
MULTI-ARCHITECTURE PARALLELPROGRAMMING USING GPH, A FUNCTIONALLANGUAGE
ByMustafa KH. Aswad

Submitted for the Degree ofMaster of Philosophyat Heriot-Watt Universityon Completion of Researh in theShool of Mathematial and Computer SienesDeember 2002.
This opy of the thesis has been supplied on the ondition that anyone who onsults it isunderstood to reognise that the opyright rests with its author and that no quotation from thethesis and no information derived from it may be published without the prior written onsentof the author or the university (as may be appropriate).

iiI hereby delare that the work presented in this thesis wasarried out by myself at Heriot-Watt University, Edinburgh,exept where due aknowledgement is made, and has notbeen submitted for any other degree.
Mustafa Kh. Aswad (Candidate)

(Supervisor)
(Date)

Contents
1 Introdution 11.1 Overview . 11.2 Contributions . 21.3 Dissertation Outline . 42 Bakground 72.1 Parallel Computer Arhitetures . 72.1.1 Beowulf Arhiteture . 82.1.2 Sun SMP Arhiteture . 92.2 Why Parallel Programming? . 102.2.1 Parallel Program Development 112.2.2 Classi�ation of Parallel Models 122.3 Arhiteture Independene . 162.4 Arhiteture Independent Languages. 162.4.1 ZPL :A Mahine Independent Programming Language for Paral-lel Computer . 172.4.2 Parallaxis-III Arhiteture-Independent Data Parallel Proessing 172.4.3 SAC Single Assignment C . 18iii

CONTENTS iv2.4.4 CoPa . 182.4.5 BSP Model . 192.5 Arhiteture Independene Using Delarative Programming Languages. 192.6 Funtional Programming . 202.6.1 Theoretial roots and history of funtional programming languages. 202.6.2 Funtional Languages for Parallelism. 212.6.3 NESL . 232.6.4 Eden . 242.7 Haskell . 242.7.1 GpH Parallel Funtional Language 252.7.2 Parallelism in GpH. 252.7.3 Evaluation Strategies in GpH . 262.8 GpH Compilers and Tools . 272.8.1 The Hugs and GHCI Interpreter 272.8.2 The GHC Compiler and Sequential Runtime System. 282.8.3 GUM Parallel Runtime System 282.8.4 Time and Spae Pro�lers . 292.8.5 GranSim Simulator . 302.8.6 Visualisation Tools . 313 A Multiarhiteture Development Methodology 323.1 Overview . 323.2 The Methodology Struture . 333.2.1 Initial Sequential Stage . 343.2.2 Sequential Optimised . 34

CONTENTS v3.2.3 Idealised Simulation Stage . 343.2.4 Realisti Simulation Stage . 353.2.5 Target Arhiteture . 353.3 Enhanement of Arhiteture Independent Enhanement in GpH 363.4 Other Methodologies . 364 Sequential Implementation 374.1 Problem Desription . 374.1.1 A Geneti Alignment Algorithm 374.2 Sequential Implementation . 394.3 Alignment Example . 404.4 Sequential Tuning . 434.4.1 Development in Versions I, II and III 444.4.2 Development of Versions IV and V 474.4.3 Version VI using a Finite Map 484.4.4 Sequential Optimisation Disussion 505 Idealised Measurement 535.1 Introdution . 535.2 Version I: Divide-and-Conquer . 545.3 Version IIa: Parallelising Substring Sequenes 555.4 Version IIb: Parallelising Form pin . 565.5 Version II: Parallelise Both Outer and Inner Loops 575.6 Version III: Clustering on Parallel Form pin 575.7 Version IV: Parallelise all maps . 585.8 Version V: Parallel all foldr . 59

CONTENTS vi5.9 Idealised Optimisation Disussion . 596 Two Simulated Arhitetures 646.1 Beowulf Simulation . 646.2 Sun SMP Simulation . 656.3 Disussion of Simulation Results . 666.3.1 Idealised Simulation vs Realisti Simulation 666.3.2 Beowulf Simulation vs Sun SMP Simulation Comparison 677 Performane Measurements on Two Arhitetures 747.1 Real Measurement on Beowulf mahine 757.2 Real Measurement on Sun SMP Mahine 757.3 Disussion of Real Tuning . 777.4 Critique of Multi-Arhiteture Methodology. 788 Enhanement of Arhiteture Independene in GpH 828.1 Overview . 828.2 Extrating Arhiteture Charateristis 838.3 Generi Arhiteture Adapting Strategies 848.4 Arhiteture Adapting Strategies for Spei� Appliation 888.5 Summary . 909 Conlusions 949.1 Introdution . 949.2 Ahievements . 959.2.1 Assessing a Multi-Arhiteture Parallel Programming Methodology 959.2.2 Extended The Arhiteture Independent Capabilities of GpH . . 96

CONTENTS vii9.3 Limitations . 969.4 Future Work . 97A Soure Code for The Geneti Alignment Program 98A.1 Final Sequential Version . 98A.2 Complete Parallel Code of Version IIa 103A.3 Finite Map Code . 109Bibliography 109

List of Tables
1 Sequential Pro�ling Summary . 502 Idealised Simulation Input : 20 6 30. 613 Realisti 32-PEs Beowulf Simulation Input: 20 6 30 654 Realisti 32-PEs Sun SMP Simulation Input: 20 6 30 655 Real Beowulf Input: 20 40 30 on 4-proessor 756 Real Beowulf Input: 20 60 30 on 30-proessor 757 Summary Table of Real Measurement of SMP (20 40) on 4-proessors 77

viii

List of Figures
1 Distributed Memory and Shared Memory MIMD Arhitetures 82 CoPa Complexity Preserving Compilation 193 Basi Coordination Construts in GpH 264 The parList & parMap Parallel Strategies 265 The Multi-Arhiteture Program Development Model 336 Input Sequenes and the Aligned Output Sequenes 387 Final Alignment Figure. 388 Funtions Call Chart for Versions I,II,III. 439 The Align Chunk Funtion Sequential Code 4410 The Bestpin Funtion . 4411 Divide and Conquer Sequential Code and Diagram. 4512 Heap Pro�le of Initial Version. 4613 Old and New Code of Extrat max pin Funtion. 4614 Old and New Code of Longest pin Funtion. 4715 Heap Pro�le of the Final Sequential Version. 4816 The Modi�ed Form pin funtion of Version IV & V. 4917 The Modi�ed Funtions to implement the Finite Map (Version VI). . . . 52ix

LIST OF FIGURES x18 The Strategies Required for Parallel Divide Funtion 5319 Idealised Simulated Pro�le of Version I 5420 A Partial from Time Pro�le of the Final Sequential Version. 5521 Divide and Conquer Proess Diagram for Divide Funtion 5622 Sequential and Parallel Code of Substring Funtion. 5723 The Idealised Ativity Pro�le of Substring Sequenes Funtion (IIa). . 5824 Sequential and Parallel Code of From pin Funtion (Inner Loop). 5925 The Idealised Ativity Pro�le of From pin Funtion (IIb) 6026 Cluster Funtion and Modi�ed Substring Funtion. 6127 The Idealised Ativity Pro�le for Clustering version (III). 6228 The Idealised Ativity Pro�le for parMap version IV 6229 New ParfoldList and Extratmaxpins Funtion. 6330 The Idealised Ativity Pro�le for Version V Input 20 6 30 6331 The Ativity Pro�le for Idealised vs Simulated Beowulf(Version I, IIa,and IIb) . 6832 The Ativity Pro�le for Idealised vs Simulated Beowulf (Version III, IV,and V) . 6933 Ativity Pro�le of Beowulf and Sun for Version IIa 7034 Speedup vs Numbers Of PES (Simulated Beowulf & SMP) 7235 Chunk Size vs Speed up for Both Beowulf and SMP Arhitetures . . . 7336 Speedup vs Numbers of PEs Real (Beowulf & SMP) 7637 Atual pro�les of version IIa of Real Beowulf & SMP, Input 20 60 . . . 8138 A New GpH Struture . 8339 A Number of PEs Funtion . 84

LIST OF FIGURES xi40 The New Funtions already Built in Arhiteture Model 8541 The New General Divide Conquer Funtion 8642 The New parMapPe Relative Speedup for Beowulf 8743 The New parMapPe Relative speedup for SunSMP (Input 20 40) 8844 A New Divide Funtion . 8945 Divide Funtion Diagram when it alled by 2 PEs 8946 Ativity Pro�le for New and Old Divide Funtion (20-Proessors) 9247 The New Divide Funtion Relative speedup for Beowulf 9348 The New Divide Funtion Relative speedup for Sun SMP 93

LIST OF FIGURES xiiAknowledgements
My praises to God for giving me the good health, the strength of determination andsupport to �nish my work suessfully. I am grateful to Phil Trinder and Hans WolfgangLoidl, my supervisors. They were always ready to listen to my work with patiene. Theypulled me through the di�erent attempted researh area with very helpful suggestionsand with a lear sense of diretion. I also wish to thank my ompany (Azzawyia OilRe�nery) for their great e�orts in giving �nanial support to enable me to ompletemy MPhil study. Finally, I wish to thank my family for their love and a�etion.

AbstratThis thesis investigates the use of a high level funtional language GpH (Glasgowparallel Haskell) for arhiteture independent parallel programming. The aim is to pro-vide aeptable performane aross a wide range of parallel arhitetures with minimalprogramming e�ort. High level languages are a good alternative for arhiteture inde-pendent parallelism as they are designed to hide most arhiteture-dependent detailsfrom the programmer.The thesis desribes the �rst systemi investigation of a newly-proposed multi-arhitetureprogramming methodology for GpH. The methodology has two main phases: an arhi-teture independent phase of idealised parallelisation, and an arhiteture dependentphase of aurate performane predition and tuning. The methodology is used todevelop a substantial appliation for two arhitetures with di�erent hardware har-ateristis: a Beowulf luster and Sun SMP. Sequential tuning improves performanefrom 224s to 19s, substantially owing to the elimination of intermediate data strutures.Seven alternative parallel versions of the program are developed and evaluated usinga simulated idealised arhiteture. Realisti simulation of the two target arhiteturesaurately predits the version that delivers the best performane in pratie. Ulti-mately aeptable speedups are ahieved on both arhitetures: 7.5 on a 30-proessorBeowulf and 1.8 on a 4-proessor Sun SMP. Transfer between arhitetures does notrequire soure ode hanges.To improve the arhiteture independene of GpH new parallel oordination on-struts for GpH have been designed, implemented and measured. The primitives extratkey arhiteture spei� properties of the mahine and use them to ontrol oordina-tion, often without exposing the properties to the programmer. Improved parallelperformane is demonstrated using the primitives.

Chapter 1
Introdution
1.1 OverviewThe development of a parallel program presents a set of problems that do not arisein the development of sequential software. Prinipal among these problems is the in-uene of the target arhiteture on the program development proess. In partiularthe performane tuning proess is very sensitive to the target parallel arhiteture.Consequently, the development of a parallel program is typially arried out in anarhiteture-dependent manner, with a �xed target arhiteture [1℄. Traditional ap-proahes of parallel programming expliitly speify most parallel aspets suh as om-muniation, task synhronisation, and work distribution. An alternative approah isto hide most of these aspets behind a high level language implementation. A highlevel language enables exible programs and more portability with an aeptable per-formane aross a wide range of parallel arhitetures [2℄. However, high level program-ming models are still less eÆient ompared with low level languages.

1

CHAPTER 1. INTRODUCTION 2The goal of arhiteture independent parallel programming languages is that the pro-grams an be transferred from arhiteture to arhiteture without sari�ing muh ef-�ieny or requiring signi�ant redevelopment [3℄. High level languages are potentiallyarhiteture independent as parallel oordination is spei�ed at a high level of abstra-tion, i.e. without referene to a spei� underlying mahine. A parallel oordinationdesribes how the omputation are arranged on the virtual mahine, inluding aspetssuh as thread reation, plaement and synhronisation. The hallenges are to produee�etive and eÆient implementations of the high-level oordination, and to developmethodologies to develop software systematially for multiple arhitetures.Glasgow parallel Haskell (GpH) is a funtional language with a high level parallel pro-gramming model designed to deliver good performane aross a number of parallelarhitetures. It is implemented using the Glasgow Haskell Compiler (GHC), witha parallel runtime system (GUM), that dynamially manages many of the aspets ofparallel exeution and automatially adapts its behaviour to the underlying arhite-tures [4℄.This thesis investigates a proposed multi-arhiteture methodology for developing GpHparallel programs and extends this methodology [5℄. The methodology was used to de-velop multi-arhiteture parallel program for the �rst time.1.2 ContributionsThe main ontribution of this thesis is to assess arhiteture independene of high levelparallel funtional languages, partiularly GpH. More spei�ally, the ontributions areas follows:

CHAPTER 1. INTRODUCTION 3The �rst systemati evaluation of a multi-arhiteture development method-ology. The methodology has two main phases: an arhiteture independent phase ofidealised parallelisation, and an arhiteture dependent phase of aurate performanepredition and tuning. In the development of parallel programs most of the work isdone in the arhiteture independent phase. Sequential optimisation is independent ofparallelisation and delivers a good sequential program before inserting any parallelism.The sequential optimisation required to detet the spae leak problem whih is a om-mon problem in the non-strit funtional language. The idealised simulation enablesthe programmer to simulate the program on di�erent parallel mahines inluding theidealised mahine with an in�nite number of proessors and zero ommuniation osts.The GranSim simulator [6℄ provides onsiderable exibility to emulate di�erent arhi-tetures inluding the idealised mahine whih gives a good indiator of the maximumparallelism that an be obtained. If only a small amount of parallelism is obtained onthe idealised simulation then very little is possible on any arhiteture. In the arhi-teture dependent phase the simulator is parameterised to emulate the target mahine.The �nal stage is to exeute the parallel program on a real mahine using the GUMruntime system provided by GpH.In this thesis, the methodology is used to develop a parallel program for genetialignment targeting two parallel arhitetures with di�erent hardware harateristis:a distributed memory Beowulf luster and a shared memory Sun SMP. This thesis thenassesses the performane of the resulting programs and the arhiteture independeneof the program development proess.Extending the arhiteture independent apabilities of GpH. To improve thearhiteture independene of GpH proposes new parallel oordination onstruts are

CHAPTER 1. INTRODUCTION 4proposed. The primitives extrat key arhiteture spei� properties of the mahineand use them to ontrol oordination, often without exposing the properties to theprogrammer. In partiular, re�nements of data-parallel and divide-and-onquer oor-dination are presented. The thesis disusses the importane of the arhiteture spei�sextrated and extends the programming methodology with a new module exploitingthis information.In addition to the main ontributions above this thesis surveys a number of arhi-teture independent parallel programming languages and disusses how eah languageahieves the goal of arhiteture independent parallelism.1.3 Dissertation OutlineChapter 2 presents an overview of various approahes towards arhiteture independentparallel programming models. In addition the two di�erent parallel arhitetures usedin this investigation are desribed.Chapter 3 gives a detailed desription of the proposed multi-arhiteture program-ming methodology. It highlights the tools used in the methodology and the importaneof eah stage.Chapter 4 desribes the geneti alignment program and its sequential implementa-tion and performane tuning. The sequential optimisation is an important stage of themulti-arhiteture development methodology. To ahieve a good parallel performane,it is neessary to start with a good sequential version.

CHAPTER 1. INTRODUCTION 5Chapter 5 desribes the idealised parallelisation of the geneti alignment program,identifying seven di�erent soures of parallelism.The di�erent parallel versions are tested using the GranSim simulator parameterisedto emulate an idealised mahine. The idealised mahine has zero ommuniation osts,and an unlimited number of proessors. The primary goal of this stage is that theprogram exposes the maximal amount of parallelism that an be ahieved from thealgorithm.Chapter 6 desribes the measurement of the di�erent parallel versions of the genetialignment program on two simulated parallel arhitetures. In this stage, the GranSimsimulator is parameterised with the key parameters of the target arhitetures.Chapter 7 desribes the measurement of the parallel versions of the program on thetwo arhitetures and summarises the di�erene between simulation and real measure-ment. The programs are exeuted on the arhitetures using the GUM runtime systemprovided by GpH. Usually minimum ode hanges are required in this stage.Chapter 8 desribes the improvement of the arhiteture independene of GpH, whihemploys the underlying arhiteture for ontrolling the parallelism. It desribes howthe key arhiteture-spei� property of proessors number is extrated. This propertyis used at two levels: the strategi level, where the new parameters are hidden from theprogrammer, and the appliation level where it an be used expliitly in order to re�neoordination. Also it desribes the new parMapPe and divide funtions whih employthe extrated property.

CHAPTER 1. INTRODUCTION 6Chapter 9 ontains a summary of the ahievements and limitations of the work pre-sented in thesis. It evaluates the importane of the development methodology and itsenvironment tools.The appendies ontain versions of the geneti alignment program and are organisedas follows: Appendix A.1 ontains the ode for the optimised sequential version; Ap-pendix A.2 ontains the ode for the best parallel version (IIa) whih delivers bestspeedup on both arhitetures. Appendix A.3 ontains modi�ed funtions for thefinite-Map implementation.

Chapter 2
Bakground
This hapter desribes some parallel arhiteture and parallel programming issues.First, a brief desription of the onstrution of parallel platforms is given, overing theBeowulf luster arhiteture and Sun SMP arhiteture. Both mahines are targetedfor use in this investigation projet. Seond, parallel programming development andthe types of parallel programming models are disussed.2.1 Parallel Computer ArhiteturesParallel programming will be useful if a general parallel mahine (suh as a von Neu-mann sequential mahine model) an be de�ned. This mahine model must be simple toprogram and the programs developed for the model exeuted with reasonable eÆienyon real omputers [7℄.Parallel omputers onsist of multiple proessors, memory modules, and an inter-onnetion network. The distintion between the parallel omputer arhitetures isdetermined by the arrangement of the above omponents. The proessors used in par-allel omputers are inreasingly exatly the same as proessors used in single-proessor7

CHAPTER 2. BACKGROUND 8systems [1℄.The Multiomputer onsists of a number of von Neumann omputers linked by aninteronnetion network. Eah omputer performs its own program. This program mayaess loal memory and may send and reeive messages over the network. Messages areused to ommuniate with other omputers or, equivalently, to read and write remotememories. This model �ts the parallel programming requirement.The SIMD Mahines are array proessors. They typially onsist of large olletionof small proessing elements. All proessors exeute the same program on a di�erentpiee of data. MIMD mahines onsist of a number of proessors whih exeute aseparate stream of instrutions on their own data.The MIMD mahine may be distributed memory or shared memory. Distributedmemory means that memory is distributed among the proessors, rather than plaedin a entral loation. In shared memory all proessors have shared aess to a ommonmemory, often via a bus. Figure 1 shows the distributed-memory and shared-memoryMIMD mahines.
M M M M

M M M M

P P P P P P PP

Figure 1: Distributed Memory and Shared Memory MIMD Arhitetures2.1.1 Beowulf ArhitetureA Beowulf luster is a distributed-memory (MIMD) multiomputer arhiteture usedfor parallel omputations [8℄. It may ontain a server node, whih ats as a gateway to

CHAPTER 2. BACKGROUND 9the outside world, assigns IP addresses et. It is built from stok hardware, thereforeit is heap to build. Beowulf also uses ommodity software suh as the Linux operatingsystem, Parallel Virtual Mahine (PVM) [9℄ and Message Passing Interfae (MPI) [10℄.Large Beowulf mahines might have more than one server node, and possibly othernodes dediated to partiular tasks, for example onsoles or monitoring stations. Inmost ases lient nodes in a Beowulf system are dumb, and the dumber the better.Nodes are on�gured and ontrolled by the server node, and do only what they aretold to do. In a disk-less lient on�guration, lient nodes do not even know their IPaddress or name until the server tells them what it is. One of the main di�erenesbetween Beowulf and a Cluster of Workstations is the fat that Beowulf behaves morelike a single mahine rather than many workstations. In most ases lient nodes do nothave keyboards or monitors, and are aessed only via remote login or possibly serialterminal. Beowulf nodes an be thought of as a CPU + memory pakage whih anbe plugged in to the luster, just like a CPU or memory module an be plugged into amotherboard [8℄.Heriot Watt University had already aquired a Beowulf luster whih will be usedfor the projet experiment. It is a 32-node Beowulf luster onsisting of Linux Red Hat6.2 workstations with a 533 MHz Celeron proessor, 128 Kb ahe, 128 Mb of DRAM,5.7 Gb of IDE disk, onneted through a 100Mb/s fast Ethernet swith with lateny142 miroseonds.2.1.2 Sun SMP ArhitetureShared memory is a model for interations between proessors within a parallel system.Systems like the multi-proessor Pentium mahines running Linux physially share asingle memory among their proessors, so that a value written to shared memory by

CHAPTER 2. BACKGROUND 10one proessor an be diretly aessed by any proessor. Alternatively, logially sharedmemory an be implemented for systems in whih eah proessor has its own memoryby onverting eah non-loal memory referene into an appropriate inter-proessor om-muniation. Physially shared memory an have both high bandwidth and low lateny,but only when multiple proessors do not try to aess the bus simultaneously [11℄. TheSun SMP whih will be used for this projet onsists of 4-proessor with lok speed of250 MHz, and it has lateny under the PVM layer between nodes as 109 miroseonds.2.2 Why Parallel Programming?Parallelism is a very interesting perspetive in understanding omputer arhiteturesbeause it applies at all levels of design, and interats with essentially all other ar-hitetural onepts. A parallel omputer is a olletion of proessing elements thatommuniate and ooperate to solve large problems quikly. The most important as-pets in the design of a parallel omputer are: the number of proessors, the proessingpower of eah proessor, ommuniation and ooperation between the proessors, theway of transferring data, the interonnetion manner used and the operations availableto sequene the ations arried out on di�erent proessors, the primitive abstrationsthat the hardware and software provide to the programmer, and �nally translationof all to performane [12℄. These issues are reeted in low-level parallel languages.In ontrast, to this hardware view, Skilliorn [1℄ summarises the demand for parallelprogramming as follows:-� The real world is inherently parallel, so it is natural and straightforward to expressomputations about the real world in a parallel way, or at least in a way thatdoes not prelude parallelism.

CHAPTER 2. BACKGROUND 11� Parallelism makes available more omputational performane than is available inany single proessor, although getting this performane from parallel omputersis not straightforward.� There are limits to sequential omputing performane that arise from fundamentalphysial limits suh as the speed of light.� Even if single-proessor speed improvements ontinue on their reent historialtrend. But the osts of designing and fabriating eah new generation of unipro-essors are unlikely to drop.2.2.1 Parallel Program DevelopmentThe most important issues in writing a parallel program are: partitioning a programinto tasks, mapping tasks onto a proessor, and arranging for tasks to ommuniatesafely [13℄. The above issues make the parallel programming quite diÆult. Most ofthe urrent researh studies aim to produe a parallel programming language whihan make the parallel programming easier. In this setion some of parallel program-ming models whih have similar objetives to the GpH model are surveyed. A briefdesription of how eah model is formed is given.First, the high level language makes the programmer's task beome easier beausethere is no longer need for making aurate judgement and deisions about parallelism.Consequently, the development and maintenane of programs beome easier, and thereis less sope for programmer error. Seond, programs beome portable, beause thereare no detailed low level desriptions of parallelism inserted to the program. In otherword the program does not ontain low level desriptions for a partiular platform.Most of the urrent researh studies aim to produe a parallel model whih separates

CHAPTER 2. BACKGROUND 12the high-level properties from low-level ones. A model should be an abstrat mahineproviding ertain operations to the programming level above, and the requirementof implementing these operations on all arhiteture. In other words, for a parallelmodel to be useful, it must address both issues, abstration and e�etiveness. Thedevelopment of a parallel program must address the following issues, aording to [14℄:� The parallel program should speify the useful Parallelism from the problem de-sription. The algorithm must be able to determine the potential parallelisminherent in the problem. This involves the splitting the program into sequentialhunks that an be exeuted in parallel. However, the algorithm must be awareof the ost of ommuniation between proessors.� In mapping, the generated tasks of the program must be mapped down to thephysial resoures of the target arhiteture. This may involve grouping taskstogether and sheduling their exeution on the same proessor.� Managing proess interation is not just a matter of writing a number of sequentialthreads of ode. These threads will normally have to ooperate in some way.� When ensuring program orretness, as parallel programming is more omplexthan sequential programming, there are more things than an potentially auseerrors. While verifying the orretness and proper working of sequential softwareis demanding enough, doing the same for parallel software is muh harder.2.2.2 Classi�ation of Parallel ModelsThe lassi�ation is based on how di�erent models ontrol parallelism. A brief desrip-tion of some of the urrent models will be given, along with di�erent ideas presented

CHAPTER 2. BACKGROUND 13by the existing models showing how they ahieve parallelism. Parallel programminglanguages has been lassi�ed by Skilliorn [1℄ into six ategories:1. Models that abstrat from parallelism ompletely. Suh models are fully impliitand desribe only the purpose of a program and not how it is to ahieve thispurpose.2. Models in whih parallelism is made expliit, but deomposition of programs intothreads, mapping, ommuniation, and synhronisation are made impliit.3. Models in whih parallelism and deomposition are expliit, but mapping, om-muniation, and synhronisation are impliit.4. Models in whih parallelism, deomposition, mapping are expliit, but ommuni-ation , and synhronisation are impliit.5. Models in whih parallelism, deomposition, mapping, ommuniation are ex-pliit, but synhronisation is impliit.6. Models in whih every thing is expliit.Impliit Parallelism.Impliit parallelism (1) is automatially exploited by the ompiler and the run-timesupport system [15℄. The programmer does not have to speify parallelism expliitlyusing speial language onstruts, ompiler diretives, or library funtion alls. The un-derlying system is hidden from the user, whih shields programmers from the inreasedomplexity of parallelism and shifts the burden to the ompiler writer [13℄. The mostpopular approah of impliit parallelism is automati parallelisation of sequential pro-grams. The advantages of the impliit parallelism approah are that existing sequential

CHAPTER 2. BACKGROUND 14software an be reused for parallel omputers. Programmers familiar with sequentiallanguages do not need to know about parallel programming or parallel arhiteturesto exploit their parallelism. In addition, it is easier to understand the semantis ofimpliit programs than of expliit ones. Id [16℄ is one example of impliit parallelprogramming languages.It designed by members of the Computation Strutures Groupin MIT's Laboratory for Computer Siene, and is used for programming dataow andother parallel mahines. Id programs are impliitly parallel to a very �ne grain.Semi-Impliit ParallelismIn semi-impliit parallelism (2-5), the programmer is required to insert annotationsinto a program to tell the ompiler where a potential parallelism is useful. Theseannotations are used to ontrol the parallel behaviour of the program but they hidein their implementation all low level details. An example of this approah is GpH.GpH uses a par and seq ombinator to exploit parallelism in the program [17℄. Theapproah exploits data parallelism by performing a high order funtion on all elementsof a large data struture at the same time [18℄.Skeleton ParallelismCole [19℄ has proposed to use skeleton algorithmi as a tehnique to parallelise fun-tional languages and program parallel mahines. The idea is apture ommon patternsof parallel omputation in Higher Order Funtions (HOFs). The ommon parallel oor-dination is hidden from the programmer, only HOFs are used to introdue parallelism.The major advantage of skeletons is the portability of parallel programs written usingthis approah. This results from the separation of meaning behaviour for eah skeleton.

CHAPTER 2. BACKGROUND 15Coordination LanguagesCaliban is one of the most known funtional oordination language introdued by PaulKelly. The Caliban oordination language provide ontrols to statially map the paralleltasks to the proessors. Caliban is an annotation mehanism whih spei�es how aHaskell program is exeuted in parallel [20℄. Other approahes suh as Linda introduea ompletely new oordination language layer that ontrols the dynami exeution ofsequential program fragments written in a onvebtional programming language.Expliit Parallelism.In expliit parallelism (6), the programmer informs the ompiler where parallel evalu-ation should take plae. Here the main responsibility of expliit parallel programmingis put bak onto the programmer, whose skill and knowledge is instrumental to theeÆieny of the parallel implementation. High-level data-parallel languages suh asHigh Performane Fortran (HPF) [21℄ and Fortran D [22℄, o�er a simple and portableprogramming model for parallel, sienti� programs. In suh languages, programmersspeify parallelism abstratly using data layout diretives, and a ompiler uses thesediretives as the basis for synthesising a program with expliit parallelism and inter pro-essor ommuniation and synhronisation. In Hudak's para-funtional programmingthe programmer an shedule expressions to be evaluated sequentially or in parallel,and even speify on whih proessor a given expression should be evaluated.

CHAPTER 2. BACKGROUND 162.3 Arhiteture IndependeneTwo approahes to introduing expliit parallelism are by using libraries or by addinglanguage extensions. One of the arhiteture independent approahes is a parallel pro-gram whih uses the standard proedure libraries suh as MPI, PVM, and OpenMP [23℄.These libraries are widely used and run on almost all parallel platforms, beause theyare supported by mahine vendors. The proesses that ompose a parallel appliationan run on di�erent mahines as part of the same program. To use these libraries theprogrammer must program all of the proess deomposition, plaement, and ommuni-ations expliitly. Another approah is by using the high level languages, some exam-ples of these are High Performane Fortran (HPF), parallel C++, Java, and Delarativelanguages, suh as Glasgow parallel Haskell(GpH) [1℄.2.4 Arhiteture Independent Languages.The popular lass is data parallel language. It is oriented muh more toward themahine than to the human programmer. These languages were simply abstrationsof the von Neumann organisation of the mahines on whih they were implemented.In ontrast, delarative programming languages are laimed to be partiularly humanoriented [24℄. The harateristi of data parallel programming models is that the op-eration an be performed in parallel on eah element of a large regular data struture,suh as list or array. The program is a logially single thread of ontrol, arrying outa sequene of either sequential or parallel steps [25℄.

CHAPTER 2. BACKGROUND 172.4.1 ZPL :A Mahine Independent Programming Language for Par-allel ComputerZPL [3℄ is one of the imperative data parallel languages. It provides high level semantisthat expliitly represent parallel operations. The ZPL ompiler uses Ironman mahineindependent ommuniation interfae to provide a separation of onerns. The ompilerdetermines what data to send and when it an legally be sent. Mahine spei� librariesthen speify how to send the data, whih allows eah mahine to use the low levelmehanism that is most suitable. In order to obtain eÆient parallel performane onparallel omputer, ZPL ahieves a good performane by exeuting the program onsequential omputer similar to the GpH model.2.4.2 Parallaxis-III Arhiteture-Independent Data Parallel Proess-ingParallaxis-III [26℄ is imperative parallel language based on modula-2, extended by dataparallel onepts. The language is fully mahine independent aross data parallel arhi-tetures; as a result a program written in Parallaxis runs on di�erent parallel omputersystems. There is a Parallaxis simulation system with soure level, debugging andtools for visualisation and timing. Parallaxis ompilers an be used to generate parallelodes for data parallel systems. The simulation environment allows both the study ofdata parallel fundamentals on simple omputer systems and the development of parallelprograms, whih an later be exeuted on expensive parallel omputer systems. Theentral point of Parallaxis is programming on a level of abstration with virtual PEs(proessor elements and virtual onnetions). Moreover, in the algorithmi desription,every program inludes a onnetion delaration in funtional form. This means thatthe desired onnetion topology is spei�ed in advane for eah program and an be

CHAPTER 2. BACKGROUND 18addressed in the algorithmi setion with symboli names instead of ompliated arith-meti index or pointer expressions. However, full-dynami data exhange operationsare also possible. Parallaxis provides two ompilers (seq.p3 and par.p3) to allow aprogrammer to examine her/his program on sequential and parallel arhiteture.2.4.3 SAC Single Assignment CSAC [27℄ is a strit �rst-order funtional language with impliit parallelism and impliitthread interation, optomised for array proessing. Array operations in Sa are basedon elementwise spei�ations using so-alled With-loops. These language onstrutsare also well-suited for onurrent exeution on multiproessor systems.2.4.4 CoPaCoPa is a high-level language for proessing nested sets, bags, and sequenes (a gen-eralisation of arrays and lists). CoPa inludes most features found in query languagesfor objet-oriented or objet-relational databases, and has, in addition, a powerful formof reursion not found in query languages. CoPa has a formal delarative de�nitionof parallel omplexity, as part of its spei�ation [28℄. CoPa ahieves arhitetureindependene by using a parallel vetor mahine model (BVRAM) whih supports theomplexity-preserving ompilation of CoPa's high-level onstruts and eÆient imple-mentation on a variety of arhiteture. The language provides a logP simulator tomeasure the parallel aspets, suh as ommuniation ost.CoPa ahieves the arhiteture independene with a way similar to that in GpH; Fig-ure 2 shows a parallel ompilation tehnique for CoPa. The BVRAM (Bounded VetorAess Mahine) provides support to the high level onstrut and eÆient implement-ability on di�erent arhitetures.

CHAPTER 2. BACKGROUND 19
CoPa

Compilation

Code generation

CoPa−seq

SA

BVRAM

Rewriting

Butterfly Network LogP Model

Architecture Dependent

Architecture Independent

Figure 2: CoPa Complexity Preserving Compilation2.4.5 BSP ModelThe model unouples the two fundamental aspets of parallel omputation ommunia-tion and synhronisation. This unoupling is the key to ahieving universal appliabilityaross the whole range of parallel arhitetures. BSP programs are written in supersteps whih are global operations of the entire mahine. Eah super-step onsists ofthree sequential phases: (1) a omputation phase in whih eah proessor omputeswith loally-held values, (2) a ommuniation phase in whih ommuniation betweenproessing elements takes plae, and (3) a barrier synhronisation. Transferred data isnot visible to the programmer ode at its destination until after the barrier synhroni-sation ends the super step in whih it was transferred [29℄.2.5 Arhiteture Independene Using Delarative Program-ming Languages.Delarative Programming languages, inlude the logi and funtional languages. Theyare haraterised by a very high level of abstration. This allows the programmer tofous on what the problem is and o�ers many lear details of how the problem shouldbe solved. Delarative languages have opened new doors to automati exploitation

CHAPTER 2. BACKGROUND 20of parallelism. Their fousing on a high level desription of the problem and theirmathematial nature have turned into positive properties for impliit exploitation ofparallelism [30℄.In logi programming, all parallelisation is performed by the ompiler, withoutany details being supplied by the programmer. The possibility of shared variables indi�erent sub goals makes parallelisation more diÆult. Impliit parallelism an be sub-divided into AND and OR parallelism. OR-parallelism involves mathing a single goalto many lauses simultaneously. AND-parallelism involves the simultaneous resolutionof several goals in a lause [24℄. This thesis does not disuss the logi programmingfurther.2.6 Funtional ProgrammingIn this setion the advantages of funtional programming and how parallelism is ahievedin funtional programming, in partiular the GpH Glasgow parallel Haskell model, willbe disussed.2.6.1 Theoretial roots and history of funtional programming lan-guages.This setion is based on Peyton Jones, Plasmeijer ,and Lisper [31, 32, 33℄. Funtionalprogramming is based on the Lambda Calulus a branh of logi, developed in the20's and 30's. The Lambda Calulus is a simple formal language of funtions, andthe �rst developments were by Shon�nkel (1924), and Curry (1930): they de�neda variation alled ombinatory logi. Churh(1932/1933) [34℄ then de�ned the �rstversion of the atual Lambda Calulus. These early logiians had no intention tode�ne a programming language.

CHAPTER 2. BACKGROUND 21The �rst funtional language has de�ned by MCarthy de�ned around 1960 [35℄. Inthe late 1970's, Bakus de�ned the FP language [36℄. The important idea in FP is thestandard set of higher order funtions whih take funtions as arguments or return themas results. Around the same time, researhers at University of Edinburgh de�ned theML language ("Meta-Language"), with polymorphi type inferene and a sophistiatedmodule system.In the early/mid 1980s a number of lazy funtional languages were developed, suhas MIRANDA [37℄ and LML [38℄. Lazy or non-strit languages try to defer evaluation ofexpressions until the result is needed. Haskell [39℄ was de�ned in 1990 as the standard,non-strit, higher order funtional language. It ontains many of the features fromearlier funtional languages, suh as higher order funtions, type inferene, and non-strit semantis.2.6.2 Funtional Languages for Parallelism.Funtional programming style is similar to the data ow model inasmuh as programsare built of bloks that transform input to output without side-e�ets. These bloks arealled funtions and originate from the mathematial idea of a funtion. The propertiesof pure funtions ensure that rewriting does not inuene the result of omputations.Therefore, automati optimisation parallelisation and transformation for optimisationon omputation are possible and parallelisation are possible.Funtional languages are general purpose, high level programming languages sup-porting programming at a higher level of abstration than onventional imperativelanguages like FORTRAN and C. Programming in funtional languages is a delara-tive ativity whih involves speifying only what is to be omputed, while imperativeprogramming spei�es also the order of the omputation steps.

CHAPTER 2. BACKGROUND 22Junaidu [40℄ says that a major distintion between modern funtional languagesand their imperative language with the same properties is that the former do not allowassignments (i.e., destrutive updates) to memory loations. Alternatively, funtionallanguages use only delarations (whih are tehnially di�erent from single assignments)whereby a variables value in a program, one delared, does not hange. The lak ofassignments failitates higher level programming sine the onern of programming isseparated from that of low level housekeeping of reyling memory loations enforedby repeated assignments. The absene of assignments in funtional languages servesas an important prerequisite whih onfers on these languages a useful mathematialproperty. This property ensures that sine there are no side-e�ets, the value of an ex-pression in a program depends only on the values of its syntatially orret onstituentexpressions and not, for example, on the order in whih the expressions are evaluated.Funtional languages are often lassi�ed aording to their semantis, into strit,non-strit and lenient. Eager evaluation is usually used to implement strit semantiswhile lazy evaluation is the implementation tehnique often used to implement non-strit semantis. The Third (Lenient) evaluation ombines non-stritness with stritevaluation.A funtion is strit if it depends on its argument. A non-strit funtion is a partialfuntion that may be de�ned even when one of its arguments is not de�ned. Lazyevaluation starts evaluating the funtion body, evaluating the funtion's arguments onlyas and when they are used. Lenient evaluation starts the evaluation of the funtionin parallel with the evaluation of all the arguments of the funtion, and it supportsfuntions whih return results even when their omputation may not terminate.Funtional languages provide higher order funtions. One ommon example ofhigher order funtions is a funtion whih maps another funtion over a list. In priniple

CHAPTER 2. BACKGROUND 23eah list element may be proessed in a separate proessor. So the programmer needonly provide new argument funtions to introdue parallelism [41℄.2.6.3 NESLNESL is one of the most suessful parallel funtional languages. It is a strit, strongly-typed, data-parallel language with impliit parallelism and impliit thread interation.It has been implemented on a range of parallel arhitetures, inluding several vetoromputers. NESL fully supports nested sequenes and nested parallelism, and has theability to take a parallel funtion and apply it over multiple operations over the data.NESL is loosely based on ML funtional language. The most important parallel fea-ture in NESL is the apply-to-eah onstrut. This onstrut uses a set-like notation.NESL also provides a performane model for alulating the asymptoti performaneof a program on various parallel mahine models. This is useful for estimating run-ning times of algorithms on atual mahines. The NESL ompiler ompiled the NESLode to an intermediate vetor ode (VCODE) format. The vetor instrutions in thislanguage-independent VCODE format are then mapped to a library of low-level, ar-hiteture spei�. NESL uses a method based on asynhronous proessor groups toredue ommuniation and a run-time load-balaning system to ope with dynamidata distributions. This is done by translating the user's algorithm into ANSI C withMPI alls, and linking this ode with an MPI (Message Passing Interfae) library [42℄.By using the performane model provided the programmer an tune his appliation toahieve better performane on di�erent arhitetures.

CHAPTER 2. BACKGROUND 242.6.4 EdenEden [43℄ oordinates parallel omputations using expliit proess reation and inter-onnetion, enabling the programmer to de�ne arbitrary proess networks. Threadinteration an be either impliit, via shared variables and funtion parameters on pro-ess reation time, or expliit via ommuniating parameters to proesses during theproess life time. The language uses a losed system model with loation independene.The programmer typially starts with a spei� proess network in mind and modelsthis network using expliit proesses. Evaluation strategies may also be required. Edeno�ers more possibilities for tuning the parallel performane.2.7 HaskellHaskell is named for Haskell Brooks Curry, whose work in mathematial logi serves asa foundation for funtional languages. Haskell is a non-strit purely funtional languagebased on lambda alulus, designed by representatives of the funtional programmingommunity. The motivation for Haskell was the uni�ation of funtional programmingthrough the introdution of a standard, widespread, modern language. Haskell is astrongly typed language with a rih type system. As in all funtional language, om-putations are performed only by expressions. Every expression has a type. Primitivedata types supplied by the language inlude: integers, reals, haraters, lists, enu-merations, tuples, and various funtion mappings. Haskell language implementationsperform stati type heking prior to exeution. Haskell funtions are de�ned as map-pings between parts of the type spae. Composition, urried funtions, lambda forms,and higher-order funtions are supported. Haskell uses lazy evaluation. It also permitsde�nition of operators as funtions (operator overloading), a onveniene feature that

CHAPTER 2. BACKGROUND 25is unusual in funtional programming systems [44, 45℄.2.7.1 GpH Parallel Funtional LanguageGpH [41℄ is a parallel funtional language, whih extends the GHC ompiler of thestandard non-strit funtional language Haskell, with two new ombinators in order tospeify parallelism. GpH is a semi impliit approah. The ompiler and runtime systemmanage most of the parallel exeution. The programmer requires only to indiate thoseexpressions that an be evaluated in parallel.2.7.2 Parallelism in GpH.Parallelism is introdued in GpH by the par ombinator, whih takes two argumentsthat are to be evaluated in parallel. A par expression is not restrited to its arguments;the �rst argument is sparked (reate a thread to evaluated the �rst argument) whilethe seond argument ontinues to be evaluated by another parallel thread. Also, GpHhas a seq ombinator whih is strit on both its arguments; it evaluates its �rst ar-gument to WHNF(Weak Head Normal Form) and then disards it and returns its seondargument. An expression is in WHNF if and only if it has no top-level reduable expres-sion, i.e the expression may ontain inner expressions an be redued [31℄. The defaultevaluation degree in Haskell is WHNF. The seq ombinator is needed as [14℄ said: �rst,for strit operators whose order of argument evaluation must be hanged; seondly, theombinator may be used for evaluating data strutures further than WHNF. Sometimesthe par ombinator produes too small tasks whih are not useful; in this ase the seqombinator is used to generate useful tasks for parallel exeution; thirdly, it is neessaryto hange the behaviour of par to be strit in both arguments, like newpar x y = pary (seq x y).

CHAPTER 2. BACKGROUND 26
par :: a ! b ! b --parallel ompositionseq :: a ! b ! b --sequential ompositiontype Strategy a = a ! () --type of evaluation strategyusing :: a ! Strategy a ! a --strategy appliationusing x s = s x `seq` xrwhnf :: Strategy a --redution to weak head normal formlass NFData a where -- lass of reduible typesrnf :: Strategy a -- redution to normal formFigure 3: Basi Coordination Construts in GpHparList :: Strategy a ! Strategy [a℄parList strat [℄ = ()parList strat (x:xs) = strat x `par` parList strat xsparMap :: Strategy b ! (a ! b) ! [a℄ ! [b℄parMap strat f xs = map f xs `using` parList stratFigure 4: The parList & parMap Parallel Strategies2.7.3 Evaluation Strategies in GpHThe evaluation strategies model provided allows the programmer to split the funtionde�nition into two parts: the algorithm and the evaluation. This is ahieved by us-ing lazy higher-order funtions. The lazy higher-order funtions learly separate thetwo onerns of speifying the algorithm and speifying the program's dynami be-haviour [41, 46, 5℄ .The Strategy funtion spei�es the dynami behaviour required when omputinga value of a given type. A strategy on a value of type a is a funtion from a to thenullary value () exeuted purely for e�et, and the null value is returned to indiate

CHAPTER 2. BACKGROUND 27ompletion. The using onstrut applies a strategy to a Haskell expression. The basistrategy rwhnf redues an expression to weak head normal form WHNF, the default inHaskell. The overloaded strategy rnf redues an expression to normal form (NF), i.e.ontaining no redutions. As there are types that are not redued to normal formin Haskell, e.g. funtion types, rnf is restrited to types that are redued to normalform by the NFData lass whih is instantiated for all major types. Beause strategiesare simply funtions they an be ombined, or passed as parameters using standardlanguage apabilities. Figure 3 shows the basi operation over strategies.Data-Oriented Parallelism Strategies speifying data-oriented parallelism desribethe dynami behaviour in terms of some data strutures. For example, it provides theparList funtion whih applies the strategies to every element in parallel. Also, a parMapis a data parallel funtion whih applies its funtion argument to every element of a listin parallel. The strat parameter determines the dynami behaviour for eah elementof the result list. Figure 4 shows the ode for both parList and parMap strategies.2.8 GpH Compilers and ToolsThere are many tools used to develop an appliation written in GpH. These tools andompilers are summarised in the following paragraphs as stated in [46℄.2.8.1 The Hugs and GHCI InterpreterHugs [47℄ and GHCI provide an interative environment for fast program development.They allow the programmer to experiment and debug her/his sequential program. Also,they have the ability to mix interpreted modules with ompiled modules [48℄. In afuntional language all onstruts in a program are expressions with deterministi value.

CHAPTER 2. BACKGROUND 28All variables have the single-assignment property, and no side-e�ets from alling otherfuntions are possible. Suh properties permit examining the values of ertain programexpressions and testing individual sub-funtions in isolation. This an be done using theHugs Interpreter. Hugs and GHCI were used to produe the initial sequential programin setion 4.2.2.8.2 The GHC Compiler and Sequential Runtime System.GHC [49℄ is an optimising ompiler for the non-strit purely funtional language Haskell.It inludes di�erent analysis phases that supply information about the program be-haviour to the optimisation phase. In GpH parallel programming, the obtained se-quential optimising program is used in order to ahieve parallelism. The only hangerequired is to add strategies into sequential program. The GHC ompiler was used forompiling the di�erent sequential versions of geneti program (see Setion 4.4 for moredetails).2.8.3 GUM Parallel Runtime SystemGUM [17℄ is a portable, parallel implementation of the Haskell funtional language.It is message-based, and portability is failitated by using the PVM ommuniationsharness that is available on many multi-proessors. As a result, GUM is availablefor both shared-memory (Sun SPARCserver multiproessors) and distributed-memory(networks of workstations) arhitetures. GUM uses an unmodi�ed version of GHCto generate an optimised ode. The two additional onstruts seq and par speifythe evaluation order and generate parallelism. GUM automatially manages manyof the parallel aspets of a GpH program, inluding work and data distribution anddistributed garbage olletion. GUM's load balaning mehanism allows a high amount

CHAPTER 2. BACKGROUND 29of potential parallelism and distribution of the potential work in the form of sparks.One a spark has been turned into a thread, or been ativated, the thread will remainon this PE. Sparks are generated via exeuting the par primitive on a CPU and addedto the spark pool. Initially all proessors, exept for the main PE, will be idle, withno loal sparks available. The Idle PE sends a FISH message to a randomly hosenPE. On arrival of this message, the PE will searh for a spark and, if available, sendit to the requesting PE. This mehanism is usually alled work stealing or passive loaddistribution.2.8.4 Time and Spae Pro�lersThe lazy evaluation mehanism in Haskell may ause some data strutures not to beevaluated, or it may retain big data strutures whih are not used. This is alled a spaeleak, a ommon problem in non-strit languages. In order to deal with this problem,theGHC [50℄ ompiler supports a performane-tuning of the sequential program using timeand spae pro�lers. The pro�lers allow the programmer to assign a ost entre to anyexpression of the soure ode; thereby he/she knows the omputation ost and heapusage. For example Figures 12 and 15 in Chapter 4 inlude the spae pro�les for thegeneti alignment program. The time pro�ler allows the programmer to assign a ostentre to any expression within the funtions to see its ost. For example Figure 20 inChapter 5 inludes a partial from the time pro�le of the �nal sequential version of thegeneti alignment program.

CHAPTER 2. BACKGROUND 302.8.5 GranSim SimulatorGranSim [6℄ is a highly-parameterised simulator whih allows the programmer to sim-ulate di�erent parallel arhitetures. GranSim is a tool for ahieving arhiteture-independene. By providing an idealised as well as an aurate model of parallel arhi-tetures, GranSim has proved to be an essential part of an integrated parallel softwareengineering environment. The idealised simulation hides all details of the underlyingparallel arhiteture (see setion 5). Aording to the amount of parallelism ahievedfrom the idealised stage, the programmer takes her/his deision either to perform therealisti stage or not. Chapter 6 desribes the use of the GranSim simulator to emulatespei� arhiteture.There are number of run-time options parameters provided by the simulator. Theparameters used by the thesis are as follows:-bP This option ontrols the generation of a GranSim pro�le. The overall ativitypro�le shows the ativity of the whole mahine by separating the threads into up to �vedi�erent groups, running threads, runnable threads, bloked threads, fething threads,migrating thread-bpn Spei�es the number of proessors to simulate. The value of n must be lessthan or equal to the word size on the mahine (i.e. usually 32). If n is 0 GranSim-Lightmode is enabled.-bp: Enable GranSim-Light (same as -bp0). In this mode there is no limit on thenumber of proessors and no ommuniation osts are reorded.

CHAPTER 2. BACKGROUND 31-bln Set the lateny in the system to n mahine yles. The default value is 1000yles.-bmn Set the overhead for message paking to n mahine yles. This is the overheadfor onstruting a paket independent of its size.2.8.6 Visualisation ToolsVisualisation tools are more important for understanding the dynami behaviour of theparallel program. By using the visualisation tools, the log �le from the simulator andGUM an be used to generate a number of graphial graphs ontaining informationabout exeution of the program [48℄. For example Figure 23 in Chapter 5 inludes theidealised ativity pro�le of the geneti alignment program.

Chapter 3
A MultiarhitetureDevelopment Methodology
This hapter desribes the new methodology for writing multi-arhiteture programsand gives a desription of a program development for multiple arhitetures.3.1 OverviewParallelism in GpH is semi-expliit; only small amounts of ode are required to desribethe parallelism in the program. In addition, strategies allow the programmer to speifythe oordination at high level, and separate the algorithm and the oordination. Theseproperties failitate the task of parallel programming and hanging to a new arhi-teture. Consequently, a programmer an start her/his program without any expliitparallelism, so she/he an develop and test it in a sequential environment. Then thestrategies are inserted to the sequential version to produe parallel versions.

32

CHAPTER 3. A MULTIARCHITECTURE DEVELOPMENT METHODOLOGY333.2 The Methodology StrutureApproximately two dozen non-trivial GpH parallel programs have been developed, fornumber of arhitetures [46, 51, 5℄, and Trinder and Loidl have proposed a GpH multiarhiteture programming methodology as result of this experiene. The methodologyis summarised in Figure 5, where eah node is a program/virtual mahine pair. Theprogram development has two phases: an arhiteture-independent phase, that developsadequate parallelism on a simulated idealised mahine. Experiene has shown that mostof the development work is done in this phase. The arhiteture-dependent phase tunesthe parallel program for a spei� arhiteture [46℄.
Initial Sequential Program

Sequential Program

Optimised Sequential Program

Initial Parallel program

Idealiesd Parallel Program

Specialised Parallel Program

Specialised & Optimised Parallel
Program

Parallel Program

Specialised Parallel Program

Specialised & Optimised Parallel
Program

Parallel Program

Debugging

Tune sequential algorithm,

Derive etc add strategies

GranSim −Light tune parallel algorithm

Gransim
tune for architecture 1

Gransim
tune for architecture 2

Gransim tune parallel algorithm
Gransim

GUM Parallel execution Parallel execution GUM

tune parallel algorithm

 Architecture Dependent Phase

 Architecture Indpendent Phase

 Hugs + GHC

Profilers

Figure 5: The Multi-Arhiteture Program Development Model

CHAPTER 3. A MULTIARCHITECTURE DEVELOPMENT METHODOLOGY343.2.1 Initial Sequential StageIn this stage the programmer writes a sequential version of the program and may need todebug it using the Hugs or GHCI interpreter [47, 50, 45℄. As desribed in Setion 2.8.1both interpreters provide fast interative environment development tools. The outputfrom this stage is a orret sequential program.3.2.2 Sequential OptimisedIn this stage, pro�ling tools, inluding spae and time pro�les are used to obtain infor-mation about the program behaviour, inluding the total exeution time, the alloationand resideny, often itemised by individual funtion. Based on that information theprogram is tuned to produe an optimised sequential version. The output from thisstage is an optimised sequential program.3.2.3 Idealised Simulation StageIn this stage, the evaluation strategies are added in order to expose parallelism in theprogram. The insertion of the strategies will be based on the information obtainedfrom the optimised version.The initial parallel version is measured using the GranSim [6℄ simulator parame-terised to emulate an idealised mahine with, e.g. an in�nite number of proessors, andzero ommuniation osts. The parallel program will be tuned until it shows a goodparallel performane.The primary advantage of using an idealised mahine is that it is known that poorparallelism is inherent, and not an artifat of some spei� arhiteture. If good paral-lelism annot be ahieved on the idealised mahine it annot be obtained on any realmahine. The output from this stage is an initial parallel version of the program.

CHAPTER 3. A MULTIARCHITECTURE DEVELOPMENT METHODOLOGY353.2.4 Realisti Simulation StageIn this stage, the parallelism is tuned for a target arhiteture. The tuning again usesthe pro�ling suite, but now the simulators are parameterised to emulate the targetarhiteture. The parameters speify details suh as number of proessors, messagelateny, thread reation overheads, all in terms of mahine yles, an abstrat timemeasure. Typial hanges during this stage are to adapt the parallelism to the har-ateristis of the target arhiteture; for example thread granularity might need to beinreased to o�set reation overheads and message lateny. The idealised program ismeasured using the GranSim simulator, but here the simulator is parameterised toemulate the target mahine. It is often neessary to remove some strategies from theidealised program to obtain good performane on a simulated realisti. The output ofthis stage is parallel program tuned for a spei� arhiteture.3.2.5 Target ArhitetureThe �nal stage is to measure and tune the program on the target arhiteture using theGUM runtime system and pro�ling tools [48℄. The experienes of developing parallelprograms using GpH indiate that this stage typially requires few hanges [46℄. Nor-mally the simulated results are a good approximation to the parallel behaviour underGUM [17℄. Typial hanges during this stage are to adapt the I/O, or to utilise spei�system alls on the target arhiteture. The output of this stage is a parallel programon spei� arhiteture.

CHAPTER 3. A MULTIARCHITECTURE DEVELOPMENT METHODOLOGY363.3 Enhanement of Arhiteture Independent Enhane-ment in GpHThe author proposes a new model involving the underlaying arhiteture parameterswhen it generates the potential parallel tasks. The parameters that may be involvedare the number of available proessors, system lateny and the lok speed. Setion 8will desribe the proposed model in detail.3.4 Other MethodologiesThere have been few robust parallel funtional languages, and hene relatively fewlarge parallel funtional programs developed. As a results there are few developmentmethodologies for parallel funtional programming. Two fundamental methodologiesrelated to funtional programming that have been proposed and explored are BMFby Pepper [52℄ and APMs by O'Donnell [53℄. Both methodologies are derivational:the parallel program is derived from a high level spei�ation but typially, the resultof the derivation is not a parallel funtional program, but rather C with MPI or aparallel hardware spei�ation. CSP introdued by Hoare provides a general skeletonfor parallel programs and it allows aurate analysis of orretness and performaneissues. It provides annotation whih has a good interfae between the ommuniatingsystem and a theoretial framework [54℄. CSP may be used for parallel funtionalprogramming.The methodology desribed in this thesis provides a systemi manner to write aparallel program funtional for di�erent arhitetures. The result from methodology isparallel funtional program.

Chapter 4
Sequential Implementation
This hapter desribes the problem seleted for implementation using the multiarhi-teture development methodology, and the sequential implementation of the algorithm.It will also desribe the sequential time and spae tuning of the program.4.1 Problem Desription4.1.1 A Geneti Alignment AlgorithmThe program developed for several parallel arhitetures aligns sequenes of genetimaterial (RNA) from related organisms and has been desribed in [55, 56℄. The aim ofreating the alignment is to study the similarities and di�erenes in sets of sequenes.An alignment of these sequenes allows a biologist to extrat a fairly aurate guessabout how these organisms relate in the tree of evolution. The alignment of a set ofRNA sequenes entails lining up the sequenes with orresponding setions diretlyabove one another. In order to ahieve the alignment, indel (for in inserted, or deldeletion) are added to them [57℄ as shown in Figure 6. The "-" harater in the �gurerepresents the indel haraters. 37

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 38
Input sequenesAUGCGAGUCUAUGGCUUCGGCCAUGGCGGACGGCUCAUUAUGCGAGUCUAUGGUUUCGGCCAUGGCGGACGGCUCAUUAUGCGAGUCUAUGGACUUCGGCCAUGGCGGACGGCUCAGUAUGCGAGUCAAGGGGCUCCCUUGGGGGCACCGGCGCACGGCUCAGUAligned output sequenes.AUGCGAGUCUA-----------UGG-CUU-------CGGCCAUGGCGGACGGCUCAUU--AUGCGAGUCUA-----------UGGACUU-------CGGCCAUGGCGGACGGCUCAUU--AUGCGAGUCUA-----------UGG--UUU------CGGCCAUGGCGGACGGCUCA--GUAUGCGAGUC-AAGGGGCUCCCUUGG-----GGGCACCGGC----GC--ACGGCUCA--GUFigure 6: Input Sequenes and the Aligned Output Sequenes

Pin res_righht res_left

res_unpinnedchFigure 7: Final Alignment Figure.Alignment Algorithm. The input to the program is a set of amino-aid fA,C,G,UgSequenes. The alignment algorithm is based on the notion of ritial subsequenes:a subsequene of a single sequene that ours only one within the sequenes. Whena ritial subsequene ours in two or more sequenes, the set of ourrenes is alleda Pin. To ompute the Bestpin all the ritial subsequenes from eah sequene mustbe generated, and then the ritial substrings with the highest number of ourrenesare seleted. If more then one substring being seleted as pin, the pin losest to themiddle will be seleted. The following steps are employed to align a set of sequenes:1. Compute a set of pins for the sequenes to be aligned. Loate the best pin whihhas the maximum number of ourrenes.2. Connet all pinned sequenes with a best pin and plae it above the unpinnedsequenes. This results in the original sequenes being divided by the best pininto three regions (left, right, and unpinned sequenes). Figure 7 shows the �nal

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 39alignment of the input sequenes. The pinned sequenes are split by the best pinand plaed on top of the unpinned sequenes as shown in Figure 7.3. Reursively align the left, right and unpinned sequenes.4. Combine the pinned and unpinned alignment.4.2 Sequential ImplementationThe program onsists of three main funtions: align hunk, divide, and Bestpin,along with auxiliary funtions as depited in Figure 8. The �gure shows the depen-denes among the funtions in the implementation.The Align-hunk Funtion aligns a set of sequenes (hunks) by attempting tosplit the hunk into three hunks using a pin: left and right pinned hunks and anunpinned hunk. These an be aligned independently and the three sub alignments areombined to produe the omplete alignment. It alls Bestpin to extrat the best pin,then alls the divide funtion to split the three regions as desribed earlier. Figure 9shows the sequential ode of the align hunk funtion.The Bestpin Funtion takes the input sequenes and extrats the best pin by allingthe funtions plaed under it: �rst, the (substring sequenes) funtion generatesall sub strings from eah sequene, beause it performs an iteration over the inputsequenes it is alled the outer loop; seond, the (Form pin)funtion omputes thenumber of ourrenes of eah substring, beause it performs an iteration over thesubstring generated from eah sequene inside the (substring sequenes) funtionit is alled the inner loop; third, the Extrat max pin funtion selets the pins whihhave the maximum number of ourrenes; fourth, pin average distane omputes

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 40the average distane of the input sequenes and the distane between the seleted pinsand middle point of the input sequenes. Figure 10 shows the sequential ode of theBestpin funtion.The divide Funtion takes the input sequenes and best pin and splits the inputsequenes using the best pin into three regions (left, right, and unpinned) by alling thesplitting sequenes funtion. The divide funtion reursively alls align hunkfuntion to align the generated regions independently. The proess is ontinued untilno best pin an be found from any of three regions. The �nal step, the Combine isalled to merge the alignment results from left, right and unpinned sequenes. Figure 11shows the sequential ode of the divide funtion and alling diagram.4.3 Alignment ExampleThe following example shows how the algorithm working. The following input set ofsequenes is given to the program.[[U,C,A,G,U℄[U,C,A,G,U℄,[U,C,A,U,U℄,[U,C,A,U,U℄℄The �rst funtion alled is Align hunkwhih takes the input and alls the Bestpin.1. The substring sequenes generates all possible substrings from eah input se-quene as follows.[[U℄,[UC℄,[UCA℄,[UCAU℄,[UCAUU℄,[C℄,[CA℄,[CAU℄,[CAUU℄,[AU℄,[AUU℄,[U℄,[UU℄,[U℄℄[[U℄,[UC℄,[UCA℄,[UCAU℄,[UCAUU℄,[C℄,[CA℄,[CA,U℄,[CAU,U℄,[AU℄,[AUU℄,[U℄,[U,U℄,[U℄℄[[U℄,[UC℄,[UCA℄,[UCAG℄,[UCAGU℄,[C℄,[C,A℄,[CAG℄,[CAGU℄,[AG℄,[AGU℄,[G℄,[G,U℄,[U℄℄[[U℄,[U,C℄,[U,CA℄,[UC,AG℄,[UCAGU℄,[C℄,[CA℄,[CAG℄,[CAGU℄,[AG℄,[AGU℄,[G℄,[GU℄,[U℄℄

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 412. The substring sequenes alls the From pin to ompute the pins. The follow-ing list shows partial from Pins list with its ourrene.[([UC℄,4),([UCA℄,4),([UCAU℄,2),([UCAUU℄,2),([C℄,4)..U℄,2),([AG℄,2),([AGU℄,2),([G℄,2),([GU℄,2)℄3. The extrat max pins funtion extrats the pins whih has maximum our-rene.[([UC℄,4),([A℄,4),([CA℄,4),([C℄,4),([UCA℄,4)℄
4. The longest pin funtion takes the output from extrat max pins funtion andreturns the longest pin, in this ase UCA. The pin average distane funtion isalled to ompute the distane between the middle of the sequene and the pinposition within the sequene. The output of pin average distane funtion is[([UCA℄,1)℄.5. The best pin pin funtion takes the output from pin average distane fun-tion and returns the pin whih has minimum distane from the middle: UCA.6. The Divide funtion takes both the best pin and the input sequenes and allsThe splitting sequenes to split the input sequenes into three sequenes asfollows:Right sequenes:[[GU℄,[GU℄,[UU℄,[UU℄℄

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 42Left sequenes: [[℄, [℄ , [℄, [℄℄, Right sequenes: [[℄, [℄ , [℄, [℄℄,Unpinned sequenes:[[℄, [℄ , [℄, [℄℄
7. The left, right, and unpinned sequenes will aligned by reursive all of the dividefuntion. In this ase only the right will be aligned.The steps from 1 to 6 will be repeated. So the seond best pin is [U℄.Right sequenes[[℄,[℄,[U℄,[U℄℄Left sequenes[[G℄,[G℄,[℄,[℄℄Unpinned sequenes.[[℄, [℄ , [℄, [℄℄At this stage no best pin is found the ombine funtion is alled.8. The ombine funtion will ombine the result from aligning the right sequenes.[[GU-℄[GU-℄,[-UU℄,[-UU℄℄9. In �nal stage it ombines all the results from left, right, and unpinned sequenes.[[UCAGU-℄,[UCAGU-℄,[UCA-UU℄,[UCA-UU℄℄

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 43
Function call chart of Versions I,II, III

Pin_value

Locate _pin

Pin_average_distance

Pin_average_distance

Pin_average_distance’

Best_pin

Best_pin’

Longest_pin

Remove_suffix

Remove_prefix

Extract_max_pins

Pin_occurrence

Form_pins

Critical

Substring_sequences

Subseq

Pin_occurrence’

top_level_bestpin
1 2 3 4 5 6 7 8 9 10

Combine

Cat_sequences

Fun_align

Lead _function

Right_chunk

Lift_chunk

Unpinned_chunk

Aligin chunk

Divide function

Splitting _sequences

Locate_pin

Right_chunk’

Lift_chunk’

Locate_pin

Locate _pin

1 2 3 4

Figure 8: Funtions Call Chart for Versions I,II,III.4.4 Sequential TuningThis setion desribes the steps taken to improve the sequential version of the alignmentprogram. In fat, there is no partiular rule to follow: the optimistions are presentedin the order they ourred to the author. The generated heap pro�le whih ontainsinformation about the memory usage over time is useful for deteting the auses ofspae leaks, when the program holds on to more memory at run-time that it needsto. Spae leaks lead to longer run-times owing to heavy garbage olletor ativity, andmay even ause the program to run out of memory altogether. From the heap pro�le inFigure 12 the large onsumption of memory an be seen: the total alloated is 1034 Mbwith maximum resideny 12.250 Mb. The most expansive funtion as seen from thegraph is the Bestpin funtion. To improve the program a series of �ve optimisationsis made and the following setions will desribe them.

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 44
Align hunk :: [Sequene℄ ! [Sequene℄Align hunk [℄ = [℄Align hunk xs = fun align all reswherebest = Bestpin xs -- Find the best pin from xsall res = divide xs best -- Split and align the xs

Figure 9: The Align Chunk Funtion Sequential CodeBestpin :: [Sequene℄ ! -- List of input sequenes.Pin --Best pin as output.Bestpin [℄ = [℄Bestpin xs = best pin pins diswhereall substring = substring sequenes xs xspins = map fst(extrat max pins all substring)extrat longest pins = longest pin pinspins dis = pin average distane extrat longest pins xsFigure 10: The Bestpin Funtion4.4.1 Development in Versions I, II and IIIIn version I the extrat max pin funtion traverses the list ontaining the pins withtheir ourrenes three times in order to �lter the pins holding a maximum numberof ourrenes. Also the longest pin funtion traverses its given list three times inorder to extrat the longest pin. While in version II both funtions were improved totraverse their given list just twie, Figures 13 and 14 show the modi�ed ode for boththe funtions.In version III the foldr high order funtion was employed to improve the extrat max pinand longest pin funtions instead of using the aumulative variable.

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 45
divide :: [Sequene℄ ! -- List of input sequenesPin ! -- Best pin[Sequene℄ -- List of aligned sequenes.divide [℄ [℄ = [℄divide xs [℄ = xs -- this is represent the basi alignment to the sequenedivide xs pin = (ombine pin res left res right res unpinh)where(righth,lefth,unpinh1) = splitting sequenes pin xsunpinh = lead funtion pin unpinh1res unpinh = align hunk unpinhres right = align hunk righthres left = align hunk lefthombine :: Pin ! [Sequene℄ ! [Sequene℄ ! [Sequene℄ ! [Sequene℄ombine pin left seqs right seqs unpinned seqs= (zipWith (at sequene pin) left seqs right seqs)++ unpinned seqswhereat sequene :: Sequene! Sequene! Sequene ! Sequeneat sequene pin ls rs = ls ++ pin ++ rs

.splitting_sequences

align_chunk align_chunk align_chunk

combine

lead_function

XS :: [Sequence] pin :: Sequence

divide

liftch :: [Squence]
rightch :: [Sequence]

unpinch :: [Sequences]

unpinch1 :: [Sequence]

pin

pin .
.

Figure 11: Divide and Conquer Sequential Code and Diagram.

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 46

g1 -hC 1,034,623,508 bytes x seconds Mon Apr 8 13:36 2002

seconds0.0 20.0 40.0 60.0 80.0 100.0

by
te

s

0M

2M

4M

6M

8M

10M

OTHER

divide/lead_function

right_sequence/pined_chunk

Bestpin/extract_max_pins

Bestpin/substring_sequences

left_sequence/pined_chunk

lead_function/lead_function’

Bestpin/form_pins

divide/spliting_sequences

MAIN/main

spliting_sequences/right_sequence

align_chunk/divide

align_chunk/Bestpin

Bestpin/pin_occurence

MAIN/CAF

align_chunk/fun_align

divide/combine

spliting_sequences/left_sequence

main/mkRandom

Bestpin/critical

Figure 12: Heap Pro�le of Initial Version.-- This old ode for extrat max pins funtionextrat max pins :: [(Pin,Int)℄ ! [Pin℄extrat max pins [℄ =[℄extrat max pins xs = map fst (filter (� (p,n)! n== max num) xs)wheremax num= maximum (map snd xs)-- A new ode for the extrat max pins funtionextrat max pins :: [(Pin,Int)℄ ! [(Pin ,Int)℄extrat max pins [℄ =[℄extrat max pins ((p,n):xss) =foldr (extrat max pins') [(p,n)℄ xssextrat max pins' :: (Pin ,Int)! [(Pin,Int)℄ ! [(Pin,Int)℄extrat max pins' (p,n) aa pin�((p',n'):)| n' > n = aa pin| n' == n = aa pin ++ [(p,n)℄| otherwise = [(p,n)℄
Figure 13: Old and New Code of Extrat max pin Funtion.

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 47
-- The old ode for longest pin funtionlongest pin :: [Pin℄![Pin℄longest pin [℄ = [℄longest pin xs = longest pin' m xswherem = maximum (map length xs)longest pin' m [℄ = [℄longest pin' m (x:xs)| m == length x = x :longest pin' m xs| otherwise = longest pin' m xs-- The modified ode for longest pin funtionlongest pin :: [Pin℄! [Pin℄longest pin [℄ = [℄longest pin (xs:xss) =foldr (longest pin') [xs℄ xsslongest pin' :: Pin ! [Pin℄ ![Pin℄longest pin' pin xs�(pin':)| length pin' > length pin = xs| length pin' == length pin = (pin:xs)| otherwise = [pin℄Figure 14: Old and New Code of Longest pin Funtion.The modi�ations made in versions II and III do not give a big improvement inonsumption of memory. The heap pro�le obtained from both versions is similar to�gure 12, therefore is not inluded here. The next step to improve the program is toeliminate some intermediate data struture.4.4.2 Development of Versions IV and VThe hanges made to produe IV and V are intended to eliminate intermediate datastrutures; e.g. an important optimisation is to eliminate the unpinned substrings at anearlier stage. In other words, when the substrings are generated from a single sequenethe program omputes the pin substrings before it generates the substring from othersequenes. This means only the pin substrings are arried to the next stage. As a

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 48
g5 -hC 707,552 bytes x seconds Mon Apr 8 13:24 2002

seconds0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

by
te

s

0k

20k

40k

60k

80k

MAIN/CAF

divide/combine

locate_pin/locate_pin’

spliting_sequences/left_sequence

substring_sequences/form_pins

Bestpin/substring_sequences

main/mkRandom

substring_sequences/subseq

Figure 15: Heap Pro�le of the Final Sequential Version.result of the above modi�ation, the total memory alloated dropped to 707.552 Kbwith maximum resideny 122.70 Kb. Also the total exeution time was redued to 18.92seonds, omprising 17 seonds real exeution time (MUT) of redution and 2 seondsof garbage olletion (GC). Figure 15 shows the heap pro�le for the �nal tuning of thesequential stage. Figure 16 shows all modi�ations are made on the ode of From pinin versions IV & V.4.4.3 Version VI using a Finite MapIn the �nal version a �nite map is employed to searh and eliminate the dupliatedsubstring generated from the single string, and to eliminate the unpinned substringfrom the ritial substring generated by the above step. The ode is shown in Figure17. This version gave some improvement in ode exeution time ompared with versions

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 49
-- The old ode for form pins funtionform pins :: [[SubSequene℄℄ -> -- All substrings for input sequenes[Pin℄ -- List of all Pinsform pins [℄ = [℄form pins (xs:xss) = [x | x <- xs , or [x `elem` ys | ys <- xss℄ ℄-- The New ode for form pins funtionform pins :: [SubSequene℄ ! [Sequene ℄! [(Pin,Int)℄form pins [℄[℄ = [℄form pins[℄ ys = [℄form pins(x:xs) ys| num > 1 = (x,num): form pins xs ys| otherwise = form pins xs yswherenum = form pins' x ysform pins' :: SubSequene ! [Sequene℄ ! Intform pins' [℄ [℄ = 0form pins' m [℄ = 0form pins' m (x:xs)|((hek for snd appears == Nothing) &&(hek for appears /= Nothing)) =1+ form pins' m xs|otherwise = form pins' m xswherehek for appears = loate pin m xwhere pin appears = pin value(hek for appears)reset of sequene = drop (where pin appears + length m) xhek for snd appears = loate pin m reset of sequeneFigure 16: The Modi�ed Form pin funtion of Version IV & V.IV and V. However the garbage olletion time inreased from 1.93s to 72.96s andthe resideny rose from) 0.123 Mb to 13.4 Mb. The rise is the result of the stritmap onstrution generation that takes the generation of all substrings from all inputsequenes, and the holding of the unpinned ritial substring until the stage where thepins are omputed.

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 50time memoryVersion Mut GC total time % of GC time max resideny total alloateI 120.1s 104.0 s 224.13 s 46.4 12520 Kb 141.8 MbII 121.28 s 100.8 s 222.10 s 45.4 12520 Kb 141.8 MbIII 119.08 s 100.8 s 219.92 s 45.9 12520 Kb 141.7 MbIV 37.27 s 6.52 s 43.80 s 14.9 123 Kb 1,349.0 MbV 16.98 s 1.93 s 18.92 s 10.2 123 Kb 369.5 MbVI 12.96 s 72.96 s 85.93 s 84.9 13400 Kb 128.05 MbTable 1: Sequential Pro�ling Summary4.4.4 Sequential Optimisation DisussionTable 1 summarises most of the measurements of the sequential program versions,and the following observations are made: the time required to exeute the ode (Mut)reported in the seond olumn and the garbage ollet (GC) time reported in the thirdolumn.1. The �rst three versions perform massive memory alloation and have high resi-deny, resulting in long exeution times, e.g 141.8 Mb and 120.1s, respetively.2. Good performane is obtained from version IV of the program ompared withversion III. From Table 1 the memory resideny dropped to 123 Kb, and runtimeimproved to 43.80, a fator of 5.02. This is the result of eliminating the unpinnedstrings at an earlier stage.3. Version V further improved the exeution time to 18.92s, with the same resideny(0.123Mb), but less alloation 369.5Mb. The explanation for the improvement isthat the old version of the loate pin funtion takes a single sequene and pinand �nds the position of the pin in the sequene by generating a substring whihis equal to the length of the given pin. Then it ompares this substring with thepin; if they are equal it returns to the position, otherwise the funtion drops oneharater from the sequene and repeats the proess again. In the new versioneah time the program drops one harater from the sequene and heks if the

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 51pin is pre�xed from it or not. If so it just returns to its position, otherwise itsans the rest of the sequene.4. Version VI attempts to improve the exeution time by introduing a �nite map,but the resideny rose from 123 Kb to 13.4 Mb. The rise is the result of the stritmap onstrution generation that takes the generation of all substrings from allinput sequenes, and the holding of the unpinned ritial substring until the stagewhere the pins are omputed.From the �gures in Table 1 and the above disussion it may onluded that themost suitable version to parallelise is version V, and the next hapter desribes this.

CHAPTER 4. SEQUENTIAL IMPLEMENTATION 52
-- Old ode for the modified funtions-- Sequential ode for substring sequenes funtionsubstring sequenes :: [Sequene℄ ! [Sequene℄ ! [(Sequene,Int)℄substring sequenes [℄ [℄ = [℄substring sequenes [℄ ys = [℄substring sequenes (x:xs) ys = nub res1whereres = subseq xres1= form pins res ys ++ substring sequenes xs ysform pins :: [SubSequene℄ ! [Sequene ℄ ! [(Pin,Int)℄form pins [℄[℄ = [℄form pins[℄ ys = [℄form pins(x:xs) ys| num > 1 = (x,num): form pins xs ys| otherwise = form pins xs yswherenum = form pins' x ys-- New ode for the modified funtionssubstring sequenes [℄ = [℄substring sequenes (x:xs) =ritial substring++ substring sequenes xswhereall substrings = subseq xfm of substring = list of substring fm all substringsritial substring = ritial funtion fm of substring-- This is to filter substrings whih ourrene one in FM.ritial funtion fm =filter (x -> ase lookupFM fm x of Just n -> n==1)(keysFM fm)list of substring fm :: [SubSequene ℄ -> FiniteMap SubSequene Intlist of substring fm [℄ = emptyFMlist of substring fm xs = addListToFM C (+) emptyFM [(x,1) | x<-xs℄form pins :: FiniteMap SubSequene Int -> [(Pin ,Int)℄form pins ys = pins in listwherelist of ri substrings = ritial funtion yspins in fm = delListFromFM ys list of ri substringspins in list = fmToList pins in fm

Figure 17: The Modi�ed Funtions to implement the Finite Map (Version VI).

Chapter 5
Idealised Measurement
5.1 IntrodutionThere are several soures of parallelism in the geneti alignment program and thishapter will desribe the �ve parallel versions of the program developed using them.The performane of eah version from the program is measured on the GranSimsimulator parameterised to emulate an idealised mahine with zero ommuniation ostsand an in�nite number of proessors. The input data in eah ase is a set of 6 sequenesontaining 20 amino aids. For the last three versions a hunk of size 30 is used.divide xs ys = (ombine pin res left res right res unpinh)`demanding` strategywhere ...strategy =rnf res left `par`rnf res right `par`rnf res unpinh

Figure 18: The Strategies Required for Parallel Divide Funtion53

CHAPTER 5. IDEALISED MEASUREMENT 54
Divide_par 20 6 30 +RTS -bP -bp: -bG -bM -H64M -Sstderr

running runnable fetching blocked migrating
0 20.0 M 40.0 M 60.0 M 80.0 M 100.0 M 120.0 M

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

 cycles126123139Runtime =

Average Parallelism = 1.1GrAnSim

Figure 19: Idealised Simulated Pro�le of Version I5.2 Version I: Divide-and-ConquerParallelism is initially introdued using a divide-and-onquer paradigm: the alignmentof the left, right and unpinned hunks is independent so they an be evaluated inparallel, as shown in Figure 11. The required strategy for parallelising the dividefuntion is shown in Figure 18.The orresponding ativity pro�le is presented in Figure 19 and shows the exeutiontime on the X-axis and the number of tasks on the Y-axis. The tasks are separated into�ve lasses, depending on their state: running if they are exeuting (green), runnableif they ould be exeuted if a proessor beomes ideal (yellow), bloked if they wait fordata under evaluation (red), fething if they are retrieving data from another proessor(light-blue), and migrating if they are retrieved from another proessor (dark-blue) [58℄[46℄. Figure 19 shows a small number of parallel tasks. This is owing to the long

CHAPTER 5. IDEALISED MEASUREMENT 55
Mon Apr 8 13:24 2002 Time and Alloation Profiling Report (Final)g5 +RTS -pT -hC -sstderr -RTS 6 90COST CENTRE MODULE %time %alloloate_pin' Main 76.9 78.1on2tag_Aminoaid# Main 14.5 0.0GC GC 11.3 0.0form_pins' Main 3.7 1.0subseq Main 2.9 20.6substring_sequenes Main 1.2 0.0 individual inheritedCOST CENTRE MODULE entries %time %allo %time %alloMAIN MAIN 0 0.0 0.0 100.0 100.0main Main 1 0.0 0.1 100.0 99.8align_hunk Main 55 0.0 0.0 100.0 99.8Bestpin Main 44 0.0 0.0 100.0 99.7substring_sequenes Main 141 1.2 0.0 100.0 99.7form_pins Main 61303 0.0 0.0 95.8 79.1form_pins' Main 326287 3.7 1.0 95.8 79.1loate_pin Main 530162 0.5 0.0 91.7 78.1loate_pin' Main 23476420 76.9 78.1 91.2 78.1subseq Main 2132 2.9 20.6 2.9 20.6Figure 20: A Partial from Time Pro�le of the Final Sequential Version.initial sequential segment aused by Bestpin, whih oupies about 77 perent of theruntime. From �gure 20 it an be seen that the Bestpin funtion is alled beforethe divide funtion. Moreover the sequential time pro�ling in Figure 21 shows thatthe loate pin funtion alled from Bestpin funtion onsumes the most exeutiontime(77%).By Amdahl's Law [59℄ the sequential omponent of this version of the programlimits the speedup that an be ahieved even under ideal onditions to 100%77% = 1:29.5.3 Version IIa: Parallelising Substring SequenesThis version parallelises the outer loop of the Bestpin funtion desribed in Setion 4.2using a data parallel style. More spei�ally the Par substring sequenes funtion

CHAPTER 5. IDEALISED MEASUREMENT 56
Input sequences

res_unpinch res_left res_right

res_right res_right res_right res_left res_left res_left res_unpinch res_unpinch res_unpinch

Top_level_bestpin Top_level_bestpin

Spliting _sequences

Spliting _sequences Spliting _sequences Spliting _sequences

Top_level_bestpin

Top_level_bestpin

Figure 21: Divide and Conquer Proess Diagram for Divide Funtionuses parMap to the map substring sequenes funtion over the input sequenes inparallel. The parallelisation is not just replaing map with parMap; it needs to modifythe substring sequenes funtion so the parMap an used. Figure 22 ompares thesequential ode with the modi�ed parallel ode for substring sequenes, and alsoshows the inserted funtion. Figure 23 shows that six running tasks are generated bythe parMap funtion. In fat the number of generated tasks depends on the number ofinput sequenes. The speedup obtained from this version is 4.2 whih indiates thatparallelising funtions under substring sequenes is a good approah to improve theexeution time.5.4 Version IIb: Parallelising Form pinThis Version parallelises the inner loop desribed in Setion 4.2. A new par from pinfuntion is inserted and the From pin funtion was modi�ed to be exeuted in parallelover the supplied list. Figure 24 shows the sequential version and the parallel version ofthe From pin funtion. Table 2 shows that the total amount of work is inreased owingto the empty returned pair if the substring is not a pin. However, the speedup wasinreased to 6.9. Figure 25 shows the sequential segment at the end of eah reursive

CHAPTER 5. IDEALISED MEASUREMENT 57
-- Sequential ode for substring sequenes funtionsubstring sequenes :: [Sequene℄ ! [Sequene℄ ! [(Sequene,Int)℄substring sequenes [℄ [℄ = [℄substring sequenes [℄ ys = [℄substring sequenes (x:xs) ys = nub res1whereres = subseq xres1= form pins res ys ++ substring sequenes xs ys-- Parallel ode of substring sequenes funtionpar substring sequenes :: [Sequene ℄ ! [Sequene ℄ ! [(Pin,Int)℄par substring sequenes xs ys =foldr (++) [℄(parMap rnf (substring sequenes ys) xs)substring sequenes :: [Sequene℄! Sequene ! [(Sequene,Int)℄substring sequenes ys x = nub res1whereres = subseq xres1= form pins res ysFigure 22: Sequential and Parallel Code of Substring Funtion.all of divide; an attempt will be made to avoid this in the next alternative.5.5 Version II: Parallelise Both Outer and Inner LoopsThis version ombines inner and outer loop parallelism, i.e from both version IIa, versionIIb. There is not muh di�erene in the pro�le between version IIb and II, so it is notinluded.5.6 Version III: Clustering on Parallel Form pinThis version inludes all previous soures of parallelisation, (i.e versions I, IIa, IIb,II); also, a lustering funtion was applied to the input list supplied to the form pinfuntion. The lustering funtion breaks the given list into onvenient sized hunk and

CHAPTER 5. IDEALISED MEASUREMENT 58
Divide_outer 20 6 30 +RTS -bP -bp: -H64M -Sstderr

running runnable fetching blocked migrating
0 2.0 M 4.0 M 6.0 M 8.0 M 10.0 M 12.0 M 14.0 M 16.0 M 18.0 M 20.0 M 22.0 M 24.0 M 26.0 M 28.0 M 30.0 M 32.0 M

ta
sk

s

0

2

4

6

8

10

12

14

16

18

 cycles32958140Runtime =

Average Parallelism = 4.2GrAnSim

Figure 23: The Idealised Ativity Pro�le of Substring Sequenes Funtion (IIa).Figure 26 shows the ode. The implementation of the parMap funtion on a olletionof data suh as a big list often yields very �ne task granularity. Clustering is oneway to improve the task granularity and data loality by introduing fewer tasks, eahoperating on a losely-related subset of the olletion [51℄. As shown in Figure 27 theutilisation on the system was improved, but there is still a sequential part whih needsto be eliminated.5.7 Version IV: Parallelise all mapsThis version modi�es the previous version by replaing all map funtions with parMap.In other words in this version all intermediate funtions alled by Bestpin and dividefuntion are parallelised. Figure 28 shows the ativity pro�le for the parMap version ofthe program. From the graph the improvement in the system utilisation an be seen;

CHAPTER 5. IDEALISED MEASUREMENT 59
-- Sequential ode From pin Funtionform pins :: [SubSequene℄ ! [Sequene ℄ ! [(Pin,Int)℄form pins [℄[℄ = [℄form pins[℄ ys = [℄form pins(x:xs) ys| num > 1 = (x,num): form pins xs ys| otherwise = form pins xs yswherenum = form pins' x ys-- Parallel ode From pin Funtionpar form pin :: [Sequene ℄ ! [SubSequene℄ ! [(Pin,Int)℄par form pin xs ys = nub(parMap rnf (form pins xs) ys)form pins :: [Sequene ℄ ! SubSequene ! (Pin,Int)form pins ys x | num > 1 = (x,num)| otherwise = ([℄, 0)wherenum = form pins' x ysFigure 24: Sequential and Parallel Code of From pin Funtion (Inner Loop).up to 45 proessors are used.5.8 Version V: Parallel all foldrThe �nal version modi�es version IV by adding the parallelised fold funtion used byextrat max pin funtion. A new strategi funtion alled parfoldListwas de�ned toexeute foldr funtion in parallel. Figure 29 shows the ode for the above modi�ation.5.9 Idealised Optimisation DisussionThe results obtained from the idealised parallel versions are summarised in Table 2.The maximum idealised speedup was obtained from versions IV and V, 21.5 and21.9 respetively. Versions IIb, II, and III give more modest speedups. The table also

CHAPTER 5. IDEALISED MEASUREMENT 60
par_inerFP 20 6 30 +RTS -bP -bp: -H64M -Sstderr

running runnable fetching blocked migrating
0 2.0 M 4.0 M 6.0 M 8.0 M 10.0 M 12.0 M 14.0 M 16.0 M 18.0 M 20.0 M

ta
sk

s

0

20

40

60

80

100

120

140

 cycles20081272Runtime =

Average Parallelism = 7.4GrAnSim

Figure 25: The Idealised Ativity Pro�le of From pin Funtion (IIb)shows the inreasing number of small tasks from 19 tasks in version I to 785 in versionV. There is also a small inrease in total work for both versions IIb and II. This isowing to the fat that the Form pin funtion operates on eah element in the listin parallel and returns an empty tuple if the substring is not a pin, while in the otherversions if the substring is not a pin the funtion does not return anything.The most important observation from the idealised measurements is that a pro-grammer an parallelise every point in the program even it generates small tasks, andstill some speedup an be ahieved. This is learly seen from Table 2 and ativitypro�les from the di�erent versions.Figure 30 shows the overall ativity pro�le of version V of the program. Fromthe graph it an be seen that, for this input data, the idealised mahine ould utiliseapproximately 45 PEs. This version is the best idealised parallel version.

CHAPTER 5. IDEALISED MEASUREMENT 61
luster :: Int ! [SubSequene℄ ! [[SubSequene℄℄luster n [℄ = [℄luster n xs = take n xs : luster n (drop n xs)substring sequenes :: Int ! [Sequene℄ ! Sequene ! [(Sequene,Int)℄substring sequenes n ys [℄ = [℄substring sequenes n ys x = nub res1where subseqlist = subseq xluslist = luster n subseqlistres1= par form pin ys luslist

Figure 26: Cluster Funtion and Modi�ed Substring Funtion.Program Average Speedup Total Total Generated Avg.Parallelism Runtime Work Tasks Task Leng.(Mega yles) (Mega yles) (Mega yles)Seq 1.0 1.0 139.6 139.6I 1.1 1.1 126.1 138.7 19 7.3IIa 4.2 4.2 32.9 138.1 94 1.4IIb 7.4 6.9 20.0 148.0 3542 0.041II 13.6 9.5 14.7 199.9 3583 0.052III 16.7 16.8 8.3 138.6 275.0 0.503IV 21.1 21.5 6.5 137.1 381.0 0.35V 21.9 21.8 6.4 140.1 785.0 0.177Table 2: Idealised Simulation Input : 20 6 30.The next hapter desribes the GranSim simulation of the di�erent parallel versionson two arhitetures. The GranSim will parameterised to emulate both of these.

CHAPTER 5. IDEALISED MEASUREMENT 62
par_clusFP 20 6 30 +RTS -bP -bp: -H64M -Sstderr

running runnable fetching blocked migrating
0 500.0 k 1.0 M 1.5 M 2.0 M 2.5 M 3.0 M 3.5 M 4.0 M 4.5 M 5.0 M 5.5 M 6.0 M 6.5 M 7.0 M 7.5 M 8.0 M

ta
sk

s

0

5

10

15

20

25

30

35

40

45

50

 cycles8278310Runtime =

Average Parallelism = 16.7GrAnSim

Figure 27: The Idealised Ativity Pro�le for Clustering version (III).
parMap 20 6 30 +RTS -bP -bp: -H64M -Sstderr

running runnable fetching blocked migrating
0 500.0 k 1.0 M 1.5 M 2.0 M 2.5 M 3.0 M 3.5 M 4.0 M 4.5 M 5.0 M 5.5 M 6.0 M

ta
sk

s

0

5

10

15

20

25

30

35

40

45

50

 cycles6491982Runtime =

Average Parallelism = 21.1GrAnSim

Figure 28: The Idealised Ativity Pro�le for parMap version IV

CHAPTER 5. IDEALISED MEASUREMENT 63
extrat max pins :: [(Pin,Int)℄ ! [(Pin ,Int)℄extrat max pins [℄ =[℄extrat max pins ((p,n):xss) =parfoldList (extrat max pins') [(p,n)℄ xssparfoldList :: NFData a ! (a ! [a℄![a℄) ! [a℄! [a℄ ! [a℄parfoldList f z [℄ = zparfoldList f z (x:xs) = f x ys `sparking` rnf yswhereys = parfoldList f z xsFigure 29: New ParfoldList and Extratmaxpins Funtion.

parfold 20 6 30 +RTS -bP -bp: -bG -bM -H64M -Sstderr

running runnable fetching blocked migrating
0 500.0 k 1.0 M 1.5 M 2.0 M 2.5 M 3.0 M 3.5 M 4.0 M 4.5 M 5.0 M 5.5 M 6.0 M

ta
sk

s

0

20

40

60

80

100

120

140

160

 cycles6355778Runtime =

Average Parallelism = 21.9GrAnSim

Figure 30: The Idealised Ativity Pro�le for Version V Input 20 6 30

Chapter 6
Two Simulated Arhitetures
The methodology in Chapter 3 indiates that arhiteture dependent tuning starts withsimulating the target arhiteture. In this experiment, the program is tuned for twodi�erent arhitetures: a 32 proessor Beowulf luster and a 4-proessor Sun SMP. Thearhitetures are simulated by parameterising (-bp, -bln ,and -bmn see setion 2.8.5)GranSim with key arhitetural properties, most important of whih are the numberof proessors, the time to pak a message for transmission, and the ommuniationlateny. The last two properties are measured in lok yles of the given proessor.6.1 Beowulf SimulationThe target mahine is a 32-node 530MHz Pentium III Beowulf luster onneted byfast Ethernet swith. To determine the GranSim parameters aurately the requiredparameters were measured using simple programs. For example the PE to PE om-muniation lateny was measured as 142 �s under PVM 3.4.2, so for the 530 MHzproessor the GranSim lateny is 142*530 = 753 ky. Likewise the paking time ismeasured as 21 �s whih gives 11 ky. Table 3 summarises the results of the di�erent64

CHAPTER 6. TWO SIMULATED ARCHITECTURES 65Program Average Speedup Total Total work Generated Avg.Parallelism Runtime Work Tasks Tasks Leng.(Mega yles) (Mega yles) (Mega yles)Seq 1 1 139.6 139.6 { {I 1.1 1.1 127.2 139.9 19 7.4IIa 1.9 1.7 80.8 153.5 94 1.47IIb 1.2 0.2 708.9 850.7 3183 0.04II 2.2 0.9 143.7 316.1 3201 0.041III 2.0 0.9 150.8 301.6 275 0.506IV 1.9 0.8 168.2 319.6 381 0.362V 2.1 0.8 162.0 340.2 785 0.178Table 3: Realisti 32-PEs Beowulf Simulation Input: 20 6 30versions of the Geneti alignment program with problem size 20 6 30. It should beremembered that 6 represents the number of sequenes, 20 represents the length ofeah sequene, and 30 represents the hunk size.6.2 Sun SMP SimulationThe target mahine is 4-proessor Sun SMP with a lok speed of 250 MHz onneted byshared memory bus. The lateny under PVM layer between nodes has been measuredas 109 �s whih is equivalent to 27.5 Ky, and the paking ost as 22 �s whih isequivalent to 5 Ky. The results of the realisti Sun SMP simulation of the Genetiprogram are summarised in Table 4.Program Average Speedup Total Total work Generated Avg.Parallelism Runtime Work Tasks Tasks Leng.(Mega yles) (Mega yles) (Mega yles)seq 1 1 139.6 139.6 { {I 1.1 1.1 126.6 139.2 19 7.4IIa 2.1 1.9 70.6 148.2 94 1.47IIb 1.3 0.3 413.3 537.2 3542 0.042II 2.9 1.4 97.6 282.0 3201 0.046III 3.5 1.8 77.2 270.2 275 0.51IV 3.3 1.7 81.4 268.6 381 0.362V 3.4 1.7 81.6 277.4 785 0.178Table 4: Realisti 32-PEs Sun SMP Simulation Input: 20 6 30

CHAPTER 6. TWO SIMULATED ARCHITECTURES 666.3 Disussion of Simulation Results6.3.1 Idealised Simulation vs Realisti SimulationComparing the idealised and realisti simulations, Tables 2 3 and 4, the followingobservations were made:-� For these small input sizes the speedup attained and utilisation of eah arhite-ture is extremely poor.� The number of generated tasks is similar in all three simulations beause mostparallelism is in at (data parallelism) rather than hierarhial (divide & onquer).� The simulated Sun SMP does more work than the idealised simulation, and thesimulated Beowulf does more work than the simulated Sun SMP. This reets theinreasing latenies of the arhitetures.� Both simulated mahines give muh worse speedups than the idealised mahines,with the simulated Beowulf being slightly worse than the simulated Sun SMP.This is aused by the lateny of eah arhiteture in realisti simulated mahines.� Inreasing the number of generated tasks always gives a better speedup in anideal mahine, but this not the ase on realisti mahines, beause of the ommu-niation and tasks management overheads introdued in the realisti simulation.� Figures 31 and 32 show the di�erenes between the ativity pro�les for the pro-gram versions on the idealised mahine and the simulated Beowulf. There is asimilarity between the idealised and the simulated ativity pro�les for versions I;this is beause version I generate a small number of parallel tasks. In ontrastwith other versions, there are di�erenes in ativity pro�les; the most signi�ant

CHAPTER 6. TWO SIMULATED ARCHITECTURES 67di�erenes ome from the ommuniation ost of the simulated mahine. More-over, the larger runnable threads seen from the graphs are the result of the limitedof number of PEs in the realisti simulation.� From Figures 31 and 32 it is lear that, as expeted,the idealised simulationdoes not predit realisti simulation. This beause the realisti inludes realistioverhead osts, espeially ommuniations. However, the idealised stimulationdoes allow the separation of algorithm and arhiteture onerns: a program thatfails to deliver good parallel performane on a simulated idealised mahine, annotdeliver good performane on any real arhiteture.6.3.2 Beowulf Simulation vs Sun SMP Simulation ComparisonThe following observations were made in omparing the Beowulf and Sun SMP simu-lations in Tables 3 and 4:-1. Versions I and IIa of the program have similar behaviour on both arhitetures.This is beause they generate a small number of large tasks ompared with otherversions.2. Separate experiments show that better speedups ould obtained for both simu-lated arhitetures with large input sizes, but the exeution time and disk spaeon the simulation platform limit the input size for systemati experiments. Fig-ure 34 shows the speedups obtained from exeuting the di�erent versions of theprogram on both arhitetures with varying of PEs. Even with a small input sizethe maximum speedup is 2.5 on the simulated sun SMP and 1.7 on the simulatedBeowulf, both for version IIa.

CHAPTER 6. TWO SIMULATED ARCHITECTURES 68

Divide_par 20 6 30 +RTS -bP -bp: -H64M -Sstderr

running runnable fetching blocked migrating
0 20.0 M 40.0 M 60.0 M 80.0 M 100.0 M 120.0 M

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

 cycles126098239Runtime =

Average Parallelism = 1.1GrAnSim Divide_par 20 6 30 +RTS -bP -bp32 -bl75300 -bm11000 -bG -bM -H64M -Sstderr

running runnable fetching blocked migrating
0 20.0 M 40.0 M 60.0 M 80.0 M 100.0 M 120.0 M

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

 cycles127203647Runtime =

Average Parallelism = 1.1GrAnSim

Version I Idealised Simulated
Divide_outer 20 6 30 +RTS -bP -bp: -H64M -Sstderr

running runnable fetching blocked migrating
0 2.0 M 4.0 M 6.0 M 8.0 M 10.0 M 12.0 M 14.0 M 16.0 M 18.0 M 20.0 M 22.0 M 24.0 M 26.0 M 28.0 M 30.0 M 32.0 M

ta
sk

s

0

2

4

6

8

10

12

14

16

18

 cycles32958140Runtime =

Average Parallelism = 4.2GrAnSim Divide_outer 20 6 30 +RTS -bP -bp32 -bl75300 -bm11000 -bG -bM -H64M -Sstderr

running runnable fetching blocked migrating
0 5.0 M 10.0 M 15.0 M 20.0 M 25.0 M 30.0 M 35.0 M 40.0 M 45.0 M 50.0 M 55.0 M 60.0 M 65.0 M 70.0 M 75.0 M 80.0 M

ta
sk

s

0

2

4

6

8

10

12

14

 cycles80871400Runtime =

Average Parallelism = 1.9GrAnSim

Version IIa Idealised Simulated
par_inerFP 20 6 30 +RTS -bP -bp: -H64M -Sstderr

running runnable fetching blocked migrating
0 2.0 M 4.0 M 6.0 M 8.0 M 10.0 M 12.0 M 14.0 M 16.0 M 18.0 M 20.0 M

ta
sk

s

0

20

40

60

80

100

120

140

 cycles20081272Runtime =

Average Parallelism = 7.4GrAnSim par_inerFP 20 6 30 +RTS -bP -bp32 -bl75300 -bm11000 -bG -bM -H64M -Sstderr

running runnable fetching blocked migrating
0 50.0 M 100.0 M 150.0 M 200.0 M 250.0 M 300.0 M 350.0 M 400.0 M 450.0 M 500.0 M 550.0 M 600.0 M 650.0 M 700.0 M 750.0 M

ta
sk

s

0

20

40

60

80

100

120

140

160

180

200

 cycles753963366Runtime =

Average Parallelism = 1.1GrAnSim

Version IIb Idealised SimulatedFigure 31: The Ativity Pro�le for Idealised vs Simulated Beowulf(Version I, IIa, andIIb)

CHAPTER 6. TWO SIMULATED ARCHITECTURES 69

par_clusFP 20 6 30 +RTS -bP -bp: -H64M -Sstderr

running runnable fetching blocked migrating
0 500.0 k 1.0 M 1.5 M 2.0 M 2.5 M 3.0 M 3.5 M 4.0 M 4.5 M 5.0 M 5.5 M 6.0 M 6.5 M 7.0 M 7.5 M 8.0 M

ta
sk

s

0

5

10

15

20

25

30

35

40

45

50

 cycles8278310Runtime =

Average Parallelism = 16.7GrAnSim par_clusFP 20 6 30 +RTS -bP -bp32 -bl75300 -bm11000 -bG -bM -H64M -Sstderr

running runnable fetching blocked migrating
0 20.0 M 40.0 M 60.0 M 80.0 M 100.0 M 120.0 M 140.0 M

ta
sk

s

0

5

10

15

20

25

30

35

40

45

50

 cycles156157884Runtime =

Average Parallelism = 1.9GrAnSim

Version III Idealised Simulated
parMap 20 6 30 +RTS -bP -bp: -H64M -Sstderr

running runnable fetching blocked migrating
0 500.0 k 1.0 M 1.5 M 2.0 M 2.5 M 3.0 M 3.5 M 4.0 M 4.5 M 5.0 M 5.5 M 6.0 M

ta
sk

s

0

5

10

15

20

25

30

35

40

45

50

 cycles6491982Runtime =

Average Parallelism = 21.1GrAnSim parMap 20 6 30 +RTS -bP -bp32 -bl75300 -bm11000 -bG -bM -H64M -Sstderr

running runnable fetching blocked migrating
0 20.0 M 40.0 M 60.0 M 80.0 M 100.0 M 120.0 M 140.0 M 160.0 M

ta
sk

s

0

5

10

15

20

25

30

35

40

45

50

 cycles160653245Runtime =

Average Parallelism = 1.9GrAnSim

Version IV Idealised Simulated
parfold 20 6 30 +RTS -bP -bp: -H64M -Sstderr

running runnable fetching blocked migrating
0 500.0 k 1.0 M 1.5 M 2.0 M 2.5 M 3.0 M 3.5 M 4.0 M 4.5 M 5.0 M 5.5 M 6.0 M

ta
sk

s

0

20

40

60

80

100

120

140

160

 cycles6330288Runtime =

Average Parallelism = 22.0GrAnSim parfold 20 6 30 +RTS -bP -bp32 -bl75300 -bm11000 -bG -bM -H64M -Sstderr

running runnable fetching blocked migrating
0 20.0 M 40.0 M 60.0 M 80.0 M 100.0 M 120.0 M 140.0 M

ta
sk

s

0

20

40

60

80

100

120

 cycles154673019Runtime =

Average Parallelism = 2.1GrAnSim

Version IV Idealised SimulatedFigure 32: The Ativity Pro�le for Idealised vs Simulated Beowulf (Version III, IV,and V)

CHAPTER 6. TWO SIMULATED ARCHITECTURES 70
Divide_outer 20 6 30 +RTS -bP -bp32 -bl75300 -bm11000 -bG -bM -H64M -Sstderr

running runnable fetching blocked migrating
0 5.0 M 10.0 M 15.0 M 20.0 M 25.0 M 30.0 M 35.0 M 40.0 M 45.0 M 50.0 M 55.0 M 60.0 M 65.0 M 70.0 M 75.0 M 80.0 M

ta
sk

s

0

2

4

6

8

10

12

14

 cycles80871400Runtime =

Average Parallelism = 1.9GrAnSim

Beowulf
Divide_outer 20 6 30 +RTS -bP -bp32 -bl27500 -bm5000 -bG -bM -H64M -Sstderr

running runnable fetching blocked migrating
0 5.0 M 10.0 M 15.0 M 20.0 M 25.0 M 30.0 M 35.0 M 40.0 M 45.0 M 50.0 M 55.0 M 60.0 M 65.0 M 70.0 M

ta
sk

s

0

2

4

6

8

10

12

 cycles70568204Runtime =

Average Parallelism = 2.1GrAnSim

Sun SMPFigure 33: Ativity Pro�le of Beowulf and Sun for Version IIa

CHAPTER 6. TWO SIMULATED ARCHITECTURES 713. The omparison in Figure 35 illustrates the hunk size vs the speed up. Botharhitetures have a similar shape of graph. The best hunk size is 25 or 30 formost versions of the program on both arhitetures.4. Figure 33 shows the ativity pro�le from the best version of both arhitetures.The graphs reet similar ativities exept that the Beowulf luster has morefething threads beause of the higher lateny.

CHAPTER 6. TWO SIMULATED ARCHITECTURES 72

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30 35

 s
pe

ed
up

 NO-of-PEs

 NO-of-PEs vs speedup for Beowulf 20 6 30

I- Speed up
II_a Speed up
II_b Speed up
II_c Speed up
III- Speedup
IV- Speed up
V- Speed up

Beowulf

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35

 s
pe

ed
up

 NO-of-PEs

 NO-of-PEs vs speedup for SMP 20 6 30

I- Speed up
II_a Speed up
II_b Speed up
II_c Speed up
III- Speedup
IV- Speed up
V- Speed up

Sun SMPFigure 34: Speedup vs Numbers Of PES (Simulated Beowulf & SMP)

CHAPTER 6. TWO SIMULATED ARCHITECTURES 73

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 10 20 30 40 50 60 70 80

 s
pe

ed
up

chunksize

 Chunksize vs speedup for Beowulf

III- Parclus Speedup
IV- ParMap Speed up

V-Parfold Speed up

Beowulf

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

0 10 20 30 40 50 60 70 80

 s
pe

ed
up

chunksize

 Chunksize vs speedup for SMP

III- Parclus Speedup
IV- ParMap Speed up

V-Parfold Speed up

Sun SMPFigure 35: Chunk Size vs Speed up for Both Beowulf and SMP Arhitetures

Chapter 7
Performane Measurements onTwo Arhitetures
The last stage of the methodology as desribed earlier in hapter 3 setion 3.2.5, is toexeute the optimised parallel program on real parallel arhiteture. This hapter willillustrate measurement.The measurements have been performed on two parallel arhitetures: the distributed-memory mahine (Beowulf luster), and share memory mahine (Sun SPARC Server)whih desribed earlier in setion 2.1.1.The simulated Beowulf and Sun SMP results reported in Tables 3 and 4 preditthat version IIa gives the best speedup for both arhitetures. However, to explorethe di�erenes between exeuting the di�erent versions on a simulated mahine anda real mahine, it is neessary to test all versions on real mahines. The programwas measured on two real arhitetures whih are faster than the simulation mahine;therefore the input sizes are muh bigger than the simulated input sizes.

74

CHAPTER 7. PERFORMANCEMEASUREMENTS ON TWOARCHITECTURES75Program Speedup Total Runtime Generated Tasks Avg. Tasks Long.(seond) (ms)seq 1 27.7 - -I 1.09 27.2 3 .025IIa 1.9 15.0 21 0.003IIb 0.8 36.4 861 0.001II 1.4 18.6 16157 0.005III 1.3 20.9 601 0.007IV 1.5 18.4 601 0.004V 1.8 15.5 4226 0.001Table 5: Real Beowulf Input: 20 40 30 on 4-proessorProgram Speedup Total Runtime Generated Tasks Avg. Tasks Long.(seond) (ms)seq 1 99.9 - -I 0.8 123.1 171 0.119IIa 7.5 13.2 941 0.011IIb 0.2 140.5 1891 0.004II 1.0 94.0 37821 0.021III 0.9 107.6 5096 0.057IV 0.6 155.8 1281 0.013V 1.0 99.8 7716 0.074Table 6: Real Beowulf Input: 20 60 30 on 30-proessor7.1 Real Measurement on Beowulf mahineThe measurements reported in Tables 5 and 6 show that version IIa gives the bestspeedup (7.5) on 30-proessor. Table 6 summarises the results obtained from the dif-ferent versions when the program was exeuted on 30 proessors of Beowulf luster.Table 5 was produed in order to ompare Sun SMP results diretly with Beowulfresults (Table 5). However, results from simulation and real measurement annot bediretly ompared, i.e Table 5 with 3, beause of the di�erene in the input size ofboth measurements.7.2 Real Measurement on Sun SMP MahineThe measurements reported in Table 7, was for the Sun SMP whih limited to 4proessors. The results show that version IIa predited the best speedup on Sun SMP

CHAPTER 7. PERFORMANCEMEASUREMENTS ON TWOARCHITECTURES76

1

2

3

4

5

6

7

8

5 10 15 20 25 30

 s
pe

ed
up

No-of-PEs

 NO-of-PEs vs speedup for Beowulf (with 20 60)

Real
ideal

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4

 s
pe

ed
up

No-of-Pes

 No-of-PEs vs speedup (Beowulf and Sun SMP)

Real Sun SMP
Real Beowulf

Ideal

Figure 36: Speedup vs Numbers of PEs Real (Beowulf & SMP)

CHAPTER 7. PERFORMANCEMEASUREMENTS ON TWOARCHITECTURES77Program Speedup Total Runtime Generated Tasks Avg. Tasks Lang.(seond) (ms)seq 1 70.8 - -I 0.9 73.8 55 1.34IIa 1.8 37.9 616 0.061IIb 0.2 332.0 23940 0.013II 0.4 146.8 12036 0.012III 0.7 94.8 2585 0.036IV 0.6 105.8 2850 0.037V 0.8 87.6 3047 0.029Table 7: Summary Table of Real Measurement of SMP (20 40) on 4-proessors(1.8). Table 7 summarises the results obtained.7.3 Disussion of Real Tuning1. Considering the di�erent versions of the program reported in tables 5, 7, thebest version is IIa on both arhitetures, with speedup 7.5 on the Beowulf and1.8 on the Sun SMP. This is beause version IIa generates big tasks omparedwith versions IIb to V.The speedup on the Beowulf is better than the idealisedspeedup (4.2), beause of the di�erene in the input size. The worst version isIIb for both simulation measurements and real measurements, this is owing tothe large number of small tasks whih inreases the amount of ommuniation inthe program.2. Both arhitetures have approximately similar speedup when exeuted on fourproessors, i.e 1.8 on Sun SMP and 1.9 on Beowulf. Figure 36 shows the speedupgraphs obtained from Beowulf and SMP.3. Tables 5 and 7 show that the number of tasks generated by Sun SMP is biggerthan the generated tasks by Beowulf for the same input sizes. The reason for thisdi�erene is that the Beowulf has bigger lateny and higher proessor speed, andonsequently the idle proessor in Beowulf takes more time to feth tasks. The

CHAPTER 7. PERFORMANCEMEASUREMENTS ON TWOARCHITECTURES78GUM mehanism was desribed in Setion 2.8.3). The di�erent number of taskson both arhitetures shows that the RTS (Run Time System) an dynamiallyadjust the granularity of the parallelism to the spei� parallel mahine.4. The results from both arhitetures show that the realisti GranSim simulationaurately predits whih version of the program will give a good performane onreal arhitetures.
7.4 Critique of Multi-Arhiteture Methodology.The geneti alignment program exhibits a good performane on both arhitetureswithout requiring modi�ation and with the same parameters of the runtime system.The key features of the methodology are as follows:� The sequential pro�ling is independent of parallelisation and gives a good sequen-tial program before inserting any parallelism. This is learly seen from the resultsobtained: the total exeution time of 224 seonds for the initial version droppedto 18.9 seonds for the �nal sequential version.� The GranSim simulator provides onsiderable exibility to emulate di�erent ar-hitetures, inluding the idealised mahine whih gives a good indiator of themaximum parallelism that an be obtained. If only a small amount of paral-lelism is obtained on the idealised simulation then very little is possible on anyarhiteture.� The idealised version an be reused when targeting new arhiteture. This savesa programmer from redeveloping his program from srath when targeting newarhiteture.

CHAPTER 7. PERFORMANCEMEASUREMENTS ON TWOARCHITECTURES79� The idealised simulation results in Table 2 show that the inrease in the speedup isrelated to the inrease in task generation Therefore, if a good speedup is needed itis neessary to generate tasks as muh as possible, but the real measurement andthe realisti measurements indiate that the number of generated tasks dependson the system lateny. As an seen from Tables 5 and 7 the number of generatedtasks in Beowulf is muh smaller than for the Sun SMP.� Realisti GranSim simulation orretly predits the program versions that willdeliver a good speedup on both arhitetures. However, there are di�erenes inthe shape of the ativity pro�les produed from GranSim and GUM, as shown in�gures 33 and 37. Unfortunately it is not possible to ompare the �gures diretlybeause of the di�erene in input sizes. Some of the di�erenes are the result ofsystem issues; e.g. in GUM, it is possible to ontrol the number of tasks reatedon PE while this is not possible under GranSim. Moreover, GranSim does notover the ommuniation behaviour of the mahine: the bandwidth of the ommu-niation hannel and the topology of the underlying mahine. GranSim assumesthat the lateny between two proessors is independent of the ommuniationtraÆ [58℄.� No hanges are required to the program soure, to move the geneti parallelprogram from Beowulf luster to Sun SMP arhiteture. This is owing to thefat that the programmer ontrols only a few parallel aspets, as most aspetsare ontrolled by the runtime system, suh as thread reation, ommuniationbetween tasks, and task plaement. The best performane on both arhiteturesis obtained from the same parallel version of the program (version IIa).

CHAPTER 7. PERFORMANCEMEASUREMENTS ON TWOARCHITECTURES80The model desribed here supports the laims that the high level oordination inparallel funtional languages failitates software development for multiple arhitetures,by showing that minimal program hanges are needed to move an appliation writtenin GpH from one arhiteture to another.All hapters from Chapter 4 and inluding this hapter desribe the implementa-tion of the proposed methodology. The implementation shows that it is neessary toontrol the generated tasks from GpH program by onsidering the underlying param-eters. The next hapter will disuss new arhiteture independent funtions and theirimplementation.

CHAPTER 7. PERFORMANCEMEASUREMENTS ON TWOARCHITECTURES81
Divide_outer 20 40 +RTS -qp4 -qP -qt2 -H64M -sstderr

running runnable fetching blocked migrating
0 2.0 k 4.0 k 6.0 k 8.0 k 10.0 k 12.0 k 14.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

 cycles15077Runtime =

Average Parallelism = 1.7GrAnSim

Beowulf
Divide_outer 20 40 +RTS -qp4 -qP -qt2 -H64M -sstderr

running runnable fetching blocked migrating
0 2.0 k 4.0 k 6.0 k 8.0 k 10.0 k 12.0 k 14.0 k 16.0 k 18.0 k 20.0 k 22.0 k 24.0 k 26.0 k 28.0 k 30.0 k 32.0 k 34.0 k 36.0 k

ta
sk

s

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

 cycles37989Runtime =

Average Parallelism = 2.2GrAnSim

Sun SMPFigure 37: Atual pro�les of version IIa of Real Beowulf & SMP, Input 20 60

Chapter 8
Enhanement of ArhitetureIndependene in GpH
8.1 OverviewFrom the experiment desribed throughout the previous hapters and others [5, 46℄, itmay be seen that many GpH programs often reate a massive amount of parallelism.The philosophy of GUM's load balane mehanism is to allow a high amount of potentialparallelism and distribute the potential work in the form of sparks. In addition to that,it provides a kind of management to make spark reation heap, thus minimising theost of spark movement between proessors. Also any spark turned into a thread isevaluated by its PE [4℄.This mehanism works well if the GpH program generates big potential tasks, i.e.large tasks granularity. As seen from the geneti alignment program the best perfor-mane is obtained from the version with large parallel tasks. Therefore, the authorproposes to build a new model for GpH that uses information about the underlyingarhiteture when it generates potential parallel tasks. The arhitetural parameters82

CHAPTER 8. ENHANCEMENTOF ARCHITECTURE INDEPENDENCE IN GPH83that may be involved are the number of available proessors, system lateny and theproessor lok speed. Figure 38 shows the new GpH model.
Application level

Architecture Model Strategy Model

GHC Compiler

GUM RTS virtual Machine

PVM virtual Machine

Operating System

Underlying Architecture

New Model

Figure 38: A New GpH Struture
8.2 Extrating Arhiteture CharateristisThe most important arhiteture parameter to be abstrated in this setion is thenumber of proessors. The motivation for abstrating the number of proessors (PEs)is that the most important harateristi for parallel program is the granularity. Thetypial tehniques for parallelisation suh as parMap over long lists generate muh moreparallelism than is needed. Therefore, it is important to ahieve a good granularityeven with hanging the numbers of PEs without soure ode hange. In other wordsthe implementation of many parallel funtions, e.g. a parMap funtion, often yields very

CHAPTER 8. ENHANCEMENTOF ARCHITECTURE INDEPENDENCE IN GPH84�ne task granularity. Even if lustering is used the task granularity still depends onthe programmer estimation and it does not hange dynamially. As another example,the divide and onquer sometimes ends up with many small parallel tasks that redueperformane; the programmer often ontrols this situation by threshold. The numberof proessors (PEs parameter) an be used to write strategi funtions whih minimisethe number of generated tasks, and an be used to de�ne new strategies. Figure 39shows the funtion whih returns the number of proessors(PEs). Setions 8.3 and 8.4will show the implementation of the PEs parameter in the geneti alignment program.
/* This C program funtion return the atual PEs runing by PVM */#inlude <stdio.h>#inlude "/net/dazdak/fp/pvm3/inlude/pvm3.h"int numberPEs(void);int numberPEs(void){ strut pvmhostinfo *hostp;int nhost, narh;/* get onfiguration of the parallel mahine */pvm_onfig(&nhost, &narh, &hostp)return nhost ;} Figure 39: A Number of PEs Funtion
8.3 Generi Arhiteture Adapting StrategiesThe new strategi funtions an be added to the strategy library used with the GpHsystem as shown in Figure 38. The new strategies use information about underlying

CHAPTER 8. ENHANCEMENTOF ARCHITECTURE INDEPENDENCE IN GPH85
module Arhiteture(pe,parMapPe, hunksize)whereimport Strategiesluster :: Int -> [a℄ -> [[a℄℄luster n [℄ = [℄luster n xs = take n xs : luster n (drop n xs)pe = pes ()pes ::() -> Intpes null = unsafePerformIO (all numberPEs)parMapPe::(NFData a,NFData b)) Strategy [b℄!Int!(a ! b) ! [a℄ ! [b℄parMapPe strat pp f [℄ = [℄parMapPe strat pp f xs = lisstwherelist = luster num xsnn = length xsnum = if (nn `div` pp) == 0 then 1 else (nn `div` pp)plist =map (map f) list `using` parList stratlisst = onat plist

Figure 40: The New Funtions already Built in Arhiteture Modelarhiteture to minimise the number of tasks generated by a GpH program. For examplea new strategies parMapPe was de�ned to hunk the given list automatially, based onthe number of proessors (PEs). The parMapPe funtion guarantees that the numberof generated tasks is equal to the number of proessors. The same tehnique ould beused to de�ned a new parfoldr strategy whih splits the given list into a sublist andfolds the funtion over them in parallel. The ode of parMapPe is shown in Figure 40.Also a general divide onquer funtion an be de�ned, the number of proessors an beused to determine the maximum tree level as shown in Figure 41.

CHAPTER 8. ENHANCEMENTOF ARCHITECTURE INDEPENDENCE IN GPH86
seqdiv :: (a ! Bool) !(a! b) ! (a! [a℄)! ([b℄! b) ! a! bseqdiv trivial solve split ombine x| trivial x = solve x| otherwise = ombine hildwherehild = map (seqdiv trivial solve split ombine) (split x)-- Parallel divide funtionpardiv :: Int ! (a ! Bool) !(a! b) ! (a! [a℄)! ([b℄! b) ! a! bpardiv 0 trivial solve split ombine x = seqdiv trivial solve split ombine xpardiv (pes-1) trivial solve split ombine x| trivial x = solve x| otherwise = ombine hildwherehild = parMap rnf (pardiv (pes-1) trivial solve split ombine)(split x)

Figure 41: The New General Divide Conquer FuntionBeowulf Implementation. The implementation of the new funtion on the Beowulfluster shows some improvement in speedup when there are more than twelve proessorsand no hange when there are fewer proessors. The funtion was tested on version IIIof the geneti alignment program. In the geneti alignment program the Form pin isapplied to a big list; e.g. when the input is 20 sequenes of length of 60, the lengthof the subsequenes list applied to the funtion is 2015 elements. This generates 68parallel tasks for eah reursive all if the hunk size is set to 30. Of ourse fewer tasksare generated for eah reursive all, but still version III generates a huge number ofparallel tasks. The total number of generated tasks from version III as reported intable 6 is 5096 tasks. In ontrast the newparMapPe will generate fewer parallel tasksdepending on the number of proessors; e.g. if the parMapPe funtion is alled with thesame list and 4 proessors, it will generate only four parallel tasks for eah reursiveall. It generates 771 tasks in total from the same input size. Figure 42 illustrates the

CHAPTER 8. ENHANCEMENTOF ARCHITECTURE INDEPENDENCE IN GPH87improved performane of the new funtion.

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

 S
pe

ed
up

No-of-PE

 NO-of-PEs vs speedup (with 20 60 30 Beowulf)

III- Old version
III New version

Figure 42: The New parMapPe Relative Speedup for BeowulfSun SMP Implementation. The parMapPe funtion was also tested using versionIII of the geneti alignment program. The experiment shows some improvement in thespeedup; e.g. on four proessors the speedup inreased from 0.8 to 1.1. Figure 43 showsboth the speedup of the old lustering version (III) and the speed up of an automatilustering version.

CHAPTER 8. ENHANCEMENTOF ARCHITECTURE INDEPENDENCE IN GPH88

0.6

0.8

1

1.2

1.4

1 2 3 4

 s
pe

ed
up

No-of-PEs

 NO-of-PEs vs speedup (with 20 40 Sun SMP)

Old speed up of version III
New speed up of version III

Figure 43: The New parMapPe Relative speedup for SunSMP (Input 20 40)8.4 Arhiteture Adapting Strategies for Spei� Appli-ationThe parallelism in divide and onquer omes from the fat that a given task is split intosub-tasks that an be evaluated in parallel. This tehnique is used in the geneti align-ment program. The divide funtion generates three parallel tasks for eah reursiveall. It is possible to ontrol the generated tasks from the funtion by passing a newparameter, as shown in Figure 44. This parameter is used to limit the depth of paral-lelism generated in the divide funtion all tree. The divide funtion generates threeparallel tasks for eah reursive all. To math the number of tasks with the numberof PEs, the new pes parameter passed to the initial all is omputed as log3(pe). Ifthe length of the given list is smaller than the number of proessors, the result from

CHAPTER 8. ENHANCEMENTOF ARCHITECTURE INDEPENDENCE IN GPH89
Align hunk :: Int! [Sequene℄ ! [Sequene℄Align hunk pes [℄ = [℄Align hunk pes xs = fun align all reswherebest = Bestpin xs -- Find the best pin from xsall res = divide pes xs best -- Split and align the xsdivide :: Int ! [Sequene℄ ! Pin ! [Sequene℄divide pes [℄ [℄ = [℄divide pes xs [℄ = xs -- Basi alignmentdivide pes xs pin = (ombine pin res left res right res unpinh)`demanding` strategywhere(righth,lefth,unpinh1) = splitting sequenes pin xsunpinh = lead funtion pin unpinh1res unpinh = align hunk (pes-1) unpinhres right = align hunk (pes-1) righthres left = align hunk (pes-1) lefthstrategy =if pes <= 0 then () else (rnf res left `par`rnf res right `par`rnf res unpinh)Figure 44: A New Divide Funtion

Input sequences

Left unpinned Right

Any child in this will be evaluated sequentially

Each box represents a new parallel task

Figure 45: Divide Funtion Diagram when it alled by 2 PEs

CHAPTER 8. ENHANCEMENTOF ARCHITECTURE INDEPENDENCE IN GPH90log3(pe) is zero, and the hunk size in this ase is set to one. For example, if the dividefuntion is alled with 1 proessor it will evaluate only the �rst two levels in parallel;the rest of the tree will be evaluated sequentially, as shown in Figure 45.Beowulf Implementation. The implementation of the new funtion improves theutilisation of the system resoures. The utilisation of proessors was inreased as shownin Figure 46, when the program was exeuted on the Beowulf luster. Also the averageparallelism and runtime were improved by fator, e.g from 4.0 to 4.9 and from 20.2sto 15.0s respetively. Moreover, the implementation shows good improvement in thespeedup, as shown in Figure 47.Sun SMP Implementation. Figure 48 shows the improvement in the speed upwhen the number of proessors is used in version IIa. The speedup was inreased; e.g.on four proessors the speedup was inreased from 1.8 to 2.4.8.5 SummaryThis hapter has shown that the utilising the key arhitetural parameters in GpHprograms give better performane on both arhitetures. The key arhitetural pa-rameters have two levels of implementation: the �rst level is at the standard strategylibrary in the GpH, where the arhitetural parameters are used to de�ne new generistrategies and the parameters are hidden from the programmer. In the seond levelthe key arhitetural parameters an be used by the programmer to tune performane,e.g. adopting the task granularity of the GpH program. The implementation showsimprovement in the speedup of version III when the parMapPe funtion is applied (seeFigures 42 and 43), beause the parMapPe generates fewer tasks than parMap. The

CHAPTER 8. ENHANCEMENTOF ARCHITECTURE INDEPENDENCE IN GPH91generation of the parallel tasks is dynamially ontrolled by the number of proessorsand the list length. Moreover, Figure 46 shows the improvement in the system resoureutilisation of version IIa; e.g the total exeution time dropped from 20.2s to 15.0s whenthe program is exeuted on 20 PEs. This improvement is owing to the fat that onlythree levels of parallelism are generated by the divide funtion.The implementation of the improved strategies on the geneti alignment programwhih uses both lasses of data-parallelism and divide and onquer parallelism gavebetter performane. Therefore, using the modi�ed strategies on other appliations ofthese lasses should improve performane in the same way that re�ned Skeletons [19℄an improve the performane of an entire lass of appliations. This shows that theprogramming tehniques disussed here are relevant in a broader ontext.

CHAPTER 8. ENHANCEMENTOF ARCHITECTURE INDEPENDENCE IN GPH92
newdivide 20 60 +RTS -qp20 -qP -qt2 -H64M -sstderr

running runnable fetching blocked migrating
0 2.0 k 4.0 k 6.0 k 8.0 k 10.0 k 12.0 k 14.0 k

ta
sk

s

0

2

4

6

8

10

12

14

16

18

20

22

 cycles15072Runtime =

Average Parallelism = 4.9GrAnSim

(New)
olddivide 20 60 +RTS -qp20 -qP -qt2 -H64M -sstderr

running runnable fetching blocked migrating
0 2.0 k 4.0 k 6.0 k 8.0 k 10.0 k 12.0 k 14.0 k 16.0 k 18.0 k 20.0 k

ta
sk

s

0

2

4

6

8

10

12

14

16

18

20

22

24

26

 cycles20262Runtime =

Average Parallelism = 4.0GrAnSim

(Old)Figure 46: Ativity Pro�le for New and Old Divide Funtion (20-Proessors)

CHAPTER 8. ENHANCEMENTOF ARCHITECTURE INDEPENDENCE IN GPH93

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

 S
pe

ed
up

No-of-PE

 NO-of-PEs vs speedup (with 20 60 Beowulf)

III- Old version
III New version

Figure 47: The New Divide Funtion Relative speedup for Beowulf

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4

 s
pe

ed
up

No-of-PEs

 NO-of-PEs vs speedup (with 20 40 Sun SMP)

Old speed up of version IIa
New speed up of version IIa

Figure 48: The New Divide Funtion Relative speedup for Sun SMP

Chapter 9
Conlusions
9.1 IntrodutionOne means of supporting arhiteture independent parallel programming is to use pro-gramming model with a high level oordination. The model should ahieve good perfor-mane aross a wide range of parallel arhitetures. It should hide most of the parallelaspets from the programmer. Also, it should be easy to deal with programs of verydi�erent struture.This thesis has investigated the use of high level funtional languages for arhite-ture independent parallel programming. The proposed methodology for GpH [46, 5℄has been used to develop a substantial appliation and also extended (see Figure 5in Chapter 3). The appliation has been developed for two di�erent arhitetures inChapters 4, 5, 6, 7.

94

CHAPTER 9. CONCLUSIONS 959.2 Ahievements9.2.1 Assessing a Multi-Arhiteture Parallel Programming Method-ologyThe �rst systemi evaluation of Trinder and Loidl's multi arhiteture programmingmethodology for GpH has been reported. It was explored using a geneti alignmentprogram, whih was developed using the methodology for the �rst time. The imple-mentation has shown the importane of eah stage in the methodology. Sequentialoptimisation gives a massive improvement in the exeution time and memory on-sumption (see Setion 4.4.4). It has been shown that a realisti GranSim simulationorretly predits the program version that gives the best performane on both realarhitetures. Also, the results show that the methodology produes a program withaeptable performane on both arhitetures, and this supports the onlusion thathigh level funtional programming is a good approah to arhiteture independent par-allel programming.The methodology has the following limitation. Firstly GranSim is too slow and thepro�les onsume onsiderable disk spae. As result it is not possible to run the experi-ment with the same input size as used in real arhitetures. This problem is shared withother approahes using simulators. Seondly GranSim does not inlude all features ofthe parallel arhiteture, i.e there is no model of ommuniations bandwidth betweenPEs. Thirdly the idealised stage may lead to the generation of parallel programs thatdo not deliver good performane on real arhiteture, e.g versions IIb, II, III, IV, Vabove.

CHAPTER 9. CONCLUSIONS 969.2.2 Extended The Arhiteture Independent Capabilities of GpHTo improve the arhiteture independene of GpH new parallel oordination onstrutshave been designed, implemented and measured. The primitives extrat key arhite-ture spei� properties of the mahine and use them to ontrol oordination, oftenwithout exposing the properties to the programmer. Improved parallel performaneis demonstrated using the primitives. Figure 38 in Chapter 8 shows the new stru-ture of the extended methodology for GpH. As seen from the �gure the enhanementwere made on the GpH struture rather than the methodology stage shown �gure 5 inChapter 3.9.3 LimitationsThe work has the following limitations.� The methodology has been investigated using one appliation. To have a strongerbasis for onlusions on the usefulness of the extended methodology it would begood if more programs were developed using the same methodology.� The geneti alignment program was tested on only two available arhitetures.It would be useful if the program ould be tested on more arhitetures. This isvery good evidene to support the proposed methodology.� Beause of time limitations, only one parameter was abstrated and implementedin the extended methodology. It would be useful to abstrat more parametersfrom the underlying arhiteture, suh as lateny and paking ost.� The real and simulation results are not diretly omparable for several reasons,inluding the di�erene in the input size, and the di�erene in the runtime options

CHAPTER 9. CONCLUSIONS 97between the GranSim and GUM runtime system, as mentioned in the �rst point.9.4 Future WorkTo have strong support to the methodology, it would be useful for it to be used indeveloping more appliations in the area of omputer arhiteture. In addition, thereis sope for it to be tested on more parallel arhitetures.It would be useful to a ost model tehnique to improve the arhiteture independenein the GpH mode. It would be desirable to investigate the use of the sequential pro�leinformation to spark the parallel tasks.The extended methodology in Chapter 8 ould be enhaned further by examining othermahine harateristis suh as lateny and proessor speed. In partiular, the infor-mation ould be used in automatially determining the hunk size in data parallelprograms.

Appendix A
Soure Code for The GenetiAlignment Program
The appendies are organised as follows: Appendix A.1 ontains the ode for optimisedsequential version, Appendix A.2 ontains the ode for the best parallel version (IIa)whih delivers best speedup on both arhitetures. Appendix A.3 ontains modi�edfuntions for a �nite-Map implementation see Setion 4.4.3 for more details.A.1 Final Sequential VersionThis setion ontains the �nal ode of optimised sequential version (V).module Main whereimport System(getArgs)import Listimport Randomdata Aminoaid = A | C | U | G | D |Ideriving (Read,Show,Eq,Ord)type Sequene1 = [Aminoaid℄type Sequene = [Int℄type Pin = [Int℄type SubSequene = [Int℄align_hunk :: [Sequene℄ -> -- List of input sequenes.[Sequene℄ -- Aligned sequenes.align_hunk [℄ = [℄align_hunk xs = fun_align all_reswhere 98

APPENDIX A. SOURCE CODE FOR THE GENETIC ALIGNMENT PROGRAM99best = Bestpin xsall_res = divide xs bestdivide :: [Sequene℄ -> -- List of input sequenesPin -> -- Best pin[Sequene℄ -- List of aligned sequenes.divide [℄ [℄ = [℄divide xs [℄ = xs -- Basi alignmentdivide xs pin = (ombine pin res_liftres_rightres_unpinh)where(righth,lefth,unpinh1) = splitting_sequenes pin xsunpinh = lead_funtion pin unpinh1res_unpinh = align_hunk unpinhres_right = align_hunk righthres_lift = align_hunk lefthombine :: Pin -> [Sequene℄ ->[Sequene℄ ->[Sequene℄ -> [Sequene℄ombine pin left_seqs right_seqs unpinned_seqs= (zipWith (at_sequene pin) left_seqs right_seqs)++ unpinned_seqswhereat_sequene :: Sequene -> Sequene ->Sequene -> Sequeneat_sequene pin ls rs = ls ++ pin ++ rsBestpin :: [Sequene℄ -> -- List of input sequenes.Pin -- Best pin as output.Bestpin [℄= [℄Bestpin xs = best_pin pins_diswhereall_substring = substring_sequenes xs xspins = map fst(extrat_max_pins all_substring)extrat_longest_pins = longest_pin pinspins_dis = pin_average_distane extrat_longest_pins xs--- ALL FUNCTIONS CALLING BY Bestpin FUNCTION ---substring_sequenes :: [Sequene℄ ->[Sequene℄ -> -- The input sequenes[(Sequene,Int)℄ -- List of substring listsubstring_sequenes [℄ [℄ = [℄substring_sequenes [℄ ys = [℄substring_sequenes (x:xs) ys = nub res1whereres = subseq xres1= form_pins res ys ++ substring_sequenes xs yssubseq :: Sequene ->[SubSequene ℄subseq (x:xs) = inits (x:xs)++ subseq xssubseq [℄ = [℄form_pins :: [SubSequene℄ ->[Sequene ℄ ->

APPENDIX A. SOURCECODE FOR THEGENETIC ALIGNMENT PROGRAM100[(Pin,Int)℄form_pins [℄[℄ = [℄form_pins[℄ ys = [℄form_pins(x:xs) ys| num > 1 = (x,num): form_pins xs ys| otherwise = from_pins xs yswherenum = from_pins' x ysfrom_pins' :: SubSequene -> -- Single element from substring list[Sequene℄ -> -- A list of input sequenesInt -- Number of ourrenes as pinsfrom_pins' [℄ [℄ = 0from_pins' m [℄ = 0from_pins' m (x:xs)|((hek_for_snd_appears == Nothing)&&(hek_for_appears /= Nothing)) = 1+ form_pins' m xs|otherwise = form_pins' m xswherehek_for_appears = loate_pin m xwhere_pin_appears = pin_value(hek_for_appears)reset_of_sequene = drop (where_pin_appears + length m) xhek_for_snd_appears = loate_pin m reset_of_sequeneextrat_max_pins :: [(Pin,Int)℄ -> [(Pin ,Int)℄extrat_max_pins [℄ =[℄extrat_max_pins ((p,n):xss) = foldr (extrat_max_pins') [(p,n)℄ xssextrat_max_pins' :: (Pin ,Int) ->[(Pin,Int)℄ -> [(Pin,Int)℄extrat_max_pins' (p,n) aa_pin�((p',n'):_)| n' > n = aa_pin| n' == n = aa_pin ++ [(p,n)℄| otherwise = [(p,n)℄longest_pin :: [Pin℄ ->[Pin℄longest_pin [℄ = [℄longest_pin (xs:xss) = foldr (longest_pin') [xs℄ xsslongest_pin' :: Pin ->[Pin℄ ->[Pin℄longest_pin' pin xs�(pin':_)| length pin' > length pin = xs| length pin' == length pin = (pin:xs)| otherwise = [pin℄pin_average_distane :: [Pin℄ ->[Sequene℄ ->[(Pin, Int) ℄pin_average_distane [℄ [℄ = [℄pin_average_distane [℄ _ = [℄pin_average_distane _ [℄ = [℄pin_average_distane xss yss = [(xs ,((sum (map (pin_average_distane' xs) yss) `div` length yss)))| xs <- xss℄wherepin_average_distane' :: Pin -> Sequene -> Intpin_average_distane' [℄ [℄ = 0pin_average_distane' xs ys| hek_res == Nothing = 0| otherwise = abs(((length ys) `div` 2) -

APPENDIX A. SOURCECODE FOR THEGENETIC ALIGNMENT PROGRAM101((pin_value (hek_res)) + (length xs `div` 2)))wherehek_res = loate_pin xs ysbest_pin :: [(Pin,Int)℄ ->Sequenebest_pin [℄ = [℄best_pin ((p,n):xs) = fst(best_pin' (p,n) xs)best_pin' (p,n) [℄ = (p,n)best_pin' (p',n') ((p,n):xs)| n <= n' = best_pin' (p,n) xs| otherwise = best_pin' (p',n') xs--- ALL FUNCTIONS CALLING BY divide FUNCTION ---splitting_sequenes :: Pin ->[Sequene℄ ->([Sequene℄ , [Sequene℄ , [Sequene℄)splitting_sequenes [℄ [℄ = ([℄, [℄ ,[℄)splitting_sequenes [℄ ys = (ys, [℄, [℄)splitting_sequenes xs ys =(right_hunk , lift_hunk , unpinned)whereright_hunk = right_sequene xs yslift_hunk = left_sequene xs ysunpinned = unpinned_hunk xs ysright_sequene :: Pin -> -- best pin.[Sequene℄ -> -- List of input sequenes.[Sequene℄ -- List of right sequenes.right_sequene [℄ [℄ = [℄right_sequene [℄ ys = ysright_sequene xs ys = map (right_sequene' xs)(pined_hunk xs ys)whereright_sequene' :: Pin -> Sequene -> Sequeneright_sequene' [℄ [℄ = [℄right_sequene' [℄ ys = ysright_sequene' xs ys| (num_pin + length xs) == length ys = [℄| hek_res /= Nothing = drop (num_pin + (length xs)) yswherehek_res = loate_pin xs ysnum_pin = pin_value(hek_res)left_sequene :: Pin -> -- best pin.[Sequene℄ -> -- List of input sequenes.[Sequene℄ -- List of left sequenes.left_sequene [℄ [℄ = [℄left_sequene [℄ ys = ysleft_sequene xs ys = map (left_sequene' xs) (pined_hunk xs ys)whereleft_sequene' :: Pin -> Sequene -> Sequeneleft_sequene' [℄ [℄ = [℄left_sequene' [℄ ys = ysleft_sequene' xs ys| num_pin > 0 = take (num_pin) ys| otherwise = [℄wherenum_pin = pin_value (loate_pin xs ys)

APPENDIX A. SOURCECODE FOR THEGENETIC ALIGNMENT PROGRAM102unpinned_hunk xs ys = filter(\y -> (loate_pin xs y) == Nothing)(ys)pined_hunk xs ys = filter(\y -> (loate_pin xs y) /= Nothing)(ys)loate_pin :: Pin -> -- Single pin.Sequene -> -- Input sequene.Maybe Int -- position of the in the sequene.loate_pin xs ys = loate_pin' xs ys 0loate_pin' xs [℄ n = Nothingloate_pin' xs (y:ys) n| isPrefixOf xs (y:ys) = Just n| otherwise = loate_pin' xs ys (n+1)pin_value :: Maybe Int -> Intpin_value (Just x) = xpin_value Nothing = 0fun_align :: [Sequene ℄ ->[Sequene ℄fun_align [℄ = [℄fun_align xs = [add_d x | x <- xs℄wherem = maximum [length x | x <- xs ℄add_d :: Sequene -> Sequeneadd_d x| length x == m = x| otherwise = x ++onat (repliate (m - length x) p)wherep1 =onat (repliate (m - length x) p)p = [8 ℄lead_funtion :: Sequene -> [Sequene℄ -> [Sequene℄lead_funtion [℄ [℄ = [℄lead_funtion xs [℄ = [℄lead_funtion [℄ ys = yslead_funtion xs ys = map (lead_funtion' xs [℄) yslead_funtion' [℄ align [℄ = alignlead_funtion' xs align [℄ =alignlead_funtion' [℄ align ys =(reverse align) ++ yslead_funtion' (x:xs) align (y:ys)| x ==y = res| otherwise = res1whereres = lead_funtion' xs (x:align) ysres1 =lead_funtion' xs (9:align) (y:ys)test_align_length :: [Sequene℄ -> Booltest_align_length [℄ = Truetest_align_length xs| all(\x->(length x) == length (head xs)) xs = True| otherwise =False-- FUNCTION TO GENERATE RANDOM SET OF SEQUENCES ---mkRandom :: Int ->

APPENDIX A. SOURCECODE FOR THEGENETIC ALIGNMENT PROGRAM103Int ->IO [[Int℄℄mkRandom m n = doletg = mkStdGen 1701s :: [Int℄s = randoms gs0 = map (`mod` 4) smk_grid' 0 _ _ res = resmk_grid' m n l res = mk_grid' (m-1) n l2 (l1:res)where (l1, l2) = splitAt n lgrid = mk_grid' m n s0 [℄return gridonvert :: [[Int℄℄ -> [Sequene1℄onvert [℄ = [℄onvert (x:xs) = map dd x : onvert xswheredd 0 = Add 1 = Cdd 2 = Gdd 3 = Cdd 8 = D -- This harater is used for deletiondd 9 = I -- The harater is used for insertionmain = do args <- getArgsletn = read (args!!0) -- Number of input sequenesl = read (args!!1) -- length of eah input sequenexs <- mkRandom n llet m = align_hunk xsres = onvert mprint(res)
A.2 Complete Parallel Code of Version IIaThis setion presents the ode of the best version of geneti alignment program whihdelivers a best performane on both arhitetures.module Main whereimport System(getArgs)import GlaExts(trae)import Listimport Randomimport Strategiesdata Aminoaid = A | C | U | G | D |Ideriving (Read,Show,Eq,Ord)type Sequene1 = [Aminoaid℄type Sequene = [Int℄

APPENDIX A. SOURCECODE FOR THEGENETIC ALIGNMENT PROGRAM104type Pin = [Int℄type SubSequene = [Int℄-- This aepts the hunk of sequenes to be aligned and produes an alignment-- by alling the two top level funtions " Bestpin" and "divide"align_hunk :: [Sequene℄ -> -- List of input sequenes.[Sequene℄ -- Aligned sequenes.align_hunk [℄ = [℄align_hunk xs = fun_align all_reswherebest = Bestpin xsall_res = divide xs best-- This divide takes a list of sequenes and a best pin for a given list split-- it uses a pin into three hunks left , right ,and unpinned hunk to be-- aligned independently by onurrent alling between align_hunk and divide-- funtionsdivide :: [Sequene℄ -> -- List of input sequenesPin -> -- Best pin[Sequene℄ -- List of aligned sequenes.divide [℄ [℄ = [℄divide xs [℄ = xs -- this represents the basi alignment to the sequenedivide xs pin = (ombine pin_var res_lift res_right res_unpinh)`demanding` strategywhere(righth,lefth,unpinh1) = splitting_sequenes pin xsunpinh = lead_funtion pin unpinh1res_unpinh = align_hunk unpinhres_right = align_hunk righthres_lift = align_hunk lefthstrategy = rnf res_lift `par`rnf res_right `par`rnf res_unpinhombine :: Pin -> [Sequene℄ ->[Sequene℄ ->[Sequene℄ -> [Sequene℄ombine pin left_seqs right_seqs unpinned_seqs= (zipWith (at_sequene pin) left_seqs right_seqs) ++ unpinned_seqs whereat_sequene :: Sequene -> Sequene -> Sequene -> Sequeneat_sequene pin ls rs = ls ++ pin ++ rs-- The Bestpin funtion takes a list of sequenes and produes best as outputBestpin :: [Sequene℄ -> -- List of input sequenes.Pin -- Best pin.Bestpin [℄= [℄Bestpin xs = best_pin pins_diswhereall_substring = par_substring_sequenes xs xspins_with_ourrene = all_substringpins = map fst(extrat_max_pins pins_with_ourrene)extrat_longest_pins = longest_pin pinspins_dis = pin_average_distane extrat_longest_pins xs--- ALL FUNCTIONS CALLING BY Bestpin FUNCTION ---substring_sequenes :: [Sequene℄ -> Sequene -> -- The input sequenes[(Sequene,Int)℄ -- list of substring list

APPENDIX A. SOURCECODE FOR THEGENETIC ALIGNMENT PROGRAM105substring_sequenes ys x = nub res1whereres = subseq xres1= form_pins res yspar_substring_sequenes :: [Sequene ℄ ->[Sequene ℄ ->[(Pin,Int)℄par_substring_sequenes xs ys =foldr (++) [℄ (parMap rnf (substring_sequenes ys) xs)subseq :: Sequene -> -- A single sequenes from the input sequenes[SubSequene ℄ -- all substring from the input sequenessubseq (x:xs) = inits (x:xs)++ subseq xssubseq [℄ = [℄Form_pins :: [SubSequene℄ -> -- A list of all substrings of a single sequene.[Sequene ℄ -> -- A list of input sequenes[(Pin,Int)℄ --List of pins and its ourrene.Form_pins [℄[℄ = [℄Form_pins[℄ ys = [℄Form_pins(x:xs) ys| num > 1 = (x,num): form_pins xs ys| otherwise = form_pins xs yswherenum = form_pins' x ysform_pins' :: SubSequene -> -- Single element from substring list[Sequene℄ -> -- A list of input sequenesInt -- Number of ourrenes as pinsform_pins' [℄ [℄ = 0form_pins' m [℄ = 0form_pins' m (x:xs)|((hek_for_snd_appears == Nothing) &&(hek_for_appears /= Nothing))= 1+ form_pins' m xs|otherwise = form_pins' m xswherehek_for_appears = loate_pin m xwhere_pin_appears = pin_value(hek_for_appears)reset_of_sequene = drop (where_pin_appears + length m) xhek_for_snd_appears = loate_pin m reset_of_sequeneextrat_max_pins :: [(Pin,Int)℄ -> [(Pin ,Int)℄extrat_max_pins [℄ =[℄extrat_max_pins ((p,n):xss) = foldr (extrat_max_pins') [(p,n)℄ xssextrat_max_pins' :: (Pin ,Int) ->[(Pin,Int)℄ -> [(Pin,Int)℄--extrat_max_pins' [℄ [℄ = [℄-- extrat_max_pins' aa_pin [℄ = aa_pinextrat_max_pins' (p,n) aa_pin�((p',n'):_)| n' > n = aa_pin| n' == n = aa_pin ++ [(p,n)℄| otherwise = [(p,n)℄longest_pin :: [Pin℄ ->[Pin℄longest_pin [℄ = [℄longest_pin (xs:xss) = foldr (longest_pin') [xs℄ xsslongest_pin' :: Pin ->[Pin℄ ->[Pin℄longest_pin' pin xs�(pin':_)

APPENDIX A. SOURCECODE FOR THEGENETIC ALIGNMENT PROGRAM106| length pin' > length pin = xs| length pin' == length pin = (pin:xs)| otherwise = [pin℄pin_average_distane :: [Pin℄ -> -- A list of pins[Sequene℄ -> -- A list of input sequenes[(Pin, Int) ℄pin_average_distane [℄ [℄ = [℄pin_average_distane [℄ _ = [℄pin_average_distane _ [℄ = [℄pin_average_distane xss yss = [(xs ,((sum (map (pin_average_distane' xs) yss) `div` length yss)))| xs <- xss℄wherepin_average_distane' :: Pin -> Sequene -> Intpin_average_distane' [℄ [℄ = 0pin_average_distane' xs ys| hek_res == Nothing = 0| otherwise = abs(((length ys) `div` 2) -((pin_value (hek_res)) + (length xs `div` 2)))wherehek_res = loate_pin xs ysbest_pin :: [(Pin,Int)℄ -> Sequenebest_pin [℄ = [℄best_pin ((p,n):xs) = fst(best_pin' (p,n) xs)best_pin' (p,n) [℄ = (p,n)best_pin' (p',n') ((p,n):xs)| n <= n' = best_pin' (p,n) xs| otherwise = best_pin' (p',n') xs--- ALL FUNCTIONS CALLING BY divide FUNCTION ---splitting_sequenes :: Pin -> -- Best pin[Sequene℄ -> -- List of input Sequenes([Sequene℄ , [Sequene℄ , [Sequene℄)splitting_sequenes [℄ [℄ = ([℄, [℄ ,[℄)splitting_sequenes [℄ ys = (ys, [℄, [℄)splitting_sequenes xs ys = (right_hunk , lift_hunk , unpinned)whereright_hunk = right_sequene xs yslift_hunk = left_sequene xs ysunpinned = unpinned_hunk xs ysright_sequene :: Pin -> -- best pin.[Sequene℄ -> -- List of input sequenes.[Sequene℄ -- List of right sequenes.right_sequene [℄ [℄ = [℄right_sequene [℄ ys = ysright_sequene xs ys = map (right_sequene' xs) (pined_hunk xs ys)whereright_sequene' :: Pin -> Sequene -> Sequeneright_sequene' [℄ [℄ = [℄

APPENDIX A. SOURCECODE FOR THEGENETIC ALIGNMENT PROGRAM107right_sequene' [℄ ys = ysright_sequene' xs ys| (num_pin + length xs) == length ys = [℄| hek_res /= Nothing = drop (num_pin + (length xs)) yswherehek_res = loate_pin xs ysnum_pin = pin_value(hek_res)left_sequene :: Pin -> -- best pin.[Sequene℄ -> -- List of input sequenes.[Sequene℄ -- List of left sequenes.left_sequene [℄ [℄ = [℄left_sequene [℄ ys = ysleft_sequene xs ys = map (left_sequene' xs) (pined_hunk xs ys)whereleft_sequene' :: Pin -> Sequene -> Sequene-- This funtion extrats the left sequene from single sequene-- the inputs are best pin + single sequene.left_sequene' [℄ [℄ = [℄left_sequene' [℄ ys = ysleft_sequene' xs ys| num_pin > 0 = take (num_pin) ys| otherwise = [℄wherenum_pin = pin_value (loate_pin xs ys)unpinned_hunk xs ys = filter(\y -> (loate_pin xs y) == Nothing)(ys)pined_hunk xs ys = filter(\y -> (loate_pin xs y) /= Nothing)(ys)loate_pin :: Pin -> -- Single pin.Sequene -> -- Input sequene.Maybe Int -- position of the in the sequene.loate_pin xs ys = loate_pin' xs ys 0loate_pin' xs [℄ n = Nothingloate_pin' xs (y:ys) n| isPrefixOf xs (y:ys) = Just n| otherwise = loate_pin' xs ys (n+1)pin_value :: Maybe Int -> Intpin_value (Just x) = xpin_value Nothing = 0fun_align :: [Sequene ℄ -> -- List of input sequenes to aligned[Sequene ℄fun_align [℄ = [℄fun_align xs = [add_d x | x <- xs℄wherem = maximum [length x | x <- xs ℄add_d :: Sequene -> Sequeneadd_d x| length x == m = x| otherwise = x ++ onat (repliate (m - length x) p)wherep1 =onat (repliate (m - length x) p)p = [8 ℄lead_funtion :: Sequene -> [Sequene℄ -> [Sequene℄lead_funtion [℄ [℄ = [℄lead_funtion xs [℄ = [℄lead_funtion [℄ ys = ys

APPENDIX A. SOURCECODE FOR THEGENETIC ALIGNMENT PROGRAM108lead_funtion xs ys = map (lead_funtion' xs [℄) yslead_funtion' [℄ align [℄ = alignlead_funtion' xs align [℄ =alignlead_funtion' [℄ align ys =(reverse align) ++ yslead_funtion' (x:xs) align (y:ys)| x ==y = res| otherwise = res1whereres = lead_funtion' xs (x:align) ysres1 =lead_funtion' xs (9:align) (y:ys)test_align_length :: [Sequene℄ -> Booltest_align_length [℄ = Truetest_align_length xs| all(\x->(length x) == length (head xs)) xs = True| otherwise =False-- FUNCTION TO GENERATE RANDOM SET OF SEQUENCES ---mkRandom1 :: Int -> -- Input value represents the number of sequenesInt -> -- Input value represents the length of eah sequeneIO [[Int℄℄ -- List of random input sequenesmkRandom1 m n = doletg = mkStdGen 1701 -- deterministi input via fixed seed vals :: [Int℄s = randoms gs0 = map (`mod` 4) $ smk_grid' 0 _ _ res = resmk_grid' m n l res = mk_grid' (m-1) n l2 (l1:res)where (l1, l2) = splitAt n lgrid = mk_grid' m n s0 [℄return gridonvert :: [[Int℄℄ -> [Sequene1℄onvert [℄ = [℄onvert (x:xs) = map dd x : onvert xswheredd 0 = Add 1 = Cdd 2 = Gdd 3 = Cdd 8 = D -- This harater is used for deletiondd 9 = I -- The harater is used for insertionmain = do args <- getArgsletn = read (args!!0) -- Number of input sequenes

APPENDIX A. SOURCECODE FOR THEGENETIC ALIGNMENT PROGRAM109l = read (args!!1) -- length of eah input sequenexs <- mkRandom1 n llet m = align_hunk xsres = onvert mprint(res)
A.3 Finite Map CodeThe following shows all modi�ation made to implement the Finite Map library in thegeneti alignment program.import FiniteMap(FiniteMap,listToFM ,emptyFM,addListToFM,addListToFM_C,fmToList,delListFromFM,delFromFM ,sizeFM,lookupFM,foldFM,plusFM_C ,keysFM)-- ALL FUNCTIONS CALLING BY Bestpin FUNCTION --substring_sequenes :: [Sequene℄ -> -- The input sequenes[(SubSequene, Int)℄ -- List of substring listsubstring_sequenes [℄ = [℄substring_sequenes xs = res_pinwhereres_pin' = substring_sequenes' xsres_pin = form_pins (at_listoffm res_pin')substring_sequenes' :: [Sequene℄ ->[FiniteMap SubSequene Int℄substring_sequenes' [℄ = [℄substring_sequenes' (x:xs) = fm_of_ritial : substring_sequenes' xswhereall_substrings = subseq xfm_of_substring = list_of_substring_fm all_substringsel_double_substring = ritial_funtion fm_of_substringfm_of_ritial = delListFromFM fm_of_substring el_double_substring-- This is to filter substrings whih our one in FM.ritial_funtion fm = filter (\ x -> ase lookupFM fm xof Just n -> n>1) (keysFM fm)list_of_substring_fm :: [SubSequene ℄ -> FiniteMap SubSequene Intlist_of_substring_fm [℄ = emptyFMlist_of_substring_fm xs = addListToFM_C (+) emptyFM [(x,1) | x<-xs℄at_listoffm :: [FiniteMap SubSequene Int℄ -> FiniteMap SubSequene Intat_listoffm ys = foldr (plusFM_C (+)) emptyFM ysform_pins :: FiniteMap SubSequene Int -> [(Pin ,Int)℄form_pins ys = pins_in_listwherelist_of_ri_substrings = ritial_funtion1 yspins_in_fm = delListFromFM ys list_of_ri_substringspins_in_list = fmToList pins_in_fm-- This is to filter substrings whih our one in FM.ritial_funtion1 fm = filter (\ x -> ase lookupFM fm xof Just n -> n==1) (keysFM fm)

Bibliography[1℄ D. Skilliorn and D. Talia. Models and Languages for Parallel Computation. ACM Com-puting Surveys, 30(2):pages 123{169, 1998.[2℄ A. Chien, J. Dolby, B Ganguly, V Karameheti, and X. Zhang. High Level Parallel Pro-gramming: the Illinois Conert System. Tehnial Report Illinois 61801, Computer Siene,University of Illinois, 1998.[3℄ L. Chamberlain and E. Christopher. ZPL A Mahine Independent Programming Languagefor Parallel Computers. IEEE Transation on Software Engineering, 26:pages 197{212,Marh 2000.[4℄ H. Loidl. Load Balaning in a Parallal Reduer. In Trends in Funtional Programming,volume 3, pages 63{75. Intellet Ltd, 2002. ISBN 1-84150-070-4.[5℄ P. Trinder, J. Barry, M. Davis, K. Hammond, S. Junaidu, U. Klusik, H. Loidl, , andS. Peyton Jones. GpH: An Arhiteture-Independent FuntionalLanguage. Unpublished,http://www.ee.hw.a.uk/ dsg/gph/papers/abstrats/arh-indep.html, July 1998.[6℄ K. Hammond, H. Loidl, and A. Partridge. Visualising Granularity in Parallel Programs: AGraphial Winnowing System for Haskell. In Conferene on High Performane FuntionalComputing, pages 208{221, Denver, Colorado, April 1995.[7℄ I. Foster. Designing and Building Parallel Programs. Addison-Wesley, 1995.[8℄ D. Ridge, D. Beker, P. Merkey, and T. Sterling. Beowulf: Harnessing the Power ofParallelism in a Pile-of-PCs. In IEEE Aerospae, 1997.[9℄ A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manhek, and V. Sunderam. PVM:Parallel Virtual Mahine: A Users' Guide and Tutorial for Networked Parallel Computing.MIT Press, Cambridge, MA, USA, 1994.[10℄ J. Jak, R. Hempel, H. Anthony, and D. Walker. A Proposal for a User-Level Message-Passing Interfae in a Distributed Memory Environment. Tehnial Report TM-12231,University of Tennessee, Knoxville, TN, USA, 1992.[11℄ H. Dietz. Linux Parallel Proessing HOWTO, January 1999. Midwest Workshop on ParallelProessing, Kent State University, http://yara.en.purdue.edu/ pplinux/pphowto.[12℄ D.E Culler and J. P. Singh. Parallel Computer Arhiteture: a Hardware/Software Ap-proah . Morgan Kaufmann, 1999.[13℄ M. Jones and P. Hudak. Impliit and Expliit Parallel Programming in Haskell. TehnialReport CT 06520-2158, Department of Computer Siene, Yale University, August 1993.[14℄ P. Roe. Parallel Programming Using Funtional Language . PhD thesis, Department ofComputing Siene, University of Glasgow, February 1991.[15℄ K. Hwang and Z Xu. Salable Parallel Computing - Tehnology, Arhiteture, Programming. WCB MGraw-Hill USA, 1998.[16℄ R.S. Nikhil. ID Referene Manual. Tehnial Report CSG Memo 284-2, Laboratory forComputer Siene, M.I.T., July 1991. 110

BIBLIOGRAPHY 111[17℄ P. Trinder, K. Hammond, J. Mattson, A. Partridge, and S. Peyton Jones. GUM: A PortableParallel Implementation of Haskell. In SIGPLAN Conferene on Programming LanguageDesign and Implementation, pages 79{88, 1996.[18℄ M. Hamdan. A Combinational Framwork for Parallel Programming Using AlgorithmiSkeletons. PhD thesis, Department of Computing Siene, Heriot Watt University, January2000.[19℄ M. Cole. Algorithmi Skeletons: Strutured Management of Parallel Computation. Re-searh Monographs in Parallel and Distributed Computing. The MIT Press, Cambridge,MA, 1989.[20℄ P. Kelly and F. Taylor. Coordination Languages . In Researh Diretions in ParallelFuntional Programming, pages 305{321. Springer, 1999.[21℄ C. Koelbel, D. Loveman, and JR. Shreaiber, R.and Steele. The High Performane FortranHandbook. The MIT Press, Cambridge, Marh 1994.[22℄ S. Hiranandani, K. Kennedy, and C. Tseng. Compiler Support for Mahine-IndependentParallel Programming in Fortran D. In J. Saltz and P. Mehrotra, editors, Languages, Com-pilers, and Run-Time Environments for Distributed Memory Mahines. North-Holland,Amsterdam, The Netherlands, 1992.[23℄ N. Gaarder and M. Bruggenate. Openmp:an autotasking perspetive. Tehnial ReportMN 55121-1560, USA., Programming Group Silion Graphis, In., January 2003.[24℄ S. Gregory. Parallel Logi Programming in PARLOG . Addison-Wesley, 1988.[25℄ D. Culler and J. Singh. Parallel Computer Arhiteture: A Hardware/Software Approah.Morgan Kaufmann, August 1998.[26℄ T. Braunl. Parallaxis-III: Arhiteture Independent Data Parallel Proessing. IEEE Trans-ation on Software Engineering, 26:pages 227{244, Marh 2000.[27℄ P. Trinder, H. Loidl, and K. Hammond. Large Sale Funtional Appliations. In ResearhDiretions in Parallel Funtional Programming , pages 399{463, 1999.[28℄ D. Suiu and V. Tannen. CoPa: a Parallel Programming Language forColletions, November 2002. University of Pennsylvania, Unpublished,http://iteseer.nj.ne.om/389641.html.[29℄ D. Skilliorn, Jonathan M. D. Hill, and W. F. MColl. Questions and Answers about BSP.Sienti� Programming, 6(3):pages 249{274, Fall 1997.[30℄ E. Pontelli. Adventures in Parallel Logi Programming, Otober 2002. New Mexio StateUniversity, Unpublished, http://www.s.nmsu.edu/ epontell/adventure/paper.html.[31℄ S. Peyton Jones. The Implementation of Funtional Programming Language . Pren-tie/Hall International , 1986.[32℄ R. Plasmeijer and M. Eekelen. Funtional Programming and Parallel Graph Rewriting.Addisn-Wesley, 1993.[33℄ B. Lisper. A Brief Survey of Funtional Programming Languages. August 2002. MlardalenUniversity, Unpublished, http://www.idt.mdh.se/kurser/d5100/ht02/history.html.[34℄ A. Churh. A Set of Postulates for the Foundation of Logi. . Annals of MATH. , 33:pages346{366, 1932.[35℄ J. MCarthy. Reursive Funtions of Symboli Expressions and their Computation. PartI COMM, ACM , 3:pages 184{195, 1960.[36℄ J. Bakus. Can Program be Liberated from the Von Neumann Style? A Funtional Styleand Its Algerbra of Programs . Communiations of ACM , 21:pages 613{641, 1978.[37℄ D. Turner. Miranda: A non-strit Funtional Language with Polymorphi Types. , Septem-ber. In Proeedings of Funtional Programming Languages and Computer Arhiteture,J.P.Jouannaud (Ed),Springer-Verlag, Vol 201. 31, 1985 .[38℄ L. Augustsson. A Compiler for Lazy ML. . Proeedings of the ACM Symposium on Lispand Funtional Programming, Austin, Texas, USA. , pages 218{ 227, 1984.

BIBLIOGRAPHY 112[39℄ P. Hudak, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. Guzman, K. Hammond,J. Hughes, T. Johnsson, R. Kieburtz, R. Nikhil, W. Partain, and J. Peterson. A Re-port on the Funtional Programming language Haskell, Version 1.2. ACM SIGPLANNoties 27(5), 1992.[40℄ S. Junaidu. Parallel Funtional Language Compiler for Message Passing Multiomputers.PhD thesis, Department of Computing Siene, University of St Andrews , Marh 1998.[41℄ P. Trinder, K Hammond, H. Loidl, and S. Peyton. Algorithm + Strategy = Parallelism.Journal of Funtional Programming, 8(1):pages 23{60, January 1998.[42℄ G. Blelloh. NESL: A Nested Data-Parallel Language. Tehnial Report CMU-CS-93-129,Shool of Computer Siene Carnegi Mellon University, April 1993.[43℄ S. Breitinger, R. Loogen, Y. Ortega Mall�en, and R. Pe~na Mar��. The Eden CoordinationModel for Distributed Memory Systems. In HIPS'97 | High-Level Parallel ProgrammingModels and Supportive Environments. IEEE Press, 1997.[44℄ S. Thompsom. Haskell: The Craft of Funtional Programming. Addison-Wesley, 1999.[45℄ J. Peterson and O. Chitil. Glasgow Parallel Haskell, A Purely Funtional Language .Deember 2002. Unpublished, http://www.ee.hw.a.uk/~dsg/gph/.[46℄ H. Loidl, P. Trinder, K. Hammond, S. Junaidu, R. Morgan, and S. Peyton Jones. Engi-neering Parallel Symboli Programs in GPH. Conurreny | Pratie and Experiene,11(12):pages 701{752, Otober 1999.[47℄ M.P. Jones. Hugs 1.3 The Haskell User's Gopher System User Manual. Tehnial ReportNOTT-CS-TR-96-2, Nottingham University , August 1996.[48℄ P. Trinder, H. Loidl, and K. Hammond. The Multi-Arhiteture Performane of the ParallelFuntional Language GPH. In Bode, A. and Ludwig, T. and Wism�uller, R., editor, Euro-Par 2000 | Parallel Proessing, volume 1900 of LNCS, pages 739{743, Munih, Germany,29.8.-1.9., 2000. Springer-Verlag.[49℄ S. Peyton Jones. Compiling Haskell by Program Transformation: A Report from theTrenhes. In European Symposium on Programming, pages 18{44, 1996.[50℄ P. Sansom and S. Peyton Jones. Time and spae pro�ling for non-strit higher-order fun-tional languages. In Conferene Reord of POPL '95: 22nd ACM SIGPLAN-SIGACTSymposium on Priniples of Programming Languages, pages 355{366, San Franiso, Cal-ifornia, 1995.[51℄ H. Loidl, P. Trinder, and C. Butz. Tuning Task Granularity and Data Loality of DataParallel GpH Programs. Parallel Proessing Letters, 11(4):471{486, 2001. Seleted pa-pers from HLPP'01 | International Workshop on High-level Parallel Programming andAppliations, Orleans, Frane, 26-27 Marh, 2001.[52℄ P. Pepper andM. S�udholt. Deriving Parallel Numerial Algorithms using Data DistributionAlgebras: Wang's Algorithm. In HICSS'97 | 30th Hawaii International Conferene onSystem Sienes, pages 7{10, Hawaii, USA, January 7{10, 1997. IEEE.[53℄ J. O'Donnell and G. R�unger. Abstrat Parallel Mahines. Computers and Arti�ial Intel-ligene, 19:105{129, 2000.[54℄ A. Abdallah. Funtional Proess Modeling . In Researh Diretions in Parallel FuntionalProgramming, pages 339{360. Springer, 1999.[55℄ I. Foster and S. Taylor. Strand: New Conepts in Parallel Programming. Prentie-Hall,1989.[56℄ J. Blazewiz. Handbook on Parallel and Distributed Proessing. International Handbookson Information Systems. Springer, 2000.[57℄ D. Sanko�. Time Warps, Spring Edits and Maromoleules: the theory and pratie ofsequene omparison . Addison-Wesley, 1983.[58℄ H. Loidl. Granularity in Large-Sale Parallel Funtional Programming. PhD thesis, De-partment of Computing Siene, University of Glasgow, Marh 1998.[59℄ G. Amdahl. Validity of the Single-Proessor Approah to Ahieving Large-Sale ComputingCapabilities. AFIPS Press, 30:pages 483{485, 1967.

