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Abstra
tThis thesis investigates the use of a high level fun
tional language GpH (Glasgowparallel Haskell) for ar
hite
ture independent parallel programming. The aim is to pro-vide a

eptable performan
e a
ross a wide range of parallel ar
hite
tures with minimalprogramming e�ort. High level languages are a good alternative for ar
hite
ture inde-pendent parallelism as they are designed to hide most ar
hite
ture-dependent detailsfrom the programmer.The thesis des
ribes the �rst systemi
 investigation of a newly-proposed multi-ar
hite
tureprogramming methodology for GpH. The methodology has two main phases: an ar
hi-te
ture independent phase of idealised parallelisation, and an ar
hite
ture dependentphase of a

urate performan
e predi
tion and tuning. The methodology is used todevelop a substantial appli
ation for two ar
hite
tures with di�erent hardware 
har-a
teristi
s: a Beowulf 
luster and Sun SMP. Sequential tuning improves performan
efrom 224s to 19s, substantially owing to the elimination of intermediate data stru
tures.Seven alternative parallel versions of the program are developed and evaluated usinga simulated idealised ar
hite
ture. Realisti
 simulation of the two target ar
hite
turesa

urately predi
ts the version that delivers the best performan
e in pra
ti
e. Ulti-mately a

eptable speedups are a
hieved on both ar
hite
tures: 7.5 on a 30-pro
essorBeowulf and 1.8 on a 4-pro
essor Sun SMP. Transfer between ar
hite
tures does notrequire sour
e 
ode 
hanges.To improve the ar
hite
ture independen
e of GpH new parallel 
oordination 
on-stru
ts for GpH have been designed, implemented and measured. The primitives extra
tkey ar
hite
ture spe
i�
 properties of the ma
hine and use them to 
ontrol 
oordina-tion, often without exposing the properties to the programmer. Improved parallelperforman
e is demonstrated using the primitives.



Chapter 1
Introdu
tion
1.1 OverviewThe development of a parallel program presents a set of problems that do not arisein the development of sequential software. Prin
ipal among these problems is the in-
uen
e of the target ar
hite
ture on the program development pro
ess. In parti
ularthe performan
e tuning pro
ess is very sensitive to the target parallel ar
hite
ture.Consequently, the development of a parallel program is typi
ally 
arried out in anar
hite
ture-dependent manner, with a �xed target ar
hite
ture [1℄. Traditional ap-proa
hes of parallel programming expli
itly spe
ify most parallel aspe
ts su
h as 
om-muni
ation, task syn
hronisation, and work distribution. An alternative approa
h isto hide most of these aspe
ts behind a high level language implementation. A highlevel language enables 
exible programs and more portability with an a

eptable per-forman
e a
ross a wide range of parallel ar
hite
tures [2℄. However, high level program-ming models are still less eÆ
ient 
ompared with low level languages.

1



CHAPTER 1. INTRODUCTION 2The goal of ar
hite
ture independent parallel programming languages is that the pro-grams 
an be transferred from ar
hite
ture to ar
hite
ture without sa
ri�
ing mu
h ef-�
ien
y or requiring signi�
ant redevelopment [3℄. High level languages are potentiallyar
hite
ture independent as parallel 
oordination is spe
i�ed at a high level of abstra
-tion, i.e. without referen
e to a spe
i�
 underlying ma
hine. A parallel 
oordinationdes
ribes how the 
omputation are arranged on the virtual ma
hine, in
luding aspe
tssu
h as thread 
reation, pla
ement and syn
hronisation. The 
hallenges are to produ
ee�e
tive and eÆ
ient implementations of the high-level 
oordination, and to developmethodologies to develop software systemati
ally for multiple ar
hite
tures.Glasgow parallel Haskell (GpH) is a fun
tional language with a high level parallel pro-gramming model designed to deliver good performan
e a
ross a number of parallelar
hite
tures. It is implemented using the Glasgow Haskell Compiler (GHC), witha parallel runtime system (GUM), that dynami
ally manages many of the aspe
ts ofparallel exe
ution and automati
ally adapts its behaviour to the underlying ar
hite
-tures [4℄.This thesis investigates a proposed multi-ar
hite
ture methodology for developing GpHparallel programs and extends this methodology [5℄. The methodology was used to de-velop multi-ar
hite
ture parallel program for the �rst time.1.2 ContributionsThe main 
ontribution of this thesis is to assess ar
hite
ture independen
e of high levelparallel fun
tional languages, parti
ularly GpH. More spe
i�
ally, the 
ontributions areas follows:



CHAPTER 1. INTRODUCTION 3The �rst systemati
 evaluation of a multi-ar
hite
ture development method-ology. The methodology has two main phases: an ar
hite
ture independent phase ofidealised parallelisation, and an ar
hite
ture dependent phase of a

urate performan
epredi
tion and tuning. In the development of parallel programs most of the work isdone in the ar
hite
ture independent phase. Sequential optimisation is independent ofparallelisation and delivers a good sequential program before inserting any parallelism.The sequential optimisation required to dete
t the spa
e leak problem whi
h is a 
om-mon problem in the non-stri
t fun
tional language. The idealised simulation enablesthe programmer to simulate the program on di�erent parallel ma
hines in
luding theidealised ma
hine with an in�nite number of pro
essors and zero 
ommuni
ation 
osts.The GranSim simulator [6℄ provides 
onsiderable 
exibility to emulate di�erent ar
hi-te
tures in
luding the idealised ma
hine whi
h gives a good indi
ator of the maximumparallelism that 
an be obtained. If only a small amount of parallelism is obtained onthe idealised simulation then very little is possible on any ar
hite
ture. In the ar
hi-te
ture dependent phase the simulator is parameterised to emulate the target ma
hine.The �nal stage is to exe
ute the parallel program on a real ma
hine using the GUMruntime system provided by GpH.In this thesis, the methodology is used to develop a parallel program for geneti
alignment targeting two parallel ar
hite
tures with di�erent hardware 
hara
teristi
s:a distributed memory Beowulf 
luster and a shared memory Sun SMP. This thesis thenassesses the performan
e of the resulting programs and the ar
hite
ture independen
eof the program development pro
ess.Extending the ar
hite
ture independent 
apabilities of GpH. To improve thear
hite
ture independen
e of GpH proposes new parallel 
oordination 
onstru
ts are



CHAPTER 1. INTRODUCTION 4proposed. The primitives extra
t key ar
hite
ture spe
i�
 properties of the ma
hineand use them to 
ontrol 
oordination, often without exposing the properties to theprogrammer. In parti
ular, re�nements of data-parallel and divide-and-
onquer 
oor-dination are presented. The thesis dis
usses the importan
e of the ar
hite
ture spe
i�
sextra
ted and extends the programming methodology with a new module exploitingthis information.In addition to the main 
ontributions above this thesis surveys a number of ar
hi-te
ture independent parallel programming languages and dis
usses how ea
h languagea
hieves the goal of ar
hite
ture independent parallelism.1.3 Dissertation OutlineChapter 2 presents an overview of various approa
hes towards ar
hite
ture independentparallel programming models. In addition the two di�erent parallel ar
hite
tures usedin this investigation are des
ribed.Chapter 3 gives a detailed des
ription of the proposed multi-ar
hite
ture program-ming methodology. It highlights the tools used in the methodology and the importan
eof ea
h stage.Chapter 4 des
ribes the geneti
 alignment program and its sequential implementa-tion and performan
e tuning. The sequential optimisation is an important stage of themulti-ar
hite
ture development methodology. To a
hieve a good parallel performan
e,it is ne
essary to start with a good sequential version.



CHAPTER 1. INTRODUCTION 5Chapter 5 des
ribes the idealised parallelisation of the geneti
 alignment program,identifying seven di�erent sour
es of parallelism.The di�erent parallel versions are tested using the GranSim simulator parameterisedto emulate an idealised ma
hine. The idealised ma
hine has zero 
ommuni
ation 
osts,and an unlimited number of pro
essors. The primary goal of this stage is that theprogram exposes the maximal amount of parallelism that 
an be a
hieved from thealgorithm.Chapter 6 des
ribes the measurement of the di�erent parallel versions of the geneti
alignment program on two simulated parallel ar
hite
tures. In this stage, the GranSimsimulator is parameterised with the key parameters of the target ar
hite
tures.Chapter 7 des
ribes the measurement of the parallel versions of the program on thetwo ar
hite
tures and summarises the di�eren
e between simulation and real measure-ment. The programs are exe
uted on the ar
hite
tures using the GUM runtime systemprovided by GpH. Usually minimum 
ode 
hanges are required in this stage.Chapter 8 des
ribes the improvement of the ar
hite
ture independen
e of GpH, whi
hemploys the underlying ar
hite
ture for 
ontrolling the parallelism. It des
ribes howthe key ar
hite
ture-spe
i�
 property of pro
essors number is extra
ted. This propertyis used at two levels: the strategi
 level, where the new parameters are hidden from theprogrammer, and the appli
ation level where it 
an be used expli
itly in order to re�ne
oordination. Also it des
ribes the new parMapPe and divide fun
tions whi
h employthe extra
ted property.



CHAPTER 1. INTRODUCTION 6Chapter 9 
ontains a summary of the a
hievements and limitations of the work pre-sented in thesis. It evaluates the importan
e of the development methodology and itsenvironment tools.The appendi
es 
ontain versions of the geneti
 alignment program and are organisedas follows: Appendix A.1 
ontains the 
ode for the optimised sequential version; Ap-pendix A.2 
ontains the 
ode for the best parallel version (IIa) whi
h delivers bestspeedup on both ar
hite
tures. Appendix A.3 
ontains modi�ed fun
tions for thefinite-Map implementation.



Chapter 2
Ba
kground
This 
hapter des
ribes some parallel ar
hite
ture and parallel programming issues.First, a brief des
ription of the 
onstru
tion of parallel platforms is given, 
overing theBeowulf 
luster ar
hite
ture and Sun SMP ar
hite
ture. Both ma
hines are targetedfor use in this investigation proje
t. Se
ond, parallel programming development andthe types of parallel programming models are dis
ussed.2.1 Parallel Computer Ar
hite
turesParallel programming will be useful if a general parallel ma
hine (su
h as a von Neu-mann sequential ma
hine model) 
an be de�ned. This ma
hine model must be simple toprogram and the programs developed for the model exe
uted with reasonable eÆ
ien
yon real 
omputers [7℄.Parallel 
omputers 
onsist of multiple pro
essors, memory modules, and an inter-
onne
tion network. The distin
tion between the parallel 
omputer ar
hite
tures isdetermined by the arrangement of the above 
omponents. The pro
essors used in par-allel 
omputers are in
reasingly exa
tly the same as pro
essors used in single-pro
essor7
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omputer 
onsists of a number of von Neumann 
omputers linked by aninter
onne
tion network. Ea
h 
omputer performs its own program. This program maya

ess lo
al memory and may send and re
eive messages over the network. Messages areused to 
ommuni
ate with other 
omputers or, equivalently, to read and write remotememories. This model �ts the parallel programming requirement.The SIMD Ma
hines are array pro
essors. They typi
ally 
onsist of large 
olle
tionof small pro
essing elements. All pro
essors exe
ute the same program on a di�erentpie
e of data. MIMD ma
hines 
onsist of a number of pro
essors whi
h exe
ute aseparate stream of instru
tions on their own data.The MIMD ma
hine may be distributed memory or shared memory. Distributedmemory means that memory is distributed among the pro
essors, rather than pla
edin a 
entral lo
ation. In shared memory all pro
essors have shared a

ess to a 
ommonmemory, often via a bus. Figure 1 shows the distributed-memory and shared-memoryMIMD ma
hines.
M  M  M  M  

M  M  M  M  

P P P P P P PP

Figure 1: Distributed Memory and Shared Memory MIMD Ar
hite
tures2.1.1 Beowulf Ar
hite
tureA Beowulf 
luster is a distributed-memory (MIMD) multi
omputer ar
hite
ture usedfor parallel 
omputations [8℄. It may 
ontain a server node, whi
h a
ts as a gateway to
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. It is built from sto
k hardware, thereforeit is 
heap to build. Beowulf also uses 
ommodity software su
h as the Linux operatingsystem, Parallel Virtual Ma
hine (PVM) [9℄ and Message Passing Interfa
e (MPI) [10℄.Large Beowulf ma
hines might have more than one server node, and possibly othernodes dedi
ated to parti
ular tasks, for example 
onsoles or monitoring stations. Inmost 
ases 
lient nodes in a Beowulf system are dumb, and the dumber the better.Nodes are 
on�gured and 
ontrolled by the server node, and do only what they aretold to do. In a disk-less 
lient 
on�guration, 
lient nodes do not even know their IPaddress or name until the server tells them what it is. One of the main di�eren
esbetween Beowulf and a Cluster of Workstations is the fa
t that Beowulf behaves morelike a single ma
hine rather than many workstations. In most 
ases 
lient nodes do nothave keyboards or monitors, and are a

essed only via remote login or possibly serialterminal. Beowulf nodes 
an be thought of as a CPU + memory pa
kage whi
h 
anbe plugged in to the 
luster, just like a CPU or memory module 
an be plugged into amotherboard [8℄.Heriot Watt University had already a
quired a Beowulf 
luster whi
h will be usedfor the proje
t experiment. It is a 32-node Beowulf 
luster 
onsisting of Linux Red Hat6.2 workstations with a 533 MHz Celeron pro
essor, 128 Kb 
a
he, 128 Mb of DRAM,5.7 Gb of IDE disk, 
onne
ted through a 100Mb/s fast Ethernet swit
h with laten
y142 mi
rose
onds.2.1.2 Sun SMP Ar
hite
tureShared memory is a model for intera
tions between pro
essors within a parallel system.Systems like the multi-pro
essor Pentium ma
hines running Linux physi
ally share asingle memory among their pro
essors, so that a value written to shared memory by
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essor 
an be dire
tly a

essed by any pro
essor. Alternatively, logi
ally sharedmemory 
an be implemented for systems in whi
h ea
h pro
essor has its own memoryby 
onverting ea
h non-lo
al memory referen
e into an appropriate inter-pro
essor 
om-muni
ation. Physi
ally shared memory 
an have both high bandwidth and low laten
y,but only when multiple pro
essors do not try to a

ess the bus simultaneously [11℄. TheSun SMP whi
h will be used for this proje
t 
onsists of 4-pro
essor with 
lo
k speed of250 MHz, and it has laten
y under the PVM layer between nodes as 109 mi
rose
onds.2.2 Why Parallel Programming?Parallelism is a very interesting perspe
tive in understanding 
omputer ar
hite
turesbe
ause it applies at all levels of design, and intera
ts with essentially all other ar-
hite
tural 
on
epts. A parallel 
omputer is a 
olle
tion of pro
essing elements that
ommuni
ate and 
ooperate to solve large problems qui
kly. The most important as-pe
ts in the design of a parallel 
omputer are: the number of pro
essors, the pro
essingpower of ea
h pro
essor, 
ommuni
ation and 
ooperation between the pro
essors, theway of transferring data, the inter
onne
tion manner used and the operations availableto sequen
e the a
tions 
arried out on di�erent pro
essors, the primitive abstra
tionsthat the hardware and software provide to the programmer, and �nally translationof all to performan
e [12℄. These issues are re
e
ted in low-level parallel languages.In 
ontrast, to this hardware view, Skilli
orn [1℄ summarises the demand for parallelprogramming as follows:-� The real world is inherently parallel, so it is natural and straightforward to express
omputations about the real world in a parallel way, or at least in a way thatdoes not pre
lude parallelism.
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omputational performan
e than is available inany single pro
essor, although getting this performan
e from parallel 
omputersis not straightforward.� There are limits to sequential 
omputing performan
e that arise from fundamentalphysi
al limits su
h as the speed of light.� Even if single-pro
essor speed improvements 
ontinue on their re
ent histori
altrend. But the 
osts of designing and fabri
ating ea
h new generation of unipro-
essors are unlikely to drop.2.2.1 Parallel Program DevelopmentThe most important issues in writing a parallel program are: partitioning a programinto tasks, mapping tasks onto a pro
essor, and arranging for tasks to 
ommuni
atesafely [13℄. The above issues make the parallel programming quite diÆ
ult. Most ofthe 
urrent resear
h studies aim to produ
e a parallel programming language whi
h
an make the parallel programming easier. In this se
tion some of parallel program-ming models whi
h have similar obje
tives to the GpH model are surveyed. A briefdes
ription of how ea
h model is formed is given.First, the high level language makes the programmer's task be
ome easier be
ausethere is no longer need for making a

urate judgement and de
isions about parallelism.Consequently, the development and maintenan
e of programs be
ome easier, and thereis less s
ope for programmer error. Se
ond, programs be
ome portable, be
ause thereare no detailed low level des
riptions of parallelism inserted to the program. In otherword the program does not 
ontain low level des
riptions for a parti
ular platform.Most of the 
urrent resear
h studies aim to produ
e a parallel model whi
h separates
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t ma
hineproviding 
ertain operations to the programming level above, and the requirementof implementing these operations on all ar
hite
ture. In other words, for a parallelmodel to be useful, it must address both issues, abstra
tion and e�e
tiveness. Thedevelopment of a parallel program must address the following issues, a

ording to [14℄:� The parallel program should spe
ify the useful Parallelism from the problem de-s
ription. The algorithm must be able to determine the potential parallelisminherent in the problem. This involves the splitting the program into sequential
hunks that 
an be exe
uted in parallel. However, the algorithm must be awareof the 
ost of 
ommuni
ation between pro
essors.� In mapping, the generated tasks of the program must be mapped down to thephysi
al resour
es of the target ar
hite
ture. This may involve grouping taskstogether and s
heduling their exe
ution on the same pro
essor.� Managing pro
ess intera
tion is not just a matter of writing a number of sequentialthreads of 
ode. These threads will normally have to 
ooperate in some way.� When ensuring program 
orre
tness, as parallel programming is more 
omplexthan sequential programming, there are more things than 
an potentially 
auseerrors. While verifying the 
orre
tness and proper working of sequential softwareis demanding enough, doing the same for parallel software is mu
h harder.2.2.2 Classi�
ation of Parallel ModelsThe 
lassi�
ation is based on how di�erent models 
ontrol parallelism. A brief des
rip-tion of some of the 
urrent models will be given, along with di�erent ideas presented
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hieve parallelism. Parallel programminglanguages has been 
lassi�ed by Skilli
orn [1℄ into six 
ategories:1. Models that abstra
t from parallelism 
ompletely. Su
h models are fully impli
itand des
ribe only the purpose of a program and not how it is to a
hieve thispurpose.2. Models in whi
h parallelism is made expli
it, but de
omposition of programs intothreads, mapping, 
ommuni
ation, and syn
hronisation are made impli
it.3. Models in whi
h parallelism and de
omposition are expli
it, but mapping, 
om-muni
ation, and syn
hronisation are impli
it.4. Models in whi
h parallelism, de
omposition, mapping are expli
it, but 
ommuni-
ation , and syn
hronisation are impli
it.5. Models in whi
h parallelism, de
omposition, mapping, 
ommuni
ation are ex-pli
it, but syn
hronisation is impli
it.6. Models in whi
h every thing is expli
it.Impli
it Parallelism.Impli
it parallelism (1) is automati
ally exploited by the 
ompiler and the run-timesupport system [15℄. The programmer does not have to spe
ify parallelism expli
itlyusing spe
ial language 
onstru
ts, 
ompiler dire
tives, or library fun
tion 
alls. The un-derlying system is hidden from the user, whi
h shields programmers from the in
reased
omplexity of parallelism and shifts the burden to the 
ompiler writer [13℄. The mostpopular approa
h of impli
it parallelism is automati
 parallelisation of sequential pro-grams. The advantages of the impli
it parallelism approa
h are that existing sequential
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an be reused for parallel 
omputers. Programmers familiar with sequentiallanguages do not need to know about parallel programming or parallel ar
hite
turesto exploit their parallelism. In addition, it is easier to understand the semanti
s ofimpli
it programs than of expli
it ones. Id [16℄ is one example of impli
it parallelprogramming languages.It designed by members of the Computation Stru
tures Groupin MIT's Laboratory for Computer S
ien
e, and is used for programming data
ow andother parallel ma
hines. Id programs are impli
itly parallel to a very �ne grain.Semi-Impli
it ParallelismIn semi-impli
it parallelism (2-5), the programmer is required to insert annotationsinto a program to tell the 
ompiler where a potential parallelism is useful. Theseannotations are used to 
ontrol the parallel behaviour of the program but they hidein their implementation all low level details. An example of this approa
h is GpH.GpH uses a par and seq 
ombinator to exploit parallelism in the program [17℄. Theapproa
h exploits data parallelism by performing a high order fun
tion on all elementsof a large data stru
ture at the same time [18℄.Skeleton ParallelismCole [19℄ has proposed to use skeleton algorithmi
 as a te
hnique to parallelise fun
-tional languages and program parallel ma
hines. The idea is 
apture 
ommon patternsof parallel 
omputation in Higher Order Fun
tions (HOFs). The 
ommon parallel 
oor-dination is hidden from the programmer, only HOFs are used to introdu
e parallelism.The major advantage of skeletons is the portability of parallel programs written usingthis approa
h. This results from the separation of meaning behaviour for ea
h skeleton.



CHAPTER 2. BACKGROUND 15Coordination LanguagesCaliban is one of the most known fun
tional 
oordination language introdu
ed by PaulKelly. The Caliban 
oordination language provide 
ontrols to stati
ally map the paralleltasks to the pro
essors. Caliban is an annotation me
hanism whi
h spe
i�es how aHaskell program is exe
uted in parallel [20℄. Other approa
hes su
h as Linda introdu
ea 
ompletely new 
oordination language layer that 
ontrols the dynami
 exe
ution ofsequential program fragments written in a 
onvebtional programming language.Expli
it Parallelism.In expli
it parallelism (6), the programmer informs the 
ompiler where parallel evalu-ation should take pla
e. Here the main responsibility of expli
it parallel programmingis put ba
k onto the programmer, whose skill and knowledge is instrumental to theeÆ
ien
y of the parallel implementation. High-level data-parallel languages su
h asHigh Performan
e Fortran (HPF) [21℄ and Fortran D [22℄, o�er a simple and portableprogramming model for parallel, s
ienti�
 programs. In su
h languages, programmersspe
ify parallelism abstra
tly using data layout dire
tives, and a 
ompiler uses thesedire
tives as the basis for synthesising a program with expli
it parallelism and inter pro-
essor 
ommuni
ation and syn
hronisation. In Hudak's para-fun
tional programmingthe programmer 
an s
hedule expressions to be evaluated sequentially or in parallel,and even spe
ify on whi
h pro
essor a given expression should be evaluated.
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hite
ture Independen
eTwo approa
hes to introdu
ing expli
it parallelism are by using libraries or by addinglanguage extensions. One of the ar
hite
ture independent approa
hes is a parallel pro-gram whi
h uses the standard pro
edure libraries su
h as MPI, PVM, and OpenMP [23℄.These libraries are widely used and run on almost all parallel platforms, be
ause theyare supported by ma
hine vendors. The pro
esses that 
ompose a parallel appli
ation
an run on di�erent ma
hines as part of the same program. To use these libraries theprogrammer must program all of the pro
ess de
omposition, pla
ement, and 
ommuni-
ations expli
itly. Another approa
h is by using the high level languages, some exam-ples of these are High Performan
e Fortran (HPF), parallel C++, Java, and De
larativelanguages, su
h as Glasgow parallel Haskell(GpH) [1℄.2.4 Ar
hite
ture Independent Languages.The popular 
lass is data parallel language. It is oriented mu
h more toward thema
hine than to the human programmer. These languages were simply abstra
tionsof the von Neumann organisation of the ma
hines on whi
h they were implemented.In 
ontrast, de
larative programming languages are 
laimed to be parti
ularly humanoriented [24℄. The 
hara
teristi
 of data parallel programming models is that the op-eration 
an be performed in parallel on ea
h element of a large regular data stru
ture,su
h as list or array. The program is a logi
ally single thread of 
ontrol, 
arrying outa sequen
e of either sequential or parallel steps [25℄.



CHAPTER 2. BACKGROUND 172.4.1 ZPL :A Ma
hine Independent Programming Language for Par-allel ComputerZPL [3℄ is one of the imperative data parallel languages. It provides high level semanti
sthat expli
itly represent parallel operations. The ZPL 
ompiler uses Ironman ma
hineindependent 
ommuni
ation interfa
e to provide a separation of 
on
erns. The 
ompilerdetermines what data to send and when it 
an legally be sent. Ma
hine spe
i�
 librariesthen spe
ify how to send the data, whi
h allows ea
h ma
hine to use the low levelme
hanism that is most suitable. In order to obtain eÆ
ient parallel performan
e onparallel 
omputer, ZPL a
hieves a good performan
e by exe
uting the program onsequential 
omputer similar to the GpH model.2.4.2 Parallaxis-III Ar
hite
ture-Independent Data Parallel Pro
ess-ingParallaxis-III [26℄ is imperative parallel language based on modula-2, extended by dataparallel 
on
epts. The language is fully ma
hine independent a
ross data parallel ar
hi-te
tures; as a result a program written in Parallaxis runs on di�erent parallel 
omputersystems. There is a Parallaxis simulation system with sour
e level, debugging andtools for visualisation and timing. Parallaxis 
ompilers 
an be used to generate parallel
odes for data parallel systems. The simulation environment allows both the study ofdata parallel fundamentals on simple 
omputer systems and the development of parallelprograms, whi
h 
an later be exe
uted on expensive parallel 
omputer systems. The
entral point of Parallaxis is programming on a level of abstra
tion with virtual PEs(pro
essor elements and virtual 
onne
tions). Moreover, in the algorithmi
 des
ription,every program in
ludes a 
onne
tion de
laration in fun
tional form. This means thatthe desired 
onne
tion topology is spe
i�ed in advan
e for ea
h program and 
an be
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 se
tion with symboli
 names instead of 
ompli
ated arith-meti
 index or pointer expressions. However, full-dynami
 data ex
hange operationsare also possible. Parallaxis provides two 
ompilers (seq.p3 and par.p3) to allow aprogrammer to examine her/his program on sequential and parallel ar
hite
ture.2.4.3 SAC Single Assignment CSAC [27℄ is a stri
t �rst-order fun
tional language with impli
it parallelism and impli
itthread intera
tion, optomised for array pro
essing. Array operations in Sa
 are basedon elementwise spe
i�
ations using so-
alled With-loops. These language 
onstru
tsare also well-suited for 
on
urrent exe
ution on multipro
essor systems.2.4.4 CoPaCoPa is a high-level language for pro
essing nested sets, bags, and sequen
es (a gen-eralisation of arrays and lists). CoPa in
ludes most features found in query languagesfor obje
t-oriented or obje
t-relational databases, and has, in addition, a powerful formof re
ursion not found in query languages. CoPa has a formal de
larative de�nitionof parallel 
omplexity, as part of its spe
i�
ation [28℄. CoPa a
hieves ar
hite
tureindependen
e by using a parallel ve
tor ma
hine model (BVRAM) whi
h supports the
omplexity-preserving 
ompilation of CoPa's high-level 
onstru
ts and eÆ
ient imple-mentation on a variety of ar
hite
ture. The language provides a logP simulator tomeasure the parallel aspe
ts, su
h as 
ommuni
ation 
ost.CoPa a
hieves the ar
hite
ture independen
e with a way similar to that in GpH; Fig-ure 2 shows a parallel 
ompilation te
hnique for CoPa. The BVRAM (Bounded Ve
torA

ess Ma
hine) provides support to the high level 
onstru
t and eÆ
ient implement-ability on di�erent ar
hite
tures.
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Figure 2: CoPa Complexity Preserving Compilation2.4.5 BSP ModelThe model un
ouples the two fundamental aspe
ts of parallel 
omputation 
ommuni
a-tion and syn
hronisation. This un
oupling is the key to a
hieving universal appli
abilitya
ross the whole range of parallel ar
hite
tures. BSP programs are written in supersteps whi
h are global operations of the entire ma
hine. Ea
h super-step 
onsists ofthree sequential phases: (1) a 
omputation phase in whi
h ea
h pro
essor 
omputeswith lo
ally-held values, (2) a 
ommuni
ation phase in whi
h 
ommuni
ation betweenpro
essing elements takes pla
e, and (3) a barrier syn
hronisation. Transferred data isnot visible to the programmer 
ode at its destination until after the barrier syn
hroni-sation ends the super step in whi
h it was transferred [29℄.2.5 Ar
hite
ture Independen
e Using De
larative Program-ming Languages.De
larative Programming languages, in
lude the logi
 and fun
tional languages. Theyare 
hara
terised by a very high level of abstra
tion. This allows the programmer tofo
us on what the problem is and o�ers many 
lear details of how the problem shouldbe solved. De
larative languages have opened new doors to automati
 exploitation
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using on a high level des
ription of the problem and theirmathemati
al nature have turned into positive properties for impli
it exploitation ofparallelism [30℄.In logi
 programming, all parallelisation is performed by the 
ompiler, withoutany details being supplied by the programmer. The possibility of shared variables indi�erent sub goals makes parallelisation more diÆ
ult. Impli
it parallelism 
an be sub-divided into AND and OR parallelism. OR-parallelism involves mat
hing a single goalto many 
lauses simultaneously. AND-parallelism involves the simultaneous resolutionof several goals in a 
lause [24℄. This thesis does not dis
uss the logi
 programmingfurther.2.6 Fun
tional ProgrammingIn this se
tion the advantages of fun
tional programming and how parallelism is a
hievedin fun
tional programming, in parti
ular the GpH Glasgow parallel Haskell model, willbe dis
ussed.2.6.1 Theoreti
al roots and history of fun
tional programming lan-guages.This se
tion is based on Peyton Jones, Plasmeijer ,and Lisper [31, 32, 33℄. Fun
tionalprogramming is based on the Lambda Cal
ulus a bran
h of logi
, developed in the20's and 30's. The Lambda Cal
ulus is a simple formal language of fun
tions, andthe �rst developments were by S
hon�nkel (1924), and Curry (1930): they de�neda variation 
alled 
ombinatory logi
. Chur
h(1932/1933) [34℄ then de�ned the �rstversion of the a
tual Lambda Cal
ulus. These early logi
ians had no intention tode�ne a programming language.
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tional language has de�ned by M
Carthy de�ned around 1960 [35℄. Inthe late 1970's, Ba
kus de�ned the FP language [36℄. The important idea in FP is thestandard set of higher order fun
tions whi
h take fun
tions as arguments or return themas results. Around the same time, resear
hers at University of Edinburgh de�ned theML language ("Meta-Language"), with polymorphi
 type inferen
e and a sophisti
atedmodule system.In the early/mid 1980s a number of lazy fun
tional languages were developed, su
has MIRANDA [37℄ and LML [38℄. Lazy or non-stri
t languages try to defer evaluation ofexpressions until the result is needed. Haskell [39℄ was de�ned in 1990 as the standard,non-stri
t, higher order fun
tional language. It 
ontains many of the features fromearlier fun
tional languages, su
h as higher order fun
tions, type inferen
e, and non-stri
t semanti
s.2.6.2 Fun
tional Languages for Parallelism.Fun
tional programming style is similar to the data 
ow model inasmu
h as programsare built of blo
ks that transform input to output without side-e�e
ts. These blo
ks are
alled fun
tions and originate from the mathemati
al idea of a fun
tion. The propertiesof pure fun
tions ensure that rewriting does not in
uen
e the result of 
omputations.Therefore, automati
 optimisation parallelisation and transformation for optimisationon 
omputation are possible and parallelisation are possible.Fun
tional languages are general purpose, high level programming languages sup-porting programming at a higher level of abstra
tion than 
onventional imperativelanguages like FORTRAN and C. Programming in fun
tional languages is a de
lara-tive a
tivity whi
h involves spe
ifying only what is to be 
omputed, while imperativeprogramming spe
i�es also the order of the 
omputation steps.
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tion between modern fun
tional languagesand their imperative language with the same properties is that the former do not allowassignments (i.e., destru
tive updates) to memory lo
ations. Alternatively, fun
tionallanguages use only de
larations (whi
h are te
hni
ally di�erent from single assignments)whereby a variables value in a program, on
e de
lared, does not 
hange. The la
k ofassignments fa
ilitates higher level programming sin
e the 
on
ern of programming isseparated from that of low level housekeeping of re
y
ling memory lo
ations enfor
edby repeated assignments. The absen
e of assignments in fun
tional languages servesas an important prerequisite whi
h 
onfers on these languages a useful mathemati
alproperty. This property ensures that sin
e there are no side-e�e
ts, the value of an ex-pression in a program depends only on the values of its synta
ti
ally 
orre
t 
onstituentexpressions and not, for example, on the order in whi
h the expressions are evaluated.Fun
tional languages are often 
lassi�ed a

ording to their semanti
s, into stri
t,non-stri
t and lenient. Eager evaluation is usually used to implement stri
t semanti
swhile lazy evaluation is the implementation te
hnique often used to implement non-stri
t semanti
s. The Third (Lenient) evaluation 
ombines non-stri
tness with stri
tevaluation.A fun
tion is stri
t if it depends on its argument. A non-stri
t fun
tion is a partialfun
tion that may be de�ned even when one of its arguments is not de�ned. Lazyevaluation starts evaluating the fun
tion body, evaluating the fun
tion's arguments onlyas and when they are used. Lenient evaluation starts the evaluation of the fun
tionin parallel with the evaluation of all the arguments of the fun
tion, and it supportsfun
tions whi
h return results even when their 
omputation may not terminate.Fun
tional languages provide higher order fun
tions. One 
ommon example ofhigher order fun
tions is a fun
tion whi
h maps another fun
tion over a list. In prin
iple
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h list element may be pro
essed in a separate pro
essor. So the programmer needonly provide new argument fun
tions to introdu
e parallelism [41℄.2.6.3 NESLNESL is one of the most su

essful parallel fun
tional languages. It is a stri
t, strongly-typed, data-parallel language with impli
it parallelism and impli
it thread intera
tion.It has been implemented on a range of parallel ar
hite
tures, in
luding several ve
tor
omputers. NESL fully supports nested sequen
es and nested parallelism, and has theability to take a parallel fun
tion and apply it over multiple operations over the data.NESL is loosely based on ML fun
tional language. The most important parallel fea-ture in NESL is the apply-to-ea
h 
onstru
t. This 
onstru
t uses a set-like notation.NESL also provides a performan
e model for 
al
ulating the asymptoti
 performan
eof a program on various parallel ma
hine models. This is useful for estimating run-ning times of algorithms on a
tual ma
hines. The NESL 
ompiler 
ompiled the NESL
ode to an intermediate ve
tor 
ode (VCODE) format. The ve
tor instru
tions in thislanguage-independent VCODE format are then mapped to a library of low-level, ar-
hite
ture spe
i�
. NESL uses a method based on asyn
hronous pro
essor groups toredu
e 
ommuni
ation and a run-time load-balan
ing system to 
ope with dynami
data distributions. This is done by translating the user's algorithm into ANSI C withMPI 
alls, and linking this 
ode with an MPI (Message Passing Interfa
e) library [42℄.By using the performan
e model provided the programmer 
an tune his appli
ation toa
hieve better performan
e on di�erent ar
hite
tures.
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oordinates parallel 
omputations using expli
it pro
ess 
reation and inter-
onne
tion, enabling the programmer to de�ne arbitrary pro
ess networks. Threadintera
tion 
an be either impli
it, via shared variables and fun
tion parameters on pro-
ess 
reation time, or expli
it via 
ommuni
ating parameters to pro
esses during thepro
ess life time. The language uses a 
losed system model with lo
ation independen
e.The programmer typi
ally starts with a spe
i�
 pro
ess network in mind and modelsthis network using expli
it pro
esses. Evaluation strategies may also be required. Edeno�ers more possibilities for tuning the parallel performan
e.2.7 HaskellHaskell is named for Haskell Brooks Curry, whose work in mathemati
al logi
 serves asa foundation for fun
tional languages. Haskell is a non-stri
t purely fun
tional languagebased on lambda 
al
ulus, designed by representatives of the fun
tional programming
ommunity. The motivation for Haskell was the uni�
ation of fun
tional programmingthrough the introdu
tion of a standard, widespread, modern language. Haskell is astrongly typed language with a ri
h type system. As in all fun
tional language, 
om-putations are performed only by expressions. Every expression has a type. Primitivedata types supplied by the language in
lude: integers, reals, 
hara
ters, lists, enu-merations, tuples, and various fun
tion mappings. Haskell language implementationsperform stati
 type 
he
king prior to exe
ution. Haskell fun
tions are de�ned as map-pings between parts of the type spa
e. Composition, 
urried fun
tions, lambda forms,and higher-order fun
tions are supported. Haskell uses lazy evaluation. It also permitsde�nition of operators as fun
tions (operator overloading), a 
onvenien
e feature that
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tional programming systems [44, 45℄.2.7.1 GpH Parallel Fun
tional LanguageGpH [41℄ is a parallel fun
tional language, whi
h extends the GHC 
ompiler of thestandard non-stri
t fun
tional language Haskell, with two new 
ombinators in order tospe
ify parallelism. GpH is a semi impli
it approa
h. The 
ompiler and runtime systemmanage most of the parallel exe
ution. The programmer requires only to indi
ate thoseexpressions that 
an be evaluated in parallel.2.7.2 Parallelism in GpH.Parallelism is introdu
ed in GpH by the par 
ombinator, whi
h takes two argumentsthat are to be evaluated in parallel. A par expression is not restri
ted to its arguments;the �rst argument is sparked (
reate a thread to evaluated the �rst argument) whilethe se
ond argument 
ontinues to be evaluated by another parallel thread. Also, GpHhas a seq 
ombinator whi
h is stri
t on both its arguments; it evaluates its �rst ar-gument to WHNF(Weak Head Normal Form) and then dis
ards it and returns its se
ondargument. An expression is in WHNF if and only if it has no top-level redu
able expres-sion, i.e the expression may 
ontain inner expressions 
an be redu
ed [31℄. The defaultevaluation degree in Haskell is WHNF. The seq 
ombinator is needed as [14℄ said: �rst,for stri
t operators whose order of argument evaluation must be 
hanged; se
ondly, the
ombinator may be used for evaluating data stru
tures further than WHNF. Sometimesthe par 
ombinator produ
es too small tasks whi
h are not useful; in this 
ase the seq
ombinator is used to generate useful tasks for parallel exe
ution; thirdly, it is ne
essaryto 
hange the behaviour of par to be stri
t in both arguments, like newpar x y = pary ( seq x y ).
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par :: a ! b ! b --parallel 
ompositionseq :: a ! b ! b --sequential 
ompositiontype Strategy a = a ! () --type of evaluation strategyusing :: a ! Strategy a ! a --strategy appli
ationusing x s = s x `seq` xrwhnf :: Strategy a --redu
tion to weak head normal form
lass NFData a where -- 
lass of redu
ible typesrnf :: Strategy a -- redu
tion to normal formFigure 3: Basi
 Coordination Constru
ts in GpHparList :: Strategy a ! Strategy [a℄parList strat [℄ = ()parList strat (x:xs) = strat x `par` parList strat xsparMap :: Strategy b ! ( a ! b) ! [a℄ ! [b℄parMap strat f xs = map f xs `using` parList stratFigure 4: The parList & parMap Parallel Strategies2.7.3 Evaluation Strategies in GpHThe evaluation strategies model provided allows the programmer to split the fun
tionde�nition into two parts: the algorithm and the evaluation. This is a
hieved by us-ing lazy higher-order fun
tions. The lazy higher-order fun
tions 
learly separate thetwo 
on
erns of spe
ifying the algorithm and spe
ifying the program's dynami
 be-haviour [41, 46, 5℄ .The Strategy fun
tion spe
i�es the dynami
 behaviour required when 
omputinga value of a given type. A strategy on a value of type a is a fun
tion from a to thenullary value () exe
uted purely for e�e
t, and the null value is returned to indi
ate
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ompletion. The using 
onstru
t applies a strategy to a Haskell expression. The basi
strategy rwhnf redu
es an expression to weak head normal form WHNF, the default inHaskell. The overloaded strategy rnf redu
es an expression to normal form (NF), i.e.
ontaining no redu
tions. As there are types that are not redu
ed to normal formin Haskell, e.g. fun
tion types, rnf is restri
ted to types that are redu
ed to normalform by the NFData 
lass whi
h is instantiated for all major types. Be
ause strategiesare simply fun
tions they 
an be 
ombined, or passed as parameters using standardlanguage 
apabilities. Figure 3 shows the basi
 operation over strategies.Data-Oriented Parallelism Strategies spe
ifying data-oriented parallelism des
ribethe dynami
 behaviour in terms of some data stru
tures. For example, it provides theparList fun
tion whi
h applies the strategies to every element in parallel. Also, a parMapis a data parallel fun
tion whi
h applies its fun
tion argument to every element of a listin parallel. The strat parameter determines the dynami
 behaviour for ea
h elementof the result list. Figure 4 shows the 
ode for both parList and parMap strategies.2.8 GpH Compilers and ToolsThere are many tools used to develop an appli
ation written in GpH. These tools and
ompilers are summarised in the following paragraphs as stated in [46℄.2.8.1 The Hugs and GHCI InterpreterHugs [47℄ and GHCI provide an intera
tive environment for fast program development.They allow the programmer to experiment and debug her/his sequential program. Also,they have the ability to mix interpreted modules with 
ompiled modules [48℄. In afun
tional language all 
onstru
ts in a program are expressions with deterministi
 value.
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ts from 
alling otherfun
tions are possible. Su
h properties permit examining the values of 
ertain programexpressions and testing individual sub-fun
tions in isolation. This 
an be done using theHugs Interpreter. Hugs and GHCI were used to produ
e the initial sequential programin se
tion 4.2.2.8.2 The GHC Compiler and Sequential Runtime System.GHC [49℄ is an optimising 
ompiler for the non-stri
t purely fun
tional language Haskell.It in
ludes di�erent analysis phases that supply information about the program be-haviour to the optimisation phase. In GpH parallel programming, the obtained se-quential optimising program is used in order to a
hieve parallelism. The only 
hangerequired is to add strategies into sequential program. The GHC 
ompiler was used for
ompiling the di�erent sequential versions of geneti
 program (see Se
tion 4.4 for moredetails).2.8.3 GUM Parallel Runtime SystemGUM [17℄ is a portable, parallel implementation of the Haskell fun
tional language.It is message-based, and portability is fa
ilitated by using the PVM 
ommuni
ationsharness that is available on many multi-pro
essors. As a result, GUM is availablefor both shared-memory (Sun SPARCserver multipro
essors) and distributed-memory(networks of workstations) ar
hite
tures. GUM uses an unmodi�ed version of GHCto generate an optimised 
ode. The two additional 
onstru
ts seq and par spe
ifythe evaluation order and generate parallelism. GUM automati
ally manages manyof the parallel aspe
ts of a GpH program, in
luding work and data distribution anddistributed garbage 
olle
tion. GUM's load balan
ing me
hanism allows a high amount



CHAPTER 2. BACKGROUND 29of potential parallelism and distribution of the potential work in the form of sparks.On
e a spark has been turned into a thread, or been a
tivated, the thread will remainon this PE. Sparks are generated via exe
uting the par primitive on a CPU and addedto the spark pool. Initially all pro
essors, ex
ept for the main PE, will be idle, withno lo
al sparks available. The Idle PE sends a FISH message to a randomly 
hosenPE. On arrival of this message, the PE will sear
h for a spark and, if available, sendit to the requesting PE. This me
hanism is usually 
alled work stealing or passive loaddistribution.2.8.4 Time and Spa
e Pro�lersThe lazy evaluation me
hanism in Haskell may 
ause some data stru
tures not to beevaluated, or it may retain big data stru
tures whi
h are not used. This is 
alled a spa
eleak, a 
ommon problem in non-stri
t languages. In order to deal with this problem,theGHC [50℄ 
ompiler supports a performan
e-tuning of the sequential program using timeand spa
e pro�lers. The pro�lers allow the programmer to assign a 
ost 
entre to anyexpression of the sour
e 
ode; thereby he/she knows the 
omputation 
ost and heapusage. For example Figures 12 and 15 in Chapter 4 in
lude the spa
e pro�les for thegeneti
 alignment program. The time pro�ler allows the programmer to assign a 
ost
entre to any expression within the fun
tions to see its 
ost. For example Figure 20 inChapter 5 in
ludes a partial from the time pro�le of the �nal sequential version of thegeneti
 alignment program.



CHAPTER 2. BACKGROUND 302.8.5 GranSim SimulatorGranSim [6℄ is a highly-parameterised simulator whi
h allows the programmer to sim-ulate di�erent parallel ar
hite
tures. GranSim is a tool for a
hieving ar
hite
ture-independen
e. By providing an idealised as well as an a

urate model of parallel ar
hi-te
tures, GranSim has proved to be an essential part of an integrated parallel softwareengineering environment. The idealised simulation hides all details of the underlyingparallel ar
hite
ture (see se
tion 5). A

ording to the amount of parallelism a
hievedfrom the idealised stage, the programmer takes her/his de
ision either to perform therealisti
 stage or not. Chapter 6 des
ribes the use of the GranSim simulator to emulatespe
i�
 ar
hite
ture.There are number of run-time options parameters provided by the simulator. Theparameters used by the thesis are as follows:-bP This option 
ontrols the generation of a GranSim pro�le. The overall a
tivitypro�le shows the a
tivity of the whole ma
hine by separating the threads into up to �vedi�erent groups, running threads, runnable threads, blo
ked threads, fet
hing threads,migrating thread-bpn Spe
i�es the number of pro
essors to simulate. The value of n must be lessthan or equal to the word size on the ma
hine (i.e. usually 32). If n is 0 GranSim-Lightmode is enabled.-bp: Enable GranSim-Light (same as -bp0). In this mode there is no limit on thenumber of pro
essors and no 
ommuni
ation 
osts are re
orded.
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y in the system to n ma
hine 
y
les. The default value is 1000
y
les.-bmn Set the overhead for message pa
king to n ma
hine 
y
les. This is the overheadfor 
onstru
ting a pa
ket independent of its size.2.8.6 Visualisation ToolsVisualisation tools are more important for understanding the dynami
 behaviour of theparallel program. By using the visualisation tools, the log �le from the simulator andGUM 
an be used to generate a number of graphi
al graphs 
ontaining informationabout exe
ution of the program [48℄. For example Figure 23 in Chapter 5 in
ludes theidealised a
tivity pro�le of the geneti
 alignment program.



Chapter 3
A Multiar
hite
tureDevelopment Methodology
This 
hapter des
ribes the new methodology for writing multi-ar
hite
ture programsand gives a des
ription of a program development for multiple ar
hite
tures.3.1 OverviewParallelism in GpH is semi-expli
it; only small amounts of 
ode are required to des
ribethe parallelism in the program. In addition, strategies allow the programmer to spe
ifythe 
oordination at high level, and separate the algorithm and the 
oordination. Theseproperties fa
ilitate the task of parallel programming and 
hanging to a new ar
hi-te
ture. Consequently, a programmer 
an start her/his program without any expli
itparallelism, so she/he 
an develop and test it in a sequential environment. Then thestrategies are inserted to the sequential version to produ
e parallel versions.

32
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tureApproximately two dozen non-trivial GpH parallel programs have been developed, fornumber of ar
hite
tures [46, 51, 5℄, and Trinder and Loidl have proposed a GpH multiar
hite
ture programming methodology as result of this experien
e. The methodologyis summarised in Figure 5, where ea
h node is a program/virtual ma
hine pair. Theprogram development has two phases: an ar
hite
ture-independent phase, that developsadequate parallelism on a simulated idealised ma
hine. Experien
e has shown that mostof the development work is done in this phase. The ar
hite
ture-dependent phase tunesthe parallel program for a spe
i�
 ar
hite
ture [46℄.
Initial Sequential Program 

Sequential Program 

Optimised Sequential Program 

Initial Parallel program 

Idealiesd Parallel Program 

Specialised  Parallel Program 

Specialised & Optimised Parallel
Program 

Parallel Program 

Specialised  Parallel Program 

Specialised & Optimised Parallel
Program 

Parallel Program 

Debugging 

Tune sequential algorithm, 

Derive etc add strategies 

GranSim −Light tune parallel algorithm 

Gransim 
tune for architecture 1 

Gransim 
tune for architecture 2 

Gransim tune parallel algorithm 
Gransim 

GUM Parallel execution Parallel execution GUM

tune parallel algorithm 

 Architecture Dependent  Phase 

 Architecture Indpendent Phase 

 Hugs + GHC 

Profilers

Figure 5: The Multi-Ar
hite
ture Program Development Model



CHAPTER 3. A MULTIARCHITECTURE DEVELOPMENT METHODOLOGY343.2.1 Initial Sequential StageIn this stage the programmer writes a sequential version of the program and may need todebug it using the Hugs or GHCI interpreter [47, 50, 45℄. As des
ribed in Se
tion 2.8.1both interpreters provide fast intera
tive environment development tools. The outputfrom this stage is a 
orre
t sequential program.3.2.2 Sequential OptimisedIn this stage, pro�ling tools, in
luding spa
e and time pro�les are used to obtain infor-mation about the program behaviour, in
luding the total exe
ution time, the allo
ationand residen
y, often itemised by individual fun
tion. Based on that information theprogram is tuned to produ
e an optimised sequential version. The output from thisstage is an optimised sequential program.3.2.3 Idealised Simulation StageIn this stage, the evaluation strategies are added in order to expose parallelism in theprogram. The insertion of the strategies will be based on the information obtainedfrom the optimised version.The initial parallel version is measured using the GranSim [6℄ simulator parame-terised to emulate an idealised ma
hine with, e.g. an in�nite number of pro
essors, andzero 
ommuni
ation 
osts. The parallel program will be tuned until it shows a goodparallel performan
e.The primary advantage of using an idealised ma
hine is that it is known that poorparallelism is inherent, and not an artifa
t of some spe
i�
 ar
hite
ture. If good paral-lelism 
annot be a
hieved on the idealised ma
hine it 
annot be obtained on any realma
hine. The output from this stage is an initial parallel version of the program.
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 Simulation StageIn this stage, the parallelism is tuned for a target ar
hite
ture. The tuning again usesthe pro�ling suite, but now the simulators are parameterised to emulate the targetar
hite
ture. The parameters spe
ify details su
h as number of pro
essors, messagelaten
y, thread 
reation overheads, all in terms of ma
hine 
y
les, an abstra
t timemeasure. Typi
al 
hanges during this stage are to adapt the parallelism to the 
har-a
teristi
s of the target ar
hite
ture; for example thread granularity might need to bein
reased to o�set 
reation overheads and message laten
y. The idealised program ismeasured using the GranSim simulator, but here the simulator is parameterised toemulate the target ma
hine. It is often ne
essary to remove some strategies from theidealised program to obtain good performan
e on a simulated realisti
. The output ofthis stage is parallel program tuned for a spe
i�
 ar
hite
ture.3.2.5 Target Ar
hite
tureThe �nal stage is to measure and tune the program on the target ar
hite
ture using theGUM runtime system and pro�ling tools [48℄. The experien
es of developing parallelprograms using GpH indi
ate that this stage typi
ally requires few 
hanges [46℄. Nor-mally the simulated results are a good approximation to the parallel behaviour underGUM [17℄. Typi
al 
hanges during this stage are to adapt the I/O, or to utilise spe
i�
system 
alls on the target ar
hite
ture. The output of this stage is a parallel programon spe
i�
 ar
hite
ture.
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ement of Ar
hite
ture Independent Enhan
e-ment in GpHThe author proposes a new model involving the underlaying ar
hite
ture parameterswhen it generates the potential parallel tasks. The parameters that may be involvedare the number of available pro
essors, system laten
y and the 
lo
k speed. Se
tion 8will des
ribe the proposed model in detail.3.4 Other MethodologiesThere have been few robust parallel fun
tional languages, and hen
e relatively fewlarge parallel fun
tional programs developed. As a results there are few developmentmethodologies for parallel fun
tional programming. Two fundamental methodologiesrelated to fun
tional programming that have been proposed and explored are BMFby Pepper [52℄ and APMs by O'Donnell [53℄. Both methodologies are derivational:the parallel program is derived from a high level spe
i�
ation but typi
ally, the resultof the derivation is not a parallel fun
tional program, but rather C with MPI or aparallel hardware spe
i�
ation. CSP introdu
ed by Hoare provides a general skeletonfor parallel programs and it allows a

urate analysis of 
orre
tness and performan
eissues. It provides annotation whi
h has a good interfa
e between the 
ommuni
atingsystem and a theoreti
al framework [54℄. CSP may be used for parallel fun
tionalprogramming.The methodology des
ribed in this thesis provides a systemi
 manner to write aparallel program fun
tional for di�erent ar
hite
tures. The result from methodology isparallel fun
tional program.



Chapter 4
Sequential Implementation
This 
hapter des
ribes the problem sele
ted for implementation using the multiar
hi-te
ture development methodology, and the sequential implementation of the algorithm.It will also des
ribe the sequential time and spa
e tuning of the program.4.1 Problem Des
ription4.1.1 A Geneti
 Alignment AlgorithmThe program developed for several parallel ar
hite
tures aligns sequen
es of geneti
material (RNA) from related organisms and has been des
ribed in [55, 56℄. The aim of
reating the alignment is to study the similarities and di�eren
es in sets of sequen
es.An alignment of these sequen
es allows a biologist to extra
t a fairly a

urate guessabout how these organisms relate in the tree of evolution. The alignment of a set ofRNA sequen
es entails lining up the sequen
es with 
orresponding se
tions dire
tlyabove one another. In order to a
hieve the alignment, indel (for in inserted, or deldeletion ) are added to them [57℄ as shown in Figure 6. The "-" 
hara
ter in the �gurerepresents the indel 
hara
ters. 37
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Input sequen
esAUGCGAGUCUAUGGCUUCGGCCAUGGCGGACGGCUCAUUAUGCGAGUCUAUGGUUUCGGCCAUGGCGGACGGCUCAUUAUGCGAGUCUAUGGACUUCGGCCAUGGCGGACGGCUCAGUAUGCGAGUCAAGGGGCUCCCUUGGGGGCACCGGCGCACGGCUCAGUAligned output sequen
es.AUGCGAGUCUA-----------UGG-CUU-------CGGCCAUGGCGGACGGCUCAUU--AUGCGAGUCUA-----------UGGACUU-------CGGCCAUGGCGGACGGCUCAUU--AUGCGAGUCUA-----------UGG--UUU------CGGCCAUGGCGGACGGCUCA--GUAUGCGAGUC-AAGGGGCUCCCUUGG-----GGGCACCGGC----GC--ACGGCUCA--GUFigure 6: Input Sequen
es and the Aligned Output Sequen
es

Pin res_righht res_left 

res_unpinnedchFigure 7: Final Alignment Figure.Alignment Algorithm. The input to the program is a set of amino-a
id fA,C,G,UgSequen
es. The alignment algorithm is based on the notion of 
riti
al subsequen
es:a subsequen
e of a single sequen
e that o

urs only on
e within the sequen
es. Whena 
riti
al subsequen
e o

urs in two or more sequen
es, the set of o

urren
es is 
alleda Pin. To 
ompute the Bestpin all the 
riti
al subsequen
es from ea
h sequen
e mustbe generated, and then the 
riti
al substrings with the highest number of o

urren
esare sele
ted. If more then one substring being sele
ted as pin, the pin 
losest to themiddle will be sele
ted. The following steps are employed to align a set of sequen
es:1. Compute a set of pins for the sequen
es to be aligned. Lo
ate the best pin whi
hhas the maximum number of o

urren
es.2. Conne
t all pinned sequen
es with a best pin and pla
e it above the unpinnedsequen
es. This results in the original sequen
es being divided by the best pininto three regions ( left, right, and unpinned sequen
es). Figure 7 shows the �nal
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es. The pinned sequen
es are split by the best pinand pla
ed on top of the unpinned sequen
es as shown in Figure 7.3. Re
ursively align the left, right and unpinned sequen
es.4. Combine the pinned and unpinned alignment.4.2 Sequential ImplementationThe program 
onsists of three main fun
tions: align 
hunk, divide, and Bestpin,along with auxiliary fun
tions as depi
ted in Figure 8. The �gure shows the depen-den
es among the fun
tions in the implementation.The Align-
hunk Fun
tion aligns a set of sequen
es (
hunks) by attempting tosplit the 
hunk into three 
hunks using a pin: left and right pinned 
hunks and anunpinned 
hunk. These 
an be aligned independently and the three sub alignments are
ombined to produ
e the 
omplete alignment. It 
alls Bestpin to extra
t the best pin,then 
alls the divide fun
tion to split the three regions as des
ribed earlier. Figure 9shows the sequential 
ode of the align 
hunk fun
tion.The Bestpin Fun
tion takes the input sequen
es and extra
ts the best pin by 
allingthe fun
tions pla
ed under it: �rst, the (substring sequen
es) fun
tion generatesall sub strings from ea
h sequen
e, be
ause it performs an iteration over the inputsequen
es it is 
alled the outer loop; se
ond, the (Form pin)fun
tion 
omputes thenumber of o

urren
es of ea
h substring, be
ause it performs an iteration over thesubstring generated from ea
h sequen
e inside the (substring sequen
es) fun
tionit is 
alled the inner loop; third, the Extra
t max pin fun
tion sele
ts the pins whi
hhave the maximum number of o

urren
es; fourth, pin average distan
e 
omputes
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e of the input sequen
es and the distan
e between the sele
ted pinsand middle point of the input sequen
es. Figure 10 shows the sequential 
ode of theBestpin fun
tion.The divide Fun
tion takes the input sequen
es and best pin and splits the inputsequen
es using the best pin into three regions (left, right, and unpinned) by 
alling thesplitting sequen
es fun
tion. The divide fun
tion re
ursively 
alls align 
hunkfun
tion to align the generated regions independently. The pro
ess is 
ontinued untilno best pin 
an be found from any of three regions. The �nal step, the Combine is
alled to merge the alignment results from left, right and unpinned sequen
es. Figure 11shows the sequential 
ode of the divide fun
tion and 
alling diagram.4.3 Alignment ExampleThe following example shows how the algorithm working. The following input set ofsequen
es is given to the program.[[U,C,A,G,U℄[U,C,A,G,U℄,[U,C,A,U,U℄,[U,C,A,U,U℄℄The �rst fun
tion 
alled is Align 
hunkwhi
h takes the input and 
alls the Bestpin.1. The substring sequen
es generates all possible substrings from ea
h input se-quen
e as follows.[[U℄,[UC℄,[UCA℄,[UCAU℄,[UCAUU℄,[C℄,[CA℄,[CAU℄,[CAUU℄,[AU℄,[AUU℄,[U℄,[UU℄,[U℄℄[[U℄,[UC℄,[UCA℄,[UCAU℄,[UCAUU℄,[C℄,[CA℄,[CA,U℄,[CAU,U℄,[AU℄,[AUU℄,[U℄,[U,U℄,[U℄℄[[U℄,[UC℄,[UCA℄,[UCAG℄,[UCAGU℄,[C℄,[C,A℄,[CAG℄,[CAGU℄,[AG℄,[AGU℄,[G℄,[G,U℄,[U℄℄[[U℄,[U,C℄,[U,CA℄,[UC,AG℄,[UCAGU℄,[C℄,[CA℄,[CAG℄,[CAGU℄,[AG℄,[AGU℄,[G℄,[GU℄,[U℄℄
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es 
alls the From pin to 
ompute the pins. The follow-ing list shows partial from Pins list with its o

urren
e.[([UC℄,4),([UCA℄,4),([UCAU℄,2),([UCAUU℄,2),([C℄,4)..U℄,2),([AG℄,2),([AGU℄,2),([G℄,2),([GU℄,2)℄3. The extra
t max pins fun
tion extra
ts the pins whi
h has maximum o

ur-ren
e.[([UC℄,4),([A℄,4),([CA℄,4),([C℄,4),([UCA℄,4)℄
4. The longest pin fun
tion takes the output from extra
t max pins fun
tion andreturns the longest pin, in this 
ase UCA. The pin average distan
e fun
tion is
alled to 
ompute the distan
e between the middle of the sequen
e and the pinposition within the sequen
e. The output of pin average distan
e fun
tion is[([UCA℄,1)℄.5. The best pin pin fun
tion takes the output from pin average distan
e fun
-tion and returns the pin whi
h has minimum distan
e from the middle: UCA.6. The Divide fun
tion takes both the best pin and the input sequen
es and 
allsThe splitting sequen
es to split the input sequen
es into three sequen
es asfollows:Right sequen
es:[[GU℄,[GU℄,[UU℄,[UU℄℄



CHAPTER 4. SEQUENTIAL IMPLEMENTATION 42Left sequen
es: [[℄, [℄ , [℄, [℄℄, Right sequen
es: [[℄, [℄ , [℄, [℄℄,Unpinned sequen
es:[[℄, [℄ , [℄, [℄℄
7. The left, right, and unpinned sequen
es will aligned by re
ursive 
all of the dividefun
tion. In this 
ase only the right will be aligned.The steps from 1 to 6 will be repeated. So the se
ond best pin is [U℄.Right sequen
es[[℄,[℄,[U℄,[U℄℄Left sequen
es[[G℄,[G℄,[℄,[℄℄Unpinned sequen
es.[[℄, [℄ , [℄, [℄℄At this stage no best pin is found the 
ombine fun
tion is 
alled.8. The 
ombine fun
tion will 
ombine the result from aligning the right sequen
es.[[GU-℄[GU-℄,[-UU℄,[-UU℄℄9. In �nal stage it 
ombines all the results from left, right, and unpinned sequen
es.[[UCAGU-℄,[UCAGU-℄,[UCA-UU℄,[UCA-UU℄℄



CHAPTER 4. SEQUENTIAL IMPLEMENTATION 43
Function call chart  of Versions I,II, III 

Pin_value 

Locate _pin

Pin_average_distance

Pin_average_distance

Pin_average_distance’

Best_pin 

Best_pin’

Longest_pin 

Remove_suffix 

Remove_prefix 

Extract_max_pins 

Pin_occurrence

Form_pins

Critical

Substring_sequences 

Subseq 

Pin_occurrence’

top_level_bestpin 
1 2 3 4 5 6 7 8  9  10

Combine 

Cat_sequences 

Fun_align

Lead _function 

Right_chunk

Lift_chunk 

Unpinned_chunk

Aligin chunk 

Divide function 

Splitting _sequences 

Locate_pin 

Right_chunk’

Lift_chunk’

Locate_pin 

Locate _pin 

1      2       3                  4

Figure 8: Fun
tions Call Chart for Versions I,II,III.4.4 Sequential TuningThis se
tion des
ribes the steps taken to improve the sequential version of the alignmentprogram. In fa
t, there is no parti
ular rule to follow: the optimistions are presentedin the order they o

urred to the author. The generated heap pro�le whi
h 
ontainsinformation about the memory usage over time is useful for dete
ting the 
auses ofspa
e leaks, when the program holds on to more memory at run-time that it needsto. Spa
e leaks lead to longer run-times owing to heavy garbage 
olle
tor a
tivity, andmay even 
ause the program to run out of memory altogether. From the heap pro�le inFigure 12 the large 
onsumption of memory 
an be seen: the total allo
ated is 1034 Mbwith maximum residen
y 12.250 Mb. The most expansive fun
tion as seen from thegraph is the Bestpin fun
tion. To improve the program a series of �ve optimisationsis made and the following se
tions will des
ribe them.
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Align 
hunk :: [Sequen
e℄ ! [Sequen
e℄Align 
hunk [℄ = [℄Align 
hunk xs = fun align all reswherebest = Bestpin xs -- Find the best pin from xsall res = divide xs best -- Split and align the xs

Figure 9: The Align Chunk Fun
tion Sequential CodeBestpin :: [Sequen
e℄ ! -- List of input sequen
es.Pin --Best pin as output.Bestpin [℄ = [℄Bestpin xs = best pin pins diswhereall substring = substring sequen
es xs xspins = map fst( extra
t max pins all substring)extra
t longest pins = longest pin pinspins dis = pin average distan
e extra
t longest pins xsFigure 10: The Bestpin Fun
tion4.4.1 Development in Versions I, II and IIIIn version I the extra
t max pin fun
tion traverses the list 
ontaining the pins withtheir o

urren
es three times in order to �lter the pins holding a maximum numberof o

urren
es. Also the longest pin fun
tion traverses its given list three times inorder to extra
t the longest pin. While in version II both fun
tions were improved totraverse their given list just twi
e, Figures 13 and 14 show the modi�ed 
ode for boththe fun
tions.In version III the foldr high order fun
tion was employed to improve the extra
t max pinand longest pin fun
tions instead of using the a

umulative variable.
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divide :: [Sequen
e℄ ! -- List of input sequen
esPin ! -- Best pin[Sequen
e℄ -- List of aligned sequen
es.divide [℄ [℄ = [℄divide xs [℄ = xs -- this is represent the basi
 alignment to the sequen
edivide xs pin = (
ombine pin res left res right res unpin
h )where(right
h,left
h,unpin
h1) = splitting sequen
es pin xsunpin
h = lead fun
tion pin unpin
h1res unpin
h = align 
hunk unpin
hres right = align 
hunk right
hres left = align 
hunk left
h
ombine :: Pin ! [Sequen
e℄ ! [Sequen
e℄ ! [Sequen
e℄ ! [Sequen
e℄
ombine pin left seqs right seqs unpinned seqs= ( zipWith ( 
at sequen
e pin) left seqs right seqs)++ unpinned seqswhere
at sequen
e :: Sequen
e! Sequen
e! Sequen
e ! Sequen
e
at sequen
e pin ls rs = ls ++ pin ++ rs

.splitting_sequences  

align_chunk align_chunk align_chunk 

combine 

lead_function

XS :: [Sequence] pin  :: Sequence

divide  

liftch :: [Squence] 
rightch :: [Sequence] 

unpinch :: [Sequences] 

unpinch1 :: [Sequence]

pin 

pin .
.

Figure 11: Divide and Conquer Sequential Code and Diagram.
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g1 -hC 1,034,623,508 bytes x seconds Mon Apr  8 13:36 2002
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divide/lead_function

right_sequence/pined_chunk

Bestpin/extract_max_pins

Bestpin/substring_sequences

left_sequence/pined_chunk

lead_function/lead_function’

Bestpin/form_pins

divide/spliting_sequences

MAIN/main

spliting_sequences/right_sequence

align_chunk/divide

align_chunk/Bestpin

Bestpin/pin_occurence

MAIN/CAF

align_chunk/fun_align

divide/combine

spliting_sequences/left_sequence

main/mkRandom

Bestpin/critical

Figure 12: Heap Pro�le of Initial Version.-- This old 
ode for extra
t max pins fun
tionextra
t max pins :: [(Pin,Int)℄ ! [Pin℄extra
t max pins [℄ =[℄extra
t max pins xs = map fst ( filter (� (p,n)! n== max num) xs )wheremax num= maximum (map snd xs)-- A new 
ode for the extra
t max pins fun
tionextra
t max pins :: [(Pin,Int)℄ ! [(Pin ,Int )℄extra
t max pins [℄ =[℄extra
t max pins ((p,n):xss) =foldr (extra
t max pins') [(p,n)℄ xssextra
t max pins' :: (Pin ,Int)! [ (Pin,Int)℄ ! [(Pin,Int)℄extra
t max pins' (p,n) aa pin�((p',n'): )| n' > n = aa pin| n' == n = aa pin ++ [(p,n)℄| otherwise = [(p,n)℄
Figure 13: Old and New Code of Extra
t max pin Fun
tion.
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-- The old 
ode for longest pin fun
tionlongest pin :: [Pin℄![Pin℄longest pin [℄ = [℄longest pin xs = longest pin' m xswherem = maximum (map length xs )longest pin' m [℄ = [℄longest pin' m ( x:xs)| m == length x = x :longest pin' m xs| otherwise = longest pin' m xs-- The modified 
ode for longest pin fun
tionlongest pin :: [Pin℄! [Pin℄longest pin [℄ = [℄longest pin (xs:xss) =foldr (longest pin') [xs℄ xsslongest pin' :: Pin ! [Pin℄ ![Pin℄longest pin' pin xs�(pin': )| length pin' > length pin = xs| length pin' == length pin = (pin:xs)| otherwise = [pin℄Figure 14: Old and New Code of Longest pin Fun
tion.The modi�
ations made in versions II and III do not give a big improvement in
onsumption of memory. The heap pro�le obtained from both versions is similar to�gure 12, therefore is not in
luded here. The next step to improve the program is toeliminate some intermediate data stru
ture.4.4.2 Development of Versions IV and VThe 
hanges made to produ
e IV and V are intended to eliminate intermediate datastru
tures; e.g. an important optimisation is to eliminate the unpinned substrings at anearlier stage. In other words, when the substrings are generated from a single sequen
ethe program 
omputes the pin substrings before it generates the substring from othersequen
es. This means only the pin substrings are 
arried to the next stage. As a
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g5 -hC 707,552 bytes x seconds Mon Apr  8 13:24 2002
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locate_pin/locate_pin’

spliting_sequences/left_sequence

substring_sequences/form_pins

Bestpin/substring_sequences

main/mkRandom

substring_sequences/subseq

Figure 15: Heap Pro�le of the Final Sequential Version.result of the above modi�
ation, the total memory allo
ated dropped to 707.552 Kbwith maximum residen
y 122.70 Kb. Also the total exe
ution time was redu
ed to 18.92se
onds, 
omprising 17 se
onds real exe
ution time (MUT) of redu
tion and 2 se
ondsof garbage 
olle
tion (GC). Figure 15 shows the heap pro�le for the �nal tuning of thesequential stage. Figure 16 shows all modi�
ations are made on the 
ode of From pinin versions IV & V.4.4.3 Version VI using a Finite MapIn the �nal version a �nite map is employed to sear
h and eliminate the dupli
atedsubstring generated from the single string, and to eliminate the unpinned substringfrom the 
riti
al substring generated by the above step. The 
ode is shown in Figure17. This version gave some improvement in 
ode exe
ution time 
ompared with versions
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-- The old 
ode for form pins fun
tionform pins :: [[SubSequen
e℄℄ -> -- All substrings for input sequen
es[Pin℄ -- List of all Pinsform pins [℄ = [℄form pins (xs:xss) = [x | x <- xs , or [ x `elem` ys | ys <- xss℄ ℄-- The New 
ode for form pins fun
tionform pins :: [SubSequen
e℄ ! [Sequen
e ℄! [(Pin,Int )℄form pins [℄[℄ = [℄form pins[℄ ys = [℄form pins(x:xs) ys| num > 1 = (x,num): form pins xs ys| otherwise = form pins xs yswherenum = form pins' x ysform pins' :: SubSequen
e ! [Sequen
e℄ ! Intform pins' [℄ [℄ = 0form pins' m [℄ = 0form pins' m (x:xs)|((
he
k for snd appears == Nothing ) &&(
he
k for appears /= Nothing )) =1+ form pins' m xs|otherwise = form pins' m xswhere
he
k for appears = lo
ate pin m xwhere pin appears = pin value(
he
k for appears)reset of sequen
e = drop (where pin appears + length m ) x
he
k for snd appears = lo
ate pin m reset of sequen
eFigure 16: The Modi�ed Form pin fun
tion of Version IV & V.IV and V. However the garbage 
olle
tion time in
reased from 1.93s to 72.96s andthe residen
y rose from ) 0.123 Mb to 13.4 Mb. The rise is the result of the stri
tmap 
onstru
tion generation that takes the generation of all substrings from all inputsequen
es, and the holding of the unpinned 
riti
al substring until the stage where thepins are 
omputed.



CHAPTER 4. SEQUENTIAL IMPLEMENTATION 50time memoryVersion Mut GC total time % of GC time max residen
y total allo
ateI 120.1s 104.0 s 224.13 s 46.4 12520 Kb 141.8 MbII 121.28 s 100.8 s 222.10 s 45.4 12520 Kb 141.8 MbIII 119.08 s 100.8 s 219.92 s 45.9 12520 Kb 141.7 MbIV 37.27 s 6.52 s 43.80 s 14.9 123 Kb 1,349.0 MbV 16.98 s 1.93 s 18.92 s 10.2 123 Kb 369.5 MbVI 12.96 s 72.96 s 85.93 s 84.9 13400 Kb 128.05 MbTable 1: Sequential Pro�ling Summary4.4.4 Sequential Optimisation Dis
ussionTable 1 summarises most of the measurements of the sequential program versions,and the following observations are made: the time required to exe
ute the 
ode (Mut)reported in the se
ond 
olumn and the garbage 
olle
t (GC) time reported in the third
olumn.1. The �rst three versions perform massive memory allo
ation and have high resi-den
y, resulting in long exe
ution times, e.g 141.8 Mb and 120.1s, respe
tively.2. Good performan
e is obtained from version IV of the program 
ompared withversion III. From Table 1 the memory residen
y dropped to 123 Kb, and runtimeimproved to 43.80, a fa
tor of 5.02. This is the result of eliminating the unpinnedstrings at an earlier stage.3. Version V further improved the exe
ution time to 18.92s, with the same residen
y(0.123Mb), but less allo
ation 369.5Mb. The explanation for the improvement isthat the old version of the lo
ate pin fun
tion takes a single sequen
e and pinand �nds the position of the pin in the sequen
e by generating a substring whi
his equal to the length of the given pin. Then it 
ompares this substring with thepin; if they are equal it returns to the position, otherwise the fun
tion drops one
hara
ter from the sequen
e and repeats the pro
ess again. In the new versionea
h time the program drops one 
hara
ter from the sequen
e and 
he
ks if the



CHAPTER 4. SEQUENTIAL IMPLEMENTATION 51pin is pre�xed from it or not. If so it just returns to its position, otherwise its
ans the rest of the sequen
e.4. Version VI attempts to improve the exe
ution time by introdu
ing a �nite map,but the residen
y rose from 123 Kb to 13.4 Mb. The rise is the result of the stri
tmap 
onstru
tion generation that takes the generation of all substrings from allinput sequen
es, and the holding of the unpinned 
riti
al substring until the stagewhere the pins are 
omputed.From the �gures in Table 1 and the above dis
ussion it may 
on
luded that themost suitable version to parallelise is version V, and the next 
hapter des
ribes this.
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-- Old 
ode for the modified fun
tions-- Sequential 
ode for substring sequen
es fun
tionsubstring sequen
es :: [ Sequen
e℄ ! [ Sequen
e℄ ! [(Sequen
e,Int )℄substring sequen
es [℄ [℄ = [℄substring sequen
es [℄ ys = [℄substring sequen
es (x:xs) ys = nub res1whereres = subseq xres1= form pins res ys ++ substring sequen
es xs ysform pins :: [SubSequen
e℄ ! [Sequen
e ℄ ! [(Pin,Int )℄form pins [℄[℄ = [℄form pins[℄ ys = [℄form pins(x:xs) ys| num > 1 = (x,num): form pins xs ys| otherwise = form pins xs yswherenum = form pins' x ys-- New 
ode for the modified fun
tionssubstring sequen
es [℄ = [℄substring sequen
es (x:xs) =
riti
al substring++ substring sequen
es xswhereall substrings = subseq xfm of substring = list of substring fm all substrings
riti
al substring = 
riti
al fun
tion fm of substring-- This is to filter substrings whi
h o

urren
e on
e in FM.
riti
al fun
tion fm =filter ( x -> 
ase lookupFM fm x of Just n -> n==1)(keysFM fm)list of substring fm :: [SubSequen
e ℄ -> FiniteMap SubSequen
e Intlist of substring fm [℄ = emptyFMlist of substring fm xs = addListToFM C (+) emptyFM [(x,1) | x<-xs℄form pins :: FiniteMap SubSequen
e Int -> [(Pin ,Int)℄form pins ys = pins in listwherelist of 
ri substrings = 
riti
al fun
tion yspins in fm = delListFromFM ys list of 
ri substringspins in list = fmToList pins in fm

Figure 17: The Modi�ed Fun
tions to implement the Finite Map (Version VI).



Chapter 5
Idealised Measurement
5.1 Introdu
tionThere are several sour
es of parallelism in the geneti
 alignment program and this
hapter will des
ribe the �ve parallel versions of the program developed using them.The performan
e of ea
h version from the program is measured on the GranSimsimulator parameterised to emulate an idealised ma
hine with zero 
ommuni
ation 
ostsand an in�nite number of pro
essors. The input data in ea
h 
ase is a set of 6 sequen
es
ontaining 20 amino a
ids. For the last three versions a 
hunk of size 30 is used.divide xs ys = (
ombine pin res left res right res unpin
h )`demanding` strategywhere ...strategy =rnf res left `par`rnf res right `par`rnf res unpin
h

Figure 18: The Strategies Required for Parallel Divide Fun
tion53
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Figure 19: Idealised Simulated Pro�le of Version I5.2 Version I: Divide-and-ConquerParallelism is initially introdu
ed using a divide-and-
onquer paradigm: the alignmentof the left, right and unpinned 
hunks is independent so they 
an be evaluated inparallel, as shown in Figure 11. The required strategy for parallelising the dividefun
tion is shown in Figure 18.The 
orresponding a
tivity pro�le is presented in Figure 19 and shows the exe
utiontime on the X-axis and the number of tasks on the Y-axis. The tasks are separated into�ve 
lasses, depending on their state: running if they are exe
uting (green), runnableif they 
ould be exe
uted if a pro
essor be
omes ideal (yellow), blo
ked if they wait fordata under evaluation (red), fet
hing if they are retrieving data from another pro
essor(light-blue), and migrating if they are retrieved from another pro
essor (dark-blue) [58℄[46℄. Figure 19 shows a small number of parallel tasks. This is owing to the long
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Mon Apr 8 13:24 2002 Time and Allo
ation Profiling Report (Final)g5 +RTS -pT -hC -sstderr -RTS 6 90COST CENTRE MODULE %time %allo
lo
ate_pin' Main 76.9 78.1
on2tag_Aminoa
id# Main 14.5 0.0GC GC 11.3 0.0form_pins' Main 3.7 1.0subseq Main 2.9 20.6substring_sequen
es Main 1.2 0.0 individual inheritedCOST CENTRE MODULE entries %time %allo
 %time %allo
MAIN MAIN 0 0.0 0.0 100.0 100.0main Main 1 0.0 0.1 100.0 99.8align_
hunk Main 55 0.0 0.0 100.0 99.8Bestpin Main 44 0.0 0.0 100.0 99.7substring_sequen
es Main 141 1.2 0.0 100.0 99.7form_pins Main 61303 0.0 0.0 95.8 79.1form_pins' Main 326287 3.7 1.0 95.8 79.1lo
ate_pin Main 530162 0.5 0.0 91.7 78.1lo
ate_pin' Main 23476420 76.9 78.1 91.2 78.1subseq Main 2132 2.9 20.6 2.9 20.6Figure 20: A Partial from Time Pro�le of the Final Sequential Version.initial sequential segment 
aused by Bestpin, whi
h o

upies about 77 per
ent of theruntime. From �gure 20 it 
an be seen that the Bestpin fun
tion is 
alled beforethe divide fun
tion. Moreover the sequential time pro�ling in Figure 21 shows thatthe lo
ate pin fun
tion 
alled from Bestpin fun
tion 
onsumes the most exe
utiontime(77%).By Amdahl's Law [59℄ the sequential 
omponent of this version of the programlimits the speedup that 
an be a
hieved even under ideal 
onditions to 100%77% = 1:29.5.3 Version IIa: Parallelising Substring Sequen
esThis version parallelises the outer loop of the Bestpin fun
tion des
ribed in Se
tion 4.2using a data parallel style. More spe
i�
ally the Par substring sequen
es fun
tion
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Input sequences 

res_unpinch res_left res_right 

res_right res_right res_right res_left res_left res_left res_unpinch res_unpinch res_unpinch 

Top_level_bestpin Top_level_bestpin 

Spliting _sequences 

Spliting _sequences Spliting _sequences Spliting _sequences 

Top_level_bestpin 

Top_level_bestpin 

Figure 21: Divide and Conquer Pro
ess Diagram for Divide Fun
tionuses parMap to the map substring sequen
es fun
tion over the input sequen
es inparallel. The parallelisation is not just repla
ing map with parMap; it needs to modifythe substring sequen
es fun
tion so the parMap 
an used. Figure 22 
ompares thesequential 
ode with the modi�ed parallel 
ode for substring sequen
es, and alsoshows the inserted fun
tion. Figure 23 shows that six running tasks are generated bythe parMap fun
tion. In fa
t the number of generated tasks depends on the number ofinput sequen
es. The speedup obtained from this version is 4.2 whi
h indi
ates thatparallelising fun
tions under substring sequen
es is a good approa
h to improve theexe
ution time.5.4 Version IIb: Parallelising Form pinThis Version parallelises the inner loop des
ribed in Se
tion 4.2. A new par from pinfun
tion is inserted and the From pin fun
tion was modi�ed to be exe
uted in parallelover the supplied list. Figure 24 shows the sequential version and the parallel version ofthe From pin fun
tion. Table 2 shows that the total amount of work is in
reased owingto the empty returned pair if the substring is not a pin. However, the speedup wasin
reased to 6.9. Figure 25 shows the sequential segment at the end of ea
h re
ursive
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-- Sequential 
ode for substring sequen
es fun
tionsubstring sequen
es :: [ Sequen
e℄ ! [ Sequen
e℄ ! [(Sequen
e,Int )℄substring sequen
es [℄ [℄ = [℄substring sequen
es [℄ ys = [℄substring sequen
es (x:xs) ys = nub res1whereres = subseq xres1= form pins res ys ++ substring sequen
es xs ys-- Parallel 
ode of substring sequen
es fun
tionpar substring sequen
es :: [Sequen
e ℄ ! [Sequen
e ℄ ! [(Pin,Int )℄par substring sequen
es xs ys =foldr (++) [℄(parMap rnf (substring sequen
es ys) xs)substring sequen
es :: [ Sequen
e℄! Sequen
e ! [(Sequen
e,Int )℄substring sequen
es ys x = nub res1whereres = subseq xres1= form pins res ysFigure 22: Sequential and Parallel Code of Substring Fun
tion.
all of divide; an attempt will be made to avoid this in the next alternative.5.5 Version II
: Parallelise Both Outer and Inner LoopsThis version 
ombines inner and outer loop parallelism, i.e from both version IIa, versionIIb. There is not mu
h di�eren
e in the pro�le between version IIb and II
, so it is notin
luded.5.6 Version III: Clustering on Parallel Form pinThis version in
ludes all previous sour
es of parallelisation, (i.e versions I, IIa, IIb,II
); also, a 
lustering fun
tion was applied to the input list supplied to the form pinfun
tion. The 
lustering fun
tion breaks the given list into 
onvenient sized 
hunk and
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Figure 23: The Idealised A
tivity Pro�le of Substring Sequen
es Fun
tion (IIa).Figure 26 shows the 
ode. The implementation of the parMap fun
tion on a 
olle
tionof data su
h as a big list often yields very �ne task granularity. Clustering is oneway to improve the task granularity and data lo
ality by introdu
ing fewer tasks, ea
hoperating on a 
losely-related subset of the 
olle
tion [51℄. As shown in Figure 27 theutilisation on the system was improved, but there is still a sequential part whi
h needsto be eliminated.5.7 Version IV: Parallelise all mapsThis version modi�es the previous version by repla
ing all map fun
tions with parMap.In other words in this version all intermediate fun
tions 
alled by Bestpin and dividefun
tion are parallelised. Figure 28 shows the a
tivity pro�le for the parMap version ofthe program. From the graph the improvement in the system utilisation 
an be seen;
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-- Sequential 
ode From pin Fun
tionform pins :: [SubSequen
e℄ ! [Sequen
e ℄ ! [(Pin,Int )℄form pins [℄[℄ = [℄form pins[℄ ys = [℄form pins(x:xs) ys| num > 1 = (x,num): form pins xs ys| otherwise = form pins xs yswherenum = form pins' x ys-- Parallel 
ode From pin Fun
tionpar form pin :: [Sequen
e ℄ ! [SubSequen
e℄ ! [(Pin,Int )℄par form pin xs ys = nub( parMap rnf ( form pins xs ) ys)form pins :: [Sequen
e ℄ ! SubSequen
e ! (Pin,Int )form pins ys x | num > 1 = (x,num)| otherwise = ([℄, 0)wherenum = form pins' x ysFigure 24: Sequential and Parallel Code of From pin Fun
tion (Inner Loop).up to 45 pro
essors are used.5.8 Version V: Parallel all foldrThe �nal version modi�es version IV by adding the parallelised fold fun
tion used byextra
t max pin fun
tion. A new strategi
 fun
tion 
alled parfoldListwas de�ned toexe
ute foldr fun
tion in parallel. Figure 29 shows the 
ode for the above modi�
ation.5.9 Idealised Optimisation Dis
ussionThe results obtained from the idealised parallel versions are summarised in Table 2.The maximum idealised speedup was obtained from versions IV and V, 21.5 and21.9 respe
tively. Versions IIb, II
, and III give more modest speedups. The table also
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Figure 25: The Idealised A
tivity Pro�le of From pin Fun
tion (IIb)shows the in
reasing number of small tasks from 19 tasks in version I to 785 in versionV. There is also a small in
rease in total work for both versions IIb and II
. This isowing to the fa
t that the Form pin fun
tion operates on ea
h element in the listin parallel and returns an empty tuple if the substring is not a pin, while in the otherversions if the substring is not a pin the fun
tion does not return anything.The most important observation from the idealised measurements is that a pro-grammer 
an parallelise every point in the program even it generates small tasks, andstill some speedup 
an be a
hieved. This is 
learly seen from Table 2 and a
tivitypro�les from the di�erent versions.Figure 30 shows the overall a
tivity pro�le of version V of the program. Fromthe graph it 
an be seen that, for this input data, the idealised ma
hine 
ould utiliseapproximately 45 PEs. This version is the best idealised parallel version.
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luster :: Int ! [SubSequen
e℄ ! [[SubSequen
e℄℄
luster n [℄ = [℄
luster n xs = take n xs : 
luster n (drop n xs)substring sequen
es :: Int ! [ Sequen
e℄ ! Sequen
e ! [(Sequen
e,Int)℄substring sequen
es n ys [℄ = [℄substring sequen
es n ys x = nub res1where subseqlist = subseq x
luslist = 
luster n subseqlistres1= par form pin ys 
luslist

Figure 26: Cluster Fun
tion and Modi�ed Substring Fun
tion.Program Average Speedup Total Total Generated Avg.Parallelism Runtime Work Tasks Task Leng.(Mega 
y
les) (Mega 
y
les) (Mega 
y
les)Seq 1.0 1.0 139.6 139.6I 1.1 1.1 126.1 138.7 19 7.3IIa 4.2 4.2 32.9 138.1 94 1.4IIb 7.4 6.9 20.0 148.0 3542 0.041II
 13.6 9.5 14.7 199.9 3583 0.052III 16.7 16.8 8.3 138.6 275.0 0.503IV 21.1 21.5 6.5 137.1 381.0 0.35V 21.9 21.8 6.4 140.1 785.0 0.177Table 2: Idealised Simulation Input : 20 6 30.The next 
hapter des
ribes the GranSim simulation of the di�erent parallel versionson two ar
hite
tures. The GranSim will parameterised to emulate both of these.
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Figure 27: The Idealised A
tivity Pro�le for Clustering version (III).
parMap 20 6 30 +RTS -bP -bp: -H64M -Sstderr  

running runnable fetching blocked migrating
0 500.0 k 1.0 M 1.5 M 2.0 M 2.5 M 3.0 M 3.5 M 4.0 M 4.5 M 5.0 M 5.5 M 6.0 M

ta
sk

s

0

5

10

15

20

25

30

35

40

45

50

 cycles6491982Runtime = 

Average Parallelism = 21.1GrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSim

Figure 28: The Idealised A
tivity Pro�le for parMap version IV
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extra
t max pins :: [(Pin,Int )℄ ! [ (Pin ,Int )℄extra
t max pins [℄ =[℄extra
t max pins ((p,n):xss) =parfoldList (extra
t max pins') [(p,n)℄ xssparfoldList :: NFData a ! (a ! [a℄![a℄) ! [a℄! [a℄ ! [a℄parfoldList f z [℄ = zparfoldList f z (x:xs) = f x ys `sparking` rnf yswhereys = parfoldList f z xsFigure 29: New ParfoldList and Extra
tmaxpins Fun
tion.

parfold 20 6 30 +RTS -bP -bp: -bG -bM -H64M -Sstderr  

running runnable fetching blocked migrating
0 500.0 k 1.0 M 1.5 M 2.0 M 2.5 M 3.0 M 3.5 M 4.0 M 4.5 M 5.0 M 5.5 M 6.0 M

ta
sk

s

0

20

40

60

80

100

120

140

160

 cycles6355778Runtime = 

Average Parallelism = 21.9GrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSimGrAnSim

Figure 30: The Idealised A
tivity Pro�le for Version V Input 20 6 30



Chapter 6
Two Simulated Ar
hite
tures
The methodology in Chapter 3 indi
ates that ar
hite
ture dependent tuning starts withsimulating the target ar
hite
ture. In this experiment, the program is tuned for twodi�erent ar
hite
tures: a 32 pro
essor Beowulf 
luster and a 4-pro
essor Sun SMP. Thear
hite
tures are simulated by parameterising ( -bp, -bln ,and -bmn see se
tion 2.8.5)GranSim with key ar
hite
tural properties, most important of whi
h are the numberof pro
essors, the time to pa
k a message for transmission, and the 
ommuni
ationlaten
y. The last two properties are measured in 
lo
k 
y
les of the given pro
essor.6.1 Beowulf SimulationThe target ma
hine is a 32-node 530MHz Pentium III Beowulf 
luster 
onne
ted byfast Ethernet swit
h. To determine the GranSim parameters a

urately the requiredparameters were measured using simple programs. For example the PE to PE 
om-muni
ation laten
y was measured as 142 �s under PVM 3.4.2, so for the 530 MHzpro
essor the GranSim laten
y is 142*530 = 753 k
y
. Likewise the pa
king time ismeasured as 21 �s whi
h gives 11 k
y
. Table 3 summarises the results of the di�erent64



CHAPTER 6. TWO SIMULATED ARCHITECTURES 65Program Average Speedup Total Total work Generated Avg.Parallelism Runtime Work Tasks Tasks Leng.(Mega 
y
les) (Mega 
y
les) (Mega 
y
les)Seq 1 1 139.6 139.6 { {I 1.1 1.1 127.2 139.9 19 7.4IIa 1.9 1.7 80.8 153.5 94 1.47IIb 1.2 0.2 708.9 850.7 3183 0.04II
 2.2 0.9 143.7 316.1 3201 0.041III 2.0 0.9 150.8 301.6 275 0.506IV 1.9 0.8 168.2 319.6 381 0.362V 2.1 0.8 162.0 340.2 785 0.178Table 3: Realisti
 32-PEs Beowulf Simulation Input: 20 6 30versions of the Geneti
 alignment program with problem size 20 6 30. It should beremembered that 6 represents the number of sequen
es, 20 represents the length ofea
h sequen
e, and 30 represents the 
hunk size.6.2 Sun SMP SimulationThe target ma
hine is 4-pro
essor Sun SMP with a 
lo
k speed of 250 MHz 
onne
ted byshared memory bus. The laten
y under PVM layer between nodes has been measuredas 109 �s whi
h is equivalent to 27.5 K
y
, and the pa
king 
ost as 22 �s whi
h isequivalent to 5 K
y
. The results of the realisti
 Sun SMP simulation of the Geneti
program are summarised in Table 4.Program Average Speedup Total Total work Generated Avg.Parallelism Runtime Work Tasks Tasks Leng.(Mega 
y
les) (Mega 
y
les) (Mega 
y
les)seq 1 1 139.6 139.6 { {I 1.1 1.1 126.6 139.2 19 7.4IIa 2.1 1.9 70.6 148.2 94 1.47IIb 1.3 0.3 413.3 537.2 3542 0.042II
 2.9 1.4 97.6 282.0 3201 0.046III 3.5 1.8 77.2 270.2 275 0.51IV 3.3 1.7 81.4 268.6 381 0.362V 3.4 1.7 81.6 277.4 785 0.178Table 4: Realisti
 32-PEs Sun SMP Simulation Input: 20 6 30



CHAPTER 6. TWO SIMULATED ARCHITECTURES 666.3 Dis
ussion of Simulation Results6.3.1 Idealised Simulation vs Realisti
 SimulationComparing the idealised and realisti
 simulations, Tables 2 3 and 4, the followingobservations were made:-� For these small input sizes the speedup attained and utilisation of ea
h ar
hite
-ture is extremely poor.� The number of generated tasks is similar in all three simulations be
ause mostparallelism is in 
at (data parallelism) rather than hierar
hi
al (divide & 
onquer).� The simulated Sun SMP does more work than the idealised simulation, and thesimulated Beowulf does more work than the simulated Sun SMP. This re
e
ts thein
reasing laten
ies of the ar
hite
tures.� Both simulated ma
hines give mu
h worse speedups than the idealised ma
hines,with the simulated Beowulf being slightly worse than the simulated Sun SMP.This is 
aused by the laten
y of ea
h ar
hite
ture in realisti
 simulated ma
hines.� In
reasing the number of generated tasks always gives a better speedup in anideal ma
hine, but this not the 
ase on realisti
 ma
hines, be
ause of the 
ommu-ni
ation and tasks management overheads introdu
ed in the realisti
 simulation.� Figures 31 and 32 show the di�eren
es between the a
tivity pro�les for the pro-gram versions on the idealised ma
hine and the simulated Beowulf. There is asimilarity between the idealised and the simulated a
tivity pro�les for versions I;this is be
ause version I generate a small number of parallel tasks. In 
ontrastwith other versions, there are di�eren
es in a
tivity pro�les; the most signi�
ant



CHAPTER 6. TWO SIMULATED ARCHITECTURES 67di�eren
es 
ome from the 
ommuni
ation 
ost of the simulated ma
hine. More-over, the larger runnable threads seen from the graphs are the result of the limitedof number of PEs in the realisti
 simulation.� From Figures 31 and 32 it is 
lear that, as expe
ted,the idealised simulationdoes not predi
t realisti
 simulation. This be
ause the realisti
 in
ludes realisti
overhead 
osts, espe
ially 
ommuni
ations. However, the idealised stimulationdoes allow the separation of algorithm and ar
hite
ture 
on
erns: a program thatfails to deliver good parallel performan
e on a simulated idealised ma
hine, 
annotdeliver good performan
e on any real ar
hite
ture.6.3.2 Beowulf Simulation vs Sun SMP Simulation ComparisonThe following observations were made in 
omparing the Beowulf and Sun SMP simu-lations in Tables 3 and 4:-1. Versions I and IIa of the program have similar behaviour on both ar
hite
tures.This is be
ause they generate a small number of large tasks 
ompared with otherversions.2. Separate experiments show that better speedups 
ould obtained for both simu-lated ar
hite
tures with large input sizes, but the exe
ution time and disk spa
eon the simulation platform limit the input size for systemati
 experiments. Fig-ure 34 shows the speedups obtained from exe
uting the di�erent versions of theprogram on both ar
hite
tures with varying of PEs. Even with a small input sizethe maximum speedup is 2.5 on the simulated sun SMP and 1.7 on the simulatedBeowulf, both for version IIa.
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Version I Idealised Simulated
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Version IIa Idealised Simulated
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Version IIb Idealised SimulatedFigure 31: The A
tivity Pro�le for Idealised vs Simulated Beowulf( Version I, IIa, andIIb)
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Version III Idealised Simulated
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Version IV Idealised Simulated
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Version IV Idealised SimulatedFigure 32: The A
tivity Pro�le for Idealised vs Simulated Beowulf ( Version III, IV,and V)
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Sun SMPFigure 33: A
tivity Pro�le of Beowulf and Sun for Version IIa
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omparison in Figure 35 illustrates the 
hunk size vs the speed up. Bothar
hite
tures have a similar shape of graph. The best 
hunk size is 25 or 30 formost versions of the program on both ar
hite
tures.4. Figure 33 shows the a
tivity pro�le from the best version of both ar
hite
tures.The graphs re
e
t similar a
tivities ex
ept that the Beowulf 
luster has morefet
hing threads be
ause of the higher laten
y.
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Chapter 7
Performan
e Measurements onTwo Ar
hite
tures
The last stage of the methodology as des
ribed earlier in 
hapter 3 se
tion 3.2.5, is toexe
ute the optimised parallel program on real parallel ar
hite
ture. This 
hapter willillustrate measurement.The measurements have been performed on two parallel ar
hite
tures: the distributed-memory ma
hine (Beowulf 
luster), and share memory ma
hine (Sun SPARC Server)whi
h des
ribed earlier in se
tion 2.1.1.The simulated Beowulf and Sun SMP results reported in Tables 3 and 4 predi
tthat version IIa gives the best speedup for both ar
hite
tures. However, to explorethe di�eren
es between exe
uting the di�erent versions on a simulated ma
hine anda real ma
hine, it is ne
essary to test all versions on real ma
hines. The programwas measured on two real ar
hite
tures whi
h are faster than the simulation ma
hine;therefore the input sizes are mu
h bigger than the simulated input sizes.

74



CHAPTER 7. PERFORMANCEMEASUREMENTS ON TWOARCHITECTURES75Program Speedup Total Runtime Generated Tasks Avg. Tasks Long.(se
ond) (ms)seq 1 27.7 - -I 1.09 27.2 3 .025IIa 1.9 15.0 21 0.003IIb 0.8 36.4 861 0.001II
 1.4 18.6 16157 0.005III 1.3 20.9 601 0.007IV 1.5 18.4 601 0.004V 1.8 15.5 4226 0.001Table 5: Real Beowulf Input: 20 40 30 on 4-pro
essorProgram Speedup Total Runtime Generated Tasks Avg. Tasks Long.(se
ond) (ms)seq 1 99.9 - -I 0.8 123.1 171 0.119IIa 7.5 13.2 941 0.011IIb 0.2 140.5 1891 0.004II
 1.0 94.0 37821 0.021III 0.9 107.6 5096 0.057IV 0.6 155.8 1281 0.013V 1.0 99.8 7716 0.074Table 6: Real Beowulf Input: 20 60 30 on 30-pro
essor7.1 Real Measurement on Beowulf ma
hineThe measurements reported in Tables 5 and 6 show that version IIa gives the bestspeedup (7.5) on 30-pro
essor. Table 6 summarises the results obtained from the dif-ferent versions when the program was exe
uted on 30 pro
essors of Beowulf 
luster.Table 5 was produ
ed in order to 
ompare Sun SMP results dire
tly with Beowulfresults (Table 5). However, results from simulation and real measurement 
annot bedire
tly 
ompared, i.e Table 5 with 3, be
ause of the di�eren
e in the input size ofboth measurements.7.2 Real Measurement on Sun SMP Ma
hineThe measurements reported in Table 7, was for the Sun SMP whi
h limited to 4pro
essors. The results show that version IIa predi
ted the best speedup on Sun SMP
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CHAPTER 7. PERFORMANCEMEASUREMENTS ON TWOARCHITECTURES77Program Speedup Total Runtime Generated Tasks Avg. Tasks Lang.(se
ond) (ms)seq 1 70.8 - -I 0.9 73.8 55 1.34IIa 1.8 37.9 616 0.061IIb 0.2 332.0 23940 0.013II
 0.4 146.8 12036 0.012III 0.7 94.8 2585 0.036IV 0.6 105.8 2850 0.037V 0.8 87.6 3047 0.029Table 7: Summary Table of Real Measurement of SMP (20 40 ) on 4-pro
essors(1.8). Table 7 summarises the results obtained.7.3 Dis
ussion of Real Tuning1. Considering the di�erent versions of the program reported in tables 5, 7, thebest version is IIa on both ar
hite
tures, with speedup 7.5 on the Beowulf and1.8 on the Sun SMP. This is be
ause version IIa generates big tasks 
omparedwith versions IIb to V.The speedup on the Beowulf is better than the idealisedspeedup (4.2), be
ause of the di�eren
e in the input size. The worst version isIIb for both simulation measurements and real measurements, this is owing tothe large number of small tasks whi
h in
reases the amount of 
ommuni
ation inthe program.2. Both ar
hite
tures have approximately similar speedup when exe
uted on fourpro
essors, i.e 1.8 on Sun SMP and 1.9 on Beowulf. Figure 36 shows the speedupgraphs obtained from Beowulf and SMP.3. Tables 5 and 7 show that the number of tasks generated by Sun SMP is biggerthan the generated tasks by Beowulf for the same input sizes. The reason for thisdi�eren
e is that the Beowulf has bigger laten
y and higher pro
essor speed, and
onsequently the idle pro
essor in Beowulf takes more time to fet
h tasks. The
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hanism was des
ribed in Se
tion 2.8.3). The di�erent number of taskson both ar
hite
tures shows that the RTS (Run Time System) 
an dynami
allyadjust the granularity of the parallelism to the spe
i�
 parallel ma
hine.4. The results from both ar
hite
tures show that the realisti
 GranSim simulationa

urately predi
ts whi
h version of the program will give a good performan
e onreal ar
hite
tures.
7.4 Critique of Multi-Ar
hite
ture Methodology.The geneti
 alignment program exhibits a good performan
e on both ar
hite
tureswithout requiring modi�
ation and with the same parameters of the runtime system.The key features of the methodology are as follows:� The sequential pro�ling is independent of parallelisation and gives a good sequen-tial program before inserting any parallelism. This is 
learly seen from the resultsobtained: the total exe
ution time of 224 se
onds for the initial version droppedto 18.9 se
onds for the �nal sequential version.� The GranSim simulator provides 
onsiderable 
exibility to emulate di�erent ar-
hite
tures, in
luding the idealised ma
hine whi
h gives a good indi
ator of themaximum parallelism that 
an be obtained. If only a small amount of paral-lelism is obtained on the idealised simulation then very little is possible on anyar
hite
ture.� The idealised version 
an be reused when targeting new ar
hite
ture. This savesa programmer from redeveloping his program from s
rat
h when targeting newar
hite
ture.



CHAPTER 7. PERFORMANCEMEASUREMENTS ON TWOARCHITECTURES79� The idealised simulation results in Table 2 show that the in
rease in the speedup isrelated to the in
rease in task generation Therefore, if a good speedup is needed itis ne
essary to generate tasks as mu
h as possible, but the real measurement andthe realisti
 measurements indi
ate that the number of generated tasks dependson the system laten
y. As 
an seen from Tables 5 and 7 the number of generatedtasks in Beowulf is mu
h smaller than for the Sun SMP.� Realisti
 GranSim simulation 
orre
tly predi
ts the program versions that willdeliver a good speedup on both ar
hite
tures. However, there are di�eren
es inthe shape of the a
tivity pro�les produ
ed from GranSim and GUM, as shown in�gures 33 and 37. Unfortunately it is not possible to 
ompare the �gures dire
tlybe
ause of the di�eren
e in input sizes. Some of the di�eren
es are the result ofsystem issues; e.g. in GUM, it is possible to 
ontrol the number of tasks 
reatedon PE while this is not possible under GranSim. Moreover, GranSim does not
over the 
ommuni
ation behaviour of the ma
hine: the bandwidth of the 
ommu-ni
ation 
hannel and the topology of the underlying ma
hine. GranSim assumesthat the laten
y between two pro
essors is independent of the 
ommuni
ationtraÆ
 [58℄.� No 
hanges are required to the program sour
e, to move the geneti
 parallelprogram from Beowulf 
luster to Sun SMP ar
hite
ture. This is owing to thefa
t that the programmer 
ontrols only a few parallel aspe
ts, as most aspe
tsare 
ontrolled by the runtime system, su
h as thread 
reation, 
ommuni
ationbetween tasks, and task pla
ement. The best performan
e on both ar
hite
turesis obtained from the same parallel version of the program ( version IIa).
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ribed here supports the 
laims that the high level 
oordination inparallel fun
tional languages fa
ilitates software development for multiple ar
hite
tures,by showing that minimal program 
hanges are needed to move an appli
ation writtenin GpH from one ar
hite
ture to another.All 
hapters from Chapter 4 and in
luding this 
hapter des
ribe the implementa-tion of the proposed methodology. The implementation shows that it is ne
essary to
ontrol the generated tasks from GpH program by 
onsidering the underlying param-eters. The next 
hapter will dis
uss new ar
hite
ture independent fun
tions and theirimplementation.
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Chapter 8
Enhan
ement of Ar
hite
tureIndependen
e in GpH
8.1 OverviewFrom the experiment des
ribed throughout the previous 
hapters and others [5, 46℄, itmay be seen that many GpH programs often 
reate a massive amount of parallelism.The philosophy of GUM's load balan
e me
hanism is to allow a high amount of potentialparallelism and distribute the potential work in the form of sparks. In addition to that,it provides a kind of management to make spark 
reation 
heap, thus minimising the
ost of spark movement between pro
essors. Also any spark turned into a thread isevaluated by its PE [4℄.This me
hanism works well if the GpH program generates big potential tasks, i.e.large tasks granularity. As seen from the geneti
 alignment program the best perfor-man
e is obtained from the version with large parallel tasks. Therefore, the authorproposes to build a new model for GpH that uses information about the underlyingar
hite
ture when it generates potential parallel tasks. The ar
hite
tural parameters82



CHAPTER 8. ENHANCEMENTOF ARCHITECTURE INDEPENDENCE IN GPH83that may be involved are the number of available pro
essors, system laten
y and thepro
essor 
lo
k speed. Figure 38 shows the new GpH model.
Application level 

Architecture  Model Strategy Model 

GHC Compiler 

GUM RTS  virtual Machine 

PVM virtual Machine 

Operating System 

Underlying Architecture 

New  Model 

Figure 38: A New GpH Stru
ture
8.2 Extra
ting Ar
hite
ture Chara
teristi
sThe most important ar
hite
ture parameter to be abstra
ted in this se
tion is thenumber of pro
essors. The motivation for abstra
ting the number of pro
essors (PEs)is that the most important 
hara
teristi
 for parallel program is the granularity. Thetypi
al te
hniques for parallelisation su
h as parMap over long lists generate mu
h moreparallelism than is needed. Therefore, it is important to a
hieve a good granularityeven with 
hanging the numbers of PEs without sour
e 
ode 
hange. In other wordsthe implementation of many parallel fun
tions, e.g. a parMap fun
tion, often yields very



CHAPTER 8. ENHANCEMENTOF ARCHITECTURE INDEPENDENCE IN GPH84�ne task granularity. Even if 
lustering is used the task granularity still depends onthe programmer estimation and it does not 
hange dynami
ally. As another example,the divide and 
onquer sometimes ends up with many small parallel tasks that redu
eperforman
e; the programmer often 
ontrols this situation by threshold. The numberof pro
essors (PEs parameter) 
an be used to write strategi
 fun
tions whi
h minimisethe number of generated tasks, and 
an be used to de�ne new strategies. Figure 39shows the fun
tion whi
h returns the number of pro
essors(PEs). Se
tions 8.3 and 8.4will show the implementation of the PEs parameter in the geneti
 alignment program.
/* This C program fun
tion return the a
tual PEs runing by PVM */#in
lude <stdio.h>#in
lude "/net/dazdak/fp/pvm3/in
lude/pvm3.h"int numberPEs(void);int numberPEs(void){ stru
t pvmhostinfo *hostp;int nhost, nar
h;/* get 
onfiguration of the parallel ma
hine */pvm_
onfig( &nhost, &nar
h, &hostp )return nhost ;} Figure 39: A Number of PEs Fun
tion
8.3 Generi
 Ar
hite
ture Adapting StrategiesThe new strategi
 fun
tions 
an be added to the strategy library used with the GpHsystem as shown in Figure 38. The new strategies use information about underlying
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module Ar
hite
ture( pe,parMapPe, 
hunksize )whereimport Strategies
luster :: Int -> [a℄ -> [[a℄℄
luster n [℄ = [℄
luster n xs = take n xs : 
luster n (drop n xs)pe = pes ()pes ::() -> Intpes null = unsafePerformIO ( 

all numberPEs)parMapPe::(NFData a,NFData b)) Strategy [b℄!Int!(a ! b) ! [a℄ ! [b℄parMapPe strat pp f [℄ = [℄parMapPe strat pp f xs = 
lisstwhere
list = 
luster num xsnn = length xsnum = if (nn `div` pp ) == 0 then 1 else (nn `div` pp)plist =map (map f) 
list `using` parList strat
lisst = 
on
at plist

Figure 40: The New Fun
tions already Built in Ar
hite
ture Modelar
hite
ture to minimise the number of tasks generated by a GpH program. For examplea new strategies parMapPe was de�ned to 
hunk the given list automati
ally, based onthe number of pro
essors (PEs). The parMapPe fun
tion guarantees that the numberof generated tasks is equal to the number of pro
essors. The same te
hnique 
ould beused to de�ned a new parfoldr strategy whi
h splits the given list into a sublist andfolds the fun
tion over them in parallel. The 
ode of parMapPe is shown in Figure 40.Also a general divide 
onquer fun
tion 
an be de�ned, the number of pro
essors 
an beused to determine the maximum tree level as shown in Figure 41.
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seqdiv :: (a ! Bool) !(a! b) ! (a! [a℄)! ( [b℄! b) ! a! bseqdiv trivial solve split 
ombine x| trivial x = solve x| otherwise = 
ombine 
hildwhere
hild = map (seqdiv trivial solve split 
ombine ) (split x)-- Parallel divide fun
tionpardiv :: Int ! (a ! Bool) !(a! b) ! (a! [a℄)! ( [b℄! b) ! a! bpardiv 0 trivial solve split 
ombine x = seqdiv trivial solve split 
ombine xpardiv (pes-1) trivial solve split 
ombine x| trivial x = solve x| otherwise = 
ombine 
hildwhere
hild = parMap rnf (pardiv (pes-1) trivial solve split 
ombine )(split x)

Figure 41: The New General Divide Conquer Fun
tionBeowulf Implementation. The implementation of the new fun
tion on the Beowulf
luster shows some improvement in speedup when there are more than twelve pro
essorsand no 
hange when there are fewer pro
essors. The fun
tion was tested on version IIIof the geneti
 alignment program. In the geneti
 alignment program the Form pin isapplied to a big list; e.g. when the input is 20 sequen
es of length of 60, the lengthof the subsequen
es list applied to the fun
tion is 2015 elements. This generates 68parallel tasks for ea
h re
ursive 
all if the 
hunk size is set to 30. Of 
ourse fewer tasksare generated for ea
h re
ursive 
all, but still version III generates a huge number ofparallel tasks. The total number of generated tasks from version III as reported intable 6 is 5096 tasks. In 
ontrast the newparMapPe will generate fewer parallel tasksdepending on the number of pro
essors; e.g. if the parMapPe fun
tion is 
alled with thesame list and 4 pro
essors, it will generate only four parallel tasks for ea
h re
ursive
all. It generates 771 tasks in total from the same input size. Figure 42 illustrates the
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e of the new fun
tion.
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Figure 42: The New parMapPe Relative Speedup for BeowulfSun SMP Implementation. The parMapPe fun
tion was also tested using versionIII of the geneti
 alignment program. The experiment shows some improvement in thespeedup; e.g. on four pro
essors the speedup in
reased from 0.8 to 1.1. Figure 43 showsboth the speedup of the old 
lustering version (III) and the speed up of an automati

lustering version.
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Figure 43: The New parMapPe Relative speedup for SunSMP (Input 20 40)8.4 Ar
hite
ture Adapting Strategies for Spe
i�
 Appli-
ationThe parallelism in divide and 
onquer 
omes from the fa
t that a given task is split intosub-tasks that 
an be evaluated in parallel. This te
hnique is used in the geneti
 align-ment program. The divide fun
tion generates three parallel tasks for ea
h re
ursive
all. It is possible to 
ontrol the generated tasks from the fun
tion by passing a newparameter, as shown in Figure 44. This parameter is used to limit the depth of paral-lelism generated in the divide fun
tion 
all tree. The divide fun
tion generates threeparallel tasks for ea
h re
ursive 
all. To mat
h the number of tasks with the numberof PEs, the new pes parameter passed to the initial 
all is 
omputed as log3(pe). Ifthe length of the given list is smaller than the number of pro
essors, the result from
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Align 
hunk :: Int! [Sequen
e℄ ! [Sequen
e℄Align 
hunk pes [℄ = [℄Align 
hunk pes xs = fun align all reswherebest = Bestpin xs -- Find the best pin from xsall res = divide pes xs best -- Split and align the xsdivide :: Int ! [Sequen
e℄ ! Pin ! [Sequen
e℄divide pes [℄ [℄ = [℄divide pes xs [℄ = xs -- Basi
 alignmentdivide pes xs pin = (
ombine pin res left res right res unpin
h )`demanding` strategywhere(right
h,left
h,unpin
h1) = splitting sequen
es pin xsunpin
h = lead fun
tion pin unpin
h1res unpin
h = align 
hunk (pes-1) unpin
hres right = align 
hunk (pes-1) right
hres left = align 
hunk (pes-1) left
hstrategy =if pes <= 0 then () else ( rnf res left `par`rnf res right `par`rnf res unpin
h)Figure 44: A New Divide Fun
tion

Input  sequences

Left unpinned Right 

Any child  in this will be evaluated sequentially 

Each box represents a new parallel task 

Figure 45: Divide Fun
tion Diagram when it 
alled by 2 PEs
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hunk size in this 
ase is set to one. For example, if the dividefun
tion is 
alled with 1 pro
essor it will evaluate only the �rst two levels in parallel;the rest of the tree will be evaluated sequentially, as shown in Figure 45.Beowulf Implementation. The implementation of the new fun
tion improves theutilisation of the system resour
es. The utilisation of pro
essors was in
reased as shownin Figure 46, when the program was exe
uted on the Beowulf 
luster. Also the averageparallelism and runtime were improved by fa
tor, e.g from 4.0 to 4.9 and from 20.2sto 15.0s respe
tively. Moreover, the implementation shows good improvement in thespeedup, as shown in Figure 47.Sun SMP Implementation. Figure 48 shows the improvement in the speed upwhen the number of pro
essors is used in version IIa. The speedup was in
reased; e.g.on four pro
essors the speedup was in
reased from 1.8 to 2.4.8.5 SummaryThis 
hapter has shown that the utilising the key ar
hite
tural parameters in GpHprograms give better performan
e on both ar
hite
tures. The key ar
hite
tural pa-rameters have two levels of implementation: the �rst level is at the standard strategylibrary in the GpH, where the ar
hite
tural parameters are used to de�ne new generi
strategies and the parameters are hidden from the programmer. In the se
ond levelthe key ar
hite
tural parameters 
an be used by the programmer to tune performan
e,e.g. adopting the task granularity of the GpH program. The implementation showsimprovement in the speedup of version III when the parMapPe fun
tion is applied (seeFigures 42 and 43), be
ause the parMapPe generates fewer tasks than parMap. The
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ally 
ontrolled by the number of pro
essorsand the list length. Moreover, Figure 46 shows the improvement in the system resour
eutilisation of version IIa; e.g the total exe
ution time dropped from 20.2s to 15.0s whenthe program is exe
uted on 20 PEs. This improvement is owing to the fa
t that onlythree levels of parallelism are generated by the divide fun
tion.The implementation of the improved strategies on the geneti
 alignment programwhi
h uses both 
lasses of data-parallelism and divide and 
onquer parallelism gavebetter performan
e. Therefore, using the modi�ed strategies on other appli
ations ofthese 
lasses should improve performan
e in the same way that re�ned Skeletons [19℄
an improve the performan
e of an entire 
lass of appli
ations. This shows that theprogramming te
hniques dis
ussed here are relevant in a broader 
ontext.
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tion Relative speedup for Beowulf
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Chapter 9
Con
lusions
9.1 Introdu
tionOne means of supporting ar
hite
ture independent parallel programming is to use pro-gramming model with a high level 
oordination. The model should a
hieve good perfor-man
e a
ross a wide range of parallel ar
hite
tures. It should hide most of the parallelaspe
ts from the programmer. Also, it should be easy to deal with programs of verydi�erent stru
ture.This thesis has investigated the use of high level fun
tional languages for ar
hite
-ture independent parallel programming. The proposed methodology for GpH [46, 5℄has been used to develop a substantial appli
ation and also extended (see Figure 5in Chapter 3). The appli
ation has been developed for two di�erent ar
hite
tures inChapters 4, 5, 6, 7.

94



CHAPTER 9. CONCLUSIONS 959.2 A
hievements9.2.1 Assessing a Multi-Ar
hite
ture Parallel Programming Method-ologyThe �rst systemi
 evaluation of Trinder and Loidl's multi ar
hite
ture programmingmethodology for GpH has been reported. It was explored using a geneti
 alignmentprogram, whi
h was developed using the methodology for the �rst time. The imple-mentation has shown the importan
e of ea
h stage in the methodology. Sequentialoptimisation gives a massive improvement in the exe
ution time and memory 
on-sumption (see Se
tion 4.4.4). It has been shown that a realisti
 GranSim simulation
orre
tly predi
ts the program version that gives the best performan
e on both realar
hite
tures. Also, the results show that the methodology produ
es a program witha

eptable performan
e on both ar
hite
tures, and this supports the 
on
lusion thathigh level fun
tional programming is a good approa
h to ar
hite
ture independent par-allel programming.The methodology has the following limitation. Firstly GranSim is too slow and thepro�les 
onsume 
onsiderable disk spa
e. As result it is not possible to run the experi-ment with the same input size as used in real ar
hite
tures. This problem is shared withother approa
hes using simulators. Se
ondly GranSim does not in
lude all features ofthe parallel ar
hite
ture, i.e there is no model of 
ommuni
ations bandwidth betweenPEs. Thirdly the idealised stage may lead to the generation of parallel programs thatdo not deliver good performan
e on real ar
hite
ture, e.g versions IIb, II
, III, IV, Vabove.



CHAPTER 9. CONCLUSIONS 969.2.2 Extended The Ar
hite
ture Independent Capabilities of GpHTo improve the ar
hite
ture independen
e of GpH new parallel 
oordination 
onstru
tshave been designed, implemented and measured. The primitives extra
t key ar
hite
-ture spe
i�
 properties of the ma
hine and use them to 
ontrol 
oordination, oftenwithout exposing the properties to the programmer. Improved parallel performan
eis demonstrated using the primitives. Figure 38 in Chapter 8 shows the new stru
-ture of the extended methodology for GpH. As seen from the �gure the enhan
ementwere made on the GpH stru
ture rather than the methodology stage shown �gure 5 inChapter 3.9.3 LimitationsThe work has the following limitations.� The methodology has been investigated using one appli
ation. To have a strongerbasis for 
on
lusions on the usefulness of the extended methodology it would begood if more programs were developed using the same methodology.� The geneti
 alignment program was tested on only two available ar
hite
tures.It would be useful if the program 
ould be tested on more ar
hite
tures. This isvery good eviden
e to support the proposed methodology.� Be
ause of time limitations, only one parameter was abstra
ted and implementedin the extended methodology. It would be useful to abstra
t more parametersfrom the underlying ar
hite
ture, su
h as laten
y and pa
king 
ost.� The real and simulation results are not dire
tly 
omparable for several reasons,in
luding the di�eren
e in the input size, and the di�eren
e in the runtime options



CHAPTER 9. CONCLUSIONS 97between the GranSim and GUM runtime system, as mentioned in the �rst point.9.4 Future WorkTo have strong support to the methodology, it would be useful for it to be used indeveloping more appli
ations in the area of 
omputer ar
hite
ture. In addition, thereis s
ope for it to be tested on more parallel ar
hite
tures.It would be useful to a 
ost model te
hnique to improve the ar
hite
ture independen
ein the GpH mode. It would be desirable to investigate the use of the sequential pro�leinformation to spark the parallel tasks.The extended methodology in Chapter 8 
ould be enhan
ed further by examining otherma
hine 
hara
teristi
s su
h as laten
y and pro
essor speed. In parti
ular, the infor-mation 
ould be used in automati
ally determining the 
hunk size in data parallelprograms.



Appendix A
Sour
e Code for The Geneti
Alignment Program
The appendi
es are organised as follows: Appendix A.1 
ontains the 
ode for optimisedsequential version, Appendix A.2 
ontains the 
ode for the best parallel version (IIa)whi
h delivers best speedup on both ar
hite
tures. Appendix A.3 
ontains modi�edfun
tions for a �nite-Map implementation see Se
tion 4.4.3 for more details.A.1 Final Sequential VersionThis se
tion 
ontains the �nal 
ode of optimised sequential version (V).module Main whereimport System(getArgs)import Listimport Randomdata Aminoa
id = A | C | U | G | D |Ideriving (Read,Show,Eq,Ord)type Sequen
e1 = [Aminoa
id℄type Sequen
e = [Int℄type Pin = [Int℄type SubSequen
e = [Int℄align_
hunk :: [Sequen
e℄ -> -- List of input sequen
es.[Sequen
e℄ -- Aligned sequen
es.align_
hunk [℄ = [℄align_
hunk xs = fun_align all_reswhere 98



APPENDIX A. SOURCE CODE FOR THE GENETIC ALIGNMENT PROGRAM99best = Bestpin xsall_res = divide xs bestdivide :: [Sequen
e℄ -> -- List of input sequen
esPin -> -- Best pin[Sequen
e℄ -- List of aligned sequen
es.divide [℄ [℄ = [℄divide xs [℄ = xs -- Basi
 alignmentdivide xs pin = (
ombine pin res_liftres_rightres_unpin
h )where(right
h,left
h,unpin
h1) = splitting_sequen
es pin xsunpin
h = lead_fun
tion pin unpin
h1res_unpin
h = align_
hunk unpin
hres_right = align_
hunk right
hres_lift = align_
hunk left
h
ombine :: Pin -> [Sequen
e℄ ->[Sequen
e℄ ->[Sequen
e℄ -> [Sequen
e℄
ombine pin left_seqs right_seqs unpinned_seqs= ( zipWith ( 
at_sequen
e pin) left_seqs right_seqs)++ unpinned_seqswhere
at_sequen
e :: Sequen
e -> Sequen
e ->Sequen
e -> Sequen
e
at_sequen
e pin ls rs = ls ++ pin ++ rsBestpin :: [Sequen
e℄ -> -- List of input sequen
es.Pin -- Best pin as output.Bestpin [℄= [℄Bestpin xs = best_pin pins_diswhereall_substring = substring_sequen
es xs xspins = map fst( extra
t_max_pins all_substring )extra
t_longest_pins = longest_pin pinspins_dis = pin_average_distan
e extra
t_longest_pins xs----------------------------------------------------------------- ALL FUNCTIONS CALLING BY Bestpin FUNCTION -----------------------------------------------------------------substring_sequen
es :: [ Sequen
e℄ ->[ Sequen
e℄ -> -- The input sequen
es[(Sequen
e,Int )℄ -- List of substring listsubstring_sequen
es [℄ [℄ = [℄substring_sequen
es [℄ ys = [℄substring_sequen
es (x:xs) ys = nub res1whereres = subseq xres1= form_pins res ys ++ substring_sequen
es xs yssubseq :: Sequen
e ->[SubSequen
e ℄subseq (x:xs) = inits (x:xs)++ subseq xssubseq [℄ = [℄form_pins :: [SubSequen
e℄ ->[Sequen
e ℄ ->



APPENDIX A. SOURCECODE FOR THEGENETIC ALIGNMENT PROGRAM100[(Pin,Int )℄form_pins [℄[℄ = [℄form_pins[℄ ys = [℄form_pins(x:xs) ys| num > 1 = (x,num): form_pins xs ys| otherwise = from_pins xs yswherenum = from_pins' x ysfrom_pins' :: SubSequen
e -> -- Single element from substring list[Sequen
e℄ -> -- A list of input sequen
esInt -- Number of o

urren
es as pinsfrom_pins' [℄ [℄ = 0from_pins' m [℄ = 0from_pins' m (x:xs)|((
he
k_for_snd_appears == Nothing )&&(
he
k_for_appears /= Nothing )) = 1+ form_pins' m xs|otherwise = form_pins' m xswhere
he
k_for_appears = lo
ate_pin m xwhere_pin_appears = pin_value(
he
k_for_appears)reset_of_sequen
e = drop (where_pin_appears + length m ) x
he
k_for_snd_appears = lo
ate_pin m reset_of_sequen
eextra
t_max_pins :: [(Pin,Int )℄ -> [ (Pin ,Int )℄extra
t_max_pins [℄ =[℄extra
t_max_pins ((p,n):xss) = foldr (extra
t_max_pins') [(p,n)℄ xssextra
t_max_pins' :: (Pin ,Int) ->[ (Pin,Int)℄ -> [(Pin,Int)℄extra
t_max_pins' (p,n) aa_pin�((p',n'):_)| n' > n = aa_pin| n' == n = aa_pin ++ [(p,n)℄| otherwise = [(p,n)℄longest_pin :: [Pin℄ ->[Pin℄longest_pin [℄ = [℄longest_pin (xs:xss) = foldr (longest_pin') [xs℄ xsslongest_pin' :: Pin ->[Pin℄ ->[Pin℄longest_pin' pin xs�(pin':_)| length pin' > length pin = xs| length pin' == length pin = (pin:xs)| otherwise = [pin℄pin_average_distan
e :: [Pin℄ ->[Sequen
e℄ ->[(Pin, Int ) ℄pin_average_distan
e [℄ [℄ = [℄pin_average_distan
e [℄ _ = [℄pin_average_distan
e _ [℄ = [℄pin_average_distan
e xss yss = [ (xs ,((sum (map (pin_average_distan
e' xs) yss ) `div` length yss )))| xs <- xss℄wherepin_average_distan
e' :: Pin -> Sequen
e -> Intpin_average_distan
e' [℄ [℄ = 0pin_average_distan
e' xs ys| 
he
k_res == Nothing = 0| otherwise = abs(((length ys) `div` 2) -
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he
k_res )) + (length xs `div` 2)))where
he
k_res = lo
ate_pin xs ysbest_pin :: [(Pin,Int)℄ ->Sequen
ebest_pin [℄ = [℄best_pin ((p,n):xs) = fst( best_pin' (p,n) xs)best_pin' (p,n) [℄ = (p,n)best_pin' (p',n') ((p,n):xs)| n <= n' = best_pin' (p,n) xs| otherwise = best_pin' (p',n') xs----------------------------------------------------------------- ALL FUNCTIONS CALLING BY divide FUNCTION -----------------------------------------------------------------splitting_sequen
es :: Pin ->[Sequen
e℄ ->([Sequen
e℄ , [Sequen
e℄ , [Sequen
e℄)splitting_sequen
es [℄ [℄ = ([℄, [℄ ,[℄)splitting_sequen
es [℄ ys = (ys, [℄, [℄)splitting_sequen
es xs ys =(right_
hunk , lift_
hunk , unpinned)whereright_
hunk = right_sequen
e xs yslift_
hunk = left_sequen
e xs ysunpinned = unpinned_
hunk xs ysright_sequen
e :: Pin -> -- best pin.[Sequen
e℄ -> -- List of input sequen
es.[Sequen
e℄ -- List of right sequen
es.right_sequen
e [℄ [℄ = [℄right_sequen
e [℄ ys = ysright_sequen
e xs ys = map (right_sequen
e' xs )(pined_
hunk xs ys)whereright_sequen
e' :: Pin -> Sequen
e -> Sequen
eright_sequen
e' [℄ [℄ = [℄right_sequen
e' [℄ ys = ysright_sequen
e' xs ys| (num_pin + length xs) == length ys = [℄| 
he
k_res /= Nothing = drop ( num_pin + (length xs )) yswhere
he
k_res = lo
ate_pin xs ysnum_pin = pin_value( 
he
k_res)left_sequen
e :: Pin -> -- best pin.[Sequen
e℄ -> -- List of input sequen
es.[Sequen
e℄ -- List of left sequen
es.left_sequen
e [℄ [℄ = [℄left_sequen
e [℄ ys = ysleft_sequen
e xs ys = map (left_sequen
e' xs ) (pined_
hunk xs ys)whereleft_sequen
e' :: Pin -> Sequen
e -> Sequen
eleft_sequen
e' [℄ [℄ = [℄left_sequen
e' [℄ ys = ysleft_sequen
e' xs ys| num_pin > 0 = take ( num_pin ) ys| otherwise = [℄wherenum_pin = pin_value (lo
ate_pin xs ys)
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hunk xs ys = filter(\y -> (lo
ate_pin xs y) == Nothing)(ys)pined_
hunk xs ys = filter(\y -> (lo
ate_pin xs y) /= Nothing )(ys)lo
ate_pin :: Pin -> -- Single pin.Sequen
e -> -- Input sequen
e.Maybe Int -- position of the in the sequen
e.lo
ate_pin xs ys = lo
ate_pin' xs ys 0lo
ate_pin' xs [℄ n = Nothinglo
ate_pin' xs (y:ys) n| isPrefixOf xs (y:ys) = Just n| otherwise = lo
ate_pin' xs ys (n+1)pin_value :: Maybe Int -> Intpin_value (Just x) = xpin_value Nothing = 0fun_align :: [Sequen
e ℄ ->[Sequen
e ℄fun_align [℄ = [℄fun_align xs = [ add_d x | x <- xs℄wherem = maximum [length x | x <- xs ℄add_d :: Sequen
e -> Sequen
eadd_d x| length x == m = x| otherwise = x ++
on
at (repli
ate (m - length x) p)wherep1 =
on
at (repli
ate (m - length x) p)p = [ 8 ℄lead_fun
tion :: Sequen
e -> [Sequen
e℄ -> [Sequen
e℄lead_fun
tion [℄ [℄ = [℄lead_fun
tion xs [℄ = [℄lead_fun
tion [℄ ys = yslead_fun
tion xs ys = map (lead_fun
tion' xs [℄ ) yslead_fun
tion' [℄ align [℄ = alignlead_fun
tion' xs align [℄ =alignlead_fun
tion' [℄ align ys =(reverse align) ++ yslead_fun
tion' (x:xs) align (y:ys)| x ==y = res| otherwise = res1whereres = lead_fun
tion' xs (x:align) ysres1 =lead_fun
tion' xs (9:align) (y:ys)test_align_length :: [Sequen
e℄ -> Booltest_align_length [℄ = Truetest_align_length xs| all(\x->(length x) == length (head xs)) xs = True| otherwise =False---------------------------------------------------------------- FUNCTION TO GENERATE RANDOM SET OF SEQUENCES -----------------------------------------------------------------mkRandom :: Int ->



APPENDIX A. SOURCECODE FOR THEGENETIC ALIGNMENT PROGRAM103Int ->IO [[Int℄℄mkRandom m n = doletg = mkStdGen 1701
s :: [Int℄
s = randoms g
s0 = map (`mod` 4) 
smk_grid' 0 _ _ res = resmk_grid' m n l res = mk_grid' (m-1) n l2 (l1:res)where (l1, l2) = splitAt n lgrid = mk_grid' m n 
s0 [℄return grid
onvert :: [[Int℄℄ -> [Sequen
e1℄
onvert [℄ = [℄
onvert (x:xs) = map dd x : 
onvert xswheredd 0 = Add 1 = Cdd 2 = Gdd 3 = Cdd 8 = D -- This 
hara
ter is used for deletiondd 9 = I -- The 
hara
ter is used for insertionmain = do args <- getArgsletn = read (args!!0) -- Number of input sequen
esl = read (args!!1) -- length of ea
h input sequen
exs <- mkRandom n llet m = align_
hunk xsres = 
onvert mprint( res )
A.2 Complete Parallel Code of Version IIaThis se
tion presents the 
ode of the best version of geneti
 alignment program whi
hdelivers a best performan
e on both ar
hite
tures.module Main whereimport System(getArgs)import GlaExts(tra
e)import Listimport Randomimport Strategiesdata Aminoa
id = A | C | U | G | D |Ideriving (Read,Show,Eq,Ord)type Sequen
e1 = [Aminoa
id℄type Sequen
e = [Int℄
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e = [Int℄-- This a

epts the 
hunk of sequen
es to be aligned and produ
es an alignment-- by 
alling the two top level fun
tions " Bestpin" and "divide"align_
hunk :: [Sequen
e℄ -> -- List of input sequen
es.[Sequen
e℄ -- Aligned sequen
es.align_
hunk [℄ = [℄align_
hunk xs = fun_align all_reswherebest = Bestpin xsall_res = divide xs best-- This divide takes a list of sequen
es and a best pin for a given list split-- it uses a pin into three 
hunks left , right ,and unpinned 
hunk to be-- aligned independently by 
on
urrent 
alling between align_
hunk and divide-- fun
tionsdivide :: [Sequen
e℄ -> -- List of input sequen
esPin -> -- Best pin[Sequen
e℄ -- List of aligned sequen
es.divide [℄ [℄ = [℄divide xs [℄ = xs -- this represents the basi
 alignment to the sequen
edivide xs pin = (
ombine pin_var res_lift res_right res_unpin
h )`demanding` strategywhere(right
h,left
h,unpin
h1) = splitting_sequen
es pin xsunpin
h = lead_fun
tion pin unpin
h1res_unpin
h = align_
hunk unpin
hres_right = align_
hunk right
hres_lift = align_
hunk left
hstrategy = rnf res_lift `par`rnf res_right `par`rnf res_unpin
h
ombine :: Pin -> [Sequen
e℄ ->[Sequen
e℄ ->[Sequen
e℄ -> [Sequen
e℄
ombine pin left_seqs right_seqs unpinned_seqs= ( zipWith ( 
at_sequen
e pin) left_seqs right_seqs) ++ unpinned_seqs where
at_sequen
e :: Sequen
e -> Sequen
e -> Sequen
e -> Sequen
e
at_sequen
e pin ls rs = ls ++ pin ++ rs-- The Bestpin fun
tion takes a list of sequen
es and produ
es best as outputBestpin :: [Sequen
e℄ -> -- List of input sequen
es.Pin -- Best pin.Bestpin [℄= [℄Bestpin xs = best_pin pins_diswhereall_substring = par_substring_sequen
es xs xspins_with_o

urren
e = all_substringpins = map fst( extra
t_max_pins pins_with_o

urren
e )extra
t_longest_pins = longest_pin pinspins_dis = pin_average_distan
e extra
t_longest_pins xs----------------------------------------------------------------- ALL FUNCTIONS CALLING BY Bestpin FUNCTION -----------------------------------------------------------------substring_sequen
es :: [ Sequen
e℄ -> Sequen
e -> -- The input sequen
es[(Sequen
e,Int )℄ -- list of substring list
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es ys x = nub res1whereres = subseq xres1= form_pins res yspar_substring_sequen
es :: [Sequen
e ℄ ->[Sequen
e ℄ ->[(Pin,Int )℄par_substring_sequen
es xs ys =foldr (++) [℄ (parMap rnf (substring_sequen
es ys) xs)subseq :: Sequen
e -> -- A single sequen
es from the input sequen
es[SubSequen
e ℄ -- all substring from the input sequen
essubseq (x:xs) = inits (x:xs)++ subseq xssubseq [℄ = [℄Form_pins :: [SubSequen
e℄ -> -- A list of all substrings of a single sequen
e.[Sequen
e ℄ -> -- A list of input sequen
es[(Pin,Int )℄ --List of pins and its o

urren
e.Form_pins [℄[℄ = [℄Form_pins[℄ ys = [℄Form_pins(x:xs) ys| num > 1 = (x,num): form_pins xs ys| otherwise = form_pins xs yswherenum = form_pins' x ysform_pins' :: SubSequen
e -> -- Single element from substring list[Sequen
e℄ -> -- A list of input sequen
esInt -- Number of o

urren
es as pinsform_pins' [℄ [℄ = 0form_pins' m [℄ = 0form_pins' m (x:xs)|((
he
k_for_snd_appears == Nothing ) &&(
he
k_for_appears /= Nothing ))= 1+ form_pins' m xs|otherwise = form_pins' m xswhere
he
k_for_appears = lo
ate_pin m xwhere_pin_appears = pin_value(
he
k_for_appears)reset_of_sequen
e = drop (where_pin_appears + length m ) x
he
k_for_snd_appears = lo
ate_pin m reset_of_sequen
eextra
t_max_pins :: [(Pin,Int )℄ -> [ (Pin ,Int )℄extra
t_max_pins [℄ =[℄extra
t_max_pins ((p,n):xss) = foldr (extra
t_max_pins') [(p,n)℄ xssextra
t_max_pins' :: (Pin ,Int) ->[ (Pin,Int)℄ -> [(Pin,Int)℄--extra
t_max_pins' [℄ [℄ = [℄-- extra
t_max_pins' aa_pin [℄ = aa_pinextra
t_max_pins' (p,n) aa_pin�((p',n'):_)| n' > n = aa_pin| n' == n = aa_pin ++ [(p,n)℄| otherwise = [(p,n)℄longest_pin :: [Pin℄ ->[Pin℄longest_pin [℄ = [℄longest_pin (xs:xss) = foldr (longest_pin') [xs℄ xsslongest_pin' :: Pin ->[Pin℄ ->[Pin℄longest_pin' pin xs�(pin':_)



APPENDIX A. SOURCECODE FOR THEGENETIC ALIGNMENT PROGRAM106| length pin' > length pin = xs| length pin' == length pin = (pin:xs)| otherwise = [pin℄pin_average_distan
e :: [Pin℄ -> -- A list of pins[Sequen
e℄ -> -- A list of input sequen
es[(Pin, Int ) ℄pin_average_distan
e [℄ [℄ = [℄pin_average_distan
e [℄ _ = [℄pin_average_distan
e _ [℄ = [℄pin_average_distan
e xss yss = [ (xs ,((sum (map (pin_average_distan
e' xs) yss ) `div` length yss )))| xs <- xss℄wherepin_average_distan
e' :: Pin -> Sequen
e -> Intpin_average_distan
e' [℄ [℄ = 0pin_average_distan
e' xs ys| 
he
k_res == Nothing = 0| otherwise = abs(((length ys) `div` 2) -((pin_value ( 
he
k_res )) + (length xs `div` 2)))where
he
k_res = lo
ate_pin xs ysbest_pin :: [(Pin,Int)℄ -> Sequen
ebest_pin [℄ = [℄best_pin ((p,n):xs) = fst( best_pin' (p,n) xs)best_pin' (p,n) [℄ = (p,n)best_pin' (p',n') ((p,n):xs)| n <= n' = best_pin' (p,n) xs| otherwise = best_pin' (p',n') xs----------------------------------------------------------------- ALL FUNCTIONS CALLING BY divide FUNCTION -----------------------------------------------------------------splitting_sequen
es :: Pin -> -- Best pin[Sequen
e℄ -> -- List of input Sequen
es([Sequen
e℄ , [Sequen
e℄ , [Sequen
e℄)splitting_sequen
es [℄ [℄ = ([℄, [℄ ,[℄)splitting_sequen
es [℄ ys = (ys, [℄, [℄)splitting_sequen
es xs ys = (right_
hunk , lift_
hunk , unpinned)whereright_
hunk = right_sequen
e xs yslift_
hunk = left_sequen
e xs ysunpinned = unpinned_
hunk xs ysright_sequen
e :: Pin -> -- best pin.[Sequen
e℄ -> -- List of input sequen
es.[Sequen
e℄ -- List of right sequen
es.right_sequen
e [℄ [℄ = [℄right_sequen
e [℄ ys = ysright_sequen
e xs ys = map (right_sequen
e' xs ) (pined_
hunk xs ys)whereright_sequen
e' :: Pin -> Sequen
e -> Sequen
eright_sequen
e' [℄ [℄ = [℄
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e' [℄ ys = ysright_sequen
e' xs ys| (num_pin + length xs) == length ys = [℄| 
he
k_res /= Nothing = drop ( num_pin + (length xs )) yswhere
he
k_res = lo
ate_pin xs ysnum_pin = pin_value( 
he
k_res)left_sequen
e :: Pin -> -- best pin.[Sequen
e℄ -> -- List of input sequen
es.[Sequen
e℄ -- List of left sequen
es.left_sequen
e [℄ [℄ = [℄left_sequen
e [℄ ys = ysleft_sequen
e xs ys = map (left_sequen
e' xs ) (pined_
hunk xs ys)whereleft_sequen
e' :: Pin -> Sequen
e -> Sequen
e-- This fun
tion extra
ts the left sequen
e from single sequen
e-- the inputs are best pin + single sequen
e.left_sequen
e' [℄ [℄ = [℄left_sequen
e' [℄ ys = ysleft_sequen
e' xs ys| num_pin > 0 = take ( num_pin ) ys| otherwise = [℄wherenum_pin = pin_value (lo
ate_pin xs ys)unpinned_
hunk xs ys = filter(\y -> (lo
ate_pin xs y) == Nothing)(ys)pined_
hunk xs ys = filter(\y -> (lo
ate_pin xs y) /= Nothing )(ys)lo
ate_pin :: Pin -> -- Single pin.Sequen
e -> -- Input sequen
e.Maybe Int -- position of the in the sequen
e.lo
ate_pin xs ys = lo
ate_pin' xs ys 0lo
ate_pin' xs [℄ n = Nothinglo
ate_pin' xs (y:ys) n| isPrefixOf xs (y:ys) = Just n| otherwise = lo
ate_pin' xs ys (n+1)pin_value :: Maybe Int -> Intpin_value (Just x) = xpin_value Nothing = 0fun_align :: [Sequen
e ℄ -> -- List of input sequen
es to aligned[Sequen
e ℄fun_align [℄ = [℄fun_align xs = [ add_d x | x <- xs℄wherem = maximum [length x | x <- xs ℄add_d :: Sequen
e -> Sequen
eadd_d x| length x == m = x| otherwise = x ++ 
on
at (repli
ate (m - length x) p)wherep1 =
on
at (repli
ate (m - length x) p)p = [ 8 ℄lead_fun
tion :: Sequen
e -> [Sequen
e℄ -> [Sequen
e℄lead_fun
tion [℄ [℄ = [℄lead_fun
tion xs [℄ = [℄lead_fun
tion [℄ ys = ys
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tion xs ys = map (lead_fun
tion' xs [℄ ) yslead_fun
tion' [℄ align [℄ = alignlead_fun
tion' xs align [℄ =alignlead_fun
tion' [℄ align ys =(reverse align) ++ yslead_fun
tion' (x:xs) align (y:ys)| x ==y = res| otherwise = res1whereres = lead_fun
tion' xs (x:align) ysres1 =lead_fun
tion' xs (9:align) (y:ys)test_align_length :: [Sequen
e℄ -> Booltest_align_length [℄ = Truetest_align_length xs| all(\x->(length x) == length (head xs)) xs = True| otherwise =False---------------------------------------------------------------- FUNCTION TO GENERATE RANDOM SET OF SEQUENCES -----------------------------------------------------------------mkRandom1 :: Int -> -- Input value represents the number of sequen
esInt -> -- Input value represents the length of ea
h sequen
eIO [[Int℄℄ -- List of random input sequen
esmkRandom1 m n = doletg = mkStdGen 1701 -- deterministi
 input via fixed seed val
s :: [Int℄
s = randoms g
s0 = map (`mod` 4) $ 
smk_grid' 0 _ _ res = resmk_grid' m n l res = mk_grid' (m-1) n l2 (l1:res)where (l1, l2) = splitAt n lgrid = mk_grid' m n 
s0 [℄return grid
onvert :: [[Int℄℄ -> [Sequen
e1℄
onvert [℄ = [℄
onvert (x:xs) = map dd x : 
onvert xswheredd 0 = Add 1 = Cdd 2 = Gdd 3 = Cdd 8 = D -- This 
hara
ter is used for deletiondd 9 = I -- The 
hara
ter is used for insertionmain = do args <- getArgsletn = read (args!!0) -- Number of input sequen
es
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h input sequen
exs <- mkRandom1 n llet m = align_
hunk xsres = 
onvert mprint( res )
A.3 Finite Map CodeThe following shows all modi�
ation made to implement the Finite Map library in thegeneti
 alignment program.import FiniteMap(FiniteMap,listToFM ,emptyFM,addListToFM,addListToFM_C,fmToList,delListFromFM,delFromFM ,sizeFM,lookupFM,foldFM,plusFM_C ,keysFM)------------------------------------------------------------ ALL FUNCTIONS CALLING BY Bestpin FUNCTION --------------------------------------------------------------substring_sequen
es :: [ Sequen
e℄ -> -- The input sequen
es[(SubSequen
e, Int)℄ -- List of substring listsubstring_sequen
es [℄ = [℄substring_sequen
es xs = res_pinwhereres_pin' = substring_sequen
es' xsres_pin = form_pins (
at_listoffm res_pin')substring_sequen
es' :: [ Sequen
e℄ ->[FiniteMap SubSequen
e Int℄substring_sequen
es' [℄ = [℄substring_sequen
es' (x:xs) = fm_of_
riti
al : substring_sequen
es' xswhereall_substrings = subseq xfm_of_substring = list_of_substring_fm all_substringsel_double_substring = 
riti
al_fun
tion fm_of_substringfm_of_
riti
al = delListFromFM fm_of_substring el_double_substring-- This is to filter substrings whi
h o

ur on
e in FM.
riti
al_fun
tion fm = filter (\ x -> 
ase lookupFM fm xof Just n -> n>1) (keysFM fm)list_of_substring_fm :: [SubSequen
e ℄ -> FiniteMap SubSequen
e Intlist_of_substring_fm [℄ = emptyFMlist_of_substring_fm xs = addListToFM_C (+) emptyFM [(x,1) | x<-xs℄
at_listoffm :: [FiniteMap SubSequen
e Int℄ -> FiniteMap SubSequen
e Int
at_listoffm ys = foldr (plusFM_C (+)) emptyFM ysform_pins :: FiniteMap SubSequen
e Int -> [(Pin ,Int)℄form_pins ys = pins_in_listwherelist_of_
ri_substrings = 
riti
al_fun
tion1 yspins_in_fm = delListFromFM ys list_of_
ri_substringspins_in_list = fmToList pins_in_fm-- This is to filter substrings whi
h o

ur on
e in FM.
riti
al_fun
tion1 fm = filter (\ x -> 
ase lookupFM fm xof Just n -> n==1) (keysFM fm)
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