MULTI-ARCHITECTURE PARALLEL
PROGRAMMING USING GPH, A FUNCTIONAL

LANGUAGE

By

Mustafa KH. Aswad

SUBMITTED FOR THE DEGREE OF
MASTER OF PHILOSOPHY
AT HERIOT-WATT UNIVERSITY
ON COMPLETION OF RESEARCH IN THE
SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES

DECEMBER 2002.

This copy of the thesis has been supplied on the condition that anyone who consults it is
understood to recognise that the copyright rests with its author and that no quotation from the
thesis and no information derived from it may be published without the prior written consent

of the author or the university (as may be appropriate).

ii

I hereby declare that the work presented in this thesis was
carried out by myself at Heriot-Watt University, Edinburgh,
except where due acknowledgement is made, and has not

been submitted for any other degree.

Mustafa Kh. Aswad (Candidate)

(Supervisor)

(Date)

Contents

1 Introduction 1
1.1 Overview 1

1.2 Contributions 2

1.3 Dissertation Outline L oo 4

2 Background 7
2.1 Parallel Computer Architectures 7
2.1.1 Beowulf Architecture oL 8

2.1.2 Sun SMP Architecture oL 9

2.2 Why Parallel Programming? 0L 10
2.2.1 Parallel Program Development 11

2.2.2 Classification of Parallel Models 12

2.3 Architecture Independence o Lo Lo 16
2.4 Architecture Independent Languages. 16

2.4.1 ZPL :A Machine Independent Programming Language for Paral-
lel Computer 17
2.4.2 Parallaxis-1IT Architecture-Independent Data Parallel Processing 17

2.4.3 SAC Single Assignment C 18

iii

CONTENTS iv

244 CoPa 18
245 BSP Model 19
2.5 Architecture Independence Using Declarative Programming Languages. 19
2.6 Functional Programming 20

2.6.1 Theoretical roots and history of functional programming languages. 20

2.6.2 Functional Languages for Parallelism. 21
2.6.3 NESL e 23
264 Eden. 24

2.7 Haskell o e 24
2.7.1 GpH Parallel Functional Language 25
2.7.2 Parallelismin GpH. 25
2.7.3 Evaluation Strategiesin GpH 26

2.8 GpH Compilers and Tools 27
2.8.1 The Hugs and GHCI Interpreter 27
2.8.2 The GHC Compiler and Sequential Runtime System. 28
2.8.3 GUM Parallel Runtime System 28
2.8.4 Time and Space Profilers 29
2.8.5 GranSim Simulator o Lo oL 30
2.8.6 Visualisation Tools 31

3 A Multiarchitecture Development Methodology 32
3.1 Overview e e 32
3.2 The Methodology Structure 33
3.2.1 Initial Sequential Stage 0oL 34

CONTENTS

3.2.3 Idealised Simulation Stage
3.2.4 Realistic Simulation Stage oL
3.2.5 Target Architecture
3.3 Enhancement of Architecture Independent Enhancement in GpH

3.4 Other Methodologies

4 Sequential Implementation
4.1 Problem Description Lo
4.1.1 A Genetic Alignment Algorithm
4.2 Sequential Implementation 0oL
4.3 Alignment Example o o0 oL
4.4 Sequential Tuning oL L
4.4.1 Development in Versions I, [Tand ITT
4.4.2 Development of Versions IVand V
4.4.3 Version VI using a Finite Map

4.4.4 Sequential Optimisation Discussion

5 Idealised Measurement
5.1 Introduction
5.2 Version I: Divide-and-Conquer,
5.3 Version Ila: Parallelising Substring Sequences
5.4 Version IIb: Parallelising Form pin
5.5 Version Ilc: Parallelise Both Outer and Inner Loops
5.6 Version III: Clustering on Parallel Form pin
5.7 Version IV: Parallelise all maps

5.8 Version V: Parallel all foldr

34

35

35

36

37

37

37

39

40

43

44

47

48

50

53

CONTENTS vi

5.9 Idealised Optimisation Discussion 59

6 Two Simulated Architectures 64
6.1 Beowulf Simulation 0 oL 64
6.2 Sun SMP Simulation00 o 65
6.3 Discussion of Simulation Results 66
6.3.1 Idealised Simulation vs Realistic Simulation 66

6.3.2 Beowulf Simulation vs Sun SMP Simulation Comparison 67

7 Performance Measurements on Two Architectures 74
7.1 Real Measurement on Beowulf machine 75
7.2 Real Measurement on Sun SMP Machine 75
7.3 Discussion of Real Tuning, 7
7.4 Critique of Multi-Architecture Methodology. 78

8 Enhancement of Architecture Independence in GpH 82
8.1 Overview e 82
8.2 Extracting Architecture Characteristics 83
8.3 Generic Architecture Adapting Strategies 84
8.4 Architecture Adapting Strategies for Specific Application 88
8.5 Summary 90

9 Conclusions 94
9.1 Introduction 94

9.2 Achievements 95

9.2.1 Assessing a Multi-Architecture Parallel Programming Methodology 95

9.2.2 Extended The Architecture Independent Capabilities of GpH . . 96

CONTENTS

9.3 Limitations . . .

9.4 Future Work . .

Source Code for The Genetic Alignment Program

A.1 Final Sequential Version o 0.

A.2 Complete Parallel Code of Version I1a,

A.3 Finite Map Code

Bibliography

vii

96

97

98

98

103

109

109

List of Tables

Sequential Profiling Summary o000

Idealised Simulation Input : 206 30.

Realistic 32-PEs Beowulf Simulation Input: 206 30

Realistic 32-PEs Sun SMP Simulation Input: 206 30

Real Beowulf Input: 20 40 30 on 4-processor
Real Beowulf Input: 20 60 30 on 30-processor

Summary Table of Real Measurement of SMP (20 40) on 4-processors

viii

List of Figures

10

11

12

13

14

15

16

17

Distributed Memory and Shared Memory MIMD Architectures 8
CoPa Complexity Preserving Compilation 19
Basic Coordination Constructs in GpH 26
The parList & parMap Parallel Strategies 26
The Multi-Architecture Program Development Model 33
Input Sequences and the Aligned Output Sequences 38
Final Alignment Figure. 38
Functions Call Chart for Versions LILITI. 43
The Align Chunk Function Sequential Code 44
The Bestpin Function 44
Divide and Conquer Sequential Code and Diagram. 45
Heap Profile of Initial Version. 46
Old and New Code of Extract_max_pin Function. 46
Old and New Code of Longest_pin Function. 47
Heap Profile of the Final Sequential Version. 48
The Modified Form_pin function of Version IV & V. 49
The Modified Functions to implement the Finite Map (Version VI).. . . 52

ix

LIST OF FIGURES

18 The Strategies Required for Parallel Divide Function
19 Idealised Simulated Profile of VersionI
20 A Partial from Time Profile of the Final Sequential Version.
21 Divide and Conquer Process Diagram for Divide Function
22 Sequential and Parallel Code of Substring Function.
23 The Idealised Activity Profile of Substring Sequences Function (IIa).

24 Sequential and Parallel Code of From_pin Function (Inner Loop).
25 The Idealised Activity Profile of From pin Function (IIb)
26 Cluster Function and Modified Substring Function.
27 The Idealised Activity Profile for Clustering version (III).
28 The Idealised Activity Profile for parMap version IV
29 New ParfoldList and Extractmaxpins Function.

30 The Idealised Activity Profile for Version V Input 20 6 30

31 The Activity Profile for Idealised vs Simulated Beowulf(Version I, IIa,
and IIb)

32 The Activity Profile for Idealised vs Simulated Beowulf (Version ITI, TV,

33 Activity Profile of Beowulf and Sun for Version I1a
34 Speedup vs Numbers Of PES (Simulated Beowulf & SMP)

35 Chunk Size vs Speed up for Both Beowulf and SMP Architectures

36 Speedup vs Numbers of PEs Real (Beowulf & SMP)

37 Actual profiles of version IIa of Real Beowulf & SMP, Input 20 60

38 A New GpH Structure o

39 A Number of PEs Function

LIST OF FIGURES

40

41

42

43

44

45

46

47

48

The New Functions already Built in Architecture Model

The New General Divide Conquer Function

The New parMapPe Relative Speedup for Beowulf

The New parMapPe Relative speedup for SunSMP (Input 20 40)

A New Divide Function

Divide Function Diagram when it called by 2 PEs

Activity Profile for New and Old Divide Function (20-Processors)

The New Divide Function Relative speedup for Beowulf

The New Divide Function Relative speedup for Sun SMP

xi

85

LIST OF FIGURES xii

Acknowledgements

My praises to God for giving me the good health, the strength of determination and
support to finish my work successfully. I am grateful to Phil Trinder and Hans Wolfgang
Loidl, my supervisors. They were always ready to listen to my work with patience. They
pulled me through the different attempted research area with very helpful suggestions
and with a clear sense of direction. T also wish to thank my company (Azzawyia Oil
Refinery) for their great efforts in giving financial support to enable me to complete

my MPhil study. Finally, I wish to thank my family for their love and affection.

Abstract

This thesis investigates the use of a high level functional language GpH (Glasgow
parallel Haskell) for architecture independent parallel programming. The aim is to pro-
vide acceptable performance across a wide range of parallel architectures with minimal
programming effort. High level languages are a good alternative for architecture inde-
pendent parallelism as they are designed to hide most architecture-dependent details
from the programmer.

The thesis describes the first systemic investigation of a newly-proposed multi-architecture
programming methodology for GpH. The methodology has two main phases: an archi-
tecture independent phase of idealised parallelisation, and an architecture dependent
phase of accurate performance prediction and tuning. The methodology is used to
develop a substantial application for two architectures with different hardware char-
acteristics: a Beowulf cluster and Sun SMP. Sequential tuning improves performance
from 224s to 19s, substantially owing to the elimination of intermediate data structures.
Seven alternative parallel versions of the program are developed and evaluated using
a simulated idealised architecture. Realistic simulation of the two target architectures
accurately predicts the version that delivers the best performance in practice. Ulti-
mately acceptable speedups are achieved on both architectures: 7.5 on a 30-processor
Beowulf and 1.8 on a 4-processor Sun SMP. Transfer between architectures does not
require source code changes.

To improve the architecture independence of GpH new parallel coordination con-
structs for GpH have been designed, implemented and measured. The primitives extract
key architecture specific properties of the machine and use them to control coordina-
tion, often without exposing the properties to the programmer. Improved parallel

performance is demonstrated using the primitives.

Chapter 1

Introduction

1.1 Overview

The development of a parallel program presents a set of problems that do not arise
in the development of sequential software. Principal among these problems is the in-
fluence of the target architecture on the program development process. In particular
the performance tuning process is very sensitive to the target parallel architecture.
Consequently, the development of a parallel program is typically carried out in an
architecture-dependent manner, with a fixed target architecture [1]. Traditional ap-
proaches of parallel programming explicitly specify most parallel aspects such as com-
munication, task synchronisation, and work distribution. An alternative approach is
to hide most of these aspects behind a high level language implementation. A high
level language enables flexible programs and more portability with an acceptable per-
formance across a wide range of parallel architectures [2]. However, high level program-

ming models are still less efficient compared with low level languages.

CHAPTER 1. INTRODUCTION 2

The goal of architecture independent parallel programming languages is that the pro-
grams can be transferred from architecture to architecture without sacrificing much ef-
ficiency or requiring significant redevelopment [3]. High level languages are potentially
architecture independent as parallel coordination is specified at a high level of abstrac-
tion, i.e. without reference to a specific underlying machine. A parallel coordination
describes how the computation are arranged on the virtual machine, including aspects
such as thread creation, placement and synchronisation. The challenges are to produce
effective and efficient implementations of the high-level coordination, and to develop
methodologies to develop software systematically for multiple architectures.

Glasgow parallel Haskell (GpH) is a functional language with a high level parallel pro-
gramming model designed to deliver good performance across a number of parallel
architectures. It is implemented using the Glasgow Haskell Compiler (GHC), with
a parallel runtime system (GUM), that dynamically manages many of the aspects of
parallel execution and automatically adapts its behaviour to the underlying architec-
tures [4].

This thesis investigates a proposed multi-architecture methodology for developing GpH
parallel programs and extends this methodology [5]. The methodology was used to de-

velop multi-architecture parallel program for the first time.

1.2 Contributions

The main contribution of this thesis is to assess architecture independence of high level
parallel functional languages, particularly GpH. More specifically, the contributions are

as follows:

CHAPTER 1. INTRODUCTION 3

The first systematic evaluation of a multi-architecture development method-
ology. The methodology has two main phases: an architecture independent phase of
idealised parallelisation, and an architecture dependent phase of accurate performance
prediction and tuning. In the development of parallel programs most of the work is
done in the architecture independent phase. Sequential optimisation is independent of
parallelisation and delivers a good sequential program before inserting any parallelism.
The sequential optimisation required to detect the space leak problem which is a com-
mon problem in the non-strict functional language. The idealised simulation enables
the programmer to simulate the program on different parallel machines including the
idealised machine with an infinite number of processors and zero communication costs.
The GranSim simulator [6] provides considerable flexibility to emulate different archi-
tectures including the idealised machine which gives a good indicator of the maximum
parallelism that can be obtained. If only a small amount of parallelism is obtained on
the idealised simulation then very little is possible on any architecture. In the archi-
tecture dependent phase the simulator is parameterised to emulate the target machine.
The final stage is to execute the parallel program on a real machine using the GUM
runtime system provided by GpH.

In this thesis, the methodology is used to develop a parallel program for genetic
alignment targeting two parallel architectures with different hardware characteristics:
a distributed memory Beowulf cluster and a shared memory Sun SMP. This thesis then
assesses the performance of the resulting programs and the architecture independence

of the program development process.

Extending the architecture independent capabilities of GpH. To improve the

architecture independence of GpH proposes new parallel coordination constructs are

CHAPTER 1. INTRODUCTION 4

proposed. The primitives extract key architecture specific properties of the machine
and use them to control coordination, often without exposing the properties to the
programmer. In particular, refinements of data-parallel and divide-and-conquer coor-
dination are presented. The thesis discusses the importance of the architecture specifics
extracted and extends the programming methodology with a new module exploiting

this information.

In addition to the main contributions above this thesis surveys a number of archi-
tecture independent parallel programming languages and discusses how each language

achieves the goal of architecture independent parallelism.

1.3 Dissertation Outline

Chapter 2 presents an overview of various approaches towards architecture independent
parallel programming models. In addition the two different parallel architectures used

in this investigation are described.

Chapter 3 gives a detailed description of the proposed multi-architecture program-
ming methodology. It highlights the tools used in the methodology and the importance

of each stage.

Chapter 4 describes the genetic alignment program and its sequential implementa-
tion and performance tuning. The sequential optimisation is an important stage of the
multi-architecture development methodology. To achieve a good parallel performance,

it is necessary to start with a good sequential version.

CHAPTER 1. INTRODUCTION)

Chapter 5 describes the idealised parallelisation of the genetic alignment program,
identifying seven different sources of parallelism.

The different parallel versions are tested using the GranSim simulator parameterised
to emulate an idealised machine. The idealised machine has zero communication costs,
and an unlimited number of processors. The primary goal of this stage is that the
program exposes the maximal amount of parallelism that can be achieved from the

algorithm.

Chapter 6 describes the measurement of the different parallel versions of the genetic
alignment program on two simulated parallel architectures. In this stage, the GranSim

simulator is parameterised with the key parameters of the target architectures.

Chapter 7 describes the measurement of the parallel versions of the program on the
two architectures and summarises the difference between simulation and real measure-
ment. The programs are executed on the architectures using the GUM runtime system

provided by GpH. Usually minimum code changes are required in this stage.

Chapter 8 describes the improvement of the architecture independence of GpH, which
employs the underlying architecture for controlling the parallelism. It describes how
the key architecture-specific property of processors number is extracted. This property
is used at two levels: the strategic level, where the new parameters are hidden from the
programmer, and the application level where it can be used explicitly in order to refine
coordination. Also it describes the new parMapPe and divide functions which employ

the extracted property.

CHAPTER 1. INTRODUCTION 6

Chapter 9 contains a summary of the achievements and limitations of the work pre-
sented in thesis. It evaluates the importance of the development methodology and its

environment tools.

The appendices contain versions of the genetic alignment program and are organised
as follows: Appendix A.1 contains the code for the optimised sequential version; Ap-
pendix A.2 contains the code for the best parallel version (IIa) which delivers best
speedup on both architectures. Appendix A.3 contains modified functions for the

finite-Map implementation.

Chapter 2

Background

This chapter describes some parallel architecture and parallel programming issues.
First, a brief description of the construction of parallel platforms is given, covering the
Beowulf cluster architecture and Sun SMP architecture. Both machines are targeted
for use in this investigation project. Second, parallel programming development and

the types of parallel programming models are discussed.

2.1 Parallel Computer Architectures

Parallel programming will be useful if a general parallel machine (such as a von Neu-
mann sequential machine model) can be defined. This machine model must be simple to
program and the programs developed for the model executed with reasonable efficiency
on real computers [7].

Parallel computers consist of multiple processors, memory modules, and an inter-
connection network. The distinction between the parallel computer architectures is
determined by the arrangement of the above components. The processors used in par-

allel computers are increasingly exactly the same as processors used in single-processor

CHAPTER 2. BACKGROUND 8

systems [1].

The Multicomputer consists of a number of von Neumann computers linked by an
interconnection network. Each computer performs its own program. This program may
access local memory and may send and receive messages over the network. Messages are
used to communicate with other computers or, equivalently, to read and write remote

memories. This model fits the parallel programming requirement.

The SIMD Machines are array processors. They typically consist of large collection
of small processing elements. All processors execute the same program on a different
piece of data. MIMD machines consist of a number of processors which execute a
separate stream of instructions on their own data.

The MIMD machine may be distributed memory or shared memory. Distributed
memory means that memory is distributed among the processors, rather than placed
in a central location. In shared memory all processors have shared access to a common
memory, often via a bus. Figure 1 shows the distributed-memory and shared-memory

MIMD machines.

000

Figure 1: Distributed Memory and Shared Memory MIMD Architectures

2.1.1 Beowulf Architecture

A Beowulf cluster is a distributed-memory (MIMD) multicomputer architecture used

for parallel computations [8]. It may contain a server node, which acts as a gateway to

CHAPTER 2. BACKGROUND 9

the outside world, assigns IP addresses etc. It is built from stock hardware, therefore
it is cheap to build. Beowulf also uses commodity software such as the Linux operating
system, Parallel Virtual Machine (PVM) [9] and Message Passing Interface (MPI) [10].
Large Beowulf machines might have more than one server node, and possibly other
nodes dedicated to particular tasks, for example consoles or monitoring stations. In
most cases client nodes in a Beowulf system are dumb, and the dumber the better.
Nodes are configured and controlled by the server node, and do only what they are
told to do. In a disk-less client configuration, client nodes do not even know their IP
address or name until the server tells them what it is. One of the main differences
between Beowulf and a Cluster of Workstations is the fact that Beowulf behaves more
like a single machine rather than many workstations. In most cases client nodes do not
have keyboards or monitors, and are accessed only via remote login or possibly serial
terminal. Beowulf nodes can be thought of as a CPU + memory package which can
be plugged in to the cluster, just like a CPU or memory module can be plugged into a
motherboard [8].

Heriot Watt University had already acquired a Beowulf cluster which will be used
for the project experiment. It is a 32-node Beowulf cluster consisting of Linux Red Hat
6.2 workstations with a 533 MHz Celeron processor, 128 Kb cache, 128 Mb of DRAM,
5.7 Gb of IDE disk, connected through a 100Mb/s fast Ethernet switch with latency

142 microseconds.

2.1.2 Sun SMP Architecture

Shared memory is a model for interactions between processors within a parallel system.
Systems like the multi-processor Pentium machines running Linux physically share a

single memory among their processors, so that a value written to shared memory by

CHAPTER 2. BACKGROUND 10

one processor can be directly accessed by any processor. Alternatively, logically shared
memory can be implemented for systems in which each processor has its own memory
by converting each non-local memory reference into an appropriate inter-processor com-
munication. Physically shared memory can have both high bandwidth and low latency,
but only when multiple processors do not try to access the bus simultaneously [11]. The
Sun SMP which will be used for this project consists of 4-processor with clock speed of

250 MHz, and it has latency under the PVM layer between nodes as 109 microseconds.

2.2 Why Parallel Programming?

Parallelism is a very interesting perspective in understanding computer architectures
because it applies at all levels of design, and interacts with essentially all other ar-
chitectural concepts. A parallel computer is a collection of processing elements that
communicate and cooperate to solve large problems quickly. The most important as-
pects in the design of a parallel computer are: the number of processors, the processing
power of each processor, communication and cooperation between the processors, the
way of transferring data, the interconnection manner used and the operations available
to sequence the actions carried out on different processors, the primitive abstractions
that the hardware and software provide to the programmer, and finally translation
of all to performance [12]. These issues are reflected in low-level parallel languages.
In contrast, to this hardware view, Skillicorn [1] summarises the demand for parallel

programming as follows:-

e The real world is inherently parallel, so it is natural and straightforward to express
computations about the real world in a parallel way, or at least in a way that

does not preclude parallelism.

CHAPTER 2. BACKGROUND 11

e Parallelism makes available more computational performance than is available in
any single processor, although getting this performance from parallel computers

is not straightforward.

e There are limits to sequential computing performance that arise from fundamental

physical limits such as the speed of light.

e Even if single-processor speed improvements continue on their recent historical
trend. But the costs of designing and fabricating each new generation of unipro-

cessors are unlikely to drop.

2.2.1 Parallel Program Development

The most important issues in writing a parallel program are: partitioning a program
into tasks, mapping tasks onto a processor, and arranging for tasks to communicate
safely [13]. The above issues make the parallel programming quite difficult. Most of
the current research studies aim to produce a parallel programming language which
can make the parallel programming easier. In this section some of parallel program-
ming models which have similar objectives to the GpH model are surveyed. A brief

description of how each model is formed is given.

First, the high level language makes the programmer’s task become easier because
there is no longer need for making accurate judgement and decisions about parallelism.
Consequently, the development and maintenance of programs become easier, and there
is less scope for programmer error. Second, programs become portable, because there
are no detailed low level descriptions of parallelism inserted to the program. In other
word the program does not contain low level descriptions for a particular platform.

Most of the current research studies aim to produce a parallel model which separates

CHAPTER 2. BACKGROUND 12

the high-level properties from low-level ones. A model should be an abstract machine
providing certain operations to the programming level above, and the requirement
of implementing these operations on all architecture. In other words, for a parallel
model to be useful, it must address both issues, abstraction and effectiveness. The

development of a parallel program must address the following issues, according to [14]:

e The parallel program should specify the useful Parallelism from the problem de-
scription. The algorithm must be able to determine the potential parallelism
inherent in the problem. This involves the splitting the program into sequential
chunks that can be executed in parallel. However, the algorithm must be aware

of the cost of communication between processors.

e In mapping, the generated tasks of the program must be mapped down to the
physical resources of the target architecture. This may involve grouping tasks

together and scheduling their execution on the same processor.

e Managing process interaction is not just a matter of writing a number of sequential

threads of code. These threads will normally have to cooperate in some way.

e When ensuring program correctness, as parallel programming is more complex
than sequential programming, there are more things than can potentially cause
errors. While verifying the correctness and proper working of sequential software

is demanding enough, doing the same for parallel software is much harder.

2.2.2 Classification of Parallel Models

The classification is based on how different models control parallelism. A brief descrip-

tion of some of the current models will be given, along with different ideas presented

CHAPTER 2. BACKGROUND 13

by the existing models showing how they achieve parallelism. Parallel programming

languages has been classified by Skillicorn [1] into six categories:

1. Models that abstract from parallelism completely. Such models are fully implicit
and describe only the purpose of a program and not how it is to achieve this

purpose.

2. Models in which parallelism is made explicit, but decomposition of programs into

threads, mapping, communication, and synchronisation are made implicit.

3. Models in which parallelism and decomposition are explicit, but mapping, com-

munication, and synchronisation are implicit.

4. Models in which parallelism, decomposition, mapping are explicit, but communi-

cation , and synchronisation are implicit.

5. Models in which parallelism, decomposition, mapping, communication are ex-

plicit, but synchronisation is implicit.

6. Models in which every thing is explicit.

Implicit Parallelism.

Implicit parallelism (1) is automatically exploited by the compiler and the run-time
support system [15]. The programmer does not have to specify parallelism explicitly
using special language constructs, compiler directives, or library function calls. The un-
derlying system is hidden from the user, which shields programmers from the increased
complexity of parallelism and shifts the burden to the compiler writer [13]. The most
popular approach of implicit parallelism is automatic parallelisation of sequential pro-

grams. The advantages of the implicit parallelism approach are that existing sequential

CHAPTER 2. BACKGROUND 14

software can be reused for parallel computers. Programmers familiar with sequential
languages do not need to know about parallel programming or parallel architectures
to exploit their parallelism. In addition, it is easier to understand the semantics of
implicit programs than of explicit ones. Id [16] is one example of implicit parallel
programming languages.It designed by members of the Computation Structures Group
in MIT’s Laboratory for Computer Science, and is used for programming dataflow and

other parallel machines. Id programs are implicitly parallel to a very fine grain.

Semi-Implicit Parallelism

In semi-implicit parallelism (2-5), the programmer is required to insert annotations
into a program to tell the compiler where a potential parallelism is useful. These
annotations are used to control the parallel behaviour of the program but they hide
in their implementation all low level details. An example of this approach is GpH.
GpH uses a par and seq combinator to exploit parallelism in the program [17]. The
approach exploits data parallelism by performing a high order function on all elements

of a large data structure at the same time [18].

Skeleton Parallelism

Cole [19] has proposed to use skeleton algorithmic as a technique to parallelise func-
tional languages and program parallel machines. The idea is capture common patterns
of parallel computation in Higher Order Functions (HOFs). The common parallel coor-
dination is hidden from the programmer, only HOF's are used to introduce parallelism.
The major advantage of skeletons is the portability of parallel programs written using

this approach. This results from the separation of meaning behaviour for each skeleton.

CHAPTER 2. BACKGROUND 15

Coordination Languages

Caliban is one of the most known functional coordination language introduced by Paul
Kelly. The Caliban coordination language provide controls to statically map the parallel
tasks to the processors. Caliban is an annotation mechanism which specifies how a
Haskell program is executed in parallel [20]. Other approaches such as Linda introduce
a completely new coordination language layer that controls the dynamic execution of

sequential program fragments written in a convebtional programming language.

Explicit Parallelism.

In explicit parallelism (6), the programmer informs the compiler where parallel evalu-
ation should take place. Here the main responsibility of explicit parallel programming
is put back onto the programmer, whose skill and knowledge is instrumental to the
efficiency of the parallel implementation. High-level data-parallel languages such as
High Performance Fortran (HPF) [21] and Fortran D [22], offer a simple and portable
programming model for parallel, scientific programs. In such languages, programmers
specify parallelism abstractly using data layout directives, and a compiler uses these
directives as the basis for synthesising a program with explicit parallelism and inter pro-
cessor communication and synchronisation. In Hudak’s para-functional programming
the programmer can schedule expressions to be evaluated sequentially or in parallel,

and even specify on which processor a given expression should be evaluated.

CHAPTER 2. BACKGROUND 16

2.3 Architecture Independence

Two approaches to introducing explicit parallelism are by using libraries or by adding
language extensions. One of the architecture independent approaches is a parallel pro-
gram which uses the standard procedure libraries such as MPI, PVM, and OpenMP [23].
These libraries are widely used and run on almost all parallel platforms, because they
are supported by machine vendors. The processes that compose a parallel application
can run on different machines as part of the same program. To use these libraries the
programmer must program all of the process decomposition, placement, and communi-
cations explicitly. Another approach is by using the high level languages, some exam-
ples of these are High Performance Fortran (HPF), parallel C++, Java, and Declarative

languages, such as Glasgow parallel Haskell(GpH) [1].

2.4 Architecture Independent Languages.

The popular class is data parallel language. It is oriented much more toward the
machine than to the human programmer. These languages were simply abstractions
of the von Neumann organisation of the machines on which they were implemented.
In contrast, declarative programming languages are claimed to be particularly human
oriented [24]. The characteristic of data parallel programming models is that the op-
eration can be performed in parallel on each element of a large regular data structure,
such as list or array. The program is a logically single thread of control, carrying out

a sequence of either sequential or parallel steps [25].

CHAPTER 2. BACKGROUND 17

2.4.1 ZPL :A Machine Independent Programming Language for Par-

allel Computer

ZPL [3] is one of the imperative data parallel languages. It provides high level semantics
that explicitly represent parallel operations. The ZPL compiler uses Ironman machine
independent communication interface to provide a separation of concerns. The compiler
determines what data to send and when it can legally be sent. Machine specific libraries
then specify how to send the data, which allows each machine to use the low level
mechanism that is most suitable. In order to obtain efficient parallel performance on
parallel computer, ZPL achieves a good performance by executing the program on

sequential computer similar to the GpH model.

2.4.2 Parallaxis-1II Architecture-Independent Data Parallel Process-
ing
Parallaxis-II1 [26] is imperative parallel language based on modula-2, extended by data
parallel concepts. The language is fully machine independent across data parallel archi-
tectures; as a result a program written in Parallaxis runs on different parallel computer
systems. There is a Parallaxis simulation system with source level, debugging and
tools for visualisation and timing. Parallaxis compilers can be used to generate parallel
codes for data parallel systems. The simulation environment allows both the study of
data parallel fundamentals on simple computer systems and the development of parallel
programs, which can later be executed on expensive parallel computer systems. The
central point of Parallaxis is programming on a level of abstraction with virtual PEs
(processor elements and virtual connections). Moreover, in the algorithmic description,
every program includes a connection declaration in functional form. This means that

the desired connection topology is specified in advance for each program and can be

CHAPTER 2. BACKGROUND 18

addressed in the algorithmic section with symbolic names instead of complicated arith-
metic index or pointer expressions. However, full-dynamic data exchange operations
are also possible. Parallaxis provides two compilers (seq.p3 and par.p3) to allow a

programmer to examine her/his program on sequential and parallel architecture.

2.4.3 SAC Single Assignment C

SAC [27] is a strict first-order functional language with implicit parallelism and implicit
thread interaction, optomised for array processing. Array operations in Sac are based
on elementwise specifications using so-called With-loops. These language constructs

are also well-suited for concurrent execution on multiprocessor systems.

2.4.4 CoPa

CoPa is a high-level language for processing nested sets, bags, and sequences (a gen-
eralisation of arrays and lists). CoPa includes most features found in query languages
for object-oriented or object-relational databases, and has, in addition, a powerful form
of recursion not found in query languages. CoPa has a formal declarative definition
of parallel complexity, as part of its specification [28]. CoPa achieves architecture
independence by using a parallel vector machine model (BVRAM) which supports the
complexity-preserving compilation of CoPa’s high-level constructs and efficient imple-
mentation on a variety of architecture. The language provides a logP simulator to
measure the parallel aspects, such as communication cost.

CoPa achieves the architecture independence with a way similar to that in GpH; Fig-
ure 2 shows a parallel compilation technique for CoPa. The BVRAM (Bounded Vector
Access Machine) provides support to the high level construct and efficient implement-

ability on different architectures.

CHAPTER 2. BACKGROUND 19

Rewriting

Architecture Independent
CoPa-seq P

Compilation

Code

BVRAM

Architecture Dependent|

Butterfly Network LogP Model

Figure 2: CoPa Complexity Preserving Compilation

2.4.5 BSP Model

The model uncouples the two fundamental aspects of parallel computation communica-
tion and synchronisation. This uncoupling is the key to achieving universal applicability
across the whole range of parallel architectures. BSP programs are written in super
steps which are global operations of the entire machine. Each super-step consists of
three sequential phases: (1) a computation phase in which each processor computes
with locally-held values, (2) a communication phase in which communication between
processing elements takes place, and (3) a barrier synchronisation. Transferred data is
not visible to the programmer code at its destination until after the barrier synchroni-

sation ends the super step in which it was transferred [29].

2.5 Architecture Independence Using Declarative Program-
ming Languages.

Declarative Programming languages, include the logic and functional languages. They
are characterised by a very high level of abstraction. This allows the programmer to
focus on what the problem is and offers many clear details of how the problem should

be solved. Declarative languages have opened new doors to automatic exploitation

CHAPTER 2. BACKGROUND 20

of parallelism. Their focusing on a high level description of the problem and their
mathematical nature have turned into positive properties for implicit exploitation of
parallelism [30].

In logic programming, all parallelisation is performed by the compiler, without
any details being supplied by the programmer. The possibility of shared variables in
different sub goals makes parallelisation more difficult. Implicit parallelism can be sub-
divided into AND and OR parallelism. OR-parallelism involves matching a single goal
to many clauses simultaneously. AND-parallelism involves the simultaneous resolution
of several goals in a clause [24]. This thesis does not discuss the logic programming

further.

2.6 Functional Programming

In this section the advantages of functional programming and how parallelism is achieved
in functional programming, in particular the GpH Glasgow parallel Haskell model, will

be discussed.

2.6.1 Theoretical roots and history of functional programming lan-

guages.

This section is based on Peyton Jones, Plasmeijer ,and Lisper [31, 32, 33]. Functional
programming is based on the Lambda Calculus a branch of logic, developed in the
20’s and 30’s. The Lambda Calculus is a simple formal language of functions, and
the first developments were by Schonfinkel (1924), and Curry (1930): they defined
a variation called combinatory logic. Church(1932/1933) [34] then defined the first
version of the actual Lambda Calculus. These early logicians had no intention to

define a programming language.

CHAPTER 2. BACKGROUND 21

The first functional language has defined by McCarthy defined around 1960 [35]. In
the late 1970’s, Backus defined the FP language [36]. The important idea in FP is the
standard set of higher order functions which take functions as arguments or return them
as results. Around the same time, researchers at University of Edinburgh defined the
ML language (”Meta-Language”), with polymorphic type inference and a sophisticated
module system.

In the early/mid 1980s a number of lazy functional languages were developed, such
as MIRANDA [37] and LML [38]. Lazy or non-strict languages try to defer evaluation of
expressions until the result is needed. Haskell [39] was defined in 1990 as the standard,
non-strict, higher order functional language. It contains many of the features from
earlier functional languages, such as higher order functions, type inference, and non-

strict semantics.

2.6.2 Functional Languages for Parallelism.

Functional programming style is similar to the data flow model inasmuch as programs
are built of blocks that transform input to output without side-effects. These blocks are
called functions and originate from the mathematical idea of a function. The properties
of pure functions ensure that rewriting does not influence the result of computations.
Therefore, automatic optimisation parallelisation and transformation for optimisation
on computation are possible and parallelisation are possible.

Functional languages are general purpose, high level programming languages sup-
porting programming at a higher level of abstraction than conventional imperative
languages like FORTRAN and C. Programming in functional languages is a declara-
tive activity which involves specifying only what is to be computed, while imperative

programming specifies also the order of the computation steps.

CHAPTER 2. BACKGROUND 22

Junaidu [40] says that a major distinction between modern functional languages
and their imperative language with the same properties is that the former do not allow
assignments (i.e., destructive updates) to memory locations. Alternatively, functional
languages use only declarations (which are technically different from single assignments)
whereby a variables value in a program, once declared, does not change. The lack of
assignments facilitates higher level programming since the concern of programming is
separated from that of low level housekeeping of recycling memory locations enforced
by repeated assignments. The absence of assignments in functional languages serves
as an important prerequisite which confers on these languages a useful mathematical
property. This property ensures that since there are no side-effects, the value of an ex-
pression in a program depends only on the values of its syntactically correct constituent
expressions and not, for example, on the order in which the expressions are evaluated.

Functional languages are often classified according to their semantics, into strict,
non-strict and lenient. Eager evaluation is usually used to implement strict semantics
while lazy evaluation is the implementation technique often used to implement non-
strict semantics. The Third (Lenient) evaluation combines non-strictness with strict
evaluation.

A function is strict if it depends on its argument. A non-strict function is a partial
function that may be defined even when one of its arguments is not defined. Lazy
evaluation starts evaluating the function body, evaluating the function’s arguments only
as and when they are used. Lenient evaluation starts the evaluation of the function
in parallel with the evaluation of all the arguments of the function, and it supports
functions which return results even when their computation may not terminate.

Functional languages provide higher order functions. One common example of

higher order functions is a function which maps another function over a list. In principle

CHAPTER 2. BACKGROUND 23

each list element may be processed in a separate processor. So the programmer need

only provide new argument functions to introduce parallelism [41].

2.6.3 NESL

NESL is one of the most successful parallel functional languages. It is a strict, strongly-
typed, data-parallel language with implicit parallelism and implicit thread interaction.
It has been implemented on a range of parallel architectures, including several vector
computers. NESL fully supports nested sequences and nested parallelism, and has the
ability to take a parallel function and apply it over multiple operations over the data.
NESL is loosely based on ML functional language. The most important parallel fea-
ture in NESL is the apply-to-each construct. This construct uses a set-like notation.
NESL also provides a performance model for calculating the asymptotic performance
of a program on various parallel machine models. This is useful for estimating run-
ning times of algorithms on actual machines. The NESL compiler compiled the NESL
code to an intermediate vector code (VCODE) format. The vector instructions in this
language-independent VCODE format are then mapped to a library of low-level, ar-
chitecture specific. NESL uses a method based on asynchronous processor groups to
reduce communication and a run-time load-balancing system to cope with dynamic
data distributions. This is done by translating the user’s algorithm into ANSI C with
MPT calls, and linking this code with an MPI (Message Passing Interface) library [42].
By using the performance model provided the programmer can tune his application to

achieve better performance on different architectures.

CHAPTER 2. BACKGROUND 24

2.6.4 Eden

Eden [43] coordinates parallel computations using explicit process creation and inter-
connection, enabling the programmer to define arbitrary process networks. Thread
interaction can be either implicit, via shared variables and function parameters on pro-
cess creation time, or explicit via communicating parameters to processes during the
process life time. The language uses a closed system model with location independence.
The programmer typically starts with a specific process network in mind and models
this network using explicit processes. Evaluation strategies may also be required. Eden

offers more possibilities for tuning the parallel performance.

2.7 Haskell

Haskell is named for Haskell Brooks Curry, whose work in mathematical logic serves as
a foundation for functional languages. Haskell is a non-strict purely functional language
based on lambda calculus, designed by representatives of the functional programming
community. The motivation for Haskell was the unification of functional programming
through the introduction of a standard, widespread, modern language. Haskell is a
strongly typed language with a rich type system. As in all functional language, com-
putations are performed only by expressions. Every expression has a type. Primitive
data types supplied by the language include: integers, reals, characters, lists, enu-
merations, tuples, and various function mappings. Haskell language implementations
perform static type checking prior to execution. Haskell functions are defined as map-
pings between parts of the type space. Composition, curried functions, lambda forms,
and higher-order functions are supported. Haskell uses lazy evaluation. It also permits

definition of operators as functions (operator overloading), a convenience feature that

CHAPTER 2. BACKGROUND 25

is unusual in functional programming systems [44, 45].

2.7.1 GpH Parallel Functional Language

GpH [41] is a parallel functional language, which extends the GHC compiler of the
standard non-strict functional language Haskell, with two new combinators in order to
specify parallelism. GpH is a semi implicit approach. The compiler and runtime system
manage most of the parallel execution. The programmer requires only to indicate those

expressions that can be evaluated in parallel.

2.7.2 Parallelism in GpH.

Parallelism is introduced in GpH by the par combinator, which takes two arguments
that are to be evaluated in parallel. A par expression is not restricted to its arguments;
the first argument is sparked (create a thread to evaluated the first argument) while
the second argument continues to be evaluated by another parallel thread. Also, GpH
has a seq combinator which is strict on both its arguments; it evaluates its first ar-
gument to WHNF(Weak Head Normal Form) and then discards it and returns its second
argument. An expression is in WHNF if and only if it has no top-level reducable expres-
sion, i.e the expression may contain inner expressions can be reduced [31]. The default
evaluation degree in Haskell is WHNF. The seq combinator is needed as [14] said: first,
for strict operators whose order of argument evaluation must be changed; secondly, the
combinator may be used for evaluating data structures further than WHNF. Sometimes
the par combinator produces too small tasks which are not useful; in this case the seq
combinator is used to generate useful tasks for parallel execution; thirdly, it is necessary

to change the behaviour of par to be strict in both arguments, like newpar x y = par

y (seqxy).

CHAPTER 2. BACKGROUND 26

par :: a b = b --parallel composition

seq :: a b — b --sequential composition
type Strategy a = a — () --type of evaluation strategy
using :: a — Strategy a — a --strategy application

using x s = s x ‘seq‘ x

rwhnf :: Strategy a —-—-reduction to weak head normal form
class NFData a where -- class of reducible types
rnf :: Strategy a -- reduction to normal form

Figure 3: Basic Coordination Constructs in GpH

parlList :: Strategy a — Strategy [al
parList strat [] = ()
parList strat (x:xs) = strat x ‘par‘ parList strat xs

parMap :: Strategy b — (a — b) — [a]l — [b]
parMap strat f xs = map f xs ‘using‘ parList strat

Figure 4: The parList & parMap Parallel Strategies
2.7.3 Evaluation Strategies in GpH

The evaluation strategies model provided allows the programmer to split the function
definition into two parts: the algorithm and the evaluation. This is achieved by us-
ing lazy higher-order functions. The lazy higher-order functions clearly separate the
two concerns of specifying the algorithm and specifying the program’s dynamic be-
haviour [41, 46, 5] .

The Strategy function specifies the dynamic behaviour required when computing
a value of a given type. A strategy on a value of type a is a function from a to the

nullary value () executed purely for effect, and the null value is returned to indicate

CHAPTER 2. BACKGROUND 27

completion. The using construct applies a strategy to a Haskell expression. The basic
strategy rwhnf reduces an expression to weak head normal form WHNF, the default in
Haskell. The overloaded strategy rnf reduces an expression to normal form (NF), i.e.
containing no reductions. As there are types that are not reduced to normal form
in Haskell, e.g. function types, rnf is restricted to types that are reduced to normal
form by the NFData class which is instantiated for all major types. Because strategies
are simply functions they can be combined, or passed as parameters using standard

language capabilities. Figure 3 shows the basic operation over strategies.

Data-Oriented Parallelism Strategies specifying data-oriented parallelism describe
the dynamic behaviour in terms of some data structures. For example, it provides the
parList function which applies the strategies to every element in parallel. Also, a parMap
is a data parallel function which applies its function argument to every element of a list
in parallel. The strat parameter determines the dynamic behaviour for each element

of the result list. Figure 4 shows the code for both parList and parMap strategies.

2.8 GpH Compilers and Tools

There are many tools used to develop an application written in GpH. These tools and

compilers are summarised in the following paragraphs as stated in [46].

2.8.1 The Hugs and GHCI Interpreter

Hugs [47] and GHCI provide an interactive environment for fast program development.
They allow the programmer to experiment and debug her /his sequential program. Also,
they have the ability to mix interpreted modules with compiled modules [48]. In a

functional language all constructs in a program are expressions with deterministic value.

CHAPTER 2. BACKGROUND 28

All variables have the single-assignment property, and no side-effects from calling other
functions are possible. Such properties permit examining the values of certain program
expressions and testing individual sub-functions in isolation. This can be done using the
Hugs Interpreter. Hugs and GHCI were used to produce the initial sequential program

in section 4.2.

2.8.2 The GHC Compiler and Sequential Runtime System.

GHC [49] is an optimising compiler for the non-strict purely functional language Haskell.
It includes different analysis phases that supply information about the program be-
haviour to the optimisation phase. In GpH parallel programming, the obtained se-
quential optimising program is used in order to achieve parallelism. The only change
required is to add strategies into sequential program. The GHC compiler was used for
compiling the different sequential versions of genetic program (see Section 4.4 for more

details).

2.8.3 GUM Parallel Runtime System

GUM [17] is a portable, parallel implementation of the Haskell functional language.
It is message-based, and portability is facilitated by using the PVM communications
harness that is available on many multi-processors. As a result, GUM is available
for both shared-memory (Sun SPARCserver multiprocessors) and distributed-memory
(networks of workstations) architectures. GUM uses an unmodified version of GHC
to generate an optimised code. The two additional constructs seq and par specify
the evaluation order and generate parallelism. GUM automatically manages many
of the parallel aspects of a GpH program, including work and data distribution and

distributed garbage collection. GUM’s load balancing mechanism allows a high amount

CHAPTER 2. BACKGROUND 29

of potential parallelism and distribution of the potential work in the form of sparks.
Once a spark has been turned into a thread, or been activated, the thread will remain
on this PE. Sparks are generated via executing the par primitive on a CPU and added
to the spark pool. Initially all processors, except for the main PE, will be idle, with
no local sparks available. The Idle PE sends a FISH message to a randomly chosen
PE. On arrival of this message, the PE will search for a spark and, if available, send
it to the requesting PE. This mechanism is usually called work stealing or passive load

distribution.

2.8.4 Time and Space Profilers

The lazy evaluation mechanism in Haskell may cause some data structures not to be
evaluated, or it may retain big data structures which are not used. This is called a space
leak, a common problem in non-strict languages. In order to deal with this problem,the
GHC [50] compiler supports a performance-tuning of the sequential program using time
and space profilers. The profilers allow the programmer to assign a cost centre to any
expression of the source code; thereby he/she knows the computation cost and heap
usage. For example Figures 12 and 15 in Chapter 4 include the space profiles for the
genetic alignment program. The time profiler allows the programmer to assign a cost
centre to any expression within the functions to see its cost. For example Figure 20 in
Chapter 5 includes a partial from the time profile of the final sequential version of the

genetic alignment program.

CHAPTER 2. BACKGROUND 30

2.8.5 GranSim Simulator

GranSim [6] is a highly-parameterised simulator which allows the programmer to sim-
ulate different parallel architectures. GranSim is a tool for achieving architecture-
independence. By providing an idealised as well as an accurate model of parallel archi-
tectures, GranSim has proved to be an essential part of an integrated parallel software
engineering environment. The idealised simulation hides all details of the underlying
parallel architecture (see section 5). According to the amount of parallelism achieved
from the idealised stage, the programmer takes her/his decision either to perform the
realistic stage or not. Chapter 6 describes the use of the GranSim simulator to emulate

specific architecture.

There are number of run-time options parameters provided by the simulator. The

parameters used by the thesis are as follows:

-bP This option controls the generation of a GranSim profile. The overall activity
profile shows the activity of the whole machine by separating the threads into up to five
different groups, running threads, runnable threads, blocked threads, fetching threads,

migrating thread

-bpn Specifies the number of processors to simulate. The value of n must be less
than or equal to the word size on the machine (i.e. usually 32). If n is 0 GranSim-Light

mode is enabled.

-bp: Enable GranSim-Light (same as -bp0). In this mode there is no limit on the

number of processors and no communication costs are recorded.

CHAPTER 2. BACKGROUND 31

-bln Set the latency in the system to n machine cycles. The default value is 1000

cycles.

-bmn Set the overhead for message packing to n machine cycles. This is the overhead

for constructing a packet independent of its size.

2.8.6 Visualisation Tools

Visualisation tools are more important for understanding the dynamic behaviour of the
parallel program. By using the visualisation tools, the log file from the simulator and
GUM can be used to generate a number of graphical graphs containing information
about execution of the program [48]. For example Figure 23 in Chapter 5 includes the

idealised activity profile of the genetic alignment program.

Chapter 3

A Multiarchitecture

Development Methodology

This chapter describes the new methodology for writing multi-architecture programs

and gives a description of a program development for multiple architectures.

3.1 Overview

Parallelism in GpH is semi-explicit; only small amounts of code are required to describe
the parallelism in the program. In addition, strategies allow the programmer to specify
the coordination at high level, and separate the algorithm and the coordination. These
properties facilitate the task of parallel programming and changing to a new archi-
tecture. Consequently, a programmer can start her/his program without any explicit
parallelism, so she/he can develop and test it in a sequential environment. Then the

strategies are inserted to the sequential version to produce parallel versions.

32

CHAPTER 3. A MULTIARCHITECTURE DEVELOPMENT METHODOLOGY33

3.2 The Methodology Structure

Approximately two dozen non-trivial GpH parallel programs have been developed, for
number of architectures [46, 51, 5], and Trinder and Loidl have proposed a GpH multi
architecture programming methodology as result of this experience. The methodology
is summarised in Figure 5, where each node is a program/virtual machine pair. The
program development has two phases: an architecture-independent phase, that develops
adequate parallelism on a simulated idealised machine. Experience has shown that most
of the development work is done in this phase. The architecture-dependent phase tunes

the parallel program for a specific architecture [46].

Initial Sequential Progra%h

Hugs + GHC ¢ Debugging

Sequential Program }

Profilers ¢ Tune sequential algorithm,

[Optimised Sequential Pragram

Derive etc $ add strategies Architecture Indpendent Phas

Initial Parallel program }

GranSim —LighuL tune parallel algorithm

Idealiesd Parallel Program

Gransim . Gransi
tune for architecture 1 tune for architecture 2
[Specialised Parallel Program [Specialised Parallel Program]
Gransim l/ tune parallel algorithm Gransim $tune parallel algorithrn
Specialised & Optimised Parallel Specialised & Optimised Parallel
Program Program
GUM Parallel execution i parallel executioh
Parallel Program
Parallel Program

Architecture Dependent Phase

Figure 5: The Multi-Architecture Program Development Model

CHAPTER 3. A MULTIARCHITECTURE DEVELOPMENT METHODOLOGY34

3.2.1 Initial Sequential Stage

In this stage the programmer writes a sequential version of the program and may need to
debug it using the Hugs or GHCI interpreter [47, 50, 45]. As described in Section 2.8.1
both interpreters provide fast interactive environment development tools. The output

from this stage is a correct sequential program.

3.2.2 Sequential Optimised

In this stage, profiling tools, including space and time profiles are used to obtain infor-
mation about the program behaviour, including the total execution time, the allocation
and residency, often itemised by individual function. Based on that information the
program is tuned to produce an optimised sequential version. The output from this

stage is an optimised sequential program.

3.2.3 Idealised Simulation Stage

In this stage, the evaluation strategies are added in order to expose parallelism in the
program. The insertion of the strategies will be based on the information obtained
from the optimised version.

The initial parallel version is measured using the GranSim [6] simulator parame-
terised to emulate an idealised machine with, e.g. an infinite number of processors, and
zero communication costs. The parallel program will be tuned until it shows a good
parallel performance.

The primary advantage of using an idealised machine is that it is known that poor
parallelism is inherent, and not an artifact of some specific architecture. If good paral-
lelism cannot be achieved on the idealised machine it cannot be obtained on any real

machine. The output from this stage is an initial parallel version of the program.

CHAPTER 3. A MULTIARCHITECTURE DEVELOPMENT METHODOLOGY35

3.2.4 Realistic Simulation Stage

In this stage, the parallelism is tuned for a target architecture. The tuning again uses
the profiling suite, but now the simulators are parameterised to emulate the target
architecture. The parameters specify details such as number of processors, message
latency, thread creation overheads, all in terms of machine cycles, an abstract time
measure. Typical changes during this stage are to adapt the parallelism to the char-
acteristics of the target architecture; for example thread granularity might need to be
increased to offset creation overheads and message latency. The idealised program is
measured using the GranSim simulator, but here the simulator is parameterised to
emulate the target machine. It is often necessary to remove some strategies from the
idealised program to obtain good performance on a simulated realistic. The output of

this stage is parallel program tuned for a specific architecture.

3.2.5 Target Architecture

The final stage is to measure and tune the program on the target architecture using the
GUM runtime system and profiling tools [48]. The experiences of developing parallel
programs using GpH indicate that this stage typically requires few changes [46]. Nor-
mally the simulated results are a good approximation to the parallel behaviour under
GUM [17]. Typical changes during this stage are to adapt the I/O, or to utilise specific
system calls on the target architecture. The output of this stage is a parallel program

on specific architecture.

CHAPTER 3. A MULTIARCHITECTURE DEVELOPMENT METHODOLOGY 36

3.3 Enhancement of Architecture Independent Enhance-

ment in GpH

The author proposes a new model involving the underlaying architecture parameters
when it generates the potential parallel tasks. The parameters that may be involved
are the number of available processors, system latency and the clock speed. Section 8

will describe the proposed model in detail.

3.4 Other Methodologies

There have been few robust parallel functional languages, and hence relatively few
large parallel functional programs developed. As a results there are few development
methodologies for parallel functional programming. Two fundamental methodologies
related to functional programming that have been proposed and explored are BMF
by Pepper [52] and APMs by O’Donnell [53]. Both methodologies are derivational:
the parallel program is derived from a high level specification but typically, the result
of the derivation is not a parallel functional program, but rather C with MPI or a
parallel hardware specification. CSP introduced by Hoare provides a general skeleton
for parallel programs and it allows accurate analysis of correctness and performance
issues. It provides annotation which has a good interface between the communicating
system and a theoretical framework [54]. CSP may be used for parallel functional
programming.

The methodology described in this thesis provides a systemic manner to write a
parallel program functional for different architectures. The result from methodology is

parallel functional program.

Chapter 4

Sequential Implementation

This chapter describes the problem selected for implementation using the multiarchi-
tecture development methodology, and the sequential implementation of the algorithm.

It will also describe the sequential time and space tuning of the program.

4.1 Problem Description

4.1.1 A Genetic Alignment Algorithm

The program developed for several parallel architectures aligns sequences of genetic
material (RNA) from related organisms and has been described in [55, 56]. The aim of
creating the alignment is to study the similarities and differences in sets of sequences.
An alignment of these sequences allows a biologist to extract a fairly accurate guess
about how these organisms relate in the tree of evolution. The alignment of a set of
RNA sequences entails lining up the sequences with corresponding sections directly
above one another. In order to achieve the alignment, indel (for in inserted, or del
deletion) are added to them [57] as shown in Figure 6. The "~" character in the figure

represents the indel characters.

37

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 38

Input sequences
AUGCGAGUCUAUGGCUUCGGCCAUGGCGGACGGCUCAUU
AUGCGAGUCUAUGGUUUCGGCCAUGGCGGACGGCUCAUU
AUGCGAGUCUAUGGACUUCGGCCAUGGCGGACGGCUCAGU
AUGCGAGUCAAGGGGCUCCCUUGGGGGCACCGGCGCACGGCUCAGU

Aligned output sequences.

AUGCGAGUCUA-----—-—-—- UGG-CUU--—---- CGGCCAUGGCGGACGGCUCAUU--
AUGCGAGUCUA----—-—————- UGGACUU--———-- CGGCCAUGGCGGACGGCUCAUU--
AUGCGAGUCUA-----——---—- UGG--UUU------ CGGCCAUGGCGGACGGCUCA--GU
AUGCGAGUC-AAGGGGCUCCCUUGG---—- GGGCACCGGC----GC--ACGGCUCA--GU

Figure 6: Input Sequences and the Aligned Output Sequences

[res_left][Pin][res_righht]

[res_unpinnedch]

Figure 7: Final Alignment Figure.

Alignment Algorithm. The input to the program is a set of amino-acid {A,C,G,U}
Sequences. The alignment algorithm is based on the notion of critical subsequences:
a subsequence of a single sequence that occurs only once within the sequences. When
a critical subsequence occurs in two or more sequences, the set of occurrences is called
a Pin. To compute the Bestpin all the critical subsequences from each sequence must
be generated, and then the critical substrings with the highest number of occurrences
are selected. If more then one substring being selected as pin, the pin closest to the

middle will be selected. The following steps are employed to align a set of sequences:

1. Compute a set of pins for the sequences to be aligned. Locate the best pin which

has the maximum number of occurrences.

2. Connect all pinned sequences with a best pin and place it above the unpinned
sequences. This results in the original sequences being divided by the best pin

into three regions (left, right, and unpinned sequences). Figure 7 shows the final

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 39

alignment of the input sequences. The pinned sequences are split by the best pin

and placed on top of the unpinned sequences as shown in Figure 7.
3. Recursively align the left, right and unpinned sequences.

4. Combine the pinned and unpinned alignment.

4.2 Sequential Implementation

The program consists of three main functions: align_chunk, divide, and Bestpin,
along with auxiliary functions as depicted in Figure 8. The figure shows the depen-

dences among the functions in the implementation.

The Align-chunk Function aligns a set of sequences (chunks) by attempting to
split the chunk into three chunks using a pin: left and right pinned chunks and an
unpinned chunk. These can be aligned independently and the three sub alignments are
combined to produce the complete alignment. It calls Bestpin to extract the best pin,
then calls the divide function to split the three regions as described earlier. Figure 9

shows the sequential code of the align_chunk function.

The Bestpin Function takes the input sequences and extracts the best pin by calling
the functions placed under it: first, the (substring sequences) function generates
all sub strings from each sequence, because it performs an iteration over the input
sequences it is called the outer loop; second, the (Form_pin)function computes the
number of occurrences of each substring, because it performs an iteration over the
substring generated from each sequence inside the (substring sequences) function
it is called the inner loop; third, the Extract max pin function selects the pins which

have the maximum number of occurrences; fourth, pin_average distance computes

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 40

the average distance of the input sequences and the distance between the selected pins
and middle point of the input sequences. Figure 10 shows the sequential code of the

Bestpin function.

The divide Function takes the input sequences and best pin and splits the input
sequences using the best pin into three regions (left, right, and unpinned) by calling the
splitting sequences function. The divide function recursively calls align_chunk
function to align the generated regions independently. The process is continued until
no best pin can be found from any of three regions. The final step, the Combine is
called to merge the alignment results from left, right and unpinned sequences. Figure 11

shows the sequential code of the divide function and calling diagram.

4.3 Alignment Example

The following example shows how the algorithm working. The following input set of
sequences is given to the program.

[[U,C,A,G,U]
[U,C,A,G,TU],
[U,C,A,U,1],
[U,C,A,U,U]]

The first function called is Align_chunk which takes the input and calls the Bestpin.

1. The substring sequences generates all possible substrings from each input se-
quence as follows.
[[ul, [ucl, [ucal, [ucAul, [UCAUU], [CT, [CA], [CAU], [CAUU], [AU], [AUU], [U], [UU], [U]]
([ul, [ucl, [UCAT, [UCAU], [UCAUU], [C], [CA], [CA,UT, [CAU,U], [AU], [AUU], (U], [U,U], [U]]
[[ul, [uCl, [UCAT, [UCAG], [UCAGU], [C], [C,A], [CAG], [CAGU], [AG], [AGU], [G], [G,UT, [U]]

fvl, v,cl, (U,CA], [UC,AG], [UCAGU], [C], [CA], [CAG], [CAGU], [AG], [AGU], [G], [GUT, [U]]

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 41

2. The substring sequences calls the From_pin to compute the pins. The follow-
ing list shows partial from Pins list with its occurrence.

[([ucl,4), ([ucAl,4), ([ucaul,2), ([ucAauul,2), ([C],4)

ul,2), ([AG],2), ([AGU],2), ([G],2), ([GU],2)]

3. The extract max_pins function extracts the pins which has maximum occur-

rence.

[([uCl,4), ([A],4),([CA],4),([C],4),([UCA],4)]

4. The longest_pin function takes the output from extract_max_pins function and
returns the longest pin, in this case UCA. The pin_average distance function is
called to compute the distance between the middle of the sequence and the pin

position within the sequence. The output of pin_average distance function is

[([UCAT,1)].

5. The best_pin_pin function takes the output from pin_average distance func-

tion and returns the pin which has minimum distance from the middle: UCA.

6. The Divide function takes both the best pin and the input sequences and calls
The splitting sequences to split the input sequences into three sequences as
follows:

Right sequences:
[[GUl,
[Gul,

fuul,
[Uul]

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 42

Left sequences: [, 1, [1, [11, Right sequences: [[1, [0 , [0, [O1,

Unpinned sequences:[[1, [1 , [1, [1]

7. The left, right, and unpinned sequences will aligned by recursive call of the divide

function. In this case only the right will be aligned.

The steps from 1 to 6 will be repeated. So the second best pin is [U].
Right sequences

L,
1,

[ul,
(ull

Left sequences

(fel,
(G1,
1,
(1]

Unpinned sequences.

ca, o, 1, [l

At this stage no best pin is found the combine function is called.

8. The combine function will combine the result from aligning the right sequences.

[[GU-]
[GU-1,
[-uul,
[-UUl]

9. In final stage it combines all the results from left, right, and unpinned sequences.

[[UCAGU-],
[UCAGU-],
[UCA-UU],
[UCA-UU]]

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 43

Function call chart of Versions I,11, Ill

Aligin chunk

Divide function top_level_bestpin
12345678 9 10
2 3 4

[P oveage_ st
P overage gt
St sower

Figure 8: Functions Call Chart for Versions LILIII.

4.4 Sequential Tuning

This section describes the steps taken to improve the sequential version of the alignment
program. In fact, there is no particular rule to follow: the optimistions are presented
in the order they occurred to the author. The generated heap profile which contains
information about the memory usage over time is useful for detecting the causes of
space leaks, when the program holds on to more memory at run-time that it needs
to. Space leaks lead to longer run-times owing to heavy garbage collector activity, and
may even cause the program to run out of memory altogether. From the heap profile in
Figure 12 the large consumption of memory can be seen: the total allocated is 1034 Mb
with maximum residency 12.250 Mb. The most expansive function as seen from the
graph is the Bestpin function. To improve the program a series of five optimisations

is made and the following sections will describe them.

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 44

Align chunk :: [Sequence] — [Sequencel
Align chunk [] = []
Align _chunk xs = fun_align all_res
where
best = Bestpin xs -- Find the best pin from xs
all res = divide xs best -- Split and align the xs

Figure 9: The Align Chunk Function Sequential Code

Bestpin :: [Sequence] — -- List of input sequences.
Pin --Best pin as output.
Bestpin []1 = []
Bestpin xs = best_pin pins._dis
where
all_substring = substring_sequences Xxs XS
pins = map fst(extractmax pins all_substring)
extract_longest_pins = longest_pin pins
pins_dis = pin_average_distance extract_longest_pins xs

Figure 10: The Bestpin Function

4.4.1 Development in Versions I, IT and III

In version I the extract max pin function traverses the list containing the pins with
their occurrences three times in order to filter the pins holding a maximum number
of occurrences. Also the longest pin function traverses its given list three times in
order to extract the longest pin. While in version II both functions were improved to
traverse their given list just twice, Figures 13 and 14 show the modified code for both

the functions.

In version III the foldr high order function was employed to improve the extract max pin

and longest_pin functions instead of using the accumulative variable.

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 45

divide :: [Sequence] — -- List of input sequences
Pin — -- Best pin
[Sequence] -- List of aligned sequences.
divide [1 [1 =[]
divide xs [] = xs -- this is represent the basic alignment to the sequence
divide xs pin = (combine pin res_left res right res_ unpinch)
where

(rightch,leftch,unpinchl) = splitting sequences pin xs
unpinch = lead_function pin unpinchl

res_unpinch = align_chunk unpinch

res_right = align_chunk rightch

res_left = align chunk leftch

combine :: Pin — [Sequence] — [Sequence] — [Sequence] — [Sequence]
combine pin left_seqs right_seqs unpinned_seqgs
= (zipWith (cat_sequence pin) left_seqs right_seqgs)
++ unpinned_seqgs

where
cat_sequence :: Sequence— Sequence— Sequence — Sequence

cat_sequence pin 1ls rs = 1ls ++ pin ++ rs

XS :: [Sequence] pin :: Sequence

divide

splitting_sequences

unpinchl\;: [Sequence]

lead_function

Figure 11: Divide and Conquer Sequential Code and Diagram.

CHAPTER 4. SEQUENTIAL IMPLEMENTATION

gl-hC 1,034,623,508 bytes x seconds Mon Apr 8 13:36 2002

D Bestpin/critical

. main/mkRandom

D spliting_sequences/left_sequence
D divide/combine

. align_chunk/fun_align

[] mainicar

. Bestpin/pin_occurence

D align_chunk/Bestpin

. align_chunk/divide

. spliting_sequences/right_sequence
] mAIN/main

. divide/spliting_sequences

D Bestpin/form_pins

D lead_function/lead_function

. left_sequence/pined_chunk
D Bestpin/substring_sequences
. Bestpin/extract_max_pins
D right_sequence/pined_chunk
B cividerlead_function

W omHer

0.0 20.0 40.0 60.0 80.0 100.0 seconds

46

Figure 12: Heap Profile of Initial Version.

-- This old code for extract max pins function
extract max _pins [(Pin,Int)] — [Pin]
extract max pins [] =[]

extract_max_pins xs

where
max_num= maximum (map snd xs)

-- A new code for the extract_max pins function

extract_max_pins [(Pin,Int)] — [(Pin ,Int)]

extract_max_pins [] =[]

extract max pins ((p,n):xss) =foldr (extractmax pins’) [(p,n)] xss
extract_max _pins’ (Pin ,Int)— [(Pin,Int)] — [(Pin,Int)]
extract max_pins’ (p,n) aa_pin@((p’,n’):.)

map fst (filter (A (p,n)— n== max num) xs)

| n> > n = aa_pin

| n’

== n = aa_pin ++ [(p,n)]

| otherwise = [(p,n)]

Figure 13: Old and New Code of Extract_max_pin Function.

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 47

-- The old code for longest_pin function
longest_pin :: [Pin]— [Pin]

longest.pin [] = []

longest_pin xs = longest_pin’ m xs

where

maximum (map length xs)
longestpin’ m [] = []
longest pin’ m (x:xs)
| m == length x = x :longest_pin’ m xs
| otherwise = longest_pin’ m xs

m

—-- The modified code for longest_pin function
longest_pin :: [Pin]— [Pin]
longest pin [] = []
longest pin (xs:xss) =foldr (longest pin’) [xs] xss
longest_pin’ :: Pin — [Pin] —[Pin]
longest pin’ pin xs@(pin’:.)
| length pin’ > length pin = xs
| length pin’ == length pin = (pin:xs)
| otherwise = [pin]

Figure 14: Old and New Code of Longest_pin Function.

The modifications made in versions II and III do not give a big improvement in
consumption of memory. The heap profile obtained from both versions is similar to
figure 12, therefore is not included here. The next step to improve the program is to

eliminate some intermediate data structure.

4.4.2 Development of Versions IV and V

The changes made to produce IV and V are intended to eliminate intermediate data
structures; e.g. an important optimisation is to eliminate the unpinned substrings at an
earlier stage. In other words, when the substrings are generated from a single sequence
the program computes the pin substrings before it generates the substring from other

sequences. This means only the pin substrings are carried to the next stage. As a

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 48

g5-hC 707,552 bytes x seconds Mon Apr 8 13:24 2002

D substring_sequences/subseq

D main/mkRandom

60k . Bestpin/substring_sequences

D substring_sequences/form_pins

40k | . spliting_sequences/left_sequence

|:| locate_pin/locate_pin’

20k | B divide/combine

W vancar

0k Uk A s o A Ml okl W 8 MDA VAN
Bl T y y f

t
0.0 20 4.0 6.0 8.0 10.0 12.0 14.0 seconds

Figure 15: Heap Profile of the Final Sequential Version.

result of the above modification, the total memory allocated dropped to 707.552 Kb
with maximum residency 122.70 Kb. Also the total execution time was reduced to 18.92
seconds, comprising 17 seconds real execution time (MUT) of reduction and 2 seconds
of garbage collection (GC). Figure 15 shows the heap profile for the final tuning of the

sequential stage. Figure 16 shows all modifications are made on the code of From_pin

in versions IV & V.

4.4.3 Version VI using a Finite Map

In the final version a finite map is employed to search and eliminate the duplicated
substring generated from the single string, and to eliminate the unpinned substring
from the critical substring generated by the above step. The code is shown in Figure

17. This version gave some improvement in code execution time compared with versions

CHAPTER 4. SEQUENTIAL IMPLEMENTATION

-- The old code for form pins function

form pins :: [[SubSequencel] -> -- All substrings for input sequences
[Pin] -- List of all Pins

form pins [1 = []

form pins (xs:xss) = [x | x <- xs , or [x ‘elem‘ ys | ys <- xss]]

-- The New code for form pins function
form pins :: [SubSequence] — [Sequence]1— [(Pin,Int)]
form pins [1[] = []
form pins[] ys = []
form pins(x:xs) ys
| num > 1 = (x,num): formpins xs ys
| otherwise = form pins xs ys

where
num = form pins’ x ys
form pins’ :: SubSequence — [Sequence] — Int
formpins’ [1 [1 =0
formpins’ m [] =0

form pins’ m (x:xs)
| ((check_for_snd_appears == Nothing) &&
(check_for_appears /= Nothing)) =
1+ form pins’ m xs
|otherwise = form pins’ m xs
where
check_for_appears = locate_pin m x
where pin_appears = pin_value(check for_appears)
drop (where_pin appears + length m) x
check_for_snd _appears = locate_pin m reset_of_sequence

reset_of_sequence

Figure 16: The Modified Form_pin function of Version IV & V.

IV and V. However the garbage collection time increased from 1.93s to 72.96s and

the residency rose from) 0.123 Mb to 13.4 Mb. The rise is the result of the strict

map construction generation that takes the generation of all substrings from all input

sequences, and the holding of the unpinned critical substring until the stage where the

pins are computed.

CHAPTER 4. SEQUENTIAL IMPLEMENTATION

o0

time memory
Version | Mut GC total time | % of GC time | max residency | total allocate
I 120.1s 104.0s | 224.13 s 46.4 12520 Kb 141.8 Mb
II 121.28 s | 100.8 s | 222.10 s 454 12520 Kb 141.8 Mb
111 119.08 s | 100.8 s | 219.92 s 45.9 12520 Kb 141.7 Mb
v 3727s | 6.52s | 43.80s 14.9 123 Kb 1,349.0 Mb
A% 16.98s | 1.93 s 18.92 s 10.2 123 Kb 369.5 Mb
VI 1296 s | 72.96s | 85.93 s 84.9 13400 Kb 128.05 Mb

Table 1: Sequential Profiling Summary

4.4.4 Sequential Optimisation Discussion

Table

1 summarises most of the measurements of the sequential program versions,

and the following observations are made: the time required to execute the code (Mut)

reported in the second column and the garbage collect (GC) time reported in the third

column.

1. The first three versions perform massive memory allocation and have high resi-

dency, resulting in long execution times, e.g 141.8 Mb and 120.1s, respectively.

. Good performance is obtained from version IV of the program compared with
version III. From Table 1 the memory residency dropped to 123 Kb, and runtime
improved to 43.80, a factor of 5.02. This is the result of eliminating the unpinned

strings at an earlier stage.

. Version V further improved the execution time to 18.92s, with the same residency
(0.123Mb), but less allocation 369.5Mb. The explanation for the improvement is
that the old version of the locate_pin function takes a single sequence and pin
and finds the position of the pin in the sequence by generating a substring which
is equal to the length of the given pin. Then it compares this substring with the
pin; if they are equal it returns to the position, otherwise the function drops one
character from the sequence and repeats the process again. In the new version

each time the program drops one character from the sequence and checks if the

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 51

pin is prefixed from it or not. If so it just returns to its position, otherwise it

scans the rest of the sequence.

4. Version VI attempts to improve the execution time by introducing a finite map,
but the residency rose from 123 Kb to 13.4 Mb. The rise is the result of the strict
map construction generation that takes the generation of all substrings from all
input sequences, and the holding of the unpinned critical substring until the stage

where the pins are computed.

From the figures in Table 1 and the above discussion it may concluded that the

most suitable version to parallelise is version V, and the next chapter describes this.

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 52

-- 014 code for the modified functions
-- Sequential code for substring sequences function
substring sequences :: [Sequence] — [Sequence] — [(Sequence,Int)]
substring_sequences [] [] = []
substring sequences [] ys = []
substring sequences (x:xs) ys = nub resl
where

res = subseq x

resl= form pins res ys ++ substring sequences xs ys
form pins :: [SubSequence] — [Sequence] — [(Pin,Int)]
form pins [1[] (1
form pins[] ys = []
form pins(x:xs) ys

| num > 1 = (x,num): formpins xs ys
| otherwise = form pins xs ys

where
num = form pins’ x ys

—-— New code for the modified functions
substring sequences [] = []
substring sequences (x:xs) =
critical_substring++ substring sequences xs
where
all_substrings = subseq x
fm_of_substring = list_of_substring fm all_substrings
critical_substring = critical_function fm_of_substring
-- This is to filter substrings which occurrence once in FM.
critical_function fm =
filter (x -> case lookupFM fm x of Just n -> n==1)
(keysFM fm)
list_of _substring fm :: [SubSequence] -> FiniteMap SubSequence Int

list_of _substring fm [] = emptyFM
list_of substring fm xs = addListToFM.C (+) emptyFM [(x,1) | x<-xs]
form pins :: FiniteMap SubSequence Int -> [(Pin ,Int)]

form pins ys = pins_in_list
where
list_of cri_substrings = critical function ys
pins_in_fm = delListFromFM ys list_of_cri_substrings
pins_in_list = fmToList pins_in _fm

Figure 17: The Modified Functions to implement the Finite Map (Version VI).

Chapter 5

Idealised Measurement

5.1 Introduction

There are several sources of parallelism in the genetic alignment program and this
chapter will describe the five parallel versions of the program developed using them.
The performance of each version from the program is measured on the GranSim
simulator parameterised to emulate an idealised machine with zero communication costs
and an infinite number of processors. The input data in each case is a set of 6 sequences

containing 20 amino acids. For the last three versions a chunk of size 30 is used.

divide xs ys = (combine pin res_left res right res_unpinch)
‘demanding‘ strategy
where

strategy =rnf res_left ‘par‘
rnf res right ‘par®
rnf res_unpinch

Figure 18: The Strategies Required for Parallel Divide Function

93

CHAPTER 5. IDEALISED MEASUREMENT 54

[m», Divide_par 20 6 30 +RTS -bP -bp: -bG -bM -H64M -Sstderr Average Parallelism = 1.1]

tasks

0o 20.0M 40.0 M 60.0 M 80.0 M 100.0M 1200M

[M running runnable M fetching M blocked H migrating Runtime = 126123139 cycles]

Figure 19: Idealised Simulated Profile of Version I

5.2 Version I: Divide-and-Conquer

Parallelism is initially introduced using a divide-and-conquer paradigm: the alignment
of the left, right and unpinned chunks is independent so they can be evaluated in
parallel, as shown in Figure 11. The required strategy for parallelising the divide
function is shown in Figure 18.

The corresponding activity profile is presented in Figure 19 and shows the execution
time on the X-axis and the number of tasks on the Y-axis. The tasks are separated into
five classes, depending on their state: running if they are executing (green), runnable
if they could be executed if a processor becomes ideal (yellow), blocked if they wait for
data under evaluation (red), fetching if they are retrieving data from another processor
(light-blue), and migrating if they are retrieved from another processor (dark-blue) [58]

[46]. Figure 19 shows a small number of parallel tasks. This is owing to the long

CHAPTER 5. IDEALISED MEASUREMENT 95

Mon Apr 8 13:24 2002 Time and Allocation Profiling Report (Final)
gb +RTS -pT -hC -sstderr -RTS 6 90

COST CENTRE MODULE %time ‘%alloc
locate_pin’ Main 76.9 78.1
con2tag_Aminoacid# Main 14.5 0.0
GC GC 11.3 0.0
form_pins’ Main 3.7 1.0
subseq Main 2.9 20.6
substring_sequences Main 1.2 0.0
individual inherited
COST CENTRE MODULE entries Ytime %alloc Y%time %alloc
MAIN MAIN 0 0.0 0.0 100.0 100.0
main Main 1 0.0 0.1 100.0 99.8
align_chunk Main 55 0.0 0.0 100.0 99.8
Bestpin Main 44 0.0 0.0 100.0 99.7
substring_sequences Main 141 1.2 0.0 100.0 99.7
form_pins Main 61303 0.0 0.0 95.8 79.1
form_pins’ Main 326287 3.7 1.0 95.8 79.1
locate_pin Main 530162 0.5 0.0 91.7 78.1
locate_pin’ Main 23476420 76.9 78.1 91.2 78.1
subseq Main 2132 2.9 20.6 2.9 20.6

Figure 20: A Partial from Time Profile of the Final Sequential Version.

initial sequential segment caused by Bestpin, which occupies about 77 percent of the
runtime. From figure 20 it can be seen that the Bestpin function is called before
the divide function. Moreover the sequential time profiling in Figure 21 shows that
the locate_pin function called from Bestpin function consumes the most execution
time(77%).

By Amdahl’s Law [59] the sequential component of this version of the program

limits the speedup that can be achieved even under ideal conditions to 17070(%’ =1.29.

5.3 Version IlIa: Parallelising Substring Sequences

This version parallelises the outer loop of the Bestpin function described in Section 4.2

using a data parallel style. More specifically the Par_substring sequences function

CHAPTER 5. IDEALISED MEASUREMENT o6

Input sequences

Top_level_bestpin

Spliting ‘_sequence\

Top_level_bestpin Top_level|_bestpin Top_level_bestpin

Splitin equences Spliti uences Spliti sequences

(res_unpingh(__res_left) (_res_righ (res_unpinch (_res_left) (_res_righ (res_unpinch (_res_left) (Tres_right)
NN AN A
e PN AN AN AN AN AN g AN

Figure 21: Divide and Conquer Process Diagram for Divide Function

uses parMap to the map substring_sequences function over the input sequences in
parallel. The parallelisation is not just replacing map with parMap; it needs to modify
the substring_sequences function so the parMap can used. Figure 22 compares the
sequential code with the modified parallel code for substring_sequences, and also
shows the inserted function. Figure 23 shows that six running tasks are generated by
the parMap function. In fact the number of generated tasks depends on the number of
input sequences. The speedup obtained from this version is 4.2 which indicates that
parallelising functions under substring _sequences is a good approach to improve the

execution time.

5.4 Version IIb: Parallelising Form _pin

This Version parallelises the inner loop described in Section 4.2. A new par_from pin
function is inserted and the From pin function was modified to be executed in parallel
over the supplied list. Figure 24 shows the sequential version and the parallel version of
the From pin function. Table 2 shows that the total amount of work is increased owing
to the empty returned pair if the substring is not a pin. However, the speedup was

increased to 6.9. Figure 25 shows the sequential segment at the end of each recursive

CHAPTER 5. IDEALISED MEASUREMENT o7

-- Sequential code for substring_sequences function

substring sequences :: [Sequence]l] — [Sequence] — [(Sequence,Int)]
substring sequences [] []1 = []
substring sequences [] ys = []

substring sequences (x:xs) ys = nub resl
where
res = subseq x
resl= form pins res ys ++ substring_sequences xs ys

-- Parallel code of substring_sequences function
par_substring sequences :: [Sequence] — [Sequence] — [(Pin,Int)]
par_substring sequences xs ys =
foldr (++) [1
(parMap rnf (substring sequences ys) xs)
substring sequences :: [Sequence]l— Sequence — [(Sequence,Int)]
substring_sequences ys x = nub resl
where
res = subseq x
resl= form pins res ys

Figure 22: Sequential and Parallel Code of Substring Function.

call of divide; an attempt will be made to avoid this in the next alternative.

5.5 Version Ilc: Parallelise Both Outer and Inner Loops

This version combines inner and outer loop parallelism, i.e from both version Ila, version
IIb. There is not much difference in the profile between version IIb and Ilc, so it is not

included.

5.6 Version III: Clustering on Parallel Form _pin

This version includes all previous sources of parallelisation, (i.e versions I, IIa, IIb,
I1c); also, a clustering function was applied to the input list supplied to the form pin

function. The clustering function breaks the given list into convenient sized chunk and

CHAPTER 5. IDEALISED MEASUREMENT o8

[m Divide_outer 20 6 30 +RTS -bP -bp: -H64M -Sstderr Average Parallelism = 4.2]
18

tasks

16

0 20M 40M 60M 80M 100M 120M 140M 160M 180M 200M 220M 240M 260M 280M 30.0M 320M
[M running runnable M fetching M blocked H migrating Runtime = 32958140 cycles]

Figure 23: The Idealised Activity Profile of Substring Sequences Function (ITa).

Figure 26 shows the code. The implementation of the parMap function on a collection
of data such as a big list often yields very fine task granularity. Clustering is one
way to improve the task granularity and data locality by introducing fewer tasks, each
operating on a closely-related subset of the collection [51]. As shown in Figure 27 the
utilisation on the system was improved, but there is still a sequential part which needs

to be eliminated.

5.7 Version IV: Parallelise all maps

This version modifies the previous version by replacing all map functions with parMap.
In other words in this version all intermediate functions called by Bestpin and divide
function are parallelised. Figure 28 shows the activity profile for the parMap version of

the program. From the graph the improvement in the system utilisation can be seen;

CHAPTER 5. IDEALISED MEASUREMENT 99

-- Sequential code From pin Function
form pins :: [SubSequence] — [Sequence] — [(Pin,Int)]
form pins [1[] = []
form pins[] ys = []
form pins(x:xs) ys

| num > 1 = (x,num): formpins xs ys

| otherwise = form pins xs ys

where

num = form pins’ x ys

-- Parallel code From pin Function

par_formpin :: [Sequence] — [SubSequence] — [(Pin,Int)]
par_form pin xs ys = nub(parMap rnf (formpins xs) ys)
form pins :: [Sequence] — SubSequence — (Pin,Int)

form pins ys x
| num > 1 = (x,num)
| otherwise = ([], 0)
where
num = form pins’ x ys

Figure 24: Sequential and Parallel Code of From_pin Function (Inner Loop).

up to 45 processors are used.

5.8 Version V: Parallel all foldr

The final version modifies version IV by adding the parallelised fold function used by
extract_max_pin function. A new strategic function called parfoldList was defined to

execute foldr function in parallel. Figure 29 shows the code for the above modification.

5.9 Idealised Optimisation Discussion

The results obtained from the idealised parallel versions are summarised in Table 2.
The maximum idealised speedup was obtained from versions IV and V, 21.5 and

21.9 respectively. Versions IIb, Ilc, and III give more modest speedups. The table also

CHAPTER 5. IDEALISED MEASUREMENT 60

m par_inerFP 20 6 30 +RTS -bP -bp: -H64M -Sstderr Average Parallelism = 7.4]

tasks

140

120 |

100

0 2.0M 40M 6.0 M 8.0M 100M 120M 140M 160M 180M 20.0
[M running runnable M fetching M blocked H migrating Runtime = 20081272 cycles]

Figure 25: The Idealised Activity Profile of From pin Function (IIb)

shows the increasing number of small tasks from 19 tasks in version I to 785 in version
V. There is also a small increase in total work for both versions IIb and Ilc. This is
owing to the fact that the Form pin function operates on each element in the list
in parallel and returns an empty tuple if the substring is not a pin, while in the other
versions if the substring is not a pin the function does not return anything.

The most important observation from the idealised measurements is that a pro-
grammer can parallelise every point in the program even it generates small tasks, and
still some speedup can be achieved. This is clearly seen from Table 2 and activity
profiles from the different versions.

Figure 30 shows the overall activity profile of version V of the program. From
the graph it can be seen that, for this input data, the idealised machine could utilise

approximately 45 PEs. This version is the best idealised parallel version.

CHAPTER 5. IDEALISED MEASUREMENT 61
cluster :: Int — [SubSequence] — [[SubSequence]]
cluster n [1 = []
cluster n xs = take n xs : cluster n (drop n xs)
substring sequences :: Int — [Sequence]l — Sequence — [(Sequence,Int)]
substring sequences n ys [1 = []
substring_sequences n ys x = nub resl
where subseqlist = subseq x
cluslist = cluster n subseqlist
resl= par_formpin ys cluslist
Figure 26: Cluster Function and Modified Substring Function.
Program | Average Speedup | Total Total Generated | Avg.
Parallelism Runtime Work Tasks Task Leng.
(Mega cycles) | (Mega cycles) (Mega cycles)
Seq 1.0 1.0 139.6 139.6
I 1.1 1.1 126.1 138.7 19 7.3
ITa 4.2 4.2 32.9 138.1 94 14
IIb 7.4 6.9 20.0 148.0 3542 0.041
Ilc 13.6 9.5 14.7 199.9 3583 0.052
11 16.7 16.8 8.3 138.6 275.0 0.503
v 21.1 21.5 6.5 137.1 381.0 0.35
A% 21.9 21.8 6.4 140.1 785.0 0.177

Table 2: Idealised Simulation Input : 20 6 30.

The next chapter describes the GranSim simulation of the different parallel versions

on two architectures. The GranSim will parameterised to emulate both of these.

CHAPTER 5. IDEALISED MEASUREMENT

62

(W, par_clusFP 20 6 30 +RTS -bP -bp: -H64M -Sstderr Average Parallelism = 16.7)
9
8
0 5000k 1.0M 15M 2.0M 25M 30M 35M 40M 45M 50M 55M 60M 65M 7.0M 75M 80M
[M running [runnable W fetching M blocked M migrating Runtime = 8278310 cycles]

Figure 27: The Idealised Activity Profile for Clustering version (I1I).

tasks

(&Y., parMap 20 6 30 +RTS -bP -bp: -H64M -Sstderr

Average Parallelism = 21.1]

0o 500.0 k

10M i5M 20M 25M 3.0M 35M 40M 45M 50M 55M 6.0M

[runnable

M running

M fetching M blocked H migrating Runtime = 6491982 cycles]

Figure 28: The Idealised Activity Profile for parMap version IV

CHAPTER 5. IDEALISED MEASUREMENT

63

extract max_pins :: [(Pin,Int)] — [(Pin ,Int)]
extract max pins [] =[]
extract max pins ((p,n):xss) =

parfoldlList (extractmax pins’) [(p,n)] xss

parfoldlist :: NFData a — (a — [a]—[a]) — [a]l— [a] — [a]
parfoldlList f z [] = z
parfoldlList f z (x:xs) = f x ys ‘sparking‘ rnf ys

where
ys = parfoldlList f z xs

Figure 29: New ParfoldList and Extractmaxpins Function.

tasks

(P, parfold 20 6 30 +RTS -bP -bp: -bG -bM -H64M -Sstderr Average Parallelism = 21.9)

160 |

140 |

120 |

100

0o 500.0 k 10M 15M 20M 25M 3.0M 35M 40M 45M 5.0M 55M 6.0M

M running runnable M fetching M blocked H migrating Runtime = 6355778 cycIes]

Figure 30: The Idealised Activity Profile for Version V Input 20 6 30

Chapter 6

Two Simulated Architectures

The methodology in Chapter 3 indicates that architecture dependent tuning starts with
simulating the target architecture. In this experiment, the program is tuned for two
different architectures: a 32 processor Beowulf cluster and a 4-processor Sun SMP. The
architectures are simulated by parameterising (-bp, -bln jand -bmn see section 2.8.5)
GranSim with key architectural properties, most important of which are the number
of processors, the time to pack a message for transmission, and the communication

latency. The last two properties are measured in clock cycles of the given processor.

6.1 Beowulf Simulation

The target machine is a 32-node 530MHz Pentium III Beowulf cluster connected by
fast Ethernet switch. To determine the GranSim parameters accurately the required
parameters were measured using simple programs. For example the PE to PE com-
munication latency was measured as 142 ps under PVM 3.4.2; so for the 530 MHz
processor the GranSim latency is 142*530 = 753 kcyc. Likewise the packing time is

measured as 21 us which gives 11 kcyc. Table 3 summarises the results of the different

64

CHAPTER 6. TWO SIMULATED ARCHITECTURES 65
Program | Average Speedup | Total Total work Generated | Avg.
Parallelism Runtime Work Tasks Tasks Leng.
(Mega cycles) | (Mega cycles) (Mega cycles)
Seq 1 1 139.6 139.6 - -
I 1.1 1.1 127.2 139.9 19 74
ITa 1.9 1.7 80.8 153.5 94 1.47
11b 1.2 0.2 708.9 850.7 3183 0.04
IIc 2.2 0.9 143.7 316.1 3201 0.041
111 2.0 0.9 150.8 301.6 275 0.506
v 1.9 0.8 168.2 319.6 381 0.362
A% 2.1 0.8 162.0 340.2 785 0.178

Table 3: Realistic 32-PEs Beowulf Simulation Input: 20 6 30

versions of the Genetic alignment program with problem size 20 6 30. It should be

remembered that 6 represents the number of sequences, 20 represents the length of

each sequence, and 30 represents the chunk size.

6.2 Sun SMP Simulation

The target machine is 4-processor Sun SMP with a clock speed of 250 MHz connected by

shared memory bus. The latency under PVM layer between nodes has been measured

as 109 wps which is equivalent to 27.5 Kcyc, and the packing cost as 22 us which is

equivalent to 5 Kcyc. The results of the realistic Sun SMP simulation of the Genetic

program are summarised in Table 4.

Program | Average Speedup | Total Total work Generated | Avg.

Parallelism Runtime Work Tasks Tasks Leng.
(Mega cycles) | (Mega cycles) (Mega cycles)

seq 1 1 130.6 139.6

I 1.1 1.1 126.6 139.2 19 7.4

IIa 2.1 1.9 70.6 148.2 94 1.47

IIb 1.3 0.3 413.3 537.2 3542 0.042

IIc 2.9 1.4 97.6 282.0 3201 0.046

111 3.5 1.8 77.2 270.2 275 0.51

v 3.3 1.7 81.4 268.6 381 0.362

A% 3.4 1.7 81.6 277.4 785 0.178

Table 4: Realistic 32-PEs Sun SMP Simulation Input: 20 6 30

CHAPTER 6. TWO SIMULATED ARCHITECTURES 66

6.3 Discussion of Simulation Results

6.3.1 Idealised Simulation vs Realistic Simulation

Comparing the idealised and realistic simulations, Tables 2 3 and 4, the following

observations were made:-

e For these small input sizes the speedup attained and utilisation of each architec-

ture is extremely poor.

e The number of generated tasks is similar in all three simulations because most

parallelism is in flat (data parallelism) rather than hierarchical (divide & conquer).

e The simulated Sun SMP does more work than the idealised simulation, and the
simulated Beowulf does more work than the simulated Sun SMP. This reflects the

increasing latencies of the architectures.

e Both simulated machines give much worse speedups than the idealised machines,
with the simulated Beowulf being slightly worse than the simulated Sun SMP.

This is caused by the latency of each architecture in realistic simulated machines.

e Increasing the number of generated tasks always gives a better speedup in an
ideal machine, but this not the case on realistic machines, because of the commu-

nication and tasks management overheads introduced in the realistic simulation.

e Figures 31 and 32 show the differences between the activity profiles for the pro-
gram versions on the idealised machine and the simulated Beowulf. There is a
similarity between the idealised and the simulated activity profiles for versions I;
this is because version I generate a small number of parallel tasks. In contrast

with other versions, there are differences in activity profiles; the most significant

CHAPTER 6. TWO SIMULATED ARCHITECTURES 67

differences come from the communication cost of the simulated machine. More-
over, the larger runnable threads seen from the graphs are the result of the limited

of number of PEs in the realistic simulation.

e From Figures 31 and 32 it is clear that, as expected,the idealised simulation
does not predict realistic simulation. This because the realistic includes realistic
overhead costs, especially communications. However, the idealised stimulation
does allow the separation of algorithm and architecture concerns: a program that
fails to deliver good parallel performance on a simulated idealised machine, cannot

deliver good performance on any real architecture.

6.3.2 Beowulf Simulation vs Sun SMP Simulation Comparison

The following observations were made in comparing the Beowulf and Sun SMP simu-

lations in Tables 3 and 4:-

1. Versions I and IlTa of the program have similar behaviour on both architectures.
This is because they generate a small number of large tasks compared with other

versions.

2. Separate experiments show that better speedups could obtained for both simu-
lated architectures with large input sizes, but the execution time and disk space
on the simulation platform limit the input size for systematic experiments. Fig-
ure 34 shows the speedups obtained from executing the different versions of the
program on both architectures with varying of PEs. Even with a small input size
the maximum speedup is 2.5 on the simulated sun SMP and 1.7 on the simulated

Beowulf, both for version Ila.

CHAPTER 6. TWO SIMULATED ARCHITECTURES

(NE_Dive pm 20 65075 b by roav soer Average paralen =10 (W, _Divde o 20630 +RTs b bpo2 75500 L1000 G bV HEAM SsUcherege Paralelom =11
. E
. .
. .
. s
B s
: m mm e 1 oo o o e
(T runnable M fetching W blocked W migrating Runtime = 126008239 cycles [runnable M fetching W blocked W migrating Runtime = 127203647 cycles)
(S, Divse ouer 206 50 RS oo bp oA Seer verage Pl =40 (W, D1 ouer 206 30 7T TP 550 5175300 bIII000 G W Hoa Ssemrege Paraleen =19
P P
w
w
B
.
w
.
.
.
C ® g Tunnable M fetching _ M blocked W migraling Runtime - 32958140 cycles) [funnable M fetching W blocked W migrafing Runtime = 80871400 cycles)

Version I1a Idealised

Simulated

(SO, oot 206 50 +m7S 0 bp o Seer) (S, 5o e 20650 +RTS 17 5952 575500 bmIT000 56 oM oM Sedamerage Paraleism = 11
s
B
0
w
B
w
=g Tunnable W fetching W hiocked M migraing Runtime = 20081272 oycles =g funnable W fetching M blocked M migrating Runtime = 753963366 cycles)

Version IIb Idealised

Simulated

68

Figure 31: The Activity Profile for Idealised vs Simulated Beowulf(Version I, ITa, and

I1b)

CHAPTER 6. TWO SIMULATED ARCHITECTURES

(SO oo oo 206 30 7S o0 p. o Seer Averags Paateton =167 (SO, 5o oo 206 30 75 b0 5992 175300 L1000 56 DN oA Ssudewerage Paraleiom = 13
]]
= rong Tunnable W fetching M blocked W migrating Runiime = 8278310 cycies) (T Tunnable Wieching Whiocked W igrating 56157884 cycles)

Version 111 Idealised

Simulated

(S porton 20 650 s o . st seer Fverags paateton =210 (SO, o0 2050 1775 b 52 75300 bmI1000 56 bW ioa Seer Awerage Paraleiom = 13
]]
i. H
P
B
x
o
mrming runnable W fetching _Whlocked W migraing Runiime = 6491982 cycies) (T funnable W fetching W blocked W migrating

Version IV Idealised

Simulated

(S, oo 206 30 s 0 p ot Sewer e paateion =220 (SO, 5100 205 30 7S 5" 5592 175300 11000 56 I e Setder Average Paraleism =23
o 100
s
N
0 o
w
B
mrng runnable W fetching _ Whlocked W rigrating Runime = 6330288 cycles (T Tnnable Wiewching Whiocked W rigrating 54673019 cycles

Version IV Idealised

Simulated

69

Figure 32: The Activity Profile for Idealised vs Simulated Beowulf (Version III, TV,

and V)

CHAPTER 6. TWO SIMULATED ARCHITECTURES

(&9, Divide_outer 20 6 30 +RTS -bP -bp32 -bI75300 -bm11000 -bG -bM -H64M -Sstdemrage Parallelism = 1.9)
14

tasks

12

10

0 50M 100M 150M 200M 250M 300M 350M 40.0M 450M 50.0M 550M 60.0M 650M 700M 750M 80.0M
[M running runnable M fetching M blocked M migrating Runtime = 80871400 cycles]

Beowulf

70

(&9, Divide_outer 20 6 30 +RTS -bP -bp32 -bl27500 -bm5000 -bG -bM -H64M -Sstdéwerage Parallelism = 2.1]

tasks

12

10

[50M 100M 150M 200M 250M 300M 350M 400M 450M 500M 550M 60.0M 650M _70.0M
[M running runnable M fetching M blocked H migrating Runtime = 70568204 cycles]

Sun SMP

Figure 33: Activity Profile of Beowulf and Sun for Version Ila

CHAPTER 6. TWO SIMULATED ARCHITECTURES 71

3. The comparison in Figure 35 illustrates the chunk size vs the speed up. Both
architectures have a similar shape of graph. The best chunk size is 25 or 30 for

most versions of the program on both architectures.

4. Figure 33 shows the activity profile from the best version of both architectures.
The graphs reflect similar activities except that the Beowulf cluster has more

fetching threads because of the higher latency.

CHAPTER 6. TWO SIMULATED ARCHITECTURES 72
NO-of-PEs vs speedup for Beowulf 20 6 30
18 T T T T T T
|- Speedup ——
__--1k-aSpeedup ------
-7 II_b Speedup -------
16 Il_c Speed up - |
’ . Ill- Speedup —-—-—--
IV- Speedup -----
V- Speed up -------
1.4 -
1.2 -
1 ~
o
>
o
[
[
j=8
n 0.8 -
0.6 -
O e S T R HE -
0.2 B S e E— ~iem s
0 i i i i i i
5 10 15 20 25 30 35
NO-of-PEs
Beowulf
NO-of-PEs vs speedup for SMP 20 6 30
3 T T T T T T
|- Speed up ———
Il_aSpeedup —-----
Il_b Speedup -------
Il_c Speed up -
Ill- Speedup —-——~--
25 L IV- Speedup ------ |
' V- Speed up -------
2 - ~
s
3 15| -
a
"
1 T . -
0.5 |- et -
0 i i i i i i
0 5 10 15 20 25 30 35
NO-of-PEs Sun SMP

Figure 34: Speedup vs Numbers Of PES (Simulated Beowulf & SMP)

CHAPTER 6. TWO SIMULATED ARCHITECTURES

73

Chunksize vs speedup for Beowulf

0.95 T T T T T

0.75 [~

speedup

0.7 -

0.65 -

0.6 [

0.55

T T
Ill- Parclus Speedup ———
IV- ParMap Speed up
V-Parfold Speed up

chunksize

Beowulf

Chunksize vs speedup for SMP

1.85 T T T T T

18 |-

T

speedup

14

13 i i i i i

T T
Ill- Parclus Speedup ———
IV- ParMap Speed up ---
V-Parfold Speed up----7:7.

chunksize

Sun SMP

70

80

Figure 35: Chunk Size vs Speed up for Both Beowulf and SMP Architectures

Chapter 7

Performance Measurements on

Two Architectures

The last stage of the methodology as described earlier in chapter 3 section 3.2.5, is to
execute the optimised parallel program on real parallel architecture. This chapter will
illustrate measurement.

The measurements have been performed on two parallel architectures: the distributed-
memory machine (Beowulf cluster), and share memory machine (Sun SPARC Server)
which described earlier in section 2.1.1.

The simulated Beowulf and Sun SMP results reported in Tables 3 and 4 predict
that version Ila gives the best speedup for both architectures. However, to explore
the differences between executing the different versions on a simulated machine and
a real machine, it is necessary to test all versions on real machines. The program
was measured on two real architectures which are faster than the simulation machine;

therefore the input sizes are much bigger than the simulated input sizes.

74

CHAPTER 7. PERFORMANCE MEASUREMENTS ON TWO ARCHITECTURESTS

Program | Speedup | Total Runtime | Generated Tasks | Avg. Tasks Long.
(second) (ms)

seq 1 27.7 - -

I 1.09 27.2 3 .025

ITa 1.9 15.0 21 0.003

Ib 0.8 36.4 861 0.001

Ilc 1.4 18.6 16157 0.005

11 1.3 20.9 601 0.007

v 1.5 18.4 601 0.004

A% 1.8 15.5 4226 0.001

Table 5: Real Beowulf Input: 20 40 30 on 4-processor

Program | Speedup | Total Runtime | Generated Tasks | Avg. Tasks Long.
(second) (ms)

seq 1 99.9 - -

I 0.8 123.1 171 0.119

ITa 7.5 13.2 941 0.011

Ib 0.2 140.5 1891 0.004

IIc 1.0 94.0 37821 0.021

11 0.9 107.6 5096 0.057

v 0.6 155.8 1281 0.013

Vv 1.0 99.8 7716 0.074

Table 6: Real Beowulf Input: 20 60 30 on 30-processor

7.1 Real Measurement on Beowulf machine

The measurements reported in Tables 5 and 6 show that version Ila gives the best
speedup (7.5) on 30-processor. Table 6 summarises the results obtained from the dif-
ferent versions when the program was executed on 30 processors of Beowulf cluster.
Table 5 was produced in order to compare Sun SMP results directly with Beowulf
results (Table 5). However, results from simulation and real measurement cannot be
directly compared, i.e Table 5 with 3, because of the difference in the input size of

both measurements.

7.2 Real Measurement on Sun SMP Machine

The measurements reported in Table 7, was for the Sun SMP which limited to 4

processors. The results show that version ITa predicted the best speedup on Sun SMP

CHAPTER 7. PERFORMANCE MEASUREMENTS ON TWO ARCHITECTUREST6

NO-of-PEs vs speedup for Beowulf (with 20 60)

Q.
>
=
[
Q
o
2]
5 10 15 20 25 30
No-of-PEs
No-of-PEs vs speedup (Beowulf and Sun SMP)
T z T
! Real Sun SMP
T O R SO Real Beowulf ------ _
: Ideal -------
0 R -
2 b —
O L8 i . e .
2 ; j—
3 : e
[} : St
8 P
(=} =T
0 T :
e ,,,,/,,/,,/,,,,,,»:f’f rrr -
14 b /,/,,/ ,,, .
1.2 st T -
1 =]]
1 2 3 4
No-of-Pes

Figure 36: Speedup vs Numbers of PEs Real (Beowulf & SMP)

CHAPTER 7. PERFORMANCE MEASUREMENTS ON TWO ARCHITECTUREST7

Program | Speedup | Total Runtime | Generated Tasks | Avg. Tasks Lang.
(second) (ms)

seq 1 70.8 - -

I 0.9 73.8 55 1.34

ITa 1.8 37.9 616 0.061

Ib 0.2 332.0 23940 0.013

IIc 0.4 146.8 12036 0.012

11 0.7 94.8 2585 0.036

v 0.6 105.8 2850 0.037

Vv 0.8 87.6 3047 0.029

Table 7: Summary Table of Real Measurement of SMP (20 40) on 4-processors

(1.8). Table 7 summarises the results obtained.

7.3 Discussion of Real Tuning

1. Considering the different versions of the program reported in tables 5, 7, the
best version is Ila on both architectures, with speedup 7.5 on the Beowulf and
1.8 on the Sun SMP. This is because version Ila generates big tasks compared
with versions IIb to V.The speedup on the Beowulf is better than the idealised
speedup (4.2), because of the difference in the input size. The worst version is
IIb for both simulation measurements and real measurements, this is owing to
the large number of small tasks which increases the amount of communication in

the program.

2. Both architectures have approximately similar speedup when executed on four
processors, i.e 1.8 on Sun SMP and 1.9 on Beowulf. Figure 36 shows the speedup

graphs obtained from Beowulf and SMP.

3. Tables 5 and 7 show that the number of tasks generated by Sun SMP is bigger
than the generated tasks by Beowulf for the same input sizes. The reason for this
difference is that the Beowulf has bigger latency and higher processor speed, and

consequently the idle processor in Beowulf takes more time to fetch tasks. The

CHAPTER 7. PERFORMANCE MEASUREMENTS ON TWO ARCHITECTURESTS

GUM mechanism was described in Section 2.8.3). The different number of tasks
on both architectures shows that the RTS (Run Time System) can dynamically

adjust the granularity of the parallelism to the specific parallel machine.

4. The results from both architectures show that the realistic GranSim simulation
accurately predicts which version of the program will give a good performance on

real architectures.

7.4 Critique of Multi-Architecture Methodology.

The genetic alignment program exhibits a good performance on both architectures
without requiring modification and with the same parameters of the runtime system.

The key features of the methodology are as follows:

e The sequential profiling is independent of parallelisation and gives a good sequen-
tial program before inserting any parallelism. This is clearly seen from the results
obtained: the total execution time of 224 seconds for the initial version dropped

to 18.9 seconds for the final sequential version.

e The GranSim simulator provides considerable flexibility to emulate different ar-
chitectures, including the idealised machine which gives a good indicator of the
maximum parallelism that can be obtained. If only a small amount of paral-
lelism is obtained on the idealised simulation then very little is possible on any

architecture.

e The idealised version can be reused when targeting new architecture. This saves
a programmer from redeveloping his program from scratch when targeting new

architecture.

CHAPTER 7. PERFORMANCE MEASUREMENTS ON TWO ARCHITECTUREST9

e The idealised simulation results in Table 2 show that the increase in the speedup is
related to the increase in task generation Therefore, if a good speedup is needed it
is necessary to generate tasks as much as possible, but the real measurement and
the realistic measurements indicate that the number of generated tasks depends
on the system latency. As can seen from Tables 5 and 7 the number of generated

tasks in Beowulf is much smaller than for the Sun SMP.

e Realistic GranSim simulation correctly predicts the program versions that will
deliver a good speedup on both architectures. However, there are differences in
the shape of the activity profiles produced from GranSim and GUM, as shown in
figures 33 and 37. Unfortunately it is not possible to compare the figures directly
because of the difference in input sizes. Some of the differences are the result of
system issues; e.g. in GUM, it is possible to control the number of tasks created
on PE while this is not possible under GranSim. Moreover, GranSim does not
cover the communication behaviour of the machine: the bandwidth of the commu-
nication channel and the topology of the underlying machine. GranSim assumes
that the latency between two processors is independent of the communication

traffic [58].

e No changes are required to the program source, to move the genetic parallel
program from Beowulf cluster to Sun SMP architecture. This is owing to the
fact that the programmer controls only a few parallel aspects, as most aspects
are controlled by the runtime system, such as thread creation, communication
between tasks, and task placement. The best performance on both architectures

is obtained from the same parallel version of the program (version Ila).

CHAPTER 7. PERFORMANCE MEASUREMENTS ON TWO ARCHITECTURESS0

The model described here supports the claims that the high level coordination in
parallel functional languages facilitates software development for multiple architectures,
by showing that minimal program changes are needed to move an application written
in GpH from one architecture to another.

All chapters from Chapter 4 and including this chapter describe the implementa-
tion of the proposed methodology. The implementation shows that it is necessary to
control the generated tasks from GpH program by considering the underlying param-
eters. The next chapter will discuss new architecture independent functions and their

implementation.

CHAPTER 7. PERFORMANCE MEASUREMENTS ON TWO ARCHITECTURESS1

(r)
mﬁ Divide_outer 20 40 +RTS -qp4 -gP -qt2 -H64M -sstderr Average Parallelism = 1.7]

tasks

0 2.0k 4.0k 6.0k 8.0k 10.0k 12.0k 14.0k
\[M running ¥ runnable H fetching H blocked W migrating Runtime = 15077 cyclesl

Beowulf

m Divide_outer 20 40 +RTS -qp4 -qP -qt2 -H64M -sstderr Average Parallelism = 2.2]\
P 9
8 8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0

0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k 220k 240k 260k 28.0k 30.0k 320k 340k 36.0k
\[M running ¥ runnable H fetching H blocked H migrating Runtime = 37989 cyclesl

Sun SMP

Figure 37: Actual profiles of version I1a of Real Beowulf & SMP, Input 20 60

Chapter 8

Enhancement of Architecture

Independence in GpH

8.1 Overview

From the experiment described throughout the previous chapters and others [5, 46], it
may be seen that many GpH programs often create a massive amount of parallelism.
The philosophy of GUM’s load balance mechanism is to allow a high amount of potential
parallelism and distribute the potential work in the form of sparks. In addition to that,
it provides a kind of management to make spark creation cheap, thus minimising the
cost of spark movement between processors. Also any spark turned into a thread is
evaluated by its PE [4].

This mechanism works well if the GpH program generates big potential tasks, i.e.
large tasks granularity. As seen from the genetic alignment program the best perfor-
mance is obtained from the version with large parallel tasks. Therefore, the author
proposes to build a new model for GpH that uses information about the underlying

architecture when it generates potential parallel tasks. The architectural parameters

82

CHAPTER 8. ENHANCEMENT OF ARCHITECTURE INDEPENDENCE IN GPH83

that may be involved are the number of available processors, system latency and the

processor clock speed. Figure 38 shows the new GpH model.

[— [Application level }
New Model < \
7 Architecture Model } } Strategy Model

7
’
.

[GHC Compiler

GUM RTS virtual Machia\e

PVM virtual Machine }

[Operating System }

‘ Underlying Architecture}

Figure 38: A New GpH Structure

8.2 Extracting Architecture Characteristics

The most important architecture parameter to be abstracted in this section is the
number of processors. The motivation for abstracting the number of processors (PEs)
is that the most important characteristic for parallel program is the granularity. The
typical techniques for parallelisation such as parMap over long lists generate much more
parallelism than is needed. Therefore, it is important to achieve a good granularity
even with changing the numbers of PEs without source code change. In other words

the implementation of many parallel functions, e.g. a parMap function, often yields very

CHAPTER 8. ENHANCEMENT OF ARCHITECTURE INDEPENDENCE IN GPH84

fine task granularity. Even if clustering is used the task granularity still depends on
the programmer estimation and it does not change dynamically. As another example,
the divide and conquer sometimes ends up with many small parallel tasks that reduce
performance; the programmer often controls this situation by threshold. The number
of processors (PEs parameter) can be used to write strategic functions which minimise
the number of generated tasks, and can be used to define new strategies. Figure 39
shows the function which returns the number of processors(PEs). Sections 8.3 and 8.4

will show the implementation of the PEs parameter in the genetic alignment program.

/* This C program function return the actual PEs runing by PVM */
#include <stdio.h>
#include "/net/dazdak/fp/pvm3/include/pvm3.h"

int numberPEs(void) ;

int numberPEs(void)

{
struct pvmhostinfo *hostp;
int mnhost, narch;
/* get configuration of the parallel machine */
pvm_config(&nhost, &narch, &hostp)
return nhost ;
}

Figure 39: A Number of PEs Function

8.3 Generic Architecture Adapting Strategies

The new strategic functions can be added to the strategy library used with the GpH

system as shown in Figure 38. The new strategies use information about underlying

CHAPTER 8. ENHANCEMENT OF ARCHITECTURE INDEPENDENCE IN GPH85

module Architecture(pe,parMapPe, chunksize)
where
import Strategies

cluster :: Int -> [a] -> [[a]l]
cluster n [] = []
take n xs : cluster n (drop n xs)

cluster n xs

pe = pes ()
pes ::() -> Int
pes null = unsafePerformI0 (_ccall_ numberPEs)

parMapPe: : (NFData a,NFData b)= Strategy [b]—Int—(a — b) — [a]l] — [b]
parMapPe strat pp f [1 = []
parMapPe strat pp f xs = clisst
where

clist = cluster num xs

nn = length xs

num = if (nn ‘div‘ pp) == 0 then 1 else (nn ‘div‘ pp)

plist =map (map f) clist ‘using‘ parList strat

clisst = concat plist

Figure 40: The New Functions already Built in Architecture Model

architecture to minimise the number of tasks generated by a GpH program. For example
a new strategies parMapPe was defined to chunk the given list automatically, based on
the number of processors (PEs). The parMapPe function guarantees that the number
of generated tasks is equal to the number of processors. The same technique could be
used to defined a new parfoldr strategy which splits the given list into a sublist and
folds the function over them in parallel. The code of parMapPe is shown in Figure 40.
Also a general divide conquer function can be defined, the number of processors can be

used to determine the maximum tree level as shown in Figure 41.

CHAPTER 8. ENHANCEMENT OF ARCHITECTURE INDEPENDENCE IN GPH86

seqdiv :: (a — Bool) —(a— b) — (a— [al)
—+ ([b]—= b) - a—= b
seqdiv trivial solve split combine x
| trivial x = solve x
| otherwise = combine child
where
child = map (seqdiv trivial solve split combine) (split x)
-- Parallel divide function
pardiv :: Int — (a — Bool) —(a— b) — (a— [al)
— ([b]= b) — a= b
pardiv O trivial solve split combine x = seqdiv trivial solve split combine x
pardiv (pes-1) trivial solve split combine x
| trivial x = solve x
| otherwise = combine child
where
child = parMap rnf (pardiv (pes-1) trivial solve split combine)
(split x)

Figure 41: The New General Divide Conquer Function

Beowulf Implementation. The implementation of the new function on the Beowulf
cluster shows some improvement in speedup when there are more than twelve processors
and no change when there are fewer processors. The function was tested on version I11
of the genetic alignment program. In the genetic alignment program the Form_pin is
applied to a big list; e.g. when the input is 20 sequences of length of 60, the length
of the subsequences list applied to the function is 2015 elements. This generates 68
parallel tasks for each recursive call if the chunk size is set to 30. Of course fewer tasks
are generated for each recursive call, but still version III generates a huge number of
parallel tasks. The total number of generated tasks from version III as reported in
table 6 is 5096 tasks. In contrast the newparMapPe will generate fewer parallel tasks
depending on the number of processors; e.g. if the parMapPe function is called with the
same list and 4 processors, it will generate only four parallel tasks for each recursive

call. It generates 771 tasks in total from the same input size. Figure 42 illustrates the

CHAPTER 8. ENHANCEMENT OF ARCHITECTURE INDEPENDENCE IN GPH87

improved performance of the new function.

NO-of-PEs vs speedup (with 20 60 30 Beowulf)
3.5 T T T T

T
111- Old version

Il New version ------
3+
25
o
=]
j=%
7]
15 [
1+
0.5 1 i i i :
0 5 10 " " L "
No-of-PE

Figure 42: The New parMapPe Relative Speedup for Beowulf

Sun SMP Implementation. The parMapPe function was also tested using version
IIT of the genetic alignment program. The experiment shows some improvement in the
speedup; e.g. on four processors the speedup increased from 0.8 to 1.1. Figure 43 shows
both the speedup of the old clustering version (ITI) and the speed up of an automatic

clustering version.

CHAPTER 8. ENHANCEMENT OF ARCHITECTURE INDEPENDENCE IN GPHS88

NO-of-PEs vs speedup (with 20 40 Sun SMP)

Old speed up of version IlI

New speed up of version Ill ------

speedup

Y e B O A O i .

No-of-PEs

Figure 43: The New parMapPe Relative speedup for SunSMP (Input 20 40)

8.4 Architecture Adapting Strategies for Specific Appli-

cation

The parallelism in divide and conquer comes from the fact that a given task is split into
sub-tasks that can be evaluated in parallel. This technique is used in the genetic align-
ment program. The divide function generates three parallel tasks for each recursive
call. It is possible to control the generated tasks from the function by passing a new
parameter, as shown in Figure 44. This parameter is used to limit the depth of paral-
lelism generated in the divide function call tree. The divide function generates three
parallel tasks for each recursive call. To match the number of tasks with the number
of PEs, the new pes parameter passed to the initial call is computed as logs (pe). If

the length of the given list is smaller than the number of processors, the result from

CHAPTER 8. ENHANCEMENT OF ARCHITECTURE INDEPENDENCE IN GPH89

Align chunk :: Int— [Sequence]l — [Sequence]

Align chunk pes []
Align_chunk pes xs

(]

fun_align all_res

where
best = Bestpin xs -- Find the best pin from xs
all res = divide pes xs best -- Split and align the xs
divide :: Int — [Sequence]l — Pin — [Sequence]
divide pes [1 [1 = []
divide pes xs [l = xs -- Basic alignment
divide pes xs pin = (combine pin res_left res_right res_unpinch)
‘demanding‘ strategy
where
(rightch,leftch,unpinchl) = splitting sequences pin xs
unpinch = lead_function pin unpinchl
res_unpinch = align chunk (pes-1) unpinch
res_right = align chunk (pes-1) rightch
res_left = align chunk (pes-1) leftch
strategy =if pes <= 0 then () else (rnf res_left ‘par‘
rnf res_right ‘par‘
rnf res_unpinch)
Figure 44: A New Divide Function
(__mput sequences) Each box represents a new parallel task
[Left J unpinnﬁ [Right J

(

) (

|
)) o) ot HC)

Any child in this will be evaluated sequentiall

Figure 45: Divide Function Diagram when it called by 2 PEs

CHAPTER 8. ENHANCEMENT OF ARCHITECTURE INDEPENDENCE IN GPH90

logs (pe) is zero, and the chunk size in this case is set to one. For example, if the divide
function is called with 1 processor it will evaluate only the first two levels in parallel;

the rest of the tree will be evaluated sequentially, as shown in Figure 45.

Beowulf Implementation. The implementation of the new function improves the
utilisation of the system resources. The utilisation of processors was increased as shown
in Figure 46, when the program was executed on the Beowulf cluster. Also the average
parallelism and runtime were improved by factor, e.g from 4.0 to 4.9 and from 20.2s
to 15.0s respectively. Moreover, the implementation shows good improvement in the

speedup, as shown in Figure 47.

Sun SMP Implementation. Figure 48 shows the improvement in the speed up
when the number of processors is used in version Ila. The speedup was increased; e.g.

on four processors the speedup was increased from 1.8 to 2.4.

8.5 Summary

This chapter has shown that the utilising the key architectural parameters in GpH
programs give better performance on both architectures. The key architectural pa-
rameters have two levels of implementation: the first level is at the standard strategy
library in the GpH, where the architectural parameters are used to define new generic
strategies and the parameters are hidden from the programmer. In the second level
the key architectural parameters can be used by the programmer to tune performance,
e.g. adopting the task granularity of the GpH program. The implementation shows
improvement in the speedup of version IIT when the parMapPe function is applied (see

Figures 42 and 43), because the parMapPe generates fewer tasks than parMap. The

CHAPTER 8. ENHANCEMENT OF ARCHITECTURE INDEPENDENCE IN GPH91

generation of the parallel tasks is dynamically controlled by the number of processors
and the list length. Moreover, Figure 46 shows the improvement in the system resource
utilisation of version Ila; e.g the total execution time dropped from 20.2s to 15.0s when
the program is executed on 20 PEs. This improvement is owing to the fact that only
three levels of parallelism are generated by the divide function.

The implementation of the improved strategies on the genetic alignment program
which uses both classes of data-parallelism and divide and conquer parallelism gave
better performance. Therefore, using the modified strategies on other applications of
these classes should improve performance in the same way that refined Skeletons [19]
can improve the performance of an entire class of applications. This shows that the

programming techniques discussed here are relevant in a broader context.

CHAPTER 8. ENHANCEMENT OF ARCHITECTURE INDEPENDENCE IN GPH92

mﬁ newdivide 20 60 +RTS -qp20 -gP -qt2 -H64M -sstderr Average Parallelism = 4.9]
2 _

tasks

20

18

16

14

12

10

0 2.0k 4.0k 6.0k 8.0k 10.0k 120k 14.0k
[M running 7 runnable W fetching M blocked M migrating Runtime = 15072 cycles]

(New)
mﬁ olddivide 20 60 +RTS -gqp20 -gP -qt2 -H64M -sstderr Average Parallelism = 4.0]
1]
§ 26
24
22
20
18
16
14
12
10
8
6
4
2
0
0 2.0k 4.0k 6.0k 8.0k 100k 12.0k 14.0k 16.0k 18.0k 20.0k
[M running 7 runnable W fetching M blocked M migrating Runtime = 20262 cycles]

(01d)

Figure 46: Activity Profile for New and Old Divide Function (20-Processors)

CHAPTER 8. ENHANCEMENT OF ARCHITECTURE INDEPENDENCE IN GPH93

NO-of-PEs vs speedup (with 20 60 Beowulf)
8 T T T T

T
11l- Old version

.-~ New version_------

L N

6 - -

5 4 .
(=8 I
p=] 7
e} 1
[!
Q //
3 !
) /

4 o+ .

3} /,,,,,,,_’ / -

2+ -

1 i i i i i

0 5 10 15 20 25 30
No-of-PE
Figure 47: The New Divide Function Relative speedup for Beowulf
NO-of-PEs vs speedup (with 20 40 Sun SMP)
T
Old speed up of version lla
24 |- New speed up of version lla_-
2 : e |

o 18| e |
S g
3 -
I -
17 -
&

No-of-PEs

Figure 48: The New Divide Function Relative speedup for Sun SMP

Chapter 9

Conclusions

9.1 Introduction

One means of supporting architecture independent parallel programming is to use pro-
gramming model with a high level coordination. The model should achieve good perfor-
mance across a wide range of parallel architectures. It should hide most of the parallel
aspects from the programmer. Also, it should be easy to deal with programs of very

different structure.

This thesis has investigated the use of high level functional languages for architec-
ture independent parallel programming. The proposed methodology for GpH [46, 5]
has been used to develop a substantial application and also extended (see Figure 5
in Chapter 3). The application has been developed for two different architectures in

Chapters 4, 5, 6, 7.

94

CHAPTER 9. CONCLUSIONS 95

9.2 Achievements

9.2.1 Assessing a Multi-Architecture Parallel Programming Method-

ology

The first systemic evaluation of Trinder and Loidl’s multi architecture programming
methodology for GpH has been reported. It was explored using a genetic alignment
program, which was developed using the methodology for the first time. The imple-
mentation has shown the importance of each stage in the methodology. Sequential
optimisation gives a massive improvement in the execution time and memory con-
sumption (see Section 4.4.4). It has been shown that a realistic GranSim simulation
correctly predicts the program version that gives the best performance on both real
architectures. Also, the results show that the methodology produces a program with
acceptable performance on both architectures, and this supports the conclusion that
high level functional programming is a good approach to architecture independent par-
allel programming.

The methodology has the following limitation. Firstly GranSim is too slow and the
profiles consume considerable disk space. As result it is not possible to run the experi-
ment with the same input size as used in real architectures. This problem is shared with
other approaches using simulators. Secondly GranSim does not include all features of
the parallel architecture, i.e there is no model of communications bandwidth between
PEs. Thirdly the idealised stage may lead to the generation of parallel programs that
do not deliver good performance on real architecture, e.g versions Ilb, Ilc, III, IV, V

above.

CHAPTER 9. CONCLUSIONS 96

9.2.2 Extended The Architecture Independent Capabilities of GpH

To improve the architecture independence of GpH new parallel coordination constructs
have been designed, implemented and measured. The primitives extract key architec-
ture specific properties of the machine and use them to control coordination, often
without exposing the properties to the programmer. Improved parallel performance
is demonstrated using the primitives. Figure 38 in Chapter 8 shows the new struc-
ture of the extended methodology for GpH. As seen from the figure the enhancement
were made on the GpH structure rather than the methodology stage shown figure 5 in

Chapter 3.

9.3 Limitations

The work has the following limitations.

e The methodology has been investigated using one application. To have a stronger
basis for conclusions on the usefulness of the extended methodology it would be

good if more programs were developed using the same methodology.

e The genetic alignment program was tested on only two available architectures.
It would be useful if the program could be tested on more architectures. This is

very good evidence to support the proposed methodology.

e Because of time limitations, only one parameter was abstracted and implemented
in the extended methodology. It would be useful to abstract more parameters

from the underlying architecture, such as latency and packing cost.

e The real and simulation results are not directly comparable for several reasons,

including the difference in the input size, and the difference in the runtime options

CHAPTER 9. CONCLUSIONS 97

between the GranSim and GUM runtime system, as mentioned in the first point.

9.4 Future Work

To have strong support to the methodology, it would be useful for it to be used in
developing more applications in the area of computer architecture. In addition, there
is scope for it to be tested on more parallel architectures.

It would be useful to a cost model technique to improve the architecture independence
in the GpH mode. It would be desirable to investigate the use of the sequential profile
information to spark the parallel tasks.

The extended methodology in Chapter 8 could be enhanced further by examining other
machine characteristics such as latency and processor speed. In particular, the infor-
mation could be used in automatically determining the chunk size in data parallel

programs.

Appendix A

Source Code for The Genetic

Alignment Program

The appendices are organised as follows: Appendix A.1 contains the code for optimised
sequential version, Appendix A.2 contains the code for the best parallel version (Ila)
which delivers best speedup on both architectures. Appendix A.3 contains modified

functions for a finite-Map implementation see Section 4.4.3 for more details.

A.1 Final Sequential Version

This section contains the final code of optimised sequential version (V).

module Main where

import System(getArgs)

import List

import Random

data Aminoacid = A | C | U | G | D |I
deriving (Read,Show,Eq,0rd)

type Sequencel = [Aminoacid]
type Sequence = [Int]

type Pin = [Int]

type SubSequence = [Int]

align_chunk :: [Sequence] -> -- List of input sequences.
[Sequence] -- Aligned sequences.
align_chunk [] = []
align_chunk xs = fun_align all_res
where

98

APPENDIX A. SOURCE CODE FOR THE GENETIC ALIGNMENT PROGRAMY99

best = Bestpin xs
all_res = divide xs best

divide :: [Sequence] -> -- List of input sequences
Pin -> -- Best pin
[Sequence] -- List of aligned sequences.
divide [1 [1 = [I
divide =xs [] = xs -- Basic alignment

divide xs pin = (combine pin res_lift
res_right
res_unpinch)

where

(rightch,leftch,unpinchl) = splitting_sequences pin xs
unpinch = lead_function pin unpinchl

res_unpinch = align_chunk unpinch

res_right = align_chunk rightch

res_lift = align_chunk leftch

combine :: Pin -> [Sequence] ->[Sequence] ->[Sequence] -> [Sequence]
combine pin left_seqs right_seqs unpinned_seqs
= (zipWith (cat_sequence pin) left_seqs right_seqgs)
++ unpinned_seqs
where
cat_sequence :: Sequence -> Sequence —>
Sequence -> Sequence
cat_sequence pin 1ls rs = 1ls ++ pin ++ rs

Bestpin :: [Sequence] -> -- List of input sequences.
Pin -- Best pin as output.
Bestpin []1= []
Bestpin xs = best_pin pins_dis
where
all_substring = substring_sequences xs xs

pins = map fst(extract_max_pins all_substring)
extract_longest_pins = longest_pin pins
pins_dis = pin_average_distance extract_longest_pins xs

substring_sequences :: [Sequence] ->
[Sequence] -> -- The input sequences
[(Sequence, Int)] -- List of substring list

substring_sequences [] [] = []

substring_sequences [] ys = []

substring_sequences (x:x8) ys = nub resi

where
res = subseq x

resl= form_pins res ys ++ substring_sequences xs ys

subseq :: Sequence ->

[SubSequence]
subseq (x:xs) = inits (x:xs)++ subseq xs
subseq []1 = []

form_pins :: [SubSequence] ->
[Sequence 1] ->

APPENDIX A. SOURCE CODE FOR THE GENETIC ALIGNMENT PROGRAM100

[(Pin,Int)]
form_pins [1[] = []
form_pins[] ys = []
form_pins(x:xs) ys

| num > 1 = (x,num): form_pins xs ys
| otherwise = from_pins xs ys
where

num = from_pins’ x ys

from_pins’ :: SubSequence -> -- Single element from substring list
[Sequence] -> -- A list of input sequences
Int —-- Number of occurrences as pins
from_pins’ [] [] =0
from_pins’ m [] =0

from_pins’ m (x:xs)
| ((check_for_snd_appears == Nothing)
&& (check_for_appears /= Nothing)) = 1+ form_pins’ m xs

|otherwise = form_pins’ m xs
where
check_for_appears = locate_pin m x
where_pin_appears = pin_value(check_for_appears)
reset_of_sequence = drop (where_pin_appears + length m) x
check_for_snd_appears = locate_pin m reset_of_sequence
extract_max_pins :: [(Pin,Int)] -> [(Pin ,Int)]

extract_max_pins [] =[]
extract_max_pins ((p,n):xss) = foldr (extract_max_pins’) [(p,n)] =xss

extract_max_pins’ :: (Pin ,Int) ->[(Pin,Int)] -> [(Pin,Int)]
extract_max_pins’ (p,n) aa_pin@((p’,n’):_)

| n > n = aa_pin

| n’ == n = aa_pin ++ [(p,n)]

| otherwise = [(p,n)]

longest_pin :: [Pin] ->[Pin]
longest_pin []1 = []
longest_pin (xs:xss) = foldr (longest_pin’) [xs] xss

longest_pin’ :: Pin ->[Pin] ->[Pin]
longest_pin’ pin xs@(pin’:_)
| length pin’ > length pin
| length pin’ == Ilength pin
| otherwise = [pin]

xs
(pin:xs)

pin_average_distance :: [Pin] —>
[Sequence] ->
[(Pin, Int) 1]

pin_average_distance [] [] = []

pin_average_distance [] _ = []

pin_average_distance _ [] = []

pin_average_distance xss yss = [(xs ,((sum (map (
pin_average_distance’ xs) yss) ‘div‘ length yss)))| xs <- xss]
where
pin_average_distance’ :: Pin -> Sequence -> Int
pin_average_distance’ [] [] = 0

pin_average_distance’ xs ys
| check_res == Nothing = 0
| otherwise = abs(((length ys) ‘div‘ 2) -

APPENDIX A. SOURCE CODE FOR THE GENETIC ALIGNMENT PROGRAM101

((pin_value (check_res)) + (length xs ‘div‘ 2)))
where
check_res = locate_pin xs ys

best_pin :: [(Pin,Int)] ->
Sequence

best_pin [] = []
best_pin ((p,n):xs) = fst(best_pin’ (p,n) xs)
best_pin’ (p,n) [] = (p,n)
best_pin’ (p’,n’) ((p,n):xs)

| n<=n’ = best_pin’ (p,n) xs

| otherwise = best_pin’ (p’,n’) xs

-- ALL FUNCTIONS CALLING BY divide FUNCTION --
splitting_sequences :: Pin ->
[Sequence] ->
([Sequence] , [Sequence] , [Sequence])
splitting_sequences [1 [1 = ([1, [I ,[1)
splitting_sequences [] ys = (ys, [1, [1)
splitting_sequences xs ys =(right_chunk , lift_chunk , unpinned)
where

right_chunk = right_sequence xs ys

lift_chunk = left_sequence xs ys

unpinned = unpinned_chunk xs ys

right_sequence :: Pin -> -- best pin.
[Sequence] -> -- List of input sequences.
[Sequence] -- List of right sequences.

right_sequence [] [] = []

right_sequence [] ys = ys

right_sequence xs ys = map (right_sequence’ xs)

(pined_chunk xs ys)

where
right_sequence’ :: Pin -> Sequence -> Sequence
right_sequence’ [] [] = []
right_sequence’ [] ys = ys
right_sequence’ xs ys

| (num_pin + length xs) == length ys = []
| check_res /= Nothing = drop (num_pin + (length xs)) ys
where
check_res = locate_pin xs ys
num_pin = pin_value(check_res)
left_sequence :: Pin -> -- best pin.
[Sequence] -> -- List of input sequences.
[Sequence] -- List of left sequences.
left_sequence [] [] = []
left_sequence [] ys = ys

left_sequence xs ys = map (left_sequence’ xs) (pined_chunk xs ys)

where
left_sequence’ :: Pin -> Sequence -> Sequence
left_sequence’ [1 [] = []
left_sequence’ [] ys = ys

left_sequence’ xs ys
| num_pin > O = take (num_pin) ys
| otherwise = []
where
num_pin = pin_value (locate_pin xs ys)

APPENDIX A. SOURCE CODE FOR THE GENETIC ALIGNMENT PROGRAM102

unpinned_chunk xs ys = filter(\y -> (locate_pin xs y) == Nothing) (ys)
pined_chunk xs ys = filter(\y -> (locate_pin xs y) /= Nothing) (ys)

locate_pin :: Pin -> -- Single pin.
Sequence -> -- Input sequence.
Maybe Int -- position of the in the sequence.

locate_pin xs ys = locate_pin’ xs ys 0
locate_pin’ xs [] n = Nothing
locate_pin’ xs (y:ys) n

| isPrefix0f xs (y:ys) = Just n

| otherwise = locate_pin’ xs ys (n+1)

pin_value :: Maybe Int -> Int
pin_value (Just x) = x
pin_value Nothing = 0O

fun_align :: [Sequence] ->
[Sequence]
fun_align [] = []

fun_align xs = [add_d x | x <- xs]
where
m = maximum [length x | x <- xs]
add_d :: Sequence -> Sequence
add_d x
| length x == m = x

| otherwise = x ++
concat (replicate (m - length x) p)

where
pl =concat (replicate (m - length x) p)
p=1[08]1]

lead_function :: Sequence -> [Sequence] -> [Sequence]
lead_function [1 [1 = []
lead_function xs [] = []
lead_function [] ys = ys
lead_function xs ys = map (lead_function’ xs []) ys

lead_function’ [] align [] = align
lead_function’ xs align [] =align
lead_function’ [] align ys =(reverse align) ++ ys
lead_function’ (x:xs) align (y:ys)
| x ==y = res
| otherwise = resl
where
res = lead_function’ xs (x:align) ys
resl =lead_function’ xs (9:align) (y:ys)

test_align_length :: [Sequence] -> Bool
test_align_length [] = True
test_align_length xs
| a11(\x->(length x) == length (head xs)) xs = True
| otherwise =False

APPENDIX A. SOURCE CODE FOR THE GENETIC ALIGNMENT PROGRAM103

Int >
I0 [[Int]]
mkRandom m n = do
let
g = mkStdGen 1701
cs :: [Int]
cs = randoms g
csO = map (‘mod‘ 4) cs
mk_grid’ O _ _ res = res
mk_grid’ m n 1 res = mk_grid’ (m-1) n 12 (1l1l:res)
where (11, 12) = splitAt n 1

grid = mk_grid’ m n cs0 []
return grid

convert :: [[Int]] -> [Sequencell]
convert [] = []
convert (x:xs) = map dd x : convert xs
where
dd 0 = A
dd 1 =C
dd 2 = G
dd 3 =C
dd 8 = D -- This character is used for deletion
dd 9 = I -- The character is used for insertion
main = do args <- getArgs
let
n = read (args!!0) -- Number of input sequences
1 = read (args!!1l) -- length of each input sequence

xs <- mkRandom n 1
let
m = align_chunk xs
res = convert m
print(res)

A.2 Complete Parallel Code of Version Ila

This section presents the code of the best version of genetic alignment program which
delivers a best performance on both architectures.

module Main where
import System(getArgs)
import GlaExts(trace)

import List

import Random

import Strategies

data Aminoacid = A | C | U | G | D |I
deriving (Read,Show,Eq,0rd)

type Sequencel = [Aminoacid]

type Sequence = [Int]

APPENDIX A. SOURCE CODE FOR THE GENETIC ALIGNMENT PROGRAM104

type Pin = [Int]
type SubSequence = [Int]

-- This accepts the chunk of sequences to be aligned and produces an alignment
-- by calling the two top level functions " Bestpin" and "divide"

align_chunk :: [Sequence] -> -- List of input sequences.
[Sequence] -- Aligned sequences.
align_chunk [] = []
align_chunk xs = fun_align all_res
where

best = Bestpin xs
all_res = divide xs best

-- This divide takes a list of sequences and a best pin for a given list split
-- it wuses a pin into three chunks left , right ,and unpinned chunk to be
-- aligned independently by concurrent calling between align_chunk and divide

-- functions
divide :: [Sequence] -> -- List of input sequences
Pin -> -- Best pin
[Sequence] -- List of aligned sequences.
divide [1 [1 =[]
divide xs [] = xs -- this represents the basic alignment to the sequence
divide xs pin = (combine pin_var res_lift res_right res_unpinch)
‘demanding‘ strategy
where

(rightch,leftch,unpinchl) = splitting_sequences pin xs
unpinch = lead_function pin unpinchl
res_unpinch = align_chunk unpinch
res_right = align_chunk rightch
res_lift = align_chunk leftch
strategy = rnf res_lift ‘parf
rnf res_right ‘par
rnf res_unpinch
combine :: Pin -> [Sequence] ->[Sequence] ->[Sequence] -> [Sequence]
combine pin left_seqs right_seqs unpinned_seqs
= (zipWith (cat_sequence pin) left_seqs right_seqgs) ++ unpinned_seqs
cat_sequence :: Sequence -> Sequence -> Sequence -> Sequence
cat_sequence pin 1ls rs = 1ls ++ pin ++ rs

¢

—-- The Bestpin function takes a list of sequences and produces best as output

Bestpin :: [Sequence] -> -- List of input sequences.
Pin -- Best pin.
Bestpin [1= []
Bestpin xs = best_pin pins_dis
where
all_substring = par_substring_sequences xs xs
pins_with_occurrence = all_substring

pins = map fst(extract_max_pins pins_with_occurrence)
extract_longest_pins = longest_pin pins
pins_dis = pin_average_distance extract_longest_pins xs

substring_sequences :: [Sequence] -> Sequence -> -- The input sequences
[(Sequence, Int)] -- 1list of substring list

where

APPENDIX A. SOURCE CODE FOR THE GENETIC ALIGNMENT PROGRAM105

substring_sequences ys x = nub resl
where
res = subseq x
resl= form_pins res ys

par_substring_sequences :: [Sequence] ->[Sequence] ->[(Pin,Int)]
par_substring_sequences Xxs ys =
foldr (++) [] (parMap rnf (substring_sequences ys) xs)

subseq :: Sequence -> -- A single sequences from the input sequences
[SubSequence] -- all substring from the input sequences
subseq (x:xs) = inits (x:xs)++ subseq xs

subseq []1 = []

Form_pins :: [SubSequence] -> -- A list of all substrings of a single sequence.
[Sequence] -> -- A list of input sequences
[(Pin,Int)] --List of pins and its occurrence.
Form_pins [1[] = []
Form_pins[] ys = []

Form_pins(x:xs) ys

| num > 1 = (x,num): form_pins xs ys
| otherwise = form_pins xs ys
where

num = form_pins’ x ys

form_pins’ :: SubSequence -> -- Single element from substring list
[Sequence] -> -- A list of input sequences
Int —-— Number of occurrences as pins
form_pins’ [1 [1 =0
form_pins’ m [] =0

form_pins’ m (x:xs)
| ((check_for_snd_appears == Nothing) &&
(check_for_appears /= Nothing))
= 1+ form_pins’ m xs

|otherwise = form_pins’ m xs
where
check_for_appears = locate_pin m x
where_pin_appears = pin_value(check_for_appears)
reset_of_sequence = drop (where_pin_appears + length m) x
check_for_snd_appears = locate_pin m reset_of_sequence
extract_max_pins :: [(Pin,Int)] -> [(Pin ,Int)]
extract_max_pins [] =[]
extract_max_pins ((p,n):xss) = foldr (extract_max_pins’) [(p,n)] xss
extract_max_pins’ :: (Pin ,Int) ->[(Pin,Int)] -> [(Pin,Int)]
--extract_max_pins’ (] 0 =10
-- extract_max_pins’ aa_pin [] = aa_pin
extract_max_pins’ (p,n) aa_pin@((p’,n’):_)
| n? > n = aa_pin
| n> == n = aa_pin ++ [(p,n)]

| otherwise = [(p,n)]

longest_pin :: [Pin] ->[Pin]
longest_pin [] = []
longest_pin (xs:xss) = foldr (longest_pin’) [xs] xss

longest_pin’ :: Pin ->[Pin] ->[Pin]
longest_pin’ pin xs@(pin’:_)

APPENDIX A. SOURCE CODE FOR THE GENETIC ALIGNMENT PROGRAM106

| length pin’ > 1length pin = xs
| length pin’ == length pin = (pin:xs)
| otherwise = [pin]
pin_average_distance :: [Pin] -> -- A list of pins
[Sequence] -> -- A list of input sequences
[(Pin, Int) 1]
pin_average_distance [] [] = []
pin_average_distance [] _ = []
pin_average_distance _ [] = []
pin_average_distance xss yss = [(xs ,((sum (map (
pin_average_distance’ xs) yss) ‘div‘ length yss)))| xs <- xss]
where
pin_average_distance’ :: Pin -> Sequence -> Int

pin_average_distance’ [1 [] = 0
pin_average_distance’ xs ys
| check_res == Nothing = 0
| otherwise = abs(((length ys) ‘div‘ 2) -
((pin_value (check_res)) + (length xs ‘div‘ 2)))
where
check_res = locate_pin xs ys

best_pin :: [(Pin,Int)] -> Sequence
best_pin [] = []
best_pin ((p,n):xs) = fst(best_pin’ (p,n) xs)
best_pin’ (p,n) [1 = (p,n)
best_pin’ (p’,n’) ((p,n):xs)
| n <=n’ = best_pin’ (p,n) xs
| otherwise = best_pin’ (p’,n’) xs

-- ALL FUNCTIONS CALLING BY divide FUNCTION --

splitting_sequences :: Pin -> —-- Best pin
[Sequence] -> -- List of input Sequences
([Sequence] , [Sequence] , [Sequencel)

splitting_sequences [] [] = ([1, [1 ,[1)
splitting_sequences [] ys = (ys, [1, [1)
splitting_sequences xs ys = (right_chunk , lift_chunk , unpinned)
where
right_chunk = right_sequence xs ys
1lift_chunk = left_sequence xs ys
unpinned = unpinned_chunk xs ys

right_sequence :: Pin -> -- best pin.
[Sequence] -> -- List of input sequences.
[Sequence] -- List of right sequences.

right_sequence [] [] []

right_sequence [] ys = ys

right_sequence xs ys map (right_sequence’ xs) (pined_chunk xs ys)
where
right_sequence’ :: Pin -> Sequence -> Sequence
right_sequence’ [] [] = []

APPENDIX A. SOURCE CODE FOR THE GENETIC ALIGNMENT PROGRAM107

right_sequence’ [] ys = ys
right_sequence’ xs ys

| (num_pin + length xs) == length ys = []
| check_res /= Nothing = drop (num_pin + (length =xs)) ys
where
check_res = locate_pin xs ys
num_pin = pin_value(check_res)
left_sequence :: Pin -> -- best pin.
[Sequence] -> -- List of input sequences.
[Sequence] -- List of left sequences.

left_sequence []1 [] (1
left_sequence [] ys = ys
left_sequence xs ys map (left_sequence’ xs) (pined_chunk xs ys)
where
left_sequence’ :: Pin -> Sequence -> Sequence
-- This function extracts the left sequence from single sequence
-- the inputs are best pin + single sequence.
left_sequence’ [1 []1 = []
left_sequence’ [] ys = ys
left_sequence’ xs ys
| num_pin > 0 = take (num_pin) ys
| otherwise = []

where
num_pin = pin_value (locate_pin xs ys)

unpinned_chunk xs ys = filter(\y -> (locate_pin xs y) == Nothing) (ys)
pined_chunk xs ys = filter(\y -> (locate_pin xs y) /= Nothing) (ys)

locate_pin :: Pin -> -- Single pin.
Sequence -> -- Input sequence.
Maybe Int -- position of the in the sequence.

locate_pin xs ys = locate_pin’ xs ys 0O
locate_pin’ xs [] n = Nothing
locate_pin’ xs (y:ys) n

| isPrefix0f xs (y:ys) = Just n

| otherwise = locate_pin’ xs ys (n+1)

pin_value :: Maybe Int -> Int
pin_value (Just x) = x
pin_value Nothing = 0O

fun_align :: [Sequence] -> -- List of input sequences to aligned
[Sequence]

fun_align [] = []

fun_align xs = [add_d x | x <- xs]

where

m = maximum [length x | x <- xs]
add_d :: Sequence -> Sequence
add_d x

| length x == m = x
| otherwise = x ++ concat (replicate (m - length x) p)

where
pl =concat (replicate (m - length x) p)
p=1[28]1]
lead_function :: Sequence -> [Sequence] -> [Sequencel
lead_function [] [1 = []
lead_function xs [1 = []

lead_function [] ys = ys

APPENDIX A. SOURCE CODE FOR THE GENETIC ALIGNMENT PROGRAM108

lead_function xs ys = map (lead_function’ xs []) ys

lead_function’ [] align [] = align
lead_function’ xs align [] =align
lead_function’ [] align ys =(reverse align) ++ ys
lead_function’ (x:xs) align (y:ys)
| x ==y = res
| otherwise = resl
where
res = lead_function’ xs (x:align) ys
resl =lead_function’ xs (9:align) (y:ys)

test_align_length :: [Sequence] -> Bool
test_align_length [] = True
test_align_length xs
| al1(\x->(length x) == length (head xs)) xs = True
| otherwise =False

mkRandoml :: Int -> -- Input value represents the number of sequences
Int -> -- Input value represents the length of each sequence
I0 [[Int]] -- List of random input sequences

mkRandoml m n = do

let
g = mkStdGen 1701 -- deterministic input via fixed seed val
cs :: [Int]

cs = randoms g
csO = map (‘mod‘ 4) $ cs

mk_grid’ O _ _ res = res
mk_grid’ m n 1 res mk_grid’ (m-1) n 12 (l1l:res)

where (11, 12) = splitAt n 1

grid = mk_grid’ m n cs0 []
return grid

convert :: [[Int]] -> [Sequencell]
convert [] = []
convert (x:xs) = map dd x : convert xs
where
dd 0 = A
dd 1 =C
dd 2 = G
dd 3 =C
dd 8 = D -- This character is used for deletion
dd 9 = I -- The character is used for insertion
main = do args <- getArgs
let

n = read (args!!0) -- Number of input sequences

APPENDIX A. SOURCE CODE FOR THE GENETIC ALIGNMENT PROGRAM109

1 = read (args!!1l) -- length of each input sequence
xs <- mkRandoml n 1
let
m = align_chunk xs

res = convert m
print(res)

A.3 Finite Map Code

The following shows all modification made to implement the Finite Map library in the
genetic alignment program.

import FiniteMap(FiniteMap,listToFM ,emptyFM,addListToFM
,addListToFM_C,fmTolList,delListFromFM
,delFromFM ,sizeFM, lookupFM,foldFM,
plusFM_C ,keysFM)

substring_sequences :: [Sequence] -> -- The input sequences
[(SubSequence, Int)] -- List of substring list
substring_sequences [] = []
substring_sequences xs = res_pin
where

res_pin’ = substring_sequences’ xs

res_pin = form_pins (cat_listoffm res_pin’)
substring_sequences’ :: [Sequence] ->

[FiniteMap SubSequence Int]
substring_sequences’ [] = []
substring_sequences’ (x:xs) = fm_of_critical : substring_sequences’ xs
where

all_substrings = subseq x

fm_of_substring = list_of_substring_fm all_substrings
el_double_substring = critical_function fm_of_substring
fm_of_critical = delListFromFM fm_of_substring el_double_substring

-- This is to filter substrings which occur once in FM.
critical_ function fm = filter (\ x -> case lookupFM fm x
of Just n -> n>1) (keysFM fm)

list_of_substring fm :: [SubSequence 1 -> FiniteMap SubSequence Int
list_of_substring fm [] = emptyFM
list_of_substring fm xs = addListToFM_C (+) emptyFM [(x,1) | x<-xs]

cat_listoffm :: [FiniteMap SubSequence Int] -> FiniteMap SubSequence Int
cat_listoffm ys = foldr (plusFM_C (+)) emptyFM ys

form_pins :: FiniteMap SubSequence Int -> [(Pin ,Int)]
form_pins ys = pins_in_list
where

list_of_cri_substrings = critical_functionl ys
pins_in_fm = dellListFromFM ys list_of_cri_substrings
pins_in_list = fmToList pins_in_fm
-- This is to filter substrings which occur once in FM.
critical functionl fm = filter (\ x -> case lookupFM fm x
of Just n -> n==1) (keysFM fm)

Bibliography

[1]
2]

D. Skillicorn and D. Talia. Models and Languages for Parallel Computation. ACM Com-
puting Surveys, 30(2):pages 123-169, 1998.

A. Chien, J. Dolby, B Ganguly, V Karamecheti, and X. Zhang. High Level Parallel Pro-
gramming: the Illinois Concert System. Technical Report Illinois 61801, Computer Science,
University of Illinois, 1998.

L. Chamberlain and E. Christopher. ZPL A Machine Independent Programming Language
for Parallel Computers. IEEE Transaction on Software Engineering, 26:pages 197-212,
March 2000.

H. Loidl. Load Balancing in a Parallal Reducer. In Trends in Functional Programming,
volume 3, pages 63—75. Intellect Ltd, 2002. ISBN 1-84150-070-4.

P. Trinder, J. Barry, M. Davis, K. Hammond, S. Junaidu, U. Klusik, H. Loidl, , and
S. Peyton Jones. GpH: An Architecture-Independent FunctionalLanguage. Unpublished,
http://www.cee.hw.ac.uk/ dsg/gph/papers/abstracts/arch-indep.html, July 1998.

K. Hammond, H. Loidl, and A. Partridge. Visualising Granularity in Parallel Programs: A
Graphical Winnowing System for Haskell. In Conference on High Performance Functional
Computing, pages 208 221, Denver, Colorado, April 1995.

I. Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995.

D. Ridge, D. Becker, P. Merkey, and T. Sterling. Beowulf: Harnessing the Power of
Parallelism in a Pile-of-PCs. In IEEE Aerospace, 1997.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM:
Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked Parallel Computing.
MIT Press, Cambridge, MA, USA, 1994.

J. Jack, R. Hempel, H. Anthony, and D. Walker. A Proposal for a User-Level Message-
Passing Interface in a Distributed Memory Environment. Technical Report TM-12231,
University of Tennessee, Knoxville, TN, USA, 1992.

H. Dietz. Linux Parallel Processing HOWTO, January 1999. Midwest Workshop on Parallel
Processing, Kent State University, http://yara.ecn.purdue.edu/ pplinux/pphowto.

D.E Culler and J. P. Singh. Parallel Computer Architecture: a Hardware/Software Ap-
proach . Morgan Kaufmann, 1999.

M. Jones and P. Hudak. Implicit and Explicit Parallel Programming in Haskell. Technical
Report CT 06520-2158, Department of Computer Science, Yale University, August 1993.

P. Roe. Parallel Programming Using Functional Language . PhD thesis, Department of
Computing Science, University of Glasgow, February 1991.

K. Hwang and Z Xu. Scalable Parallel Computing - Technology, Architecture, Programming
. WCB McGraw-Hill USA, 1998.

R.S. Nikhil. ID Reference Manual. Technical Report CSG Memo 284-2, Laboratory for
Computer Science, M.I.T., July 1991.

110

BIBLIOGRAPHY 111

[17]

[18]

P. Trinder, K. Hammond, J. Mattson, A. Partridge, and S. Peyton Jones. GUM: A Portable
Parallel Implementation of Haskell. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 79 88, 1996.

M. Hamdan. A Combinational Framwork for Parallel Programming Using Algorithmic
Skeletons. PhD thesis, Department of Computing Science, Heriot Watt University, January
2000.

M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. Re-
search Monographs in Parallel and Distributed Computing. The MIT Press, Cambridge,
MA, 1989.

P. Kelly and F. Taylor. Coordination Languages . In Research Directions in Parallel
Functional Programming, pages 305-321. Springer, 1999.

C. Koelbel, D. Loveman, and JR. Schreaiber, R.and Steele. The High Performance Fortran
Handbook. The MIT Press, Cambridge, March 1994.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler Support for Machine-Independent
Parallel Programming in Fortran D. In J. Saltz and P. Mehrotra, editors, Languages, Com-
pilers, and Run-Time Environments for Distributed Memory Machines. North-Holland,
Amsterdam, The Netherlands, 1992.

N. Gaarder and M. Bruggencate. Openmp:an autotasking perspective. Technical Report
MN 55121-1560, USA., Programming Group Silicon Graphics, Inc., January 2003.

S. Gregory. Parallel Logic Programming in PARLOG . Addison-Wesley, 1988.

D. Culler and J. Singh. Parallel Computer Architecture: A Hardware/Software Approach.
Morgan Kaufmann, August 1998.

T. Braunl. Parallaxis-III: Architecture Independent Data Parallel Processing. IEEE Trans-
action on Software Engineering, 26:pages 227 244, March 2000.

P. Trinder, H. Loidl, and K. Hammond. Large Scale Funtional Applications. In Research
Directions in Parallel Functional Programming , pages 399-463, 1999.

D. Suciu and V. Tannen. CoPa: a Parallel Programming Language for
Collections, November 2002. University of Pennsylvania, Unpublished,
http://citeseer.nj.nec.com/389641. html.

D. Skillicorn, Jonathan M. D. Hill, and W. F. McColl. Questions and Answers about BSP.
Scientific Programming, 6(3):pages 249 274, Fall 1997.

E. Pontelli. Adventures in Parallel Logic Programming, October 2002. New Mexico State
University, Unpublished, http://www.cs.nmsu.edu/ epontell/adventure/paper.html.

S. Peyton Jones. The Implementation of Functional Programming Language . Pren-
tice/Hall International , 1986.

R. Plasmeijer and M. Eekelen. Functional Programming and Parallel Graph Rewriting.
Addisn-Wesley, 1993.

B. Lisper. A Brief Survey of Functional Programming Languages. August 2002. Mlardalen
University, Unpublished, http://www.idt.mdh.se/kurser/cd5100/ht02/history.html.

A. Church. A Set of Postulates for the Foundation of Logic. . Annals of MATH. , 33:pages
346-366, 1932.

J. McCarthy. Recursive Functions of Symbolic Expressions and their Computation. Part
I COMM, ACM , 3:pages 184-195, 1960.

J. Backus. Can Program be Liberated from the Von Neumann Style? A Functional Style
and Its Algerbra of Programs . Communications of ACM , 21:pages 613—-641, 1978.

D. Turner. Miranda: A non-strict Functional Language with Polymorphic Types. , Septem-
ber. In Proceedings of Functional Programming Languages and Computer Architecture,
J.P.Jouannaud (Ed),Springer-Verlag, Vol 201. 31, 1985 .

L. Augustsson. A Compiler for Lazy ML. . Proceedings of the ACM Symposium on Lisp
and Functional Programming, Austin, Texas, USA. , pages 218— 227, 1984.

BIBLIOGRAPHY 112

[39]

P. Hudak, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. Guzman, K. Hammond,
J. Hughes, T. Johnsson, R. Kieburtz, R. Nikhil, W. Partain, and J. Peterson. A Re-
port on the Functional Programming language Haskell, Version 1.2. ACM SIGPLAN
Notices 27(5), 1992.

S. Junaidu. Parallel Functional Language Compiler for Message Passing Multicomputers.
PhD thesis, Department of Computing Science, University of St Andrews , March 1998.

P. Trinder, K Hammond, H. Loidl, and S. Peyton. Algorithm + Strategy = Parallelism.
Journal of Functional Programming, 8(1):pages 23 60, January 1998.

G. Blelloch. NESL: A Nested Data-Parallel Language. Technical Report CMU-CS-93-129,
School of Computer Science Carnegic Mellon University, April 1993.

S. Breitinger, R. Loogen, Y. Ortega Mallén, and R. Pena Mari. The Eden Coordination
Model for Distributed Memory Systems. In HIPS’97 High-Level Parallel Programming
Models and Supportive Environments. IEEE Press, 1997.

S. Thompsom. Haskell: The Craft of Functional Programming. Addison-Wesley, 1999.

J. Peterson and O. Chitil. Glasgow Parallel Haskell, A Purely Functional Language .
December 2002. Unpublished, http://www.cee.hw.ac.uk/ dsg/gph/.

H. Loidl, P. Trinder, K. Hammond, S. Junaidu, R. Morgan, and S. Peyton Jones. Engi-
neering Parallel Symbolic Programs in GPH. Concurrency Practice and Ezperience,
11(12):pages 701-752, October 1999.

M.P. Jones. Hugs 1.3 The Haskell User’s Gopher System User Manual. Technical Report
NOTT-CS-TR-96-2, Nottingham University , August 1996.

P. Trinder, H. Loidl, and K. Hammond. The Multi-Architecture Performance of the Parallel
Functional Language GPH. In Bode, A. and Ludwig, T. and Wismiiller, R., editor, Furo-
Par 2000 — Parallel Processing, volume 1900 of LNCS, pages 739-743, Munich, Germany,
29.8.-1.9., 2000. Springer-Verlag.

S. Peyton Jones. Compiling Haskell by Program Transformation: A Report from the
Trenches. In European Symposium on Programming, pages 1844, 1996.

P. Sansom and S. Peyton Jones. Time and space profiling for non-strict higher-order func-
tional languages. In Conference Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 355 366, San Francisco, Cal-
ifornia, 1995.

H. Loidl, P. Trinder, and C. Butz. Tuning Task Granularity and Data Locality of Data
Parallel GpH Programs. Parallel Processing Letters, 11(4):471 486, 2001. Selected pa-
pers from HLPP’'01 International Workshop on High-level Parallel Programming and
Applications, Orleans, France, 26-27 March, 2001.

P. Pepper and M. Siidholt. Deriving Parallel Numerical Algorithms using Data Distribution
Algebras: Wang’s Algorithm. In HICSS’97 30th Hawaii International Conference on
System Sciences, pages 7 10, Hawaii, USA, January 7 10, 1997. IEEE.

J. O’Donnell and G. Riinger. Abstract Parallel Machines. Computers and Artificial Intel-
ligence, 19:105-129, 2000.

A. Abdallah. Functional Process Modeling . In Research Directions in Parallel Functional
Programming, pages 339 360. Springer, 1999.

I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-Hall,
1989.

J. Blazewicz. Handbook on Parallel and Distributed Processing. International Handbooks
on Information Systems. Springer, 2000.

D. Sankoff. Time Warps, Spring Edits and Macromolecules: the theory and practice of
sequence comparison . Addison-Wesley, 1983.

H. Loidl. Granularity in Large-Scale Parallel Functional Programming. PhD thesis, De-
partment of Computing Science, University of Glasgow, March 1998.

G. Amdahl. Validity of the Single-Processor Approach to Achieving Large-Scale Computing
Capabilities. AFIPS Press, 30:pages 483 485, 1967.

