certain classes of programs can be improved if, in addition to
potential work, threads can be distributed. These are programs with poor load balance
leading to under-utilisation of some processors: some processors are idle while others
have several threads to execute. Many data parallel programs are vulnerable to this,

especially those that generate parallelism only at the start of execution, e.g., there are

32

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 33

reports of poor load balance in large-scale programs written in the parallel functional
language GPH [LTH*99].

As a simple example, Figure 3.3 shows an overall activity profile of the sumEuler
program, written in GPH, discussed in section 3.4. The profile is recorded on 8 proces-
sors and shows execution time on the X-axis and the number of threads on the Y-axis.
The shades of gray in the figure represent the different states of the threads, and the key
states are running, i.e., currently executing and runnable, i.e., could be executed but
residing on a processor currently executing another thread. For much of the execution
there are idle processors and runnable threads simultaneously. If these threads can be
migrated from a heavily-loaded processor to a lightly-loaded processor, runtime can be

reduced.

(GrAnSim Main_mp 1 15 150 150 UK +RTS -gp7 -qP -s Average Parallelism = 4.3)

M

tasks

*I[IIII I|\"

0 2.0k 4.0k 6.0k 8.0k 10.0k 12.0k 14.0k 16.0 k 18.0k 20.0 k 22.0k 24.0k 26.0 k 28.0k
[M running runnable M fetching M blocked migrating Runtime = 28507 cycles]

Figure 3.3: Activity Profile of sumEuler, a Program with Migratable Threads

Although conceptually simple, engineering effective thread migration in a sophisti-
cated compiled language is challenging. The execution state of a thread has an elab-
orate representation that must be carefully packed, communicated and unpacked for
execution to resume. Moreover the sharing of data and computations by the thread

with other threads on the source and destination processors must be preserved. A

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 34

further consequence is that migrating threads is not only expensive but also destroys
any locality of reference the thread enjoyed on the source processor. In consequence
thread migration must be carefully scheduled, to be used only when other load bal-
ancing mechanisms have failed. It is salutary that relatively few systems have been
constructed, although examples include Cilk [BJL95] and the Grip System [HP92].
This Chapter describes the implementation of thread migration in the GUM runtime
system [THM™96] supporting GPH(Glasgow Parallel Haskell) [THLP9S8].

The remainder of the Chapter is structured as follows. Section 3.1 describes GPH,
and its associated GUM runtime system, including existing work distribution mecha-
nisms, is described in Section 3.2. Section 3.3 presents the design and implementation
of the new thread migration mechanism. Section 3.4 gives preliminary performance

measurements. Section 3.5 covers related work and Section 3.6 concludes.

3.1 GpH

GPH(Glasgow Parallel Haskell) [THLP98] (see Figure 3.4) is an extension of Haskell 98,
using the parallel combinator par to specify parallel evaluation, and seq for sequential
composition. The expression p “par” e (here we use Haskell’s infix operator notation)
has the same value as e. Its dynamic effect is to indicate that p could be evaluated by
a new parallel thread, with the parent thread continuing the evaluation of e. As p and
e may share common variables, anything evaluated in parallel in p can be returned via
e. The par constructor only identifies expressions that could be evaluated in parallel,
but the runtime-system is free to ignore any available parallelism. The seq combinator
forces the evaluation of its first argument to WHNF (Weak Head Normal Form), before
returning its second argument as a result.

Higher-level coordination is provided using evaluation strategies: higher-order poly-
morphic functions that use par and seq combinators to introduce and control paral-
lelism [THLP98]. In Figure 3.4 we see the basic operations for strategies. The using
function applies a strategy to an expression. The basic strategy is whnf, which evalu-
ates a value to WHNF, the default evaluation in Haskell. It is implemented as a simple
application of the seq operator. The rnf strategy evaluate values to normal form, and
is instantiated for all major types.

As an example using strategies, in Figure 3.4, parMap applies the function f to

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 35

par :: a ->b ->Db —— parallel composition

seq :: a->b ->b -- sequential composition

using :: a -> Strategy a —> a

using x s = s x ‘seq‘ x -- strategy application

rwhnf :: Strategy a -- reduction to whnf

class NFData a where -- class of reducible types
rnf :: Strategy a -- reduction to normal form

parMap f xs = map f xs ‘using‘ parList rnf -- parallel map

Figure 3.4: GPHprimitives and Evaluation Strategies

all the elements of the list xs in parallel. This parallel version of the map function
is implemented using the parList and rnf strategies. The parList function evalu-
ates the elements of a list in parallel to the degree specified by its argument, in this
case, to normal form using the rnf strategy. The parList and rnf strategies have a

straightforward implementation using par and seq.

3.2 The GUM Virtual Machine

3.2.1 Introduction

GUM (Graph reduction for a Unified Machine model) [THM™96] is a distributed
runtime system implemented as an extension of GHC’s (Glasgow Haskell Compiler)
[Mar05] sequential RTS. It is the core of the implementation of a collection of par-
allel/distributed Haskell extensions such as GPH [THLPY8], Eden [BLOMP97] and
GDH [PTL00]. GUM has been ported to many different architectures (both shared
and distributed memory) and using many different message passing libraries (i.e.,
PVM [GBD'94], MPI [GLS99] and Globus [FK99]). The version of GUM used for
the experiments on thread migration uses the PVM library for communication and
runs on a Beowulf cluster [RBMS97], i.e., a dedicated cluster of workstations, often
interconnected with a high speed network.

The main characteristics of GUM are:

o Distributed Shared Heap: parallel reduction of a program evaluates the graph that

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 36

represents the program in memory. All processing elements (PEs) share a single
graph stored in a global shared heap. To avoid duplicating reduction, all graph
sharing is preserved. The distributed shared heap provides transparent access to

heap addresses, i.e., local and remote addresses are accessed in the same way.

o Lazy task distribution: Work is never exported eagerly to processors for load
balancing. Instead, when a processor becomes idle, it searches work in the spark
pools of other PEs. A spark pool is a data structure that contains potential work

in the form of pointers to expressions that could be evaluated in parallel.

When the programmer uses the par combinator in the code to indicate that a value
could be evaluated in parallel, a pointer to the graph representing this value is added to
the spark pool. A spark only represents potential parallelism. When a processor is idle,
it looks for a spark in the spark pool and if successful this spark is turned into a thread
that will evaluate the thunk (unevaluated closure). The problem with this approach
for load distribution is that in some cases, at the end of the execution, when there are
no more sparks in the spark pool, some processors are idle while others have several
threads to execute. Many data parallel programs are vulnerable to this, especially those
that generate parallelism only at the start of execution. This problem could be solved

if in addition to potential work, threads could be distributed.

3.2.2 The GUM Runtime System

This section gives an overview of the GUM distributed virtual machine, discussing its
main components and focusing on design and importance of thread migration for load
balancing.

Figure 3.5 summarises the main components of GUM. Potential parallelism is rep-
resented as sparks, i.e., pointers to graph structures in the heap, which are collected
in a spark pool. Sparks are generated by executing the par primitive. Threads are
created on a processing element (PE), consisting of a CPU and local memory, if it is
idle, i.e., if its thread pool is empty. More threads are added from blocking queues
when the required data becomes available. By design the generation of sparks is
very cheap, consisting only of adding a pointer to the thunk (unevaluated closure)
to the PE’s spark pool, while threads are far more heavy-weight, although still light
compared to usual OS threads. Both spark and thread pools are managed as FIFO

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 37

PE 1 PE 2
SCHEDULE
T
Spark Pool Spark Pool
activate < M_I C_BB'S‘TE activate spark
Thread Pool

awake

Thread Pool
awake

run
Closure &

Blocking Queue

run

Blocking Queue

block block

Reducer Reducer

FISH

Figure 3.5: Interaction of the Components of a GUM PE.

queues. To create a new thread the PE activates one of its sparks, generating a Thread
State Object (TSO), which holds essential information such as registers and a stack
pointer. The main component of GUM is the graph reduction engine (called Reducer
in the Figure) which besides reducing the graph (program) being evaluated, it also
contains the Scheduler that controls all other parts of GUM by issuing the messages
(run/activate/block/awake/spark) that appear in Figure 3.5. The scheduler of each
PE chooses one thread from the thread pool to run on the graph reducer. If a running
thread blocks on unavailable data, it is added to the blocking queue of that node. A
blocked thread is added to the thread pool when the required data becomes available,
either because a local thread produces it or the data arrives from another processor.
Figure 3.6 illustrates the communications induced by the existing spark distribution
mechanism, a work stealing scheme. If the Scheduler does not find a thread or a spark
to execute, it sends a FISH message requesting work. The FISH message specifies the
PE requesting work and also contains an age limit, i.e., the maximum number of PEs
to visit, in the form FISH(Source, Age). Initially all PEs except for the main PE are
idle and without sparks. Idle PEs send a FISH message to a PE chosen at random, and
only ever have one outstanding FISH. In the example, PE A sends a FISH to PE C. If
a FISH recipient has an empty spark pool it increases the age and forwards the FISH

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 38

SCHEDULE(<spark>)

FISH(A.1) FISH(A.2)

Figure 3.6: Spark Distribution in GUM

to another PE chosen at random, in our case PE D. If a FISH recipient has a spark it
sends it to the source PE as a SCHEDULE message: in the example, PE D sends to
PE A. The age limit of a FISH is used to avoid swamping a lightly loaded machine with
FISH messages: if the age reaches the limit (a tunable system parameter) the FISH is

returned to the source PE which delays before reissuing another FISH.

3.2.3 Memory Management

Parallel programs are represented in the heap as a graph that can be evaluated concur-
rently using the processors available. To avoid duplication of work, GUM provides the
abstraction of a global heap that is shared by all the PEs in the distributed system, as
depicted in Figure 3.7. Every PE has a local memory, that is part of the distributed
heap, and there is a two-level addressing scheme distinguishing local addresses (LAs)
from global addresses (GAs), that reference values in the shared heap. Global Addresses
are managed so that each PE can garbage collect locally, without having to synchronise
with other PEs.

A GA is created when GUM’s work stealing mechanism forces a PE to send work
to another PE: after the thunk is sent to its destination, it is overwritten in the original
PE with a FetchMe closure that contains the GA of the thunk on the destination. The
original thunk is overwritten with a FetchMe to indicate that it is being evaluated in
some other PE, and to indicate its new location, in case the original PE needs the

result of its evaluation in the future. The GA contains an immutable identifier and a

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 39

P

] \
| |
| |
: 4 N 4 N Y :
| I
: Memory 1 Memory 2 Memory n :
| I
CPU CPU CPU

[Networ k

Figure 3.7: Distributed Shared Heap

PE identifier, and each PE contains a GIT (Global Indirection Table), that maps the
identifiers to the local address in the local heap. The GIT is used as a source of roots
for local garbage collection, and after garbage collection it is adjusted to reflect the new
addresses of closures in the local heap. Weighted reference counting is used to recover
local identifiers and GAs during garbage collection. GUM’s addressing mechanism and

distributed garbage collector are described in detail in [THM196].

PE A

FETCH (B27, A21) PEB
(\//—\(h
RESUME (A21, <packet>)
Closure
B27
ACK
N / L)

Figure 3.8: Fetching Graph

When a thread attempts to evaluate a FetchMe closure, the FetchMe is converted
into a FetchMe blocking queue, and the thread is blocked and added to the queue.
Any other thread trying to enter the FetchMe will also be enqueued. Then a FETCH
message is sent to the PE that owns the GA in the FetchMe. In Figure 3.8, PE A sends
a FETCH message requesting the graph in the address B27. The FETCH message also

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 40

contains the new GA for B27, which is the address of the FetchMe. When receiving
a FETCH message, the PE will pack the appropriate closure in a packet and send it
back in a RESUME message. When the RESUME arrives, the graph is unpacked, the
Fetch-Me is redirected to point to the root of the unpacked closure, and all threads
blocked in the queue are awaken. After that, an ACK message is sent to confirm the

new location of the closure.

3.2.4 Graph Packing

To communicate a closure, the graph representing this closure must be packet, or seri-
alised, i.e., converted into an array of bytes that can be easily communicated. Packing
just a single closure in messages may be too expensive in high-latency networks. When
a closure is packed, some “near by” reachable graph is added to the packet in order to
reduce the number of FETCH messages that need to be sent, i.e., the graph is packed
breadth-first, up to a fixed limit.

Graphon A
a
b c
d e f
A27 A28
Packet
[a b c d | A7 | |FmAzs \]

Figure 3.9: Graph Packing

While a graph is being packed the addresses of the closures are kept in a temporary
table so that sharing and cycles can be detected. The graph is packed up until the
packet is full or all the reachable graph is already packed. If there is no space left

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 41

in the packet, Fetch-Me closures and GAs are used to reference the graph that is left
behind (Figure 3.9). Each closure packed is made global, but a few closures are packed

specially:

e Values that are already in normal form are not globalised, as they are already

evaluated, they can be freely copied between machines.

e Black Holes, i.e., closures that are already being evaluated, are packed as Fetch-

Mes to the black hole.

The algorithm for unpacking reads the packet and reconstructs the graph breadth-
first.

3.3 Implementing Thread Migration

3.3.1 Scheduler

A central component in GUM is the scheduler, available at each PE, which determines
which thread to execute next. To implement thread migration the following scheduling
policy is used to ensure that thread migration is attempted only if other cheaper work
location schemes fail. The new policy is an extension of the existing policy and has been
tested for simulated parallel execution [LH96], but hasn’t previously been available in

GUM.
1. execute another runnable thread, if available;
2. turn a spark into a thread if no runnable threads are available;
3. try to acquire a remote spark if the processor has no local sparks;
4. try to migrate another runnable thread if no remote sparks can be found,

Several scheduling alternatives are possible. Currently the TSO of a migrated thread
is added at the end of the (FIFO) runnable queue. Migrated threads could be preferred
by inserting at the front of the runnable queue, or more generally by distinguishing
them in the queue, by partitioning the queue into priority-based regions. Realistically,
when a PE asks for a remote thread, it is because it did not have anything else to
execute (i.e., neither sparks or other runnable threads), hence adding the new thread

to the end of the queue seems the appropriate alternative.

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 42

3.3.2 Communication Protocol

The communication protocol in GUM, as described before, is very simple and consists of
only 6 classes of messages [THM196]. Thread migration introduces two new messages,
both variants of existing messages: a SHARK which is a variant of the FISH message;
and MIGRATE which is a variant of the SCHEDULE message and transmits a thread

and an associated graph structure between PEs.

MIGRATE(<thread>) SHARK(A 1)

FISH(A.1) FISH(A.2)

Figure 3.10: Thread Migration in GUM

Figure 3.10 illustrates the communications induced by the new thread migration
mechanism. As before, a FISH seeks to locate a spark, and in our example the FISH
visits PEs C and D unsuccessfully. Now, however, when a FISH reaches its age limit
instead of returning to its source PE, it becomes a SHARK message with age 1 and is
forwarded to a random PE. When a SHARK arrives, if the PE has a spark it is sent to
the source PE in a SCHEDULE message; otherwise if the PE has a runnable thread it
is sent to the source PE in a MIGRATE message; otherwise the PE increases the age
and forwards the SHARK at random. SHARKSs and FISHes have the same age limit,
and a SHARK reaching this age limit is returned to the source PE. In the example the
SHARK finds a thread, but no spark on PE C, and migrates it to PE A.

At the moment GUM does not propagate load information between PEs. One
potential improvement of the load balancing mechanism would be to carry information
about spark and thread pool sizes of the visited PEs as part of a FISH message. In
our experience even the naive, but cheap mechanism of randomly choosing the target

of a FISH works well for most applications. In the presence of thread migration the

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 43

additional overhead might be justified, though, because in general runnable threads
are much rarer than available sparks. Similarly, information about the granularity of
threads would be useful in order to choose the largest thread to migrate. However,

such information is not directly available and hard to obtain automatically [Loi98].

3.3.3 Thread Packing

The main modification to enable thread migration is to provide mechanisms to pack
and unpack threads for communication between PEs. This entails packing a TSO and
its associated stack. Since a TSO is a (slightly special) heap object, we extend the cases
for packing a graph node, to include a case for a T'SO. Packing most of the entries in the
TSO is uncomplicated, since they are static data rather than pointers. The exceptions

are the pointers in the stack that have to be adjusted when unpacking the TSO.

Iso PE 1 TSO PE 2
TSO Header TSO Header
< Stop < Stop
01 0 01 /\
777777777777777
Update | Update |
0 o]
]
packet
TSO Header
< Stop
Update
01
THUNK GA 1.1
Update
0
THUNKGA 1.2

Figure 3.11: Transfer of a Thread (TSO) between PEs.

GUM is a parallel extension of the STG-machine [PJ92a] and the TSO and stack
layout is unchanged. Figure 3.11 summarises the transfer of a thread, represented as

a TSO, from PE 1 to PE 2 (note, that the stack grows downwards). The TSO can

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 44

be partitioned into a header, containing mostly non-pointer data, and the stack. The
stack consists of a continuous sequence of variable sized activation records. Each record
starts with one of 4 possible frame types: an update frame, a stop frame, a seq frame
or an exception frame. The most common type is an update frame, which contains a
pointer into the heap, pointing to a graph structure that will be updated with the result
of the current evaluation. As shown in Figure 3.11, the type of the updatee will be
either BH, a “black hole” representing a graph structure under evaluation, or a BH_BQ,
a “black hole blocking queue” which additionally contains a list of TSOs waiting for
the result of this evaluation (this list is represented by the circle in Figure 3.11). An
exception frame contains a pointer to the code that has to be executed when catching
an exception. A seq frame contains a pointer to the code corresponding to the second
part of a sequential composition (the y in a x ‘seq‘ y construct). A stop frame can
only occur at the bottom of the stack and indicates the end of the computation for
this thread. All frames are linked together, with one thread register pointing to the
top-of-stack frame. The layout of an activation record itself is specified by a bitmask
immediately after the update frame, with 1 representing data and 0 a pointer entry.
Since this layout is similar to the one of a partial application closure we can treat
the elements of one activation record on the stack in the same way as the available
arguments in a partially applied function when packing the stack.

During packing, the overall structure of the stack is maintained, but some modi-
fications are made. As with all graph structures, global addresses (GAs) have to be
allocated for pointers, in order to ensure that thunks, or unevaluated closures, are
uniquely identified in the virtual shared heap. This can be seen in the packet in Fig-
ure 3.11 where the two thunks are packed with new global addresses GA 1.1 and GA 1.2.
As with ordinary graph structures, a mapping of old GAs on the source PE, to new
GAs on the target PE, is sent back as a reply to the communication shown here and
the BH and BH_BQ closures on PE 1 are converted into FetchMe and FetchMe BQ
(Blocking Queue) closures. If a thread on PE 1 demands a thunk being evaluated by
the migrated TSO, a FETCH request will be sent to PE 2 upon entering the FetchMe
or FetchMe_BQ closure.

Note that when unpacking the black hole blocking queue (BH_.BQ) on PE 2, a
different kind of closure has to be used to represent the TSO that is blocked on the

black hole on PE 1 (represented by a triangle in Figure 3.11). This closure is a “blocked

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 45

Table 3.2: SumEuler Runtime(s) with/without Migration

Mean Min. Max. Avg No % Range Performance
Improvement
Numb | Mig. | No Mig. No | Mig. | No Mig. No Mean
PEs Mig. Mig. Mig. Mig. Runtime
1 97.5 | 97.5 | 97.3 | 974 | 97.7 | 97.6 0 0.4% 0.2% 0%
2 51.9 | 52.5 | 50.2 | 50.1 | 54.2 | 554 1 7.7% 10% 1.1%
4 23.5 | 26.1 | 20.5 | 214 | 26.3 | 31.7 4.2 24.6% | 39.4% 10%
6 17.0 | 23.7 | 15.66 | 20.4 | 18.8 | 27.3 3 18.4% | 29.1% 28%
8 14.7 | 20.8 | 12.8 | 149 | 17.8 | 27.5 4.0 34% | 60.5% 29%
10 11.7 | 17.7 9.5 14.7 | 12.9 | 20.2 34 29% 31% 33%
12 10.6 | 17.5 9.0 126 | 11.9 | 20.8 3.4 27.3% | 46.8% 39%
14 10.5 | 15.1 8.1 11.8 | 11.8 | 19.7 4.6 35.2% | 52.3% 30%
16 11.2 | 14.3 9.8 8.4 12.5 | 19.0 5.2 24.1% | 74.1% 21%
18 8.8 13.5 7.9 11.2 9.2 14.8 3.4 14.7% | 26.6% 34%
20 8.4 12.8 5.3 9.0 11.1 | 14.9 4 69% | 46.3% 34%
22 8.5 13.1 5.7 109 | 11.4 | 176 4.6 67% 51% 35%

fetch” closure, which already exists in GUM. It normally represents a fetch request from
another PE, and contains information about the requesting PE and TSO, so that upon
updating the BH BQ closure, a message with the result data is sent to the original
PE. By this mechanism the TSO on PE 1 will continue as soon as the migrated TSO
updates the BH_BQ on PE 2.

3.4 Performance Measurements

The measurements in this section are performed on a high-latency cluster: a Be-
owulf [RBMS97] consisting of Linux RedHat 6.2 workstations with a 533MHz Celeron
processor, 128KB cache, 128MB of DRAM and 5.7GB of IDE disk. The worksta-
tions are connected through a 100Mb/s fast Ethernet switch with a latency of 142us,
measured under PVM 3.4.2.

3.4.1 Performance Improvement

Experience has shown that many GPH programs have migratable threads and some
under-utilised processors [LTH'99], and three programs from two parallel paradigms
are discussed in this section.

The first program, sumFuler, is data parallel: it computes the sum of the Euler
totient function over an integer list [LTB01]. Figure 3.12 shows mean speedup curves for

sumEuler with and without migration calculated from five executions of the program.

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 46

14
Parallel sumEuler -
12 - Pparallel sumEuler with Migration |
10 .
S
? 8 R
() ’ s
Q o X
n 6) - i
4 L “ *) -
2 L 4
5 10 15 20
Processors

Figure 3.12: Speedups for sumKEuler

The speedups reported here and throughout this Section are relative, i.e., improvement
over the single-PE parallel execution. Table 3.2 shows, for varying numbers of PEs:
the mean, minimum and maximum runtimes, the average number of threads migrated
in each execution, the range of runtimes as a percentage of the mean runtime and the
percentage reduction in mean runtime.

The sumEuler results show that thread migration improves runtime for all numbers
of PEs measured. For small numbers of PEs the improvement is limited by the small
numbers of migratable threads, but between 6 and 22 PEs the improvement is approx-
imately 30% with a single exception. The improvement is variable, as discussed in the
next section, with the greatest improvement being 39% on 12 PEs.

The second program, Maze, uses a divide-and-conquer algorithm to search a maze
for an exit [DBPLT02]. Figure 3.13 shows the mean speedup curves and table 3.3 the
performance improvements. The results show that thread migration improves perfor-
mance on all numbers of PEs; from 4 PEs onwards improvements of approximately
13% are achieved with two exceptions. The improvement is variable with the greatest

improvement being 21% on 16 PEs.

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 47

12 T T T T T T T

Parallel Maze Search -
10 r parallel Maze Search with Migration

a 8 - LSRR K
>
©
(]
& 6r ’ 1
N ,

Al i

,’*l,
, | i

2 4 6 8 10 12 14 16
Processors

Figure 3.13: Speedups for Maze

The third program, Queens, is data parallel: placing chess pieces on a board. Fig-
ure 3.14 shows the mean speedup curves and table 3.4 the performance improvements.
The results show that while thread migration improves performance on most configu-
rations, it degrades it on two; the 4-PE and 8-PE configurations. There is an enormous
amount of variability in the improvement, with a maximum of 37% and minimum of
-10%.

Thread migration does not consistently or significantly improve the performance
of either Queens or Maze up to 8 PEs because both have excellent processor utilisa-
tion, achieving a speedup of approximately 6 in each case. If the default GUM work
distribution mechanism is achieving good utilisation, it is hard for the more expen-
sive migration mechanism to improve on it. Indeed results for Queens show that the
additional communication introduced may reduce performance (e.g., at 4 and 8 PEs),
and increase variability. In contrast migration delivers significant and consistent im-
provements when utilisation is low, e.g., on 8 PEs sumFEuler without migration has
a speedup of just 4.7 and migration delivers a 29% improvement. In a similar way,
migration improves the performance of both Queens and Maze at higher numbers of

PEs as the utilisation delivered by the default load balancing mechanism falls.

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 48

Table 3.3: Maze Runtimes(s) with/without Migration

Mean

Min. Max. Avg No % Range Performance
Runtime Runtime Runtime Thr Mig Improvement
Mig. No Mig. No Mig. No Mig. No Mean
No PEs Mig. Mig. Mig. Mig. Runtime
1 162.9 | 162.0 | 162.6 | 159.7 | 163.7 | 163.5 0 0.6% 0% 0%
2 82.7 | 835 82.5 83.3 82.9 83.5 1 0.4% 0.2% 0.9%
4 42.2 48.5 40.4 43.1 44.1 58.2 0.8 8.7% | 31.1% 13%
6 28.9 33.3 27.9 30.8 30.3 35.1 2 8.3% | 129 % 13%
8 25.7 25.8 23.8 24.9 28.3 29.1 5.8 17.5% | 16.2% 0%
10 21.5 26.4 19.8 24.5 24.1 29.6 24 20% 19.3% 18%
12 18.9 20.7 16.3 16.7 22.0 24.6 4.2 30.1% | 38.1% 8%
14 17.7 21.0 16.0 18.0 20.3 24.7 4 24.2% | 31.9% 15%
16 16.6 21.2 12.2 16.4 20.3 25.3 44 48.7% | 41.9% 21%

In summary, thread migration, in the examples, always improves the runtime of
programs with migratable threads and low processor utilisation, i.e., idle PEs, like
sumEuler and Maze. Thread migration often improves but may degrade programs
with migratable threads and good processor utilisation, like Queens. In both cases
the runtimes and improvements achieved are variable. The improvements are achieved
by migrating a relatively small number of threads: typically around 4. This indicates
that the migration policy described in section 3.3 works adequately, striking a balance

between good data locality and even load distribution.

3.4.2 Variability

We hypothesised that thread migration would reduce the variability in runtimes, as it
allows a poor initial distribution of sparks to PEs to be rectified. The ‘% Range’ col-
umn in tables 3.2 and 3.3 show that migration reduces the range of performance results
for programs with low utilisation, like sumEuler and Maze. However, table 3.4 shows
that migration may increase the variability of some programs with good utilisation,
like Queens on small numbers of processors. In these cases, we have observed increased
communication in programs with migration and suspect the variability is due to both
increased communication and potential blocking after having migrated threads. De-
pending on the amount of sharing with other graphs on the original PE, threads on a PE
may send data requests and become blocked, thereby reducing the gain in performance
due to migration. However, none of the programs with poor utilisation seems to suffer

from an increased amount of data transfer caused by migration. Hence, it is important

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 49

12 T T T T T T T

Parallel Queens -
10 ¢ Parallel Queens with Migration

2 4 6 8 10 12 14 16
Processors

Figure 3.14: Speedups for Queens

that the scheduler chooses migration only if there is no other work available, possibly
even accepting short periods of idle time, if fetch requests have been sent already.

A second factor is that programs with a short runtime allow little time for migration
to correct a poor initial load distribution. This can be seen in the relatively high
variability of sumEuler on 20 and 22 PEs in table 3.2. However, migration still helps
even in these cases: the mean, minimum and maximum runtimes are always smaller

than for the program without migration.

3.4.3 Overheads

To investigate the overheads of thread migration two simple programs without migrat-
able threads have been measured: one data-parallel and the other divide-and-conquer.
For each program table 3.5 reports the paradigm, the mean runtime with and without
migration, the average number of threads migrated in each execution and the percent-
age change in runtime, all measured on 7 PEs. The results show that the migration
mechanism has no significant overhead if there are no migratable threads. Moreover,
tables 3.2, 3.3 and 3.4 demonstrate that execution with migration enabled on a sin-

gle PE does not incur significant additional overheads compared to parallel execution

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 50

Table 3.4: Queens Runtimes(s) with/without Migration

Mean Min. Max. Avg No % Range Performance
Runtime Runtime Runtime Thr Mig Improvement
Mig. No Mig. No Mig. No Mig. No Mean
No PEs Mig. Mig. Mig. Mig. Runtime
1 405.4 | 405.6 | 405.3 | 405.2 | 405.7 | 405.9 0 0.0% 0.1% 0%
2 225.0 | 227.8 | 219.6 | 227.8 | 227.7 | 227.9 0 3.6% 0.0% 1%
4 128.4 | 116.7 | 114.9 | 116.6 | 169.6 | 116.8 1.5 42.6% | 0.1% -10%
6 91.7 | 104.9 | 78.03 | 103.1 | 117.6 | 108.7 4.8 43.1% | 5.3% 12%
8 78.9 75.1 72.2 749 | 102.1 | 75.3 2.5 37.8% | 0.5% -5%
10 67.3 73.2 63.2 67.1 68.8 103.0 1.33 8.3% 49% 8%
12 44.2 70.9 38.8 62.9 70.8 73.1 1.33 72.3% | 14.3% 37%
14 39.0 50.5 39.0 38.9 39.1 78.9 0.84 0.2% | 79.2% 22%
16 44.9 50.0 38.9 39.0 73.9 72.3 1.6 77.9% | 66.6% 10%
Table 3.5: Migration Overheads
Program Name | Paradigm Mean Runtime Avg No | % Change
With Migration | Without Mig. | Thr Mig | in Runtime
ParFib 35 Div & Cong. 5.6 5.7 0 +2%
ParMap Data Par. 25.2 25.3 0 +1%

without migration.

3.5 Related Work

Thread migration suffered from bad press due to early news of excessive overhead, and
comparable systems that provide light-weight, and typically fine-grained, threads tend
to avoid migration [BHK194, CGSv93, Kes96, KL.B91].

In the context of earlier versions of parallel graph reducers, early experiments on
the GRIP system, implemented on a special-purpose distributed memory machine,
indicated, that despite the availability of several sparking strategies to control and
balance parallelism, thread migration is still needed for some applications to guarantee
high utilisation [HP92].

The Cid system [Nik95] extends C with primitives for creating (“forking”) new
threads and synchronising (“joining”) them on shared variables, managed in a virtual
shared heap. The Cid systems holds runnable threads in two different queues: one for

the threads that must be executed on the current processor, one for threads that might

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 51

be migrated to another processor. The cost for handling the messages is reduced by
using the technique of active messages [vCGS92] where the message carries a pointer to
a function, the “handler”, that is called when receiving the message. The effectiveness
of Cid’s load balancing and latency tolerance mechanisms is assessed in [NS94].

Cilk [BJL"95] is similar to Cid, in that it extends C with constructs for creating
and synchronising light-weight threads. Its processors also use a sophisticated work-
stealing scheduler to obtain new parallelism. While Cilk provides thread migration, it
is optimised for local execution of a thread, since that is the most common case. Thus,
still high overhead is associated with migration.

The Filaments system [LFA96] is in many aspects similar to our system: it empha-
sises fine-grained parallelism on a distributed shared heap, with dynamic and implicit
management of work and data; the programmer is only required to expose parallelism.
It is implemented as an extension of C. Two levels of threads can be distinguished:
filaments, with a code pointer and arguments but without a stack, and server threads,
with an attached stack, acting as a scheduler over a set of filaments. In balancing the
load of the system, it employs a sophisticated adaptive data placement mechanism,
that tries to minimise access to remote data and uses information gained from dynamic
monitoring of data access. Overall, the system focuses on the placement of data rather
than threads.

The Ariadne Threads system [MR96] is C-based and implements user-level threads
and explicit thread migration on shared and distributed memory machines. In contrast
to Filaments, placement decisions focus on threads, rather than data, by migrating a
thread to the location of its data, rather than vice versa.

The Amber system [CALT89] uses a virtual shared memory model, implemented
on the Topaz operating system and is programmed in C++4. It provides library calls
to realise dynamic clustering of threads at runtime, via explicit thread migration. In
contrast to Ariadne it puts limitations on the total number of threads per node, but
gains reduced packing and thread management overhead.

Another virtual shared memory system focusing on thread migration is Millipede [ISS98].
It uses kernel-threads and is very flexible, allowing explicit migration at almost any
point in the execution. It uses dynamic mechanisms migrating both threads and data
to maximise data locality. Stack packing is simplified by guaranteeing that stacks will

occupy the same place on all processors. This reduces packing costs but wastes some

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 52

memory space.

As shown in Chapter 2, a lot of research was done on process migration in the area
of operating systems in the late 70s [MDW99]. The objective of introducing process
migration into an operating system was to improve load balancing and fault tolerance.
Thus, process migration should be transparent to the user and is not under the control of
the programmer. Many operating systems were designed to support process migration,
some well known examples are Mach [BRS'85] and MOSIX [BL98].

We are primarily interested in thread migration as a way to obtain even load balance
and thereby improve performance in a system for parallel computation. Alternative ap-
plications of this technique, with different design requirements, are the use of migration
in persistent systems [MMS95] and for mobile computation on open networks, as pre-

sented in the next Chapters.

3.6 Summary

In this Chapter we have described a system for implicit mobility of computations in a
purely functional language. We have presented a design and implementation of thread
migration for the GUM runtime system underlying GPH. The design exploits the uni-
form representation of heap objects in the STG-machine: the packing of a TSO and
its stack only requires an extension of the default packing mechanism to handle a new
kind of heap closure. The design also makes minimal extensions to the relatively simple
GUM communication protocol, adding only two new kinds of messages. Here we profit
from both data and threads being represented by heap objects.

Performance measurements of five programs on a high-latency Beowulf cluster show
that thread migration in GUM can improve the performance, and reduce the variability
in performance, of data-parallel and divide-and-conquer programs with low processor
utilisation. In summary: sumEuler is 35% faster on 22 PEs, Maze is 21% faster on
16 PEs, and Queens is 10% faster on 16 PEs. Measurements of these and two other
programs show that migration does not incur significant overheads if there are no
migratable threads, or on a single PE. However, it is hard for migration to improve
programs that already have good utilisation, and migration may both increase vari-
ability and occasionally reduce performance. For example neither Maze nor Queens is

significantly improved by migration until 10 or more PEs are used.

CHAPTER 3. THREAD MIGRATION IN A PARALLEL GRAPH REDUCER 53

Many of the tools designed for implicit mobility could also be used in an explicit
mobile language. A graph packing mechanism to communicate computations is also
needed in an explicit mobile language, and a very similar packing algorithm is used in
mHaskell, the explicit mobile language that is described in Chapter 5. The implemen-
tation techniques for thread migration presented in this Chapter could also be used
to add explicit strong mobility to a distributed functional language. Migration of the
complete representation of a thread in the RTS is not the only way of implementing

strong mobility, and a different alternative is given in Section 6.3.

Chapter 4

Monads and Stateful

Computations in Haskell

This Chapter presents the basic ideas and intuitions behind monads, monadic I0 and
concurrency in Haskell. Programs written in an explicit mobile language are usually
stateful computations that interact with resources at the locations that they visit.
These stateful computations must be carefully managed in a purely functional language
to preserve the purity of the language. In the purely functional language Haskell, such
computations are kept in an I0 monadic data type that separates the purely functional
code from the stateful side-effecting computations. First we review the concept of a
monad and the language constructs used to operate on monadic values in Haskell. Next
we present the IO monad and describe how stateful computation are used in Haskell.
In Section 4.2.1, Concurrent Haskell is described. Finally, in Section 4.3 the semantics
for monadic I/O and Concurrent Haskell is reviewed. A good tutorial on Monadic I/O

and Concurrent Haskell is given in [PJ01].

4.1 Monads

The concept of monad comes from a branch of mathematics called category theory.
Philip Wadler [Wad90, Wad95], inspired by Moggi’s work on denotational semantics
and monads [Mog89], proposed monads as a general technique for structuring functional
programs. Monads can also be used to model impure features in a purely functional

language, such as exception, state, continuations and concurrency. A monad is a triple

54

CHAPTER 4. MONADS AND STATEFUL COMPUTATIONS IN HASKELL 55

consisting of a type constructor m and two polymorphic functions:

return :: a -> m a

>>) ::ma->(a->mb) ->mb
returnx >>=f = fx (LUNIT)
m>>=return = m (RUNIT)

z & fn(m
mi >>= (Ar.my >>= (Ay.mg)) = (7511 3>)>= Orma)) 55=(wm) (PIVD)

Figure 4.15: Monad Laws

These functions must satisfy the laws in Figure 4.15. The return function is used
to insert a value into a monad and the bind function >>= implements sequential com-
position. A program may use many different monads at the same time and the type
class mechanism in Haskell allows the overloading of the bind and return operations

for the different types. The Monad class can be seen in figure 4.16.

class Monad m where
>>=) ::ma->(a->mb) ->mb
return :: a -> m a

Figure 4.16: The Monad class

As a simple example, consider the definition of the Maybe monad:

data Maybe a = Nothing | Just a

instance Monad Maybe where

return = Just
fail = Nothing
Nothing >>= f = Nothing
(Just x) >>=f = f x

The Maybe monad is used to combine computations that may return Nothing. It is
similar to the idea of exceptions in programming languages: a computation may return

a value (Just a), or fail returning Nothing. If the >>= operation receives a Just a

CHAPTER 4. MONADS AND STATEFUL COMPUTATIONS IN HASKELL 56

value, it continues the computation by applying its function argument to a, otherwise
it returns Nothing.
The following example uses the Maybe monad to prototype functions to access a

Database system:

connectDB :: DBName -> Maybe Con

query :: String -> Con -> Maybe String

processQuery :: String -> Maybe String

useDB :: Maybe String
useDB = connectDB "myDB" >>=
\con -> query "select * from table" con >>=

\res -> processQuery res

The Maybe monad used in the example helps dealing with computations that may
fail. If one of the functions returns Nothing the Maybe monad stops the flow of com-
putations returning Nothing as the result of the whole program.

Haskell offers a special syntax for monadic programming called “the do notation”,
that makes the functional code look similar to blocks of code in an imperative language.

A new version of useDB using the do notation would be:

useDB2 :: Maybe String
useDB2 = do ¢ <- connectDB "myDB"
r <- query "select * from table" c

processQuery r

For bigger programs is much easier to use the do syntax instead of monadic compo-
sition and lambda abstractions. The do notation is just syntactic sugar, it is translated
by the compiler into calls to >>= as can be seen in Figure 4.17. In the translation is
possible to see the expression (x <- e) simply binds the variable x, which is different

than an assignment in an imperative language.

CHAPTER 4. MONADS AND STATEFUL COMPUTATIONS IN HASKELL 57

do {zx<-e;s} = e>>=\z->do{ s}
do {e; s} = e> do { s}
do {e} = e

Figure 4.17: The do notation

result:: a

IO a

World in — — World out

Figure 4.18: The IO data type

4.2 Monadic 10

Computations with side-effects were always a problem in purely functional languages
with lazy evaluation. Functional languages are based on pure functions that have
no side-effects. Furthermore, in a call-by-need language there is no specific order of
evaluation for expressions, and it is difficult to predict when side effects (e.g., printing)
will be executed during the evaluation of expressions, if they are executed at all. In
Haskell, stateful computations are encapsulated inside the IO monadic data type, that
separates pure functions from stateful functions, and imposes an order of evaluation
for expressions of type I0.

A value of type I0 ais an action that, when performed, may do some input/output,
before delivering a value of type a [PJ01]. Using the I0 data type, a function that prints
a character on the screen would have the following type:

putChar :: Char -> I0 O

The putChar function takes a character as an argument and returns an IO action
that when performed, will print the character on the screen and return the value ().
Usually it helps to visualise an IO action like I0 a as a function that takes as an
argument the current state of the World, and returns a new World and a value of
type a, as can be seen in Figure 4.18. Viewing a stateful computation as a state
transformer helps reasoning about programs with side-effects and preserves the purity
of the language [LPJ95].

The IO monad provides two primitives that implement the basic polymorphic func-

tions of a monad (>>= and return, as in Figure 4.19).

CHAPTER 4. MONADS AND STATEFUL COMPUTATIONS IN HASKELL

(>>=) ::I0a->(@->1I0b) ->1I0Db

return :: a -> I0 a

Figure 4.19: Basic IO operations

get Char

Y

Char

Yy

put Char

()

get Char

>>=

put Char

Figure 4.20: The >>= operator

Using >>=, if we have an action

getChar :: I0 Char

y

58

that when performed reads a character from standard input, it is possible to implement

an echo function:

echo :: I0 ()

echo = getChar >>= (\c¢c -> putChar c)

The bind combinator performs the action of its first argument and passes the result

to its second action (as can be seen in Figure 4.20). It is useful to have yet another

operation (>>) that is used when the programmer wants to execute two actions in

sequence, ignoring the result of the first before executing the second. The (>>) function

can be implemented in terms of bind:

(>>) :: I0a->I0b->1I00b

(>> ab=a>w= (\x ->b)
Using (>>)) we can write:

echo2 :: I0 ()

echo2 = echo >> echo

CHAPTER 4. MONADS AND STATEFUL COMPUTATIONS IN HASKELL 59

The third operation is return that injects a value into a monad. In the case of the
I0 type, it does no I/O and returns its argument without any side-effect. Using return

is possible to implement 10 actions that return results, e.g., the getLine function:

getLine :: IO [Char]
getlLine = do
¢ <- getChar
if c¢==’\n’
then return []
else do
cs <- getline

return (c : cs)

Once a value is inside the 1O type there is no way of taking it out, which guarantees
that the properties of the purely functional language will be preserved and that side-
effects will occur only in the right context.

Another advantage of using monads in a functional language is that new control
structures can be implemented that encapsulate patterns of computation. For example,

sequence, executes a list of Monadic values:

sequence :: Monad m => [m a] -> m [a]
sequence [] = return []
sequence (x:xs) =dor <-x

rs <- sequence xs

return (r:rs)

Sometimes, the programmer may want to execute IO actions only for their effect:

sequence_ :: Monad m => [m a] -> m (O

sequence = foldr (>>) (return ())

The function sequence_ executes the actions and throws away their results. Using the
functions sequence and sequence._, it is possible to write versions of the map function

that work over a list of Monadic values:

mapM :: Monad a => (b -> a ¢) -> [b] -> a [c]

CHAPTER 4. MONADS AND STATEFUL COMPUTATIONS IN HASKELL 60

mapM f as = sequence (map f as)

mapM_ :: Monad a => (b -> ac) -> [b] ->a O

mapM_ f as = sequence_ (map f as)

The function mapM applies a function that generates a monadic value to all the elements
of a list, executing the resulting actions. mapM_ executes the actions only for their effect,

hence it does not return any results.

4.2.1 Concurrent Haskell

Concurrent Haskell [PJGF96] is an extension to Haskell 98 to support concurrent pro-
gramming.

The main primitive for concurrency is forkI0 (Figure 4.21), it takes an I/O action
as an argument and forks a new thread that runs concurrently with the parent thread,
i.e., the one that made the call to forkI0. The forkI0 primitive returns immediately,
returning as a result an identifier for the forked thread. A thread can be put to sleep

for a number of microseconds by calling threadDelay.

forkIO :: I0 a => I0 ThreadId
threadDelay :: Int -> I0 ()
killThread :: ThreadId -> I0 ()

Figure 4.21: Concurrency primitives

In Figure 4.22 is an example of a Concurrent Haskell program. It forks two threads,
one that prints the string "Hello " while the other thread prints "World". There is
no way of telling how the strings will be printed on the screen as the execution may be
interleaved.

If we want threads to cooperate, a synchronisation mechanism is needed. In Con-
current Haskell, synchronisation is obtained by using MVars (see Figure 4.23). An MVar
is a mutable location, providing implicit synchronisation, that can be either empty or
contain a value of type a. The putMVar primitive writes a value into the MVar, and in

case it is full, it blocks until the MVar becomes empty. A call to takeMVar will empty

CHAPTER 4. MONADS AND STATEFUL COMPUTATIONS IN HASKELL 61

main = do
forkI0 th
forkI0 th2
where
th :: 10 O
th = putStr "Hello "
th2 :: 10 O
th2 = putStr "World"

Figure 4.22: Example using threads

the MVar, and in case it was empty it will block until another thread fills the MVar by

calling putMVar.

data MVar a —-- abstract

newEmptyMVar :: I0 (MVar a)

takeMVar :: MVar a -> I0 a
putMvVar :: MVar a -=> a -> I0 ()
isEmptyMVar :: MVar a -> IO Bool

Figure 4.23: MVars

In the example of Figure 4.24, an MVar is used to synchronise two threads, so th2
will always print the string "World!!\n" after the thread thl has printed the string
"Hello ".

Concurrent Haskell is described in details in [PJGF96, PJ01].

4.3 Semantics of Monadic 10 and Concurrency

4.3.1 Basic IO

The semantics for monadic IO described in this text is a review of the the work pre-
sented in [PJ01, MPJMRO1], and is the basis for the semantics for the mobile language
described in Chapter 5. The semantics is divided in two levels: an inner denotational
semantics for the behaviour of pure terms that is not described here, e.g., could be
based on [MLPJ99]; and an outer monadic transition semantics for the behaviour of
I0 computations.

In figure 4.25 we present the syntax of a simple Haskell like functional language. M

CHAPTER 4. MONADS AND STATEFUL COMPUTATIONS IN HASKELL 62

main = do
mvar <- newEmptyMVar
forkI0O (thl mvar)
forkI0 (th2 mvar)
where
thl :: MVar () -> I0 ()
thl mvar = do
putStr "Hello "
putMVar mvar ()
th2 :: MVar () -> I0 ()
th2 mvar = do
_ <- takeMVar mvar
putStr "World!!\n"

Figure 4.24: Example using threads and MVars

and N range over terms and V over values. A value is something that is considered by

the inner, purely-functional semantics as evaluated. Primitive monadic I0 operations

z,y € Variable
k € Constant
con € Constructor
c € Char
Values % w= \z—>M | k|conMy---M,|c
| return M | M >>= N
| putChar c¢| getChar
Terms M,N = z|V|M N |if M then N; else Ny |---
Evaluation contexts E w= []|E>»>=M

Figure 4.25: Syntax of a Basic Stateful Functional Language

are treated as values. For example, putChar ‘c’ is a value. No further work can be
done on this term in the purely-functional world. Note that some of these monadic I0
values have arguments that are not arbitrary terms but are themselves values (e.g., c).
So putChar ‘A’ is a value but putChar (ch 65) is not. putChar is a strict data con-
structor. The reason for this choice is that evaluating putChar’s argument is something
that should be done in the purely-functional world.

The transition from one program state to the next may or may not be labelled by

CHAPTER 4. MONADS AND STATEFUL COMPUTATIONS IN HASKELL 63

an event, a. So we write a transition like this:
P Q Q

The event « represents communication with the external environment; that is, input
and output.

In order to make it easier to describe which is the next transition rule to be applied,
evaluation contexts are used. An evaluation context E is a term with a hole [-], and its
syntax is presented in figure 4.25. The symbol [-] indicates the location of the hole in
an expression and E[M] is used to show that the hole in E is being filled by the term
M. Example:

E; =[] >>= (\c— > putChar (toUpper c))

E; [getChar | = getChar >>= (\c— > putChar (toUpper c))

Using evaluation contexts, the basic transition rules for monadic actions are given
in Figure 4.26. The first rule says that a program consisting only of putChar ¢ can
make a transition, labelled by !¢, to a program consisting of return (). The second
rule describes in a similar way the input of a value. The third rule explains how to
evaluate pure functional expressions in a program. If a term M has value V', computed
by the denotational semantics of M (e[[M]]), then M can be replaced by V at the active

context.

{E[putChar c |} kg {E[return ()]} (PUTC)
{ElgetChar |} 7¢ {E[return c|} (GETC)

{E[return N >>= M|} {E[M N]} (LUNIT)

_)

M=V MZV
Sy PV

Figure 4.26: Basic Transition Rules

In Figure 4.27 we present the evaluation of the following program:

main = getChar >>= \c ->

putChar (toUpper c)

CHAPTER 4. MONADS AND STATEFUL COMPUTATIONS IN HASKELL 64

using the rules of Figure 4.26. The first transition is made by using the context F;
(presented before) and the rule (GETC). In the example we assume that character
delivered by getChar was ’a’. The next rule that can be applied is (LUNIT), and
the result is a function application. This evaluation is carried out by the denotational
semantics of the purely-functional part of the language as stated in rule (FUN), using
normal beta-reduction. Notice that as putChar is a strict constructor, e[[]] produces
putchar ’A’ and not putChar (toUpper ’a’). Next, the evaluation continues by

applying the rule for putChar that prints the character and then the program is finished.

{ getChar >>= (\c— > putChar (toUpper c))}
Ta { return ‘a‘ >>= (\c— > putChar (toUpper c))} (GETC)

— {(\c— > putChar (toUpper c)) ‘a‘} (LUNIT)
— {putChar ‘A‘} (FUN)
la; {return ()} (PUTC)

Figure 4.27: Example of evaluation using transition rules

4.3.2 Concurrency and MVars

In figure 4.28, the syntax presented in the last section is extended to support MVars
and concurrency. New values are added to represent the new IO operations, the name
of an MVar m, a thread ¢t and a thread delay d. The program states are extended
by adding MVars and named threads where (M),, represents a MVar m containing
value M, ()., represents the empty MVar, and {M }; represents a thread called ¢. The
program state can be the parallel composition of threads and MVars. The structural
congruence and structural transitions for program states are presented in figure 4.30.

The new transition rules are given in figure 4.29. The rules (FORK) and (NEW M)
work in a similar way: if the next IO action in the program is to create a new MVar or
thread, it makes a transition to a new state in which the main program is in parallel
with the new MVar/thread. The names v and m are arbitrary names that must not
already be used in M or in the evaluation context E.

The (TAKEM) rule says that if the next IO action to be performed is takeMVar
m, and it runs in parallel with a MVar m containing the value M, it can be replaced

by return M and the MVar is emptied.

CHAPTER 4. MONADS AND STATEFUL COMPUTATIONS IN HASKELL 65

m € Mvar
t € ThreadId
€ Integer
v = ..forkIO M |threadDelayd |t |d

| putMVar m N | takeMVar m| newEmptyMVar |m

PQ,R == ..
| {M}; A thread called ¢

| P|Q Parallel Composition

| (M), An Mvar called m containing M
| () An empty MVar called m

| vz.P Restriction

Figure 4.28: Extended Syntax for Concurrency

u ¢ fn (M,E)
{E[forkI0 M]}; — vu.({E[return ul}: | {M}y)

(FORK)

m ¢ fn (E)
{E[lnewEmptyMvar|}; — vm.({E[return m]}; | ()m) (NEWM)
{E[takeMVar m]}; (M), — {E[return M]}; | ()m (TAKEM)
{E[putMVar m M]}; |()m — {E[return ()]}: | (M), (PUTM)

{{ElthreadDelay d]}; } $d {{Elreturn ()]};} (DELAY)

Figure 4.29: Extended Transition Rules for Concurrency and MVars

Note that now the semantics has became non-deterministic: if two threads take a
value out of a MVar, the semantics does not specify which will succeed. Once the MVar
is empty the other thread will not be able to continue while another value is not put
into the MVar.

The blocking of a thread is not modelled in the rules. If a thread tries to get a
value out of an empty MVar, what happens is that there is no valid transition rule to
be applied, hence the thread stays blocked until another thread puts a value into the
MVar.

In the transition for threadDelay, a new event ($d) is introduced, which means
that d microseconds elapsed. In this case, delay is modelled as an interaction with an

external clock.

CHAPTER 4. MONADS AND STATEFUL COMPUTATIONS IN HASKELL 66

PlQ = Q|P (COMM)
Pl(QIR) = (P|IQR (45500C)
Pl(QIR) = (PIQR (45500C)

vewvy.P = wvywvz.P (SWAP)
(vz.P) |Q = vz.(P|Q), z¢ fn(Q) (EXTRUDE)
ve.P = vy.Ply/z], y¢& fn(P) (ALPHA)
P o Q
TR i}) OTE (PAR)
P o Q
vx. P é ve.Q) (NT)
PEP'PIQQ'Q'EQ
P o Q (EQUIV)

Figure 4.30: Structural congruence, and structural transitions

Here is an example program that will be reduced using the semantic rules:

main = newMVar 0 >>= \m ->
takeMVar m >>= \v —>

putMVar m (v+1)

The program creates a new MVar using newMVar, that has a similar transition rule to
(NEWM), the difference being that it creates a MVar filled with an initial value. Then
it takes the value, increments it, and writes it back into the MVar.

In Figure 4.31, the program is reduced using the transition rules (names have been

abbreviated to save space).

{newM 0 >>= \m— > takeMm >>= \v— > putMm (v + 1)};

— vm.({return m>>=\m— > takeMm >>=\v— > putMm (v+1)}; | (0),) (NEWM)
= vm.({(\m— > takeMm >>=\v— > putMm (v+1)) m}s| (0O)) (LUNIT)
— vm.({takeM m>>=\v— >putMm (v+1) };| (O)m) (FUN)
— vm.({return 0>>=\v—>putMm (v+1) };| {)m (TAKEM)
= vm.({(\v—>putMm (v+1)) 0};| m) (LUNIT)
v ({puttm (0+1) b | () (FUN)
— vm.({return ()};| {0+ 1)) (PUTM)

Figure 4.31: Example of evaluation using the rules for MVars

CHAPTER 4. MONADS AND STATEFUL COMPUTATIONS IN HASKELL 67

4.4 Summary

Monads are a general technique to structure functional programs. A monad describes
how to combine computations into a new computation and defines functions that ab-
stract away the code for combining computations. There are a number of different
monads and this Chapter described how to perform I/O and Concurrency in Haskell
using the I0 Monad. The I0 monad solves two of the main problems in performing
stateful computations in a lazy purely functional language: order of evaluation and
side effects. In a lazy language, there is no order of evaluation for expressions and
it is difficult to predict when a command, e.g., for printing a value on the screen,
will be executed. The I0 monad solves this problem by introducing an order for the
evaluation of impure expressions. The I0 monad also helps with the problem of in-
troducing effects in a purely functional language, as it makes the effects explicit in
the type system. Hence in Haskell, the I0 monad works as a sub-language for writing
stateful programs, and the purely functional part of the language can be used to write
new control structures that manipulate stateful computations. Although monads can
be written in any programming language, Haskell provides special support for them

through its type classes.

Chapter 5

Mobile Haskell

The high-level techniques used in process migration or implicit mobility does not scale
well on large scale distributed systems, such as the Internet [MDW99, FPV98|.

In mobile languages that work on global networks, the underlying network must
be visible to the program, hence programming is location aware and the mobility of
computations is under the programmer’s control i.e., mobility is explicit, as discussed
in Chapter 2.

Although mobile computation provides a more scalable programming paradigm for
global networks compared to traditional approaches, distributed mobile systems are
difficult to engineer, manage and reason about as programs do not remain static in
one location. We argue that a language for mobile computation should be based on
a very small set of primitives, with a well understood semantics, that should act as
building blocks for higher-level abstractions in the language. The primitives should be
sufficiently low level to be efficiently implemented, have simple clean semantics, and
provide abstractions similar to process calculi. This Chapter presents mHaskell (Mobile
Haskell), a superset of Concurrent Haskell (see Figure 5.32), for the implementation of
distributed mobile programs. mHaskell extends Haskell with a small set of higher-order
communication primitives including MChannels or Mobile Channels. MChannels allow
the communication of any Haskell value, including IO computations, functions, and
channel names.

The objective of an ezplicit mobile program is usually to exploit the resources avail-
able at specific locations. Resources include databases, programs, or specific hardware.

As a result mobile programs are usually stateful and in a purely functional language

68

CHAPTER 5. MOBILE HASKELL 69

must be carefully managed to preserve referential transparency. This is in contrast to
parallel functional languages, where stateless computations are freely distributed across
locations to reduce runtime. Stateful operations in Haskell, as described in Chapter 4,
are encapsulated inside of an abstract data type of I/O actions, and in mHaskell, all
mobility primitives are kept inside of the IO monad. Haskell computations are first-
class values, i.e., functions can receive actions as arguments, return actions as results,
and actions can be combined to generate new actions. The crucial implication for a
mobile language is that computations can be manipulated and new abstractions over

computations defined.

Concurrlent

Haskel

Haskell 98

Figure 5.32: mHaskell is an extension of Concurrent Haskell

5.1 mHaskell Design

5.1.1 MChannels

Mobile Haskell or mHaskell is a modest conservative extension of Concurrent Haskell
[PJGF96]. It enables the construction of mobile applications by introducing higher
order, single reader, communication channels called Mobile Channels, or MChannels.
MChannels allow the communication of arbitrary Haskell values including functions,
IO actions and channels. Figure 5.33 shows the MChannel primitives.

The operational semantics of these primitives is given in Section 5.2, but we start
with an informal explanation. The newMChannel function is used to create a mobile
channel and the functions writeMChannel and readMChannel are used to write/read

data from/to a channel. MChannels provide synchronous communication between

CHAPTER 5. MOBILE HASKELL 70

data MChannel a -- abstract

type HostName = String

type ChanName = String

newMChannel :: I0 (MChannel a)

writeMChannel :: MChannel a -> a -> I0 O
readMChannel :: MChannel a -> I0 a
registerMChannel :: MChannel a -> ChanName -> I0 ()
unregisterMChannel :: MChannel a -> I0()
lookupMChannel :: HostName -> ChanName ->

I0 (Maybe (MChannel a))

Figure 5.33: Mobile Channels

b 2.
i FegisterM channel mch " myCh® e \Ic\)cgk‘upM Channel " ushashw.ac.uk" " myCh"
Prog 1 - hrog2
3. Connection is
established
ushas.hw.ac.uk Ixtrinder.hw.ac.uk

Figure 5.34: Example using MChannels

hosts. When used locally, they have similar semantics to Concurrent Haskell chan-
nels. When a readMChannel is performed in an empty MChannel it will block until
a value is received on that MChannel and, when a value is written to a MChan-
nel, the current thread blocks until the value is received in the remote host. The
functions registerMChannel and unregisterMChannel register/unregister channels
in a name server. Once registered, a channel can be found by other programs using
lookupMChannel, which retrieves a mobile channel from the name server. A name
server is always running on every machine of the system and a channel is always reg-
istered in the local name server with the registerMChannel function. MChannels are
single-reader channels, meaning that only the program that created the MChannel can
read values from it. Values are evaluated to normal form before being communicated,
as explained in Section 5.1.4.

Figure 5.34 depicts a pair of simple programs using MChannels, and the code for
this program is in Figure 5.35. First a program running on a machine called ushas

registers a channel mch with the name "myCh" in its local name server. When registered,

CHAPTER 5. MOBILE HASKELL 71

--code on ushas:

main = do
mch <- newMChannel
registerlMChannel mch "myCh"
result <- readMChannel mch
result

-- code on lxtrinder:

main = do
mch <- lookupMChannel "ushas.hw.ac.uk" "myCh"
case mch of
Just channel -> writeMChannel channel (print "Hello!")
Nothing -> print ("Error: Couldn’t find channel!")

Figure 5.35: Example using MChannels

the channel can be seen by other locations in the network using the lookupMChannel
primitive. After the lookup, the connection between the two machines is established and

communication is performed with the functions writeMChannel and readMChannel.

5.1.2 Discovering Resources

One of the objectives of mobile programming is to better exploit the resources available
in a network, as discussed in Chapter 2. Hence, if a program migrates from one location
of a network to another, this program must be able to discover the resources available

at the destination e.g., databases, local functions, load information, etc.

type ResName = String

registerRes :: a -> ResName -> I0 ()
unregisterRes :: ResName -> I0 ()
lookupRes :: ResName -> I0 (Maybe a)

Figure 5.36: Primitives for resource discovery

Figure 5.36 presents the three mHaskell primitives for resource discovery and regis-
tration. All locations running mHaskell programs must also run a registration service
for resources. The registerRes function takes a name (ResName) and a resource (of

type a) and registers this resource with the name given. The function unregisterRes

CHAPTER 5. MOBILE HASKELL 72

unregisters a resource associated with a name, and lookupRes takes a ResName and
returns a resource registered with that name in the local registration service. To avoid
a type clash, if the programmer wants to register resources with different types, she has
to define an abstract data type that will hold the different values that can be registered.

A better way to treat type clashes is to use dynamic types. The GHC [Mar05]
Haskell compiler has basic support for dynamic types, providing operations for injecting
values of arbitrary types into a dynamically typed value, and operations for converting

dynamic values into a monomorphic type:

toDyn :: Typeable a => a -> Dynamic
fromDyn :: Typeable a => Dynamic -> a -> a

fromDynamic :: Typeable a => Dynamic -> Maybe a
The following simple example shows how dynamic types can be used:

let list = [toDyn not,toDyn (id::Int->Int)] in
let myNot = fromDyn (head list) in

myNot True

In the program, 1ist has type [Dynamic]. Note that the polymorphic function id ::

a -> a must be cast into a monomorphic type in order to become a dynamic value.

5.1.3 A Simple Example

Figure 5.37 shows an mHaskell program that computes the load of a network. It visits
a listomachines and executes the computation called mobile on all the machines of
the list.

The function sendMobile is mapped over the listofmachines by the mapM on the
second line of the program. It creates a new channel used to get the result of the
computation back to the main program, and sends mobile to be executed remotely,
through the "servermch" channel. The locally defined function exec simply executes
the computation and sends the result back through the mch channel.

The server, that must execute on every location in listofmachines, can be seen
in Figure 5.38. It registers a channel mch, and a resource getLoad in its local naming

services and enters in a loop that reads actions from a channel and executes them.

CHAPTER 5. MOBILE HASKELL 73

main = do
list <- mapM (sendMobile mobile) listofmachines
let v = sum list
print ("Total Load of the network: " ++ (show v))
where
mobile = do
res <- lookupRes '"getLoad"
case res of
Just getlLoad -> getlLoad
Nothing -> return 0
listofmachines = (...)

sendMobile:: I0 Int -> HostName -> I0 Int
sendMobile comp host = do
mch <- newMChannel
mc <- lookupMChannel host "servermch"
case mc of
Just cmc -> do
writeMChannel cmc (exec mch comp)
readMChannel mch
Nothing -> return O
where
exec mch comp = do
result <- comp
writeMChannel mch result

Figure 5.37: Program that computes the load of a network

This program, as described in Section 5.1, can be written more elegantly using the

high level abstractions presented in Chapter 5.

5.1.4 Evaluating Expressions Before Communication

MChannels are hyper-strict: values communicated are evaluated before being sent. The
reason for this design decision is that lazy evaluation makes it difficult to reason about

what is being communicated. Consider the following example:

let (a,b,c) = f x in
if a then

writeMChannel ch b

Suppose that the first element (a) of the tuple returned by £ x is a Boolean, the second

(b) an integer, and the third (c) is a large data structure. Based on the value of a, the

CHAPTER 5. MOBILE HASKELL 74

main = do

mch <- newMChannel

registerMChannel mch "servermch"

registerRes getLoad "getLoad"

server mch

where server mch = do

action <- readMChannel mch
action
server mch

Figure 5.38: Code for the server

program selects to send the integer b (and only b) to a remote host. In the example, it
seems that the only value being sent is the integer, but because of lazy evaluation that
is not what happens. In the beginning of the evaluation, the expression is represented

by a graph similar to the one in figure 5.39.

a= getFirst
b= getSecond (f x)
c=| getThird

Figure 5.39: Graph for let (a,b,c) = f x

At the point where writeMChannel is performed, the value b is represented in the
heap as the selector that gets the second value of a tuple applied to the whole tuple. If
writeMChannel does not evaluate its argument before communication, the whole value
is communicated and this is not apparent in the Haskell code.

The evaluation of thunks (reducible expressions) affects only pure expressions, or
expressions that can be evaluated using seq. 10 computations will not be executed
during this evaluation step as they are already in normal form, as can be seen in the
semantics of IO actions in Section 4.3.

At a first glance, this evaluation step may seem “unnatural” in a language like
Haskell. But in reality, it does not really affect most programs. The objective of

a mobile program is usually to interact with resources on remote locations. Hence,

CHAPTER 5. MOBILE HASKELL 75

mobile programs are usually stateful computations in the IO monad, and, as explained
before, the evaluation step does not execute 1O actions.

There are still ways of sending pure expressions to be evaluated on remote hosts,
e.g., a tuple with a function and its arguments can be sent, and the function is applied

to the values only on the remote end.

5.1.5 Sharing Properties

Many non-strict functional languages are implemented using graph reduction, where a
program is represented as a graph and the evaluation of the program is performed by
rewriting the graph. The graph ensures that shared expressions are evaluated at most
once [PJ92b].

Maintaining sharing between nodes in a distributed system would result in a gen-
erally large number of extra-messages and call-backs to the machines involved in the
computation (to request structures that were being evaluated somewhere else or to
update these structures). In a typical mobile application, the client will receive some
code from a channel and then the machine can be disconnected from the network while
the computation is being executed (consider a handheld or a laptop). If we preserve
sharing, it is difficult to tell when a machine can be disconnected, because even though
the computation is not being executed anymore, the result might be needed by some
other application that shared the same graph structure. The problem is already par-
tially solved by making the primitives strict: expressions will be evaluated just once
and only the result is communicated.

In mHaskell, computations are copied between machines and no sharing is preserved

across machines, although sharing is preserved in the value being communicated.

5.1.6 Single-Reader Channels

MChannels are single-reader channels, for two main reasons. First, it is difficult to
decide where a message should be sent when we have more than one machine reading
values from the same channel. The main question is where is this channel located?
Channels with multiple readers need to maintain a distributed state, keeping track
of all the machines that have references to the channel, and these references must be

updated every time the channel is moved to another place.

CHAPTER 5. MOBILE HASKELL 76

A simple way to implement multiple reader channels is to use a home server, keeping
the channel in one place, the place where it was created, and all other references to
the channel read and write values into the channel by sending messages to this main
location. The problem with this approach is that if the main location crashes all
the other locations that have references to the channel cannot communicate anymore
(Figure 5.40). An implementation of multiple-reader channels using a home server and

single-reader MChannels, is described in Section 5.4.1.

MChanndl A
[TTT1]
//) >
.-~ Location1 N
writeM Channel A réédMChannel A
Location 2 Location 3

Figure 5.40: Machines 2 and 3 cannot communicate if Machine 1 crashes

The second reason is security: with multiple reader channels one process can pretend
to be a server and steal messages. This is a classic problem also found in the untyped

w-calculus [Mil99], as illustrated in Section 5.4.1.

5.2 Operational Semantics

This Section gives the operational semantics for MChannels by extending the seman-
tics for monadic IO presented in [PJ01, MPJMRO1], and reviewed in Chapter 4. The
semantics is relatively low-level, and accurately models the implementation of MChan-
nels. As described in Chapter 4, the semantics has two levels: an inner denotational
semantics for pure terms that is standard and not described here, and an outer transi-
tional semantics describing the 10 actions and MChannels. Our extensions only affect
the transitional semantics.

In Figure 5.41, we extend the syntactic and semantic domains for IO actions with
MChannels. New variables are added to represent MChannel identifiers (c), location

names (s), MChannel names (n), and remote references to MChannels (r). The new

CHAPTER 5. MOBILE HASKELL 7

primitives on MChannels are added to the syntactic domain of the language. The
semantic domain is augmented with a data structure representing MChannels, which
is recursively defined and uses list-like operations for adding an element to the front
and appending an element to the end. We don’t give a formal definition of this data
structure here, but observe that it is used as a queue. The overall state L is defined as
a finite map from location names (s) to single-processor states (P). Thus, L(s) = {M };
describes that M is being executed at location s. We write L(s, P) to indicate that the

finite map L is extended with the binding s — P, shadowing any previously binding of

sin L.
c € MChannel MChannel identifier
s S LName Names of locations in the distributed system
n € MName MChannel names
€ € MName an empty MChannel name
Th@s € RRef Remote Reference to MChannel n at location s
Value |4 = ... | newMChannel | writeMChannel ¢ M
| readMChannel ¢ | registerMChannel c n
| unregisterMChannel n | lookupMChannel sn|s|n|e
SState P,Q,R == ..
| C5 An MChannel ¢ with name n
State: Exp L u= LName — SState
Mchannel (05 a= ()5 An empty MChannel ¢ with name n
| M:C,, A MChannel c¢ with head value M and tail C
| C: +(M);, A MChannel ¢ with M as the last element

Figure 5.41: Extended syntactic and semantic domains of the language with MChannels

The transition rules for MChannels are presented in Figure 5.42. Common congru-
ence rules, such as commutativity and associativity of |, follow from the observation
that the semantics for Concurrent Haskell [PJ01] is a special case of our semantics
for just one processor. Rule (NEWC) creates a new state with an empty MChannel
that has no name (¢), and executes in parallel with the current thread. The (REGC)
and (UNREGC) rules set and unset the name n of a MChannel. The readMChannel
primitive, reads a term M from a local MChannel. It returns the first element in the
structure, and cannot be applied to a remote reference, reflecting the fact that the
MChannels are single reader channels: only threads running on the location where

the MChannel was created can read from it. The 1ookupMChannel function, returns a

CHAPTER 5. MOBILE HASKELL 78

¢ & fn (E)
L(s,{E[newMChannell]};) — L(s, ve.({E[return cl};) | ()S))

€

L(s,{E[registerMChannel c n]}; | C5) — L(s,{E[return ()]};) | C5) (REGO)

(NEWC)

L(s, {E[unregisterMChannel |}, | C;) — L(s, {E[return ()]}:) | CS) (UNREGC)
L(s,{E[readMChannel c|}; | M : Cf) — L(s,{E[return M]};) | C{) (READC)

r & fn(E) L(s' {E[M']}¢ | Cp)
L(s, {E[lookupMChannel s’ n]};) — L(s,vr.({E[return r,as]}i))

L(s,{E[writeMChannel ¢ M]}; | C:) — L(s, {E[return ()]}¢) | C5 +{(M)¢) (WRITECI)

n

(LOOKUPC)

L(s,{E[writeMChannel r,as M]}:) (s', {E[M']}¢ | C5) = (WRITECY)
L(s,{E[return ()]}:) (s', {E[M']}v | C, +(V')},)
where V' = forceThunks M

Figure 5.42: Transition rules for the language with MChannels

remote reference r,ay to a remote MChannel at location s', if it exists. Otherwise it
should return the value Nothing, but this is left out of the semantics for simplicity. The
writeMChannel primitive can be applied to the identifier of a MChannel that runs on
the same location or to a remote reference. Rule (WRITECI) specifies that writing to
a local MChannel appends the value, M, as the last element. Rule (WRITECT) states
that if writeMChannel is executed at location s, and is applied to a reference r,qy to
a channel located at s’, the term M is sent to location s’ and written into the channel.

Before M is communicated the function forceThunks is applied to it which

e Forces the evaluation of pure expressions (thunks) in the graph of the expression

M, without executing the monadic actions
e Substitutes every occurrence of a MChannel in the graph by a remote reference.

The function forceThunks is not formalised here, although it can be defined in the
semantics of a language with an explicit heap with thunks such as [TA03].
In Figure 5.43 we present the evaluation of the following mHaskell program using

the semantics:

server = newMChannel >>= \mch ->
registerMChannel mch n >>

readMChannel mch >>= \io ->

CHAPTER 5. MOBILE HASKELL 79

io

client = lookupMChannel s’ n >>= \mch ->
writeMChannel mch hello
where

hello = print "Hello " ++ "World"

The server program creates and registers an MChannel with a name n, and waits
for computations on that MChannel. The client sends the computation print "Hello
" ++ "World" to be executed on the server. There are two important things to notice
in the evaluation. Firstly, the non-determinism of the semantics: as in a real system,
if the client looks for a channel before the server registers it, the program fails at
the (LOOKUPC) rule. Secondly in the evaluation of thunks, the strings "Hello "
and "World" are concatenated before communication occurs, but IO actions are not
evaluated by forceThunks, hence evaluation of print "Hello world" occurs only on
the server s'.

server :
L(s', {newMC >>= \mch— > regMCmch n>> readMC mch >>= \io— > io};)
— L(¢', ve.({return ¢ >>= \mch— > regMC mch n>> readMC mch >>= \io— > io}: | ()¢))
(NEWC)
L(s', ve.({(\mch— > regMC mch n>> readMC mch >>= \io— > io) c}:+ | (}¢)) (LUNIT)

L(s', ve.({reghMC ¢ n>> readMC c>>= \io— > io}: | {}¢)) (FUN)
L(s', ve.({readMC c>>= \io— > io}: | {)%)) (REGC)

14l

client :
L(s,{lookup s' n >>= \mch— > writeMC mch hello};)
L(s, vr.({return r,qs >>= \mch— > writeMC mch hello};)) (LOOKUPC)

(

— L(s, vr.({(\mch— > writeMC mch hello) r,g. }:)) (LUNIT)

L(s, vr.({writeMC r,q, hello}:)) (FUN)
- L(¢, ({readMC c>>= \io— > io}; | (print “Hello World”);)) (WRITECY)
— L(s¢', ve.({return(print “Hello World”) >>= \io— > io}: | (}%)) (READC)
— L(¢', ve.({(\io— > io) (print “Hello World”)}: | ()%)) (LUNIT)
— L(s', ve.({(print “Hello World”}: | {)3)) (FUN)
S L(s' ve.({(return O} | 02)) (PRINT)

Figure 5.43: Example of evaluation using the semantics

CHAPTER 5. MOBILE HASKELL 80

5.3

5.3.1

The Implementation

Introduction

The main features of mHaskell’s implementation are:

mHaskell is portable. It is implemented as an extension of the GHC (Glasgow
Haskell Compiler) [Mar05] compiler that has been ported to many different archi-
tectures and operating systems. Our extensions are implemented using standard

C and TCP/IP sockets, maintaining a high degree of portability.

mHaskell is designed to run on heterogeneous networks. Mobile languages de-
signed to work on global distributed systems, such as the Internet, must be able
to communicate code between machines of different architectures and operat-
ing systems. The usual approach for communicating computations on heteroge-
neous networks is by compiling programs into architecture-independent byte-code.
GHC combines both an optimising compiler and an interactive environment called
GHCi, which compiles user defined functions into byte-code, and this technology
could be used by mHaskell for communicating computations on heterogeneous

networks.

In mHaskell it is possible to combine interpreted and compiled code. GHCi
is designed for fast compilation and linking. It generates machine independent
byte-code that is linked to the fast native-code available for the basic primitives
of the language. As the basic modules in GHC are compiled into machine code
and are present in every standard installation of the compiler, the routines for
communication have to send only the machine independent part of the program
and link it to the local definitions of the machine dependent part when the code
is received. This gives us the advantage of having much faster code than using

only byte-code, and also reduces the amount of data being communicated.

In the next sections we describe in more detail the implementation.

5.3.2 Packing Routines

The graph representing the computation being communicated is packed at the source

and u

npacked at the destination. The mHaskell pack and unpack routines are based on

CHAPTER 5. MOBILE HASKELL 81

the GUM [THM™96] system, described in Chapter 3, but are extended to pack GHCi’s
Byte-Code Objects (BCOs).

Packing, or serialising, arbitrary graph structures is not a trivial task and care
must be taken to preserve sharing and cycles. As in GPH [THM196], GpbH [PTL00]
and Eden [BLOMP97], packing is done breadth-first, closure by closure and when the
closure is packed its address is recorded in a temporary table that is checked for each
new closure to be packed to preserve sharing and cycles. The packing routine proceeds

packing until every reachable graph has been serialised.

BCO

Info Pointer Instructions Pointers Info Tables

Info Table

Y

Figure 5.44: The Byte-Code Object

The main heap object to be packed in our implementation of mHaskell is the BCO
(Figure 5.44), i.e., GHC’s internal representation for its architecture-independent byte-
code. A BCO is composed of its info_table, which contains information about the
closure’s fields and also its entry code, a list of instructions, a list of pointers and a
list of info tables. The BCQ'’s info table is the same for every BCO and is available in
any standard installation of the compiler, so it does not need to be packed. Its list of
instructions is just a list of bytes and is packed easily. The list of pointers contains a
list of other closures that are used in the byte-code instructions, so all of them must
also be packed. The list of info tables contains pointers to info tables of data structures
that are constructed during the execution of the BCO’s instructions. Those info tables
are machine dependent hence are packed in a special way explained in section 5.3.3.

As the basic modules, e.g., prelude, that come with GHC are compiled into machine

code and are ubiquitous, i.e., they are present in every standard installation of the

CHAPTER 5. MOBILE HASKELL 82

compiler, the packing routines have to pack only the machine independent part of the
program and link it to the local definition of the machine dependent part when the code
is received and unpacked. Once packed, the BCO can be communicated in the way
described in section 5.3.5. All machines running the mobile programs should have the
same version of the GHC/GHC] system with an implementation of the primitives for
mobility and also have the same binary libraries installed. Programs that communicate
functions that are not in the standard libraries must be compiled into byte-code using
GHCi.

Our packing mechanism gives us a simple way of controlling the amount of code
communicated: since only functions that are compiled into byte-code are packed, if the
programmer knows that one module used in the computation is already in the remote
host, this module can be compiled into machine code, so it will not be communicated.

Programs that will only receive byte-code do not need to have GHCi installed
because the byte-code interpreter is part of GHC’s RTS. In fact, if only functions from
the standard libraries are used in the mobile programs, there is no need to have GHCi
at all in both ends of the communication.

We provide a very simple low level interface to the serialisation routines used to

implement mHaskell. The serialisation primitives are packV and unpackV:

packV :: a -> ID CString

unpackV :: CString -> I0 a

The packV primitive takes a Haskell expression and returns a C array with the

expression serialised, and unpackV converts the array back into a Haskell value:

main = do
buff <- packV plusone
newplusone <- unpackV buff
print ("result " ++
show ((newplusone::Int->Int) 1))
where
plusone :: 1Int ->Int

plusone x = x + 1

The example packs, unpacks and executes the function plusone. The packing

primitives, as detailed in the distributed web server case study presented in Chapter

CHAPTER 5. MOBILE HASKELL 83

7, can be used to implement other useful extensions to the compiler, e.g., a library for

persistent storage of programs.

5.3.3 Communicating User Defined Types

Currently, user defined data types (ADTs) are always compiled into machine code in
GHC, hence the code for the ADTs must be present in every location. There are
two ways to overcome this problem. The first one would be to compile the types into a
different type of closure that uses BCOs internally. This requires changing the compiler.
The other solution is to ship the data type including the values in its info table. The
entry code for these objects, which is not very complicated, has to be generated again
in the destination.

In the current implementation, all data types used in mobile programs must be
defined in all the machines that are going to receive the code. Only the name rep-
resenting its info table in the linker is packed together with the content of its fields.
When unpacking, the routine looks for the local definition of the info table by searching
for its name in the linker’s tables.

We consider an implementation of one of the two solutions described above, as a
tuning step in the development of the prototype implementation, aiming to reduce the

common software base needed on all machines.

5.3.4 Evaluating Expressions

Evaluating expressions before communication is not as trivial as it seems. A simple

way to evaluate thunks would be to use evaluation strategies, as described in Chapter 3:

¢...)
let list = "Hello " ++ "World!"

in writeMChannel mch list

where in the definition of writeMChannel we use the rnf strategy to evaluate its argu-
ment to normal form.

But strategies will not work in all cases. Consider the following example:

f:: a -> b -> Int

CHAPTER 5. MOBILE HASKELL 84

let
a=(...)

in writeMchannel ch (f a)

In this case it is not possible, inside of the definition of writeMChannel, to evaluate the
expression a using strategies as writeMChannel receives only a pointer to the whole

closure £ a. One solution to this problem would be to implement a function kids with

type:
kids:: HValue -> Array# HValue

That takes a value from the heap, the expression to be evaluated, and returns an array
with all the thunks pointed to by this value. Using kids it would be possible to write a
deepSeq :: a -> () function that recursively applies seq to all the thunks pointed
by its argument.

Another way to evaluate thunks is to do it inside the RTS: using a primitive function
that creates a new RTS thread to evaluate its argument to normal form by forcing the
evaluation of all the expressions pointed by the argument.

mHaskell uses an hybrid approach: a thunk in the top level of the graph representing
the computation is forced by a seq (as in figure 5.45). If there are other thunks in the
graph, these thunks are evaluated by an extra thread in the RTS. Care must be taken
to preserve the queue of closures yet to be packed if the new thread induces garbage
collection. The solution to this problem is to make the packing queue visible to the

Garbage Collector.

T Cons , Q

seq

-

Thunk

Thunk Thunk

Figure 5.45: Evaluation of thunks using seq

CHAPTER 5. MOBILE HASKELL 85

5.3.5 Implementation of MChannels

The implementation of MChannels is similar to Ports in Distributed Haskell [VF01].

Communication is implemented using a standard sockets library, thus avoiding the
need for any extra libraries like PVM or MPI. Haskell objects are serialised using the
packing routines explained before and converted into an array of bytes that can be
easily communicated through a socket using TCP/IP.

The channel data type is a simple Haskell data type that contains internally all the
information that will be needed for communication, i.e., the name of the channel, the
name of the host where it belongs and a Concurrent Haskell channel (CHC) through
which the communication between the program and the mobile runtime system occurs.
When a new MChannel is created also a CHC is created to serve as a communication
link between the program and the communication layer of the RTS. When a value
is written into a MChannel, it is in fact written into its CHC. When the MChannel
is a reference to a remote channel, the data is serialised and communicated to the
appropriate host based on the information present in the MChannel data type. When
the RTS receives a value from a remote host this value is written into the CHC that
represents the MChannel that should receive the message. A thread that reads a value
from an MChannel is in fact reading a value from the internal CHC and will stay
blocked in this CHC until a value is written by the RTS there.

To make MChannels visible to other machines in the network we use the register-
MChannel and lookupMChannel primitives. These primitives communicate with an ex-
ternal naming service that keeps listening for requests on a specific port. This service
maintains a table with all the MChannels registered in the machine in which it is run-
ning. It also communicates with lookups launched by other hosts looking for channels.
When a lookup is received, all the information about the channel is sent back to the
client, so the client can communicate directly with the program that is waiting for

requests on that channel.

5.3.6 mHaskell’s performance

Preliminary measurements show that mHaskell’s current implementation can be up to
20 times slower that than fast optimised implementations of mobile languages like Jo-

caml, and an order of magnitude slower than Java. The main reason for that is the

CHAPTER 5. MOBILE HASKELL 86

routine that recursively traverses the graph, forcing the evaluation of thunks before
packing. Every time a computation is sent, the graph has to be traversed twice: once
to force the evaluation and once for packing. It is not an option to force the evaluation
while packing because the evaluation of the graph might change what has been already
packed. As Jocaml is a strict language, the evaluation of expressions to be commu-
nicated occurs naturally. Moreover, Jocaml is built as an extension to the Objective
Caml compiler [OCa06], a compiler with fast built-in primitives for serialisation.
mHaskell’s implementation is still in its early stages and a lot of optimisations could
be performed. For example, in the program used in the experiments, the same function
is sent to different hosts and is repacked every time it is communicated. Such packed

computations could be stored for reuse.

5.4 Related Work

5.4.1 The 7-Calculus

MChannels are similar to w-calculus channels but with some differences. The main
difference is that MChannels are single reader channels, and only threads running on
the location where a channel was created, can read values from it. So, an MChannel
can have many senders but only one receiver. The main reasons for this decision, as
explained in section 5.1.6, are security, scalability and fault tolerance.

In the m-Calculus, if two processes share a channel, both can read from it, but only

one will succeed in reading a message sent by a third process:

v = Plz?w — Q| zla

As only one value is sent through z, only one expression, P or @), will be executed.
The m-calculus is a mathematical model of the changing connectivity of interactive
systems, and it does not take into account the existence of locations. Basically it only
models concurrency, and for that matter channels are only locations in memory that
are shared by concurrent processes, although the model provides many of the intuitions
needed in a distributed system, as explained in Chapter 2.

With multiple reader channels one process can pretend to be a server and steal
messages that are not supposed to be received by him. Its a classical problem of the

untyped w-calculus:

CHAPTER 5. MOBILE HASKELL 87

Suppose we have the following processes:

new p in (P|C1|Cs)

where P is a printer accessible via p, and C; and C5 are two clients:

Ci = plji — plja.()

CQ = b'p — ()

Looking at C, it seems that it sends jobs to be printed in the printer P and these
jobs are received and processed in the same order in which they are sent. But that is

not always true because we could have a malicious process Cls:

Cs = btz — z?75 — ()

that receives the name p from Cy and pretends to be the printer P. To solve this
problem we need to make sure that only P has reading capabilities in p, and that
all the other clients are only allowed to write values in p. This problem is solved by
adding types to m-calculus. As sub-typing is not available in Haskell, different types of
MChannels would be needed for reading and writing, as well as different primitives that
work on the different types. For simplicity, mHaskell has only one type of channels,
keeping the set of new primitives as small as possible.

The main objective in designing the mHaskell primitives was to make them simple
and expressive enough to be used as building blocks for higher-level abstractions. They
should be similar in abstraction to the mobility calculi primitives but with a semantics
realistic enough to be implemented efficiently in a real system, and scale on global
networks. That is why the operational semantics for MChannels is very low level,
although is still almost as simple as the 7-calculus semantics.

Multiple-readers channels can be easily simulated in mHaskell. Figure 5.46 shows
a simple implementation of 7-calculus like channels using a home server, as described
in Section 5.1.6. When a PIChannel is created, using newPIChannel, it is represented

by two MChannels, one used for communication with remote references that want to

CHAPTER 5. MOBILE HASKELL 88

data PIChannel a = PIC {
local ::(MChannel a),
remote :: (MChannel (MChannel a))
}

newPIChannel :: I0 (PIChannel a)
newPIChannel = do
mch <- newMChannel
com <- newMChannel
forkI0 (handleRequests mch com)
return (PIC mch com)
where handleRequests mch com= do
respch<- readMChannel com
v <- readMChannel mch
writeMChannel respch v
handleRequests mch com

writePIChannel :: PIChannel a -> a -> I0 ()
writePIChannel (PIC mch com) v = writeMChannel mch v

readPIChannel :: PIChannel a -> I0 a
readPIChannel (PIC mch com) = do
if (isLocal mch) then
readMChannel mch
else do
resp <- newMChannel
writeMChannel com resp
readMChannel resp

Figure 5.46: m-Calculus Channels implemented in mHaskell

read from the channel (com), and another in which the values are stored locally (mch).
The handleRequests thread reads from com, requests for reading the channel. Every
request is answered by reading from local channel mch and sending the value to the
remote location. Hence, the real channel stays in the host where newPIChannel is called,
and requests for reading the channel are forwarded to that host. The writePIChannel
function simply calls writeMChannel in order to insert values into the channel: it does
not matter if the channel is not local as MChannels can have multiple locations writing
to it. The readPIChannel function writes a value into mch if it is called in the location
where it was created, otherwise it asks the handleRequests thread to read the value

and send it back in a temporary channel resp.

CHAPTER 5. MOBILE HASKELL 89

5.4.2 Mobility in Haskell Extensions

This section compares some of the Haskell related languages with the concepts of mobile
languages presented in Chapter 2.

Eden [BLOMPY7] is a parallel extension of Haskell that allows the definition and
creation of processes. Eden extends Haskell with process abstractions and process in-
stantiations which are analogous to function abstraction and function application. Pro-
cess abstractions specify functional process schemes that represent the behaviour of a
process in a purely functional way, and process instantiation is the actual creation of a
process and its corresponding communication channels [KOMPY8]. Eden uses a closed
system model with location independence. All values are evaluated to normal form
before being sent through a port.

Eden and GPH (presented in Chapter 3) are simple extensions to the Haskell lan-
guage for parallel computing. They both allow remote execution of computation, but
the placement of threads is implicit. The programmer uses the par combinator in
GPH, or process abstractions in Eden, but where and when the data will be shipped is
decided by the implementation of the language.

GDH (Glasgow Distributed Haskell) is a distributed functional language that com-
bines features of Glasgow Parallel Haskell (GPH) [THLP98] and Concurrent Haskell
[PJGF96]. GDH allows the creation of impure side effecting I/O threads using the
forkI0 primitive of Concurrent Haskell but it also has a rforkI0 function for re-
mote thread creation (of type rforkI0 :: I0 () -> PEId -> I0 ThreadId). The
rforkIO0 function receives as one of its arguments the identifier of the PE (processing
element) in which the thread must be created. Thus, GDH provides the facility of cre-
ating threads across machines in a network and each location is made explicit, hence
the programmer can exploit distributed resources. Location awareness is introduced
in the language with the primitives myPEId which returns the identifier of the machine
that is running the current thread and allPEId which gives a list of all identifiers of
all machines in the program. Threads communicate through MVars that are mutable
locations that can be shared by threads in a concurrent/distributed system.

GDH seems to be closer to the concepts of mobility presented before. Commu-
nication can be implemented using MVars and remote execution of computations is

provided with the revalI0 (remote evaluation) and rforkI0 primitives (as explained

CHAPTER 5. MOBILE HASKELL 90

in Chapter 5, these primitives can be implemented in terms of MChannels). The prob-
lem in using GDH for mobile computation is that it is implemented to run on closed
systems. After a GDH program starts running, no other PE can join the computa-
tion. Another problem is that its implementation relies on a virtual shared heap that
is shared by all the machines running the computation. The algorithms used to imple-
ment this kind of structure might not scale well for large distributed systems like the
Internet. Furthermore, in the current implementation, the code for all remotely started
computations must be already present in the remote locations.

Haskell with ports or Distributed Haskell [FH01] adds to concurrent Haskell, monadic
operations for communication across machines in a distributed system. Thus local
threads can communicate using MVars and remote threads communicate using Ports.

Ports can be created, and used using the following commands:

newPort :: I0 (Port a)
writePort :: Port a -> a -> 10 ()
readPort :: Port a -=> I0 a

registerPort :: Port a -> PortName -> I0 ()

A Port is created using newPort. For a port to became visible to other machines
it must be registered in a separate process called postoffice using the registerPort
command. Once registered it can be found by other PEs using the lookupPort oper-
ation. Ports allow the communication of first-order values including ports. All values
are evaluated to normal form before sent to a remote thread.

Haskell with ports is a very interesting model to implement distributed programs
in Haskell because it was designed to work on open systems. The only drawback is
that the current implementation of the language restricts the values that can be sent
through a port, using writePort, to first-order values, or types that can instantiate the
Show class. This means that no functions or IQ computations can be communicated,
and the reason for this restriction is that the values of the messages are converted into

strings in order to be communicated [FHO1].

CHAPTER 5. MOBILE HASKELL 91

5.4.3 Functional Mobile Languages
Nomadic Pict Language

The Nomadic Pict Language [Woj00] extends the Pict [CT97] language with the ab-
stractions provided by the Nomadic 7-calculus [Uny01].

The language, as the calculus, provides abstractions for the creation and migration

of agents:
agent a =P in Q agent creation
migrate tos P agent migration

As in the calculus, agent a = P in Q spawns a new agent a on the current site
with body P and, after the creation of the agent, Q commences execution in parallel
with the agent. The migrate to s P primitive makes the whole agent migrate to site
s. After migrating, it starts the execution of P.

Channels, in the Nomadic Pict Language, only allow the communication of first-
order values like names, tuples and basic types. Communication between agents using
channels only occurs if the agents are in the same site, otherwise the agent has to
migrate to the site where its partner is located. The primitive used for interaction
between agents is iflocal, where the execution of iflocal <a>clv then P else Q in the
body of an agent b will send a message v to agent a, if the agents are in the same site,
and P will commence execution in parallel with the rest of the body of b. Otherwise
the message will be discarded, and Q will executed as part of b.

Nomadic-Pict [Woj00] was designed and implemented in Pawel Wojciechowski’s
Thesis, to study the problem of location independent communication between agents
in a distributed system. Location independent communication is provided by a higher-

level primitive:

c@alv
that sends message v to channel c located at agent a. The higher-level primitive is
implemented using the agent primitives, which are called low-level primitives.

mHaskell uses a completely different approach to model mobile computation than

CHAPTER 5. MOBILE HASKELL 92

Nomadic Pict. We start with low-level primitives that operate on Higher-Order chan-
nels, allowing the communication of any value of the language. Hence, mHaskell sup-
ports only weak mobility, while the only mobility supported by Nomadic Pict is strong,
as two mobile agents can only communicate through channels if they are on the same
location. In many cases, it can be very inefficient to migrate a whole agent to a location
if it only wants to communicate the result of a computation back, specially when deal-
ing with devices with limited resources, e.g., portable computers. Furthermore, in the
next two chapters, we show that Higher-order channels such as mHaskell’s MChannels
can be used to implement higher-level primitives for mobility i.e., remote evaluation,

strong mobility and location independent communication.

Jocaml

Jocaml [CF99] is an extension to Objective-Caml [OCa06] used to program systems
with mobile agents. Jocaml extends Objective-Caml with a small set of primitives
taken from the Join-Calculus [FG96]. The model is based on locations that gather both
agents and sites in a single abstraction, and channels, which are communication links

kept during migration of locations.

A B C Migration of the A B c
12 Location 15 to 12
11 | 14 Location 11 11 13 14
I5 15
16 16

Figure 5.47: Location Tree and Migration

The organisation of the locations can be seen as a tree (Figure 5.47): sites are
top-level locations which are created at the root of the tree (locations A, B and C in
figure 5.47), whereas agents are nested locations, i.e., locations which are created inside
other locations. As a consequence the migration of a location moves together all its
children in the tree.

A construct called definition is used to create channels and processes. When a mes-
sage is received on a channel, a new thread is created to execute the associated process.
All communication links are kept during migration and channels can be transmitted

between agents in messages. Channels can be synchronous or asynchronous.

CHAPTER 5. MOBILE HASKELL 93

Channels are links between one receiver and multiple senders. A simple synchronous

channel is defined as:
let def name(mesg) = P(mesg)

It creates a channel called name and a receiver that will create a new thread in the
agent to execute P for each message mesg received. Asynchronous channels are defined
by suffixing the channel name with !. Using join-patterns, is also possible to express

synchronisation in a channel definition. In the following example:
let def o!(a) | g!(b) = P(a,b)

the process P will only be executed if there are messages in channel v and in channel
g. In Jocaml, sites, agents and groups of agents are represented by an abstraction called

location:
let loc agent do process

This example creates a new agent named agent executing the thread process.

Remote Location:

loc remote end
do ns.register (("remote"), ushas.cee.hw.ac.uk)

Migrating Client:
loc client
init
let remote = ns.lookup("remote",ushas.cee.hw.ac.uk);

in go (remote); print_string("Hello Remote Host");
end

Figure 5.48: Simple mobile program in JoCaml

In figure 5.48, a simple mobile program written in JoCaml is presented. First
a remote location is created and registered in a name server, that is running on a
machine called ushas, using the ns.register command. Then a simple client program
that looks for a reference to the remote location in the name server and migrates to it,
where a string is printed.

Having locations that move, creates the same problem as having multiple reader

channels. Although channels in Jocaml are single reader, if a location where a channel

CHAPTER 5. MOBILE HASKELL 94

was created moves to a new location, all references to this channel must be able to
find it transparently. The channels provide location independent communication, and
a complicated infrastructure is necessary to support them. The migration of nested
locations also needs complicated algorithms to be implemented, to avoid race conditions
between the locations. The infrastructure necessary for such a high-level infrastructure
is difficult to be implemented in large scale networks. Furthermore, in Jocaml, there
is only one name server running for the whole distributed system. This server accepts
the registration of locations, channels and resources. If the name server is running on
host A, and a program running on B, migrates to C to use a local resource on C, it
still has to query the server in A to access the resource. Such centralised server can be
a bottleneck in larger applications for global networks, and a problem with the name

server can compromise the whole system.

Facile

Facile [GMP89] is a distributed functional language that extends Standard ML with
primitives for concurrency, distribution and imperative programming. In [Kna95], Kn-
abe extends the Facile language and compiler to support mobile computation. The
mobile version of Facile can be seen as a weakly mobile language that supports the
communication of higher order values through channels, similar to mHaskell, although
in mHaskell the communication primitives are kept in the IO Monad. In Facile the
programmer has to annotate all the potentially transmissible functions, using the xfun
keyword, so that the compiler knows that it has to generate transmissible representa-
tions for them. Making the programmer to annotate transmissible functions has some
disadvantages. Sometimes it is difficult to find exactly which functions are going to
be communicated, especially when higher order functions are used in the expressions.
If a function that is going to be sent through a channel is not annotated, a runtime
exception will be raised. With this in mind, programmers may choose to annotate
more functions than is necessary. In mHaskell, functions are already compiled into an
architecture independent representation, the BCO, hence no annotations are needed,
and modules in machine code are considered ubiquitous and are not communicated.
Another difference between Facile and mHaskell is in the way resources are accessed.
In Facile, the programmer has to implement proxies that contain the types of remote

resources that will be accessed by the mobile computation, and the mobile program,

CHAPTER 5. MOBILE HASKELL 95

during compilation, is typed checked against these proxies locally. If the mobile pro-
gram then migrates to the remote location and the type of the remote resource happens
to be different from the proxy, or the remote resource doesn’t exist, a runtime exception
will be raised. In mHaskell, the types of resources can be typed checked at runtime,
when the mobile computation arrives in the remote location, using dynamic types. If
the types don’t match, the mobile program can recover by migrating to a new location

or returning home.

Other Functional Mobile Languages

There are other extensions to functional languages that allow the communication of
higher-order values. Kali-Scheme [CJK95] and Erlang [Erl06] are examples of strict
weakly typed languages that allow the communication of functions. Haskell is a stati-
cally typed language hence the communication between locations can be described as
a data type and many mistakes can be caught during the compilation of programs.
Curry [Han99] is a functional logic language that provides communication based
on Ports in a similar way to the extension presented in this Thesis. Goffin [CGK98]
is a Haskell extension for concurrent constraint programming using ports but there is
no distributed implementation of the language available yet. Another language that is
closely related to our system is Famke [vWP02]. Famke is an implementation of threads
for the lazy functional language Clean [NSvEP91] (using monads and continuations),
together with an extension for distributed communication using ports. Famke has only
a restricted form of concurrency, providing interleaved execution of atomic actions using

a continuations monad.

Comparison

We argue in the Introduction of this Chapter that a language for mobile computation
should provide a small set of primitives for mobility, that are similar to process calculi
primitives, with a simple semantics, and that these primitives should be expressive
enough in order to model the main mobility dialects, including high-level abstractions
for mobility. MChannels are a Haskell extension for communication that is different
from any other Haskell extension as they allow the communication of any Haskell value
on open networks, including functions and I0 computations. MChannels are similiar to

m-calculus channels (see Section 5.4.1), and have a simple operational semantics that

CHAPTER 5. MOBILE HASKELL 96

Table 5.6: Comparing Functional Languages for Mobile Computation

Jocaml Nomadic-Pict | Kali | Facile mHaskell
Weak Mobility yes no yes yes yes
Strong Mobility Migration yes yes no yes (Chap 6)
of Threads of Locations
Open Networks no yes no yes yes
High-Level no Location no no yes
Abstractions independent mobility Skeletons

Communication (Chap 7)

Formal Join Nomadic 7- 77 yes w-Calculus
Foundations Calculus Calculus
Statically Typed yes yes no yes yes
Purely Functional no no no no yes

reflects how its implementation should work (see Section 5.2). MChannel are a small,
low level extension for mobility and programming with them can be seen as system
level programming. The objective of MChannels is to provide a collection of primitives
that can be used to implement, as described in Chapter 6, common abstractions for
mobility such as weak mobility using remote evaluation, or strong mobility using a
moveTo construct, and new high level ones such as mobility skeletons that are higher
order functions that encapsulate common patters of mobile computation.

While some mobile languagens like Nomadic-Pict only provide strong mobility,
mHaskell in its core, only provides weak mobility, but strong mobility can be im-
plemented, as another layer in the system, using the low level primitives as described
in Chapter 6. MChannels can also be used to implement common weak mobility prim-
itives for the creation of remote threads, as the ones available in Kali Scheme and
GDH(see reval and rfork in Section 6.1). As stated in Chapter 2, an explicit mobile
language should be designed to work on large scale systems and mHaskell was designed
to be a mobile language that operates on open networks where locations can join and
leave the computation at any time. Hence, its runtime support for mobility includes
name servers at each mHaskell node, avoiding centralized servers that would introduce
a single point of failure like in Jocaml. Other features like mobility of locations, and
location independent communication, present in some mobile languages, need expen-
sive algorithms to be implemented that would not scale in large systems and therefore
are not provided in the core mHaskell implementation. But, as described in Chapters

6 and 7, such features can be modeled in mHaskell using MChannels or weak mobility.

CHAPTER 5. MOBILE HASKELL 97

mHaskell is a purely functional language where stateful computations are kept in the
I0 monad, therefore there is a clean separation between computations with side-effects
and stateless functional code. Furthermore the purely functional part of the language
can be used to implement new abstractions for statefull actions as I0 computations are
first-class values in Haskell. Haskell’s strong type system ensures that I0 actions will
only be executed in the right context which helps reasoning about computations with

effect, including mobile computations.

5.5 Summary

Mobile Haskell (mHaskell) is an extension of the purely functional Haskell language
designed for the implementation of distributed mobile software. mHaskell extends
Concurrent Haskell [PJGF96], an extension supporting concurrent programming, with
higher order communication channels called Mobile Channels (MChannels), that al-
low the communication of arbitrary Haskell values including functions, 10 actions and
channels.

mHaskell supports the construction of open systems, enabling programs to connect
and communicate with other programs and to discover new resources in the network.
Computations communicated using mHaskell provide stand alone execution: there are
no implicit call-backs to the locations that launched the mobile application. Mobile pro-
grams are compiled into byte-code and modules that are in machine code, e.g., libraries
or the primitives of the language, are considered ubiquitous and are not communicated.

MChannels can be seen as low level mobile constructs for system level programming.
In the next two Chapters we show how mHaskell can be used to implement higher-level

abstractions for mobility and mobile applications.

Chapter 6

Coordination Abstractions for

Mobile Computation

In addition to specifying a correct and efficient algorithm, parallel, distributed or mo-
bile programs must specify coordination, e.g., how the program is partitioned, how
parts of the program are placed in different locations, or how they communicate and
synchronise. The coordination can be specified at different levels of abstraction, as
illustrated in Table 6.7. At the lowest level the programmer explicitly controls all as-
pects of coordination using primitives such as send and receive for communication.
Mid-level abstractions encapsulates several coordination aspects into a single construct,
e.g., a Remote Method Invocation (RMI) [Gro01] encapsulates communication from the
client to the server, execution of a server method, and communication back to the client.
High level abstractions aim to control many aspects of coordination automatically. High
level abstractions are highly desirable as they simplify the programmer’s task and reuse
correct and efficient implementations.

High level abstractions are best developed for parallelism, e.g., implicitly parallel
languages like HPF [Lov93], or algorithmic skeletons [Col89]. Some high level ab-
stractions are now emerging for distributed languages, e.g., behaviours in the Erlang
distributed functional language are templates for fault-tolerant distributed program-
ming [Arm03], and design-patterns for distributed computing [GHJV95] available for
object oriented languages.

Programming with MChannels can be seen as low-level system programming, as the

98

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATIONY99

Table 6.7: Abstraction Levels for Distributed Memory Coordination

Parallelism Distribution Mobility
High Level skeletons, HPF Behaviours mobility skeletons
Medium Level | par, process networks RPC, RMI reval, rfork and moveTo
Low Level send, receive send, receive | send, receive (MChannels)

programmer has to worry about all aspects of coordination. Some of the main advan-
tages of functional languages are the ease of composing computations and the powerful
abstraction mechanisms [Hug89]. Stateful computations in Haskell are first class values
in the language hence they can be manipulated and new high level abstractions over
computations can be defined.

In this Chapter, we show how the low level MChannel primitives can be used to
implement high level abstractions for mobility. First, Section 6.1 shows how MChannels
can be used to express weak mobility constructs for the creation of remote computations
i.e., remote evaluation and remote thread creation. We have used these mechanisms to
develop parameterisable higher-order functions in mHaskell that encapsulate common
patterns of mobile computation, called mobility skeletons, one of the first high-level
abstractions proposed for mobility. These skeletons hide the coordination structure of
the code, analogous to algorithmic skeletons [Col89] for parallelism. Mobility skeletons
abstract over mobile stateful computations on open distributed networks, and they can
be nested and composed to describe different behaviours.

Mobile languages that allow the migration of running threads are said to sup-
port strong mobility. In mobile languages that have native support for continuations
(through a construct like call/cc [FF95]), a strong mobility construct is easily im-
plemented by capturing the continuation of the current computation and sending it
to be executed remotely. The current implementations of Haskell do not have built-in
support for continuations, but it is well known how continuations can be elegantly im-
plemented in Haskell using a continuation monad [Wad95, Cla99]. Using Haskell’s sup-
port for monadic programming and interaction between monads, a continuation monad
can operate together with the IO monad, hence inheriting support for concurrent and
distributed programming using Concurrent Haskell and MChannels. Section 6.3 shows
how strong mobility can be implemented in a language like mHaskell using higher-order

channels and a continuation monad.

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION100

6.1 Medium Level Coordination

Programming using MChannels is low level: the programmer has to specify details such
as thread creation, communication and synchronisation of computations. In this section
we add another layer of abstraction to mHaskell by introducing two new functions, one
for remote thread creation (rfork), and another for remote evaluation of computations

(reval).

6.1.1 Remote Thread Creation

In mHaskell, a thread can be created in a remote location with the rfork function,

analogous to forkI0 in Concurrent Haskell:
rfork :: I0 () -> HostName -> I0 ()

It takes an IO action as an argument but instead of creating a local thread, it forks
a new thread on the remote host HostName to execute the action. The operational
semantics of rfork is a single extension of the semantics in Section 5.2, as shown in

Figure 6.49.

L(s,{E[rfork M s'1};) — L(s,{E[return ()]}:) (s, {E[V']}¢#) (RFORK)
where V' = forceThunks M

Figure 6.49: Transition rule for rfork

The rfork function can be implemented using MChannels, as in Figure 6.51. The
mHaskell rfork implementation relies on every location executing a remote fork server,
depicted in Figure 6.50. The startRFork server creates a channel with the name of the
location where it executes and then repeatedly reads computations from the channel
and forks local threads to execute them.

The rfork function looks for the channel registered in the startRFork server, that
is a channel with the same name as the remote location (lookupMChannel host host),
and sends the computation to be evaluated on the remote location host.

Note that rfork is an asynchronous operation: it sends a computation to be ex-

ecuted remotely but does not wait for its execution, as can be seen in the semantics

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION101

startRFork = do

mch <- newMChannel

name <- fullHostName

registerMChannel mch name

rforkServer mch

where

rforkServer mch = do

comp <- readMChannel mch
forkIO comp
rforkServer mch

Figure 6.50: The remote fork server

rfork :: I0 () -> HostName -> I0 (O
rfork io host = do
ch <- lookupMChannel host host
case ch of
Just nmc ->do
writeMChannel nmc io
Nothing -> error "rfork: There is no
remote server running"

Figure 6.51: The rfork function

(any work in the set modelling threads can be executed next); this behaviour is directly

reflected in the implementation.

6.1.2 Remote Evaluation

In the remote evaluation [Vol96] paradigm, a computation is sent from a host A4 to a
remote host B to use B’s resources. It is straightforward to implement remote evaluation
using mobile channels and rfork. A computation can be sent to be evaluated on a

remote location using the reval function:
reval :: I0 a -> HostName -> I0 a

Remote evaluation is a synchronous operation, it sends a computation to be ex-
ecuted on a remote location and only returns when the computation has finished.
The reval function, Figure 6.52, uses rfork to execute the expression (job >>= \r
-> writeMChannel mch r) on the remote location. The expression executes job and

sends the result of its execution back to the first location through the MChannel mch.

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION102

reval :: I0 a -> HostName -> 10 a
reval job host = do
mch <- newMChannel
rfork (job >>= \r -> writeMChannel mch r) host
result <- readMChannel mch
return result

Figure 6.52: The implementation of reval

The rfork function could also be implemented using reval. In fact, if we had an

implementation of reval based on MChannels and not rfork, we could say that:
rfork comp host = forkIO (reval comp host >> return ())

A new local thread is forked (using forkI0) so rfork will not be blocked waiting
for the result of reval.
The program that computes the total load of a network, given in Figure 5.37, can

be shortened using reval, as in Figure 6.53.

main = do
list <- mapM (reval mobile) listofmachines
let v = sum list
print ("Total Load of the network: " ++ (show v))
where
mobile = (...)

Figure 6.53: Shortened version of the program that computes the load of a network

The abstraction provided by reval is similar to that provided by Java'™’s RMI,
the difference being that reval sends the whole computation (including its code) to be
evaluated on the remote host, and RMI uses proxies (stubs) in order to give access to

remote methods.

6.2 High Level Coordination: Mobility Skeletons

This section identifies three common patterns of mobile computation and implements
them as higher order functions, or Mobility Skeletons in mHaskell, using reval and

rfork from Section 6.1.

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION103

S I) I

host2

host3 host4
coml\ comp com
res
res ‘es

host1
mmap comp [“host2”,’host3”,’host4”]

Figure 6.54: The behaviour of mmap

Mobility skeletons are analogous to algorithmic skeletons [Col89] which encapsulate
common patterns of parallel coordination as higher-order functions. Most algorith-
mic skeletons abstract over pure computations in a closed or static set of typically
anonymous locations. In contrast mobility skeletons abstract over stateful (or impure)
computations in an open network, i.e., a dynamic set of named locations. The state-
ful computations must be carefully managed, in our case using Haskell monads, to
preserve the compositional semantics of the mobility skeletons. Moreover, while some
mobile coordination patterns are similar to parallel coordination patterns, e.g., an mmap
broadcasts a computation to be executed on a set of locations, others are different, e.g.,
mzipper uses the stateful nature of the computation to repeatedly probe the state at
different times and make decisions based on the result.

In this section we describe synchronous and asynchronous versions of three mobility
skeletons: mmap, mfold and mzipper and give simple examples using them. In Chap-
ter 6, we use the skeletons to implement a larger application: a distributed meeting

planner.

6.2.1 mmap: Broadcast

A common pattern of mobile computation is to broadcast a computation to be executed
on a set of locations. The mmap skeleton (see Figure 6.54) broadcasts its first argument

to be executed on every host that is an element of its second argument. It returns a

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION104

list with the values returned from the remote executions.

mmap::I0 b -> [HostName] -> I0 [b]
mmap f hs = mapM (reval f) hs

Figure 6.55: The definition of the mmap skeleton

mmap_: :I10() -> [HostName] -> I0Q)
mmap_ f hs = mapM_ (rfork f) hs

Figure 6.56: The definition of the mmap_ skeleton

The implementation of mmap (see Figure 6.55) executes a remote evaluation of its
argument f on every host of the list hs. It uses mapM to apply and execute reval f on
all the locations of hs. For some examples, it is useful to have a simpler asynchronous
version of mmap, that broadcasts the action to the locations, without waiting for any
results, this version is called mmap_ (see Figure 6.56).

The mmap skeleton encapsulates the pattern of coordination present in two appli-
cations described earlier, see Figures 5.37 and 6.53, that determine the load of all

locations in a network. Here we give the same program using mmap:

networkLoad :: [HostNames] -> I0 [Int]

networkLoad hosts = mmap getLocalload hosts

If all locations have a getLoad function, which returns the load of the location,
registered as a resource ("getLoad"):

registerRes getLoad "getLoad"
then the getLocalLoad function can be implemented as in Figure 6.57. This function,
when called on a location, looks for a resource named "getLoad" and executes it,

returning the load of the current location.

6.2.2 mfold: Distributed Information Retrieval

A common pattern of mobility is a computation that visits a set of locations performing
an action at every location and combining the results (see Figure 6.58). This pattern
matches the concept of a distributed information retrieval (DIR) system. A DIR appli-

cation gathers information matching some specified criteria from information sources

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION105

getLocalload :: I0 Int
getLocalload = do
res <- lookupRes "getLoad"
case res of
Just getLoad -> getlLoad

Figure 6.57: The getLocalLoad function

dispersed in the network. This kind of application has been considered “the killer

application” for mobile languages [FPV98].

mfold mfold

host2 host3 P “ host4
/
mfol ~ result
s
host1

mfold action op v [“host2”,”host3”,”host4”]

Figure 6.58: The behaviour of mfold
An mHaskell skeleton with this behaviour could have the following type:
mfold :: I0 a -> (a -> a -> a) -> a -> [HostName] -> I0 a

It takes as arguments an action (of type I0 a) to be executed on every host, a
function to combine the results of these actions, an initial value, a list of locations to
visit, and returns the result of combining the values of type a. Notice that the type
resembles the classic function fold present in every functional language, that combines
the elements of a list using an operator; hence the name of the skeleton is mfold.

The synchronous mfold skeleton (Figure 6.60) is implemented using a more general
asynchronous skeleton called mfold_ (Figure 6.59). As can be seen in Figure 6.59,
mfold_ takes an extra argument that specifies what should be done with the result of

the computation once the program has visited all the hosts in the list: if the list of

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION106

mfold_ :: I0 a -> (a -> a ->a) -> a -> (a -> I0 ()) -> [HostName] -> I0 O
mfold_ f op v final [] = final v
mfold_ f op v final (h:hs) = rfork (code f op v final hs) h
where code f op v final hosts = do
v2 <- £
mfold_ f op (op v v2) final hosts

Figure 6.59: The definition of the mfold_ skeleton

mfold :: I0 a -> (a -> a -> a) -> a -> [HostName] -> 10 a
mfold action op v hosts = do
mch <- newMChannel
mfold_ action op v (\x -> writeMChannel mch x) hosts
readMChannel mch

Figure 6.60: The definition of the mfold skeleton

locations to be visited is empty, then it simply applies the extra function to the result.
If the list of locations to visit is not empty the computation code is executed on the
head of the list. The function code executes the action £ on the current host and then
does a recursive call to mfold_, combining the current value with the result from the
execution of f. In the implementation of mfold, the extra function in mfold_ sends the
result of the computation back to the host that called mfold through an MChannel
The mfold skeleton can also be used to construct an application that computes
the total load of a network. Using the getLocalLoad function defined in the previous

section, totalLoad can be implemented as follows:

totalload :: [HostName] -> I0 Int

totalload hosts = mfold getLocalLoad (+) O hosts

The mobile function totalLoad executes getLocalLoad on every location of hosts
and combines the results produced on every host using the (+) operator.
The behaviour of the program can be easily modified by changing the arguments

passed to mfold. For example, this program:
list <- mfold (getLocallLoad >>= \x-> return [x]) (++) [] listoflocations

will collect the load of all the locations in a list, so that the load of the network can

be computed later.

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION107

Although some of the programs written using mmap can be expressed using mfold,
the skeletons have different operational behaviours. mfold always executes its continu-
ation on the next location to be visited, while in mmap, the flow of control stays on the
location that made the call to it (as can be seen in Figures 6.54 and 6.58).

The mfold skeleton is very different from a parallel fold, while in the first the list is
used only to indicate to where the computation should move next, in the latter the work
is done by splitting its work list into a number of sublists that are then broadcasted
to the processors available, and the results of the fold are combined using a parallel

divide and conquer algorithm.

6.2.3 mzipper: Iteration

Another pattern of mobile computation is a computation that visits a sequence of
locations, looking for some value common to all locations. The value is tested against
a predicate on every location, and if it fails, the computation returns to the start of

the sequence of locations trying a new value, as depicted in Figure 6.61.

T T T T T T m21pper
""" mzl)per
@ i @ iper @
host2 host3 p ” host4
/
mzipp _ result
s
host1
mzipper mch action pred [“host2”,”host3”,”host4”’]

Figure 6.61: The behaviour of mzipper

As the computation has to move back and forth on the list of locations, the skeleton
is called mzipper (mobile zipper), an analogy to the function zipper [Hue97], that

describes how to navigate on different data structures.

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION108

The mzipper template has the following type:

mzipper :: ([a]l] -> I0 ([a],Maybe a)) ->

(a -> I0 Bool) -> [HostName]l -> I0 (Maybe a)

It takes as arguments a function that receives a list of values in which the locations
disagreed in the past and returns a new value, a predicate that indicates if the current
location agrees with the current value, a list of locations to visit, and returns the
final agreed value, if there is one. The mzipper skeleton is also implemented using an
asynchronous skeleton called mzipper_, that takes an extra argument that tells what
it should do with the result once the last host is reached.

The implementation of the mzipper_ skeleton can be seen in Figure 6.62. The
objective of the first part of the definition is to create a first value to be tested on all
locations. It starts by checking if the first location to be visited is the current location.
If the current location is not the first element of the list then mzipper_ is started again,
with the same arguments, on the head of the list. Otherwise, it asks for the first value
to be agreed, using its argument action. As the search is just starting, the list of values
on which the locations disagreed is empty. The action function should return a tuple
with first element being the same list that it received as an argument if it is needed
for the computation, or an empty list otherwise, and the second is the value that must
be agreed. If a value is not found, it returns Nothing to the action final, that should
tell the skeleton what to do with the result. Otherwise the recursive zipper function is
called (rmzipper), which takes two extra arguments, the list and the value.

The local function rmzipper takes two lists of locations as arguments; the first is
the locations that were already visited and the second the ones yet to be visited. The
base case of rmzipper is when the list of already visited locations is empty, meaning
that a value was not found and the search has to start again. As before, it looks for
a new value using its argument action, and if there is no new value it returns with
Nothing. Otherwise, it continues the search by calling rmzipper again and passing the
new value to it as an argument.

The second case of rmzipper checks if the current location agrees with the current
value by using the predicate argument (pred). If it agrees, the search continues to the
next location, if it doesn’t, the list of hosts to visit is recreated as newhosts and the

search starts again from the beginning.

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION109

mzipper_::([a] -> I0 ([a],Maybe a)) -> (a -> I0 Bool) ->
(Maybe a -> I0 ()) —-> [HostName] -> I0 ()
mzipper_ action pred final (fst:hosts) = do
host <- fullHostName
if (host == fst)
then (do
(1,mv) <- action []
case mv of
Nothing -> final Nothing
Just v -> rmzipper v 1 action pred final [fst] hosts)
else (rfork (mzipper_ action pred final (fst:hosts)) fst)
where
rmzipper::a -> [a] -> ([a]l -> I0 ([a]l,Maybe a)) -> (a-> IO Bool) ->
(Maybe a -> I0 ()) —->[HostName]-> [HostName] -> I0 ()
rmzipper v oldvalues action pred final oldhosts [] = final (Just v)
rmzipper old oldvalues action pred final [] (host:hosts) = do
(1,mv) <- action oldvalues
case mv of
Nothing -> final Nothing
Just v -> rmzipper v 1 action pred final [host] hosts
rmzipper v oldvalues action pred final oldhosts (x:xs) =
rfork (code v oldvalues action pred final (x:o0ldhosts) xs) x
code v oldvalues action pred final oldhosts hosts= do
bool <- pred v
case bool of
True -> rmzipper v oldvalues action pred final oldhosts hosts
False -> do
let newhosts = (reverse oldhosts) ++ hosts
rfork (rmzipper v (v:oldvalues) action pred final [] newhosts)
(head newhosts)

Figure 6.62: The definition of the mzipper_ skeleton

The synchronous mzipper skeleton (Figure 6.63) is implemented in a similar way
to mfold.

As an example, the mzipper skeleton can be used to implement a program that keeps
visiting locations on a network, and only returns when the load on all the locations
that it visited is below a certain threshold. If one of the locations has load above the

threshold, it starts visiting the locations again:

isLoadBelow :: Int -> [HostName] -> IO Bool
isLoadBelow threshold hosts = do

res <- mzipper (myThreshold threshold) isBelowTh hosts

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION110

mzipper :: ([a] -> IO ([a],Maybe a)) ->
(a -> I0 Bool) -> [HostName]l -> I0 (Maybe a)
mzipper action pred hosts = do
mch <- newMChannel
mzipper_ action pred (\x -> writeMChannel mch x) hosts
readMChannel mch

Figure 6.63: The definition of the mzipper skeleton

case res of
Nothing -> isLoadBelow threshold hosts
Just x -> return True
where
myThreshold = (...)

isBelowTh = (...)

The isLoadBelow function receives as an argument a threshold and a list of loca-
tions to visit, and returns True when the load on all the locations is below the threshold.
It uses uses mzipper to check if all the locations in the network have the appropriate
load. Every time mzipper returns Nothing through the MChannel mch, isLoadBelow
restarts the search by calling itself. If mzipper returns a value, it means that all the
locations in the network, at a certain point, had the load under the threshold, and it
can return True.

The work that is performed by mzipper on every location that it visits, is specified
by the two locally defined functions isBelowTh, that is the predicate, and myThreshold
that given a threshold, and the old values of the search, returns a tuple with the old

values and the new one.

isBelowTh :: Int -> IO Bool
isBelowTh th = do
load <- getLocalload

return (load<th)

myThreshold :: Int -> [Int] -> I0 ([Int], Maybe Int)
myThreshold th list = do

load <- getLocalload

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION111

if (load < th) then (return ([], Just th))

else (return ([],Nothing))

isBelowTh uses the previously defined function getLocalLoad to get the load of the
current location and compares it with the threshold. The myThreshold function is used
to restart the computation. Given a threshold and a list of old values, it will always
return the same threshold if the load of the current location is below the threshold,
and returns an empty list as the list of old values is never used in this computation.
As myThreshold is only called in the first location to be visited, in order to start the
computation again, it will return Nothing if the load in the current location is not
below the threshold. That happens because if the first location in the list can’t start
the computation, there is nothing else it can do. That is why the isLoadBelow function

has to call itself again every time mzipper returns Nothing.

6.2.4 Nesting and Composing Skeletons

One of the advantages of using a functional language to implement the mobility skele-
tons, is that it facilitates composing and nesting skeletons in order to model new be-
haviours. In this section we present examples that explain these concepts.

As an example of nesting, suppose that we have a list of locations that are gateways
to networks, and we want to compute the total load on those networks. First, we could
implement an IO action that asks the gateways for the hosts in their local network, and

then uses totalLoad, which uses mfold in its implementation, to compute the load:

getMeanLoad :: I0 Int
getMeanlLoad = do
res <- lookupRes "myLocations"
case res of
Just getMyLocations -> do
1<- getMyLocations
r<- totalload 1

return r

Then, to compute the load of the gateways, the programmer just has to broadcast

getMeanLoad to the gateways:

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION112

result <- mmap getMeanlLoad gateways

Stateful computations in Haskell (e.g., mobile computations and skeletons) are al-
ways embedded in the IO monad, as discussed in Section 2. IO values are composed
using the (>>=) operator. For example, if the programmer wants to calculate the load
of a network and then broadcast this value to all the locations, she could compose the

totalLoad function with mmap :
getLoadAndBC hosts = totalLoad hosts >>= \ load -> mmap_ (update load) hosts

or using the do notation:

getLoadAndBC hosts = do
load <- mgetLoad hosts

mmap_ (update load) hosts

where update updates a resource in all the hosts with the load of the network. In fact,
all the examples in this text in which the do notation is used, are compositions of IO

values.

6.3 Strong Mobility

Some languages that support code mobility also support the migration of running
computations or strong mobility. mHaskell could be extended with a primitive for

transparent strong mobility, i.e., a primitive to explicitly migrate threads:
moveTo :: HostName -> I0()

The moveTo primitive receives as an argument a HostName to where the current
thread should migrate.

Strong mobility is an extension of the remote evaluation paradigm. While with
reval the programmer can send subprograms to be executed remotely, with strong
mobility, running computations migrate between hosts, hence allowing arbitrary code
movement. Strong mobility is very useful when the programmer wants to control where
the continuation of a computation will be executed.

Strong mobility is usually implemented in two ways: runtime system (RTS) support,

or continuations + weak mobility:

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION113

e RTS support: In this case the language provides libraries for serialising the state
of the current thread (its stack) into a stream of bytes that can be easily com-
municated using any network protocol (as in the Jocaml [CF99] system). These
routines for serialisation are more complicated than those usually available in
programming languages (e.g., Java), as not only data must be communicated but
the state of the whole computation including registers, stacks and memory. The
work on thread migration presented in Chapter 3, can be seen as the first steps

in providing strong mobility at the RTS level in mHaskell.

o (Continuations + Weak Mobility: In languages that have native support for con-
tinuations (through a construct like call/cc [FF95]) and weak mobility, a strong
mobility construct can be easily implemented by capturing the continuation of
the current computation and sending it to be executed remotely (as in Kali
Scheme [CJK95]). In some languages that do not have native support for contin-
uations, strong mobility is implemented using code transformation: the code of
a mobile thread is transformed so that at the point where the moveTo construct
is called, the continuation of the thread is available as an extra argument for
remote execution. This approach is used in languages like Mobile Java [Sek99]

and Klaim [BNO1].

In this Section, we present a somewhat different means for implementing strong
mobility. mHaskell has primitives for weak mobility but the current implementations
of Haskell do not have built-in support for continuations. It is well known how contin-
uations can be elegantly implemented in Haskell using a continuation monad [Wad95,
Cla99], and using Haskell’s support for monadic programming and interaction between
monads, a continuation monad can operate together with the IO monad, hence inherit-
ing support for concurrent and distributed programming using Concurrent Haskell and
MChannels.

First, in Section 6.3.1 a new type of mobile threads based on a continuation monad
is presented. Section 6.3.2 describes how a primitive for strong mobility can be imple-
mented using weak mobility and the continuation monad. In Sections 6.3.3 to 6.3.5
examples of the use of strong mobility are given, including a tree search algorithm and

a new implementation of mfold_ using foldr and lazy evaluation.

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION114

6.3.1 Continuation Monad

To implement mobile threads, we need to have the continuation of a thread available
at any time while the thread is running. The current implementations of Haskell do
not have a built-in primitive to capture the continuation of a computation, as call/cc
in the functional language Scheme [FF95]. To make the continuation of the current

thread available in Haskell, we use a simple continuation monad, adapted from [Cla99]:

newtype M m a = M {runC :: (a -> Action m) -> Action m}
bindC (it Mma->((@->Mmb) >Nnmnb
m ‘bindC‘ k =M $ \c -> runC m $ (\a -> runC (k a) c)

returnC t:a->Mma

returnC x M (\¢c -> ¢ x)
instance Monad m => Monad (M m) where

m >>=k m ‘bindC‘ k

return x = returnC x

where the $ operator is an infix version of function application, used to eliminate the
use of parentheses (f $ x = £ x). The Action data type describes what can be done
in the continuation monad. The type has two values, an Atom that is the computation
being executed, and Stop that is used to stop the execution of the current thread
when writing escape functions. An Atom describes an atomic computation that when

executed returns a new Action, which is the continuation of the current thread.

data Action m

= Atom (m (Action m))

| Stop
action :: Monad m => M m a —-> Action m
action m = runC m (\a -> Stop)
atom :: Monad m => ma -> Mm a
atom m =M (\¢c -> Atom (do a <- m ; return (c a)))

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION115

The atom function is used to execute other monads inside of the continuation monad.
In Haskell, threads created using concurrent Haskell are executed inside of the 10
monad, hence mobile threads should be able to execute 10O actions in a similar way. The
atom function, takes any IO action (of type I0 a) and transforms it into a mobile action
of typeM I0 a. The monad M is a monad transformer, and the act of transforming one

monad into another is called lifting (a good tutorial on monad transformers is [New06]):

instance MonadTrans M where

lift = atom

An Action can be either an Atom that must be executed, or a Stop that tells that
the current computation is finished or should be aborted. A monad usually has a run
function, that is used to execute the computation. In the case of the continuation
monad, it will execute the Actions, until it finds a Stop value, meaning that the

computation has finished.

execute :: Monad m => Action m -> m ()

execute Stop return ()

execute (Atom am) do a <- am ; execute a
run :: Monad m => Mma ->m ()

run m = execute (action m)

Mobile threads should run as real threads in the RTS. In Concurrent Haskell, threads
are forked using the forkI0 primitive, and mobile threads are run inside of a Concurrent

Haskell thread, hence providing real concurrency:

forkMT :: M IO () -> 10 O
forkMT io = do
forkI0 (run io)

return ()

The forkMT function, takes as an argument a mobile thread of type M I0 () and
creates a Concurrent Haskell thread to run the computation using the run function of

the continuation monad.

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION116

6.3.2 The moveTo operation

The moveTo function, that appears in Figure 6.64, sends the continuation of the current

thread to be executed on a remote host, and terminates the thread that called it.

moveTo :: HostName -> M I0 ()
moveTo host = M (\c -> action $ 1lift (rfork (execute (c ())) host))

Figure 6.64: The moveTo function

It takes as an argument a HostName where the computation should continue its
execution and uses rfork to start a remote thread that evaluates the continuation of
the current thread. The moveTo operation is an escape function, meaning that the

current thread finishs after sending its continuation for remote execution.

6.3.3 Example 1: Simple strong mobility

In Figure 6.65 a simple example using strong mobility is given. I starts a mobile thread,
using forkMT, which gets the name of the current location, and moves to a new location

where the name of the previous location is printed.

main = forkMT ex

ex :: MI0 Q)

ex = do name <- lift $ getHostName
moveTo "lxtrinder"
lift $ print name

Figure 6.65: Simple Strong Mobility Example

As getHostName (of type I0 String) and print (of type String -> IO ()) are
actions in the I0 monad, they have to be lifted into the continuation monad using 1ift.
The important thing to notice in the example is that, besides the use of 1ift, the use
of a continuation is completely hidden in the monad, and the mobile thread is written

in a similar way as a normal Concurrent Haskell thread.

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION117

6.3.4 Example 2: mobile tree search

The advantage of using strong mobility comes when the programmer wants to control
where the continuation of a computation must be executed. As an example, taken
from [Sek99], consider the mHaskell program in Figure 6.66. It is a tree search algo-
rithm, the idea is that there is a network of computers connected as a binary tree, and
the algorithm will transverse the tree and execute an IO action on each Leaf, combin-
ing the results with an operator. This is the typical behaviour of a search robot that

analyses web pages by following the links in them.

mTreeSearch :: I0 a -> (a -> a -> a) -> Tree HostName -> M I0 a
mTreeSearch action op (Leaf host) = 1lift $ action
mTreeSearch action op (Node host treel treer) = do

moveTo (findLoc treel)

x <- mTreeSearch action op treel

moveTo (findLoc treer)

y <- mTreeSearch action op treer

return (op x y)

Figure 6.66: Tree search using strong mobility

In the base case, when mTreeSearch finds a Leaf it will simply execute the 10
action. In the next case, findLoc is used to extract the next location to be visited
from the right (treer) and left (treel) branches of the tree. For each branch, it does
a recursive call to mTreeSearch to search for a Leaf.

One could try to write the same recursive program using remote evaluation as in the
example of Figure 6.67. Looking closely at both versions of the program, it is possible
to see that they do not have the same pattern of control transfer between the locations
visited. Considering the Tree of Figure 6.68, where there is a node A with two subtrees
B and C. The program in Figure 6.66 would migrate from A to B, and then to C. The
program using remote evaluation (Figure 6.67) migrates from A - B — A — C — A.
While the addition in the first program takes place in C, in the second it takes place in
A.

To make the remote evaluation program to have the same behaviour as the one using
strong mobility, it would need to have an extra argument representing the continuation
of the computation, making the code bigger and more difficult to understand [Sek99].

Hence, the advantage of using mobile threads and the moveTo construct, is that the

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION118

mTreeSearch :: I0 a -> (a -> a -> a) -> Tree HostName -> I0 a
mTreeSearch action op (Leaf host) = action
mTreeSearch action op (Node host treel treer) = do

x <- reval (mTreeSearch action op treel) (findLoc treel)
y <- reval (mTreeSearch action op treer) (findLoc treer)
return (op x y)

Figure 6.67: Tree search using weak mobility

continuation is hidden in the continuation monad, and the program can be written as

a normal Concurrent Haskell program.

/\

Figure 6.68: Searching in a Tree

6.3.5 Example 3: mfold

As a final example, a different implementation of mfold_ is presented in Figure 6.69.

It has the same behaviour as the implementation presented in Section 6.2.2, but
uses a sequential foldr. It is interesting to notice that although the function move is
mapped over the list of hosts, because of lazy evaluation, the mobility of the thread
only occurs when the foldr consumes the list.

The application of mfold_ to its arguments, generates a mobile thread, hence the
program must be executed using forkMT, as in the implementation of mfold of Fig-
ure 6.70. The mfold function is blocked reading from the MChannel mch until the

mobile thread sends the result of its computation.

6.4 Summary

In this Chapter we have demonstrated that the low level MChannel primitives are ex-
pressive enough to implement both common mobility constructs for weak mobility (i.e.,

rfork, and reval), and strong mobility (moveTo), as well as new high level abstractions

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION119

mfold_ :: I0a -> (a->a ->a) ->a->(a->1I0 0)) ->
[HostName] -> M I0 ()
mfold_ f op v final hosts = do
result <- foldr (opm op) (return v) (map (move f) hosts)
lift $ final result
where
move :: I0 a -> HostName -> M I0 a
move action host = do
moveTo host
result <- 1lift $ action
return result

opm :: (a->a->a) >MI0a->MI0a->MI0a
opm op x y = do

rl <- x

r2 <-y

return (rl1 ¢

op‘¢ r2)

Figure 6.69: mfold_ using strong mobility

mfold action op v hosts = do
mch <- newMChannel
forkMT (mfold_ action op v (\x -> writeMChannel mch x) hosts)
readMChannel mch

Figure 6.70: mfold using a mobile thread

called mobility skeletons, that are higher order functions that abstract over common
patterns of mobile computation. Mobility skeletons combine stateful computations us-
ing monads, allowing the programmer to use familiar notation for the code executed on
each machine and retaining the semantics of the underlying purely-functional language.
The skeletons presented in this Chapter, encapsulate patterns of mobile computation
but mHaskell can also be used to write other types of skeletons similar to algorithmic
skeletons, as in the thread farm presented in the next Chapter. The implementations
of the skeletons presented in this Chapter are very simple, as the main objective was
to catalogue and describe the patterns identified. More robust skeletons could be im-
plemented e.g., by adding extra-arguments to the skeletons to describe what happens
when things go wrong, e.g., not being able to reach one of the locations in the list of

location to visit. Also, the three mobility skeletons identified encapsulate patterns of

CHAPTER 6. COORDINATION ABSTRACTIONS FOR MOBILE COMPUTATION120

mobile computation that usually happen in distributed information retrieval systems.
It would be interesting to analyse commercial and research mobile applications trying
to identify more mobile coordination abstractions that are general i.e., applicable in
many cases, realistic i.e., useful for real applications, and easy to reason about.

The idea of mobility skeletons could also be applied in other programming lan-
guages. For example, in Appendix A, there is an implementation of the mmap skeleton
as a template design pattern in Java.

Powerful abstraction mechanisms, such as higher order functions and polymorphic
type systems, make it easier for programmers to abstract over common patterns of
computation, and to write abstractions such as remote evaluation, and strong mobility.
Although many mobile languages are based on the functional paradigm, as far as we
know, no one tried to specify common communication behaviours in mobile program-
ming as higher order functions.

The support for monadic programming and interaction between monads available
in Haskell was very important in the development of mHaskell’s abstractions. To sup-
port strong mobility, we implemented a simple continuation monad that can operate
together with the IO monad, hence inheriting support for concurrent and distributed
programming using Concurrent Haskell and MChannels. We demonstrated that strong
mobility can be elegantly implemented in a language with weak mobility, higher-order
channels and first-class continuations. Furthermore, IO actions are first class values
in Haskell, making it easier to implement abstractions such as the creation of remote
computations and skeletons.

Chapter 6 shows how the mobility constructs designed in this Chapter can be used

in the implementation of real applications that use mobile computation.

Chapter 7

Mobile Applications

To evaluate the mHaskell language design and the abstractions presented in the previous
Chapter, this Chapter shows the development of three non-trivial mobile applications:
a distributed meeting planner, a distributed stateless web server and a platform for
mobile agents.

In the distributed meeting planner, users launch mobile programs that visit the
locations of people involved in a meeting, trying to find an empty slot in their time tables
for the meeting. Section 7.1 shows that all the communication and coordination needed
in this sort of application can be expressed using mobility skeletons The programmer
only has to implement the application specific parts of the program, i.e., the arguments
for the skeletons, that are simple sequential Haskell programs.

A Stateless server stores the continuation of its computation in the document that
it sends to clients, e.g a Stateless Web Server stores all the persistent knowledge about
the interaction with the client in the HTML document that is sent back to the browser.
The advantage is that no connection needs to be kept between the client and the server,
and the computation can be restarted at any point later, without the server having to
keep any record of the previous interaction. In this Chapter, a stateless web server is
implemented using the serialisation primitives described in Section 4.3.2. This shows
that the technology developed for mHaskell can also be used for other means, .i.e.,
persistent storage of applications. Furthermore, the web server is made distributed by
using a new skeleton, a thread farm, to offload tasks from a heavy loaded server to a
cluster of computers.

Finally we describe a simple mobile agent platform that supports partially connected

121

CHAPTER 7. MOBILE APPLICATIONS 122

devices, i.e., devices that are not always connected to the network, such as laptops and
PDAs. Such devices can benefit from the use of mobile agents, as they can launch agents
to perform tasks in a network and then disconnect, only connecting to the network later

to collect the results produced by the agents.

7.1 Case Study: The Distributed Meeting Planner

The distributed meeting planner is depicted in figure 7.71. We assume that each user is
connected to one workstation and, when one of them wants to arrange a meeting with
several others, she sends a mobile computation that visits the locations of the people

involved, trying to find a suitable time.

What time? What time? What time?
Meeting| | Meeting| | ________ Meeting
Planner Planner Planner
Host\X\\ Host Y Host Z
Schedule a \\\ Meeting at 10am!!
meeting!!ll .
K Meeting 4
Planner
Host W

Figure 7.71: The Distributed Meeting Planner

This sort of application has two patterns of mobility. The first one is the pattern
of a computation that visits a set of locations in a network performing some actions at
each location, as can be seen in figure 7.71. In Chapter 5, two skeletons that perform
this sort of pattern were given, mfold and mzipper. The second pattern is the idea of
broadcasting a computation to a list of locations, or mmap. In the case of the meeting
planner this pattern appears when the time of the meeting must be updated in the

time tables of all the users of the system.

CHAPTER 7. MOBILE APPLICATIONS 123

The next section presents a version of the program using mzipper, and in Sec-
tion 7.1.2, some of the problems of the meeting planner are discussed and a new version

using mfold is described.

7.1.1 A Version Using mzipper

The core of the application is a function called timeMeeting, that takes as an argument
a list of locations to visit and returns a time (time here is represented as a String,

although any other data type could be used), that everyone is available, if there is one.

timeMeeting :: [HostName] -> I0 (Maybe String)

timeMeeting hosts = mzipper getNewTime timeOK hosts

The timeMeeting function uses mzipper to visit the locations and check for an
available time for the meeting. The mzipper function chooses an available time from
the timetable of the initiating location and then visits the other locations in the list to
check if that time is available. If the time is not available at one of the locations, then
mzipper returns to the initiating location and asks for a different time. mzipper will
return once all the locations agreed with a time, or when the first location does not
have any other time to suggest. mzipper is called with two arguments: the getNewTime
function that returns an available time on the initiating location, and timeOK that is
executed at every location to check if the proposed time is available at that location.
The getNewTime function takes as an argument the list of old times, and returns a

tuple containing the same list and a new time if there is one available:

getNewTime :: [String]l -> I0 ([String], Maybe String)
getNewTime oldtimes = do
ft <-lookupRes "newfreetime"
case ft of
Just dyn -> case (fromDynamic dyn) of
Just getFreeTimeIO -> do
res <- getFreeTimelO oldtimes

return (oldtimes,res)

getNewTime looks for a resource (the getFreeTimeIO function) registered in the

resource server with the name "newfreetime". This function has to exist on every

CHAPTER 7. MOBILE APPLICATIONS 124

location that is running the meeting planner. It checks the local tables of the program
to see if there is a new time different from the ones that are in the o1dtimes list. Here
it is possible to see that mzipper is used in a different way than in the isLoadBelow
example from last Chapter. As the computation now uses its old values to compute the
new ones, getNewTime always returns the old times in the tuple, while myThreshold
just returns an empty list.

As every location has its local copy of getFreeTimeIO, i.e., every location has a
different time table, it is considered a resource and it must be registered in the resource
server on every location so the mobile computation can find it. When the meeting
planner is started on every location, the first action that it takes is to register its
local resources. As more than one resource with different types are registered, i.e.,
getFreeTimesIO is used by timeOK, we need to register them as dynamic values using

the toDyn function:

main = do
registerRes (toDyn getFreeTimesIO) "freetimes"
registerRes (toDyn getFreeTimeIO) "newfreetime"

startUserInterface

The second argument given to mzipper is timeOK :: String -> I0 Bool, which
is executed on every location to check if the current time is suitable. It looks up for
a resource called "freetimes", and executes it to get the free times of the current

location. Then, it checks if the current time for the meeting is included in that list.

timeOK :: String -> I0 Bool
timeOK time = do
ft <-lookupRes "freetimes"
case ft of
Just dyn -> case (fromDynamic dyn) of
Just getFreeTimesIO -> do
1 <- getFreeTimesIO
let res = not (isFree time 1)

return res

Based on the result of this function, the mobile computation decides if it has to

migrate to the next host or to go back to the first one to ask for a new time.

CHAPTER 7. MOBILE APPLICATIONS 125

Finally, if the application has an agreed time for the meeting, it broadcasts the
time to all the locations using mmap_, and the updateTime function that records the

new meeting time in the timetable of a location.

mmap_ (updateTime time) listofhosts

7.1.2 Using mfold

In the previous implementation of the meeting planner, whenever one of the locations
is not available at the proposed meeting time the computation returns to the first loca-
tion and restarts the search. As every location already has a function that returns all
the free times available (getFreeTimesIO), the program could be optimised to carry
not just one free time, but a list with all the free times available in the first location.
A function like combineStrings :: [String] -> [String] -> [String] that, com-
putes the intersection of two lists, could be used to combine the result produced by
executing getFreeTimesIO on all the locations that will attend to the meeting. With

this optimisation in mind, one could write a new definition for createMeeting:

createMeeting :: [HostName] -> I0 [String]
createMeeting hosts = do
myfreetimes <- getFreeTimesIO

mfold getLocalTimes combineStrings myfreetimes hosts

Now, createMeeting is described in terms of a mfold. It will visit all the locations
in hosts, executing getLocalTimes on them, and combining the results produced on
every host using combineStrings.

The getLocalTimes function looks for a resource called "freetimes", and returns

the result produced by its execution.

getLocalTimes = do
ft <-lookupRes '"freetimes"
case ft of

Just getFreeTimesIO -> getFreeTimesIO

Finally, as in the previous example, mmap_ can be used to broadcast the time of the

meeting to all the participants.

CHAPTER 7. MOBILE APPLICATIONS 126

The mfold version of the meeting planner is more realistic because the time table
that the mobile program carries is small. If the time table is too large to be communi-

cated, e.g., a database, the mzipper version would be more appropriate.

7.2 Case Study: A Stateless Web Server

7.2.1 Stateless Servers

=4 counter - Mozwa | | .||
Ele Edn Yew Go ﬂonl\mdsé
X | | <input TYPE=HIDDEN
- Bl fiesss | | NAME="code" value="%00
DArome g Bootmans » | | %00%00%00%BCH05%00
%00k%01%00%00%07%01
%00%00%1C%00%00%00
%01%00%00%00%(...)

Counter:27

1 Subnwt

Figure 7.72: The counter example

In stateless servers [Hal97], all persistent knowledge about applications is kept in
the documents exchanged between clients and servers. Servers and clients are stateless:
the server stores the continuation of its application in the document that it sends to the
client. When it receives an answer back from the client, it doesn’t need to remember
anything from the previous interaction, it simply executes the code with the new input.
In this sense, the notion of a state is replaced by a persistent representation of requests
that contain all data needed to perform the computation. Stateless servers have several

advantages:

e Neither a server-side state nor a permanent connection with the server has to be

maintained.

e Different servers can be used to process the code. In particular, execution of the
code is not restricted to the server that stores the program the client wants to
use. For example if the client is paying for the use of the server, the computation

can be continued in a cheaper server.

CHAPTER 7. MOBILE APPLICATIONS 127

e A computation can be continued much later. For example in a web context,
the client can start interacting with a server, then bookmark one of the pages
locally, and restart the computation some day later without the server needing
to keep any information about the interaction. All the information, including the

computation, is kept in the client.

The idea of a stateless server suits well a distributed system in which there are
many lightweight clients and some powerful servers. A client could be just a simple
PDA, a web client running on a cheap hardware or a workstation accessing a powerful
computational GRID [FKTO01]. The server needs to provide only its processing power:
it receives code sent by clients, executes it and sends the result back.

Mobile languages are a perfect implementation platform for stateless servers as
applications can be saved and restarted at any time. In this section, we use the seriali-
sation primitives, described in Section 5.3.2 to implement, following the ideas presented
in [Hal97], a stateless web server that keeps the state of its computations in the pages
that it sends to browsers, and executes code sent in the clients requests. Furthermore,
by using MChannels and a thread farm, we make the web server distributed, using a
cluster of machines to process the requests sent by clients. Hence, in this example, we
use mHaskell to implement two aspects of mobility: persistence and distribution. Web
browsers do not need to be modified in order to use our web server: the code is kept
in the web page as a hidden tag, no special work has to be done in the client, except

sending the code back to the server in a POST message.

7.2.2 A Stateless Web Server

Following the Concurrent Haskell web server [Mar00], the mHaskell web server is im-

plemented using a simple main loop:

connectC socket = do
(s,add) <- Network.Socket.accept socket
forkI0 (processMsg s)

connectC socket

The server repeatedly reads requests from a socket and forks threads to process
these requests. The main difference occurs when one of the messages contains the code

for an application, as in Figure 7.73. In this case, we use the getCode function, that

CHAPTER 7. MOBILE APPLICATIONS 128

case (check msg) of

C...)

Code —> do
(codeBuffer,args) <- getCode msg
computation <- unpackV codeBuffer
response <- computation args
sendResp socket response

Figure 7.73: Receiving code from a client

processes the string representing the client request, separating the serialised code in it
from the normal arguments in a POST message. The code is unpacked into the heap
using the unpackV function, and the computation is executed. The computation should
generate a new web page with results to be sent back to clients. If there is still the
need for more interaction with the client, the web page generated should also contain
the continuation of the computation.

For simplicity we assume that the computation stored in the client has type :: [(
String, String)] -> I0 String, where the argument string has the values sent by
the client in the POST message. To avoid any type clashes, Haskell’s dynamic types
could be used to ensure that the computation has the right type.

As the Haskell code is serialised, it is easy to apply encryption, to prevent untrusted
parts to access sensitive data or execute the code, and compression to make the messages

smaller.

7.2.3 A Counter

As an example we present the implementation of a counter that saves its continuation
in the page displayed by the browser, as in Figure 7.72. The counter is implemented

as follows:

counter :: Int -> [(String,String)] -> I0 String
counter n args = do
cs <- counterPage (n+l1) (counter (n+1))

return cs

It takes as an argument its current state (an Int) and uses the counterPage function

to generate the response sent back to web clients. The counterPage action generates a

CHAPTER 7. MOBILE APPLICATIONS 129

case (check msg) of

C...)

Get -> do
str <- counter 0 emptyArg
sendResp socket str
sClose socket

Figure 7.74: Receiving code from a client

new web page (a String), that displays the current state of the counter in HTML (its
first argument), and uses the packV function to serialise its second argument, that is,
the continuation of the computation. The counter just ignores its second argument,
the contents of the POST message.

Now, every time that a browser sends a request for the root document (/) the
counter is started with zero, as in Figure 7.74, and the page generated by the counter,
containing its continuation, is sent back to the client. When the user presses the submit
button in the web page (Figure 7.72), and the POST message arrives in the web server,
the continuation is unpacked, run, and a new continuation is sent back to the client, as

demonstrated in case for Code (Figure 7.73).

7.2.4 A Distributed Web Server

The web server might get overloaded with work if it receives many requests from clients
asking to execute computations. In a mobile language it is easy to offload a server by
sending computations to be executed on other locations. We can use mHaskell to make
our web server distributed: a cluster of machines can be used to run the computations
sent by clients. A thread farm can be used in order to provide round-robin scheduling
of the tasks in the machines available for processing.

The thread farm is implemented using a server that reads actions from a MChannel,
and sends these actions to be executed on remote machines that it gets from another
MChannel (Figure 7.75). The threadFarmServer, when started, returns two MChan-
nels, used to dynamically increase the number of computations and machines used in
the distributed system. After creating the two MChannels the main thread of the
server, serverth, is forked.

The server thread, reads Maybe (I0()) values from the ioc MChannel. The main

thread is stopped once it reads a Nothing from ioc. When the thread finds a value

CHAPTER 7. MOBILE APPLICATIONS 130

threadFarmServer ::
I0 (MChannel (Maybe (IO ())), MChannel HostName)
threadFarmServer = do
ioc <- newMChannel
hostc <- newMChannel
forkI0 (serverth ioc hostc)
return (ioc,hostc)
where
serverth ioc hostc = do
v <- readMChannel ioc
case v of
Just action -> do
host <- readMChannel hostc
forkI0 (handleCon action hostc host)
serverth ioc hostc
Nothing -> return ()
handleCon action hostc host= do
empty <- reval action host
writeMChannel hostc¢ host

Figure 7.75: The thread farm server

in the MChannel, it gets one remote machine from hostc and starts another thread,
handleC, to handle the execution of the remote computation. The handleCon function
starts the remote execution of action on host and, after it completes, host is returned
to the MChannel of free machines. Remote evaluation (reval) is used in this case,
instead of rfork, because we want to be sure that the remote machine being used in the
computation is only returned to the list of free machines once the remote computation
has been completed. In the case of the thread farm, as all computations have type I0
(), the value returned by reval is just the unit value (), indicating that the remote job
was executed. MChannels, when used locally, work as a concurrent Haskell Channel:
values are written and read as in a FIFO queue.

The threadFarm function can be implemented as follows:

threadFarm :: [I0 ()] -> [HostName] -> I0 (MChannel (Maybe (I0 ())))
threadFarm comp names = do

(ioc,hostc) <- threadFarmServer

mapM_ (writeMChannel hostc) names

mapM_ (writeMChannel ioc . Just) comp

return ioc

CHAPTER 7. MOBILE APPLICATIONS 131

It takes as an argument a list of actions to be executed on remote locations, and a
list of locations. It returns an MChannel that can be used to send more computations
to the thread farm, or to stop the thread farm server by writing a Nothing in it. The
threadFarm starts the server and then writes the initial values and locations into their
respective channels.

In the case of the web server, the threadFarm can be started with an empty list of

computations:
tfMChannel <- threadFarm [] listOfMachines

and the tfMChannel returned by threadFarm is used to send the computations received
from clients to the remote thread server.

Computations executed by the threadFarm must have type I0 (), but in the case
of the web server, the computations received by the clients, after given their argument,
have type I0 String. Furthermore, the web server wants to receive the result of the
computation (the String with the page that must be sent to clients) back from the
remote location that executed the computation. This is achieved by wrapping the
computation in an IO action that executes the computation and sends its result back
through an MChannel, as can be seen in this modified version of the program to handle

POST messages:

C...)
resp <- newlMChannel
writeMChannel tfMChannel
(Just (execComp resp (computation args))
string <-readMChannel resp
sendResp socket string
where
execComp :: MChannel String -> IO String ->
10 O
execComp ch comp =do
str <- comp

writeMChannel r str

The computation is sent to the thread farm through the tfMChannel, and it is

wrapped in the execComp action, that just executes its argument, and sends its result

CHAPTER 7. MOBILE APPLICATIONS 132

back to the web server through a channel. Exactly the same approach is used to
implement remote evaluation in terms of rfork.

The thread farm implemented in mHaskell is different than a parallel skeleton be-
cause the code for the computations does not need to be present in the remote locations,

and new locations can be added dynamically to the thread farm.

7.3 Case Study: A Mobile-Agent Platform

A mobile agent is a program that can move across locations in a network interacting
with resources and other agents. An agent should be autonomous enough to decide
when and where to move, even when the host that launched the agent is no longer
connected to the network. In this Section we describe how mHaskell can be used to
implement a simple mobile agent platform, based on the Agent Tcl platform [GKN™96],
that supports partially connected devices i.e., devices that are not always connected to
the network, such as laptops and PDAs. Mobile Agents are an interesting programming
paradigm when partially connected devices are involved: a user can launch an agent to
do some work and then disconnect his laptop. When connected to the network again,
the user can retrieve the information gathered by the agent.

The objective of the simple mobile agent system presented here is to provide the

following functionalities:
e Communication between an agent and its creator, and among agents.
e A way of locating and killing agents that are moving on a network
e An agent should be able to find and use resources available in the locations

e The system must be able to handle partially connected machines and its agents

7.3.1 The Docking System

The mobile agent platform presented here is based on the idea of a docking system
illustrated in Figure 7.76. Every mobile computer in the network is associated with a
permanently connected computer, or docking station, that controls and coordinates the
mobile agents created by the mobile computer.

The docking station keeps track of the current state of an agent:

CHAPTER 7. MOBILE APPLICATIONS 133

Docking Station |

Docking Station 11

Permanently Connected Network

Figure 7.76: Mobile Agent Platform

data AgentState = Located HostName | Moving HostName

| Killed

Every time an agent wants to migrate from one location in the network to another,
it asks the docking station for permission. The docking station contacts the destination
and if it is ready to receive the agent, permission for migration is given and the state of

the agent is updated in the docking station. This process is described in Figure 7.77.

agentLoop :: MVar AgentState -> MChannel DockMesg
-> 10 O
agentLoop statea mch = do
msg <- readMChannel mch
case msg of
Move newhost returnch -> do
s <- takeMVar statea
case s of
Killed -> do
writeMChannel returnch Die
collectGarbage
Located h -> do
processMigration returnch newhost statea
agentLoop statea mch

Figure 7.77: Processing messages sent by the agent

The docking station has one thread to manage each agent registered (agentLoop).
When an agent executes the moveTo primitive, it asks the docking station for per-

mission, by sending a Move message. If the agent was killed by another process, the

CHAPTER 7. MOBILE APPLICATIONS 134

docking station sends a Die message back to the agent, deletes from its internal tables
any reference do the agent (collecGarbage), and stops the agentLoop thread. The
current state of an agent is kept inside of an MVar (see Section 2.5.2), that is a shared
mutable variable, and works as a semaphore: every thread that tries to read from an
empty MVar will block until it is filled with a value. If the agent is located somewhere

(Located h), processMigration is called (Figure 7.78).

processMigration returnch newhost statea = do
resp <- checkRemoteLocation newhost
case resp of
Available -> do
writeMChannel returnch OK
putMVar statea (Moving newhost)
NotAvailable -> do
writeMChannel returnch MoveToDock
myname <- getHostName
putMVar statea (Located myname)

Figure 7.78: The processMigration function

The processMigration function, checks if the remote location is able to receive
another agent. If the destination is Available, the docking station sends a permission
to move and updates the state of the agent. Once the agent arrives, it has to send a
message back to the docking station confirming its new location. If the agent needs
to migrate to a location that is NotAvailable, e.g., a laptop that is not currently
connected to the network, the agent is told to move to the docking station, and wait
until the laptop is connected again to the network. A location in the network can be
NotAvailable for a long time and, in that case, It would be a waste of resources to
keep the agent in memory, so its state, the continuation of its thread, could be saved
on disk using the serialisation primitives packV and unpackV, and recovered once the
docking station detects that the location to where the agent wants to move is available.

All locations in the system must run an agent server that keeps track of the agents
currently running on that location, and it is used, together with the docking station,
to send messages to the agents, as described in Section 7.3.4.

The forkMT and moveTo functions have to be modified in order to register the agent
in the docking station once it is created, and to contact it every time the agent needs

to change its current location:

CHAPTER 7. MOBILE APPLICATIONS 135

type MAgentID = MChannel DockMesg

forkMT :: M IO () -> HostName -> IO MAgentID
forkMT action dockingstation = do
mch <- registerAgent dockingstation
tid <- forkIO (run action)
registerWithAgentServer tid mch

return mch

The new forkMT function registers the agent with the docking station using register-
Agent, that will contact the docking station, create a new agentLoop thread for the
agent, and return an MChannel that can be used to contact the agentLoop thread.
The new agent is created using forkIO0 and its thread id is registered with the local
agent server. The reason for that is explained in Section 7.3.4.

An MAgentID is simply an MChannel through which it is possible to contact the
agentLoop thread for the agent in the docking station. When an agent migrates from
the machine that created it, it can only be reached through the docking station using

its MAgent ID.

7.3.2 Finding Resources

As described in Section 4.2, mHaskell already provides primitives for resource discovery
and registration. All locations running mHaskell programs must also run a registration
service for resources that is used to register resources with names and to retrieve the
resources available. Exactly the same mechanism can be used by agents to find and
use resources.

We do not describe here how agents find the names for resources and and where
they are located, as it is a well studied problem in many areas, e.g., in data bases and
operating systems. Agents could find these names in distributed databases, or yellow
pages [GKN196], where resources can be registered and accessed as in a peer-to-peer

network.

CHAPTER 7. MOBILE APPLICATIONS 136

7.3.3 Communication

An agent should be able to communicate with other agents and with its owner. The
docking station could contain a post-office for each agent, where messages could be
stored, and/or forwarded to the location where the agent is. The primitives for com-
munication only need to know the docking station for the agent, probably using the
agent’s id, and messages can be sent to the post-office and stored there until the agent

wants to read them (as in Figure 7.79).

Agent
Owner’s Thread N Dock A <« Server
___-[Writemsg el
post-office A read msg ~ - N
EHHH
Host X Host Y Host Z

Figure 7.79: The Post-Office

Furthermore, we want the agents to be able to send messages back to their owner
whenever they are connected. In Section 4.6.1, we gave an implementation of multiple
reader channels, called PIChannels, that are also based on the idea of a post-office:
an MChannel is created in a remote location, and threads reading and writing to
the PIChannel send messages to this location. A similar approach can be used to
provide communication in the mobile agents platform by forcing the agents to create

the PIChannel in the location that contains their docking station.

7.3.4 Locating and Killing Agents

An agent can be easily located and killed through the docking station. For example,

here is a function that finds where the current location of an agent is:

pingAgent :: MAgentID -> IO HostName
pingAgent mch = do
resp <- newMChannel
writeMChannel mch (Ping resp)
currentLocation <- readMChannel resp

return currentLocation

CHAPTER 7. MOBILE APPLICATIONS 137

Agent kill agent A Agent
Server DOCk_A T T T T T T T T ™ Server

kil Thread

Host X Host Y

Figure 7.80: Killing a Mobile Agent

It uses the MAgentID MChannel to contact the docking station, and ask what the
current placement of an agent is, returning an empty name if the agent is not alive
anymore. This function is useful when an agent is sent off to visit a large number of
locations sequentially, and its owner wants to know approximately the agent’s position.

An agent can be killed using the killAgent function:

killAgent :: MAgentID -> ID ()

killAgent mch = writelMChannel mch KillAgent

This function sends a KillAgent message to the agentLoop thread. The state of
the agent is updated to Killed, and it will not be allowed to migrate to new locations
anymore. Then the docking station tells the agent server in the agent’s current location
that the agent should die. The agent server uses the killThread function, available
in the Concurrent Haskell library, to kill the thread in which the agent is running
(Figure 7.80).

Haskell supports asynchronous exception [MPJMRO1], and the same approach used

to kill an agent can be used to raise an exception in a remote thread.

7.4 Summary

This Chapter evaluates mHaskell for engineering realistic mobile applications, includ-
ing a distributed meeting planner, a distributed stateless web server and a platform
for mobile agents. The abstractions presented in previous Chapters were heavily used.

In the distributed meeting planner all the coordination aspects of the application are

CHAPTER 7. MOBILE APPLICATIONS 138

hidden in mobility skeletons, and the application essentially only requires parameterisa-
tion of the skeletons. The stateless web server relies on the ability of a mobile language
to save and restore the application state at arbitrary points during execution. This
illustrates how mHaskell’s state-preservation technology can used for other purposes,
e.g., for persistence. The web server was made distributed by using a new mobility
skeleton, a thread farm, demonstrating that skeletons similar to algorithmic skeletons
can be implemented in a mobile language.

mHaskell makes the development of traditional mobile applications easier, as well-
tested code can be reused in the form of a mobility skeleton, and the programmer does
not have to worry about lower level details of mobility, she can just use a skeleton
making the application more reliable and easier to write.

mHaskell can express more powerful mobile infrastructures. For example mobile
hardware, such as laptops, can benefit from mobile computation as users can initiate
mobile programs to perform a task while they are disconnected, and only connect later
to collect results. We show an mHaskell implementation of a simple mobile agent
architecture that supports partially connected computers, providing agents that can
communicate, be found and killed, even when the user that created it is not connected.
We also describe how to use mHaskell to model powerful features such as location
independent communication and distributed asynchronous exceptions.

The purpose of the applications presented in this Chapter is demonstrate the use
of mHaskell and the abstractions for mobility given in the last Chapter. Many issues
that are important for real world applications were left out. For example, the meeting
planner has no mechanism to ensure that an available time is not given to more than one
agent. The objective of the application was only to show that the pattern of mobility
present in the meeting planner can be expressed using mobility skeletons. The problem
of synchronisation of the time tables should be solved outside the skeletons, i.e., in its
arguments, or in the resources used.

Security was also left out in the examples. Authentication could be provided
through cryptography: all the mobile code being communicated is serialised into to

a string, and this string could be easily encoded using public keys.

Chapter 8

Conclusions and Future Work

This dissertation is about implicit and ezplicit mobility in purely functional languages.
In implicit mobile languages, computations are moved automatically by the runtime
system of the language to better use the computational power available. Explicit mobile
languages, give the programmer control over the placement of active computations and
execute on open networks where programs can join and leave the distributed system at
any time.

Section 8.1 reviews the contributions of this dissertation; Section 8.2 outlines future

work; and Section 8.3 discusses the lessons learned with this work.

8.1 Contributions

The contributions of this dissertation are:

Runtime system support for implicit mobility in a purely functional language. Semi-
explicit parallel functional languages usually have automatic mechanisms for the distri-
bution of potential work, i.e., unevaluated expressions. In these systems, it is common
for some processors to be idle while others have many runnable threads. The perfor-
mance of these systems can be improved if besides potential work, threads could also
be migrated. GUM (Graph reduction for a Unified Machine model), is the runtime sys-
tem that underlies the implementation of a number of Haskell extensions for parallel
programming (i.e., GPH [THLP98|, Eden [BLOMP97] and GDH [PTL00]). We have
extended the GUM runtime system with a mechanism for the migration of threads.

Migrating a thread incurs significant execution cost and the system implemented uses

139

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 140

a sophisticated mechanism to choose when to migrate threads. Measurements of non-
trivial programs on a high-latency cluster architecture show that thread migration can
improve the performance of data-parallel and divide-and-conquer programs with low

processor utilisation.

A purely functional language for explicit mobility: mHaskell is a Haskell extension
for writing distributed mobile software. It is the first explicit mobile language based
on a purely functional language. It extends Concurrent Haskell with a set of low-
level primitives for communication and mobile channels (MChannels). MChannels are
higher-order, single-reader communication channels that allow the communication of
any Haskell value including functions and channels. An operational semantics for the
mHaskell primitives is given. Programming with MChannels is low-level: the program-
mer has to specify aspects such as communication and synchronisation of computations,
and if mobile values are not carefully managed, e.g., using dynamic types, type errors
may occur at runtime. Conventional medium-level abstractions for mobile computation
such as remote thread creation and remote evaluation are readily defined in mHaskell,
using Haskell’s first-class computations. Strong mobility is defined as the combination

of weak mobility, higher-order channels and first-class continuations.

New high-level mobile coordination abstractions: Mobility Skeletons are higher-order
polymorphic functions that encapsulate common patterns of mobile computation. Al-
though many mobile languages are based on functional programming languages, as far
as we know this is the first time common communication behaviours in mobile pro-
gramming were specified as higher order functions or skeletons. The range of mHaskell
abstractions have been used to implement both conventional mobile applications such
as a distributed meeting planner and a stateless web-server. We also demonstrated,
by implementing a small mobile agents system, that mHaskell can be used to model a
more sophisticated architecture for mobile programming, supporting powerful features

such as location independent communication and distributed asynchronous exceptions.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 141

8.2 Future Work

Following the work initiated in this dissertation, a number of issues could be further

investigated:

o Implicit Mobility: In future work it may be possible to better characterise pro-
grams and architectures where thread migration may be beneficial. GUM’s thread
migration mechanism and load management policies, described in Section 3.3,
could easily be improved, e.g. replacing the random targeting of FISH and
SHARK messages with a more focused approach; and possibly recording par-
tial load information in all messages to maintain a time-stamped partial load

information on each PE.

o FEnhanced Type Systems: Haskell is a statically typed functional language and
there is a lot of research on using static-types to enforce safety and security in
mobile languages [AGHT04, Tho97]. In [Kir01] Zeliha Kirh describes a static
type system for an extended A-calculus with communication channels, similar to
MChannels, which statically predicts which values in the program might be trans-
mitted to remote locations. mHaskell’s type system could be extended with such
analyses that would identify the parts of the program that should be compiled

into byte-code and the parts that can safely be compiled into machine code.

e Reasoning about mobile programs: We are still in the process of developing a
full semantics for mHaskell to use it for proving properties of evaluation location
and evaluation order in mobile programs. In particular, it would be useful to
specify and prove the behaviour of the mobility skeletons. For such proofs the
transitional level of the semantics is the most important one, and starting from
the existing semantics for Concurrent Haskell [PJ01] we managed to restrict our
extensions to only this level (Section 5.2). The only exception is the forceThunk
function, which we still have to formalise. Another area of future work would be
cost models for our mobility skeletons to predict when and where computations
should migrate. Identities like mmap_ (£>>g) hs = (mmap_ f hs) >> (mmap_ g hs),
that can be proved by induction over the list of hosts, are very useful to prove

properties about mobile programs, and could be further investigated.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 142

e Strong Mobility: Programs using strong mobility might look awkward if most of
the actions executed in the mobile thread belong to the IO monad, as IO actions
have to be lifted into the continuation monad (see Section 6.3.1). It would be very
useful to add another stage in the Haskell compiler that automatically changes a

program of type I0 () into a program of type M I0 ().

o Distributed Asynchronous FEzceptions: The same method used to kill remote
agents in the mobile agent system described in Section 7.3.4, could also be used to
raise exceptions in remote computations. The mobile agent system presented in
in this dissertation can serve as a model for implementing a library for distributed

asynchronous exceptions in Haskell.

o Security and Safety: In a system where computations move between locations
safety (received computation should not be the cause of runtime errors that
may prevent the program to present its expected behaviour) and security (pro-
tection against malicious code) are important issues. This dissertation focuses
mainly in how to express mobility of computations in a purely functional lan-
guage and we believe that most of the issues related to safety and security should
not appear in the language but be provided by its implementation. mHaskell’s
implementation could easily be extended to provide security through authenti-
cation: all the mobile code being communicated is serialised into strings, and
these strings could be easily encoded through cryptography, e.g., using the public
key of the sender/receiver. The current implementation could also be extended
to provide sandboxing: the runtime system receiving mobile code from an un-
trusted source, could provide safer implementations for dangerous functions (e.g.,
unsafeperformI0), and the alternative implementations are linked to the received
code. This safer implementation of a function could just raise an exception saying
that this function is not allowed. The security and safety issues of dynamically
linking mobile code have been much studied, e.g., [Sew01, SLW'04], and although
not currently implemented, some of these techniques could be incorporated into

mHaskell.

e Mobility Skeletons: The idea of mobility skeletons could be applied in other pro-
gramming paradigms. Design patterns encapsulate solutions to recurrent prob-

lems in object oriented software design. A pattern describes a common problem

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 143

and provides the essence of the solution to this problem, often as a collection
of classes. To facilitate their use, patterns are classified and catalogued, as for
example in [GHJV95]. In appendix A, we give an implementation of the mmap_
skeleton from Section 6.2.1 as a template design pattern using Voyager [Voy06],
which is a Java IDE supporting code mobility.

Another obvious direction for future work would be to analyse commercial and
research mobile applications trying to identify more mobile coordination abstrac-
tions that are general i.e., applicable in many cases, realistic i.e., useful for real

applications, and easy to reason about.

8.3 Discussion

Previous work on mobile computation suggests that the strong expressive power pro-
vided by higher-order functions in functional languages is also an important abstraction
for mobile languages [Kna95, Kir01]. Hence many mobile languages are based on func-
tional languages. In this thesis, we have demonstrated that from a very small set of
stateful communication primitives and higher-order channels, higher level abstractions
for mobile computation can be built in a functional language with higher-order func-
tions and support for monadic programming. The support for monadic programming
in Haskell was very important in the development of mHaskell’s abstractions. State-
ful computations, or monadic IO values, are first class objects of the language, hence
they can be manipulated in the purely functional part of the language to generate new
control structures and abstractions. The clean semantics available for IO actions was
also helpful in the development of a simple semantics for the MChannel primitives.
An important Haskell feature that does not suit a mobile language is lazy evaluation.
Although some interesting programs can be implemented using lazy evaluation, like the
alternative implementation of mfold using strong mobility described in Section 6.3.5, it
is very difficult to predict the amount of data being communicated in a lazy language,
as described in Section 5.1.4. The solution to the problem was to force the evaluation
of pure expressions before communication. Even though this evaluation usually does
not affect the semantics of mobile programs, as those are usually stateful computations
that are not affected by this evaluation step, it looks odd in a language like Haskell and

makes the semantics of the language more difficult to define.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 144

To make the code presented in this dissertation more readable, we tried to avoid
the use of dynamic types in the examples when possible. But while building the mobile
applications we noticed that they are very important in real-world applications to avoid
errors during run time. The current Haskell implementations only provide very limited
support for dynamic types, and a commercial implementation of a mobile language
similar to the one presented here should provide better dynamic types, probably like
the one available in the functional language Clean [Pil98].

Some parallel languages are based on purely functional languages because in such
languages expressions can be evaluated at any order without affecting the result of
the computation. This characteristic also means that, in an implicit mobile language,
running threads can be reallocated to better utilise the processors. Another important
lesson in the work presented here was that automatic thread migration, if carefully
scheduled, can improve the performance of some parallel programs with low processor
utilisation, and can also correct a poor initial load balancing of tasks.

It is expected that the work presented here can contribute in the understanding of
the field and may help in the development of new commercial technology for distributed

mobile programming.

Appendix A

mmap_ as a Template Design

Pattern

The idea of a template method pattern is to define the skeleton of an algorithm in an
operation deferring some steps to subclasses. The template method lets subclasses re-
define some steps of the algorithm without changing the structure of the algorithm. In
figure A.81 we give an implementation of mmap_ as a template design pattern. The Mmap_
class encapsulates a broadcast communication pattern. The method sendObjects()
is the template method that contains some code written in Voyager [Voy06], a Java
IDE supporting code mobility, to send the computations to be executed on remote
hosts. This method is defined in terms of two abstract methods, initObject and
executeObject, that should describe how to initiate and execute the object that is go-
ing to be broadcasted. The class can be extended to map Ball objects as in figure A.82
and used as in figure A.83.

Note that the Java class in Figure A.81 is approximately 30 times more verbose

than the mobility skeleton given in Chapter 6.

145

APPENDIX A. MMAP_ AS A TEMPLATE DESIGN PATTERN

abstract class Mmap_{

protected Object action;
protected String[] hosts;
protected Object proxy;

public Mmap_ (Object obj,
String[] hosts) {
this.action = obj;
this.hosts = hosts;
initObject);

this.proxy
X

public void sendObjects () {
int 1i;
Object proxy;
/* ... Start Voyager,
handle exceptions */

for (i=0;i<hosts.length;i++) {
Mobility.of (this.proxy) .moveTo(hosts[i]) ;
executeObject(); }

public abstract void executeObject();
public abstract Object initObject();
}

Figure A.81: mmap_ as a Template Design Pattern

public class MmapBall extends Mmap_{

public MmapBall
(Ball obj, String[] hosts) {
super (obj,hosts) ;}

public void executeObject() {
((IBall)this.proxy) .hit();}

public Object initObject() {

return
((IBall) Proxy.of(this.action)); }

Figure A.82: Extending the Mmap_ Class

146

APPENDIX A. MMAP_ AS A TEMPLATE DESIGN PATTERN 147

public class Hello{
public static void main (String[] args) {
String[] s = new String[2];
s[0] = "//1xtrinder:8000";
s[1] "//1inux33:9000";

Ball b = new Ball();
MmapBall mb = new MmapBall(b,s);
mb.sendObjects(); }

Figure A.83: Using the Mmap_ Class

Bibliography

[AGH*04]

[Arm03]

[Bar84]

[BHK*94]

[BIL+95]

[BL9S]

[BLOMPY7]

[BNO1]

D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile Resource
Guarantees for Smart Devices. In CASSIS 04 — Intl. Workshop on Construction
and Analysis of Safe, Secure and Interoperable Smart Devices, LNCS 3362, pages
1-26, Marseille, France, March 10-13, 2004. Springer-Verlag.

Joe Armstrong. Making reliable distributed systems in the presence of errors. PhD

thesis, Royal Institute of Technology, Stockholm, 2003.
H.P. Barendregt. The Lambda Calculus. North-Holland, 1984.

T. Biilck, A. Held, W. Kluge, S. Pantke, C. Rathsack, S-B. Scholz, and
R. Schroder. Experience with the Implementation of a Concurrent Graph Re-
duction System on an nCUBE/2 Platform. In CONPAR’94 — Conf. on Parallel
and Vector Processing, LNCS 854, pages 497-508, 1994.

R.D. Blumofe, C.F. Joerg, C.E. Leiserson, K.H. Randall, and Y. Zhou. Cilk: An
Efficient Multithreaded Runtime System. In PPoPP’95 — Symp. on Principles
and Practice of Parallel Programming, pages 207-216, Santa Barbara, USA, 1995.
ACM.

Amnon Barak and Oren La’adan. The MOSIX multicomputer operating system
for high performance cluster computing. Future Generation Computer Systems,

13(4-5):361-372, 1998.

Silvia Breitinger, Rita Loogen, Yolanda Ortega-Mallén, and Ricardo Pena. The
Eden Coordination Model for Distributed Memory Systems. In High-Level Parallel
Programming Models and Supportive Environments (HIPS), volume 1123. IEEE
Press, 1997.

L. Bettini and R. De Nicola. Translating strong mobility into weak mobility.
In Proc. of 5th IEEE Int. Conf. on Mobile Agents (MA), LNCS 2240. Springer-
Verlag, 2001.

148

BIBLIOGRAPHY 149

[BRS*85]

[CAL*89]

[Car97]

[Car99]

[Car01]

[CF99]

[CGKOS]

[CGSv93]

[CIK95]

[Cla99]

[Col89]

[CPV97]

Robert Baron, Richard Rashid, Ellen Siegel, Avadis Tevanian, and Michael Young.
Mach-1: An operating environment for large-scale multiprocessor applications.

IEEEFE Software, 2(4):65-67, July 1985.

J.S. Chase, F.G Amador, E.D. Lazowska, HM Levy, and R.J. Littlefield. The
Amber System: Parallel Programming on a Network of Multiprocessors. In Symp.

on Operating Systems Principles, pages 147-158, Litchfield Park, AZ, USA, 1989.

Luca Cardelli. Mobile Computations. In Jan Vitek and Christian Tschudin, edi-
tors, Mobile Object Systems: Towards the Programmable Internet, volume LNCS
1222, pages 3—6. Springer-Verlag: Heidelberg, Germany, 1997.

Luca Cardelli. Mobility and Security. In Proceedings of the NATO Advanced Study
Institute on Foundations of Secure Computation, pages 3—37, Marktoberdorf, Ger-
many, August 1999. IOS Press.

Luca Cardelli. Abstractions for mobile computation. In Secure Internet Program-

ming, LNCS 1603, pages 51-94. Springer-Verlag, 2001.

Sylvain Conchon and Fabrice Le Fessant. Jocaml: Mobile agents for Objective-
Caml. In First International Symposium on Agent Systems and Applications
(ASA’99)/Third International Symposium on Mobile Agents (MA’99), pages 22—
29, Palm Springs, CA, USA, 1999. IEEE Computer Society.

Manuel M. T. Chakravarty, Yike Guo, and Martin Kohler. Distributed Haskell:
Goffin on the Internet. In Fuji International Symposium on Functional and Logic

Programming, pages 80-97. World Scientific, 1998.

D.E. Culler, S.C. Goldstein, K.E. Schauser, and T. von Eicken. TAM — A Com-
piler Controlled Threaded Abstract Machine. 18:347-370, June 1993.

Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher-order distributed
objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
17(5):704-739, 1995.

Koen Claessen. A poor man’s concurrency monad. Journal of Functional Pro-

gramming, 9(3):313-323, 1999.

Murray Cole. Algorithmic Skeletons: Structured Management of Parallel Compu-
tation. Pitman, 1989.

A. Carzaniga, G.P. Picco, and G. Vigna. Designing Distributed Applications with
Mobile Code Paradigms. In R. Taylor, editor, Proceedings of the 19" International
Conference on Software Engineering (ICSE’97), pages 22-32. ACM Press, 1997.

BIBLIOGRAPHY 150

[CT97]

[DBLTO03]

[DBPLT02]

[DBTLO3]

[DBTL04a]

[DBTLO4b)]

[DBTLO5a]

[DBTLO5b)

[DBTLO5¢]

[Erl06]

[FF95]

[FG96]

Benjamin C.Pierce and David N. Turner. Pict: A programming language based
on the pi calculus. Technical report, Computer Science Department, Indiana

University, 1997.

André Rauber Du Bois, Hans-Wolfgang Loidl, and Phil Trinder. Thread migration
in a parallel graph reducer. In IFL 2002, LNCS 2670, pages 199-214. Springer-
Verlag, 2003.

André Rauber Du Bois, Robert Pointon, Hans-Wolfgang Loidl, and Phil Trinder.
Implementing declarative parallel bottom-avoiding choice. In Proc. 14th Sympo-
sium on Computer Architecture and High Performance Computing, pages 82-89,

Victoria, Brazil, 2002. IEEE Press.

André Rauber Du Bois, Phil Trinder, and Hans-Wolfgang Loidl. Towards a Mo-
bile Haskell. In Proc. of the 12th International Workshop on Functional and
(Constraint) Logic Programming (WFLP 2003), pages 102-116, Valencia (Spain),
2003.

André Rauber Du Bois, Phil Trinder, and Hans-Wolfgang Loidl. Implementing
Mobile Haskell. In Trends in Functional Programming, volume 4, pages 79-94.
Intellect, 2004.

André Rauber Du Bois, Phil Trinder, and Hans-Wolfgang Loidl. Towards Mobility
Skeletons. In CMPP’04 — Constructive Methods for Parallel Programming, pages
77-93, Stirling, Scotland, June 2004.

André Rauber Du Bois, Phil Trinder, and Hans-Wolfgang Loidl. mHaskell: mobile
computation in a purely functional language. Journal of Universal Computer

Science, 11(7):1234-1254, 2005.

André Rauber Du Bois, Phil Trinder, and Hans-Wolfgang Loidl. Strong mobility
Mobile Haskell. In Draft proceedings of IFL 2005, September 2005.

André Rauber Du Bois, Phil Trinder, and Hans-Wolfgang Loidl. Towards Mobility
Skeletons. Parallel Processing Letters, 15(3):273-288, 2005.

Erlang. WWW page, http://www.erlang.org/, 2006.

Daniel P. Friedman and Matthias Felleisen. The Little Schemer, 4th edition. MIT
Press, 1995.

Cédric Fournet and Georges Gonthier. The reflexive chemical abstract ma-
chine and the join-calculus. In Conference on Lisp and Functional Programming

(LFP’8/), Austin, Texas, 1996. ACM Press.

BIBLIOGRAPHY 151

[FGL+96]

[FHO1]

[FK99]

[FKTO01]

[F1a99]

[FPV98]

[GBD+94]

[GHJIV95]

[GKN+96]

[GLS99]

[GMP89]

[Gro01]

[GW99]

[Hal97]

[Han99]

Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Di-
dier Rémy. A calculus of mobile agents. In Proceedings of the 7th International
Conference on Concurrency Theory (CONCUR’96), LNCS 1119, pages 406-421.
Springer-Verlag, 1996.

Volker Stolz Frank Huch. Distributed programming in Haskell: From ports to
streams. Unpublished Draft, 2001.

Ian Foster and Carl Kesselman. The Globus project: a status report. Future

Generation Computer Systems, 15(5-6):607-621, 1999.

I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling
scalable virtual organizations. International J. Supercomputer Applications, 15(3),

2001.
D. Flanagan. Java in a Nutshell, Third Edition. O’Reilly & Associates, 1999.

A. Fuggetta, G.P. Picco, and G. Vigna. Understanding Code Mobility. Transac-
tions on Software Engineering, 24(5):342-361, May 1998.

Al Geist, Adam Beguelin, Jack Dongerra, Weicheng Jiang, Robert Manchek, and
Vaidy Sunderam. PVM: Parallel Virtual Machine. MIT, 1994.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley, 1995.
Robert S. Gray, David Kotz, Saurab Nog, Daniela Rus, and George Cybenko.

Mobile agents for mobile computing. Technical Report TR96-285, Dartmouth
College, May 1996.

William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. MIT, second edition, 1999.

Alessandro Giacalone, Prateek Mishra, and Sanjiva Prasad. Facile: A symmet-
ric integration of concurrend and functional programming. Journal of Parallel
Programming, 2(18):121-160, April 1989.

William Grosso. Java RMI. O’Reilly, 2001.

James R. Groff and Paul N. Weinberg. SQL, The Complete Reference. Osborne
McGraw-Hill, 1999.

David Alan Halls. Applying Mobile Code to Distributed Systems. PhD thesis,
Computer Laboratory, University of Cambridge, 1997.

M. Hanus. Distributed programming in a multi-paradigm declarative language.
In Proc. of the International Conference on Principles and Practice of Declarative

Programming (PPDP’99), LNCS 1702, pages 376-395. Springer-Verlag, 1999.

BIBLIOGRAPHY 152

[Hoa85]

[HPYO]

[HP92]

[Hue97]

[Hug89]

[1SS98]

[JHO3]

[Kes96]

[Kir01]

[KLB91]

[Kna95]

[KOMPYS]

[LFA96]

C. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

Kevin Hammond and Simon Peyton Jones. Some Early Experiments on the GRIP
Parallel Reducer. In IFL’90 — Intl. Workshop on the Parallel Implementation of
Functional Languages, pages 51-72, Nijmegen, The Netherlands, Jun 1990.

Kevin Hammond and Simon Peyton Jones. Profiling Scheduling Strategies on the
GRIP Multiprocessor. In IFL’92 — Intl. . Workshop on the Parallel Implementa-
tion of Functional Languages, pages 73—98, RWTH Aachen, Germany, September
1992.

Gerard Huet. The zipper. Journal of Functional Programming, 7(5):549-554,
1997.

J. Hughes. Why Functional Programming Matters. Computer Journal, 32(2):98-
107, 1989.

A. Ttzkovitz, A. Schuster, and L. Shalev. Thread Migration and its Applications
in Distributed Shared Memory Systems. J. of Systems and Software, 42(1):71-87,
1998.

Mark P. Jones and Paul Hudak. Implicit and explicit parallel programming in

Haskell. Technical Report YALEU/DCS/RR-982, Yale University, August 1993.

M. H. G. Kesseler. The Implementation of Functional Languages on Paral-
lel Machines with Distributed Memory. PhD thesis, Wiskunde en Informatica,
Katholieke Universiteit van Nijmegen, The Netherlands, 1996.

Zeliha Dilsun Kirli. Mobile Computation with Functions. PhD thesis, Laboratory
for Foundations of Computer Science, University of Edinburgh, 2001.

H. Kingdon, D.R. Lester, and G. Burn. The HDG-machine: a Highly Distributed
Graph-Reducer for a Transputer Network. 34(4):290-301, 1991.

Frederick Colville Knabe. Language Support for Mobile Agents. PhD thesis, School

of Computer Science, Carnegie mellon University, 1995.

Ulrike Klusik, Yolanda Ortega-Mallen, and Ricardo Pena. Implementing Eden -
or: Dreams become reality. In Implementation of Functional Languages, LNCS

1595, pages 103—-119. Springer-Verlag, 1998.

D.K. Lowenthal, V.W. Freeh, and G.R. Andrews. Using Fine-Grain Threads and
Run-Time Decision Making in Parallel Computing. J. of Parallel and Distributed
Computing, 37:42-54, 1996.

BIBLIOGRAPHY 153

[LH96]

[LLMSS]

[LO99)]

[Loi98]

[Lov93]

[LPJ95]

[LTBO1]

[LTH*99]

[LY99)]

[Mar00]

[Mar05]

[MDW99]

[Mil89]

H-W. Loidl and K. Hammond. Making a Packet: Cost-Effective Communication
for a Parallel Graph Reducer. In IFL’96 — Intl. Workshop on the Implementa-
tion of Functional Languages, LNCS 1268, pages 184-199, Bonn/Bad-Godesberg,
Germany, September 1996. Springer-Verlag.

Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - a hunter of idle
workstations. In Proceedings of the 8th International Conference of Distributed

Computing Systems, June 1988.

Danny B. Lange and Mitsuru Oshima. Seven good reasons for mobile agents.

Communications of the ACM, 3(42):88-89, March 1999.

H-W. Loidl. Granularity in Large-Scale Parallel Functional Programming. PhD
thesis, University of Glasgow, March 1998.

David B. Loveman. High Performance Fortran. IEEE Parallel & Distributed
Technology: Systems €& Technology, 1(1):25-42, 1993.

John Launchbury and Simon Peyton Jones. State in Haskell. Lisp Symb. Comput.,
8(4):293-341, 1995.

H-W. Loidl, P.W. Trinder, and C. Butz. Tuning Task Granularity and Data
Locality of Data Parallel GpH Programs. Parallel Processing Letters, 11(4):471-
486, 2001. Selected papers from HLPP’01 — International Workshop on High-level
Parallel Programming and Applications, Orleans, France, 26-27 March, 2001.

H-W. Loidl, P.W. Trinder, K. Hammond, S.B. Junaidu, R.G. Morgan, and S.L.
Peyton Jones. Engineering Parallel Symbolic Programs in GPH. Concurrency —

Practice and Fxperience, 11:701-752, 1999.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1999.

Simon Marlow. Writing high-performance server applications in Haskell, case
study: A Haskell web server. In Haskell Workshop, Montreal, Canada, September
2000.

Simon Marlow. The Glasgow Haskell Compiler. WWW page,
http://www.haskell.org/ghc, 2005.

D. Milojicié, Frederick Douglis, and Richar Weeler. Mobility: Processes, Comput-
ers, and Agents. Addison-Wesley, Reading, MA, USA, 1999.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

BIBLIOGRAPHY 154

[Mil93]

[Mi199]

[MLPJ99]

[MMS95]

[Mog89]

[MPJMRO1]

[MR96]

[New06]

[Nik95]

[NS94]

[NSVEP91]

[0Ca06]

[OCD+88]

R. Milner. The polyadic pi-calculus: a tutorial. In F. L. Bauer, W. Brauer, and
H. Schwichtenberg, editors, Logic and Algebra of Specification, pages 203—246.
Springer-Verlag, 1993.

Robin Milner. Communicating and Mobile Systems: The w-Calculus. Cambridge
University Press, May 1999.

A. K. Moran, S. B. Lassen, and S. L. Peyton Jones. Imprecise exceptions, co-

inductively. In Proceedings of HOOTS’99, volume 26 of ENTCS, 1999.

B. Mathiske, F. Matthes, and J.W. Schmidt. On Migrating Threads. In Intl.
Workshop on Next Generation Information Technologies and Systems, Naharia,

Israel, June 1995.

E. Moggi. Computational lambda-calculus and monads. In Proceedings of the
Fourth Annual Symposium on Logic in computer science, pages 14-23. IEEE Press,

1989.

Simon Marlow, Simon Peyton Jones, Andrew Moran, and John H. Reppy. Asyn-
chronous exceptions in Haskell. In SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 274-285, 2001.

E. Mascarenhas and V. Rego. Ariadne: Architecture of a Portable Threads System
Supporting Thread Migration. Software — Practice and Experience, 26(3):327—
356, March 1996.

Jeff Newbern. All about Monads. WWW page,

http://www.nomaware.com/monads/, 2006.

R.S. Nikhil. Parallel Symbolic Computing in Cid. In Workshop on Parallel Sym-
bolic Computing, LNCS 1068, pages 217-242, Beaune, France, Oct. 1995. Springer.

R.S. Nikhil and A. Singla. Automatic Granularity Control and Load-Balancing
in Cid. Technical report, DEC Research Labs, December 1994.

Eric Nocker, Sjaak Smetsers, Marko van Eekelen, and Rinus Plasmeijer. Concur-
rent Clean. In Leeuwen Aarts and Rem, editors, Proc. of Parallel Architectures
and Languages Europe (PARLE ’91), LNCS 505, pages 202-219. Springer-Verlag,
1991.

OCaml. WWW page, http://caml.inria.fr/ocaml/, 2006.

J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B. Welch.
The sprite network operating system. Computer Magazine of the Computer Group

News of the IEEE Computer Group Society, ACM CR 8905-0314, 21(2), 1988.

BIBLIOGRAPHY 155

[Pi198]

[PJ92a]

[PJ92b)

[PJO1]

[PIGF96]

[PTW93]

[PS02]

[PTLOO0]

[RBMS97]

[San01]

[Sek99]

[Sew98]

Marco Pil. Dynamic types and type dependent functions. In Implementation of

Functional Languages, LNCS 1595, pages 169-185, 1998.

Simon L. Peyton Jones. Implementing lazy functional languages on stock hard-
ware: The spineless tagless g-machine. Journal of Functional Programming,

2(2):127-202, 1992.

S.L. Peyton Jones. Implementation of Functional Programming Languages. A

Tutorial. Prentice Hall, 1992.

Simon Peyton Jones. Tackling the awkward squad: monadic input/output, con-
currency, exceptions, and foreign-language calls in Hagkell. In Tony Hoare, Man-
fred Broy, and Ralf Steinbruggen, editors, Engineering theories of software con-

struction, pages 47-96. I0S Press, 2001.

Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell. In
Conference Record of POPL ’96: The 23" ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 295-308, St. Petersburg Beach,
Florida, 21-24 1996.

Simon L. Peyton Jones and Philip Wadler. Imperative functional programming.

In Principles of Programming Languages. ACM Press, Jan 93.

R. Pena and C. Segura. A polynomial cost non-determinism analysis. In Imple-
mentation of Functional Languages, LNCS 2312, pages 121-137. Springer-Verlag,
2002.

R. Pointon, P.W. Trinder, and H-W. Loidl. The design and implementation of
Glasgow Distributed Haskell. In TFL 2000, LNCS 2011, pages 53-70. Springer-
Verlag, 2000.

D. Ridge, D. Becker, P. Merkey, and T. Sterling. Beowulf: Harnessing the Power
of Parallelism in a Pile-of-PCs. In IEEE Aerospace Conference, pages 79-91, 1997.

Davide Sangiorgi. Asynchronous process calculi: the first-order and higher-order

paradigms (tutorial). Theoretical Computer Science, 253(2):311-350, 2001.

Tatsurou Sekiguchi. A Study on Mobile Language Systems. PhD thesis, Depart-

ment of Information Science, The University of Tokio, 1999.

P. Sewell. Global/local subtyping and capability inference for a distributed -
calculus. In Proc. of the International Colloguium on Automata, Languages and

Programming, LNCS 1443, pages 695-706. Springer-Verlag, 1998.

BIBLIOGRAPHY 156

[Sew01]

[SJ95]

[SLW+04]

[Sri95]

[TA03]

[THLP9S]

[THM*96]

[Tho97]

[TLP02]

[TV96]

[TW85]

[Uny01]

Peter Sewell. Modules, abstract types, and distributed versioning. In Proceedings
of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (London), pages 236-247, January 2001.

B. Steensgaard and E. Jul. Object and native code thread mobility among hetero-
geneous computers. In 15th ACM Symp. on Operating Systems Principles, pages
68-77, 1995.

Peter Sewell, James J. Leifer, Keith Wansbrough, Mair Allen-Williams, Francesco
Zappa Nardelli, Pierre Habouzit, and Viktor Vafeiadis. Acute: High-level pro-
gramming language design for distributed computation. design rationale and lan-
guage definition. Technical Report UCAM-CL-TR~605, University of Cambridge
Computer Laboratory, October 2004. Also published as INRIA RR-5329. 193pp.

R. Srinivasan. Rpc: Remote procedure call protocoll specification version 2. Tech-

nical report, Sun Microsystems, 1995.

A. Tolmach and S. Antoy. A monadic semantics for core Curry. In Proc. of the
12th International Workshop on Functional and (Constraint) Logic Programming
(WFLP 2003), pages 33-46, Valencia (Spain), 2003. Universidade Politecnica de

Valencia.

Philip W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl, and Simon L. Peyton
Jones. Algorithm + Strategy = Parallelism. Journal of Functional Programming,

8(1):23-60, January 1998.

Philip W. Trinder, Kevin Hammond, James S. Mattson Jr., Andrew S. Partridge,
and Simon L. Peyton Jones. GUM: a portable implementation of Haskell. In
Proceedings of Programming Language Design and Implementation, Philadephia,

USA, May 1996.

Tommy Thorn. Programming languages for mobile code. ACM Comput. Surv.,
29(3):213-239, 1997.

P.W. Trinder, H-W. Loidl, and R.F. Pointon. Parallel and distributed Haskells.
Journal of Functional Programming, 12(14-15):469-510, 2002.

J. Tardo and L. Valente. Mobile agent security and Telescript. In IEEE CompCon
’96, pages 58—63, 1996.

Ed Taft and Jeff Walden. PostScript Language Reference Manual. Addison-
Wesley, 1985.

Asis Unyapoth. Nomadic w-Calculi: Expressing and Verifying Communication
Infrastructure for Mobile Computation. PhD thesis, Pembroke College, University
of Cambridge, 2001.

BIBLIOGRAPHY 157

[vCGS92]

[VF01]

[Vol96]

[Voy06]

[vWP02]

[Wad90)

[Wad95)]

[WegT1]

[Wo;00]

[ZTMLO5]

T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active Messages:
a Mechanism for Integrated Communication and Computation. In ISCA’92 —
Intl. Symp. on Computer Architecture, pages 256—266, Gold Coast, Australia, May
1992. ACM Press.

V.Stolz and F.Huch. Implementation of Port-based Distributed Haskell. In
Thomas Arts and Markus Mohnen, editors, Draft. Proc. of IFL 2001, 2001.

Dennis Volpano. Provably secure programming languages for remote evaluation.

ACM Computing Surveys, 28(4es):176-176, 1996.
Voyager System. http://www.recursionsw.com/voyager.htm, 2006.

Arjen van Weelden and Rinus Plasmeijer. Towards a strongly typed functional

operating system. In IFL 2002, LNCS 2670, pages 215-231. Springer-Verlag, 2002.

Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM confer-
ence on LISP and functional programming, pages 61-78. ACM Press, 1990.

Philip Wadler. Monads for functional programming. In E. Meijer J. Jeuring,
editor, First International Spring School on Advanced Functional Programming

Techniques, LNCS 925, pages 24-52. Springer-Verlag, 1995.

P. Wegner. Programming Languages, Information Structures and Machine Or-

ganisation. McGraw-Hill, New York, 1971.

Pawel Tomasz Wojciechowski. Nomadic Pict: Language and Infrastructure Design
for Mobile Computation. PhD thesis, Wolfson College, University of Cambridge,
2000.

A Al Zain, P. W. Trinder, G. J. Michaelson, and H-W. Loidl. Managing hetrogen-
ity in a grid parallel haskell. In Intl. Conference on Computer Science (ICCS’05),
LNCS 3514-3516. Springer-Verlag, 2005.

