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Abstract

Due to unpredictable network topology changes, routing in Mobile Ad Hoc Net-
works (MANET) is an important and challenging research area. The routing protocol
should detect and maintain a good route(s) between source and destination nodes in
these dynamic networks. Many routing protocols have been proposed for mobile ad

hoc networks, and none can be considered as the best under all conditions.

This thesis presents the design and implementation of a new proactive multipath
MANET routing protocol. The protocol, named Multipath Destination Sequenced
Distance Vector (MDSDV), is based on the well known single path Destination Se-
quenced Distance Vector (DSDV). We show that the protocol finds node-disjoint
paths, i.e., paths which do not have any nodes in common, except for the source

and the destination.

The thesis presents a systematic evaluation of MDSDV in comparison with three
well known protocols: one proactive (DSDV), and two reactive (AODV) and (DSR).
MDSDV behaves very well in terms of its packet delivery fraction and data dropped in
both static and dynamic networks. It delivers nearly 100% of data in dense networks
(networks with more than 20 nodes). The speed of the nodes and the number of

sources have a low impact on its performance.
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Introduction

Recently, Mobile Ad Hoc Networks (MANETS) have gained an increasing signif-
icance. Ad Hoc networking is needed in many applications such as military and
battlefield operations, virtual classrooms or conference rooms, and rescue operations
in natural disasters. These kind of applications require a network regardless of any in-
frastructure, and this is the idea behind MANETSs which can be considered as flexible
networks and suitable for such applications. MANETS are typically characterized by
high mobility and frequent link failures that result in low throughput and high end-to-
end delay. The increasing use of MANETS for transferring multimedia applications

such as voice, video and data, leads to the need to provide QoS support.

1.1 Problem Statement

MANET routing protocols are based on different design philosophies and proposed
to meet certain requirements. Thus, the performance of a mobile ad hoc routing pro-

tocol may vary dramatically with the variations of network status. According to how
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routing information is gathered and maintained by mobile nodes, routing protocols

can be divided into proactive routing, reactive routing and hybrid routing.

Providing a convenient routing protocol for MANETS is a challenge because of its
dynamic environment. Therefore, the suitability of each routing protocol depends
on many parameters such as, network size, node mobility, and traffic load. All that,
together with the limited resources in MANETS (e.g., bandwidth and energy) make
the selection of an optimum routing protocol into a complicated task. The frequent
topology changes and variable propagation conditions make a routing table obsolete
very quickly, which results in enormous control overhead for route discovery and
route maintenance. In some scenarios, route maintenance may consume so much in
the way of resources that no bandwidth remains for the transmission of data packets.
Even worse, the short lifetime of routing information means that a portion of the
information may no longer be useful and thus the bandwidth used to distribute the

routing update information could be wasted.

When a link failure has occurred, single path proactive routing protocols have to wait
until receiving a new routing information to continue sending the data packets. This
may lead to low performance and drop huge number of data packets. On the other
hand, single path reactive routing protocols must invoke a route discovery process to

obtain a route to the destination. This increases the control overhead and delay.

1.2 Motivation

Computer networks become more important due to the rapid growth of the Internet
into our daily lives. We can observe the gradual deployment of new multimedia ap-
plications such as the world wide web, e-mail, video conferencing, video-on-demand,
instant messaging, and Voice Over IP (VoIP). These applications generate traffic with
characteristics that differ from traffic generated by data applications, and they are

more sensitive to delay and loss [114]. As parts of the Internet become heavily loaded,
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congestion may occur which may lead to buffer overflows and packet loss. It may also
lead to packet delay as packets take longer to process. Latency may seem acceptable
for some applications such as e-mail and file transfer. For real-time applications, data

becomes obsolete if it does not arrive in time.

Internet networks have to carry many different types of data. Internet traffic also
needs to provide Quality of Service (QoS) for each type of data. Internet traffic can
be classified into compressed traffic and uncompressed traffic [80] as shown in Figure

I.1.

Internet Traffic
|
Uncompressed
Traffic

: Non Real Time Tnd ]
Traffic Traffic
NRT-VBR best etfo
traffic
Sensitive Traffic

L.

Figure 1.1: The Internet traffic classification [80]

Compressed traffic is proposed to reduce the size of transmission and storage. The
traffic is compressed at the source node and travels through the network. Then it
is decompressed at the destination node. Four main traffic types are proposed in
Asynchronous Transfer Mode (ATM) service categories: Constant Bit Rate (CBR),
Variable Bit Rate (VBR), Available Bit Rate (ABR), and Unspecified Bit Rate (UBR).

CBR is real time traffic that has a constant sending rate. The traffic sending rate is
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specified by the Peak Cell Rate (PCR) parameter. CBR is used for connections that
need traffic on-time synchronization between the source and destination. VBR traffic
is a type of loss and delay sensitive traffic. It is known as an ATM service category
that is intended for both the real-time and non-real-time applications [101]. The Real
Time-VBR (RT-VBR) service category is used for connections that carry traffic at
variable rates, which depend on accurate timing between the source and destination.
The Non Real Time-VBR (NRT-VBR) service category is used for connections that
carry traffic at variable rates, which have no need for on-time synchronization be-
tween the source and destination. The ABR service category is intended for sources
that have the ability to increase their data rate and use the available bandwidth. The
ABR service category is designed for any type of traffic that lacks time sensitivity
and expects no guarantees of service. The UBR service category is intended for best
effort traffic and non-critical applications that are very tolerant of delay and packet

loss.

Uncompressed traffic is normal traffic that travels through the network in the nor-
mal form (without compression). It can be divided into three different categories:
sensitive traffic, best- effort traffic, and undesired traffic. Sensitive traffic is traffic
transmitted over the network if there is online interaction between the source and the
destination. It must be delivered with a minimum delay, less packets drops, and it
offers a real-time network service. In real time traffic, information about the traffic
cannot be obtained in advance, therefore it needs online processing. In Best-effort
traffic, there is no online interaction. It is easy to extract the entire traffic information
before it is transmitted. Undesired traffic is created by the delivery of the spam traffic

worms, bonnets, and other malicious attacks.

The motivation for choosing a Multipath routing protocol for my research comes
from the fact that routing is a challenging issue and a very interesting research area in
MANETSs. Multipath routing protocols are considered more reliable and robust. Fur-
thermore, whenever a link failure is detected in a primary route, the source node can

select the optimal route among multiple available routes. This mechanism enhances

4
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route availability and consequently reduces control overhead, saves energy, enhances
data transmission rate, and increases the network bandwidth [68]. For these reasons,
multipath routing is useful for many applications in MANETS such as heavy multi-
media and real-time traffic, routing fault tolerance, and load balancing.

To the best of our knowledge, most multipath routing protocols are reactive, where
the route is established only when a source node needs to send data to the intended
receiver. So, we desired to investigate and discover the strengths and weakness of
using a proactive multipath routing protocol. Additionally, several routing algorithms
have been proposed to improve the performance of DSDV, but none of them uses a
multipath technique. DSDV suffers from low performance as it is a single path rout-
ing protocol. When a link failure is detected, the node has to wait until fresh routing
information is received that may contain route information to the desired destination.

This leads to low performance as a result of data packets being dropped.

This research proposes a proactive multipath routing protocol based on DSDV that
aims to 1) provide efficient fault tolerance in the sense of faster and efficient recovery
from route failures in dynamic networks, ii) achieve high QoS in terms of packet de-
livery ratio and end-to-end delay to support multimedia applications over MANETS,
and iii) minimize routing overhead to reduce the energy and bandwidth consump-
tion. In the investigation of this issue, we pay specific attention to the scalability of

algorithms in respect of network size, nodal mobility and traffic load.

I have chosen DSDV as a basis for my new routing protocol for the following reasons:
e DSDV is an easy routing protocol to understand and is easy to implement.
e Many routing protocols are based on DSDV such as AODV [93].

e Several routing algorithms have been proposed [3][13][20][52][57][60][70]1[71][72]
[118][119], to improve the performance of DSDYV, but none of them uses a
multipath technique. Section 3.3.2 briefly describes some of these proposed

algorithms.
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1.3 Thesis Contributions

The thesis makes the following research contributions:

1. We present the design of a novel multipath proactive routing protocol for MANETS.
The protocol is novel in proactively maintaining multiple loop-free and node-
disjoint paths. We use a simulation-based prototyping methodology. We de-
signed and implemented an initial routing protocol for MANETS called Multi-
path Destination Sequenced Distance Vector (MDSDVO0), extending the well-
studied single path Destination Sequenced Distance Vector (DSDV) protocol.

MDSDVO computes multiple loop-free and node-disjoint paths. [Chapter 4].

Performance measurements show that the control overheads of MDSDVO0 are
too high as it broadcasts and rebroadcasts routing information (Update pack-
ets and Error packets) to the entire network. A revised protocol, MDSDYV, is
designed, implemented, and validated to minimize control overheads by broad-

casting route information only to its neighbours [Chapter 5].

2. A performance study is presented in chapters 6, 7, and 8. We start by investi-
gating the control overheads of each of the MDSDV control packets [Chapter
6].

As MDSDV is a proactive routing protocol and based on the well-known DSDV
routing protocol, we present a systematic comparative evaluation of MDSDV
with DSDV. The results show that the performance of MDSDV is superior to
standard DSDV, improving the Packet Delivery Fraction, reducing the Average
end-to-end Delay in low mobility environments, providing lower routing load
in low mobility, and dramatically decreasing the number of dropped packets
[Chapter 7].

We present a systematic comparative evaluation of MDSDV with two most
popular on-demand routing protocols: AODV and DSR. The results show that
MDSDV has similar performance to AODV and DSR at light traffic loads, and
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outperforms them in heavy traffic situations. The difference increases as the

network size increases or mobility decreases [Chapter 8].

3. Implementing a routing protocol is non-trivial and to support further research
we provide a complete implementation of MDSDV in the industry-standard

NS2 simulator both in Appendix E, and publicly at http://www.macs.hw.ac.uk/~etorban/.

1.4 Thesis Outline

The rest of the thesis is structured as follows:

e Chapter 2: Begins with background information that is required to understand
mobile ad hoc networks. It presents brief descriptions of their characteristics
and applications. Also, a brief description of three network simulators and three
mobility models is given. Finally, this chapter articulates some techniques that

are used to establish communications in MANETS.

e Chapter 3: describes number of routing protocols and their operations. As
our protocol is based on the DSDV routing protocol, an extensive description
of DSDV is presented. Moreover, some of the proposed algorithms to improve

the performance of DSDV are described in this chapter.

e Chapter 4: presents the preliminary design of our new multipath routing pro-
tocol. The new protocol is referred to as Multipath Destination Sequenced
Distance Vector (MDSDVO) [54]. The protocol guarantees loop freedom and
disjointness of alternative paths. MDSDVO finds node-disjoint paths which do

not have any common nodes between a source and a destination.

e Chapter 5: Due to the huge number of routing packets that are transmitted by
the preliminary version (MDSDVO0), this chapter describes the modifications
that have been done to reduce the control packets and improve the performance.

The final version is referred to as MDSDV.
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e Chapter 6: Investigates the overheads, i.e., the control packets generated by

1.5

MDSDV.

Chapter 7: As MDSDV is based on DSDV, this chapter gives a simulation
and performance evaluation analysis of MDSDV with DSDV under different

environments.

Chapter 8: gives a simulation and performance evaluation analysis of MDSDV

with two well known reactive routing protocols: AODV and DSR.

Chapter 9: concludes the thesis with a summary of the major achievements of

the thesis, presents the limitations of MDSDYV, and outlines future works.

Publications

. A DSDV-based Multipath Routing Protocol for Mobile Ad-Hoc Networks. In

Proceedings of the 8th Annual PostGraduate Symposium on The Convergence
of Telecommunications, Networking and Broadcasting, United Kingdom, 2007

[54]

. A Performance Comparison of MDSDV with AODV and DSDV Routing Pro-

tocols. In Proceedings of the 25th UKPEW2009, Performance Engineering
Workshop, United Kingdom, 2007 [32]




Mobile Ad Hoc Networks

This chapter summarises Mobile Ad Hoc Networks (MANETSs). We discuss the mo-
tivation for MANETSs in section 2.1, and outline their characteristics in section 2.2.
Some of the typical applications used in MANETS are presented in 2.3. A brief de-
scription of three simulators (NS2, GloMoSim, and JIST/SWANS) is given in section
2.4. We discuss three mobility models in section 2.5. Finally, section 2.6 describes

some techniques that are used to establish communications in MANETS.

2.1 Introduction

Recently, network researchers are studying networks based on new communication
techniques, especially wireless communication. Mobile networks have been of sig-
nificant interest in the past ten years because of their improved flexibility and reduced
costs. Compared to wired networks, mobile networks have unique characteristics and
differ in the way of communication. Wired networks transfer data packets through
physical cables; whereas, in mobile networks, the communication between different

devices can be either wireless or wired.

In mobile networks, node mobility makes the network topology change frequently,

which is rare in wired networks. Mobile networks have a high error rate, bandwidth
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limitations and power restrictions. Due to the impacts from transmission power, re-
ceiver sensitivity, noise, fading and interference, wireless link capacity continually
varies. Wireless networks can be deployed quickly and easily, and users stay con-
nected to the network while they are moving around. Also, they play an important
role in both civilian and military fields. We have seen great developments in Wire-
less networks infrastructure, availability of wireless applications, and proliferation of

Wireless devices everywhere such as laptops, PDAs, and cell phones.

According to the deployment of network infrastructure, Wireless networks can be
divided into two types [104]. The first type are Infrastructure-based wireless networks
and the second are infrastructure-less mobile networks, commonly known as ad-hoc
networks. Infrastructure networks are those networks with fixed and wired gateways.
The bridges for this type of networks are known as base stations. A mobile node
connects to the nearest base station which is within its communication radius. As
the mobile travels out of range of one base station and into the range of another,
a “handoff” occurs from the old base station to the new, and the mobile is able to

continue communication seamlessly throughout the network

A mobile ad-hoc network (MANET) is a group of wireless mobile nodes dynamically
establishing a short live network without any use of network infrastructure or central-
ized administration. In addition to the high degree of mobility, MANET nodes are
distinguished by their limited resources such as power, bandwidth, processing, and
memory. If two mobile nodes need to communicate with each other, they can com-
municate directly if they are within the transmission range of each other, otherwise
intermediate nodes (nodes in between) should forward the packet from one of them
to the other. Thus, each node in the network acts both as a host and router and must
therefore be willing to forward packets to other nodes. All nodes in mobile ad hoc
networks are free to move, and the link between two nodes is broken when one of
them moves out of other’s transmission range, and hence the network topology may

change frequently.

10
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2.2 Characteristics

Compared to other wired or infrastructure-based wireless networks and according to

[25], Mobile ad hoc networks have the following characteristics.

e Dynamic topology All nodes of mobile ad hoc network are free to move causing
network topology changes rapidly at unpredictable times. Links between nodes
are expected to break much more frequently than with wired and infrastructure-

based wireless networks.

e Self-organization: Due to the lack of infrastructure or central administration,

nodes should be able to form themselves into a network.

e Multi-hopping: In a mobile ad hoc network, nodes use a wireless channel to
transmit data, and due to the limited number of a node’s neighbours, interme-

diate nodes are used to relay the packets.

e Resource conservation: In mobile ad hoc networks, the nodes are limited in
both energy supply and processing power. Power conservation becomes a very
important factor to be considered when designing a network. Therefore, opti-

mizing all operations may minimize the energy consumption.

e Limited security: Mobile ad hoc networks are more prone to security threats
than wired networks or infrastructure-based wireless networks because of their
unique characteristics. Each mobile node in an ad hoc network can function as a
router or packet forwarder for other nodes, both legitimate users and malicious
attackers can access the wireless channel, and there is no well place where
access control mechanisms can be deployed. As a result, separating the inside

of the network from the outside world becomes imprecise.

e Scalability: In some applications (e.g., battlefield deployments), mobile ad hoc

networks may grow up to several thousand nodes. Mobile ad hoc networks

11
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suffer from scalability problems in channel capacity, because channel capacities
are very limited and maximum use of channel capacity can be reached faster.
Due to the multihoping nature of mobile ad hoc networks, their scalability is

related to the routing protocols they employ.

2.3 Applications

Mobile ad-hoc networks are used in many applications, ranging from small, static net-
works, to large, highly dynamic networks such as virtual classrooms, conferencing,

emergency services, military applications.

e Military applications: Mobile ad hoc networks satisfy several military needs
such as battlefield survivability. In such environments, setting up of an infras-
tructure for communication between soldiers in battlefield could be impossible.
The wireless devices carried by soldiers can form a mobile ad hoc network to

support communication among them.

e Conferencing: perhaps the prototypical application requiring the establishment
of a mobile ad hoc network is mobile conferencing. One common use is to

create a temporary network to support a meeting in a conference room.

e Disaster relief operations: Each year natural disasters (e.g., earthquake, flood),
destroy people’s lives around the world. As the importance of the Internet
grows, the loss of network connectivity during such disasters will be a more
noticeable effect of the misfortune. So, it is important to find ways to enable
the operations of networks even when infrastructure elements are disabled as a

result of the disaster.

e Personal area networks: The idea of a Personal Area Network (PAN) is to cre-
ate a network that consists of nodes which are associated with a single person.

These nodes may be placed in a person’s clothes, belt or carried in handbags.
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2.4 Simulators:

Numerous simulators have been developed and used in simulation studies. Some of
these simulators are open source such as Network Simulator2 (NS2) [33], GloMoSim
[6], and Jist/SWANS [7], and some of them are commercial such as QualNet [1]. NS2
and GloMoSim are the most popular simulators for simulation studies [64]. Brief
descriptions of three simulators are given in the next subsections. The performance
comparisons among simulation results have to be based on the same simulator. In
our thesis, all simulations and performance evaluations are based on use of the NS2
simulator. We used NS2 as it is widely used in the networking research community
and accepted as a tool to experiment with new protocols and distributed algorithms

[29].

2.4.1 Network Simulator (NS2):

Network simulator version 2 (NS2) [33] is an object-oriented, discrete event driven
network simulator. It has been developed at the University of California in Berkeley.
The core of NS2 is written in C++ and the configuration depends on OTCL scripts.
NS2 is a very widely used simulator for the simulation of a variety of routing proto-
cols, several QoS (Quality of Service) mechanisms, and more. It is open source and
several extensions have been provided. Dricot and Doncker in [31] proposed a highly
accurate physical model based on ray tracing Markov chains which can be very useful

for the simulation of mobile ad hoc networks.

A project at Carnegie Mellon University (CMU) [46] provided wireless extensions,
which include mobile nodes and wireless communication. The Random WayPoint
(RWP) model has been implemented in this extension. It can be used to create a
topology scenario based on some parameters, such as the number of nodes, pause

time between direction changes, and the speed of nodes. The extension also provides
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implementations of some routing protocols, such as DSDV [94], AODV [93], DSR
[47], and TORA [90].

NS2 does not provide any statistics. Instead, every event produced by the simulation
is written to a trace file that can be processed to extract the desired information. The
generated trace file is large even with a low scale simulation scenario. A simple C
program or an AWK script can be used to extract and analyze the data stored in the
trace file. One of the drawbacks of NS2 is its complexity. The mix of C++ and OTCL
increases the complexity of the implementation. Modifying an existing component
or adding new ones requires a developer to write or rewrite several software modules.
Therefore, NS2 is not easy to use in simulation experiments, and it is not easy to learn
how to add new components or modify existing ones because its documentation is not

very easy to understand.

The Network Animator (NAM), is a Tcl/TK based animation tool which can be used

to view NS-2 trace files for post-processing, analysis and replay of simulations

2.4.2 GloMoSim

Global Mobile Information System Simulator (GloMoSim) [6] is a scalable simula-
tion library, developed at the University of California, to support studies of large-scale
network models with thousands of nodes. GloMoSim is the second most used simu-
lator after NS2, in the research community [29]. It has a layered model of network
communication according to ISO/OSI model. GloMoSim is written in C with Parsec
extensions [5]. Thus, new modules for GloMoSim need to be written in Parsec as

well. GloMoSim code is free, but Parsec is not.

In GloMoSim, network layers are represented as objects called entities and events are
represented as time-stamped messages handled by entities. The GloMoSim’s network

model does not define every network node as an entity, because this leads to too
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many objects. Instead, GloMoSim uses entities to model network layers, and makes

messages cross the layer stack by being interchanged by the entities.

2.4.3 JIST/SWANS

Java in Simulation Time (JiST) [7] is a high-performance discrete event simulator
that runs over a standard Java virtual machine. It was developed by Rimon Barr et
al. at Cornell University. Its main idea is to transform the Java virtual machine into a
scheduler for events. The JiST system is composed of four components: a compiler, a
byte code rewriter, a simulation kernel and a virtual machine. Figure 2.1 presents the
architecture of JIST/SWANS where a simulation is first compiled, then dynamically
rewritten as it is loaded, and finally executed by the virtual machine with support from

the language-based simulation time kernel.

[ Simulation ]

[ SWANS ]

[ JST ]

[ JVM (Java Virtual Machine) ]

‘ /s ’

Figure 2.1: JiST/SWANS architecture

The Scalable Wireless Ad hoc Network Simulator (SWANS) [8] is a collection of
components to simulate ad hoc networks based on the JiST simulation engine. It pro-
vides all the mechanisms needed to simulate MANETS. Figure 2.2 shows the SWANS
architecture where every SWANS component is encapsulated as a JiST entity (i.e., it
stores its own state and interacts with other components via interfaces). Nodes consist
of several entities that are linked together and represent the different stack elements of

a network application. SWANS is able to simulate large networks. According to the
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survey in [64], 2 out of 29 (7%) simulation experiments have used the JIST/SWANS

simulator.
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Figure 2.2: SWANS architecture [50]

2.5 Mobility Models:

There are several mobility models that can be used in the simulation of ad hoc net-
works [17]. Mobile Nodes (MNs) within an ad hoc network are free to move from
one location to an other. However, finding a way to model these movements is not
obvious. In order to simulate a new routing protocol for an ad hoc network, it is
necessary to use a mobility model that precisely represents the Mobile Nodes (MNs)
that will utilize the protocol. Currently, two types of mobility models are used in
simulations of networks: traces and synthetic models [106]. Traces are the mobility
patterns which are observed in real life systems. Traces provide accurate informa-
tion, especially when a large number of participants are involved. But, privacy may
prevent the collection and distribution of such information. Moreover, it is not easy
to model ad hoc networks if traces are not created. In this case, it is necessary to use
synthetic models. Synthetic models attempt to realistically represent the behaviours

of nodes without using traces. Selecting an appropriate mobility model may not be
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a simple task. A proper mobility model should mimic the movements of real MNs.
MNss should not travel in a straight lines at constant speeds throughout the entire sim-
ulation because real MNs do not travel in such a manner. The next three subsections
discuss three popular synthetic mobility models: The Random Walk Mobility Model,
the Random Waypoint Mobility Model, and the Random Direction Mobility Model.

2.5.1 Random Walk Mobility Model

Since many entities move in unpredictable ways, the Random Walk Mobility Model
was developed to mimic this erratic movement [17]. In this kind of mobility model,
a mobile node randomly chooses a direction and speed to move from its current loca-
tion to a new location. The speed and direction are chosen from pre-defined ranges,
[minimum speed, maximum speed] and [0,27] respectively. If a mobile node reaches
a simulation boundary, it bounces off the simulation border with an angle determined
by the incoming direction. The node then continues along this new path. Several
varieties of the model have been developed such as the 1-D, 2-D, 3-D, and n-D walks.
Because the Earth’s surface is usually modelled using a 2-D representation, the 2-D
Random Walk Mobility Model is of special interest. The Random Walk Mobility
Model is widely used [17], and it is a memoryless mobility pattern because it does
not have any knowledge concerning its past locations and speed values [65][66]. The
current direction and speed of the node are independent of its past direction and speed
[39]. This model may generate unrealistic movements such as sudden stops and sharp

turns.

2.5.2 Random Waypoint Mobility Model

The Random Waypoint Mobility Model is the most widely used mobility model.
Many researchers use it to compare the performance of various mobile ad hoc net-

work routing protocols [127]. In [64], the author stated that 19 out of 32 (60%)
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simulation experiments used the random waypoint model. This model includes pause
times between changes in direction and/or speed. Using the waypoint mobility model,
each node starts the simulation by remaining stationary for pause-time seconds. Then,
it randomly chooses a destination in the simulation area and moves towards that des-
tination at a speed uniformly chosen between 0 and maximum speed. When the node
reaches the selected destination, it halts again for pause-time, selects another desti-
nation and starts to move towards the new destination. This process is repeated for
the duration of the simulation. In [127], it has been shown that the average speed
of a mobile node decays with time. This is because of the fact that low speed nodes
spend more time to reach their destinations than high speed nodes. It is also shown
that increasing the speed of nodes results in increased network connectivity. Another
reason for the popularity of the Random Waypoint mobility model is that NS2 and

GloMoSim have it built in.

2.5.3 Random Direction Mobility Model

The Random Direction Mobility Model [103] was developed to overcome the clus-
tering of nodes in one part of the simulation area, produced by the Random Waypoint
Mobility Model. The clustering occurs near the centre of the simulation area. In
the Random Waypoint Mobility Model, the probability of choosing a new destination
that is located in the centre of the simulation area, or a destination that requires travel
through the centre of the simulation area is high. In the Random Direction Mobility
model, instead of selecting a destination, nodes select a direction in which to travel
(direction is measured in degrees). Each node starts the simulation by selecting a de-
gree between 0 and 359, and finds a destination on the boundary in this direction of
travel. Then, it selects a speed and travels to the selected destination at the selected
speed. Upon reaching the destination, the node pauses for some pre-defined pause
time, and selects a new direction between 0 and 180 degrees (Direction is limited

because the node is on the boundary). Next, the node identifies the destination on
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the boundary in this line of direction, selects a new speed, and resumes travel. In
the modified version of the Random Direction Mobility Model [103], nodes continue
to choose random directions but they are not forced to travel to the boundary before
stopping to change the direction. Instead, the node chooses a random direction and
selects a new destination anywhere along the selected direction. Then, it pauses for a

certain time before choosing a new random direction.

2.6 Issues in Mobile Ad Hoc Networks

In the following subsections, we describe some techniques that are used to establish
communications in MANETS. In particular, we concentrate on three areas: Medium
Access Control (MAC), Energy Conservation, and Security issues. Another important

issue is routing which is described in detail in chapter 3.

2.6.1 MAC-Layer Protocols for Ad Hoc Networks:

The applicability of the existing MAC-layer protocol to the radio environment is lim-

ited by two interference mechanisms: the hidden terminal and the exposed terminal

X
A

Figure 2.3: An example of the hidden terminal problem

problems.

19



Chapter 2. Mobile Ad Hoc Networks

The hidden terminal problem occurs because the radio has limited range. Thus, two
nodes which maintain connectivity to a third node may not hear each other. Consider
the situation in Figure 2.3. Node A and node C are in the transmission range of node
B, but there are not in the transmission range of each other. Node A is currently
transmitting data to node B. Node C wishes to communicate with node B as well.
Following the Carrier Sense Multiple Access (CSMA) protocol, node C listens to the
medium, but since node A is too far from node C, node C does not detect node A’s
transmissions, and decides the medium is free. Consequently, node C transmits to the

medium, causing collisions at node B with A’s transmissions to B.

The exposed terminal problem is illustrated in Figure 2.4. Node A is transmitting
data to node B, while node C needs to transmit data to node D. Following the CSMA
protocol, node C listens to the medium and hears that node A is using the medium.
This causes node C to delay in transmitting to the medium. However, there is no
reason for preventing node C from transmitting concurrently with the transmission of
node A, as the transmission of node C would not interfere with the reception at node
B due to the distance between the two. The reason here is, the fact that the collisions
occur at the receiver node, while the CSMA protocol checks the medium’s status at

the transmitter.

7Y
AN

Figure 2.4: An example of the exposed terminal problem

The hidden terminal problem reduces the capacity of a network because of increases
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in the number of collisions, while the exposed terminal problem reduces the network
capacity because nodes unnecessarily delay in transmitting. IEEE 802.11 uses a four-
way RTS/CTS/Data/Ack exchange to reduce collisions caused by hidden terminals.
Before sending a data packet, a node sends an RTS (Request to Send) packet to the
destination. The destination responds with a CTS (Clear to Send), if the network
is idle. The sender then starts to transmit the data packet, and waits for an ACK
(ACKnowledgement) from the receiver. The node considers the medium to be busy
for some time, if it overhears an RTS or CTS [61]. In this case, the node defers its
transmission to prevent a collision. The RTS and CTS packets include the time that

the medium will be busy for the remainder of the exchange.

Several MAC schemes have been developed for wireless ad hoc networks to improve
the performance of MAC-layer protocols such as Multiple Access Collision Avoid-
ance (MACA) [51], Media Access Protocol for Wireless LANs (MACAW) [10], and
Floor Acquisition Multiple Access (FAMA) [34].

2.6.2 Energy Conservation

Mobile devices in mobile ad hoc networks rely on batteries for energy. Limitation in
battery power and the additional energy needed to support network operations (e.g.,

routing) makes energy conservation one of the main concerns in ad hoc networks.

Power control approaches in mobile ad hoc networks can be classified into two cat-
egories: power controlled topology management and power aware routing. Power
controlled topology management schemes find the lowest transmission power level
for each link. On the other hand, power aware routing schemes find routes that con-

sist of links consuming the least energy.

Different routing protocols dealing with energy issues have been proposed for mobile

ad hoc networks [30][48][74][84][109][112][113][115][130]. Some of these proto-
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cols use conventional metrics such as minimum hop and delay, whereas others use

new metrics such as load balancing, stability, and power consumption [109][113][115].

Jung et al. have proposed a Power Control MAC protocol (PCM) [48], that peri-
odically increases the transmit power during DATA transmission. A power-aware
source routing protocol for MANETS is presented in [74], to increase the network
lifetime. A policy is applied to fetch paths from the cache, to make sure that no path
is overused and each selected path has minimum battery cost among all paths between
two nodes. Singh et al. have presented power-aware cost metrics in [109], to deter-
mine routes in wireless ad hoc networks. They used five metrics based on battery
power consumption at nodes. They showed that using these metrics in a shortest-
cost routing algorithm reduces the cost/packet of routing packets by between 5% and
30% over shortest-hop routing. Moreover, using these metrics, the mean time to node
failure is significantly increased. Toh have presented a new power-aware routing pro-
tocol called Conditional Max-Min Battery Capacity Routing (CMMBCR) [115], to
maximize the lifetime of ad hoc networks by achieving two objectives: the power
consumption rate of each node is evenly distributed, and minimizing the transmis-
sion power for each connection request. The proposed scheme chooses the shortest
path if nodes in all routes have sufficient battery capacity. If the battery capacity of
some nodes goes below a predefined threshold (), routes using these nodes will be
avoided. Thus, the time until the first node power-down is extended. The value of ~y
can be adjusted to maximize either the time that the node takes to power down or the
life time of most of the nodes in the network.

Zhaoxiao et al. proposed a new mechanism of energy-aware for Ad Hoc networks,
named Energy-aware Ad hoc On-demand Distance Vector (EAODV) [130]. EAODV
is based on the classical AODV routing protocol. Combined with the value of the
remaining battery capacity, the link dynamic priority-weight metric is used to estab-
lish whether a node can be a part of an active route. In EAODV, the route which
spends less energy and owns larger capacity is selected by synthetic analysis. When

a node receives the first copy of RREQ, it records the residual battery energy and
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the consumed energy into the Residual-Energy (RE) and the Consumed-Energy (CE)

RE;
CE;

fields respectively. Next, the node uses the formula §; = < )2 to compute the dy-
namic route priority-weight value between itself and the source, and to supersede the
Route_j3 value of the RREQ. Finally, the node establishes a route to the source and
updates the routing table by inserting a new entry as a route to the source. When the
node receives another copy of the RREQ, it compares the Route_/3 value of RREQ
with the Route_(3 value in the routing table. The RREQ is forwarded if the Route /3
value in RREQ is higher, or equal to the Route_{3 value of routing table with less hop,

otherwise the RREQ is discarded.

2.6.3 Security Issues

Nodes in MANETS are free to join and leave the network at any time without any no-
tice. Thus, it may be difficult to have a clear picture of ad hoc network membership.
Consequently, no trust relationships among nodes can be assumed [89]. In such an
environment, a path between two nodes can not be guaranteed to be free of malicious
nodes, which might try to harm network operations.

Nodes in MANETS exchange routing information in order to establish routes between
them. Such information may become a target for malicious adversaries. The threats
to routing protocols may come from attackers that provide erroneous routing informa-
tion, replaying old routing information, or distorting routing information [131]. As a
result, the attacker could partition the network or introduce excessive traffic load into
the network.

Cryptography and Misbehaviour Detection are two schemes that have been used for

security, and a brief description of each of them is given in the following paragraphs:

Symmetric vs. Asymmetric Cryptography: If all routing messages in MANET are
encrypted with a symmetric cryptosystem, every participant node has to know the
key. This is not a problem if the participants are a team that meet to share the team-

key and create the network. In this case team members trust and authorize each
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other to change their routing tables. But suppose that we are in a meeting room or
a campus, and we need to create a MANET where everyone can participate. In this
case everyone does not trust the others. With this scenario, the best option is to use

an asymmetric cryptosystem (with private and public key pairs).

Misbehaviour Detection Schemes: some work uses misbehaviour detection schemes
[78] to secure ad hoc networks, but this kind of approach has two problems: some-
times it is not feasible to detect several kinds of misbehaviour (especially to distin-
guish misbehaviour from transmission failures), and it is too hard to guarantee the
integrity of the routing messages. So, using this approach, any malicious node can

generate false misbehaviour reports.

There are many published work on security issues in ad hoc networks [4][40][41][62]
[67][79][88][89][105][107][110][119][128][129]. An On-Demand Secure Routing
Protocol is proposed in [4] to provide resilience to byzantine failures caused by in-
dividual or colluding nodes. The technique used in this protocol detects a malicious
link after log n faults have occurred (n is the length of the path). These links are
avoided by using a route discovery protocol to find a least weight path to the destina-
tion. In the Secure Efficient Ad hoc Distance vector routing protocol (SEAD) [40],
hash chains are used in combination with DSDV-SQ [15] (to authenticate hop counts
and sequence numbers). At every time, each node has its own hash chain which is
divided into segments, and elements in a segment are used to secure hop counts. The
protocol determines the size of the hash chain when it is generated. Upon using all the
elements of the hash chain, a new one should be computed. Ariadne is a protocol pre-
sented in [41] to provide security against one compromised node and active attackers,
and relies only on efficient symmetric cryptographic operations. Papadimitratos et al.
proposed the Secure Routing Protocol (SRP) [89], which can be applied to several
routing protocols. Using SRP, it is required that the source and destination must have
a security association between them for every route request. Sanzgiri et al. proposed
the Authenticated Routing for Ad hoc Networks (ARAN) [107]. ARAN uses authen-

tication and requires the use of cryptographic certificates to offer routing security. In
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ARAN, every node forwarding a route request or route reply messages should sign
it (this consumes power and increases the size of the routing message). The Secure
Ad hoc On Demand Distance Vector (SAODV) [128] is an extension of AODV and
can be used to protect the route discovery mechanism by providing some security
features. Two mechanisms are used to protect AODV messages: digital signature
to authenticate the non-mutable fields of the message, and hash chains to secure the
hop count information. SAODV uses a different manner to protect the error message

because they have a big amount of mutable information.

2.7 Research Methodology

The research methodology used is simulation-based prototyping. That is, we designed
and implemented an initial routing protocol MDSDVO that extends the well-studied
DSDV protocol. The new protocol is validated, and the performance is measured
using the NS2 industry standard discrete event network simulator. We revise the
protocol based on these performance measurements to produce the final protocol,
MDSDV. We again use simulation to validate MDSDYV, and to make performance

comparisons with NS2 implementations of popular routing protocols.

Simulation in general and the NS2 simulator in particular are widely used to evaluate
network protocols. They have significant advantages over other methodologies such
as direct experiments and mathematical modelling. A computer simulation is an ap-
plication designed to mimic a real-life situation. Compared to other approaches such
as mathematical models or physical experiments, simulation models have several ad-

vantages.

One of the advantages of simulators is that they are able to provide users with prac-
tical feedback when designing real world systems. Consequently, the designer can

determine the correctness and efficiency of a design before the system is actually
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constructed. Simulators permit system designers to study a problem at several dif-
ferent levels of abstraction. By approaching a system at a high level of abstraction,
the designer can understand the behaviour and interactions of all components of the
system, and is therefore better equipped to counter the system’s complexity.

A simulation and modelling process, using computer software, is a low-cost alterna-
tive when compared to a real implementation without a prior simulation study. Par-
ticularly taking into account all the tests that may have to be carried out repeatedly
using different parts to reach the objective. Using simulators, it is possible to compare

alternative designs and select the optimal system.

Despite the advantages of simulation presented above, simulators do have their draw-
backs. One of the disadvantages of using a network simulator for testing a distributed
application stem from the fact that there is no real network involved in the simulation.
Thus, it is difficult to accurately model cross traffic, resource contention, or failures
that may occur. As a result, the ability of the developer is limited to test the appli-
cation under realistic network conditions. Another disadvantage of simulators is that
they do not run real application code. Hence, the application must be rewritten for the
target simulation platform, which runs the risk of introducing problems that do not
exist in the real code or masking problems that do exist.

In general there is no simulator that gives 100% guaranteed and perfect results, al-
though there are differences between the simulators, they do try to provide as accurate

as possible results.

Real experiments are difficult to conduct and expensive in terms of hardware and
development time. They are inflexible when trying to change parameters, and sharing
them with other researchers is difficult. The results may only apply to one situation.

Moreover, it is difficult to replicate real experiments in some cases.

A mathematical model is a description of a system using mathematical concepts and
language. It usually describes a system by a set of variables and a set of equations that

establish relationships between the variables. In order to be tractable, mathematical
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models require assumptions and restrictions to be placed on the model and this can
lead to inaccuracy. Generally speaking network protocols are too complex to model
mathematically. Moreover any such model must be carefully evaluated to determine
it’s suitability both in terms of fit to empirical data and applicability to the problem
domain, and as discussed above, obtaining empirical data for a real implementation

of a novel networking protocol is extremely expensive.

The advantages of simulation over mathematical models and real experiments mean
that novel network protocols are almost invariably evaluated by simulation. Indeed
industry standard tools like NS2 [33] and GloMoSim [6] have emerged to meet this

need. This thesis follows this practice.
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Routing is a fundamental problem in mobile ad hoc networks. This chapter presents
an overview of several routing protocols that have been proposed by researchers. We
present a number of ways to classify the routing protocols in section 3.2. A descrip-
tion of some single path proactive, reactive, and hybrid routing protocols is presented
in sections 3.3, 3.4, and 3.5 respectively. As our protocol is a multipath one, section

3.6 presents a brief description of some existing multipath routing protocols.

3.1 Introduction

Routing is an important and challenging issue in dynamic multi-hop networks. Thus,
many routing protocols algorithms have been proposed in recent years. A routing
protocol is used to discover routes between nodes allowing communication within
the network. The main goal of such a routing protocol is to establish a correct and
efficient route between a pair of nodes, so that messages can reach their destination
in a timely manner. During the last two decades, many mobile ad hoc network rout-
ing protocols have been proposed because of their importance in dynamic networks

[69]. It is not possible to consider a particular algorithm or class as the best for all
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scenarios. Each protocol has its own advantages and disadvantages and may only be
suited for certain situations [104]. Due to a variety of challenges, designing a mobile
ad hoc network routing protocol is a tough task. Firstly, in mobile ad hoc networks,
the topology changes frequently because of node mobility. Secondly packet losses
may occur frequently because of the variable and unpredictable capacity of wireless
links. Furthermore, the broadcast nature of the wireless medium introduces the hid-
den terminal and exposed terminal problems that are mentioned in subsection 2.6.1.
Finally, mobile nodes have limited power, limited bandwidth resources and require

effective routing schemes.

3.2 Classification of Routing Protocols

There are different criteria to classify routing protocols for wireless ad hoc networks

[132]. We present some of these criteria in the following subsections:

3.2.1 Link State Routing (LSR) vs. Distance Vector Routing (DVR)

Link State Routing protocols (LSR) take into consideration link variables, such as
bandwidth, delay, reliability and load. In LSR [111], nodes exchange routing infor-
mation in the form of link state packets (LSP), which include link information for all
their neighbours. As links change state, LSPs are flooded immediately into the entire
network. By receiving LSPs, every node is able to construct and maintain a global
network topology. On the other hand, Distance Vector Routing protocols (DVR) de-
termine the best path in terms of how far the destination is. In DVR, every node
maintains a distance vector that may include destination ID, next hop, and distance
for each destination. Each node exchanges distance vectors with its current neigh-
bours. Upon receiving such information, a node constructs new routes and updates

its distance vector.
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3.2.2 Proactive, Reactive and Hybrid routing

Depending on how routes are maintained, routing protocols can be classified as proac-
tive, reactive or hybrid as shown in figure 3.1. The proactive routing protocols con-
stantly propagate and maintain routing information. As a result, a route to every other
accessible node in the network is always available, regardless of whether it is needed
or not. These protocols respond to topology changes by propagating updates through-
out the entire network. The reactive routing protocols create routes only when needed
by the source node. When a source node needs to send data to a destination node and
does not have a valid route to that destination, it initiates a Route Discovery process
to establish such a route. Once a route has been established, it is maintained by some
form of maintenance procedure. The hybrid routing protocols combine both proactive
and reactive routing strategies to benefit from advantages of both types and overcome

their shortcomings.

Ad hoc routing protocols

proactive reactive hybrid

T e T

DDV WEP GSRE AODV  DSE TORA ZEP  ZHLS SHAEP

Figure 3.1: Categorization of Ad hoc Routing Protocols

Sections 3.3, 3.4, and 3.5 present an overview of a number of previously proposed
protocols for routing in ad hoc networks. It includes both protocols that are exclu-

sively proactive or reactive in their nature, as well as those that are a hybrid of the two

types.
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3.2.3 Flat Structure vs. Hierarchical Structure

In a flat structure, all nodes participating in the network are at the same level and per-
form the same routing functions. It is simple and efficient for small networks. But,
in large networks the amount of routing information is large and takes a long time
to arrive at remote nodes. In large networks, hierarchical (cluster-based) routing can
be used to address these issues. In a hierarchical structure, nodes are dynamically
organized into clusters (partitions). Then, the clusters are aggregated into superclus-
ters (larger partitions) and so on. A node may be expected to have complete topology
information about its cluster hence proactive routing can be used. If the destination
is in different cluster, intercluster routing must be used which is generally reactive, or
a combination of both, such as with the Zone-based Hierarchical Link State (ZHLS)

routing protocol [44].

3.2.4 Source Routing vs. Hop-by-Hop Routing

Some of the routing protocols include the entire route in the headers of data pack-
ets (e.g., DSR [47]). Thus, intermediate nodes forward these packets according to
the route included in the header. This mechanism is called “source routing”. Its ad-
vantage is that intermediate nodes forward the packet without maintaining routing
information, since the packets contain all the routing decisions. On the other hand,
in hop-by-hop routing, the route to a destination is calculated step by step at each

intermediate node.

3.2.5 Single Path vs. Multiple Paths

Some routing protocols maintain only a single path for each destination. This results
in a simple protocol and saves storage. Single Path routing protocols are incapable

of load balancing traffic. Other routing protocols maintain multiple routes for each
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destination. Multipath routing protocols have the advantages of easier recovery from
link failure and being more reliable and robust. Furthermore, the source is able to
select the best route among multiple available routes. Section 3.6 discusses some of

the existing multipath routing protocols.

3.3 Proactive Routing Protocols

A proactive routing protocol is also called a “table driven” routing protocol. Using
one of the proactive routing protocols, nodes in a mobile ad hoc network continuously
evaluate routes to all reachable nodes and modify routing information. Thus, a source
node can get a routing path immediately as soon as it needs one. In proactive rout-
ing protocols, each node maintains routing information to every node in the network.
The routing information is stored in a number of tables. These tables are periodically
updated and updated if there is a significant change in the network topology. The
difference between existing proactive routing protocols lies in the way that the rout-
ing information is updated, and the type of information stored in each routing table.
Moreover, each routing protocol may maintain a different number of tables. Sev-
eral proactive routing protocols have been proposed, such as Destination Sequence
Distance Vector (DSDV) [94], the Wireless Routing Protocol (WRP) [83], and the
Fisheye State Routing (FSR) [91] [92]. The following subsections present a brief

description of some proactive routing protocols.

3.3.1 Destination Sequenced Distance Vector (DSDV)

DSDV [94][38] is a proactive routing protocol which maintains routes regardless of
their usage. It is based on the Bellman-Ford routing algorithm, which can become un-
acceptable in mobile ad hoc networks because of its long convergence time. Numer-
ous extensions or modifications to DSDV have been proposed to improve its perfor-

mance such as [3][13][52][60][70][71][72][118]. DSDV is a distance vector routing
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protocol and it solves the major problem associated with the Distance Vector routing
of wired networks (i.e., Count-to-infinity), by using destination sequence numbers.

Also, at all times, the DSDV protocol guarantees loop-free paths to each destination.

Using DSDV, each mobile node maintains a routing table, that lists one route for each
destination. Each routing table entry consists of the destination node, the first hop
towards the destination, the metric (number of hops to reach the destination), and the
sequence number which is originally generated by the destination node. Sequence
numbers are used to distinguish the new routes from the stale routes. The routing

table is used to transmit packets between the nodes of the network.

In DSDV, each mobile node advertises its routing table (e.g., by broadcasting its en-
tries) to its current neighbours. The entries in the routing table may change dynami-
cally over time, so the routing information should be advertised to ensure that every
node can always locate every other mobile node. Additionally, each mobile node
agrees to relay data packets to other nodes upon request. Before each advertisement

of a new routing table, mobile node increases its sequence number by 2.

DSDV takes care of topology changes by using a certain procedure which is based
on two kinds of updating: time-driven updates, which are periodic transmissions of
a node’s routing table, and event-driven updates which react to link failures. Nodes
schedule the newly recorded routes for immediate advertisement to the current node’s
neighbours. Routes with an improved metric are scheduled for advertisement at a time
which depends on the average settling time for routes to the particular destination

under consideration.

To reduce the amount of information in the routing information packets, DSDV uses
two different types of update packets: a “full dump” or an incremental update. A
full dump is the sending of all the routing table entries to the current neighbours and
could span many packets. In contrast, in an incremental update, the node only sends
those entries that are changed since the last full dump. The incremental update must

fit in only one Network Protocol Data Unit (NPDU). The node implements some
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means to determine which routes have significant changes, and includes them in each
incremental advertisement. For example, if a stabilized route shows a better metric
for some destination, it is likely to be considered as a significant change. But if a
route with a new sequence number and the same metric is received, it is unlikely to

be considered as a significant change.

As mobile nodes are free to move from place to place, this movement may cause a
link breakage. The broken link may be detected by the MAC layer or by not receiving
broadcasts for a certain time from a former neighbour. When a link to a neighbour
is broken, the route to that neighbour and any route through that neighbour is im-
mediately assigned a co metric. Because this change qualifies as a substantial route

change, such updated routes are immediately broadcast as new routing information.

When a node receives new routing information, it compares this information with the
information that is already available in its routing table. Any route with a greater
sequence number is used. Routes with a lower sequence number are ignored. A route
with the same sequence number as an existing one is chosen if it has a better metric,
and the existing one is discarded. The metrics of the chosen routes from the received
information are each incremented by one hop. The new stored routes are scheduled

for immediate advertisement to the current neighbours.

DSDV uses the settling time table to prevent fluctuations of routing table entry adver-
tisements. The settling time table fields are Destination address, Last settling time,
and Average settling time. A node consults its settling time table to decide how long
to wait before advertising the new route. When new routing information is received
by a node, and applying the updates to the table, processing occurs to delete stale
routes. A node expects to receive a regular update from its neighbours; when no up-
dates are received from a neighbour, the node may decide that this neighbour is no
longer available as a neighbour. When that occurs, any route that uses that neighbour
as a next hop should be deleted, including that node as the actual destination. The

main problem of DSDV comes from the time it needs to converge, because a route
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can not be used after a certain time elapse from the periodic broadcast. This may
not be acceptable in mobile ad hoc networks, where the topology changes frequently.

Moreover, the periodic broadcast adds a great amount of overhead.

For illustration, Figure 3.2 presents an example of an ad hoc network consists of
8 nodes before and after the movement of node N1. Table 3.2 is the routing table
of node N6 at the moment before the movement. The Install time field is used to

determine when to delete stale routes.

Figure 3.2: An example of Ad hoc Network

Routing Update Process: In the routing table updating process, the node tags each
update packet with a sequence number to distinguish stale from new updates. This
sequence number is an increasing number that uniquely identifies each update packet
from a given node. The update packet may contain more than one entry. So, if
a node receives an update packet, the sequence number of each entry is compared
with the sequence number of the corresponding node already stored in the routing
table. If the sequence number of the update packet is smaller, the newly received
information should be ignored because it is stale. If the sequence number of the
received information is larger, the entries should be entered into the routing table. If

the sequence numbers are equal, then the metric is compared and the route with the
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lower metric will be used.

Suppose that node N7 in Figure 3.2 advertises its routing information by broadcasting

an update packet to its neighbours as shown in table 3.1

Destination Next hop Metric Seq. No

N7 N7 0 S238_N7
N1 N1 1 S516_N1
N2 N6 3 S228_N2
N3 N6 4 S764_N3
N4 N6 2 S820_N4
N5 N8 2 S502_N5
N6 N6 1 S204_N6
N8 N8 1 S148_N8

Table 3.1: An Update Packet advertised by node N7

When node N6 receives the update packet, it checks the received routing information
of each entry contained in both the update packet (Table 3.1) and its routing table
(Table 3.2). From the table 3.3 which shows the routing table of node N6 after dealing

with the received update packet, we can see the following:

e The entries with higher sequence numbers are always entered into the routing
table, regardless of metric value. For example, the entry belongs to node N1
has higher sequence number (S516_N1) in the update packet (Table 3.1). This

entry is entered into the routing table of node N6 (Table 3.3).

e [f sequence numbers are the same, the metric is compared. If the metric in the
update packet is smaller, the entry is entered into the routing table, otherwise,
the entry is ignored. For example, the entry belongs to node N5 has the same
sequence number (S502_N5) in both the update packet and the routing table,
but the entry in the routing table (Table 3.2) has a lower metric, so the entry in

the update packet is ignored.
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e The entries with old sequence numbers in the update packet are always ignored.
For example, entries belonging to nodes N2 and N8 have old sequence numbers

respectively in the update packet, so both of them are ignored.

Destination Nexthop Metric Seq. No  Install

N1 N4 3 S406_N1 TO01-N6
N2 N4 2 S238_ N2 TO001_N6
N3 N4 3 S764 N3 TO001_N6
N4 N4 1 S820_N4 TO002_N6
N5 N5 1 S502_N5  T812_N6
N6 N6 0 S204.N6 TO01_N6
N7 N7 1 S238_N7 TO002_N6
N8 N5 2 S160_N8 T811_N6

Table 3.2: Routing table of node N6 when receiving the Update Packet from node N7

Destination Next hop Metric Seq. No  Install

N1 N7 2 S516_ N1 T810-N6
N2 N4 2 S238_ N2 TO001_N6
N3 N4 3 S764_ N3 TO01_N6
N4 N4 1 S820_N4 TO002_N6
N5 N5 1 S502_N5  T812_N6
N6 N6 0 S204.N6 TO01-N6
N7 N7 1 S238_N7 TO002_N6
N8 N5 2 S160_N8 T811_N6

Table 3.3: Routing table of node N6 after dealing with the Update Packet

Link Failure Process: To describe the Link Failure Process, let’s assume that node
N1 moves away from node N7 (Figure 3.2). Node N7 detects that the link between

itself and node N1 is broken. Node N7 immediately assigns co metric and increments
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the sequence number of node N1 (becomes odd sequence number S517_N1). Next,
it generates, and broadcasts an update packet as shown in Table 3.4. When node N6
receives the update packet, it updates its routing table (Table 3.3) with the received
information (odd sequence number and oo metric) in the entry that belongs to node
N1 as shown in Table 3.5. This means that link to node N1 is broken. The route to
a lost node is re-created when that node comes back again, and broadcasts an update

packet with an equal or greater sequence number and finite metric.

Destination Nexthop Metric Seq. No

N7 N7 0 S238_N7
N1 N1 00 S517_N1
N2 N6 3 S228_N2
N3 N6 4 S764_N3
N4 N6 2 S820_N4
N5 N8 2 S502_N5H
N6 N6 1 S204_N6
N8 N8 1 S148_N8

Table 3.4: An Update Packet advertised by node N7 with a broken link

Destination Nexthop Metric Seq. No  Install

N1 N7 00 S517_ N1 T810_N6
N2 N4 2 S238_ N2 TO001_N6
N3 N4 3 S764_ N3 TO01_N6
N4 N4 1 S820_N4 TO002_N6
N5 N5 1 S502.N5 T812_N6
N6 N6 0 S204.N6 TO01_N6
N7 N7 1 S238_N7 TO002_N6
N8 N5 2 S160.N8 T811_N6

Table 3.5: Routing table of node N6 after dealing with the broken link
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3.3.2 Improvements on DSDV

Several algorithms have been proposed to improve the performance of the DSDV
routing protocol, but to the best of our knowledge, none of them uses the multipath

notion. The following briefly describes some of the proposed algorithms.

Ahn et al. present a control mechanism called Adapting to Route-demand and Mo-
bility (ARM) [3]. The mechanism allows any proactive routing protocol to adapt to
changes in node mobility and workload route demands. Using this mechanism, each
node maintains two metrics to adjust the content and the period of routing updates: a
route-demand metric indicating which destinations are currently forwarding data and
a mobility metric indicating how fast its neighbours are currently changing. Due to
the decentralization of ARM, each node can adapt independently. ARM is applied to
the DSDV routing protocol, coming up with ARM-DSDV. The authors conclude that
compared to DSDV, ARM-DSDV achieves a better delivery ratio, while spending a

reasonable amount in routing costs.

Khan et al. propose an Efficient DSDV routing protocol for Ad Hoc networks (Eff-
DSDV) [52], to improve the performance of DSDV by overcoming the problem of
using stale routes. In case of link failure, the proposed protocol creates a temporary
link through a neighbour which has a valid route to the destination. When a node
discovers a broken link, it broadcasts a Route Request (RREQ) packet to its neigh-
bours. In turn, any neighbour that has a valid route to the destination but where the
RREQ sender is not the next hop on the route, returns a ROUTE-ACK packet. The
ROUTE-ACK packet includes an update time field which is used to select the tem-
porary route. In the case of receiving multiple ROUTE-ACK packets with the same

number of hops, the receiving node selects the route which has the latest update time.

Lee et al. propose a proactive routing protocol for multi channels (DSDV-MC), by
extending the DSDV routing protocol to a multi-channel version [60]. The protocol

uses multiple channels, where multiple useful transmissions can occur simultane-
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ously. DSDV-MC divides the network layer into control and data planes. Nodes in
the network use the control channel to send routing updates, and use the data channel
to send user packets. The authors conclude that DSDV-MC improves the network ca-
pacity by exploiting multiple channels. Compared to DSDV, DSDV-MC increases the
network throughput in both single-hop and multiple-hop network scenarios, and de-
creases the packet drop rate when the number of channels increases because packets

are distributed over multiple channels.

Most routing protocols assume that all nodes are trustworthy and cooperative. Thus,
a single misbehaving node can disrupt the routing operations of a whole network. As
a result, a packet may not reach the desired destination or the packet may be routed
through a route in the control of an adversary. For example, a misbehaving node
may advertise routes with fraudulent sequence numbers or cost metrics, to taint the
routing tables of other nodes or to affect routing operations. Wan et al. propose a
secure routing protocol based on DSDV, called S-DSDV [118]. S-DSDV uses con-
sistency checks to discover sequence number frauds and distance frauds in DSDV.
The protocol has two security properties, provided that no two nodes are in collusion:
detection of any distance fraud (longer, same, or shorter), and detection of both larger
and smaller sequence number fraud. In S-DSDV, the misinformation can be stopped
before it spreads into the entire network, since the misbehaving node is surrounded

by well-behaved nodes that can contain it.

Wang et al. present a Secure Destination-Sequenced Distance-Vector routing protocol
for mobile ad hoc networks (SDSDV) [119]. SDSDV is based on the regular DSDV
protocol. Using SDSDV, each node maintains two one-way hash chains for each node
in the network. The hash chain approach is used to secure the sequence numbers and
metrics. Two additional fields, called AL (alteration) and AC (accumulation) fields,
are added to each entry of the update packets to carry the hash values. Using AL and
AC fields in the entry, any node in a route cannot arbitrarily increase or decrease the
sequence number and metric. Thus, SDSDV can provide better protection of routing

messages.
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Kumar et al. propose an Optimal Path Routing protocol (OPR) [57]. OPR is a DSDV
Based New Proactive Routing Protocol, and works proactively using an optimal path
routing mechanism. The protocol assumes that each node in the network is equipped
with GPS receivers, to locate the node positions. OPR keeps the routing overheads to
the minimum by maintaining only the routing tables of neighbours and neighbours of
the neighbour nodes (i.e., Each node stores routing information of 1-hop and 2-hop
nodes). When a node sends a packet, the neighbour node, which is closest to the

destination is selected to forward the packet.

Chang et al. propose a method called Light DSDV (LDSDV), to reduce the rout-
ing overhead in DSDV [20]. The method benefits from the nature of DSDV, such
as shortest path and loop-free, but alleviates a flooding problem of control messages
when the network topology changes. LDSDV takes advantage of the spanning trees
and maintains the relationship between nodes under each spanning tree. When a node
receives a routing message of a destination node, it runs a procedure to determine
whether the message should be forwarded. The authors conclude that LDSDV allevi-
ates routing overheads by filtering out a great amount of redundant messages at leaf

nodes, especially for Ad Hoc networks with high density.

3.3.3 The Wireless Routing Protocol (WRP)

The Wireless Routing Protocol (WRP) [82][83] is a proactive unicast routing proto-
col, and was one of the first routing protocols for mobile ad hoc networks. WRP uses
an improved version of the distance vector routing protocol that uses the Bellman-
Ford algorithm to calculate paths.

Each mobile node maintains four tables: Distance table, Routing table, Link-Cost
table and Message Retransmission List table (MRL). Each entry in the routing table
contains the destination’s id, the distance (metric) to the destination node, the pre-
decessor node and the successor node of the chosen shortest path to the destination,

and a tag to identify the state of the path (i.e., is it a simple path, a loop or invalid).
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The predecessor and successor are stored in the routing table to avoid the counting-
to-infinity problem, and to detect routing loops. A mobile node creates an entry for
each neighbour in a separate table called the link-cost table. The entry contains the
cost and status of the link to each current neighbour. The MRL table contains the fol-
lowing fields: the sequence number of the update message, a retransmission counter
which is decremented each time the node sends a new update message, a flag that
specifies whether the node has sent an ACK, and a list of updates sent in the update
message.

In WRP, mobile nodes are required to broadcast an update message periodically. If
there is no change in its routing table since the last update, a node is required to send
a Hello message to ensure its connectivity. The update message contains a list of up-
dates (destination, distance to the destination, and the predecessor of the destination),
and a list of responses that indicate which nodes should acknowledge (ACK) the up-
date. After sending an update message to its neighbours, a node expects to receive an
ACK from all of them. If an ACK has not been received from a particular neighbour,
the node will record the nonresponding neighbour in its MRL table, and send another

update to that neighbour later.

One of the main drawbacks of WRP is that it needs a large amount of memory storage
to maintain several tables. Moreover, as a proactive routing protocol, it has limited

scalability and is not suitable for large mobile ad hoc networks [69].

3.3.4 The Fisheye State Routing (FSR)

Fisheye State Routing (FSR) [91][92] is a proactive routing protocol based on the
Link State routing algorithm. As the name indicates, FSR utilizes a function similar
to a fish eye, where the eye captures the pixels with high detail near the focal point.
As the distance from the focal point increases, the detail decreases. FSR maintains ac-

curate distance and path quality information about its immediate neighbouring nodes.
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FSR uses the notion of multi-level fisheye scope to reduce the routing update overhead
in large networks. The scope is defined as a number of nodes which can be reached
within a specified number of hops. The number of levels and the radius of each scope

depend on the size of the network.

FSR is similar to many LS Routing protocols in that it maintains a topology map at
each node. The main difference is the way that routing information is propagated. In-
stead of flooding link state information into the entire network, nodes in FSR maintain
a link state table according to up-to-date information received from their neighbours,
and periodically exchange it only with neighbouring nodes. By this exchange process,
table entries are updated where entries with smaller sequence numbers are replaced

by those with larger sequence numbers.

In dynamic networks, the network topology changes frequently. Exchanging the en-
tire topology table among neighbours consumes a considerable amount of bandwidth.
Instead of being event driven, FSR uses periodic updates to avoid the excessive over-
head caused by flooding link state updates. Moreover, FSR uses different exchange
periods for different entries in the routing table to reduce the routing update overhead.
FSR avoids extra work to find the destination (as in a reactive routing) by retaining a

routing entry for each destination node.

The authors in [91] conclude that FSR is a flexible solution to the challenge of main-
taining accurate routes in ad hoc networks, if the number of scope levels and radius

size are properly chosen.

3.3.5 The Optimized Link State Routing Protocol (OLSR)

The Optimized Link State Routing (OLSR) protocol [23][42] is a proactive routing
protocol and it is an Optimization over the pure link state protocol. In OLSR each
node maintains topology information by periodically exchanging link-state messages.

OLSR minimises the size of the control packet by including only a subset of its current
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neighbours, and minimizes flooding by the use of a MultiPoint Relay (MPR) strategy.

These two optimizations make OLSR suitable for use in large and dense networks

Using the MPR technique, each node selects a number of its current neighbours as
its MPRs which are allowed to rebroadcast control packets. When a node receives
a control packet, it only rebroadcasts the packet if it is a MPR of the sending node.
Otherwise, it only reads and processes it but does not rebroadcast the control packet.
To determine the MPRs, every node periodically broadcasts a Hello message contain-
ing a list of its one hop neighbours and their link status (Symmetric or Asymmetric).
When a node receives a Hello message, it selects a subset of one hop neighbours,
which covers all of its two hop neighbours. One issue with OLSR is how its nodes
decide whether a link is symmetric. The answer is simple, if a node receives a Hello
message and sees its own address in the sender’s Hello message, then it considers that

the link is symmetric.

Instead of using a simple flooding mechanism, OLSR uses MPR-flooding which aims
to minimize the problems caused by duplicate reception of a message within a region.
MPRs are used to disseminate topology information through the network. Each node
acting as a MPR creates and broadcasts Topology Control (TC) messages to all its
1-hop neighbour nodes. Also, MPRs rebroadcast to their 1-hop neighbours the TC
messages that are received from nodes within its MPR Selector Set. A TC message
contains a list of neighbour nodes that selected the TC’s sender node as a MPR and
a MPR Selector Sequence Number (MSSN) which is incremented for every new TC

message created.

OLSR maintains a neighbours table, where a node records the information about
one hop neighbours, the status of the link, and a list of two hop neighbours which
these one hop neighbours can give access to. Upon receiving Hello messages, a node
can construct its MPR Selector table that contains the nodes who have selected it
as MPR. Each node in the network maintains another table called a topology table

where it stores the topological information about the network. The topology table
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contains the address of the destination node (T _dest), the address of the last hop to the
destination (T_last), the sequence number of the TC message (T_seq), and a holding
time which indicates the time that this tuple expires (T_time). Finally, each node uses
the information in the neighbour table and the topology table to construct its routing
table. Each entry in the routing table consists of the destination node (R_dest), the
next hop to the destination node (R_next) and number of hops to the destination node

(R_dist). During route evaluation, the shortest path algorithm is used.

3.3.6 The Global State Routing (GSR)

The Global State Routing (GSR) protocol [21] is based on the traditional Link State
algorithm. As in link state protocols, routing messages are generated on a link change.
GSR restricts the update messages to be between intermediate nodes only. Each node

in GSR maintains 1 list and 3 tables:

e Neighbours List: contains a set of nodes that are in the node’s transmission

range.

e Topology Table: has an entry for each destination, where each entry contains
the link state information as reported by the destination node and the timestamp

of this information.

e Next Hop Table: For every destination, the Next Hop Table contains the next

hop to forward the packets to this destination.

e Distance Table: contains the shortest path to each destination node.

The details of GSR protocol can be summarized as follows: At the beginning, each
node starts with an empty Neighbour List, and an empty Topology Table. Nodes
learn about their neighbours by examining the sender field of each packet in its in-

bound queue and add all routing packet senders to its Neighbour List. Then, the
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node processes the received routing message and updates its Topology Table if the
sequence number of the message is newer than the sequence number that is stored in
the table. After the routing messages are examined, the node rebuilds its routing table
according to the newly computed Topology Table and broadcasts the new information
to its neighbours. The main difference between GSR and traditional LS is the way
that the node uses to disseminate the routing information. In LS, link state packets are
generated and flooded into the entire network whenever topology changes are discov-
ered. Whereas, nodes in GSR maintain their link state tables according to up to date
information received from their neighbours. The authors in [21] conclude that GSR
is more desirable for a mobile environment where mobility is high and bandwidth is

relatively low.

3.3.7 Clusterhead Gateway Switch Routing (CGSR)

The Clusterhead Gateway Switch Routing (CGSR) [22] is a hierarchical routing pro-
tocol where the nodes are grouped into clusters. Each cluster is maintained by a
cluster-head, which is a mobile node that is elected to manage all the other nodes
within the cluster. The elected node controls the transmission medium and inter-
cluster communications occur via this node. The advantage of CGSR is that it has
low routing overheads because each node only maintains routes to its cluster-head.
However, the disadvantage of having a cluster head scheme is that the frequent clus-
ter head changes may affect the routing protocol performance because nodes are busy
in cluster head selection rather than packet forwarding. So, a Least Cluster Change
(LCC) clustering mechanism is invoked. Using LCC, the cluster heads change only
if two cluster heads come into contact or when a node moves away from all the other

cluster heads.

CGSR has much of the same overhead as DSDV because it uses DSDV as the under-
lying routing scheme. In order to improve DSDV, CGSR uses a routing approach to

forward traffic from the source node to the destination node called the cluster-head-
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to-gateway routing approach. Gateway is a node located in the transmission range of
two or more cluster heads. When a node plans to send a packet, the packet is first sent
to its cluster head, and then it is forwarded to a gateway to another cluster head. This
process is repeated until the cluster head of the destination node is reached. Then, the

packet is transmitted to the destination node.

Nodes in CGSR should maintain a cluster member table, to store the destination clus-
ter head for each node in the network, and these tables are periodically broadcast
using the DSDV algorithm. Each node updates its cluster member table on reception
such a table. In addition to the cluster member table, each node maintains a routing
table that is used to determine the next hop in order to reach the destination node.
Upon receiving a packet, the node consults its cluster member table and routing ta-
ble to determine the nearest cluster head to reach the destination. Then, it checks its

routing table to determine the next hop used to reach the cluster head.

3.3.8 Topology Broadcast based on Reverse Path Forwarding (TBRPF)

TBRPF [87] is a proactive routing protocol designed to be used in mobile ad-hoc net-
works. It is a link state based routing protocol, which performs hop-by-hop routing.
TBRPF uses the concept of Reverse-Path Forwarding (RPF) to broadcast its update
packets in the reverse direction along the spanning tree, which is made up of the
minimum-hop paths from other nodes leading to the source of the update message.
Also, the protocol uses the topology information that is received along the broadcast

trees to compute the minimum-hop paths from the trees themselves.

TBRPF has two modes: partial topology (PT) and full topology (FT). TBRPF-PT
achieves a further reduction in control traffic, by providing each node with the state of
only a small subset of links. As aresult, each node reports only changes to a small part
of its source tree. TBRPF-PT is recommended for dense and large networks where

it achieves less control traffic than TBRPF-FT. In contrast, TBRPF-FT provides each
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node with the state of all links in the network. It uses the concept of reverse-path
forwarding to reliably broadcast each topology update in the reverse direction along
the dynamically changing broadcast tree formed by the minimum-hop paths from all
nodes to the source of the update. So, each node gets the state of each link in the
network. TBRPF-FT computes optimal routes based on the advertised link states. It

is recommended for sparse networks and when full topology information is needed.

3.3.9 Distance Routing Effect Algorithm for Mobility (DREAM)

DREAM [9] is a location based routing protocol. DREAM can be considered to be a
proactive routing protocol in the sense that a mechanism is defined for the dissemina-

tion and updating of location information.

In DREAM, each node maintains a routing table (called a location table) which con-
tains location information of all other nodes in the network. An entry in the routing
table includes a node identifier, the direction of and distance to the node, as well as
a time of generating this information. Each node determines its own position using
GPS [18], or some other type of positioning service. Each node periodically broad-
casts control packets that contain its location information to all other nodes. The
frequency of broadcasting control packets is determined by the distance and node
mobility rate. Nodes that are far apart, need to update each other’s locations less
frequently than nodes that are closer together, and the faster a node moves, the more

often it needs to advertise its new location.

If a source needs to send a data packet, it calculates the direction towards the desti-
nation, and selects a set of one-hop neighbours that are located in the destination’s
direction. Then, the set is enclosed in the data packet header and transmitted with the
data. Only nodes that are specified in the packet header are qualified to receive and
process the data packet. The receiving nodes select their own set of one-hop neigh-

bours, update the data packet header and send the packet out. When the destination
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node receives the data, it responds by sending an ACK to the source node in a similar
way. If the source does not receive an ACK for data sent through a designated set of

nodes, it retransmits the data again by pure flooding.

3.3.10 Summary of Proactive Routing

In summary, routing information is always propagated and maintained in proactive
routing protocols. Thus, a route to every other node in the network is always avail-
able, regardless of whether or not it is needed. Although this feature is useful for
datagram traffic, it incurs substantial signalling traffic and power consumption. Be-
cause of the limited bandwidth and battery power of mobile nodes, this becomes a
serious limitation. Proactive routing protocols can be categorised as flat routed global
routing protocols and hierarchically routed global routing protocols.

Flat routed global routing protocols do not scale very well, because they use updating
procedures that consume a significant amount of network bandwidth. Using this type
of protocol, the routing overhead increases when the network becomes larger. Com-
pared to other flat structure protocols, OLSR and DREAM scale the best because they
reduce the amount of overhead transmitted through the network. OLSR reduces the
control overhead using the MultiPoint Relay (MPR) strategy, and DREAM reduces
the control overhead by exchanging location information rather than complete (or
partial) link state information. In contrast, The hierarchically routed global routing
protocols scale better than most flat routed protocols. This is because they introduce a
network structure to control the amount of overhead transmitted through the network.
This is achieved by allowing selected nodes (e.g., clusterhead) to rebroadcast control

information.
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3.4 Reactive Routing Protocols

Reactive routing is also known as “on-demand” routing. It creates routes only when
needed by the source node. They are based on some kind of “query-reply” dialogue
and they do not maintain an up-to-date topology of the network. As a node has some
data to be sent, it invokes a route discovery procedure to find a route to the desired
destination. Such a procedure uses flooding the network with the route discovery, and
terminates if the query reaches the destination or reaches an intermediate node that
has an active route to the destination. Compared to the proactive routing protocols
for mobile ad hoc networks, reactive routing protocols have less control overhead.
Thus, reactive routing protocols have better scalability than proactive routing proto-
cols in mobile ad hoc networks. On the other hand, using reactive routing protocols,
the source nodes may suffer from long delays before they become able to forward
data packets. The following subsections give brief description of three reactive rout-
ing protocols: Ad hoc On- demand Distance Vector routing (AODV) [95], Dynamic
Source Routing (DSR) [47], and Temporally Ordered Routing Algorithm (TORA)
[90].

3.4.1 Ad hoc On- demand Distance Vector routing protocol (AODV)

Ad hoc On-Demand Distance Vector Routing Protocol (AODV) [19][93][95] is a uni-
cast reactive routing protocol, where the routes are constructed only when needed.
AODYV maintains a routing table where routing information about the active paths is
stored.

AODV protocol use four control packets: Hello messages, Route Requests (RREQs),
Route Replies (RREPs), and Route Errors (RERRs). Each node maintains a routing
table which contains: Destination, Next Hop, Number of hops (metric), Sequence
number for the destination, Active neighbours for this route, and Expiration time for

the route table entry. Each time a route entry is used, the timeout of the entry is reset

50



Chapter 3. MANET Routing Protocols

to the current time plus active route timeout. The sequence number is used to ensure
loop freedom in distance vector routing protocols. The sequence number is sent with
RREQ (for source) and RREP (for destination) and stored in the routing table. The
larger the sequence number the newer the route information. If a new route is offered,
the sequence numbers of the new route and the existing route are compared. The route
with the greater sequence number is used. If the sequence numbers are the same, then
the new route is selected only if it has fewer number of hops.

AODYV is composed of two mechanisms: Route Discovery and Route Maintenance:

1. Route Discovery: When a node needs to send data to a destination, it checks
its routing table if it has a valid route to that destination. If a route is found,
the node starts to send the data to the next hop. Otherwise, it begins a route
discovery procedure. In the route discovery procedure, a route request (RREQ)
and route reply (RREP) packets are used to establish a route to the destination.
RREQ is broadcast throughout the entire network. Upon receipt of RREQ,
the node creates a reverse routing entry towards the source, which can be used
to forward replies later. The destination or an intermediate node, which has
a valid route towards the destination, answers with a RREP packet. When a
node receives RREP, a reverse routing entry towards the originator of RREP is
also created, the same as with the processing of RREQ. Associated with each
routing entry is a so-called precursor list, which is created at the same time. The
precursor list contains the upstream nodes which use the node itself towards the

same destinations.

2. Route Maintenance: Each node along an active route periodically broadcasts
HELLO messages to its neighbours. If the node does not receive a HELLO
message or a data packet from a neighbour for a certain amount of time, the
link between itself and the neighbour is considered to be broken. In case of
the destination with this neighbour as the next hop is not far away (from the
invalid routing entry), a local repair mechanism may be started to rebuild the

route towards the destination; otherwise, a Route Error (RERR) packet is sent
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to the neighbours, which in turn propagates the RERR packet towards nodes
whose routes may be affected by the broken link. Then, the affected source can

re-initiate a route discovery process if the route is still needed.

3.4.2 Dynamic Source Routing Protocol (DSR)

The second reactive routing protocol is the Dynamic Source Routing Protocol (DSR)
[47]. It is based on the concept of source routing. Unlike other unicast routing pro-
tocols, DSR does not maintain a routing table, but uses a Route Cache to store the
full paths to the known destinations. Unlike other protocols, DSR requires no peri-
odic packets. For example, it does not use any periodic routing advertisements. The
lack of periodic activity may reduce the control overhead. The protocol is composed
of two mechanisms to discover and maintain the source routes: Route discovery and

Route Maintenance.

1. Route discovery: When a node has a ready data packet to send, it first searches
for a route to the destination in its route cache. If an active route entry towards
the destination is found, it uses the found route to send the data packet. Other-
wise, the source node initiates route discovery by broadcasting a Route Request
(RREQ) packet. The RREQ packet contains the source node’s address, the des-
tination node’s address, and a unique request id. Also, each RREQ contains a
record listing the address of each intermediate node that forwarded the packet.
Each intermediate node receiving the RREQ packet checks whether it has a
route to the destination. If it does not have a route, it adds its own address to
the route record of the packet and then broadcasts it to its neighbours. To limit
the number of route requests propagation, the node only broadcasts the RREQ

if it has been received for the first time.

A route reply (RREP) is generated, when the RREQ is received by the desti-

nation or an intermediate node that has an unexpired route to the destination.
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If the receiving node is the destination, it places the route record contained in
the RREQ into the RREP. If the receiving node is an intermediate node, it ap-
pends its cached route to the route record and then generate the RREP. If the
responding node has a route to the RREQ initiator, the route can be used to
return the RREP packet. Otherwise, if symmetric links are supported, the re-
sponding node may reverse the route in the route record. If symmetric links
are not supported, the node initiates its own route discovery and piggybacks the

RREP packet on the new route request.

2. Route maintenance: Unlike proactive routing protocols and AODV, DSR does
not introduce a periodic HELLO message. Every node along the path is re-
sponsible for the validity of the downstream link connecting itself with the next
hop. If a broken link is detected, route maintenance is invoked. This phase
is accomplished through the use of Route Error (RERR) packets and acknowl-
edgements. A RERR packet is generated at a node that discovers a link failure
and sent to the source node. When an RERR packet is received, the hop in error
is removed from the node’s route cache and all routes containing the hop are
truncated at that point. In addition to RERR packets, acknowledgements are
used to verify the correct operation of the route links. When the source node
receives the RERR packet, it may re-initiate route discovery if an alternate route

is not found.

3.4.3 The Temporally Ordered Routing Algorithm (TORA)

The Temporally Ordered Routing Algorithm (TORA) [90] is a reactive routing algo-
rithm based on the concept of link reversal. TORA is proposed to operate in large,
dense mobile networks. In these kind of networks, the protocol involves a localized

single pass of the distributed algorithm as a reaction to link failures.

TORA uses three control packets: query (QRY), update (UPD), and clear (CLR).
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QRY packets are used to create routes, UPD packets are used to create and maintain

routes, and CLR packets are used to erase routes.

In TORA, the network topology is regarded as a directed graph. A Directional Acyclic
Graph (DAG) is accomplished for the network by assigning each node i a height
metric h;. The height of a node is defined as a quintuple which includes the logical
time of a link failure, the unique ID of the node that defines the new reference level,
a reflection indicator bit, a propagation ordering parameter and a unique ID of the
node. The first three elements represent the reference level which is defined each
time a node loses its last downstream link, and the last two elements define an offset
with respect to the reference level. A link direction from i to j means h; > h; (i.e.,
the height of node i is greater than the height of node j). DAG provides TORA with
the capability that many nodes can send packets to a given destination and guarantees

that all routes are loop-free.

The protocol can be divided into three functions: creating routes, maintaining routes,
and erasing routes.

Creating routes: This operation starts with setting the height (propagation ordering
parameter in the quintuple) of the destination to 0 and heights of all other nodes to
NULL (i.e., undefined). The source broadcasts a Query packet containing the des-
tination’s ID. A node with a non-NULL height responds by broadcasting an update
packet containing the height of its own. Upon receiving an update packet, a node
sets its height to one more than that of the update packet generator. A node with
higher height is considered as upstream and the node with lower height is considered
as downstream. In this way, a directed acyclic graph is constructed from the source
to the destination and multiple paths route may exist.

Maintaining routes: The DAG in TORA may be disconnected because of node mo-
bility. Thus, route maintenance operation is an important part of TORA. TORA has
the unique feature that control messages are localized into a small set of nodes near
the occurrence of topology changes. After a node loses its last downstream link, it

generates a new reference level and broadcasts the reference to its neighbours. There-
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fore, links are reversed to reflect the topology change and adapt to the new reference
level.

Fartition detection and erasing routes: When a node detects a network partition, it
initiates the process of erasing the invalid routes. Network partition is detected when
a ‘reversal’ reaches a node with no downstream links and all of its neighbours have the
same “reflected reference level”. The erase operation in TORA floods CLR packets

through the network and erases invalid routes.

3.4.4 Summary of Reactive Routing

In reactive routing protocols the route is established only when it is needed. In other
words, when a node has ready data to send, it initiates route discovery to establish a
route to the destination. Most of the reactive routing protocols have the same routing
cost when considering worst-case scenarios. This is because they use similar route
discovery and maintenance procedures. The worst-case scenario applies to most rout-
ing protocols during the initial stages (i.e., when there is no previous communication
between the source and the destination). As nodes stay active for a longer time, they
become more aware of their neighbours. Unlike proactive routing protocols, reactive
protocols do not use periodic route updates which may decrease the control overhead.
This kind of protocols suffers from delay, and the signalling traffic generated grows

when the mobility of the nodes increases.

3.5 Hybrid Routing Protocols

Hybrid routing protocols are a new generation of protocols [2], that combine the
advantages of both proactive and reactive routing protocols and overcome their short-
comings. Normally, this approach exploits hierarchical network architectures. A
proactive routing approach and a reactive routing approach are used at different hier-

archical levels, respectively.
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Scalability is an important factor in designing an efficient routing protocol for wire-
less ad hoc networks. A good routing protocol has to be scalable and adaptive to the
changes in the network topology. Thus a scalable protocol should perform well as the
network grows larger or as the workload increases. The key characteristic of a reac-
tive protocol is that the source node invokes a route discovery procedure to discover
routes. Whenever a source node needs a route to an unknown destination, it initiates
a route discovery process by flooding a route request for the destination and waits for
a route reply. Each route discovery flood is associated with significant latency and
overhead. This is particularly true for large networks. Excessive flooding can lead to
network clogging and as a result the protocol’s performance becomes worse. Hence
it is desirable to keep the route discovery frequency low to improve the scalability of
reactive routing protocols. Multipath routing and hierarchical routing can reduce the

frequency of on-demand route discovery.

Hybrid routing protocols are designed to increase scalability by reducing route dis-
covery overheads. This can be achieved by proactively maintaining routes to the near
nodes and determining routes to far nodes using a route discovery mechanism. Most
of the proposed hybrid protocols are zone-based, which means that the network is
partitioned into zones by each node. Others group nodes are partitioned into trees or
clusters. In the next subsections, we describe some typical hybrid mobile ad hoc net-
work routing protocols. Specifically, we introduce the Zone routing protocol (ZRP)
in subsection 3.5.1, Zone-based Hierarchical Link State (ZHLS) in subsection 3.5.2,
Distributed Spanning Trees based routing protocol (DST) in subsection 3.5.3, Dis-
tributed Dynamic Routing (DDR) in subsection 3.5.4, and Sharp Hybrid Adaptive
Routing Protocol for Mobile Ad Hoc Networks (SHARP) in subsection 3.5.5,

3.5.1 Zone Routing Protocol (ZRP)

The Zone Routing Protocol (ZRP) [36] is based on the notion of routing zones that

are defined for each node. This includes all nodes whose distance is less than some
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predefined number; the distance is referred to as the zone radius. Each node has
to know the topology of the network within its zone, and nodes are updated about
topological changes within their zone. Thus, even if the network is very large, the
updates are only propagated locally. For a zone radius greater than one, routing tends

to be robust.

Figure 3.3: Example of Zone Routing

Figure 3.3 illustrates the route discovery of the protocol. Suppose node S needs to
send data to node D. At the beginning, node S verifies that node D is not within its
zone. Then node S sends a request to all nodes on the Periphery of its zone (i.e, nodes
C, G, and H). Upon receiving the query, each node verifies that node D is not within
its zone, and broadcast the query to their peripheral nodes. In this example, node H
receives the query and sends the query to node B, which recognizes that node D is in
its routing zone. Node B responds to the query, indicating that the forwarding path
is S-H-B-D. Node B learns about the forwarding path using the Route accumulation
mechanism.

A hop-count is included in the query message to limit its forwarding process. The
initial value of hop-count is set to a maximal value and decreased by one each time
the query is forwarded. When the value of the hop-count reaches zero, the message

1s discarded.
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The behaviour of ZRP can be adjusted by changing the value of the zone radius. For
a large zone radius, ZRP works as proactive protocol, whereas for small zone radius,
ZRP works as a reactive protocol. Route evolution and routing zone update proto-
cols are two ZRP related protocols that work in conjunction with the route discovery
protocol. The route evolution changes the network-wide routes as a response to the
changes in the connectivity of nodes on the path. The route zone update protocol
allows each node to learn the complete topology of its zone.

Generally, in ZRP, different routing approaches are used for inter-zone and intra-zone
packets. The proactive routing approach called Intra-zone Routing protocol (IARP),
is used inside routing zones, and the reactive routing approach called Inter-zone Rout-
ing Protocol (IERP), is used between routing zones, respectively. Therefore, if the
source and destination nodes are in the same zone, a route can be available imme-
diately. Most of the existing proactive routing schemes can be used as the IARP
for ZRP. The IERP reactively initiates route discovery when the source node and the

destination are located in different zones.

3.5.2 Zone-based Hierarchical Link State (ZHLS)

Zone-based Hierarchical Link State (ZHLS) [44] is a routing protocol that employs a
hierarchical structure and divides the network into non-overlapping zones. Each node
participating in the network has a node ID and a zone ID, which is calculated using
a GPS. The hierarchical topology is made up of two levels: node level topology and
zone level topology. Unlike CGSR [22] protocol, ZHLS does not use a cluster-head
or location manager to coordinate the data transmission, which means that there is no
processing overhead associated with the cluster-head or location manager selection.
This also means that traffic bottlenecks can be avoided. When a route to a remote des-
tination is required (i.e., the destination is in another zone), the source node broadcasts
a zone level location request to all other zones, which generates significantly lower

overhead when compared to the flooding approach in reactive protocols.
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The disadvantage of ZHLS is that all nodes must have a preprogrammed static zone
map in order to function. This may not feasible in applications where the geograph-
ical boundary of the network is dynamic. Nevertheless, it is highly adaptable to
dynamic topologies and it generates far less overhead than pure reactive protocols,

which means that it may scale well to large networks.

3.5.3 Distributed Spanning Trees based routing protocol (DST)

In the Distributed Spanning Trees based routing protocol (DST) [96] the nodes in the
network are grouped into a number of trees. A node participating in the network can
be either the root of a tree or an internal node of a tree. The root controls the structure
of the tree and whether the tree can merge with another tree. Each node can be in one
of three different states: router, merge and configure. The state of the node depends

on the type of task that it is trying to perform.

To determine a route, DST proposes two different routing strategies: Hybrid Tree
Flooding (HTF) and Distributed Spanning Tree shuttling (DST). In HTF, control
packets are sent to all neighbours and adjacent bridges in the spanning tree, Moreover,
packets are held at each node for a period of time called the holding time. During this
time, new bridges are made at the node, and the packets are sent along the bridges. In
DST, the control packets are sent from the source along the tree edges. When a con-
trol packet reaches down to a leaf node in the tree, it is sent up the tree until it reaches
a certain height, called the shuttling level. When the shuttling level is reached, the
control packet can be sent down the tree or to the adjacent bridges.

The main disadvantage of the DST algorithm is that it relies on a root node to con-
figure the tree, which creates a single point of failure. Furthermore, the holding time

used to buffer the packets may introduce extra delays.
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3.5.4 Distributed Dynamic Routing (DDR)

Distributed Dynamic Routing (DDR) [86] is another tree-based routing protocol. In
DDR, neighbouring nodes periodically exchange beaconing messages to construct a
forest. Each tree of the constructed forest forms a zone, and each zone is assigned a
zone ID. The entire network is partitioned into a number of non-overlapping zones.
Each zone is connected via gateway nodes. Gateway nodes are the nodes that are in
the transmission range of each other, but belong to different trees. Each node in the
network can either be in a router or non-router mode with regard to its position in its
tree.

Each node computes periodically its zone ID independently. Each zone is connected
via nodes that are not in the same tree but are in the direct transmission range of each

other. So, the whole network can be seen as a set of connected zones.

The DDR protocol consists of six phases: preferred neighbour election, forest con-
struction, intra-tree clustering, inter-tree clustering, zone naming, and zone partition-
ing.

Each node starts by electing the preferred neighbour node, which is the node that has
the most number of neighbours. After that, a forest is constructed by connecting each
node to its preferred neighbour. Then, the intra-tree clustering algorithm is invoked to
determine the structure of the zone and build up the intrazone routing table. Next, the
inter-tree algorithm is used to determine the connectivity with neighbouring zones.
Each zone is assigned a name by running the zone naming algorithm, and finally, the
network is partitioned into a set of non-overlapping zones.

To establish routes, a hybrid ad hoc routing protocol (HARP) [85] works on top of
DDR. HARP uses the intra-zone and inter-zone routing tables created by DDR to

determine a path between the source and destination nodes.

The advantage of DDR is that it does not rely on a static zone map to perform routing.
Also, it does not require a root node or a clusterhead, to coordinate data and control

packet transmission between different nodes and zones. In contrast, the disadvantage
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of DDR is that the nodes that have been selected as preferred neighbours may become
performance bottlenecks, because they may transmit more routing and data packets
than the other nodes. Furthermore, if a node is elected as a preferred neighbour for
many of its neighbours, they may need to communicate with it. This may lead to
increasing in channel contention around the preferred neighbour, and will result in
larger delays being experienced by all neighbouring nodes before they can reserve

the medium.

3.5.5 Sharp Hybrid Adaptive Routing Protocol for Mobile Ad Hoc
Networks (SHARP)

Sharp Hybrid Adaptive Routing Protocol (SHARP) [99] is a routing protocol that
adapts efficiently between proactive and reactive routing strategies. SHARP adapts
between the two strategies by dynamically varying the amount of routing information
that is shared proactively. This is done by defining a proactive zone around some
nodes, and letting a node-specific zone radius determine the number of nodes within
each proactive zone. Each node at a distance less than or equal to the zone radius is
considered as a member of the proactive zone for that node. All nodes that are not
in the proactive zone of a given destination use reactive routing protocols to establish
routes to that node.

SHARP is composed of two components: a proactive routing component, and a reac-
tive routing component.

Proactive Routing Component: SHARP uses SHARP Proactive Routing protocol
(SPR) which is based on DSDV [94] and TORA [90]. SPR performs proactive rout-
ing by generating and maintaining a Directed Acyclic Graph (DAG) rooted at the
destination. The DAG is generated periodically using a construction protocol. The
destination node initiates the construction process by generating a DAG construction
packet, which carries the zone radius and a sequence number to distinguish a new

DAG from an old DAG. The time to live (TTL) field is set to the zone radius and is
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propagated within the proactive zone. It builds a DAG by assigning a height to each
node. The height corresponds to the distance of the node from the destination. When
a node receives a construction packet from another node, it adds the link between the
two nodes to the DAG, increments its height by one, and rebroadcasts the construc-
tion packet. For example, if node B receives a construction packet from a node A,
node B adds the link A — B to the DAG and rebroadcasts the construction packet after
incrementing its height by one.

Each node in the proactive zone broadcasts an update packet which includes its cur-
rent height. When a node receives update packets from its neighbours, it records the
height of each neighbour. The update packets serve as HELLO beacons to detect the
construction of new links and the breakage of current links. A new link is constructed
when receiving a new update packet from a new neighbour, whereas the link is con-
sidered as broken link, when at least beacon_loss consecutive update packets are not
received from a neighbour.

Reactive Routing Component: SHARP reactive routing protocol is based on AODV
[93]. SHARP uses the standard AODV with some optimizations such as route caching
and expanding ring search. If the source is outside the proactive zone of the destina-
tion, the source node uses AODV to broadcast a route request. Nodes in the proactive

zone of destination respond by sending a route reply to the source node.

SHARP integrates both of the proactive and the reactive components without incur-
ring additional overhead. When the source is within the proactive zone, routing is
performed proactively. Otherwise, route requests are broadcast by AODV, and the

nodes in the proactive zone of the destination respond by generating a route replies.

3.5.6  Summary of Hybrid Routing Protocols

Hybrid routing protocols combine the advantages of proactive and of reactive rout-
ing protocols, and overcome their shortcomings. These protocols are designed to

increase scalability, by allowing nodes that are in close proximity to each other to
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work together to reduce route discovery overheads. This can be achieved by proac-
tively maintaining routes to near nodes, and reactively determining routes to far away
nodes. Many hybrid routing protocols are zone-based, where the network is par-
titioned or can be seen as a number of zones by each node. Other hybrid routing

protocols group nodes into trees or clusters.

3.6 Multipath routing protocols

Multipath routing is a routing technique that is used to find multiple paths between a
single source and a single destination. It is one of the ways to improve the reliability
of the transmitted information. Multiple paths can be used to provide load balancing,
fault tolerance, and bandwidth aggregation [117]. Recently, several multipath routing
protocols have been proposed, and many of them are based on the popular on-demand
routing protocols, DSR and AODV [2]. In the case of using a reactive routing pro-
tocol, maintaining multiple routes for each destination increases the reliability of the
protocol by selecting an alternative route without initiating a route discovery proce-
dure.

Numerous of the proposed multipath routing protocols produce disjoint paths which
have the desirable property that they are more likely to fail independently. Thus
they have a better utility. There are two types of disjoint paths: node disjoint paths
and link disjoint paths. Node disjoint paths do not have any nodes in common, ex-
cept for the source and the destination. Whereas, link disjoint paths do not have
any common links, but may have common nodes. Multipath routing protocols can
be categorized into two types according to how they use multiple routes: as backup
routes for fault tolerance [53][58][75], and as data transfer routes for load balancing
[28][59][120][124]. Some of the proposed multi-path algorithms are presented in the

following subsections.
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3.6.1 Ad hoc On-demand Multipath Distance Vector Routing (AOMDYV)

Ad hoc On demand Multipath Distance Vector (AOMDV) [75][76][77], is an exten-
sion to the AODV routing protocol. AOMDV is designed to provide efficient recov-
ery from route failures and efficient fault tolerance. To achieve these goals, AOMDV
computes multiple loop-free and link-disjoint paths. A notion of advertised hopcount
is used to guarantee loop freedom, and a particular property of flooding is used to
achieve Link-disjointness of multiple paths. The advertised hopcount of a node for a
destination represents the maximum hopcount of multiple paths for the destination at
the node.

Figure 3.4 shows the structure of the routing tables entries for both AODV and AOMDV

routing protocols.

destination destination
sequence number sequence number
hop count advertised hopecount
next hop route list
expiration tirmeout {fhopcoant!, wexthopl, last kopl, expivation Hweoutl),
fHoprount?, necthop’, last hopl, expivation_timeontl ],
expiration timeout

(2} AODV
(b} AOMDYV

Figure 3.4: The structure of routing table entries for AODV and AOMDV [77]

When the AODV single path routing protocol is used, new route discovery is needed
in response to every route break. This inefficiency can be avoided by having multiple
paths for each destination. In this case, new route discovery is only needed when
all paths are broken. The AOMDYV protocol has two components: a rule to create
and maintain multiple loop free paths, and a distributed protocol to find link-disjoint
paths. The basic idea for finding link-disjoint paths is as follows. To consider the
paths between a pair of nodes as disjoint paths, it is necessary that all but the first and
last hops of those paths are distinct. AOMDV augments the AODV route discovery

procedure in two ways:
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1. By exploiting the routing information obtained via duplicate route request copies,
alternate loop-free reverse paths are formed at the intermediate and the destina-

tion nodes.

2. The destination node generates multiple route replies, that travel along multiple
loop-free reverse paths to the source established during the route request phase

to get multiple loop-free forward paths to the destination.

As in AODV, AOMDV uses destination sequence numbers to ensure loop-freedom.
Every node maintains one or more paths to a destination corresponding to the highest
sequence number for that destination. Route maintenance in AOMDV is similar to
that in AODV [117]. The difference is that, in AOMDYV, a node only generates or

forwards a RERR packet for a destination when all paths to the destination break.

3.6.2 Ad hoc On-demand Distance Vector Multipath (AODVM)

Ad hoc On-demand Distance Vector Multipath (AODVM) [125][126] is a modifica-
tion to the AODV routing protocol that discovers multiple node-disjoint paths from
a source to a destination. Instead of discarding the duplicate Route Request (RREQ)

packets, intermediate nodes store the information included in these packets in a table

called RREQ table (Figure 3.5).

Source ID

Destination ID

Neighbours List ﬁ

Neighbour ID
Hops To Source

expiration timeout

Figure 3.5: The Structure of each RREQ table entry in AODVM
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When an intermediate node receives a RREQ packet, it records the following infor-
mation in its RREQ table: Id of the source node that generated the RREQ, Id of the
destination node for which the RREQ is intended, the Id of the neighbour node that
the RREQ is received from, and the hop count. Moreover, the intermediate relay

nodes are prohibited from sending a RREP packet directly to the source node.

When a destination node receives the first RREQ packet, it updates its sequence num-
ber and generates a Route Reply (RREP) packet, which contains an additional field
called “Route_ID”. The destination assigns a unique Route_ID for each path discov-
ered during a single route discovery instance. The RREP packet is unicast to the
source via the neighbour that forwards the RREQ packet. If the destination receives
duplicate copies of the RREQ from other neighbours, it updates its sequence number,
generates and unicasts RREP packets to the source, after assigning a unique Route_ID

for each of them.

Destination ID

Destination Sequence Number
Route List

v

Source Sequence Number
Route_ID

Next Hop ID

Hop Count

Source ID

Expiration timeout

Figure 3.6: The Structure of each Routing table entry in AODVM

Once an intermediate node receives a RREP packet from a neighbour, it updates its
RREQ table by deleting the entry corresponding to this neighbour, and adds a routing
entry to its routing table as a route to the destination (Figure 3.6). Next, the node
determines the neighbour in the RREQ table via the shortest path to the source, and

forwards the RREP packet to that neighbour. Then, the entry that corresponds to
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this neighbour is deleted from the RREQ table. If an intermediate node is unable to
forward a received RREP packet (No entries in its RREQ table), it generates a Route
Discovery ERror (RDER) message and unicasts it to the neighbour that the RREP is
received from. Upon receiving a RDER packet, the neighbour will try to forward the

RREP to a different neighbour which may forward it further towards the source node.

To ensure that a node does not participate in more than one path, when a node over-
hears any node broadcasting a RREP packet, it deletes the entry that belongs to that
node from its RREQ table.

When the source node receives a RREP packet, it should confirm each received RREP
packet by means of a Route Reply Confirmation packet (RRCM), which can be pig-

gybacked on the first data packet transmitted on the corresponding route.

In AODVM, the sequence number is used to prevent loops. When a source node initi-
ates a RREQ, it increases its sequence number and the destination’s sequence number.
Both sequence numbers are included in the RREQ packet. When the destination re-
ceives a new RREQ packet, it computes a new sequence number and includes it in the

RREP packet.

3.6.3 AODV-BR: Backup Routing in Ad hoc Networks

AODV-BR (AODV with Backup Routes) [58] is an AODV-based protocol. It creates
a mesh and provides multiple alternate routes for each desired destination, without
transmitting extra control messages. AODV-BR has two phases: Route Construction,

and Route Maintenance and Mesh Routes.

Route Construction: As mentioned, AODV-BR is based on the AODV routing pro-
tocol. AODV-BR builds routes on demand via a query and reply procedure. The
protocol uses the AODV’s RREQ (Route Request) process with no modification. The
mesh structure and alternate paths are established during the route reply phase. Thus,

a slight modification has been made to the route reply process.
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Due to the broadcast nature of wireless communications, a node can overhear packets
that are transmitted by its neighbours. From these packets a node obtains alternate
path information and becomes part of the mesh. When a node that is not part of the
primary route overhears a RREP packet transmitted by a neighbour that is not directed
to itself, it records that neighbour as a next hop to the destination in its alternate route
table. If a node overhears a number of RREP packets for the same route, it chooses

the best route and inserts it into the alternate route table.

"
%

Primarv route e Altemate route

Figure 3.7: Multiple Routes Forming a Fish Bone Structure

The primary route between the source and the destination is established, when the
RREP packet reaches the source. Any node that has an entry to the destination in
its alternate route table is a part of the mesh. The primary route and alternate routes
establish the mesh structure as shown in Figure 3.7. The mesh structure that is estab-

lished by the primary route and the alternate routes is similar to a fish bone structure.

Route Maintenance and Mesh Routes: Nodes use the primary route to deliver data
packets unless a link failure is encountered. When a node detects a link break, it
performs a one hop data broadcast to its current neighbours. The node identifies in
the data header that the link is disconnected and that the packet is a candidate for
alternate routing. When a neighbour receives this packet and has an entry belonging
to the destination in its alternate route table, it unicasts the packet to its next hop node.

Thus, data packets are delivered using one or more alternate routes.
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To prevent packet looping, the mesh nodes forward the data packet only if the packet
is not received from their next hop node to the destination, and is not a duplicate.The
node that detects the link failure sends a Route Error (RERR) packet to the source

node to initiate new route discovery.

Alternate route utilization of AODV-BR is similar to the mechanism of DSR with
some differences. AODV-BR uses the mesh link only to go around the broken part of
the route, whereas in DSR the node that detects the link failure salvages the data by
replacing the entire remaining route with an alternate route stored in its route cache.
Another difference is that in DSR, the node sends a RERR packet only when it has

no alternate routes. Thus, routes in DSR are less fresh compared to AODV-BR.

3.6.4 Split Multipath Routing with Maximally Disjoint Paths in Ad
hoc Networks (SMR)

Split Multipath Routing protocol (SMR) [59] is an on demand routing scheme that
builds and utilizes maximally disjoint paths. The protocol uses a per-packet alloca-
tion scheme for distributing data packets into multiple paths. SMR splits the data
traffic into multiple routes to prevent nodes from being congested and to use network
resources efficiently. To achieve this goal the destination node should know the full
path of all available routes. SMR uses the source routing approach, where the RREQ
packet includes information on all nodes that constitute the route. Moreover, interme-
diate nodes do not send RREP packets back to the source node even if they have route
information regarding the destination. SMR uses two procedures: Route Discovery

and Route Maintenance.

Route Discovery: SMR builds multiple routes using request/reply cycles. When a
source node has data ready to send and does not have a route to the destination, it
broadcasts a RREQ packet which contains the source node ID and a unique sequence

number to identify the packet. If an intermediate node receives copies of a RREQ, it
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forwards duplicate packets through a different incoming link than the link from which
the first RREQ is received, and whose hop count is not larger than that of the first
received RREQ. When the destination node receives the RREQs, it selects two routes
that are maximally disjoint. The first route is the shortest delay route, which is taken
by the first RREQ that the destination receives. When receiving the first RREQ, the
destination records the entire path and unicasts a RREP packet to the source through
this route. Next the destination waits for a period of time to receive more RREQs and
learn more possible routes. It then selects the route that is maximally disjoint to the

route that it has already replied along.

Route Maintenance: When a node fails to deliver a data packet to the next hop of
the route, it considers the link as a broken link. The node responds by unicasting a
Route Error (RERR) packet in the upstream direction of the route. The RERR packet
contains the route to the source, and the immediate upstream and downstream nodes
of the broken link. When the source node receives an RERR packet, it removes every
entry in its route table that uses the broken link. If a source node is informed of a
broken link and the session is still active, it uses the remaining valid route to deliver
data packets. But, if both routes of the session are broken, the source node initiates

the route recovery process.

3.6.5 Stable Node-Disjoint Multipath Routing with Low Overhead (NDMR)

The Node-Disjoint Multipath Routing Protocol (NDMR) [63] is a modification to the
AODV routing protocol by including path accumulation in RREQ packets. The main
goal of NDMR is to create multiple node-disjoint paths with a low routing overhead.
To achieve this goal, the destination node should know the entire routing path list of

all routes. Thus, the destination can confirm if the path is node-disjoint or not.

Like AODV, NDMR has two mechanisms: Route discovery and Route maintenance.

e Route Discovery mechanism: This mechanism depends on three features which
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are: Path accumulation, choosing and recording the shortest routing hops of
loop-free paths, and selecting Node-Disjoint paths. When a node generates
or forwards a RREQ packet, it appends its own address to the packet. When
the packet reaches its destination, the destination is responsible for deciding
whether the routing path is a node-disjoint one or not. After confirming a node-
disjoint path, the destination generates and unicasts a Route Reply (RREP) to
the source node that generated the RREQ packet via the reverse path of the
node-disjoint route. The RREP packet contains the all nodes of the whole route
path. Upon receiving a RREP packet by an intermediate node, it updates its
routing table entry and its reverse routing table entry using the nodes list in-
cluded in the RREP packet. Figure 3.8 shows the Route Request Process of
NDMR.

Propagated Packet —»

Discarded Packet e

Figure 3.8: Route Request Process with Low Overhead

NDMR uses an approach that records the shortest routing hops of loop-free
paths. If a node receives a RREQ packet for the first time, it checks the path
accumulation list from the packet and determines the number of hops from
itself to the source node. Next, it records the number as the shortest number
of hops in its reverse route table entry. If the node receives a copy of the same
RREQ again, it calculates the number of hops and compares it with the number
recorded in the reverse route table entry. If the number of hops is greater than

the shortest number of hops in the reverse route table entry, the RREQ packet
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is dropped. Otherwise, the node appends its address to the route path list of the
RREQ and broadcasts it to its current neighbours. This approach guarantees

loop-free paths and decreases the routing overhead.

Figure 3.9: Node-Disjoint Paths

As mentioned, the destination node is responsible for selecting multiple node-disjoint
paths. When a destination node receives the first RREQ, it records the list of node
IDs for the entire path in its reverse route table, and unicasts a Route Replay (RREP)
packet, which includes the path towards the source via the reverse route. When the
destination receives a duplicate RREQ, it compares the whole route path in the RREQ
with all the existing node-disjoint paths stored in its reverse route table. If there is no
common node between the path in the RREQ packet and all the paths in the reverse
route table (except source and destination nodes), the path in the RREQ is accepted
and recorded in the reverse route table. Otherwise, the current received RREQ is

discarded.

When an intermediate node receives a RREP packet, it records a a forward path to
the destination in its route table, and records a reverse path to the source in its reverse
route table. The forward path is through the neighbour from which the RREP arrived,
and reverse path is through the next hop to the source. Finally, the intermediate node

forwards the RREP towards the source node along the reverse route path.
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When the source node receives the RREP packet, it establishes a route by recording
the next hop to the destination into its multiple route forward path entry. Figures 3.8

and 3.9 illustrate the idea behind building multiple Node-Disjoint paths.

In NDMR, each node is dependent on sending HELLO messages to inform its neigh-
bours about its existence. If a node does not receive such a message from a neighbour
for a certain time, the node considers the link between itself and that neighbour is bro-
ken. A Route Error (RERR) packet is propagated from the upstream node of the link
failure to the source node. When an intermediate node receives an RERR packet, it
invalidates the route to the destination, and propagates the RERR packet to its precur-
sor node along the reverse route path. As the source node receives the RERR packet,
it invalidates the route path to destination and selects a valid node-disjoint routing
path as the active routing path from the routing table to continue sending data packets

on.

3.6.6 Scalable Multipath On-demand Routing for Mobile ad hoc Net-
works (SMORT)

Scalable multipath on-demand routing protocol (SMORT) [100] is a multipath ex-
tension to the AODV routing protocol. The main objective of SMORT is to reduce
the amount of routing overhead using multipath routing. Reduction in the control
overhead allows the protocol to scale to larger networks. SMORT uses the idea of
Fail-safe multiple paths. The path between the source and the destination is consid-
ered as a Fail-safe to the primary path, if it bypasses one or more intermediate nodes

on the primary path.

Multiple paths between a source and a destination nodes can be divided into two
types, namely node-disjoint and link-disjoint multiple paths. Node-disjoint paths are
the paths that do not have any common nodes, except the source and destination

nodes. In contrast, Link-disjoint paths do not have common links, but may have
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common nodes. Fail-safe multiple paths are different from node-disjoint and link-
disjoint multiple paths, where the Fail-safe multiple paths can have nodes and links in
common. The Fail-safe path is used to send data packets when the bypassed node(s)
on the primary path leave the network or move away. Figure 3.10 shows a set of
Fail-safe paths which together bypass all nodes on the primary path. For example, the
paths S-A-H-C-E-D and S-A-B-C-L-D are Fail-safe paths to the primary path S-A-
B-C-E-D (Figure 3.10). Even if node B and node E move a way, the session between
node S and node D is unaltered because the packets can be redirected to the Fail-safe

paths.

Figure 3.10: Fail-safe multiple paths

As SMORT is a reactive routing protocol based on AODYV, it has three basic phases:
Route Discovery, Route Reply, and Route Maintenance. To enable computation
of multiple Fail-safe paths, SMORT allows all nodes to accept multiple copies of
Route Request (RREQ) packets, and the destination node replies to multiple copies
of RREQ.

When a source node needs to communicate with a destination for which it does not
have a route, it initiates and broadcasts a RREQ packet containing the address of

the destination. An intermediate node, upon receiving a RREQ packet, responds by
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sending a Route Reply (RREP) packet if it has a route to the destination. Otherwise,
it re-broadcasts the RREQ. Nodes re-broadcast only the first copy of the RREQ, and
store the information of all RREQ copies in a request-rcvd table. Each entry in the
request-rcvd table contains the address of the previous node that the RREQ is received

from (Last-Hop), and the number of hops (distance between the node and the source).

If an intermediate node or a destination needs to send a RREP packet, it should follow
the reverse paths stored in the request-rcvd table to reach the source node. Compared
to the RREP packet of AODV, the RREP packet of SMORT contains three extra fields
(shown in bold letters in Figure 3.11), to eliminate routing loops, and to compute Fail-
safe multiple paths. The Node list field consist of a list of all nodes that the route reply
has passed so far. The Reply generator field is used to store the address of the packet
generator. The Multiple reply field is a Boolean variable to distinguish the first RREP
packet. Nodes accept only the first received RREP, and store the route information

carried in it in its routing table.

Destination address

Source address

Next Hop

Hop count

Reply generator

Multiple reply

Node list
(nodel, node2, node3, ...)

Figure 3.11: Route Reply packet structure of SMORT

Instead of using RREQ packets to avoid loops in the routes, RREP packets are used
where they carry the full path to the destination. This is because the number of RREP
packets communicated are limited compared to RREQ packet transmissions. Inter-
mediate nodes may receive multiple RREP packets, but they relay only the first one.
In order to limit the multipath computation overhead, each node on the primary path

accepts at most two secondary paths.
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3.6.7 Disjoint Multi-Path Source Routing in Ad Hoc Networks: Trans-
port Capacity (DMPSR))

The Disjoint Multi-Path Source Routing (DMPSR) [124] is a protocol that allows
packets originating from the same source to be statistically multiplexed onto multiple
disjoint routes. DMPSR consists of three phases: Route Discovery, Route Mainte-
nance, and Route Destruction. When a source node needs to start the communication,
it initiates the Route Discovery process, by broadcasting a Route Request (RREQ)
packet. To minimize the routing overhead, the source node broadcasts the RREQ
packet with probability p = 1, while the other nodes broadcast the packet with proba-
bility p < 1. This probability is referred to as the critical probability below which the

network lacks connectivity (i.e., the network is in sub-critical mode).

When an intermediate node that knows how to reach the destination or the destination
itself receives a RREQ packet, it generates and sends a Route Reply (RREP) packet
back to the source node. The source node gathers information from all RREP packets
and selects as many disjoint routes as possible. The purpose of choosing multiple
routes is to increase the connectivity of the network (i.e., the source stays connected

to the destination for a longer time).

When a link failure occurs, the source node continues sending packets over alter-
native routes and only reinitiates the Route Discovery process if all the routes are
invalid. In the sub-critical mode, the method increases the chance of delivering the
message to the destination, because DMPSR is designed to utilize all possible routes

simultaneously.

At the end of the communication session, the source node informs the destination
node and all the relay nodes about closing the connection to release the resources.
The informed nodes either choose to erase the route information from their caches or
wait for a timer to expire before doing so. The authors in [124] present an analytical

framework to derive the transport capacity of the network with DMPSR both with
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and without load balancing. They concluded that if no load balancing is used, the
DMPSR’s transport capacity is more than that of traditional source routing, where the

spatial density of the network is below some critical threshold.

3.6.8 Node-Disjoint Multipath Routing with Zoning Method in MANETs

Wang et al. propose Multiple Zones-based routing protocols (M-Zone) [35], to dis-
cover node-disjoint paths in large scale MANETs. M-Zone uses a multiple zoning
method based on location to guarantee that the paths between the source and the des-
tination have no common nodes. M-Zone combines the advantages of topology-based
routing and location-based routing and can be used in large scale MANETS using
segment-by-segment route discovery. The proposed protocol divides the region be-
tween the source and the destination into multiple zones to find node-disjoint multiple
paths, and uses two approaches to maintain the routes: local route maintenance and
global route maintenance. The local route maintenance ensures that the broken path
is repaired quickly, and global route maintenance initializes route discovery periodi-
cally. Compared to GZRP [14], the authors conclude that the average path length of
M-Zone is close to that of GZRP, and the average packet delivery ratio is significantly

improved.

3.6.9 Summary of Multipath Routing Protocols

Multiple paths can be used to provide load balancing, fault tolerance, and bandwidth
aggregation. Load balancing can alleviate congestion and bottlenecks. It can be
achieved by disseminating the traffic through multiple routes. From a fault toler-
ance perspective, multipath routing reduces the probability that communication is
disrupted when a link failure occurs. Moreover, if congestion occurs, multipath rout-
ing protocols can divert traffic through alternate paths to alleviate the burden of the

congested link. When data is split into multiple streams and routed simultaneously
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through multiple paths, the aggregate bandwidth of the paths may satisfy the band-

width required for the application.

3.7 Summary

Several routing protocols for wireless ad hoc networks have been presented in this
chapter. In this section, we present a summary the most routing protocols introduced
in this chapter, and list the differences between them in two tables according to dif-

ferent criteria.

AODV is one of the most popular and widely researched on-demand ad hoc routing
protocols. One advantage of AODV is that less memory space is required as only in-
formation on active routes is maintained, in turn increasing its performance. AODV
is also adaptable to highly small dynamic networks. However, a node may experi-
ence large delays during route construction, and link failure may initiate more route
discovery, which introduces extra delays and consumes more bandwidth as the size
of the network increases. Moreover, the protocol is not very scalable.

The DSDV routing protocol is a basis for several protocols such as AODV. It guaran-
tees loop free paths and reduces the Count to infinity problem. DSDV is well suited to
small ad hoc networks where changes in the topology are limited. The DSDV proto-
col overhead is directly proportional to the number of nodes in the network. Therefore
the protocol will not scale well in large networks since a large portion of the network
bandwidth would then be used in the updating procedures. DSR is a source-routed
on-demand protocol. An advantage of DSR is that nodes can store multiple routes in
their route cache, which means that there is no need to initiate route discovery if a
valid route is available there. This is beneficial in networks with low mobility, since
the routes stored in the route cache will be valid longer. Another advantage of DSR
is that it does not require periodic routing packets, therefore nodes can enter sleep

mode to conserve their power. This also saves a considerable amount of bandwidth in
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the network. Since DSR discovers routes on-demand, it may have poor performance
in terms of control overhead in networks with high mobility and heavy traffic loads.
DSR has a high delay especially for networks with large traffic loads. The main rea-
son for this is the lack of a mechanism that can expire unused routes from caches,
together with the aggressive use of caching.

The advantage of TORA is that it has reduced the scope of control messages to a
set of neighbouring nodes, where a topology change has occurred. TORA can be
used in conjunction with a lightweight adaptive multicast algorithm (LAM) to pro-
vide multicasting. The disadvantage of TORA is that the algorithm may also produce
temporarily invalid routes.

ZRP is based on the notion of routing zones that are defined for each node. An advan-
tage of this protocol is that it has significantly reduced the amount of communication
overhead when compared to pure proactive protocols. It has also reduced the delays
associated with pure reactive protocols such as DSR, by allowing routes to be discov-
ered faster. This is because, to determine a route to a node outside the routing zone,
the routing only has to travel to a node which lies on the boundaries of the desired
destination. A disadvantage of ZRP is that for large routing zones the protocol be-
haves like a pure proactive protocol, while for small ones it behaves like a reactive
protocol.

DDR is a tree-based routing protocol. An advantage of DDR is that it does not rely
on a static zone map to perform routing and it does not require a root node or a
clusterhead to coordinate data and control packet transmission among different nodes
and zones. However, the nodes that have been selected as preferred neighbours may
become performance bottlenecks. This is because, they may transmit more routing
and data packets than every other node. This means that these nodes would require
more recharging as they will have less sleep time than other nodes. Furthermore, if
a node is a preferred neighbour for many of its neighbours, many nodes may need
to communicate with it. This means that channel contention would increase around
the preferred neighbour, which could result in larger delays experienced by all neigh-

bouring nodes before they can reserve the medium. In networks with high traffic, this
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may also result in significant reduction in throughput, due to packets being dropped
when buffers become full.

In DST the nodes in the network are grouped into a number of trees. Each tree has
two types of nodes: route nodes and internal nodes. A major disadvantage of the
DST algorithm is that it relies on a root node to configure the tree, which creates a
single point of failure. Furthermore, the holding time used to buffer the packets may
introduce extra delays in the network.

ZHLS is a hybrid routing protocol. It is highly adaptable to dynamic topologies and
it generates far less overhead than pure reactive protocols, which means that it may
scale well to large networks. A disadvantage of ZHLS is that all nodes must have a
preprogrammed static zone map in order to function. This may not feasible in appli-
cations where the geographical boundary of the network is dynamic.

In WRP, each node maintains four routing tables. This introduces a significant amount
of memory overhead at each node as the size of the network increases. Another dis-
advantage of WRP is that it ensures connectivity through the use of hello messages,
which are exchanged among neighbouring nodes whenever there is no recent packet
transmission. This consumes a significant amount of bandwidth and power as each
node is required to stay active at all times (i.e., they cannot enter sleep mode to con-
serve their power).

In GSR, each node maintains a link state table based on the up-to-date information
received from neighbouring nodes, and periodically exchanges its link state informa-
tion only with neighbouring nodes. This significantly reduces the number of control
message transmitted through the network. However, the size of update messages is
relatively large, and as the size of the network grows they get even larger. Therefore,
a considerable amount of bandwidth is consumed by these update messages.

FSR reduces the size of the update messages by updating the network information for
nearby nodes at a higher frequency than for the remote nodes, which lie outside the
fisheye scope. This makes FSR more scalable to large networks than other protocols.
However, scalability comes at the price of reduced accuracy. This is because as mo-

bility increases the routes to remote destination become less accurate. This can be
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overcome by making the frequency at which updates are sent to remote destinations
proportional to the level of mobility. However it would increase its use of bandwidth.
In DREAM, each node knows its geographical coordinates using a GPS sensor. These
coordinates are periodically exchanged among nodes which enables each node to ob-
tain location information about other nodes in the network. The coordinates are stored
in a routing table called a location table. The advantage of exchanging location in-
formation is that it consumes significantly less bandwidth than exchanging complete
link state or distance vector information, which means that it is more scalable. In
DREAM, routing overhead is further reduced, by making the frequency with which
update messages are disseminated proportional to mobility and the distance effect.
This means that stationary nodes do not need to send any update messages.

CGSR is a hierarchical routing protocol where the nodes are grouped into clusters.
An advantage of this protocol is that it can reduce the routing table size by storing
only one entry for all nodes in the same cluster. Thus, the broadcast packet size of the
routing table is reduced. A disadvantage of CGSR is the difficulty of maintaining the
cluster structure in a mobile environment.

OLSR is a proactive link-state routing protocol and does not need a central adminis-
trative system to handle its routing process. One of its advantages is that it immedi-
ately knows the status of the link, so that nodes know the quality of the route. OLSR
is more efficient in networks with high density and highly sporadic traffic. However,
a drawback of the OLSR protocol is that it makes each node periodically broadcast
updated topology information throughout the entire network, which increases the pro-
tocol’s bandwidth usage. But the flooding is minimised by the MPRs, which are the
only nodes that are allowed to forward the topological messages. When the number
of nodes increases, the overhead from control message traffic also increases. So, the
scalability is constrained.

TBRPF is a link-state based routing protocol, which performs hop-by-hop routing.
The protocol uses the reverse-path forwarding (RPF) to disseminate its update pack-
ets in the reverse direction along the spanning tree. In TBRPF, each node reduces that

overhead by reporting only part of its source tree to its neighbours. The reportable
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part of each source tree is exchanged with neighbouring nodes by periodic and differ-
ential hello messages. Differential hello messages only report changes in the status
the neighbouring nodes. As a result, hello messages in TBRPF are smaller than in
protocols which report the complete link-state information.

The routing protocols that are based on the source routing protocol (DSR) such as
SMR and NDMR cannot scale to large networks because source routing requires ev-
ery data packet to carry the full path to its destination. In large networks, the size of

data packets become prohibitively high due to the long paths that they carry.

Table 3.6 and Table 3.7 present some properties of the protocols that are discussed
in this chapter. As many routing protocols use distance vector or link state as their
underlying mechanism to transmit update packets and compute routes, we consider
Link State Routing (LSR) and Distance Vector Routing (DVR) as the basis of this
comparison. The meanings of some items in the tables are presented below.

Route Computation indicates when the route is computed (precomputed, on-demand,
or hybrid). The computation in proactive protocols may be done by the nodes them-
selves or collaboratively. However, in reactive protocols, the computation is done by
broadcasting a QUERY message that propagates through the entire network to dis-
cover a route. Stored Information is information stored in each node. Update Period
is applicable to proactive protocols and assumes values such as “periodical”, “event-
driven” or “hybrid”. For reactive protocols, when a link failure occurs, route main-
tenance is activated. This is called event-driven route maintenance. Update Infor-
mation denotes the type of information that is included in the update and the Update
Destination indicates the nodes that receive the information. Generally, the Update
Information is the link state and Update Destination is the “neighbours”. However,
for event-driven route maintenance, the Update Information is generally by an “ER-
ROR” message and the Update Destination is the source node. Finally, the Update
Method indicates how the information is disseminated (broadcasting, unicasting, etc.)

Note: BR stands for Beacon Requirement.(or Hello Message Requirement)
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| Protocols | Route Computation | Structure | Number of Routes | Source Routing | Route Reconfiguration Methodology | BR* |
LSR Proactive/itself Flat Single or multiple No, may Yes N/A No
DVR Proactive/distributed Flat Single No N/A No
AODV Reactive/broadcast QUERY Flat Multiple No Erase route, Notify source Yes
AODV-BR Reactive/broadcast QUERY mesh Multiple No Local repair, Notify source & neighbours Yes
AODVM Reactive/broadcast QUERY Flat Multiple No Erase route, Notify source yes
AOMDV Reactive/broadcast QUERY Flat Multiple No Erase route, Notify source yes
CGSR Proactive/distributed Hierarchy Single No N/A No
DDR Proactive(intra)/Reactive(inter) | Hierarchy Multiple No Notify source to initiate route discovery yes
DMPSR Reactive/broadcast QUERY Flat Multiple yes Erase route, Notify source No
DREAM Proactive/distributed Flat Multiple No N/A No
DSDV Proactive/distributed Flat Single No N/A No
DSR Reactive/broadcast QUERY Flat Multiple Yes Erase route, Notify source No
DST Reactive/broadcast QUERY Hierarchy | single but may multiple No, may yes Route repair No
FSR Proactive/distributed Hierarchy Single or multiple No, may Yes N/A No
GSR Proactive/distributed Flat Single or multiple No, may Yes N/A No
MDSDV Proactive/distributed Flat Multiple No Local repair, Notify source & neighbours Yes
NDMR Reactive/broadcast QUERY Flat Multiple Yes Erase route, Notify source Yes
OLSR Proactive/distributed Hierarchy Single No N/A Yes
SHARP Proactive/Reactive (zone radius) Flat Single No Link reversal, Route repair Yes
SMORT Reactive/broadcast QUERY Flat Multiple No Replace primary route with secondary route | No
SMR Reactive/broadcast QUERY Flat Multiple yes Erase route, Notify source No
TBRPF Proactive/distributed Flat single but may multiple No Select a new parent, Notify source Yes
TORA Reactive/broadcast QUERY Flat Multiple (DAG) No Link reversal, Route repair No
WRP Proactive/distributed Flat Single No N/A Yes
ZHLS Proactive(intra)/Reactive(inter) | Hierarchy Single No Location request No
ZRP Proactive(intra)/Reactive(inter) Flat Single or multiple Yes for interzone Route repair No

Table 3.6: Comparison of MANET Routing Protocols
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| Protocol | Stored Information Update Period Update Information | Update Destination | Method
LSR Entire topology Hybrid Neighbours’ link state All nodes Flooding
DVR Distance-vector Periodical Distance vector Neighbours Broadcast
AODV Next hop for desired destination . Event-driven Route Error packet Source Unicast
AODV-BR Next hop, number of hops, destination Event-driven Route Error packet Source Unicast
AODVM Source Id, Next hop, last hop, hop count Event-driven Route Discovery Error message Source Unicast
AOMDV Next hop, last hop, hop count for desired dest Event-driven Route Error packet Source Unicast
CGSR Cluster member table, Distance Vector Periodical Clus. member tab., Distance Vec. Neigh.&Clus. head | Broadcast
DDR Preferred neighb., neighboring zones inform. Periodical Id numbers & degree of neighb. Neighbours Broadcast
DMPSR Full path (From source to Destination) Event-driven Route Error packet Source Unicast
DREAM Location information of all other nodes Periodical geographical coordinates All nodes Broadcast
DSDV Distance vector Hybrid Distance vector Neighbours Broadcast
DSR Full path (From source to Destination) Event-driven Route Error packet Source Unicast
DST Distance/routing/query tables Event-driven Routing table Neighbours Broadcast
FSR Entire topology Periodicals(dif. freq.) Link state of fisheye scope Neighbours Broadcast
GSR Entire topology Periodical All nodes link state Neighbours Broadcast
MDSDV | First and second hop, number of hops, destination | Period./Event-driven Distance vector Neighbours Broadcast
NDMR Full path (From source to Destination) Event-driven Route Error packet Source Unicast
OLSR Neighbour, Topology, Routing tables Periodical partial link state information All nodes Flooding
SHARP The height information of all neighbours Periodical Neighbours’ heights Neighbours Broadcast
SMORT Next hop, number of hops, life time, full path Event-driven Route Error packet all source nodes Unicast
SMR Full path (From source to Destination) Event-driven Route Error packet Source Unicast
TBRPF Neighbour/Topology/Routing table Event-driven Link state Neighbours Broadcast
TORA The height information of all neighbours Event-driven Node’s height Neighbours Broadcast
WRP Distance/routing/link-cost tables, MRL Hybrid Distance Vector, List of responses Neighbours Broadcast
ZHLS Local/zone topology Period./Event-driven Node/Zone link state Zone/all nodes Broadcast
ZRP Local (within zone), topology Periodical Link state of nodes in the zone Neighbours Broadcast

Table 3.7: Comparison of MANET Routing Protocols (cont.)




Preliminary Design of MDSDV
(MDSDVO0)

This chapter describes the preliminary design of the MDSDV routing protocol (MDSDVO).
Section 4.1 outlines the design goals. Section 4.3 gives an overview of the protocol.
Section 4.4 presents the pseudocode with an example to illustrate the MDSDVO0’s
phases. Section 4.5 explains how MDSDVO builds node disjoint paths, and finally

Section 4.6 presents the limitations of the preliminary design of MDSDV.

4.1 Introduction

To date, the majority of multipath ad hoc routing protocols are based on an on demand
model, for example [59][58][63][77][121][125] (Section 3.6). So in this thesis we
present a new proactive multipath routing protocol to investigate the strengths and

weaknesses of this type of protocol.

Providing multiple routes helps to keep the route recovery process short and con-

trol packet overhead. We believe utilizing multiple routes is beneficial in network
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communications, particularly in mobile wireless networks where routes are discon-
nected frequently because of mobility and poor wireless link quality. In this chap-
ter, we develop a new table-driven multipath distance vector protocol for mobile ad-
hoc networks. Specifically, we present multipath extensions to a well known single
path routing protocol known as Destination Sequenced Distance Vector (DSDV). The
resulting protocol is referred to as Multipath Destination Sequenced Distance Vec-
tor (MDSDV) which guarantees loop freedom and disjointness of alternative paths.
MDSDV extends the DSDV protocol to store multiple node-disjoint paths for each

destination in the network.

Two new fields called second hop and link_id are added to the routing table. The
link_id is a unique number that is generated by the destination node. Both the second
hop and link_id are used to insure these paths are disjoint from any source to any
destination. MDSDV employs a unique method for creating routing tables containing

the best and disjoint paths to every destination.

Note: In this thesis we shall term the best path to be the shortest path (the one with
least number of hops). If two paths have the same number of hops, the one with the

highest sequence number is the best.

4.2 NS2 extensions to support MDSDV

This section gives details on how the network simulator NS2 (Figure 4.1) has been
extended to support MDSDV. The diagram in Figure 4.2 shows the modules that are
used to support MDSDV.

The diagram in Figure 4.2 is divided into three parts (A, B, and C). Part A repre-
sents the unmodified modules, part B represents the modified modules, and Part C
represents the added modules. The model code is presented in Appendix E. It is also

available at: http://www.macs.hw.ac.uk/~etorban/.
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Figure 4.1: The Overall architecture of NS2

MDSDV routing protocol is implemented using C++ under NS2, and the simulations
scenarios are described using Tcl scripts. We created a new directory called mdsdv
to allocate our code inside the NS2 base directory (NS-2.30). Then, we created the

protocol “physical” structure by creating the following files.

mdsdv/mdsdyv.h This is the header file where we define all necessary timers and rout-

ing agents which perform protocol’s functionality.

mdsdv/mdsdv.cc In this file, all timers, routing agent and Tcl hooks are actually im-

plemented.

mdsdv/rtable.h This is the header file where the Routing Table, Neighbours Table,

and Queue Table are declared.

mdsdv/rtable.cc Implementation of the Routing Table, Neighbours Table, and Queue
Table.

Secondly, we created the protocol logical structure (classes), by creating an agent

which is inherited from Agent class. Agent represents the endpoints where the networks-

layer packets are created and consumed, and is used in the implementation of the pro-

tocol at various layers. Agent is the main class to implement the protocol. In addition,
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this class offers a linkage with the Tcl interface to control the protocol through Tcl

scripts.

The routing table is a collection of entries or routes gathered by a node to the destina-
tions in the network. The routing agent maintains a routing table and an internal state,
which can be represented as an attributes collection or a new class inside the routing

agent itself. We utilise the routing table as a new class.

MDSDV defines new control packets which represents the format of its control pack-
ets. These packets are defined in the common/packet.h header file. When the pro-
tocol needs to send packets periodically or after some time from the occurrence of
an event, it is useful to count on a Timer class. Control packets of the preliminary
version (MDSDVO) and the final version (MDSDV) are presented in subsection 4.3.2

and section 5.3) respectively.

The other important class is the Trace class, which is the base for writing log files

with information about what happened during the simulation.

Another file that should be modified is the tcl/lib/ns-lib.tcl file. Whenever we export
a C++ variable, it is recommended that we set the default value for that variable in
the “tcl/lib/ns-lib.tcl” file. Otherwise we will get a warning message when we create
an instance of our new object. When everything is implemented, we only need to
compile it. To do so we modify Makele file by adding our object files inside OBJ CC

variable.
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Figure 4.2: MDSDV Modules: Unmodified (A), Modified (B) and New (C)

89



Chapter 4. Preliminary Design of MDSDV (MDSDV0)

4.3 MDSDVO Overview

Since MDSDVO like DSDV is proactive, it has the same advantages as DSDV where
it maintains an up-to-date view of the network, and every node has a readily avail-
able route to every destination node in the network. Nodes in MDSDVO periodically
broadcast Hello Messages or Available Messages (depending on the Neighbours Ta-
ble (NT)). If the node’s NT is empty, the node broadcasts a Hello Message, otherwise
it broadcasts an Available Message. 1f a new node is detected, it will receive copies
of the routing tables of all its neighbours (Full Dumps), and perform a filtering oper-
ation to initialise its own routing table. After creating its routing table, the new node
broadcasts Update Packets (the number of Update Packets depends on the number
of neighbours) to inform nodes of network topology changes. Failing transmissions
cause the transmitter to report the link as a failure in an Error Packet which it propa-
gates to all nodes using that link. When an intermediate node fails to forward a data
packet, it unicasts a Failure Packet to the source node to stop using the link included

in the Failure Packet.

4.3.1 MDSDVO Tables

Using MDSDVO0, each node maintains two tables: a Neighbours Table (NT) and a
Routing Table (RT) which are described below:

e Neighbours Table (NT): each node in the network maintains a Neighbours Ta-
ble which contains all its neighbours. A node periodically checks its NT to
decide whether to broadcast a Hello Message or an Available Message. If this
table is empty, the node considers itself as an isolated node which means that it
has to propagate a Hello Message (the node will be considered as a new node).
Otherwise, it broadcasts an Available Message. Also, this table is used when the

new node needs to initiate Update Packets. The NT is updated when the node
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receives a control packet from a neighbour or when one of its neighbours goes

out of its transmission range. Table 4.1 shows the structure of a Neighbours

Table entry.
| Field name | Description
Neighbour id Address of the neighbour node
Link.id An identifier generated by the new node for the newest routes

Sequence Number | The most recent sequence number generated by the neighbour

Flag This flag is set to 1 when the neighbour is new, otherwise is set to 0

Table 4.1: Neighbours table structure (NT)

e Routing Table (RT): each node maintains its routing table that lists a number of
paths for each destination in the network. The routing table is used to transmit
packets through the network. Nodes have to update their routing tables when
there is a significant change in the network. The TimeOut field is only used for
adjacent nodes, i.e., nodes that are within wireless transmission range. For all
other nodes it is simply set to Null. Table 4.2 shows the structure of a routing

table entry.

‘ Field name ’ Description ‘
Destination Address of the destination node
Next hop The first hop to the destination
Second hop The second hop to the destination
Number of hops Number of hops to the destination
Link_id An identifier generated by the new node for the newest routes
Sequence number | A sequence number to distinguish stale routes
Time The time that the path was obtained
TimeOut The time that the node is considered as a neighbour node

Table 4.2: Routing Table structure (RT) entry

4.3.2 MDSDVO Control Packets

The Control Packets required to implement the MDSDVO routing protocol are:
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1. Hello Message: Periodically, each node checks its NT. If the node’s NT is
empty (no neighbours), the node increments its sequence number and broad-
casts a Hello Message that includes the new sequence number. The message is

received by neighbours and will not be retransmitted.

2. Available Message: If the node has at least one neighbour (by checking the NT),
it increments its sequence number and broadcasts an Available Message which
includes the new sequence number. The message is used to inform adjacent

nodes that it is still available in the network.

3. Full Dump: When a node receives a Hello Message, it responds by unicasting
a Full Dump of its routing table to the Hello Message sender. It includes the

best route for each destination.

4. Update Packet: is propagated by the new node to its neighbours after creating
and filtering its routing table. The number of Update Packets depends on the

number of neighbours. Table 4.3 shows the structure of the Update Packet.

Sender | First | Second | Number | Destination | Link_Id | Neighbour | Sequence
hop hop of hops Number

Table 4.3: The Update Packet structure

5. Error Packet: is propagated when a link failure is detected. The node that
detects the link failure initiates and propagates this type of packet to its neigh-
bours. The packet is rebroadcast through the entire network. When a node
receives an Error Packet and updates its RT by deleting any entry, it should re-
broadcast the Error Packet to its neighbours. Table 4.4 shows the structure of

the Error Packet.
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Sender | Destination | Broken

node node Link-Id

Table 4.4: The Error Packet structure

6. Failure Packet: The intermediate node should forward the data to the node that
its address is included as a second hop in the header of the data packet. If the
link between the intermediate node and this node is broken, the intermediate
node unicasts a Failure Packet to the source node to stop sending data through
this broken link. The Failure Packet includes the destination, the first hop that
the source used to send data, and the broken link id. Any node receives this kind
of packet can update its RT by deleting any entry with the same link id that is

included in the Failure Packet. Table 4.5 shows the Failure Packet’s structure.

Sender First Failed Destination

hop Link-Id

Table 4.5: The Failure Packet structure

The difference between the Hello Message and the Available Message is the follow-

ing:

e The Hello Message is generated and broadcast only when a node has no known
neighbours. In contrast, the Available Message is broadcast when a node has at

least one neighbour.

e The node that receives a Hello Message responds by unicasting its routing table
(Full Dump) to the Hello Message sender. In contrast, the node that receives an

Available Message responds by updating the TimeOut field only.

Also the difference between the Error Packet and Failure Packet is the following:
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e The Error Packet is generated and broadcast when a node discovers a broken
link (detected by the MAC layer or invalid TimeOut). In contrast, the Failure
Packet 1s generated and unicast to the source node when an intermediate node

fails to forward a data packet to the node that is specified in the packet’s header.

e The Error Packet is broadcast to the entire network. Any node that receives
and uses an Error Packet to update its routing table, should rebroadcast it. In
contrast, the Failure Packet is unicast only to the source node of the data packet.
Meanwhile, the forwarder node may update its RT by deleting entries with the

same link_id as the one included in the Failure Packet.

4.3.3 MDSDVO Phases Overview

There are 4 phases that describe the MDSDVO routing protocol as follows. These
phases are specified as pseudocode and illustrated by example in the following sec-

tion.

1. Routing Initialization: This phase allows a new node to get multiple paths to
each node in the entire network. As soon as a new node joins the network or
a node becomes isolated, it broadcasts a Hello Message. Hello Messages are
not forwarded. Any neighbour (any node in the transmission range of the new
node) that receives the message responds by adding an entry in its NT showing
the new node as a neighbour and adding an entry in its RT as a direct route to
this new node. The Link_id and Time fields are set to 0, whereas the TimeOut
field is set to a certain time. After adding a route, each neighbour unicasts a
Full Dump of its routing table to the new node. On receiving a Full Dump from
its neighbours, the new node starts to create its tables (Neighbours and Routing
Tables). Afterwards, the new node selects the entries that have link_ids equal
to 0, assigns a new link_id to each of them, and then initiates and broadcasts
Update Messages to all neighbours to update their link ids where the link id is

0, and to get new routes to the new node’s neighbours.
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2. New Route Propagation: This phase describes how other nodes can discover
multiple paths to the new node and also how other nodes get new paths that
pass through the new node. The new node uses its NT to initiate and broadcast
Update Packets to its neighbours. The number of Update Packets depends on
the number of entries where the Flag field = 1. Table 4.3 shows the structure of

the Update Message. Where:

Sender: Address of the node that sends the Update Packet.

First hop: First hop to the destination.

Second hop: Second hop to the destination.

No. of hops: Number of hops to the destination.

Destination: Address of the destination node.

Link_id: Indicates link between the new node and its 1st hop neighbour
Neighbour: Address of one of neighbours of the new node.

Sequence Number: A sequence number generated by the destination

node.

Note: the difference between the sequence number and the link_id is that the se-
quence number is used to distinguish between fresh and stale routes in the same
way as DSDV, whereas the link _id is generated by a new node to distinguish

between links to each one hop neighbour.

3. Route Maintenance: When a link failure occurs, as detected by no packets be-
ing received in an interval or by it failing to forward a packet, the node that de-
tects the failure updates its routing table by deleting any entry that uses the un-
reachable node as a first hop. Next, it initiates and broadcasts an Error Packet to

its neighbours. The Error Packet includes: Address of the node that detects the failure,

the unreachable node address, and the link_id between itself and the unreach-

able node. Any node that receives this Error Packet, checks its routing table
and deletes entries where the link id is equal to the link_id that included in the

Error Packet. If the received node deletes any entry, it should rebroadcast the
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Error Packet. By this means, all nodes in the network delete the routes that are

using the broken link.

If a source node uses a route with a broken link to send data, the intermediate
node that discovers the link failure, selects an alternative route to forward the
data. Next, it initiates and sends a Failure Packet to the source node to stop
using the broken link. The node that detects the failure includes in the Failure
Packet its address, the First Hop that the source node used to send the data,

link_id for the broken link, and the unreachable node address. Table 4.4 shows

the Error Packet structure and table 4.5 shows the Failure Packet structure.

4. Data Forwarding When a node has ready data to send, it searches for the best
route to the destination and uses it to send its data. The node includes the
second hop in the header of the packet to force the intermediate node to use
the route where the second hop in the header of the data packet is the first hop
in that route. As the intermediate node receives and plans to forward a data, it
searches for a route to the destination via the second hop that is included in the

data packet’s header.

Note: The best route is the one that has the least number of hops. If two routes
have the same number of hops, the one with highest sequence number is the

best.

4.3.4 How link failures are modelled in MDSDV simulation

In MDSDY, the broken link is detected by the MAC layer protocol, or it is inferred
if no broadcasts have been received for a certain time from a former neighbour. A
broken link is described by a metric of oo (i.e., any value greater than the maximum
allowed metric). When a link to a next hop becomes broken, any route through that
next hop is immediately assigned an co metric.

In this respect, we developed two models: Forward_Error Model and TimeOut_Error

Model.
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Forward_Error Model:

When the MAC layer reports a broken link during a data-packet transmission, the
function lost_link function (Function 19 in Appendix E) is called to achieve three

tasks.

e Reporting a lost link by calling a helper_callback function (Function 18 in Ap-

pendix E), which is described in the next model.

e Generating and unicasting a Failure packet to the source node to stop sending
data through the broken link. The Failure packet includes four fields (Sender,

First hop, Failed link id, Destination).

e Finding an alternative path to forward a data packet. If an alternative path is

not available, the packet is queued.

When the source node receives the Failure packet, it updates its routing table by
deleting the entry where the destination and first hop are the same as the destination
and first hop in the Failure packet. Next, the source starts to use an alternative path

(if exist) to continue sending data packets.

TimeOut_Error Model:

MDSDV maintains a Neighbour table which contains an entry for each neighbour.
One of the fields of the entry is the 7imeOut field. This field is updated when a
control packet is received from the neighbour. When the time in this field is expired,
the link with the neighbour is considered as a broken link. Consequently, the function
helper_callback is called to deal with the broken link.

Using this function, the node updates its routing table by assigning an oo metric

to each entry where the unreachable neighbour acts as a next hop. Then, the node
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broadcasts an Error packet which contains three fields (sender node, Destination,
link Id). Any neighbour that receives the Error packet must delete any entry where

the Link id is equal to the Link id that is included in the Error packet.

4.4 Algorithms with an Example

To illustrate the four phases of MDSDV0, we present this example which describes
a network of 8 nodes. Figure 4.3 shows the new node (node 8) broadcasting a Hello

Message and receiving routing tables information (Full Dumps) from its neighbours.

Links

@ -—= Hello messages

Routing information

Figure 4.3: Node 8 sends and receives Routing Messages

4.4.1 Routing Initialization

As node 8 joins the network, it increments its sequence number and broadcasts a Hello
Message. All neighbours of node 8 (node 1, node 2, and node 5) receive the Hello
Message, use the Receive Hello Message algorithm (Figure 4.4) to add an entry as a
direct path to node 8, increment their sequence numbers, and respond by unicasting
their routing tables (Full Dump) to node 8 as shown in Figure 4.3. Each neighbour
includes its new sequence number in the Full Dump. Tables 4.6a, 4.6b, and 4.6¢ show
the first 6 columns of the routing tables of the neighbours (nodes 1, 2, and 5) after

using the Receive Hello Message algorithm.
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01

02
03
04
05
06
07
08
09

The neighbour node adds a new entry in its RT by filling the fields

as follows:

Destination <« Address of the node that sent the Hello Message

First hop <« Address of the node that sent the Hello Message

Second hop <+ Null

Number of hops « 1

Link_id « 0

Seq_No <« The sequence number field in the received Hello Message

Time <« now

Send copy of routing table to node that sent the Hello Message.

Figure 4.4: Receive Hello Message Algorithm

[Ds [Fh [ Sh [ Nh [ Ln [ Sn |
2 | 2 [ Nall | T ] 20001 [Ds[Fh | Sh [Nh | Ln | Sn |
2 3 2 2 | 30002 1 T [ Null | T ] 20001
3 3 | Null | 1 | 30001 1 3 1 2 | 30001
3 2 3 2 | 30002 3 3 | Null | 1T | 30002
3 6 7 3 | 70001 3 1 3 2 | 30001
4 2 4 2 | 40001 3 4 3 2 | 40002
4 3 4 2 | 40002 4 [ 4 [ Null | 1 | 40001
5 5 | Null | 1 | 50001 4 3 4 2 | 40002
5 6 5 2 | 60002 5 1 5 2 | 50001
6 6 | Null | 1 | 60001 6 1 6 2 | 60001
6 5 6 2 | 60002 6 3 7 3 | 70002
6 3 7 3 | 70002 7 3 7 2 | 70001
7 3 7 2 | 70001 7 1 6 3 | 70002
7 6 7 2 | 70002
(b) Routing table of node 2
(a) Routing table of node 1

[Ds [Fh [ Sh [Nh | Ln [ Sn |

1 I [ Null [ 1 [ 50001

1 6 1 2 | 60001

1 8 1 2 | 80001

2 1 2 2 | 20001

3 1 3 2 | 30001

3 6 7 3 | 70001

4 1 2 3 | 40001

6 6 | Null | 1 | 60002

6 1 6 2 | 60001

7 6 7 2 | 70002

7 1 3 3 | 70001

Table 4.6: Routing tables of the neighbours

(c) Routing table of node 5
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When node 8 receives the routing tables from its neighbours, it invokes the Creating

the routing table algorithm shown in figure 4.5 to create its own routing table by

adding an entry for each route, and generates link_ids (Ln) for the new routes (where

link_id = 0) between itself and each neighbour (Ds). Then, it invokes the Filtering the

routing table algorithm (Figure 4.6) to delete undesired routes and generate disjoint

paths. By this means, node 8 (new node) gets multiple routes for each destination

in the entire network. Table 4.7 shows the routing table of node 8 after creating and

filtering. Next, node 8 creates its Neighbours Table (NT) by adding an entry for each

neighbour as shown in table 4.8.

Generating link ids is done according to the equation (4.1). In this example, node 8

generates three new link ids which are:

e 80001 is between itself and node 1.

e 80002 is between itself and node 2.

e 80005 is between itself and node 5.

New Link Id = My Address * 10000 + Address Of The Neighbour

Destination | First | Second | Number | Link Id Sequence Time
Hop Hop Of hops Number
1 1 Null 1 56
1 2 1 2 20001
1 5 1 2 50001
2 2 Null 1 24
2 1 2 2 20001
3 1 3 2 30001
3 2 3 2 30002
3 5 6 4 70001
4 2 4 2 40001
4 1 3 3 40002
5 5 Null 1 42
5 1 5 2 50001
6 5 6 2 60002
6 1 6 2 60001
7 2 3 3 70001
7 5 [§ 3 70002

Table 4.7: Node 8 routing table after filtering

4.1

100



Chapter 4. Preliminary Design of MDSDV (MDSDV0)

Neighbour | Link-Id | Sequence | Flag
Id Number
80001 56 1
80002 24 1
80005 42 1

Table 4.8: Neighbours Table (NT) of node 8

01 While (There are more entries received from the neighbour)

02 {

03 Fill the entry fields in my routing table as follows...
04 First hop field <« address of the neighbour.

05 If (Link _id field = 0)

06 {

07 The node generates a link id as follows:

08 Link_id field <« My Address * 10000 + Address Of The Neighbour.
09 Update my NT with an entry for the neighbour.

10 }

11 Else

12 Link_id field = Link_id

13 If (My address = the address in the destination field)
14 {

15 Second hop field « Second hop

16 Destination field <« address of the neighbour

17 Number of hops field <« Number of hops

18 Segq_No field <« sequence number of the neighbour
19 }

20 Else

21

22 Second hop field « First hop

23 Destination field <« Destination

24 Number of hops field «- Number of hops + 1

25 Seqgq_No field « sequence number in the received entry
26 }

27 }

Figure 4.5: Creating the Routing Table Algorithm
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01 While (There are more entries in the routing table)
02 {
03 If there are two or more entries that have the same destination, same first hop,

and a different number of hops

04 {

05 delete the entry with stale route or bigger number of hops.

06 }

07 If a second hop of an entry is equal to a first hop of another entry

08 {

09 delete the entry with the second hop if it is not the destination.

10 }

11 If there are two entries with the same destination and same link_id

12 {

13 delete the stale or longer route.

14 }

15 If there are two entries with the same destination, same first hop, and same number
of hops

16 {

17 delete one of the entries

18 }

19 If there are two entries with the same destination, different first hop, and

same second hop

20 {

21 delete one of the entries if the second hop is not the destination
22 1

23}

Figure 4.6: Filtering the Routing Table Algorithm

4.4.2 Routing Updating

Tables 4.7 and 4.8 show that there are three new link ids(i.e., 80001, 80002, 80005).
Therefore, node 8 uses Initiating an Update Packet algorithm (Figure 4.7) to initiate
3 Update Packets, and broadcasts them as shown in Figure 4.8. Table 4.9 shows the

format of the three Update Packets that are generated by the new node (node 8).

When the neighbour receives the Update Packets, it uses the Receiving an Update

Packet algorithm shown in Figure 4.9 to update its RT. Next, it updates the Update
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Packets according to the Updating the Update Packet algorithm (Figure 4.10), and

broadcasts them to its neighbours as well. Table 4.10 shows the Update Packets that

node 5 updated and broadcast.

01

02
03
04
05
06
07
08
09

The new node initiates an Update Packet by setting the fields of the packet

as follows:

Sender <« Address of the new node that initiates the update packet
First hop <« Null

Second hop <« Null

Number of hops <+ 0

Destination <+ Null

Link_id <« The link id between the new node and its neighbour node
Neighbour <« address of the neighbour

Sequence Number <« Sequence number generated by the neighbour

Figure 4.7: Initiating an Update Packet Algorithm

@ @ 3 Update packets

Figure 4.8: Node 8 Initiates and broadcasts 3 Update Packets

Sender | First | Second | Number | Destination | Link | Neighbour | Sequence
Hop Hop Of hops Id Number

8 Null Null 0 Null 80001 1 56

8 Null Null 0 Null 80002 2 24

8 Null Null 0 Null 80005 5 42

Table 4.9: The Update Packets generated by Node 8
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01 Whenever a node receives an Update Packet, it checks..

02 If my address is equal to destination or first hop fields in the Update Packet
03 {

04 the Update Packet is discarded because the packet is generated by me.
05 }

06 else

07 {

08 Number of hops in the received Update Packet is checked....

09 If (number of hops = 0)

10 {

11 This means that the packet is received from a new node.

12 Invoke algorithm shown in Figure 4.11

13 1

14 else

15 {

16 This means that the packet is received from a known node

17 Invoke algorithm shown in Figure 4.13

18 }

19 }

Figure 4.9: Receiving an Update Packet Algorithm

01 When a node receives an Update Packet, it modifies the packet’s fields as follows:
02 Sender <« my address

03 Copy Link id, Neighbour, and Sequence Number fields

04 If (number_of_ hops = 0 and node address # neighbour field)
05 {

06 First hop <« sender field in the Update Packet

07 Second hop <+ Neighbour field in the Update Packet

08 Number_of_hops <« 2

09 Destination <+ Address in the neighbour field

10 else

11 {

12 First hop <« sender field in the Update Packet

13 Second hop <+ First hop in the Update Packet

14 Number_of_hops <+« Number of hops in the Update Packet + 1
15 Destination <+« Destination in the Update Packet

16 }

Figure 4.10: Updating the Update Packet Algorithm
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Sender | First | Second | Number | Destination | Link | Neighbour | Sequence
Hop Hop Of hops Id Number

5 8 1 2 1 80001 1 56

5 8 2 2 2 80002 2 24

5 8 Null 1 8 80005 5 42

Table 4.10: Node 5 updates and broadcasts the Update Packets

By updating its routing table according to the received Update Packets, each node in

the entire network gets multiple paths to the new node and other paths to the neigh-

bours of the new node. Tables 4.11a - 4.11g show the new routes that are obtained by

each node in the network after receiving the Update Packets.

[ Ds [Fs [ Sh [ Nh] Ln [ Sn | [Ds [ Fs [ Sh [ Nh| Ln [ Sn | [ Ds [ Fs [ Sh [ Nh[ Ln [ Sn |

2 8 | 2 2 | 82| 24 1 8 1 2 | 81 | 56 5 2 |8 3 8-5 | 42
5 8 | 5 2 | 85 | 42 5 8 |5 2 | 85 | 42 8 1 8 2 81 | 2
8 8 | Null| 1 81| 2 8 8 | Null| 1 82 | 2 8 2 |8 2 | 82 |2
8 2 | 8 2 | 82 |2 8 1 8 2 | 81 |2 8 7|6 4 85 | 2
8 5 8 2 | 85 |2 8 3|7 5 85 | 2

(a) Routing table of node 1

(b) Routing Table of node 2

(¢) Routing Table of node 3

Ds [ Fs [ Sh | Nh| Ln [ Sn |

[Ds [Fs [ Sh [ Nh] Ln [ Sn | [ Ds | Fs [ Sh [ Nh] Ln [ Sn |

5 2 |8 3 8-5 | 42

8-1

56

8-2

1 8 2 2 5 8 3 24
8 2 8 2 82 | 2 2 8 2 2 82 | 24 8 1 8 2 | 81| 2
8 3 1 3 81 | 2 8 8 Null | 1 85| 2 8 5 8 2 | 85 |2
8 1 8 2 81| 2 8 7 3 4 182 |2
8 6 |7 5 82 | 2

(d) Routing table of node 4

(e) Routing Table of node 5

[ Ds [ Fs [ Sh [ Nh[ Ln [ Sn |

8 3

2

3

8-2

2

8 6

5

3

8-5

2

(g) Routing Table of node 7

(f) Routing Table of node 6

Table 4.11: Routing Tables of the nodes after receiving the Update Packets
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01 When a node receives an Update Packet from a new node, it checks...

02 1If my address = neighbour field in the Update Packet

03 {
04 My RT is updated by setting the link_id field of the corresponding entry
05 to the link_id field in the Update Packet. Then, the algorithm shown in
06 Figure 4.10 is used to update the Update Packet. Finally, I broadcast
07 the Update Packet to my neighbours.
08 }
09 Else
10 {
11 Invoking the algorithm shown in Figure 4.12 to add an entry as a path
12 to the node in the neighbour field through the new node. Then, the
13 algorithm shown in Figure 4.10 is used to update the Update Packet.
14 Finally, I broadcast the Update Packet to my neighbours.
15 }
Figure 4.11: Receiving an Update Packet from a new neighbour Algorithm
01 If number of hops = 0 AND node number <> neighbour field
02 {
03 The node adds an entry as a path to the neighbour of the new node by setting the

fields as follows...

04 First hop field <« Sender field in the Update Packet

05 Second hop field <« neighbour field in the Update Packet
06 Number of hops field <« 2

07 Destination field <« neighbour field in the Update Packet
08 Copy Link_id, Sequence Number fields

09 }

Figure 4.12: Getting a route to the neighbour of the new node Algorithm
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01

02
03
04
05

06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36

If the destination and first hop in any entry are equal to the destination and first
hop in the Update Packet. Also, the first hop and the destination in the Update
Packet are not the same. Finally, if the received Sn is smaller {

the Update Packet is discarded

}
Else{
If the destination and link _id in any entry are equal to the destination and
link_id in the received Update Packet {
If number of hops in the Update Packet > number of hops in the entry{
the Update Packet is discarded
}
Else{
If sender field in the Update Packet # first hop field in the entry
the Update Packet is discarded
Else
the entry is updated according to Update Packet
}
}
Else{
If the destination in the Update Packet is equals to destination in any entry{
If the sender is equal to the first hop{
If number of hops in the Update Packet > number of hops in the entry
the Update Packet is discarded
Else
the entry is updated according to the Update Packet
}
}
Else{
If any entry has the same destination and the same link-id{
If number of hops in the Update Packet > number of hops in the entry
the Update Packet is discarded
Else
the entry is updated according to the Update Packet
}
Else
My RT is updated according to the algorithm in figure 4.14 by adding an
entry as a route to the destination. Then, the algorithm in figure 4.10 is
used to update the Update Packet. Finally, the packet is broadcast to
neighbours.
}
}
}

Figure 4.13: Receiving an Update Packet from a known neighbour Algorithm
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01 The node updates an entry in its RT by setting the fields as follows...
02 First hop field « Sender in the Update Packet

03 Second hop field <« First hop in the Update Packet

04 Number of hops field +«+ Number of hops in the Update Packet + 1

05 Destination field « Destination in the Update Packet

06 Link_id field <« Link_id in the Update Packet

07 Sequence No. field <+ Sequence No. in the Update Packet

Figure 4.14: Updating an existing entry Algorithm

4.4.3 Link Failure

We assume that node 8 moves away from node 2, and node 2 has discovered the
link failure as shown in Figure 4.15. Node 2 does the following in response to the

discovered link failure.

e Deletes any entry where node 8 acts as a first hop.

e Initiates and broadcasts an Error Packet as shown in figure 4.15 to all its one
hop neighbours (nodes 1, 3, and 4) telling them that node 8 is unreachable.
The Error Packet includes its address (node 2), the unreachable node address
(node 8), and the link id between these two nodes (80002). Table 4.12 shows

the structure of the Error Packet initiated by node 2.

) .ED e

* Broken Link

Error Packets

- O

Figure 4.15: Node 2 initiates and broadcasts an Error Packet to its neighbours
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Table 4.13 shows the routing table of node 2 and the deleted entries where node 8 is

a first hop. Any node that receives the Error Packet uses the algorithm in figure 4.16

to update its routing table as follows:

e Discard the packet if its address is equal to the sender field of the Error Packet.

This is because the packet was generated by the same node.

e If the received node address is equal to the destination field, the node deletes
any entry where the first hop is equal to the sender field. This means that the
sender is telling the received node that the link between the sender and the

receiver is broken. So, the receiver node has to delete any route where the

sender acts as a first hop.

e If the received node address is neither equal to the sender nor the destination

field of the Error Packet, the node deletes any entry where the link id is equal

to the link_id field of the Error Packet.

Sender

node

Destination | Broken

node Link-Id

2

8

Table 4.12: The Error Packet initiated by node 2

Destination | First | Second | Number | Link Id Sequence Time | ...
Hop Hop Of hops Number

1 1 Null 1 2-1
1 3 1 2 3-1
3 3 Null 1 3-2
3 1 3 2 3-1

3 4 3 2 4-2

4 4 Null 1 4-1

4 3 4 2 4-2
5 1 5 2 5-1
6 1 6 2 6-1
6 3 7 3 7-2

7 3 7 2 7-1
7 1 6 3 7-2
8 1 8 2 8-1 2
8 3 7 5 8-5 2

Table 4.13: Routing Table of node 2 showing the deleted entries
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01 If my address = Sender field in the Error Packet

02 {

03 The packet is discarded because the packet was generated by me

04 }

05 Else

o6 {

07 If my address = destination field in the Error Packet

08 {

09 Delete any entry where the first hop is equal to the sender field in the
10 Error Packet (regardless of the link id).

11 }

12 else

13 {

14 Delete any entry where the link id is equal to the link_id field in the
15 Error Packet

16 }

17 }

Figure 4.16: Receiving an Error Packet Algorithm

Nodes that update their routing tables, should rebroadcast the Error Packet, whereas
nodes that do not update their routing tables are not required to rebroadcast it. Tables
(4.14a - 4.14g ) show the routing tables of nodes 1, 3, 4, 5, 6, 7, and 8 after updating.
Whereas, Table 4.13 shows the routing table of node 2 after discovering the link

failure and updating its routing table.

The Error Packet is broadcast through the entire network as discussed in 4.3.2. So, a
node may receive the same Error Packet several times. When a node receives an Error
Packet at the first time, it updates its RT by deleting the entries where the link id is
equal to the link id in the Error Packet. When the same node receives the same Error
Packet from another neighbour, it will not find an entry that has the same destination

and same link id any more. In this case the node simply discards the Error Packet.

110



Chapter 4. Preliminary Design of MDSDV (MDSDV0)

[Ds [Fs [Sh [ Nh| Ln [Sn | [Ds [Fs [Sh [ Nh| Ln [ Sn | [ Ds [ Fs [ Sh [ Nh] Ln [ Sn |

5 2 |8 |3 |85 | 4 5 2 |8 |3 |85 | 4
S [ s[5 [ol8sla] s {s o lsi 2 [N
3 8 | Null| 1 | 81 | 2 [ 128 |2 [82]2 | 3 3 |1 3081 |2
N e R P e

8 5 8 2 | 85 |2

(a) Routing table of node 1 (b) Routing Table of node 3 (c) Routing Table of node 4

[Ds [Fs [Sh [ Nh[ Ln [ Sn | [Ds [Fs [ Sh [Nh[ Ln [ Sn | [ Ds [ Fs [ Sh [ Nh| Ln [ Sn |

e —
S 18 [o[al o | |

8 8 | Null| 1 85| 2 8 5 8 2 | 85 |2 8 6 |5 3 85| 2

s 15 (2512 |

(d) Routing Table of node 5 (e) Routing Table of node 6 (f) Routing Table of node 7
[Ds [ Fs [ Sh | Nh] Ln | Sn |

1 1 Null | 1 8-1 | 56

5 S5 | Nul| 1 85 | 42

(g) Routing Table of node 8

Table 4.14: Routing Tables of the nodes with deleted entries

4.4.4 Forwarding Data

To illustrate this phase, we describe two cases: the first case where the source node
selects an active route, and the second phase where the source selects a route with
a broken link. Let’s assume that node 7 needs to send data to node 8. Table 4.11g
shows that node 7 has 2 routes with the same metric to node 8 given by the following
entries; (8 -3-2-3-80002 and 8 - 6 - 5 - 3 - 80005) in its routing table, and has to

select the best route.

e If node 7 selects the second route which is specified by the entry 8 - 6 -5 -3 -
80005. This means that it has to forward the packet to node 6 that acts as a first

hop, and includes node 5 as a second hop in the data packet’s header. As an
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intermediate node, node 6 receives the data packet and locates a route to node
8 through node 5. This route is specified by the entry 8 - 5 - 8 - 2 - 80005 in
Table 4.11f. Then, node 6 modifies the second hop field in the data packet’s
header to the second hop in that entry which is 8, and forwards the packet to
node 5. Also, as an intermediate node, when node 5 receives the data packet,
it locates the route to node 8 through node 8 (direct route). In this case, node 5
sends the packet to node 8 without modifying the data packet’s header because

the destination is a one hop neighbour.

e If node 7 selects the first route which is specified by the entry 8§ - 3 -2 - 3 -
80002 to send data to node 8. So, it includes node 2 as a second hop in the
data packet’s header and sends the packet to node 3. When node 3 receives the
packet, it locates a route to node 8 through node 2. Node 3 should use the route
specified by the entry 8 - 2 - 8 - 2 - 80002 (Table 4.11c), modify the second hop
field of the data packet’s header to be node 8, and forward the packet to node 2.
When node 2 receives the packet, it discovers that node 8 is unreachable (link
failure). In this case, node 2 should locate an alternative route to node 8 in its
routing table. Table 4.11b shows that node 2 has two alternative routes to node
8 specified by the entries 8 - 1 - 8 - 2 - 80001 and 8 - 3 -7 - 5 - 80005, and it
has to select the best one which is specified by the entry 8 - 1 - 8 - 2 - 80001.
Next, it initiates a Failure Packet and unicasts it to node 7 (Source node) to stop

sending data to node 8 using the route with the link id 8002.

4.5 How to build Disjoint Paths

Disjoint paths have the desirable property that they are more likely to fail indepen-
dently. There are two types of disjoint paths: node disjoint and link disjoint. Node
disjoint paths do not have any nodes in common, except for the source and the desti-

nation nodes. They are also known as totally disjoint paths. In contrast, link disjoint
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paths do not have any common links, but may have common nodes. In a traditional
distance vector protocol, a node only keeps track of the next hop (and distance via
the next hop) for each path. This limited one hop information is insufficient for a
node to ascertain whether two paths obtained from two distinct neighbours are indeed

disjoint.

MDSDVO0 guarantees that alternate paths are node-disjoint. In section 5.5, we pro-
vide a rigorous argument that MDSDV constructs node disjoint paths. This section
describes how MDSDVO builds node disjoint multiple paths, by considering the ex-
ample in Figure 4.3 where node 8 receives Full Dumps from its neighbours. As a part
of the received information, it receives 8 entries for node 3 as shown in table 4.15.
The first 3 entries are received from node 1, the following 3 entries are received from

node 2, and the last 2 entries are received from node 5.

The protocol utilizes the algorithm in Figure 4.5 to create its routing table. The cre-
ated entries that belong to node 3 are listed in table 4.16. Next, the new node (node 8)
invokes the algorithm in Figure 4.6 (Filtering) to delete undesired routes. The steps

for filtering the routing table are described as follows:

Destination  First Second Number LinkId Sequence

Hop Hop Of hops Number
3 3 Null 1 3-1
3 2 3 2 3-2
3 6 7 3 7-1
3 3 Null 1 3-2
3 1 3 2 3-1
3 4 3 2 4-2
3 1 3 2 3-1
3 6 7 3 7-1

Table 4.15: Routing information received by node 8 from its neighbours

e At the beginning, the node compares entry 1 with entry 2. Both entries have
the same destination, the same first hop, and a different number of hops. Thus,
the protocol chooses to keep entry 1, and deletes entry 2 because entry 1 has a

lower number of hops (line 03).
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Destination  First Second Number LinkId Sequence

Hop Hop Of hops Number
3 1 3 2 3-1
3 1 2 3 3-2
3 1 6 4 7-1
3 2 3 2 3-2
3 2 1 3 3-1
3 2 4 3 4-2
3 5 1 3 3-1
3 5 6 4 7-1

Table 4.16: Created entries by node 8 regarding destination node 3

e Comparing entries 3 and 1. Both entries have the same destination, the same
first hop, and a different number of hops. Thus, the protocol chooses to keep
entry 1, and deletes entry 3 because entry 1 has a lesser number of hops (line

03).

e Comparing entry 4 and entry 1. The node keeps both routes because they are
disjoint.
e Comparing entries 5, 1, and 4. Entry 5 and entry 4 have the same destina-

tion, the same first hop, and a different number of hops. So, entry 5 is deleted

because it has a larger number of hops (line 03).

e Comparing entries 6, 1, and 4. Entries 4, 6, have the same destination, the same
first hop, and a different number of hops. So, entry 6 is deleted because it has a

larger number of hops (line 03).

e Comparing entries 7, 1, and 4. Entry 7 is deleted because the second hop in
entry 7 is the same as the first hop in entry 1 and the second hop is not the

destination (line 07).
e Comparing entries 8, 1, and 4. The node keeps all routes because they are

disjoint.

After filtering its routing table, node 8 gets 3 disjoint paths to node 3 as shown in

table 4.17 and Figure 4.17.
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Destination  First Second Number LinkId Sequence

Hop Hop Of hops Number
3 1 3 2 3-1
3 2 3 2 3-2
3 5 6 4 7-1

Table 4.17: Disjoint Paths to node 3 generated by node 8

: z Source

Destination \ /

ey Disjoint paths

—
—-—— } Undesired paths

Figure 4.17: Node 8 generates 3 Disjoint Paths to node 3

From figure 4.17, we can find that node 8 gets 3 disjoint paths to node 3 which are:
8-1-3
8-2-3
8-5-6-7-3

In the other hand it deletes the undesired routes which are:

8-1-2-3 (red colour)
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8-1-6-7-3 (red colour)
8 -2 -1 -3 (green colour)
8 -2 -4 -3 (green colour)
8 -5-1-3 (yellow colour)

4.6 Limitations

The down side of MDSDVO is that there is a huge control overhead for maintaining
the routing table especially for large and dynamic networks. This overburdens the
network with control packets rather than data packets. The main source of control
packets is from the Update packets and Error Packets that are broadcast to the entire
network. When a node receives an Update Packet, it needs to modify the packet and
rebroadcast it to its neighbours if its routing table is updated. Also, when a node
receives an Error Packet, it has to rebroadcast it to its neighbours if its routing table is
updated. As a result, both of the packets are propagated many times consuming scarce

resources such as bandwidth and power, and leading to potential network congestion.

Four simulation experiments illustrate the control overhead produced by MDSDVO .
We consider 30, 50, 70, and 100 node networks roaming in a rectangular area of
670m X 670m over a 100 sec period. The pause time and speed are set to 0 sec
and 20 m/sec respectively. Tables 4.18 and 4.19 show the results obtained by the
experiments. Table 4.18 shows that the Packet Delivery Fraction (PDF) in row three
is low due to the huge number of control packets. Table 4.19 shows the number of
each type of control packet produced by the protocol. It is clear that a large number
of control packets are propagated to deliver less than 58% of the transmitted data
packets. Also, we can see that the number of Update packets and Error Packets
increases as the number of nodes increases. This is because these two packets are

sent to the entire network.

Thus, some techniques should be added to reduce the number of control packets.
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Seq. Performance Network size
No. metric 30 nodes | 50 nodes | 70 nodes | 100 nodes
1 Sent packets 4002 4613 4605 4577
2 Received packets 2239 2653 2367 1907
3 PDF 55.95 57.51 51.40 41.67
4 NRL 0.91 2.64 5.98 13.48
5 Average e-e delay(ms) 22.34 81.52 493.61 74.55
6 No. of dropped data (packets) 1714 1879 2174 2590
7 No. of dropped data (bytes) 912088 999948 1156808 1378080
8 Average Throughput[kbps] 94.14 111.56 99.50 80.17
Table 4.18: MDSDVO0 performance results
Seq. Control packet Network size
No. type 30 nodes | 50 nodes | 70 nodes | 100 nodes
1 Hello packets 4 6 6 3
2 Available packets 352 588 823 1187
3 Full_Dump packets 47 85 124 234
4 Update packets 1044 4075 8985 16215
5 Error packets 569 2221 4197 8051
6 Failure packets 27 39 30 20
7 Total number of control packets 2043 7014 14165 25710

Table 4.19: MDSDVO control packets

Chapter 5 presents the design of a revised protocol (MDSDV) with modifications to
improve the PDF and minimize the control overhead. Appendix A contains a perfor-
mance comparison between MDSDV0 and MDSDV which shows that MDSDVO has
a significantly high control overhead for both dynamic and static networks, and that
MDSDV makes dramatic improvements in delivering data and reducing the control

overhead.
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This chapter describes the design of a revised version of MDSDVO0. We call the mod-
ified version as MDSDV. Section 5.1 outlines the differences between MDSDVO and
MDSDV. Section 5.2 describes the three tables that are maintained by MDSDV. The
control packets are listed and described in section 5.3 . Section 5.4 specifies the
mechanisms of MDSDV as pseudo code. A rigorous argument that MDSDV main-
tains node disjoint paths is presented in section 5.5. Finally, Section 5.6 presents the

functionality testing of MDSDV.

5.1 Introduction

Nodes in ad hoc networks are distinguished by their limited resources such as band-
width, energy, and memory as well as mobility. Nodes in ad hoc networks are free
to move over a certain area. Because of this movement, the network topology may
frequently change. This means that we need a routing protocol that quickly adapts to

topology changes.

MDSDVO suffers from sending a large number of control packets as discussed in
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section 4.6. Therefore, in this chapter we use another technique to reduce this number

while maintaining the flexibility and reliability of the protocol.

Before describing MDSDV in detail, we give an overview of how it is different from

MDSDVO.

1. MDSDVO maintains two tables: Routing table and Neighbours table, whereas
MDSDV maintains three table: Routing table, Neighbours table, and Queue

table.

2. In MDSDVO nodes use two announcement packets: Hello Message indicating
that it is a new node (has no neighbours) and Available Message which is
broadcast periodically to tell the other neighbours that it is still available in the
network, whereas MDSDV nodes only use Hello Message which is broadcast

only when the node has no neighbours.

3. In MDSDVO, nodes use an Update Packet which is generated and propagated
by a new node after creating its routing table. Nodes modify and broadcast the
Update Packet if their routing table is updated. On the other hand, MDSDV
nodes use two types of update packets: Full Dump and Update Packet . The
Full Dump includes the best route for each destination, whereas the Update
Packet includes all routes. The Full Dump 1is unicast only to a new neighbour,
and the Update Packet is only broadcast to current neighbours. More details on

the control packets of MDSDV is given in section 5.3

4. The Error Packet in MDSDVO is sent to the entire network, whereas in MDSDV

the Error Packet is only broadcast to current neighbours.

5.2 Tables

In MDSDYV, each node maintains three tables Neighbours Table (NT), Routing Table
(RT) and Queue Table (QT).
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e Neighbours Table (NT): Instead of the flag field in MDSDVO , the TimeOut
field is used to identify the time for which this node can be considered as a
neighbour. If no packets are received from the neighbour before this time has
expired, the neighbour will be considered as an unreachable node and the entry
will be deleted. The field TimeOut is updated whenever packets are received

from a neighbour node. Figure 5.1 shows the structure of a NT’s entry.

Field name Description

Neighbour id Address of the neighbour node

Link-id An identifier generated for the new routes
TimeOut Within this time, the node is considered as a neighbour

Table 5.1: Neighbours table structure (NT)

e Queue Table (QT): When a node has a data packet to send or forward and has
no route to the desired destination, it uses this table to queue the packet. When
a node gets a new path to any destination, this table is checked if it contains

a data belongs to this destination. The structure of Queue table is shown in

Figure 5.2
Field name Description
Destination id Address of the unreachable node
data Data packets that the node is unable to forward

Table 5.2: Queue table structure (QT)
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e Routing Table (RT): In MDSDV, we exclude the gueue field from the routing

table and included in a separate table called Queue table (QT). This is to make

it easier for the node to check if it has data packets that have not been deliv-

ered. The TimeOut field is removed from the routing table and included in the

Neighbours Table (NT). We add a new field called TimeToLive, which is used

to delete stale routes. Figure 5.3 shows the structure of RT’s entry.

Field name Description

Destination Address of the destination node

Next hop The first hop to the destination

Second hop The second hop to the destination
Number of hops Number of hops to the destination
Link-id An identifier generated for the new routes

Sequence number

A sequence number generated by the destination to distinguish stale routes

Changed at

The time that the path has been obtained or updated

TimeToLive

The time that the path should be deleted

Table 5.3: Routing table structure (RT) entry

5.3 MDSDV Packets

Some of the control packets have been modified and the following is a description of

the control packets used by MDSDV.

1. Hello Message (HM): Periodically each node increments its sequence num-

ber and checks its Neighbours Table (NT). If the node’s NT is empty (no en-

tries), the node generates and broadcasts a Hello Message containing the new

sequence number. The packet is used instead of both Hello Message and Avail-

able Message in MDSDVO.
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2. Update Packet (UP): Periodically each node in the network checks its Neigh-
bours Table (NT). If it contains at least one entry, the node increments its se-
quence number, generates and broadcasts an Update Packet including all routes
in its routing table. Figure 5.4 shows the structure of the Update Packet which

has the same structure as the Full Dump.

Destination | First | Second | Number | Link Id | Sequence

hop hop of hops | Number | Number

Table 5.4: Structure of the Update Packet (UP) and Full Dump (FD) entries

3. Full Dump (FD): When a node receives a Hello Message or an Update Packet
from a new neighbour (No entry belongs to the sender in Neighbours Table), it
responds by unicasting a full dump of its routing table to the new node. The Full
Dump includes only one route (the best) for each destination. The structure of
the Full Dump entry is shown in figure 5.4. By receiving a Full Dump, a
node may get full topology of the network if it is a new node, and may get
more information if it is already a participating node. This depends on the
information that the Full Dump sender has. The difference between a Full

Dump and an Update Packet is the number of routes for each destination.

4. Error Packet (EP): This type of packet is propagated by any node that discovers
a broken link. An Error Packet includes the node id that discovers the broken
link, the unreachable node id, and the link id between both of them. Figure 5.5

shows the structure of the Error Packet .

When a node receives an Error Packet, it deletes any entry from its routing table
where the link id is the same as the link id that is included in this packet (same
as MDSDVO0). The only difference is that the received node does not need to

rebroadcast the packet (to reduce number of control packets).
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Packet Sender | Destination | Link-Id

Table 5.5: The structure of the Error Packet

5. Failure Packet (FP): When a node has a data packet that is ready to send, it
selects the best route to the desired destination and includes the second hop of
that route in the data packet’s header. As the intermediate node receives a data
packet, it forwards the packet to the node that is included in the data packet’s
header. If the intermediate node fails to forward the data packet to the specified
node, it unicasts a Failure Packet (FP) to the source node. Thus, the source

node stops transmitting data packets along this invalid route.

The Failure Packet includes the source node id that is sending the data, the first
hop which is the neighbour node that the source node used to send the data, and
the destination which is the unreachable node. Figure 5.6 shows the structure

of the Failure Packet .

Data Packet Sender | First hop | Destination

Table 5.6: The structure of the Failure Packet

Note: In addition to the difference in the structure of Error Packet and Failure Packet,
the Error Packet is broadcast to the neighbours by the node that detects the link fail-
ure, whereas the Failure Packet is unicast only to the source node by the intermediate

node when it fails to forward a data packet.

123



Chapter 5. Final MDSDV Design

5.4 MDSDV Mechanism

5.4.1 Sending Data Packets

For sending a data packet, we use three additional fields in the data packet’s header:

current_node, first_node, and forwarded _node.

current_node: This field is used to store the node address that deals with the data

packet (source node or intermediate node).

first_node: The source node uses this field to store the first hop of the selected path

to send the data packet.

Jorwarded node: This field is used to store the second hop of the selected path. It
is used to force the intermediate node to forward the packet to the

node that its address is stored in this field.

Of course, sending or forwarding a data can be done by a source node or an inter-
mediate node. The following is a description of how the source and the intermediate
nodes deal with a data packet. But before we start, we need to explain some terms

that are used in different contexts.

Newest route is the route that has the highest sequence number.

Shortest route is the route that has the least number of hops.

Best route is the route that has the least number of hops and highest sequence num-

ber.

Path selection is always the one with the minimum number of hops. If two paths
have the same number of hops, the one with highest sequence number is se-

lected.
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e When a source node has ready data to send, it searches for the best route to the

destination.

— If aroute is not found, the node queues the packet in its Queue Table (QT)

until it gets a route to that destination.

— If aroute is found, the node sets the additional fields of the packet’s header
as follows, and forwards the packet to the neighbour whose address is

stored in the first hop field of the chosen entry.

current_node = the source node address
first_node = the first hop field of the chosen entry
forwarded node = the second hop field of the chosen entry

e When an intermediate node receives and needs to forward a data packet, it
searches for a route to the destination through the node whose address is spec-
ified in the forwarded node field. If a route is found, the node forwards the
packet to the neighbour whose address is specified in the first hop field of the
entry (it should be the same address as in the forwarded node field of the data

packet header) after modifying two fields of the packet’s header as follows:

current_node = the intermediate node address that is dealing with the
packet

forwarded_node = the second hop field of the chosen entry

If a route is not found, the intermediate node generates and sends a Failure
Packet to the source node to stop sending data through this link. Next, the
intermediate node searches for an alternative route to send the data packet. The
alternative route should not be through the node whose address is in the cur-
rent_node field (this is to avoid fluctuation). If an alternative route is found, the

intermediate node simply modifies the two fields of the data packet’s header
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and forwards the packet using the alternative route. Otherwise, the interme-
diate node queues the data packet in its QT until a new route to the desired

destination is found.

For more illustration, we present the following example. Figure 5.1 shows a 17 node

network, and node S needs to send data to node D. Node S has three routes for node

D:

S-A-E-H-L-N-D
S-B-F-1-0-D
§S-C-G-K-M-P-D

S
%

I AD : o
F -2
\ @ —y  Uszdrouts
@ @ Altemative route

o ” e~
>

Figure 5.1: Node S is sending data through the best route to node D

The source node selects the path S - B - F -1 - O - D because it is the shortest path
(5 hops) to send the data. So, node S forwards the packet to node B after setting the

three fields of the data packet’s header as follows:
current node = S,  first_ node = B,  forwarded node = F

As node B receives the packet, it searches for the path to node D through node F.

Next, it forwards the packet to node F after modifying two fields as follows:
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current_.node = B,  forwarded_node = 1

Upon receiving the data packet, node F searches for the path to node D through node

I, and forwards the packet to node I after modifying two fields as follows:

current node = F,  forwarded node = O

As node I receives the packet, it searches for the path to node D through node O, and

forwards the packet to node O after modifying two fields as follows:

current node = 1,  forwarded node = D

When node O receives the packet, it searches for the path to node D through node
D. Node O does not need to modify these fields of the packet’s header because the

destination is one hop neighbour unless a route is not found.

Suppose that node I discovers that the link between itself and node O is broken when
it tries to forward the data packet (Figure 5.2). In this case, node I should do the

following:
e Choose one of the alternative routes (the best route) to send the data to node D.

e Generate and unicast a Failure Packet to the source node (node S) to stop
using this link. The used route should be the best route, and not through the
node whose address is in the current_node field (node F) to decrease number of

collisions.

From figure 5.2, we can notice that node I has two alternative routes to node D with

the same number of hops which are:

I-L-N-D (3 hops)
I-M-P-D (3 hops)
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@ — Usad route
@ @ Altermnative route
x Broken Link

Figure 5.2: Node I is using an alternative route to forward data

We assume that the route I - L - N - D is the newest. Thus, it is chosen to send the
data.
Next node I selects the best path to unicast a Failure Packet to node S. From figure

5.3, it is clear that node I has three routes to node S which are:

I-F-B-S (3 hops)
I-H-E-A-S (4 hops)
I-J]-K-G-C-S (5 hops)

Although the path I - F - B - § is the shortest (3 hops), node I does not use it because
the data packet is received from node F, and node I has alternative paths that can be
used to send the Failure Packet. In this case node I chooses the path /- H-E-A - S

because it is the best route (4 hops) to unicast a Failure Packet to node S.
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Figure 5.3: Node 1 is unicasting a Failure Packet to the source node (Node S)

5.4.2 Receiving Data Packets

When a node receives a data packet that is addressed to another destination, it searches
for a route through the node that is specified in the forwarded node field in the data
packet header. If the route is found, the intermediate node modifies the header fields
and forwards the packet to the specified node. Otherwise, the intermediate node does

the following:

e Unicasts a Failure Packet to the source node asking it to stop sending data

through this route anymore.

e Locate an alternative route to forward the received data packet to the desired

destination.

— If an alternative path is found, the intermediate node updates the packet
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header fields (current_node and forwarded_node), and forwards the data

packet to the first hop of the alternative path.

— If no alternative path is not found, the intermediate node queues the data

packet in its queue until getting a valid route to the desired destination.

Figure 5.4 shows the process that the node follows when receiving a data packet.

Receiving a data a packet

l

Is the data packet
received by the
destination node?
In other words; am
I at the destination?

Destmation node

Find the route to the destination
through the node whose address
isin the forward_nods field of
the data packet’sheader

l

Iz the route
available in
the routing

table?

Unicast a Failure Packet to

the source node and find an

altemative route to send the
packet to the destination

Modify the data packet header fields
(current_node and forwarded_node)

!

l

Forward the packetto a

Iz the route
available?

L 4 neighbour towards the
Modify the packet’s header fields destination

|

Forward the packetto a

Queue the packetin
the queue of the

S T neighbour towards the

destination

Figure 5.4: Receiving data packets Flowchart
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5.4.3 Sending Control Packets

Periodically, each node in the entire network increments its sequence number and
checks its neighbours table (NT). If a node has no neighbours (no entries in its NT),
it broadcasts a Hello Message (HM) containing only the new sequence number. On
the other hand, if the node found at least one entry in its NT, it broadcasts an Update
Packet (UP) which includes the new sequence number and all the entries of the routing

table.

Another control packet called Full Dump (FD) is used. When a node receives a
Hello Message or an Update Packet from a new neighbour, it responds by unicasting
a Full Dump of its routing table to the sender. FD includes the best route for each
destination. By receiving a Full Dump, the receiver node may get enough information

about the network.

Another two control packets; Error Packet (EP) and Failure Packet (FP) are sent by
nodes. EP is generated and broadcast when a link failure is detected, whereas FP is
generated and unicast to the source node when an intermediate node fails to forward

a data packet to its neighbour.

5.4.4 Receiving Control Packets

When a node receives a control packet, it follows the process in figure 5.6. The node

checks the packet’s type and processes it as follows.

1. Receiving a Hello Message: When a node receives a Hello Message, it invokes
the algorithm in figure 5.5 to deal with the Hello Message. The following is a
description of the algorithm when node R receives a Hello Message from node

S.
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e I[f there is no entry belonging to node S in R’s NT table (i.e., new neigh-
bour), node R adds a new entry including the address of node S, Link id
(R-S), and TimeOut (The neighbour node is considered as unreachable
node when the time in the 7imeOut field has expired). Next, it adds an
entry as a direct route for node S in R’s routing table, and unicasts a Full

Dump (FD) to node S. FD includes the best route for each destination.

e If an entry for node § is available in R’s NT table (i.e., old neighbour),

node R updates the TimeOQut field of the entry that belongs to node S.

01 The receiver node checks its Neighbours Table (NT).

02 1If (No entry belongs to the Hello Message sender in my NT)

03 {

04 Add an entry for the Hello Message sender in my NT.

05 Add an entry as a direct route for the Hello Message sender in my RT.

06 Unicast a Full Dump of my RT to the Hello Message sender.

07 }

08 else

09 {

10 Update the TimeOut field of the entry that belongs to the Hello Message
sender in my NT.

11 Update the sequence number, Changed at, and TimeToLive fields of the entry that
belongs to the Hello Message sender in my RT.

12}

Figure 5.5: Receiving a Hello Message Algorithm
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2. Receiving an Update Packet: When a node receives an Update Packet, it in-

vokes the algorithms in figures 5.7 and 5.8 respectively to process the packet.

01

02
03
04
05
06
07
08
09
10
11

12
13

%11

The receiver node checks whether the Update Packet is received from a new or

an old neighbour.

If (No entry belongs to the Update Packet sender in my NT)

Add a new entry for the Update Packet sender in my NT.
Add a new entry as a direct route for the Update Packet sender in my RT.
Unicast a Full Dump of my RT to the Update Packet sender.

else
Update the TimeOut field of the entry that belongs to the UP sender in my NT.
Update the sequence number, Changed at, and TimeToLive fields of the entry that
belongs to the Update Packet sender in my RT.

Invoke the algorithm in figure 5.8 to deal with the entries of the UP.

Update the Sequence Number field of the entry that belongs to UP sender.

Figure 5.7: Receiving an Update Packet Algorithm

As soon as node R receives an Update Packet, it invokes the algorithm in figure

5.7. The following is a description of the algorithm executed at node R to check

whether the packet is received from a new or a known neighbour.

o If the Update Packet is received from a new neighbour, node R does the
following:
— Adds an entry for the Update Packet sender in its NT.

— Adds a new entry as a direct route to the Update Packet sender in its

RT.

— Unicasts a Full Dump of its RT to the Update Packet sender con-

taining the best route for each destination.
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o If the Update Packet is received from an old neighbour, node R does the

following:

— Updates the Timeout field of the corresponding entry in its NT table.

— Updates the sequence number of the corresponding entry in its RT

table.

Next, node R invokes the algorithm in figure 5.8 to deal with each entry of the
Update Packet.

The following is a description of the algorithm in figure 5.8 executed at node R
to deal with each entry of the received packet (Full Dump or Update Packet).

We use the following notation:

e my_Id: is the identifier of the node executing the algorithm.

e m.sender: is the packet sender ID.

e m.dst: is the destination field of the received entry.

e m.th: is the first hop field of the received entry.

e m.sh: is the second hop field of the received entry.

e m.metric: is the number of hops field of the received entry.

e m.In: is the link id field of the received entry.

e m.SeqNum: is the sequence number field of the received entry.
e DST: is the destination field of an entry in the routing table.

e FH: is the first hop field of an entry in the routing table.

e SH: is the second hop field of an entry in the routing table.

e Metric: is the number of hops field of an entry in the routing table.
e LN: is the link id field of an entry in the routing table.

e SeqNum: is the sequence number field of an entry in the routing table.
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Node R discards the received entry if R’s address is equal to m.dst, m.th or
m.sh. If not, node R modifies the received entry’s fields where the m.sh field
is set to m.fh field, the m.fh field is set to m.sender field, and m.metric field
is incremented. Then, node R starts to compare the modified entry with the

entries that are already in its routing table as follows:

e If no entries are available for this destination (m.dst), node R inserts the

modified entry in its routing table.

e If the modified entry is not similar (m.fh #FH and m.sh #SH and m.ln
#LN) to any entry in the routing table, node R inserts the modified entry

in its routing table.

e [f the modified entry is similar to more than one entry, node R discards

the modified entry.

e [f the modified entry is similar to only one entry, node R does one of the

following:
— Opverwrites the modified entry if it includes a route that is better than
the existing one.

— Discards the modified entry if it includes a route that is worse than

the existing one.
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01 While (There are more entries in the received Packet)

02 {

03 The receiver node checks its address with the destination, first hop
and second hop fields of the received entry

04 If (my_-Id = m.dst or my.Id = m.fh or my_Id = m.sh)

05 discard the received entry.

06 else

07 {

08 modify the received entry’s fields as follows:

09 m.sh = m.fh, m.fh = m.sender, m.metric++

10 If there is no entry in my routing table to m.dst

11 Insert the modified entry in my routing table.

12 else

13 {

14 If (the modified entry is not similar to any entry in my RT)

15 Insert the modified entry in my routing table.

16 else

17 {

18 If (the modified entry is similar to only one entry in my RT)

19 {

20 If (m.SegNum > SegNum OR (m.SegNum = SeqNum and m.metric < Metric))

21 Overwrite with the modified entry.

22 else

23 Discard the modified entry.

24 }

25 else

26 Discard the modified entry.

27 }

28 }

29 }

30}

Figure 5.8: Processing a Full Dump and an Update Packet Algorithm

How do we consider that a route is better than another one? As in DSDV, the
route with larger sequence numbers is considered better. But if two routes have

the same sequence numbers, the one with smaller metric is considered better.

The following example illustrates how nodes deal with a received Update Packet.
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Figure 5.9 presents a network of 8 nodes. Node 8 has two neighbours (node 1

and node 5) as shown in table 5.7.

-

& -
- »

Figure 5.9: Ad Hoc network consists of 8 nodes

Neighbour ID | Link Id | TimeOut

1 8-1 167.3256
8-5 171.4325

Table 5.7: Neighbours Table of node 8

Each node periodically broadcasts a Hello Message or an Update Packet (de-
pends on its NT table) as mentioned in section 5.3. Suppose that node 8 moves
towards node 2, and let’s assume that node 8 checked its NT table and found
that there are two neighbours (node 1 and node 5) as shown in table 5.7. So,
node 8 broadcasts an Update Packet as shown in figure 5.10. All neighbours

(node 1, node 2, and node 5) receive the Update Packet and respond as follows:

Because node 1 and node 5 are old neighbours of node 8, they update the 7ime-
Out field in the corresponding entry in their neighbours tables. Next, node 1
and node 5 invoke the algorithm in figure 5.8 to deal with the entries of the

Update Packet.
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Update packet
=y Full Dump

Figure 5.10: Node 8 is broadcasting an Update Packet and receiving a Full Dump

On the other hand, node 2 considers node 8 as a new neighbour. Thus, node 2
adds node 8 as a neighbour in its NT table and adds an entry as a direct route in
its RT. Next, it unicasts a Full Dump of its routing table to node 8 as shown in
figure 5.10. Then, it invokes the algorithm in figure 5.8 to deal with the entries
of the Update Packet.

3. Receiving a Full Dump: When node R receives a Full Dump from node S, it
checks if node S is a new or old neighbour. If node S is a new node neighbour,
node R adds a new entry for node S in its NT table and adds a new entry as a
direct route for node S in its RT table. Otherwise, node R updates the 7imeOut
field of the corresponding entry in R’s NT, and updates the sequence number,
changed_at, and TimeToLive fields of the corresponding entry in R’s RT. Next
it invokes the algorithm in figure 5.8 to add, overwrite, or ignore the received

entries.

4. Receiving an Error Packet: As described in chapter 4, any node that discovers
a broken link should generate and broadcast an Error Packet containing the

following fields:

Packet Sender:  the node’s address that discovers the broken link.
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01

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

Destination:  the unreachable node address.

Link Id:  the link id which is between the node that discovers the broken

link and the unreachable node.

The following is a description of the algorithm in figure 5.11 executed at node

R to deal with a received Error Packet . We use the following notation:

e my_Id: is the identifier of the node executing the algorithm.

e m.sender: is the Packet Sender field in the received packet.

m.dst: is the Destination field in the received packet.

m.In: is the Link Id field in the received packet.

FH: is the first hop field of an entry in the routing table.

LN: is the link id field of an entry in the routing table.

The receiver node checks its address with the packet sender (m.sender) field

in the Error packet.

If (my_-Id = m.sender)
{
Discard the Error packet
}
else
{
If (my_-Id = m.dst)
{
delete any entry in RT where FH = m.sender
else
{
delete any entry in RT where LN = m.ln.
}
}

Figure 5.11: Receiving an Error Packet Algorithm
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When node R receives an Error Packet, it invokes the algorithm in figure 5.11

to do one of the following:

e Discard the Error Packet if its address is equal to the address in the Packet

Sender (m.sender) field of the Error Packet. Or

e Delete any entry in its routing table where the first hop (FH) is equal to
the packet sender (m.sender) field if R’s address is equal to the address in

the Destination (m.dst) field of the Error Packet. Or

e Delete any entry in its routing table where the link id (LN) is equal to link

id (m.In) of the Error Packet.

Our aim is to minimize the large number of control packets that MDSDVO suf-
fers from. So, one modification is that a receiving node does not need to re-

broadcast an Error Packet.

m==l Error Packet

x Broken link

Figure 5.12: Node 1 discovers a broken link and broadcasts an Error Packet

For more illustration, we present an example describing the behaviour of each

node when receiving an Error Packet.
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Figure 5.12 presents a network with 8 mobile nodes. When node 1 discovers

that the link between itself and node 2 is broken, it does the following:

e Considers node 2 as an unreachable node and deletes the corresponding

entry from its NT as shown in Table 5.8.

e Deletes any entry from its routing table where node 2 acts as a first hop as

shown in Figure 5.13.

e (Generates and broadcasts an Error Packet as shown in Table 5.9

Neighbour ID | Link Id | TimeOut

3 1-3 169.1256
5 1-5 170.2325
6 1-6 171.4357

Table 5.8: Neighbours table of node 1

dst Fhop Shop metric link no change at seq no.
0 3 0 b 3-0 97.91185681 26
0 6 0 2 6-0 98.37705970 26
1 1. null 0 1,24, 0.00000000 34
2 3 4 3 4-2 97.91185681 24
2 5 7 3 -3 101.63430245 24
3 3 null 1 1-3 97.91185681 28
3 [ 0 3 3-0 98.37705970 26
4 3 4 . 4-3 97.91185681 30
5 5 null 1 5=1. 101.63430245 30
5 6 5 2 6-5 98.37705970 28
6 3 0 3 6-0 97.91185681 26
[ 5 6 b 5-6 101.63430245 28
6 6 null 1 1-6 106.30047081 30

~1
(2]
~]
28]
~]
|
[Fal

101.63430245 30

Figure 5.13: Routing table of node 1 at the instance of discovering a broken link
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Packet Sender | Destination | Link-Id

1 2 1-2

Table 5.9: Error Packet generated by node 1

All neighbours of node 1 (node 3, 5, and 6) will receive the Error Packet. As
an example, we describe how node 3 deals with the received Error Packet.
Because node 3 is not the Error Packet sender nor the Destination, it deletes
any entry where the link id is equal to 1-2. So, node 3 deletes the following

paths as shown in Figure 5.14:

3-1-2
3.4-2-1
dst Fhop Shop metric link no change at seq no

o] 0 null 1 3-0 105.91053447 28
0 1 6 3 6-0 104.43117758 26
1 0 6 3 6-1 105.91053447 32
1 1 null 1 3-1 113.45646550 36
2 4 2 2 4-2 105.31930399 26
3 3 null 0 3-3 0.00000000 30
4 1 2 3 4-2 104.43117758 30
4 4 null 2k 4-3 105.319303898 32
5 0 6 3 6-5 105.91053447 28
5 1 5 2 b-1 104.43117758 30
5 4 2 4 7-5 105.31930399 28
3] 0 = 2 6-0 105.91053447 28
6 1 6 2 1-6 104.43117758 28
7 1 5 3 7-5 104.43117758 30
7 4 2 3 7-2 105.3193039% 30

Figure 5.14: Routing table of node 3 after dealing with the received Error Packet

From Figure 5.14, we can notice that node 3 deletes the entries where link id =
1-2 (in red). But it is unable to delete other paths to other destinations that use
the link 1-2. For example, node 3 has the path 3 - 1 -2 - 4 (yellow colour). Of

course the entry that include this path should be deleted as well, but node 3 can
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not delete it because it does not meet any condition of the Error packet. For
this reason, we use the Failure packet which will be described later, and we use

the TimeToLive field to delete the route when its time is expired.

5. Receiving a Failure Packet: Sometimes, the source node uses a path with a
broken link to send data. When an intermediate node receives a data packet for
forwarding and fails to forward it to an adjacent node, it generates and unicasts

a Failure Packet to the source. The Failure Packet contains the following fields:

Data Packet Sender:  the source node address that is sending the data.

First Hop:  the neighbour node address that the source node used to send

the data.

Destination:  the destination node that the source node is communicating

with.

When a node receives a Failure Packet, it invokes the algorithm in Figure 5.15.
The following is a description of the algorithm executed at node R to deal with

the received Failure Packet. We use the following notation:

e my_Id: is the identifier of the node executing the algorithm.

e m.sender: is the address in the Data Packet Sender field of the Failure

Packet
e m.th: is the address in the First Hop field of the Failure Packet .
e m.dst: is the address in the Destination field of the Failure Packet .
e FH: is the first hop field of an entry in the routing table.

e DST: is the destination field of an entry in the routing table.

When node R receives a Failure Packet, it invokes the algorithm in figure 5.15

to do one of the following:
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01

02
03
04
05
06
07
08
09

e If R’s address is equal to the address in the source field (i.e., node R is
the data sender), it deletes the entry where the destination and first hop
are the the same as the destination and first hop included in the Failure
packet. Then, node R selects an alternative path to continue sending the

data.

e Otherwise (i.e., node R is not the data sender), it forwards the Failure

Packet towards the source node.

The receiver node checks its address with the Data Packet Sender (m.sender) field

in the Failure Packet.

If (my_-Id = m.sender)

Delete the entry where DST = m.dst and FH = m.fh
else
Forward the Failure Packet towards the source node.

Figure 5.15: Receiving Failure Packet Algorithm

For more illustration, we suppose that node 3 sends data using the path 3 - 1 -
2 - 4 (yellow colour) in Figure 5.14. When node 1 receives the data packet and
needs to forward it to node 2, it finds that the link between itself and node 2
is broken. In this case, node 1 generates and unicasts a Failure Packet to node
3 (the data packet sender) as shown in Table 5.10. When node 3 receives the

Failure Packet, it deletes the route for node 4 through node 1 (3 -1 -2 - 4).

Data Packet Sender | First Hop | Destination

3 1 4

Table 5.10: Failure Packet generated by node 1
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5.5 Disjoint Path Rigorous Argument

Lemma 1:
The First hop and Second hop of every path in the Routing table (RT) are distinct.

Supporting Argument:

Only Full Dumps and Update Packets add paths to the routing table, and both use the
Processing a Full Dump and an Update Packet algorithm (figure 5.8). The conditions

in line 11 and line 15 of the algorithm maintain this invariant.

Rigorous Argument that all MDSDV paths are disjoint

Definition 1:

Disjoint paths have a unique first hop, second hop, and link id in the routing table.
The argument proceeds by induction over the MDSDV construction of the routing

table.

Base case:

All first and second hop paths are disjoint. Follows directly from Lemma 1, and the

fact that the Link 1d is uniquely determined by the final hop.

Induction step:
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Induction Hypothesis: All paths in the routing table are disjoint without loss of gen-
erality. We consider adding a node n; to the network with just 2 neighbours n; and

N

Argument by Contradiction:

Assume that for some destination (n,,) there is a common node (n;) in the two new

paths from n; to n,,:

From Lemma 1, the immediate successors to n; will maintain only a single path to n,,
in the receiving processing a Full Dump and an Update Packet algorithm (figure 5.8).
Moreover as The Algorithm in figure 5.8 is deterministic every successor selects the

same path with the same link id.

This contradicts the induction hypothesis.
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5.6 Functionality Testing

In the absence of formal mathematical proof of the correctness of the protocol we
need an extensive set of tests (verification) to confirm that the protocol meets the in-
tended specifications, is fully functional, and works in a wide range of environments.
One of the most common methods for doing this is functionality testing, where the
new protocol results are checked to see if they meet expected results based on pre-
viously known results from other protocols already tested and verified. Providing a
product, for example a routing protocol with bug-free or a minimum amount of is-
sues, is also important and every developer’s goal. Therefore, functionality testing
helps to achieve such targets.

Once the implementation of MDSDV has been completely tested, and ported to run

in NS2, its functionality is verified using the following scenario.

5.6.1 Scenario description

Figure 5.16 presents a simple 5-node wireless scenario that is used in the functional-
ity testing of MDSDV. The topology consists of five mobile nodes which move about
within an area whose boundary is defined as 600mX400m.

A mobile node consists of network components like Link Layer (LL), Interface Queue
(IfQ), MAC layer, the wireless channel nodes transmit and receive signals from etc.
At the beginning of the scenario, we define the type for each of these network com-
ponents. Additionally, we define other parameters such as the type of antenna, the
radio-propagation model, the type of ad-hoc routing protocol used by mobile nodes,
etc. See comments in the code for a brief description of each variable defined (Line
4-16).

Next we configure and create mobile nodes (Line 29-45), and give them initial posi-
tions to start with (Line 47-61). As nodes are free to move, we produce some node

movements in Lines 63-66. We setup traffic flow between node (0) and node (4).
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Lines 68-76 set up a TCP connection betwen the two nodes with a TCP source on

node (0). Next, we define stop time when the simulation ends (Lines 82-89), and

finally start the simulation in (Line 90).
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22
23

24
25

26

27
28
29
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31
32
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35
36
37
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39
40
41
42

43
44
45

46
47
48
49

# wrlsl.tcl
# A 5-node example for ad-hoc simulation with MDSDV

# Define options

set wval (chan) Channel/WirelessChannel ; #
set val (prop) Propagation/TwoRayGround P #
set val (netif) Phy/WirelessPhy P #
set val (mac) Mac/802_11 ;#
set val(ifq) Queue/DropTail/PriQueue P #
set val(ll) LL ; #
set val (ant) Antenna/OmniAntenna P #
set val (ifglen) 60 i #
set val (nn) 5 i #
set val (rp) MDSDV i #
set val (x) 600 ;#
set val(y) 400 i #
set val (stop) 150 ;i
set ns [new Simulator]

set tracefd [open Example.tr w]

set windowVsTime2 [open win.tr w]

set namtrace [open Example.nam w]

Sns trace-all Stracefd

Sns namtrace-all-wireless S$namtrace $val (x) S$val (y)
$ns use-newtrace

set topo [new Topography] # set up topography object
Stopo load_flatgrid $val (x) S$val (y)

create—-god $val (nn)

# Create nn mobilenodes [$val (nn)]

# configure the nodes

$ns node-config -adhocRouting $val (rp) \
-11Type Sval(1ll) \
-macType $val (mac) \
-ifqType $val(ifqg) \
-ifgLen S$val (ifglen) \
—antType $val (ant) \
—-propType $val (prop) \
-phyType $val (netif) \
—channelType $val (chan) \
-topolInstance $topo \
—agentTrace ON \
-routerTrace ON \
-macTrace OFF \
-movementTrace ON

for {set i 0} {$1i < Sval(nn) }
set node_ ($i) [$ns node]

{ incr i } {

}

# Provide initial location of mobile nodes....

Snode_ (0) set X_ 540.0
$Snode_ (0) set Y_ 350.0
Snode_(0) set Z_ 0.0

channel type
radio-propagation model
network interface type
MAC type

interface queue type

link layer type

antenna model

max packet in ifqg

number of mobilenodes
routing protocol

X dimension of topography
Y dimension of topography
time of simulation end

and attach them to the channel....
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50 S$node_ (1) set X_ 200.0
51 S$Snode_ (1) set Y_ 200.0

52 S$node_ (1) set Z_ 0.0

53 S$node_(2) set X_ 300.0
54 S$Snode_ (2) set Y_ 320.0
55 $node_(2) set Z_ 0.0

56 S$node_(3) set X_ -10.0
57 Snode_ (3) set Y_ 180.0
58 $Snode_(3) set 7Z_ 0.0

59 S$Snode_(4) set X_ -150.0
60 S$node_(4) set Y_ 60.0
61 S$node_(4) set Z_ 0.0

62 ## Generation of movements

63 Sns at 2.20 "Snode_ (0) setdest 450.0 350.0 5.0"
64 Sns at 20.0 "S$Snode_ (4) setdest 400.0 80.0 5.0"

65 S$ns at 50.20 "Snode_ (0) setdest 450.0 210.0 5.0"
66 $ns at 100.20 "$node_ (2) setdest 100.0 310.0 5.0"

67 # Set a TCP connection between node_ (0) and node_ (4)
68 set tcp [new Agent/TCP/Newreno]

69 Stcp set class_ 2

70 set sink [new Agent/TCPSink]

71 $ns attach-agent $node_ (0) Stcp

72  $ns attach-agent $node_ (4) $sink

73 S$ns connect S$Stcp $sink

74 set ftp [new Application/FTP]

75 S$ftp attach-agent S$tcp

76 $ns at 8.0 "S$ftp start" # start transmitting data

77 4 Define node initial position in nam

78 for {set i 0} {$i < S$val(nn)} { incr i } {
79 S$ns initial_node_pos $node_ ($i) 25 # 30 defines the node size for nam
80 }

81 # Ending the simulation.......
82 $ns at $val(stop) "stop"

83 $ns at 150.01 "puts \"end simulation\" ; $ns halt"
84 proc stop {} {

85 global ns tracefd namtrace

86 $ns flush-trace

87 close $tracefd

88 close $namtrace

89 }

90 $ns run

Figure 5.16: Examplel.tcl scenario
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5.6.2 Scenario results

In this subsection, we present the reaction of MDSDV to the topology changes during
the simulation time. In addition to sending data packets, we present how MDSDV

sends and receives control packets to create and update routing tables.

Initial state

At the beginning of this scenario, each participating node is placed in its initial po-
sition as shown in Figure 5.17. Each node starts the scenario by creating its routing

table with only one entry belonging to itself as shown in Figure 5.18.

| Hle Views Analysis | MDSDV02-5nodes-110Time nam ||
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I

Figure 5.17: A simple network of five nodes
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At 0 Routing table of node [ 0 ) consists of 1 entry ......

3 NO dst hop shop metric link no change at sedq no
1 a 1] Mull a a 0.00000000 u}

At 0 PRouting table of node | 1 ) consists of 1 entry ......

3 MO dst hop shop metric link no change at seq no
1 1 1 Hull 1} 10001 0.00000000 0

At 0 PRouting table of node [ 2 ) consists of 1 entry ......

3 NO dst hop shop metric link no change at seq no
1 2 2 Hull 1} a000z 0.00000000 0

At 0 PRouting table of node [ 3 ) consists of 1 entry ......

3 MO dst hop shop metric link no change at seq no
1 3 3 Hull 1} 30003 0.00000000 0

4t 0 PRouting table of node | 4 ) consists of 1 entry ......

5 NO dst hop shaop metric link no change at Zedq no
1 4 4 Hull 1} 40004 0.00000000 0

Figure 5.18: Routing tables of all nodes in the network at the beginning of scenario

Sending and receiving Hello messages and Update packets

As mentioned in Section 5.3, periodically each node checks its Neighbours Table
(NT). If the node’s NT is empty (no entries), the node generates and broadcasts a

Hello Message, otherwise, it generates and broadcasts an Update packet.

Figure 5.19 shows that node one checked its NT at 0.031539 sec, and found no entries
(no neighbours). Thus, it broadcasts a Hello message. Both of node two and node
three receive the Hello message and consider node one as a new neighbour node. Each
of them adds an entry in its routing table as a direct route to node one. Tables 5.11
and 5.12 show routing tables of node two and node three respectively, after receiving

the Hello message from node one.
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At 0.037557 node two checks its NT and finds one entry belongs to node one. There-
fore it broadcasts an Update packet as shown in Figure 5.19. Because node zero and
node one are in the transmission range of node 2, they receive the Update packet and
update their routing tables as shown in Table 5.13 and Table 5.14.

Similarly, when node three checks its NT and finds one entry belongs to node one,
it broadcasts an Update packet at 0.039991 as shown in Figure 5.19. Node one and
node four are in the transmission range of node three. Thus, they receive the Update

packet and update their routing tables as shown in Tables 5.15 and Table 5.16.

“ - | > » 0.040853 | Step: 2.5us
|« m ] > | »]| o
: Ly
g UPDATE_P 1: 2
Sent at 0.037557
@ 0 bytes
i «°
' UPDATE_P 2: 2
Sent at 0.039991
g 0 bytes
G) HELLO 0: 2
Sent at 0.031539
‘ 20 bytes ‘
I =
1111 e e e e e e e s
L
D ]
Figure 5.19: Broadcasting Hello and Update packets
At 0.037557 PRouting table of node [ 2 ) consists of 2 entries ......
5 _NO d=t hop shop metric link no change at sSeq no
1 1 1 ull 1 20001 0.03245546 4
2 2 & ull o 20002 0.00000000 4

Table 5.11: Routing Table of node 2 after receiving a Hello message from node 1
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At 0.039991 PRouting table of node [ 3 ) consists of 2 entries ......
5 N0 d=t hop shop metric link no chahge at Zedq no
1 1 1 Hall 1 30001 0.03245564 4
zZ 3 3 Hall 1] 30003 0.00000000 4

Table 5.12: Routing Table of node 3 after receiving a Hello message from node 1

At 0,179893 FRouting table of node ([ 0 ) consists of 3 entries after receiwing an
Tpdate Packet from node 2 ......

5 N0 dst hop shop metric link no change at seq no
I 0 1} Null 1} a0 0.00o00000 1}
2 1 2 1 2 20001 0.1795892594 4
3 2 2 HNull 1 2 0.1795892594 4

Table 5.13: Routing Table of node O after receiving an update packet from node 2

At 0.179593 PRouting table of node [ 1 ) consists of 2 entries after receiving an
Update Packet from node 2 ......

5 NO dst hop shop metric link no change at Seq no
1 1 L HNull 1} loool 0.00000000 4
2 2 2 Null 1 loooz 0.17389265 4

Table 5.14: Routing Table of node 1 after receiving an update packet from node 2

AL 0.889504 Routing table of node [ 1 | consists of 3 entries after receiving an
Update Packet frow node 3 ......

3 _NO d=t hop shop metric link no change at sSeq no
1 1 1 Muall 0 10001 0.00000000 4
2 2 2 Muall 1 10002 0.17989265 4
3 3 3 Mull 1 10003 0.88950414 4

Table 5.15: Routing Table of node 1 after receiving an update packet from node 3

At 0.855504 Routing table of node [ 4 ) consists of 3 entries after receiwihg an
Update Packet frow node 3 ......

5 NO dst hop shop metric link no change at seq no
L L 3 1 2 30001 0.88950406 4
2 3 3 Null 1 40003 0.88950406 4
3 4 4 Hull 0 40004 0.00000000 a

Table 5.16: Routing Table of node 4 after receiving an update packet from node 3
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Sending and receiving a Full Dump

As a result of receiving an Update packet from a new neighbour (node zero), node
four generates and broadcasts a Full Dump at 99.0743 sec which contains the best
route for each destination.

Figure 5.17 shows that routing table of node four contains seven entries. Specifically,
it contains 1 route for node zero, 2 routes for node one, 1 route for node two, 2 routes
for node three, and 1 route belongs to itself. So, node four should select one route
from the two routes that belong to node one, and one route from the two routes that

belong to node three.

3 N0 dst hop shop netric link no change at seq no
1 u] 1 2 3 0000 94,0553971458 i
z i, 1 Null 1 40001 94,055397145 26
3 1 3 1 2 30001 89.835882835 24
4 2 1 2 Z 1000E 94.05597148 24
5} 3 1 3 Z 10003 94,055397145 Z4
5] 3 3 Null 1 40003 89.835882835 24
7 4 o Null u] 40004 0.00000000 46

Table 5.17: Routing Table of node 4 contains 7 entries at the time of generating a Full Dump

Entry_ HNO. dst hop shop metric link no gedq no
(1] u] 1 2 3 Z0aoaoo ZZ
(2] 1 1 Mull 1 40001 26
(31 2 1 2 2 10002 24
(4] 3 3 Mull 1 40003 24
151 4 4 Null o 40004 46

Table 5.18: A Full Dump generated by node 4 contains five entries

Selecting the best route can be briefly described as follows. The node selects the route
with the higher sequence number. If two routes have the same sequence number, the

route with smaller number of hops is selected. Figure 5.17 shows that the RT of node
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four contains two routes for node one (row 2 and row 3), and the route with higher
sequence number (row 2) is selected. Meanwhile, the same figure shows that the RT
contains two routes for node three (row 5 and row 6), and the route with smaller num-
ber of hops (row 6) is selected. Figure 5.18 shows the entries of Full Dump that is
generated by node four.

When node 0 receives the Full Dump, the routing information (Figure 5.18) is com-
pared with the information that is already available at the routing table (Figure 5.19)
to update the routing table.

As a result of receiving this Full Dump, node 0 creates one extra route for each des-
tination in the network (Yellow colour in Figure 5.20). For example, a new route to

node three through node four is obtained (row 7).

5 N0 d=st hop shop metric link no change at Fedq no
1 u} 0 Null 0 u} 0.00000000 26
2 1 z 1 Z 20001 94, 65602520 Z6
3 2 z MNull 1 2 94, 65602520 Z6
4 3 2 1 3 10003 94, 65602520 24
& 4 2 1 250 30004 E3.61783722 22
& a 2 1 3 10004 94, 65602520 44

Table 5.19: Routing Table of node 0 before dealing with the Full Dump

5 N0 dst hop shop metric link no change at sed ho
L 0 ] Hull 1] 0 0.00000000 26
2 1 2 e Z 20001 94, 65602520 26
3 1 4 A Z 40001 99, 195833525 26
4 2 2 Hull 1 2 94, 65602520 26
5 2 4 1 3 1000z 99, 19533523 24
& 3 2 1 3 10003 94, 65602520 24
7 3 4 3 2 40003 99,19833523 24
g 4 2 P 250 30004 53.81783722 22
9 4 2 bl 3 10004 94, 65602520 a4

10 4 4 Tall 1 4 99, 195833523 a4

Table 5.20: Routing Table of node 0 after dealing with the Full Dump

156



Chapter 5. Final MDSDV Design

Broadcasting an Error packet

In MANETS, movement of nodes cause broken links. Any node discovers a broken
link should broadcast an Error packet. To describe the broken links, we present the
following scenario. Line $ns at 100.20 “$node_(2) setdest 100.0 310.0 5.0” produce
the movements of node two. It means at time 100.20 sec, node two starts to move
towards the destination (x=100,y=310) at a speed of Sm/s. As a result, node two and

node four become out of each other’s transmission range after some time.

‘ Hle Views Analysis | MDSDV02-5nodes-150Time. nam |‘
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Figure 5.20: Node 2 is bradcasting an Error packet at 116.245953 sec

If a node does not receive any packet from its neighbour for a certain time, the node
considers the neighbour as unreachable node. Figure 5.20 shows that node two broad-
casts an Error packet at time 116.245953 sec due to the broken link between itself and

node four. Routing table of node two before discovering the broken link is shown in
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Figure 5.21. As Node two detects that the link between itself and node four is broken,
it assigns oo metric for each route where node four acts as a first hop as shown in
Figure 5.22. Next, it broadcasts an Error packet containing three fields as shown in
Figure 5.23. Any node receives the Error packet deletes any route that has the same

link Id included in the Error packet.

5 N0 dst hop shop metric link no change at Zedq no
1 a 4 a 2 40000 100.51936627 26
2 1 1 Mall 1 20001 112.61354736 30
3 1 4 1 2 40001 100, 51936627 26
4 2 2 Mull u} 2000z 0.000o0o0a00 30
] 3 1 3 2 10003 112.61354736 Z8
3 3 4 3 2 40003 100. 51936627 24
7 4 1 4 2 10004 112.613547%% 45
a a 4 Mall 1 20004 100. 51936627 ag

5 N0 dst hop shop metric link no change at Sedq no
L B4 s = gooon | ideaséiasl 4
2 1 1 ll 1 20001 112.61354730 30
s L d =00l ldaaséseal 4
4 Z Z Hll 0 Z00o0z 0. 00000000 30
5 3 1 3 2 lo0os 112.61354794 2d
s & 4 8 = 0003 Ue.zdsssel g
7 4 1 4 Z loood 112.61354794 43
i A a4 mal = 30004 L6.z4sssel g

Table 5.22: RT of node 2 after broadcasting an Error packet at 116.245953 sec

Packet Sender | Destination | Link-Id

2 4 20004

Table 5.23: An Error Packet has been sent by node 2
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Forwarding data packets

Sending or forwarding a data can be done by a source node or an intermediate node.
When a node has a ready data to send, it searches for a route to the destination. If
only one route is found, the node uses that route to send data. If more than one route
is available in the routing table, the best route is used to send data. If no route is
available, the node queues the packet in the interface queue. When a node gets a
route to a new destination, it checks the interface queue to see if there are queued

packets belonging to the new destination.

In this scenario Lines 68-75 determine the source and destination nodes to send and
receive data packets. We assume that node four (Destination) receives any incoming
TCP traffic. Therefore, it has a TCP sink agent attached to it. The other node (node
zero) has an FTP agent connected to its TCP agent, simulating the FTP traffic source.
The FTP traffic (data sending) is started at time 8.0 sec ($ns at 8.0 “$ftp start”).
However, at this time no route is available at the source to the destination node as
shown in Table 5.24. Hence, node zero should queue data packets in the interface

queue until a route for node four becomes available.

At 5.0 FRouting table of node [ 0 ) consists of 3 entries ......
3 MO dst hop shop metric link no change at Zeq no
1 1] 1] Hall 0 1] 0.00000000 4
Z 1 Z 1 2 20001 0.85400496 4
3 2 2 Tall 1 2 0.85400 496 4

Table 5.24: Routing table of no 0 at time 8.0 sec

At 10.4097 node 0 receiwed an Update packet contains 4 entries. The entries are:

Entry NO. dst hop shop metric link no Sedq no.
1) 1] 0 Hull 1 Z00oao 3
12) 1 1 Hull 1 z0001 &
(3] 3 it 3 2 10003 4
(4] 4 3 3 3 30004 4

Table 5.25: At 10.4097 Node 0 receives an update packet from node 2 contains 4 entries
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At time 10.4097 sec , node zero receives an Update packet (Table 5.25) from node
2 containing 4 entries. Table 5.26 shows that node zero updates its routing table by
adding 2 new routes (one for node three and one for node four). As soon as it gets a
route for node four, node zero starts to forward the queued packets.
In this scenario, we describe the forwarding of packet no 5 from source (node zero)
to destination (node four).
- At 10.4097 node zero selects a route in the fifth entry (4 hops) in Table 5.26 and
forwards the packet to node two.
- At 10.4146 node two selects a route in the fifth entry (3 hops) in Table 5.27 and
forwards the packet to node one.
- At 10.4198 node one selects a route in the fifth entry (2 hops) in Table 5.28 and
forwards the packet to node three.
- At 10.4247 node three selects a route in the fifth entry (1 hop) in Table 5.29 and

forwards the packet to node four.

Transmitting data packets from node zero to node four is shown in Figure 5.21.

At 10,4097 FRouting table of node [ 0 ) consists of 5 entries ......
3 N0 dst hop shop metric link no change at sedq no.
1 0 0 Null i} 0 0.00000000 G
2 1 2 1 2 Z0001 10. 40965830 [
3 2 2 Hull 1 2 10. 40965530 &
4 g 2 1 = 10003 10. 409658830 4
5 4 2 1 4 30004 10. 409653830 4

Ar 10,4146 FRouting table of node ( 2 ) consists of 5§ entries ......
5 NO dst hop shop metric link no change at Zeq no.
1 i} 0 Null 1 20000 8.12430147 [
2 1 1 Null 1 20001 g.09628605 [
3 2 2 Mull 0 20002 0.00000000 [
4 3 1 3 2 o003 §.09628605 4
3 4 1 o & 30004 G.09625605 4

Table 5.27: Routing table of node 2 at the time of forwarding packet number 5
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At 10,4195 FRouting table of node [ 1 ) consists of 5 entriesz

5 MO dst hop shop metric link no change at seq no
1 i} 2 0 2 Z0ooo 10. 40968815 3
2 1 1 Mull 0 1000l 0.00000000 3
3 Z z Mull 1 loooz 10.40965515 g
4 3 3 Null 1 10003 10.404353403 3
5 4 = 4 2 30004 10.40435403 [

Table 5.28: Routing table of node 1 at the time of forwarding packet number 5

At 10,4247 PRouting table of rnode [ 3 ) consists of 5 entries

5 MO dst hop shop metric link no change at Sedq no.
1 a 1 2 3 20000 §.09628624 4
2 1 1 Null 1 30001 8.09628624 &
3 2 1 2 2 loooz 8.09628624 4
4 3 3 Null a 30003 0.00000000 6
] 4 4 Null 1 30004 10.28001459 &
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Figure 5.21: Node 0 transmits data packets to node 4
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Due to the movement of nodes, routing tables may frequently updated. At time
69.4509 node zero received an Update packet (Table 5.31) from node two. Table
5.30 shows the routing table of node zero at the time of receiving the packet. As a re-
sult, node zero updates its routing table (row 2, 3, 4, and 5 in Table 5.32. From Table
5.32 we can see that the route to node four becomes in 3 hops. Node zero continue

sending the data through this route as shown in figure 5.22.

At 59,4509 Routing table of node ( 0 ) consists of § entkies ......
5 MO dst hop shop metric link no change at sedq no
1 i} 0 Hull i} i} 0.00000000 15
2 1 2 1 4 20001 60.09450843 16
2] 2 2 Null 1 2 60.09450843 15
4 3 2 1 3 10003 60.09450843 14
5 4 2 1 4 30004 60.09450843 28

Table 5.30: Routing table of node 0 at 69.4509 sec before dealing with the update packet

At 69,4509 node 0 receiwed an Update packet contains 4 entries. The entries are:

Entry NO. dst hop shop netric link no sedq ho
1) u] u} all 1 Zoooo 15
12) 1 1 Tall 1 Zoool 15
13) 3 1 3 2 10003 16
4] ! 1 4 Z 10004 32

Table 5.31: An update packet contains 4 entries received by node 0 from node 2 at 9.4509 s

Ar. 69,4509 Routing table of node [ 0 ) consists of § entries ......
3 N0 dst hop shop metric link no change at sedq no
1 a a Null a a 0.00000000 18
2 1 2 1 2 20001 £9.45091791 18
3 2 2 Null 1 2 69.45091791 20
4 3 2 1 3 10003 £9.45091791 16
5 4 2 1 3 looo4 £9.45091791 32

Table 5.32: Routing table of node 0 at 69.4509 sec after dealing with the update packet
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Figure 5.22: Node 0 transmits data packets to node 4 in 3 hops

5.7 Summary

Due to the large number of control packets transmitted by the preliminary version
(MDSDVO0), we present a revised version in this chapter to reduce the number of
control packets and improve the performance in terms of the packet delivery ratio.

The final version is referred to as MDSDV.
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The main source of control packets is from the Update packets and Error Packets
that are broadcast to the entire network. Thus, MDSDV uses a different mechanism
to deal with these two packets. Instead of rebroadcasting Error and Update packets,
MDSDV broadcasts them only to its one hop neighbours. In addition, the Full dump
is unicast only to the new neighbours. When a node receives a control packet from a
new neighbour, it responds by unicasting its routing table to that neighbour.
MDSDV only uses a Hello Message instead of the Hello Message and Available mes-
sage that are used in MDSDVO0. A node broadcasts a Hello Message only when it has
no neighbours (this rarely occurs).

Moreover, MDSDV uses another table called a Queue table to queue packets if a route

to the destination is not available.

Appendix A presents the performance comparison between the preliminary version
and final version of MDSDV. The results show that MDSDV makes dramatic im-

provements in delivering data and reducing the control overhead.
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This chapter investigates the overheads, i.e., the control packets generated by MDSDV.
Each routing protocol uses a number of control packets and has its own strategy to
build routes. MDSDV uses five types of control packets to maintain its routes as
discussed in section 5.3. In this chapter, we investigate the control packets that are
generated and used by MDSDV. Specifically, we investigate all control packets in
subsection 6.2.1, Full Dumps in subsection 6.2.2, Update Packets in subsection 6.2.3,
Error Packets in subsection 6.2.4, Hello Messages in subsection 6.2.5, and Failure
Packets in subsection 6.2.6. We conducted all our simulation experiments using the

Network Simulator NS-2 [33] (version 2.30).

Although most researchers use the number of control packets to measure the over-
head, there are other metrics that can be used to measure overhead (e.g., number of
control bytes, memory overhead, energy overhead). The total number of control bytes
transmitted is one of the metrics. It includes not only the bytes in the routing con-
trol packets, but also the bytes in the header of the data packets [73]. The memory
overhead can be described as the size in bits of all the data structures used by the
routing protocol [98]. The energy overhead is the energy level associated with each
transmission and the power spent by receivers. All these measurements show similar

behaviours to the number of control packets, so we use that metric.
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While this chapter focuses solely on MDSDV overheads, chapter 7 and 8 also report
on overheads. Chapter 7 compares the Normalized Routing Load (NRL) of MDSDV
and DSDV in a number of scenarios, and Chapter 8 compares the NRL of MDSDV,
AODY, and DSR.

6.1 Simulation Environment

Our simulation environment uses similar traffic and mobility models to [26][27][60].
The evaluation is based on the simulation of 50 nodes forming a network over a 670
x 670 square meter area. Nodes move according to the widely used random waypoint
model [11][15][63]. In this model, each node begins the simulation by remaining
stationary for pause time seconds. It then selects a random destination in the 670m x
670m space and moves to that destination at a speed distributed uniformly between 0
and some maximum speed. Upon reaching the destination, the node pauses again for
pause time seconds, selects another destination, and proceeds there as previously de-
scribed, repeating this behaviour for the duration of the simulation which is 200 sec-
onds. The Distributed Coordination Function (DCF) of IEEE 802.11 [24] for wireless
LANSs is used as the MAC layer protocol. We fix the number of nodes at 50 nodes
where each node has a 250 meter propagation radius. Meanwhile, we varied the pause
time and speed of nodes to illustrate the impact of mobility and speed on the number
of control packets generated by MDSDV. We run our simulations varying the pause
times from 0, 50, 100, 150 and 200 simulated seconds obtaining a range of scenarios
that span continuously moving nodes to static ones. We varied the maximum node

speed among values 1, 5, 10, 15, 20 and 25 m/s.

The traffic is generated by 10 Constant Bit Rate (CBR) sources spreading the traffic
among all nodes. The sending rate was set to 4 packets per second, and the data
packet’s size was set to 512 bytes. Each data point represents an average of thirty runs

with identical traffic models, but different randomly generated mobility scenarios.
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Results are based on simulation of 30 runs, and the error bars represent the 95% con-

fidence interval of the mean. Table 6.1 lists the parameters used for the simulations.

Parameter Value
Simulator NS-2
Simulation time 200 seconds
Area of the network 670m x 670m
Number of nodes 50 nodes
MAC layer IEEE 802.11
Transmission range 250 m

Pause time

0,50, 100, 150, and 200 seconds

Maximum speed of nodes

1,5, 10, 15, 20, and 25 m/s.

Mobility model Random waypoint
Traffic type CBR (UDP)
Number of data sources 10 Sources

Packet size 512 byte

Transmission rate

4 packets/second

Bandwidth

2 Mb/s

Link failures models

Link failure detection method of MAC layer

and TimeOut of beacon packet

Number of runs per data point

30

Table 6.1: Simulation parameters used to evaluate the control packets generated by MDSDV
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6.2 Simulation Results

6.2.1 Control Packets

In this subsection, we analyze the total control packets that are generated and trans-
mitted by MDSDV. From Figure 6.1 and Table B.1, we observe that the number of
control packets transmitted in static networks (pause time 200) at all speeds is very

similar, whereas it increases as the mobility increases.
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Figure 6.1: Control Packets as a function of Pause Time

Also, the other parameter of mobility (speed of nodes) has an impact on the number of
control packets, where the number of control packets increases as the speed increases.
From the first row of table B.1, we see that in highly dynamic networks (Pause time
0), MDSDV transmits at low speed (1 m/s) only about 27% of control packets that
are transmitted at high speed (25 m/s). This is because nodes move slowly at low
speed. As a result, topology changes happen rarely. In other words, nodes do not
discover new neighbours frequently and hence do not need to unicast Full Dumps
frequently. Also nodes do not discover broken links frequently and hence do not need
to broadcast Error Packets frequently. Thus, the number of Full Dumps and Error

Packets is reduced. It is interesting that the number of control packets transmitted at
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high mobility (Pause time 0) with low speed (1 m/s) is similar to the number of control

packets transmitted at low mobility (pause time 200) with high speed (25 m/s).

Moreover, we observe that the 4653 control packets transmitted in high mobility
(pause time 0) at high speed (25 m/s) is four times greater than the 1274 control

packets transmitted in high mobility (pause time 0) at low speed (1 m/s).

6.2.2 Full Dumps

Figure 6.2 and Table B.2 show the number of Full Dumps unicasted during the sim-
ulation. When any node receives any type of control packet from a new neighbour,
it responds by unicasting a Full Dump to that neighbour as described in Chapter 5.
We found that the number of Full Dumps is very low and similar in medium mobility
(pause time 100 sec) and low mobility (pause time 200 sec) at all speeds, whereas it

increases as the mobility increases and the speed increases.

This is because Full Dumps are unicast only when discovering new neighbours. This
happens rarely at low mobility and at low speeds, and happens frequently at high

mobility.
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Figure 6.2: Full Dumps as a function of Pause Time
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6.2.3 Update Packets

Figure 6.3 and Table B.3 show that neither the mobility nor speed of nodes has an
impact on the number of Update Packets. This is because Update Packets in MDSDV
are time-triggered only, i.e., there are no event-triggered updates. As a result, the
number of Update Packets will be very similar in both dynamic and static networks

at all speeds.
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Figure 6.3: Update Packets as a function of Pause Time

6.2.4 Error Packets

Figure 6.4 and Table B.4 show the number of Error Packets that are broadcast during
the simulation. As shown in Figure 6.4, number of Error Packets increases as the mo-
bility increases. Also, the number of Error Packets increases as the speed increases.
This is because Error Packets are broadcast when broken links are discovered, and

the probability of links breaking increases as the mobility increases.
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Figure 6.4: Error Packets as a function of Pause Time

6.2.5 Hello Messages

Figure 6.5 and Table B.5 present the number of Hello Messages that are broadcast

during the simulation. In general, as shown in Table B.5, we can see that the number

of Hello Messages is very small and very similar at all speeds. This is because peri-

odically the node checks its Neighbours Table (NT) to decide whether to broadcast a

Hello Message or an Update Packet, and it broadcasts a Hello Message only when it

has no neighbours (its NT is empty). Broadcasting Hello Messages usually occurs at

the beginning of the simulation time. The NT stays empty until the node receives a

control packet from a neighbour node.
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Figure 6.5: Hello Messages as a function of Pause Time
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6.2.6 Failure Packets

Figure 6.6 and Table B.6 show the number of Failure Packets that are sent to the
source nodes during the simulation. When an intermediate node fails to forward a
data packet through the route that has been specified by the source node, it unicasts a
Failure Packet to the source, as mentioned in section (5.3). As can be seen from Table
B.6, the number of Failure Packets is very small at all speeds because the source node

usually uses the shortest and newest route to send its data packets.
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Figure 6.6: Failure Packets as a function of Pause Time

6.3 Summary

We have investigated the control packets generated by MDSDV. We conclude that
when the mobility and speed increases, only the number of Full Dumps and Error
Packets increase. This is due to the probability of discovering new neighbours and
discovering broken links increases as the mobility and speed increases. On the other
hand, the mobility and speed have no impact on the number of Update Packets be-
cause this kind of packet is broadcast periodically. Also the number of Failure Packets
is very low because MDSDYV usually uses the shortest and newest route. Finally, the
number of Hello messages is very low because this message is broadcast only when
the NT of a node is empty (no records), and the NT is updated whenever any control

packet is received.
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DSDV is a widely used single path routing protocol, and MDSDV adds multiple
routes to it, as outlined in Chapter 4. One of our goals was to improve the performance
of DSDV. In this chapter, our aim is to demonstrate the improvement of MDSDV over

DSDV in terms of a number of metrics.

To obtain fair comparisons among the routing methods, each run of the simulator
accepts as input a scenario file that describes the exact motion and the exact sequence
of packets originated by each mobile node, together with the time at which each
motion change or packet origination occurs. We pregenerate a number of scenario
files with varying movement patterns and communication patterns, and then run the
routing protocols against each of these scenario files. This chapter is organized as
follows: Section 7.1 presents the performance evaluation methodology. Section 7.2
presents the comparison results of our simulations. Finally, Section 7.3 summarises

the simulation results.
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7.1 Methodology

In this chapter, we use similar traffic and mobility models to [26][27][60]. Nodes in
the simulation move according to the random waypoint model [11][15][63], where
each node remains stationary for pause time seconds before selecting and moving to

a new randomly chosen destination.

We used 10 CBR (Continuous Bit-Rate) flows with 4 packets per second. The source-
destination pairs are distributed randomly over the network. Only 512 byte data pack-
ets are used as a data packet’s size, and the MAC layer protocol is IEEE 802.11. All
traffic sessions are established at random times and they stay active until the end of

the simulation time.

We have chosen to vary three factors (Network size, Pause Time, and Speed of nodes)
to study their impact on the behaviour of the protocols. Thus, our simulation is con-

ducted using three different experiments to compare MDSDV with DSDV.

1. Inthe first experiment, we tested the impact of network size on the performance
of MDSDV and DSDV by varying the number of nodes. 20, 30, 40, 50, 60, 70,

80, 90, and 100 node networks are used.

2. In the second experiment, we ran our simulations with movement patterns gen-
erated for 5 different pause times: 0 (Dynamic network), 50, 100, 150, and 200

(static network) seconds.

3. We performed a third experiment to study the effect of the velocity of the nodes
on the protocol’s performance. We used six different maximum speeds of node

movement: 1, 5, 10, 15, 20, and 25 m/s.

Each data point represents an average of 30 runs with identical traffic models, but

different randomly generated mobility scenarios. We include error bars on the graphs
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which represent 95% confidence interval of the mean. The three experiments use the
same simulation parameters that are listed in Table 6.1 with some differences. The

differences are listed in tables 7.1, 7.2, and 7.3.

7.1.1 Performance Evaluation Metrics

Several performance metrics are used for evaluation such as Packet Delivery Fraction,
Average End-to-End Delay, throughput, Total Packets Received, Normalized Routing
Load, Normalized MAC Load, Control Packet Overhead, Packet Loss Percentage,
and Route Discovery Frequency. In this chapter, our evaluation is based on four key
performance metrics: Packet Delivery Fraction (PDF), Average End-to-End Delay,
Normalized Routing Load (NRL), and Data Packets Dropped. The first three metrics
are very widely used [37][97][108]. The first two are the most important metrics for
best-effort traffic [12][116]. However, these performance metrics are not completely
independent. For example, a shorter delay may not necessarily imply a higher packet
delivery fraction, because delay is only measured on the successfully delivered pack-
ets. On the other hand, the lower packet delivery fraction and the longer delay may

be the reasons for the larger overhead [12].

e Packet Delivery Fraction (PDF): This measurement shows the ratio between
the number of packets originated by the CBR sources and the number of pack-
ets successfully received by the CBR sinks at their target destinations. The
PDF shows how a protocol successfully delivers packets from source to des-
tination. The higher PDF give us the better results. It characterizes both the
completeness and correctness of the routing protocol. This metric is calculated
by dividing the number of packets received by destinations over the number of

packets originated from sources.

> packets received by destinations

Packet Delivery Fraction (PDF) = x 100

> packets sent by sources
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e Average End-to-End Delay: It is the average elapsed time to deliver a packet
from source to destination. This metric includes all possible delays caused by
queueing at the interface queue, propagation and transfer times, and retrans-

mission delays at the MAC (Medium Access Control) layer.

Average End-to-End Delay — > (packet received time - packet sent time )

> packets received by destinations

e Normalized Routing Load (NRL): It is the number of routing packets trans-
mitted per data packet delivered to the destination. It is calculated by dividing
the number of transmitted control packets over the number of data packets re-
ceived by the destination. This metric is important because it measures the
scalability of a protocol, the degree to which it will function in congested or
low-bandwidth environments, and its efficiency in terms of consuming node

battery power.

> Transmitted Routing Packets
> packets received by destinations

Normalized Routing Load (NRL) =

e Data Packets Dropped: This metric is a measure of data lost by the protocol
and includes the data that the source or intermediate nodes drop during the

simulation time.
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7.2 Simulation Results

7.2.1 Network Size (Varying Number of Nodes)

In this experiment, the comparison of the MDSDV and DSDV routing protocols is
performed by varying the network size (varying number of nodes). The number of
nodes is set to 20, 30, 40, 50, 60, 70, 80, 90, and 100 nodes. We run our simulations
with movement patterns generated for 2 different pause times: 0 and 200 of simu-
lated seconds (0 as a dynamic network and 200 as a static network), whereas we limit
the maximum speed of a node to 20 m/s which is a high speed for an ad hoc net-
work, compared to traffic speeds inside a city [102]. Table 7.1 shows the simulation

parameters that differ from the baseline parameters given in Table 6.1.

Parameter Value
Number of nodes 20, 30, 40, 50, 60, 70, 80, 90, and 100 nodes
Pause time 0, 200 seconds

Max. speed of nodes 20 m/s

Table 7.1: Parameters used in the first experiment to compare MDSDV with DSDV

e Packet Delivery Fraction (PDF)

Figures 7.1 and 7.2 compare MDSDV and DSDV on the basis of their Packet
Delivery Fraction (PDF) as a function of Network Size in both a dynamic net-
work and a static network respectively. The figures show that there is a sig-
nificant difference in the performance of the protocols especially in dynamic
networks. MDSDV improves the performance of DSDV by between 27% and
31% in dynamic networks (Figure 7.1), whereas the improvement in perfor-

mance is between 2% and 3% in static networks (Figure 7.2).
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Figure 7.2: PDF vs Number of Nodes (Pause Time 200 sec)

In general, MDSDV improved the performance of DSDV in both dynamic and
static networks. The reason for the low PDF of DSDV is due to the fact that it
uses the stale routes in the case of broken links [52][70]. In DSDYV the existence
of a stale route implies that there is a valid route to the destination. In DSDV,
the node has to wait until it receives the next update message originated by the
destination node to update its routing table entries. On the other hand, MDSDV
always uses the newest and shortest route of the alternative routes available in

the case of link failure.

e Average End-to-End Delay

The Average End-to-End Delays are shown in Figure 7.3 and Figure 7.4 for

dynamic and static networks respectively. From the two figures we can con-
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clude that the difference between MDSDV’s delay and DSDV’s delay is not
statistically significant in all cases (except for networks with 100 nodes). In
these networks MDSDV exhibits more delay (90%) than DSDV in the dynamic
environment (Figure 7.3), and exhibits less delay (84%) in static environment

(Figure 7.4).
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e Normalized Routing Load (NRL)

Figures 7.5 and 7.6 plot the Normalized Routing Load (NRL) obtained in our
first simulation experiment for dynamic network and static network. The main
observation is that MDSDV has a greater NRL than DSDV in dynamic net-

works, and has a lower NRL in static networks. The figures show that the NRL
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grows linearly with the network size for both MDSDV and DSDV. We also

found that the difference in NRL increases as the network size increases.

Specifically, compared to DSDV, MDSDV increased the overhead by between

43% and 150% in dynamic networks (Figure 7.5), whereas it reduced the over-

head by between 1% and 36% in static networks (Figure 7.6).

The main reason for the increase of overhead in dynamic networks using MDSDV

is that the unicasting of Full Dumps and the broadcasting of Error Packets may

happen frequently. Note that in dynamic networks nodes become neighbours

and go out of transmission range of each other frequently.
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e Data Packets Dropped

Figures 7.7 and 7.8 show a comparison between the MDSDV and DSDV rout-
ing protocols in terms of the Data Packets Dropped by each protocol. We can
be confident that MDSDV drops less data packets than DSDV in all cases. The
only exceptions is 20 node static network where the two protocols drop similar
data packets. This is because of the few neighbours that can provide multiple

paths for each destination.
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Figure 7.8: Data Dropped vs Number of Nodes (Pause Time 200 sec)

In a dynamic environment (Figure 7.7) we observe that MDSDV dropped 10%
of the data packets dropped by DSDV in 20 node networks. Whereas, it dropped
about 4% of the data packets dropped by DSDV in networks with more than
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20 nodes. On the other hand, in a static environment (Figure 7.8), MDSDV
dropped about 83% of data packets dropped by DSDV in 20 node networks.
Whereas, it dropped between 1% and 10% of data packets dropped by DSDV
in networks with more than 20 nodes.

Our experiments show that the number of data packets dropped by MDSDV is
very similar in all networks except a network of 20 nodes (i.e, one with a low

node density).

This is because in low node density networks, the probability of getting multiple
paths is low. In both cases (dynamic and static networks), the simulation results
show that compared with DSDV, MDSDV can adapt more quickly to frequent
topology changes in MANETS, and reduce the number of dropped data packets
due to link breakage. This is because DSDV waits for a period of time to get
new information, and if no route is available and a node plans to transmit data,
the node has to queue the packets. Alternatively, the packets will be dropped if
the queue is full. In contrast, packet drops are fewer with MDSDV as alternate

routes may be used in response to link failures.

7.2.2 Mobility (Varying Pause Time)

This experiment simulates 50 mobile nodes forming an ad hoc network, moving over
a rectangular 670x670 flat space. To study the impact of mobility on performance,
we choose to vary the pause time. The pause time is varied as 0 (high mobility), 50,
100, 150, and 200 seconds (no mobility). Two maximum speeds 1 m/sec (low speed)
and 20 m/sec (high speed) are used. Table 7.2 shows the simulation parameters that
differ from the baseline parameters given in Table 6.1. The same four metrics of the

previous subsection are measured and compared.
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Parameter Value
Number of nodes 50 nodes
Pause time 0, 50, 100, 150, and 200 seconds

Max. speed of nodes 1 and 20 m/s

Table 7.2: Parameters used in the second experiment to compare MDSDV with DSDV

e Packet Delivery Fraction (PDF)

Figures 7.9 and 7.10 show the packet delivery fractions of MDSDV and DSDV
as a function of pause time in a low speed network and a high speed network
respectively. We can confidently conclude that MDSDV outperforms DSDV in

all cases specially in dynamic environment.

The figures show that MDSDV improves the performance of DSDV by between
2% and 5% in low speed networks (Figure 7.9), and between 2% and 30% in
high speed networks (Figure 7.10). Moreover, we found that the difference in
performance increases as the pause time decreases. This is because as the mo-
bility becomes low, nodes become more stationary which leads to more stable
paths from source to destination nodes. MDSDV improved the PDF since it

uses an alternative path to destination when a broken link occurs.
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e Average End-to-End Delay

Figures 7.11 and 7.12 show the average End-to-End delays in both low speed

and high speed networks respectively. From the figures we can confidently

conclude that the difference between MDSDV’s delay and DSDV’s delay is not

statistically significant in all cases
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e Normalized Routing Load (NRL)

Figure 7.13 shows that in a low speed network (speed = 1 m/s) at all pause
times, MDSDV has an improvement over DSDV in terms of Normalized Rout-

ing Load of between 19% and 23%.

On the other hand, Figure 7.14 shows that in a high speed network (speed =
20 m/s), MDSDV and DSDV seem to compete with each other. Both protocols
have regions where they outperform the other protocol, and neither protocol is
uniformly better. Specifically, MDSDV has less routing overhead than DSDV
in low mobility networks (pause time is greater than 100 sec) by between 13%
and 22%, whereas it has higher routing overhead in high mobilty networks

(pause time is less than 150 sec) by between 6% and 83%.

MDSDYV is worse than DSDV in the case of high mobility and high speed due
to the large number of Full Dumps and Error Packets that are sent by MDSDV,
because nodes frequently become neighbours and go out of the range of each

other.
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e Data Packets Dropped

Figures 7.15 and 7.16 show the Data Packets Dropped in terms of Pause time

for both low speed and high speed networks.

From the figures, we observe that in a high speed network (speed = 20 m/sec),
the mobility has a very slight impact on the performance of MDSDV in terms of
Data Packets Dropped, whereas it has no impact in low speed networks (speed
= 1 m/sec). On the other hand, DSDV is impacted by the mobility in both
networks (low and high speed networks). The number of data packets dropped

by DSDV dramatically increases as the mobility increases.
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From the figures, we can confidently conclude that there is a significant differ-
ence between MDSDV and DSDV in terms of Data Packets Dropped. Specif-
ically, the difference grows from a factor of 68 to a factor of 150 in low speed
networks (Figure 7.15), whereas it grows from a factor of 22 to a factor of 38

in high speed networks (Figure 7.16).
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7.2.3 Mobility (Varying Speed of Nodes)

This experiment studies the behaviour of MDSDV and DSDV in the case of changing

mobility by varying the maximum speed of nodes. Mobility is increased by increasing
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the speed of nodes. In this experiment, we use 6 different speeds; 1 m/sec (low speed),

5, 10, 15, 20, and 25 m/sec (high speed). We ran our simulations with movement

patterns generated for 2 different pause times: 0 and 200 seconds. A pause time of 0

seconds corresponds to continuous motion, and a pause time of 200 (the length of the

simulation) corresponds to no motion. Simulations last for 200 seconds and a 50 node

network with terrain area (670m x 670m) is used for this experiment. Table 7.3 shows

the simulation parameters that differ from the baseline parameters given in Table 6.1.

The same four metrics of the previous subsection are measured and compared.

Parameter Value
Number of nodes 50 nodes
Pause time 0 and 200 seconds

Max. speed of nodes

1,5, 10, 15, 20, and 25 m/s

Table 7.3: Parameters used in the third experiment to compare MDSDV with DSDV

e Packet Delivery Fraction (PDF)

The comparative results of Packet Delivery Fraction for dynamic networks and

static networks are shown in figure 7.17 and figure 7.18 respectively.
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An interesting observation is that the performance of MDSDV stabilized at
nearly 100% in both networks (dynamic and static networks), whereas the per-
formance of DSDV dramatically dropped in the dynamic network when the

speed of nodes increases.

Based on Figure 7.17, the performance of DSDV dropped from 95% to 66%.
The poor performance of DSDV could be caused by the frequent update control
packets as the speed of nodes increases. Although, MDSDV improves the per-
forms of DSDV by only about 2% at all speeds in static networks (Figure 7.18),
the improvement increases up to 32% in dynamic networks (Figure 7.17). The

difference in performance increases as the speed increases.

From the figures, we deduce that the mechanism of backup routes used by
MDSDV is still helpful to the performance of data packet delivery in high mo-

bility even though the number of control packets used rises.

Average End-to-End Delay

Figure 7.19 and Figure 7.20 plot the Average End-to-End Delays for dynamic
and static networks as a function of speed. The two figures show that MDSDV
and DSDV provide similar delay and the difference between MDSDV’s delay

and DSDV’s delay is not statistically significant in all cases.
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e Normalized Routing Load (NRL)

The simulated results of Normalized Routing Load of DSDV and MDSDV are

shown in figures 7.21 and 7.22 for dynamic and static networks respectively.

Figure 7.21 shows that MDSDV demonstrates higher normalized routing load
than DSDV in dynamic networks where the node speed is more than 1 m/sec.
It has more routing load by between 21% and 100%. The major contribution
to MDSDV’s routing load overhead is from Full Dumps and Error Packets.
The movement speed of nodes has an impact on their status. As the movement

speed increases, the probability of meeting a new neighbour (discovering a new
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neighbour) or of losing contact with an old neighbour (discovering a broken

link) increases. As a result, the node responds by unicasting a Full Dump or

responds by broadcasting an Error Packet. The high MDSDV’s routing load

overhead is the price of its high delivery ratio.

In contrast, Figure 7.22 shows that MDSDV presents slightly lower routing

load than DSDV in static networks. Compared to DSDV, MDSDV reduces the

routing load by 22% in static networks.
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e Data Packets Dropped

Figures 7.23 and 7.24 present the Data Packets Dropped by DSDV and MDSDV
in both dynamic and static networks. From the figures we can be confident to

consider that MDSDV drops much fewer data packets than DSDV in all cases.
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Figure 7.23 shows that MDSDV drops much fewer data packets than DSDV
in dynamic networks and the difference increases dramatically as the speed
increases. An interesting observation is that MDSDV drops only between 0.7%
and 3% of data packets dropped by DSDV in both environments (dynamic and

static networks).
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This is because DSDV has only a single path to each destination, and if a path
to the desired destination does not exist or a broken one is found, the packets
are dropped instead of queued [45]. In contrast, using MDSDV, an active node
which is forwarding data packets commonly maintains several fresh alternative
paths. If the used path fails, the data packet can be forwarded through another

path instead of being dropped.

7.3 Summary

The objective of this chapter was to provide a quantitative comparison of the DSDV
and MDSDYV routing protocols. The performance comparison uses four metrics:
Packet Delivery Fraction, Average End-to-End Delay, Normalized Routing Load, and
Data Packets Dropped in three different scenarios: changing number of nodes, chang-
ing pause time, and changing speed of nodes. The results show that MDSDV routing
protocol is effective especially in situations where nodes move frequently. The key

observations are as follows.

1. Packet Delivery Fraction: Our results show that MDSDV is more robust and it
improves the performance of DSDV in all of the simulated scenarios. The dif-
ference in performance increases as the mobility increases (Figures 7.9, 7.10,
and 7.17). Also, it is observed that MDSDV is a stable protocol that deliv-
ers more than 99% of data packets in all cases (except for a 20 node network)
(Figure 7.2). It is difficult for a small network (e.g., 20 nodes) to demonstrate
availability of multiple paths, since there are few nodes that offer alternative
routes. Figures 7.17 and 7.18 show that the performance has slightly improved
by 2% in static networks, whereas it has considerably improved by between 5%
and 32% in dynamic networks (depends on the speed). Moreover the speed of
the nodes has a little impact on the performance of MDSDV. However, the per-
formance of DSDV dramatically decreases in dynamic networks as the speed

increases (Figure 7.17).
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2. The results show that MDSDV and DSDV have a similar delay in almost all
cases. The only exception is in 30 node networks where MDSDV produces
more delay by %90 in dynamic environment (Figure 7.3), and produces less

delay by %16 in static environment (Figure 7.4).

3. From our results, we found that in a high mobility environment (Figure 7.21),
MDSDV demonstrates significantly higher routing load than DSDV. In con-
trast, it provides a lower routing load than DSDV in low mobility environment
(Figure 7.13 and 7.22). The high routing load of MDSDV in a high mobility
environment is due to the extra routing packets that are broadcast. Specifi-
cally, the number of Full Dumps and Error Packets increases as the mobility
increases, as a result of discovering new neighbours and discovering link fail-
ures. The high MDSDVs routing load overhead is the price of its high delivery

ratio

4. MDSDV drops significantly less data packets than DSDV in all cases. From
the figures 7.15, 7.16, 7.23, and 7.24 we observed that the mobility and speed
have a little impact on the performance of MDSDV in terms of Data Pack-
ets Dropped. In contrast, the mobility and speed have a significant impact on
the performance of DSDV. The number of data packets dropped by DSDV in-
creases as the mobility and/or speed increase (Figures 7.15, 7.16, and 7.23).
MDSDV dropped less data packets because an alternative route can always
be used by the source and the intermediate nodes in response to link failures.
However, no such alternative path is available for DSDV and thus packets are

dropped until a new route can be found.

Our results indicate that the performance of MDSDV protocol is certainly superior
to standard DSDV. MDSDV has several novel aspects in that increase the Packet
Delivery Fraction, reduce the number of Data Packets Dropped, reduce the control
overhead in a low mobility environment, and achieve multiple node-disjoint rout-

ing paths. It is evident from our simulation results that MDSDV outperforms DSDV
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because multiple node-disjoint routing paths provide robustness to mobility. The sim-
ulation results show that MDSDYV increases the Packet Delivery Fraction and reduces
the number of Data Packets Dropped with little increased overhead in MANETS with

high mobility.

There are key aspects of the MDSDV design that contribute to its good performance
compared to DSDV. Firstly, MDSDV uses multiple node-disjoint paths instead of a
single path. Secondly, the Update Packet is time-triggered only. Thirdly, the Full
Dumps are unicast only when discovering new neighbours. Fourthly, the Error Pack-
ets are not rebroadcast. Finally, the routes are always updated by Update Packets and

Full Dumps which make the routes fresh.
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and DSR

In this chapter, our overall goal is to compare the performance of MDSDV with two
well known reactive routing protocols: AODV and DSR. We have chosen these two
reactive protocols as AODV is one of the most popular and widely researched on-
demand ad hoc protocols [55]. and DSR is a protocol in which a node may learn and
cache multiple routes to any destination [47], and hence an alternative path can be
used in case of a link failure. We use similar traffic and mobility models to [49]. The
rest of this chapter is organized as follows: Section 8.1 presents the performance eval-
uation methodology. Section 8.2 presents the comparison results of our simulations.

Finally, the simulation results are summarized in section 8.3.

8.1 Methodology

In order to make fair comparisons between the protocols, it is necessary to challenge
the protocols with identical loads and environmental conditions. Four experiments

are reported in this chapter. For each experiment, we pre-generated a number of
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scenario files that describe the exact motion of each node and the exact sequence of
packets originated by each node. In the first experiment (Section 8.2.1), we varied
the number of source-destination pairs to change the offered load in the network. The
second experiment (Section 8.2.2) shows the impact of using different network sizes
on the behaviour of the protocols by varying the number of nodes. Varying the pause
time in the third experiment (Section 8.2.3) shows some of the impact of mobility
on the behaviour of the four protocols. Finally, the fourth experiment (Section 8.2.4)

manifests the impact of the speed on the performance of the protocols

We simulated a number of mobile nodes forming an ad hoc network, moving about
over a square (670m x 670m) flat space for 100 seconds of simulated time. A square
space is chosen to allow nodes to move more freely with equal node density [116].
Nodes in the simulation move according to the random waypoint model [11][15][63],
where each node starts its journey from a random location to a random destination at
a speed distributed uniformly between 0 and some maximum speed. Upon reaching
the destination, the node pauses for pause time seconds, selects another destination,
and proceeds there as previously described, repeating this behaviour for the duration
of the simulation (100 seconds).

The communication model used in our simulations is constant bit rate (CBR) traffic.
The size of the packet is 512 bytes. All connections were started at certain times and

continued until the end of the simulation time of 100 seconds.

Each data point represents an average of 30 runs with identical traffic models, but dif-
ferent randomly generated mobility scenarios. We include error bars which indicate
95% confidence that the actual mean is within the range of said interval. In certain
cases, the confidence intervals are small enough that they are obscured by the symbol
itself. The four experiments use the simulation parameters given in Table 6.1 with

some differences. The differences are listed in tables 8.1, 8.2, 8.3, and 8.4.
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8.1.1 Performance Evaluation Metrics

In this chapter, we present a performance comparison of MDSDV with the AODV
and DSR routing protocols. The comparison is based on the same four metrics that
are considered in Chapter 7: Packet Delivery Fraction (PDF), Average End-to-End
delay, Normalized Routing Load (NRL), and Data Packets Dropped.

8.2 Simulation Results

This chapter reports on four experiments manifesting the impact of Offered Load
(Section 8.2.1), Network Size (Section 8.2.2), Pause Time (Section 8.2.3), and Speed
of Nodes (Section 8.2.4). The simulation results bring out several important char-
acteristic differences in the three protocols. We categorize and discuss them in the

following subsections.

8.2.1 Offered Load (Varying Number of Sources)

This experiment considers a MANET with 50 mobile nodes spread randomly over an
area of 670m x 670m. Nodes move with a maximum speed of 20 meters/sec with two
pause times: 0 and 100 seconds. In this experiment, we present an evaluation of the
impact of changing the number of sources on the behaviour of the protocols. We vary
the source-destination pairs (10, 20, 30, 40, and 50 traffic sources), while keeping
the packet’s size and the sending rate constant at 512 bytes and 4 packets per second
respectively. The source-destination pairs are spread randomly over the network, and
the number of sources is varied to change the offered load in the network. Simulations
are run for 100 simulated seconds. Each data point represents an average of thirty runs
with different randomly generated mobility scenarios. Table 8.1 shows the simulation

parameters that differ from the baseline parameters given in Table 6.1.
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Parameter Value
Simulation time 100 seconds
Number of nodes 50 nodes
Pause time 0, 100 seconds
Max. speed of nodes 20 m/s
Number of sources 10, 20, 30, 40, and 50 sources

Table 8.1: Parameters used in the first experiment to compare MDSDV with AODV and DSR

e Packet Delivery Fraction (PDF)

Figures 8.1 and 8.2 show the Packet Delivery Fraction of MDSDV, AODV
and DSR for both dynamic and static networks respectively, as a function of

network load (number of sources).

The simulation analysis for the figures show that the PDF of the three proto-
cols are similar for 10 and 20 sources in both dynamic and static networks.
For networks with 30, 40, and 50 sources, figure 8.1 shows that MDSDV has
slightly better PDF than AODV and DSR in dynamic networks, whereas figure
8.2) shows that MDSDV outperforms AODV and DSR in static networks and
the difference in performance increases as the number of sources increases.
MDSDV outperforms AODV by up to 12% and outperforms DSR by up to
9%. This is because both of the reactive protocols require more paths to send
data when the number of sources increases. As a result, extra routing packets
(RREQ and RREP) are broadcast which may create packet collisions. Whereas,
using MDSDV, a node expects to have at least one path ready for each destina-

tion in its routing table.
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Average End-to-End Delay

The Average End-to-End Delays of MDSDV, AODYV, and DSR are shown in
figures 8.3 and 8.4 for dynamic and static networks respectively. The main
observation is that DSR exhibits the highest delay with 30, 40, and 50 sources
in both cases (dynamic and static networks). The figures show that MDSDV,
AQODYV, and DSR have similar delays for 10 and 20 sources in dynamic networks
(Figure 8.3).

The delay of DSR is comparable to MDSDV at small traffic loads (10 and 20
sources), but with the increase in network load (30, 40, and 50 sources), delay
in DSR is much higher than MDSDV. Compared to DSR, MDSDV reduces the

delay by between 13% and 67% in static networks and between 17% and 58%
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in dynamic networks. From the figures we can see that MDSDV and AODV
have very similar delay in dynamic networks. Moreover, we can see that both
protocols have similar delay in static networks with 30, 40, and 50 sources,
whereas MDSDV offers a significant reduction in delay by up to 66% in static

networks with 20 and 30 sources.
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e Normalized Routing Load (NRL)

Figures 8.5 and 8.6 show the Normalized Routing Load for both dynamic and
static networks as a function of the number of sources. The results show that

AODV demonstrates significantly the highest routing load which increases as
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the number of sources increases. We expected this, since AODV is an on-
demand routing protocol and as the number of sources increases, more routing
packets have to be transmitted in order for routes to more destinations to be
maintained [16]. Compared to AODV, MDSDV decreases the routing load by
between 18% and 72% in dynamic networks (Figure 8.5) and between 6% and

93% in static networks (Figure 8.6).
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On the other hand, MDSDV and DSR seem to be competitive with each other.
In dynamic networks, Figure 8.5 shows that MDSDV produces more overhead
(up to 196%) for small traffic loads (10 and 20 sources), and produces similar

overhead for large traffic loads (30, 40, and 50 sources). However, in static
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networks (Figure 8.6), MDSDV produces more overhead by between 43% and
119% for small traffic loads, and produces less overhead by between 53% and
61% for large traffic loads.

The other observation is that the MDSDV does not produce more overhead as
number of sources increases. This is expected as MDSDV is a proactive routing
protocol and the routes to all destinations in the network are created even if they

are not needed.

Data Packets dropped

Figures 8.7 and 8.8 show the number of data packets dropped by the three

protocols as a function of the number of sources.
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Figure 8.7: Data Dropped vs Number of Sources (Dynamic network)

For small traffic loads (10, 20 sources), the three protocols drop similar num-
ber of data packets in both networks (dynamic and static networks). In con-
trast, for large traffic loads (30, 40, and 50 sources), the figures show that
AODV drops significantly more data packets. For large traffic loads, MDSDV
dropped between 47% and 58% in dynamic networks (Figures 8.7), and drops
between 12% and 22% in static networks (Figures 8.8) of data packets dropped
by AODV.
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MDSDV and DSR dropped similar data packets in dynamic networks, whereas
MDSDV dropped between 38% and 50% of data packets dropped by DSR in

static networks.
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Figure 8.8: Data Dropped vs Number of Sources (Static network)

The number of sources has relatively less impact on the performance of MDSDV.
This is because MDSDYV is a multipath proactive routing protocol and hence an
alternative path is mostly available that can be used immediately to forward a
data packet instead of dropping it. In contrast, AODV is a single path routing
protocol and has to flood a route request to find a new route to forward a data
packet. This may cause the dropping of some data packets when waiting a long
time before finding a route to the destination. DSR may have several routes for
a certain destination in its cache. Using one of the stale routes by DSR may

lead to the dropping of some data packets.

8.2.2 Network Size (Varying Number of Nodes)

This set of experiments varies the number of nodes to show the impact of network size
on the performance of MDSDV, AODYV, and DSR. The simulations are performed for
30, 40, 50, 60, 70, 80, 90, and 100 nodes. Two pause times are used: 0 seconds

correspond to a dynamic network and 100 seconds corresponds to a static network.
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The results are collected at maximum speed of 20 m/s. We use 30 CBR traffic sources.

Table 8.2 shows the simulation parameters that differ from the baseline parameters

given in Table 6.1.

Parameter Value
Simulation time 100 seconds
Number of nodes 30, 40, 50, 60, 70, 80, 90, and 100 nodes
Pause time 0, 100 seconds

Max. speed of nodes 20 m/s

Number of sources 30 sources

Table 8.2: Parameters used in the second experiment to compare MDSDV with AODV and

DSR

e Packet Delivery Fraction (PDF)

The first results show the Packet Delivery Fraction for the three protocols for

dynamic (Figure 8.9) and static (Figure 8.10) networks.

Figure 8.9 shows that MDSDV and AODV deliver similar data packets in dy-
namic networks with less than 80 nodes. Meanwhile, MDSDV and DSR deliver
similar data packets in networks with less than 70 node. The same figure shows
that MDSDV outperforms AODV and DSR in the other networks by up to 5%
and 12% respectively. Figure 8.10 shows a trend for MDSDV to deliver a higher
fraction of packets in static networks. And we can be confident that the PDF
is higher in networks with more than 30 nodes. Specifically, MDSDV delivers
more data packets than AODV by between 6% and 23.5%, and delivers more
data packets than DSR by between 6% and 16%.

Interestingly, in static networks (Figure 8.10), the PDF of AODV and DSR
drops by 21% and 14% respectively, whereas the PDF of MDSDV only drops

by 3.5%. This is because in MDSDV, the control packets are not transmitted to
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the entire network. Thus, the increase in the number of nodes does not increase

the number of control packets. In contrast, in AODV and DSR, the number

of routing packets is directly proportional to the number of nodes because the

control packets are transmitted to the entire network.
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e Average End-to-End Delay

Figures 8.11 and 8.12 plot the Average End-to-End Delay when changing the

node density. The figures show that DSR has the highest delay in both dynamic

and static networks.
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In dynamic networks (Figure 8.11), although MDSDV and DSR provide similar
delay in a 30 node network, MDSDV decreases the delay of DSR by between
37% and 67% in the other networks. On the other hand, Figure 8.11 shows that
MDSDV incurs larger delays than AODV in networks with less than 50 nodes,
whereas both protocols exhibit similar delay in networks with more than 40

nodes.

In static networks (Figure 8.12), MDSDV decreases the delay of DSR by 55%
to 81%. Compared to AODV, Figure 8.12 shows that MDSDV creates a higher
delay in 30 and 40 node networks by around 25%. Whereas, MDSDV decreases
the delay of AODV by 31% to 73% in the other networks.
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e Normalized Routing Load (NRL)

Figures 8.13 and 8.14 demonstrate the Normalized Routing Load for dynamic

and static networks respectively.
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In all cases, AODV produces significantly the highest routing load. Compared
to AODV, MDSDV provides between 66% and 72% reduction in routing over-
head in dynamic networks (Figure 8.13), whereas it provides between 85% and
95% reduction in static networks (Figure 8.14). Although MDSDV and DSR
provide a similar routing load in dynamic networks, MDSDV provides between

42% and 75% reduction in routing overhead in static networks.
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In static networks, as the node density is increased, MDSDV maintains the
flattest curve when compared to the other two protocols. This shows that the
number of retransmitting nodes do not significantly increase in MDSDV. We
can be confident to conclude that MDSDV produces the lowest routing load in

static networks.

e Data Packets Dropped

Figure 8.15 and 8.16 show the number of data packets that are dropped by
the three protocols, and show that AODV drops more data than the other two

protocols.

In dynamic networks (Figure 8.15), AODV and MDSDV drop similar data
packets in 30 and 40 nodes networks. Whereas MDSDV dropped between 42%
and 54% of data packets that are dropped by AODV in the other networks. The
same figure shows that MDSDV and DSR drop similar data packets in networks
with 40, 50, 60, 70 and 80 nodes networks. However MDSDV drops more data
than DSR in 30 nodes networks by 150%), it delivers less data packets in 90 and

100 nodes networks by 43% in both cases.

On the other hand, in static networks (Figure 8.16) compared to AODV, MDSDV
decreases the data packet drops by between 66% and 94% in networks with
more than 30 nodes. Whereas both protocols drop similar data packet in 30
node network. Meanwhile, the figure show that both of MDSDV and DSR
drop similar data packets in 30 and 40 node networks, whereas MDSDV dropd
between 62% and 84% of data packets that are dropped by DSR in the other

networks.

Packet drops are less frequent with MDSDV as alternate routing table entries

can often be assigned in response to link failures.
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8.2.3 Mobility (Varying Pause Time)

This experiment simulates a 50 node network. The pause time is varied between 0 sec
(dynamic network) and 100 sec (static network). Specifically, the following five pause
time values are used in our simulations: 0, 25, 50, 75, and 100 seconds. Varying the
pause time changes the frequency of node movement. Two node speeds are chosen:
1 m/sec as low speed and 20 m/s as high speed networks. The network consists of 30
CBR/UDP traffic sources sending 512 byte packets to chosen destinations at the rate

of 4 packets/sec. The total simulation time is 100 seconds, and each data point in the
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following figures is the average of 30 simulation runs. We include error bars which

indicate 95% confidence that the actual mean is within the range of said interval.

Table 8.3 shows the simulation parameters that differ from the baseline parameters

given in Table 6.1.

Parameter Value
Simulation time 100 seconds
Number of nodes 50 nodes
Pause time 0, 25, 50, 75, 100 seconds

Max. speed of nodes 1,20 m/s

Number of sources 30 sources

Table 8.3: Parameters used in the third experiment to compare MDSDV with AODV and

DSR

e Packet Delivery Fraction (PDF)

Figures 8.17 and 8.18 show the Packet Delivery Fractions (PDF) for variations
of the pause time for MDSDV, AODV, and DSR in both low speed and high

speed networks.

In low speed networks, figures 8.17 shows a trend for MDSDV to deliver a
higher fraction of packets. And we can be confident that the PDF is higher for
all pause time values. MDSDV achieves up to 10.5% higher PDF than AODV
and up to 8.5% higher PDF than DSR. In high speed networks, figure 8.18
shows that MDSDYV and AODV deliver similar data packets at pause times 0 sec
and 25 sec (high mobility networks) environment, however MDSDV achieves
up to 10% higher PDF in medium and low mobility (i.e., pause time is greater
than 25 sec) environment. On the other hand, MDSDV outperforms DSR at
pause time 100 sec (low mobility) environment (up to 7% higher), and both

protocols deliver similar data packets at the other pause times.
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The better performance of MDSDV is due to the prospect of being able to

exploit fresh routes for many destinations
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e Average End-to-End Delay

Figures 8.19 and 8.20 show the Average End-to-End Delay for MDSDV, AODV,
and DSR in both low speed and high speed networks. The figures show that
DSR demonstrates significantly the highest delay in both cases, follows by
AODV and MDSDV. Compared to DSR, MDSDV decreases the delay by be-

tween 54% and 71% in low speed networks (Figure 8.19), and between 58%
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and 67% in high speed networks (Figure 8.20).On the other hand, MDSDV and
AQODYV produce similar delay in all cases (except for low speed networks at 0

sec pause time where MDSDV reduces the delay of AODV by 60%).

The main reasons for the large data packet delays in DSR are the lack of a
mechanism to remove expired unused routes from its caches, together with the
aggressive use of caching [16]. The route discovery process of AODV may
also cause long delays, due to the number of control packets being transmitted.

These delays result in packets waiting in the queues being dropped.
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e Normalized Routing Load (NRL)

The Normalized Routing Load (NRL) of MDSDV, AODV, and DSR is exhibited
in figure 8.21 and figure 8.22. The figures show that AODV always demon-

strates the highest routing load in both low and high speed networks.
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Compared to AODV, MDSDV reduces the overhead by between 86% and 92%
in low speed networks (Figure 8.21), and between 67% and 92% in high speed
networks (Figure 8.22). This is because AODV is a single path protocol, and
this high increase occurs because each of the route discoveries in AODV is typ-

ically propagated to every node in the network [56].
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In comparison with DSR, MDSDYV reduces the routing load in low speed net-
works by between 27% and 62% (Figure 8.21). On the other hand, in high
speed networks, figure 8.22 shows that MDSDV and DSR demonstrate similar
routing load at O pause time, whereas MDSDV reduces the routing load of DSR

by between 27% and 58% at the other pause times.

Data Packets Dropped

The last metric investigated here is the Data Packets Dropped by MDSDV,
AODV, and DSR (Figures 8.23 and 8.24). The figures show that AODV dropped

more data packets than the other two protocols.

MDSDV dropped between 10% and 20% of the data dropped by AODV in
low speed networks (Figure 8.23) and dropped between 42% and 88% in high
speed networks (Figure 8.24). On the other hand, although MDSDV and DSR
drop similar number of data packets in many cases, MDSDV drops fewer data
packets than DSR in some cases. In low speed networks (1 m/sec), figure 8.23
shows that MDSDV drops 62% and 55% of data packets dropped by DSR at
50 sec and 75 sec pause times. In high speed networks (20 m/sec), figure 8.24
shows that MDSDV drops 62% of data packets dropped by DSR at 100 sec

pause time.
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8.2.4 Mobility (Varying Speed of Nodes)

To explore how the protocols behave as the rate of topology change varies, we varied
the mobility by varying the maximum speed of nodes, and evaluated all three proto-
cols over scenario files using these movement speeds. In this section, we report on a
50 node network simulation. two pause times are used: 0 sec (dynamic network) and
100 sec (static network). Five maximum speeds are used in our simulations. Specif-
ically, 1 m/s (low speed), 5, 10, 15, and 20 m/s (high speed) are used. Varying the
speed of nodes changes the frequency of node movement. The network consists of 30
CBR/UDP traffic sources sending 512 byte packets to chosen destinations at the rate
of 4 packets/sec. The total simulation time is 100 seconds, and each data point in the
following figures is the average of 30 runs. Table 8.4 shows the simulation parameters

that differ from the baseline parameters given in Table 6.1.
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Parameter Value
Simulation time 100 seconds
Number of nodes 50 nodes
Pause time 0, 100 seconds

Max. speed of nodes 1,5, 10, 15 and 20 m/s

Number of sources 30 sources

Table 8.4: Parameters used in the fourth experiment to compare MDSDV with AODV and

DSR

Packet Delivery Fraction (PDF)

Figures 8.25 and 8.26 show the Packet Delivery Fraction (PDF) when we vary
the speed of nodes for the MDSDV, AODYV, and DSR routing protocols in
dynamic and static networks. In dynamic networks, figure 8.25 shows that
MDSDV and DSR deliver similar data packets. However, MDSDV performs
better than AODV by up to %6. The difference in performance increases as the
speed of nodes decreases. In static networks, figure 8.26 shows that MDSDV
outperforms AODV and DSR. Specifically, MDSDV delivers more data pack-
ets than AODV by between %7.5 and %10 and delivers more data packets than
DSR by between %4 and %10.
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e Average End-to-End Delay

Figures 8.27 and 8.28 show the Average End-to-End Delay produced by the
three protocols when varying the speed of nodes in both dynamic and static
networks respectively. The figures illustrate that DSR produces the highest de-
lay in all cases. MDSDYV reduces the delay of DSR by between 58% and 69%
in dynamic networks, and between 54% and 67% in static networks. How-
ever MDSDV and AODV produce similar delay at all speeds in static networks
(Figure 8.28).

Averagee-e Dely (ms)

400 400

350 350
300 T 300
- 1 /ﬂ"--.-___‘1
250 £ 50 ™
= e
& /
200 - [_EYelalt] w 200 —4—ADDV
: N7
WMDSDV -3 == NDSDV
£
150 - 150
WOSR g ——DSR
: ~N
100 100
I\“/__'/
50 7 350

Figure 8.27: Average End to End Delay vs Speed of Nodes (Dynamic network)

218



Chapter 8. Performance Comparison with AODV and DSR

400

Average e-e Delay (ms)

o
=1
a

——AODV

/]

i
A N

A

./

== DSR

Average e-e Delay (ms)
o]

4+

Figure 8.28: Average End to End Delay vs Speed of Nodes (Static network)

Figure 8.27 shows that MDSDV exhibits less delay than AODV at low speeds
(1 m/sec and 5 m/sec) by 60% and 53% respectively, whereas it exhibits similar
delay at medium and high speeds (10, 15, and 20 m/sec) by between 58% and
66%.

Normalized Routing Load (NRL)

Figures 8.29 and 8.30 show the Normalized Routing Load (NRL) for both dy-

namic and static networks when we vary the speed of nodes.

The simulation results show that AODV demonstrates significantly the highest
routing load. We expected this, since AODV is a single on-demand routing pro-
tocol, and the control packets are transmitted to the entire network. MDSDV
decreases the routing load by between 67% and 86% in dynamic networks (Fig-

ure 8.29), and by between 90% and 92% in static networks (Figure 8.30).

On the other hand, MDSDV and DSR produce similar routing loads in dynamic
networks, whereas MDSDV decreases the routing load of DSR by 46% to 55%

in static networks.
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e Data Packets Dropped

Figures 8.31 and 8.32 show the number of data packets that are dropped by
the three protocols. The figures show that AODV drops more data packets
than MDSDV and DSR in all cases. MDSDV dropped between 10% and 58%
of the data dropped by AODV in dynamic networks (Figure 8.31), and dropped
between 12% and 18% of the data dropped by AODV in static networks (Figure
8.32).

Figure 8.31 show that MDSDV and DSR drop similar data packets in dynamic
networks. Whereas Figure 8.32 show that MDSDV dropped between 54% and
62% of the data dropped by DSR in static networks at high speed.
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8.3 Summary

This chapter presented a performance comparison of MDSDV with AODV and DSR
routing protocols for ad hoc networks using NS-2 simulations. The simulation results
show important differences between the three routing protocols. The presence of high
mobility implies frequent link failures and each routing protocol reacts differently to
link failures. MDSDV uses proactive routing with multiple routes per destination
stored in the routing table. In contrast, AODV and DSR use on-demand route discov-
ery, but with different routing mechanics [43]. AODV stores at most one route per

destination in its routing table. Thus, AODV has to initiate route discovery when a
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link failure is detected. The destination sequence numbers are used to prevent loops
and to distinguish freshness of routes. DSR uses source routing and route caches,
and does not use periodic advertisements. DSR exploits caching aggressively and
maintains multiple routes per destination. Thus, DSR uses route discovery less often
than AODV when there are link failures. Route discovery is delayed in DSR until all
cached routes fail.

The differences in the mechanics of the protocols lead to the differences in their per-
formances. The performance comparison of MDSDV, AODV, and DSR were mea-
sured with respect to four metrics: Packet Delivery Fraction, Average End-to-End
delay, Normalized Routing Load, and Data Packets Dropped in four different scenar-
i0s: varying number of sources, varying number of nodes, varying pause time, and

varying node speed. From our observations and results, we conclude:

1. Packet Delivery Fraction: the simulation results show that the three protocols
have similar performance when the number of traffic sources is low (10 or 20
sources), however MDSDV outperforms AODV and DSR in networks with 30,
40, and 50 traffic sources (Figures 8.1 and 8.2). The difference in performance
increases as number of sources increases. This is because MDSDV is proactive
and expects to have at least one path for each destination available for immedi-
ate use. In contrast AODV and DSR are reactive, and hence the number of route
discoveries is directly proportional to the number of sources. Using AODV or
DSR, a node has to invoke the route discovery process whenever a new route is
needed.

The network size has an impact on performance of the protocols. MDSDV per-
forms better than the other two protocols, and the difference in performance
increases as the number of nodes increases (Figures 8.9 and 8.10). Mobility
has less impact on the behaviour of MDSDYV, and hence it performs better than
AODV and DSR in all cases (Figures 8.17, 8.18, 8.25, and 8.26). The dif-
ference in performance decreases as the mobility increases(Figures 8.18 and

8.25). This is because, in low mobility, less Full Dumps and Error Packets are
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transmitted which gives a better chance for data packets to be delivered. Also,
the availability of alternative paths that can be used in case of link failure, is a

main reason for the high delivery ratio.

2. Average End-to-End Delay: Compared to DSR, MDSDYV incurs lower packet
delays in most cases (e.g., Figures 8.12, 8.19, 8.20, 8.27, and 8.28). The main
reason for this is the lack of a mechanism that could expire unused routes from
caches in DSR, together with the aggressive use of caching [16] [102]. In con-
trast, the existence of fresh routes helps MDSDV to reduces the delay of DSR.
On the other hand MDSDV and AODV demonstrates similar delays in most
cases (e.g., Figures 8.19, 8.20, 8.27, and 8.28). MDSDV incurs lower delay
than AODV in dense networks (Figure 8.12). This is because it is possible to
demonstrate availability of multiple paths, since there are many nodes that offer

alternative routes.

3. Normalized Routing Load: AODV has the highest routing overhead in all cases
(Figures 8.5, 8.6, 8.13, 8.14, 8.21, 8.22, 8.29, and 8.30), because it is a single
path routing protocol, and because it floods route requests throughout the entire
network whenever a node needs a route to a destination. Compared to DSR,
MDSDV has a lower routing overhead in low mobility networks (Figures 8.14,
8.21, and 8.30), and has a similar routing overhead in dynamic networks where
the pause time is O sec (Figures 8.13 and 8.29). MDSDV and DSR compete
with each other when the traffic load is concerned. MDSDV has a lower routing
overhead than DSR at a high traffic load, and has a higher routing overhead at
a low traffic load (Figures 8.5 and 8.6). One interesting observation is that the
overhead of MDSDV decreases as the number of sources increases, whereas
the overhead of DSR increases as the number of sources increases (Figure 8.5).
An other observation is that MDSDV has approximately constant overhead in

static networks (Figure 8.6), regardless of the offered traffic load.

4. Data Packets Dropped: Our results show that AODV drops more data pack-
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ets than the other two protocols in all cases (Figures 8.15, 8.16, 8.23, 8.24,
8.31, and 8.32). Compared to DSR, MDSDV drops similar data packets in
high mobility networks (Figures 8.24, and 8.31), and drops less data packets
in low mobility networks (Figures 8.16). This is because MDSDV always uses
the shortest and newest route. In contrast, DSR does not have a mechanism
to distinguish stale routes. Using stale routes may lead to data packets being
dropped. Meanwhile, dropping packets might be as a result of a significant
amount of collisions that occur in congested networks [123]. The effective pro-
tocol limits the number of rebroadcasts in the network to limit the probability

of collisions.

Although MDSDV and DSR maintain multiple paths for a destination, the mecha-
nisms used in the protocols are different (Section 3.4.1, Section 3.4.2, and Section
5.4). DSR broadcasts a route request to find a route for a certain destination. Accord-
ing to the received route reply packets, DSR stores multiple paths for that destination
in its cache. DSR does not seek a new route until all cached routes fail, and this may
lead to the use of a stale route. In contrast, MDSDV benefits from periodic Update
Packets and Full Dumps when discovering a new neighbour to find new routes and
refresh stale routes. MDSDV always use the newest and shortest path to transmit
data packets. Additionally, when using MDSDV, a node that discovers a link failure
broadcasts an Error Packet only to its neighbours. This leads to a reduction in the

control overhead.

In summary, MDSDV performs better than AODV and DSR in almost all cases. One
of the few exceptions is on small networks (e.g., 30 node networks) (Figure 8.9).
This is due to the few opportunities it has to find multiple paths for a destination,
since there are few nodes that offer them. Moreover, MDSDV uses a node-disjoint
mechanism where the paths for each destination have no common nodes. When using
a node-disjoint mechanism, routes are the least abundant and are the hardest to find

[81].
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This chapter outlines the summary of the thesis in Section 9.1. Section 9.2 describes
the limitations of MDSDV. Finally, Section 9.3 focuses on promising future research

directions based on our research.

9.1 Summary

Routing is an important and challenging issue in mobile ad hoc networks (MANETS).
Since the transmission is wireless and nodes are free to move, MANETS challenge
the design of routing protocols. Routes frequently break due to interference and node
mobility, and nodes have limited resources such bandwidth, energy, and processing
power. These problems make multipath routing an interesting possibility, and a num-
ber of multipath routing protocols [28][53][58][59][63][75][122][124] have been pro-
posed and implemented for MANETS.

Multipath routing protocols maintain multiple paths, and may be used for different
purposes, such as increasing fault-tolerance, load balancing, minimising end-to-end
delay, enhancing reliability [117]. Multipath routing protocols can provide fault tol-

erance by having more information routed to the destination using alternative paths.
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This reduces the probability that communication is disrupted when link failure is oc-
curred. To the best of our knowledge, most multipath routing algorithms are reactive,
where the route is established only when a source node needs to send data to an in-
tended receiver. For this reason, we have designed and implemented a new proactive
multipath routing protocol that is based on the well known Destination Sequenced

Distance Vector (DSDV) protocol [94].

The major contributions of this thesis are summarized as follows.

Preliminary MDSDV Design: We have designed a new proactive multipath pro-
tocol MDSDYV that maintains multiple loop free routes between all source and desti-
nation nodes (Chapter 4). The preliminary version of MDSDV is called MDSDVO.
It ensures that alternate paths at every node are node-disjoint. Node-disjoint paths
means the paths do not have common nodes, except for the source and the destina-
tion, and hence that routes fail independently of each other. Two additional fields,
second hop and link-id, are stored in the route entry to help address the problems of
loop freedom, and path disjointness. In MDSDVO, exchanging routing information
between new neighbours and broadcasting both Update packets and Error Packets to
the entire network, leads to low performance. The poor performance of MDSDVO is

mainly attributed to the huge number of control packets it generates (Appendix A).

Revised MDSDV Design: To reduce the control overhead while maintaining flex-
ibility and reliability, a revised protocol design is presented in Chapter 5. (i) Only
the node that discovers a new neighbour unicasts a Full Dump of its routing table to
the new neighbour, (ii) the Update Packets and Error Packets are only broadcast to
the current neighbours (i.e., rebroadcasting is not needed). A rigorous argument is

presented in Section 5.5 that the paths are indeed node disjoint.

Control Overhead: We investigate the control overheads in Chapter 6. To allevi-

ate the congestion and bottlenecks, MDSDV does not rebroadcast routing packets.
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As MDSDV uses five different control packets (i.e., Hello Message, Update Packets,
Full Dumps, Error Packets, and Failure Packets), we divided the investigation into
six parts. The first part investigates the total number of control packets generated for
routing. Each part of the other five parts investigates one of the control packets.

The results show that the number of control packets increases as the mobility in-
creases. The major contribution to MDSDV’s routing load overhead is from Full
Dumps and Error Packets. This is because as the mobility increases, the probability
of meeting a new neighbour or of losing contact with an old neighbour increases. As
a result, the node has to unicast a Full Dump or broadcast an Error Packet.

The results show that the number of Hello Messages and Failure Packets is very low.
The number of Hello Messages is low, because the node broadcasts a Hello Message
only when it has no neighbours. The number of Failure Packets is low, because the
node unicasts a Failure Packet only when it fails to forward a data packet to the node
that is specified in the header of the data packet.

Also, the results show that the mobility has no impact on the number of Update Pack-

ets, because they are time-driven updates.

Evaluation: Comparison with a proactive routing protocol: The results in Chap-
ter 7 show that the performance of MDSDV is superior to standard DSDV. The results
show that MDSDV is robust and improves the Packet Delivery Fraction of DSDV (up
to 32%) especially in dynamic networks (Figure 7.17), reduces the Average end-to-
end Delay of DSDV by about 7% in low mobility environments (Figures 7.11 and
7.20), provides lower routing load in low mobility (Figures 7.13 and 7.22), and dra-

matically decreases the number of dropped packets in all cases.

Unlike MDSDV, DSDV can not adapt to fast topology changes, because it is a single
path routing protocol. When a link failure occurs, DSDV has to wait for a period
of time to get a new information. On the other hand MDSDV can immediately use
an alternative path when a link failure occurs. In contrast, in high mobility networks,

MDSDV has a longer delay (Figures 7.3, 7.12, and 7.19) and imposes a higher routing

227



Chapter 9. Conclusion

load than DSDV (Figure 7.21).

Evaluation: Comparison with reactive single & multipath routing protocol: The
results in Chapter 8 show that MDSDV has similar performance to AODV and DSR
at light traffic load (i.e., 10 and 20 sources). In contrast, it performs better than AODV
and DSR in heavy traffic situations. Moreover, the difference increases as the traffic
load increases. This is because MDSDV is proactive and has multiple paths for each
destination that are available for immediate use. Using AODV or DSR, a node has to
invoke the route discovery process whenever a new route is needed. This leads to an

increase in the number of control packets.

Since the three protocols deliver similar data packets at low traffic situations, we used
30 traffic sources to evaluate the performance difference between them. MDSDV
performs better than AODV and DSR in almost all cases in terms of Packet Delivery
Fraction especially in dense networks and in low mobility situations. The difference
increases as the network size increases or the mobility decreases. One of the few
exceptions is in small networks (e.g., 30 node networks) (Figure 8.9), where MDSDV

has a similar or slightly lower Packet Delivery Fraction.

MDSDV has a lower delay than DSR in almost all cases. The reduction in delay is up
to 67% in dynamic networks (Figure 8.11), and up to 81% in static networks (Figure
8.12). The only exceptions are in 30 node networks where the two protocols have
similar delays. Meanwhile, MDSDV reduces the delay of AODV by up to 60% in
dynamic networks (Figure 8.27), and up to 48% in static networks (Figure 8.28). The

difference in performance increases as the mobility decreases.

MDSDV and DSR have similar overhead in dynamic networks, but MDSDV reduces
the overhead of DSR by up to 55% in static networks (Figure 8.30). Meanwhile,
MDSDV has much lower overhead than AODV in all cases (Figures 8.5, 8.6, 8.13,
8.14, 8.21, 8.22, 8.29, 8.30). It reduces the overhead of AODV by up to 86% in

dynamic networks (Figure 8.29), and up to 92% in static networks (Figure 8.30).
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In terms of dropped data packets, MDSDV drops less data packets than AODV in al-
most all cases. The only exception is on small dynamic networks (30 node networks)
(Figure 8.15), where MDSDV drops slightly more packets than AODV. MDSDV
drops between 10% and 58% of data packets dropped by AODV in dynamic net-
works (Figure 8.31), and between 12% and 18% in static networks (Figure 8.32). In
contrast, Figure 8.31 shows that MDSDV and DSR drop similar data packets in high
dynamic networks, whereas MDSDV drops between 38% and 57% of data dropped
by DSR in static networks (Figure 8.32).

Performance Summary: From the simulation results in Chapter (7) and Chapter
(8), we can conclude that MDSDV improves the packet delivery fraction of DSDV
in all cases, reduces the delay in low mobility environments, provides lower routing
load in low mobility environments, and dramatically decreases the number of dropped
packets in all cases. Moreover, MDSDV performs better than AODV and DSR in
heavy traffic loads. It reduces the delay of DSR and AODYV, provides much less
overhead than AODV 1in all cases and less overhead than DSR in static networks, and
finally MDSDYV drops less data packets than AODV in all cases and drops less data

packets than DSR in static networks.

MDSDV can support packet loss and delay sensitive applications over MANETS.
From the results we believe that MDSDV can be used in the domain of multimedia
applications such as World Wide Web, e-mail, and video on demand. On the other
hand, as we did not pay attention to the security, MDSDV is not suitable protocol for

applications that need security such as the financial domain.

0.2 Limitations

The major cost of MDSDV is additional control packets in high mobility networks.

The major contribution to MDSDV’s routing load overhead is from Full Dumps and
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Error Packets. In spite of broadcasting the Error Packets to only one hop neighbours,

the number of these packets is high in dynamic networks.

The other limitation is that the performance of MDSDV is slightly lower than AODV
and DSR in low density networks with high mobility. This is because of the few
neighbours that can provide multiple paths for each destination. As the network den-
sity increases, the probability of multiple paths being available increases. Moreover,
MDSDV uses the node-disjoint mechanism which means that all paths for a certain
destination have no common nodes. As a result, MDSDV can provide a lower number

of alternative paths for each destination.

9.3 Future Work

This section focuses on promising future research directions based on our research.

Sending packets via different paths simultaneously can increase the reliability of the
transmission as the effect of link failures is reduced. MDSDV finds multiple node-
disjoint paths to a destination and uses them only as backup paths. Additionally,
using the multiple paths as a delivery mechanism might lead to higher delivery ratios

or lower delay.

A major overhead in MDSDV is the large number of control packets when the net-
work is highly mobile. Reducing the number of control packets is a fruitful avenue
for future research. One of the possibilities for doing so is avoiding using the Error
Packet. We could stop broadcasting Error Packets, and depend only on broadcasting

Update packets and unicasting Full Dumps to update the routing tables.

The simulation results show that the performance of MDSDV is slightly lower than
AODV and DSR in sparse networks (e.g., 30 node networks). In addition to the low
number of neighbours that offer multiple paths, using a node-disjoint technique can

be another reason that makes MDSDV performs slightly lower than AODV and DSR
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in sparse networks. In future work we could see whether performance is increased in
such cases by using non-disjoint or link-disjoint techniques instead of using a node-
disjoint technique, because node-disjoint routes are the least abundant and are the

hardest to find.

We have only evaluated MDSDV using a random way point mobility model and
CBR/UDP traffic. It would be useful to see how improvements vary with other mo-

bility models and other traffic types such as TCP.

Additional information could be obtained by investigating in particular longer simu-

lation times, larger areas, or other area shapes (e.g., rectangular areas).

Even though this thesis concentrated on designing and evaluating a multipath proac-
tive routing protocol that is based on DSDV, some of the ideas in this thesis can be
applied to other ad hoc routing protocols. For instance, we could easily modify the
AODV protocol to maintain multiple loop-free paths using the second hop and link-id

concept.
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MDSDV0 and MDSDV comparison

Data

This appendix gives a brief comparison of MDSDVO0 with MDSDV using simulations

as discussed in section 4.6. In this experiment, four network sizes (30, 50, 70, and 90

node networks) and two pause times (0 and 100 seconds) are used. Nodes move with a

maximum speed of 20 m/sec. Table A.1 lists the parameters used for the simulations,

and the results comparison are listed in tables A.2 - A.9.

’ Parameter ‘ Value
Simulator NS-2
Simulation time 100 seconds
Area of the network 670m x 670m
Number of nodes 30, 50, 70, and 90 nodes
MAC layer IEEE 802.11
Transmission range 250 m
Pause time 0 and 100 seconds
Maximum speed of nodes 20 m/s
Mobility model Random waypoint
Traffic type CBR (UDP)
Number of data sources 30 Sources
Packet size 512 byte
Transmission rate 4 packets/second
Bandwidth 2 Mb/s

Table A.1: Parameters used to compare MDSDVO0 with MDSDV
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Appendix A: MDSDVO0 and MDSDV comparison Data

A.1 30 Node Networks

Parameter | MDSDV0 MDSDV
Sent packets 4024 3976
Received packets 1907 3794
Packet Delivery Fraction (PDF) 47.39 95.42
Normalized Routing Load (NRL) 1.058 0.231
Average e-e delay(ms) 20.53 62.81
No. of dropped data (packets) 2047 155
Average Throughput[kbps] 80.22 159.52
Routing packets 2017 878
Hello packets 5 5
Available packets 351 0
Full_Dump packets 45 74
Update packets 953 353
Error packets 639 431
Failure packets 24 15

Table A.2: 30 node Network with O sec pause time (dynamic network)

Parameter | MDSDV0 | MDSDV |
Sent packets 3981 3988
Received packets 3592 3987
Packet Delivery Fraction (PDF) 90.23 99.98
Normalized Routing Load (NRL) 0.507 0.090
Average e-e delay(ms) 18.85 19.58
No. of dropped data (packets) 384 1
Average Throughput[kbps] 151.02 167.60
Routing packets 1820 359
Hello packets 4 3
Available packets 353 0
Full_Dump packets 62 3
Update packets 1398 350
Error packets 3 3
Failure packets 0 0

Table A.3: 30 node Network with 100 sec pause time (static network)

We observe that in dynamic network PDF increases from 47.39% to 95.42%, and

control packets fall from 2017 to 878 (A.2). Likewise, for static networks PDF in-
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creases from 90.23% to 99.98%, and control packets fall from 1820 to 359 (A.3). The

remaining tables (A.4 - A.9) show very similar patterns.

A.2 50 Node Networks

Parameter | MDSDV0 MDSDV
Sent packets 4631 4616
Received packets 2347 4464
Packet Delivery Fraction (PDF) 50.68 96.71
Normalized Routing Load (NRL) 2.657 0.473
Average e-e delay(ms) 72.25 153.70
No. of dropped data (packets) 2218 133
Average Throughput[kbps] 98.66 187.65
Routing packets 6237 2113
Hello packets 4 3
Auvailable packets 588 0
Full_Dump packets 74 150
Update packets 3159 588
Error packets 2331 1357
Failure packets 81 15

Table A.4: 50 node Network with 0 sec pause time (dynamic network)

Parameter | _MDSDVO0 | MDSDV
Sent packets 4601 4586
Received packets 3601 4577
Packet Delivery Fraction (PDF) 78.27 99.80
Normalized Routing Load (NRL) 1.138 0.144
Average e-e delay(ms) 16.56 30.44
No. of dropped data (packets) 964 1
Average Throughput[kbps] 151.45 192.41
Routing packets 4097 659
Hello packets 4 4
Auvailable packets 589 0
Full_Dump packets 74 26
Update packets 3422 591
Error packets 4 38
Failure packets 4 0

Table A.5: 50 node Network with 100 sec pause time (static network)
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A.3 70 Node Networks

| Parameter | MDSDV0 MDSDV
Sent packets 4600 4612
Received packets 2525 4421
Packet Delivery Fraction (PDF) 54.89 95.86
Normalized Routing Load (NRL) 6.619 0.838
Average e-e delay(ms) 311.22 135.38
No. of dropped data (packets) 2015 123
Average Throughput[kbps] 106.18 185.91
Routing packets 16712 3705
Hello packets 8 4
Available packets 827 0
Full_Dump packets 187 340
Update packets 10672 831
Error packets 4991 2530
Failure packets 27 0

Table A.6: 70 node Network with 0 sec pause time (dynamic network)

Parameter | MDSDV0 MDSDV
Sent packets 4629 4625
Received packets 3169 4509
Packet Delivery Fraction (PDF) 68.46 97.49
Normalized Routing Load (NRL) 2.009 0.220
Average e-e delay(ms) 19.73 137.35
No. of dropped data (packets) 1415 23
Average Throughput[kbps] 133.21 189.56
Routing packets 6368 994
Hello packets 3 3
Available packets 831 0
Full_Dump packets 92 64
Update packets 5437 823
Error packets 3 104
Failure packets 2 0

Table A.7: 70 node Network with 100 sec pause time (static network)
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A.4 100 Node Networks

| Parameter | MDSDV0 MDSDV
Sent packets 4577 4607
Received packets 1907 3993
Packet Delivery Fraction (PDF) 41.67 86.672
Normalized Routing Load (NRL) 13.483 1.678
Average e-e delay(ms) 74.55 423.37
No. of dropped data (packets) 2590 366
Average Throughput[kbps] 80.17 167.85
Routing packets 25713 6702
Hello packets 6 5
Available packets 1187 0
Full_Dump packets 234 531
Update packets 16215 1186
Error packets 8051 4978
Failure packets 20 2

Table A.8: 100 node Network with O sec pause time (dynamic network)

Parameter | MDSDV0 MDSDV
Sent packets 4630 4593
Received packets 2781 4391
Packet Delivery Fraction (PDF) 60.07 95.60
Normalized Routing Load (NRL) 5.70 0.33
Average e-e delay(ms) 34.60 252.59
No. of dropped data (packets) 1782 60
Average Throughput[kbps] 11691 184.60
Routing packets 15845 1437
Hello packets 5 4
Available packets 1179 0
Full_Dump packets 150 112
Update packets 14307 1182
Error packets 197 135
Failure packets 7 4

Table A.9: 100 node Network with 100 sec pause time (static network)
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Control Packets

This appendix presents the data that are used to produce all the figures in Chapter 6.
The data included in the appendix represents the control packets that are generated
by MDSDV as a function of Pause Time. Results are based on simulation of 30 runs,
and the error bars represent the 95% confidence interval of the mean.

This Appendix is divided into six sections. The first section (Section B.1) represents
the total control packets generated by MDSDV, whereas each section of the other five
sections represents one type of control packet. Specifically, Sectin B.2 represents the
Full Dumps, Sectin B.3 represents update packets, Sectin B.4 represents error pack-
ets, Sectin B.5 represents hello packets, and finally failure packets are represented in

Sectin B.6.

Each of the following tables are presented in two parts for convenience. the first
part has the results when the speed of nodes is 1, 5, and 10 m/sec, and the second
part contains the results for speeds15, 20, and 25 m/sec. Each row contains the pause
time, mean, Standard Deviation (StD), Confidence Interval (Coln), and the Population

Mean Range.
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B.1 Total control packets
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Speed of nodes
Speed 1 Speed 5 Speed 10
Pause Population Mean Population Mean Population Mean
Time Mean StD | Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
0 1273.90 | 26.06 | 9.33 | 1264.57 | 1283.23 | 2166.70 | 120.52 | 43.13 | 2123.57 | 2209.83 | 3124.23 | 159.40 | 57.04 | 3067.19 | 3181.28
50 1239.17 | 24.17 | 8.65 | 1230.52 | 1247.81 | 1780.43 | 97.57 | 34.91 | 1745.52 | 1815.35 | 2309.30 | 128.73 | 46.07 | 2263.23 | 2355.37
100 | 1219.07 | 17.86 | 6.39 | 1212.68 | 1225.46 | 1472.47 | 65.46 | 23.42 | 1449.04 | 1495.89 | 1892.83 | 88.48 | 31.66 | 1861.17 | 1924.50
150 | 1190.67 | 21.40 | 7.66 | 1183.01 | 1198.33 | 1248.07 | 24.50 | 8.77 | 1239.30 | 1256.84 | 1368.00 | 33.88 | 12.12 | 1355.88 | 1380.12
200 | 1177.10 | 1897 | 6.79 | 1170.31 | 1183.89 | 1176.27 | 1649 | 590 | 1170.36 | 1182.17 | 1178.60 | 24.45 | 8.75 | 1169.85 | 1187.35
Speed of nodes
Speed 15 Speed 20 Speed 25
Pause Population Mean Population Mean Population Mean
Time Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
0 3831.90 | 169.82 | 60.77 | 3771.13 | 3892.67 | 4230.67 | 211.40 | 75.65 | 4155.02 | 4306.32 | 4652.97 | 171.02 | 61.20 | 4591.77 | 4714.17
50 2619.33 | 168.10 | 60.15 | 2559.18 | 2679.49 | 2871.50 | 146.23 | 52.33 | 2819.17 | 2923.83 | 3098.53 | 150.41 | 53.82 | 3044.71 | 3152.36
100 | 2003.40 | 99.46 | 35.59 | 1967.81 | 2038.99 | 2054.47 | 114.69 | 41.04 | 2013.42 | 2095.51 | 2109.70 | 101.47 | 36.31 | 2073.39 | 2146.01
150 | 1492.43 | 4895 | 17.52 | 1474.92 | 1509.95 | 1644.63 | 89.91 | 32.17 | 1612.46 | 1676.81 | 1737.93 | 97.25 | 34.80 | 1703.13 | 1772.73
200 | 1185.97 | 44.80 | 16.03 | 1169.93 | 1202.00 | 1183.17 | 20.82 | 7.45 | 1175.72 | 1190.62 | 1180.63 | 20.46 | 7.32 | 1173.31 | 1187.95

Table B.1: Total Control Packets generated by MDSDV vs Pause Time (related to Figure 6.1 in Chapter 6)
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B.2 Full Dumps

Speed of nodes
Speed 1 Speed 5 Speed 10
Pause Population Mean Population Mean Population Mean
Time | Mean | StD | Coln Range Mean | StD | Coln Range Mean StD | Coln Range
from to from to from to
0 317 | 331 | 1.19 | 198 4.35 9547 | 18.11 | 6.48 | 88.98 | 101.95 | 312.90 | 43.19 | 15.45 | 297.45 | 328.35
50 350 | 445 | 1.59 | 1.91 5.09 2797 | 847 | 3.03 | 24.94 31.00 119.77 | 23.36 | 836 | 111.41 | 128.12
100 8.17 | 826 | 296 | 521 11.12 4.67 | 3.12 | 1.12 | 3.55 5.78 13.53 | 5.77 | 2.06 | 11.47 15.60
150 857 | 10.75 | 3.85 | 4.72 12.41 7.67 | 10.27 | 3.68 | 3.99 11.34 9.93 11.31 | 4.05 5.89 13.98
200 7.63 | 8.82 | 3.16 | 448 10.79 747 | 8.05 | 2.88 | 4.58 10.35 7.73 11.43 | 4.09 3.64 11.82
Speed of nodes
Speed 15 Speed 20 Speed 25
Pause Population Mean Population Mean Population Mean
Time | Mean StD | Coln Range Mean StD | Coln Range Mean StD | Coln Range
from to from to from to
0 497.10 | 59.71 | 21.37 | 475.73 | 518.47 | 583.23 | 45.81 | 16.39 | 566.84 | 599.63 | 701.10 | 51.84 | 18.55 | 682.55 | 719.65
50 181.10 | 38.59 | 13.81 | 167.29 | 19491 | 218.43 | 29.86 | 10.69 | 207.75 | 229.12 | 284.47 | 42.40 | 15.17 | 269.30 | 299.64
100 15.17 | 4.78 1.71 13.46 16.88 15.33 | 6.21 2.22 13.11 17.55 16.13 | 5.57 1.99 14.14 18.13
150 9.37 6.71 | 2.40 6.97 11.77 10.50 | 8.38 | 3.00 7.50 13.50 8.67 6.19 | 221 6.45 10.88
200 11.10 | 21.06 | 7.54 3.56 18.64 9.77 9.58 | 343 6.34 13.19 9.17 8.89 | 3.18 5.99 12.35

Table B.2: Full Dumps vs Pause Time (related to Figure 6.2 in Chapter 6)
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B.3 Update Packets

Speed of nodes
Speed 1 Speed 5 Speed 10
Pause Population Mean Population Mean Population Mean
Time Mean StD | Coln Range Mean StD | Coln Range Mean StD | Coln Range
from to from to from to
0 1158.77 | 3.84 | 1.37 | 1157.39 | 1160.14 | 1158.13 | 3.26 | 1.17 | 1156.97 | 1159.30 | 1158.57 | 3.05 | 1.09 | 1157.48 | 1159.66
50 115820 | 2.63 | 0.94 | 1157.26 | 1159.14 | 1158.07 | 3.60 | 1.29 | 1156.78 | 1159.35 | 1157.00 | 2.97 | 1.06 | 1155.94 | 1158.06
100 | 1158.40 | 3.95 | 1.41 | 115699 | 1159.81 | 1157.17 | 3.34 | 1.20 | 1155.97 | 1158.36 | 1157.57 | 3.86 | 1.38 | 1156.19 | 1158.95
150 | 115747 | 338 | 1.21 | 1156.26 | 1158.68 | 1158.40 | 3.15 | 1.13 | 1157.27 | 1159.53 | 1156.57 | 3.43 | 1.23 | 1155.34 | 1157.79
200 | 1157.23 | 407 | 1.45 | 115578 | 1158.69 | 1157.47 | 3.45 | 1.24 | 1156.23 | 1158.70 | 1158.70 | 3.61 | 1.29 | 1157.41 | 1159.99
Speed of nodes
Speed 15 Speed 20 Speed 25
Pause Population Mean Population Mean Population Mean
Time Mean StD | Coln Range Mean StD | Coln Range Mean StD | Coln Range
from to from to from to
0 1157.80 | 3.60 | 1.29 | 1156.51 | 1159.09 | 1158.00 | 3.70 | 1.32 | 1156.68 | 1159.32 | 1158.90 | 3.75 | 1.34 | 1157.56 | 1160.24
50 1157.50 | 3.31 | 1.18 | 1156.32 | 1158.68 | 1157.53 | 3.20 | 1.15 | 1156.39 | 1158.68 | 1158.10 | 3.61 | 1.29 | 1156.81 | 1159.39
100 | 1157.17 | 397 | 1.42 | 115574 | 1158.59 | 1158.33 | 2.83 | 1.01 | 1157.32 | 1159.35 | 1157.80 | 3.69 | 1.32 | 1156.48 | 1159.12
150 | 1158.00 | 2.44 | 0.87 | 1157.13 | 1158.87 | 1158.00 | 3.34 | 1.20 | 1156.80 | 1159.20 | 1158.47 | 2.49 | 0.89 | 1157.58 | 1159.36
200 | 1159.17 | 2.88 | 1.03 | 1158.14 | 1160.20 | 1158.63 | 3.26 | 1.17 | 1157.47 | 1159.80 | 1157.97 | 3.32 | 1.19 | 1156.78 | 1159.15

Table B.3: Update Packets vs Pause Time (related to Figure 6.3 in Chapter 6)
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B.4 Error Packets
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Speed of nodes
Speed 1 Speed 5 Speed 10
Pause Population Mean Population Mean Population Mean
Time | Mean StD | Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
0 108.23 | 26.37 | 9.44 | 98.80 | 117.67 | 908.80 | 117.35 | 41.99 | 866.81 | 950.79 | 1648.70 | 129.09 | 46.19 | 1602.51 | 1694.89
50 73.80 | 21.43 | 7.67 | 66.13 81.47 590.27 | 96.16 | 34.41 | 555.86 | 624.68 | 1027.67 | 116.54 | 41.70 | 985.96 | 1069.37
100 48.43 | 13.16 | 4.71 | 43.73 53.14 306.67 | 65.19 | 23.33 | 283.34 | 330.00 | 717.53 | 87.62 | 31.35 | 686.18 | 748.89
150 20.20 | 11.23 | 4.02 | 16.18 24.22 78.20 | 20.62 | 7.38 | 70.82 85.58 197.30 | 31.77 | 11.37 | 185.93 | 208.67
200 8.20 9.05 | 3.24 | 4.96 11.44 7.70 8.31 2.97 4.73 10.67 8.27 12.77 | 4.57 3.70 12.83
Speed of nodes
Speed 15 Speed 20 Speed 25
Pause Population Mean Population Mean Population Mean
Time Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
0 2172.63 | 126.40 | 45.23 | 2127.40 | 2217.87 | 2483.57 | 178.67 | 63.94 | 2419.63 | 2547.50 | 2787.23 | 158.55 | 56.74 | 2730.50 | 2843.97
50 1276.60 | 143.21 | 51.25 | 1225.35 | 1327.85 | 1490.33 | 130.63 | 46.75 | 1443.59 | 1537.08 | 1649.90 | 125.20 | 44.80 | 1605.10 | 1694.70
100 826.43 | 101.99 | 36.50 | 789.93 | 862.93 | 876.40 | 116.41 | 41.66 | 834.74 | 918.06 | 931.47 | 100.86 | 36.09 | 89538 | 967.56
150 320.47 | 4823 | 17.26 | 303.21 | 337.73 | 470.60 | 9398 | 33.63 | 436.97 | 504.23 | 566.23 | 95.77 | 34.27 | 531.96 | 600.51
200 11.60 21.89 | 7.83 3.77 19.43 10.67 10.59 | 3.79 6.88 14.46 9.50 9.22 3.30 6.20 12.80

Table B.4: Error Packets vs Pause Time (related to Figure 6.4 in Chapter 6)
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B.5 Hello Messages

Speed of nodes
Speed 1 Speed 5 Speed 10
Pause Population Mean Population Mean Population Mean
Time | Mean | StD | Coln Range Mean | StD | Coln Range Mean | StD | Coln Range
from to from to from to
0 3.60 | 1.00 | 0.36 | 3.24 3.96 377 | 1.07 | 0.38 | 3.38 4.15 337 1093 | 0.33 | 3.03 3.70
50 347 | 097 | 035 | 3.12 3.81 3.47 | 0.82 | 029 | 3.17 3.76 373 | 1.05 | 0.38 | 3.36 4.11
100 3.63 | 1.03 | 0.37 | 3.26 4.00 3.80 | 0.81 | 0.29 | 3.51 4.09 350 | 097 | 0.35 | 3.15 3.85
150 3.67 | 099 | 0.36 | 3.31 4.02 3.53 | 1.20 | 0.43 | 3.11 3.96 383 | 1.12 | 040 | 343 4.23
200 363 | 1.13 | 040 | 3.23 4.04 343 | 0.86 | 0.31 | 3.13 3.74 350 | 1.01 | 036 | 3.14 3.86
Speed of nodes
Speed 15 Speed 20 Speed 25
Pause Population Mean Population Mean Population Mean
Time | Mean | StD | Coln Range Mean | StD | Coln Range Mean | StD | Coln Range
from to from to from to
0 3.67 | 0.84 | 0.30 | 3.36 3.97 327 | 091 | 032 | 2.94 3.59 330 | 0.88 | 0.31 | 2.99 3.61
50 340 | 097 | 0.35 | 3.05 3.75 370 | 0.88 | 0.31 | 3.39 4.01 3.67 | 096 | 0.34 | 3.32 4.01
100 400 | 1.02 | 0.36 | 3.64 4.36 347 | 1.07 | 0.38 | 3.08 3.85 340 | 093 | 0.33 | 3.07 3.73
150 377 | 1.07 | 0.38 | 3.38 4.15 397 | 1.03 | 037 | 3.60 4.34 3.63 | 096 | 0.35 | 3.29 3.98
200 377 | 1.01 | 0.36 | 3.41 4.13 353 1097 | 035 | 3.19 3.88 350 | 1.20 | 0.43 | 3.07 3.93

Table B.5: Hello Messages vs Pause Time (related to Figure 6.5 in Chapter 6)
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B.6 Failure Packets

Speed of nodes
Speed 1 Speed 5 Speed 10
Pause Population Mean Population Mean Population Mean
Time | Mean | StD | Coln Range Mean | StD | Coln Range Mean | StD | Coln Range
from to from to from to
0 0.13 | 0.51 | 0.18 | -0.05 0.31 0.53 | 1.07 | 0.38 | 0.15 0.92 0.70 | 1.47 | 052 | 0.18 1.22
50 0.20 | 0.61 | 0.22 | -0.02 0.42 0.67 | 1.73 | 0.62 | 0.05 1.29 1.13 | 1.53 | 0.55 | 0.59 1.68
100 043 | 1.04 | 037 | 0.06 0.81 0.17 | 0.65 | 0.23 | -0.07 0.40 0.70 | 1.58 | 0.57 | 0.13 1.27
150 0.77 | 1.70 | 0.61 | 0.16 1.37 027 | 0.69 | 0.25 | 0.02 0.51 0.37 | 1.00 | 0.36 | 0.01 0.72
200 0.40 | 0.81 | 0.29 | 0.11 0.69 0.20 | 0.66 | 0.24 | -0.04 0.44 040 | 097 | 035 | 0.05 0.75
Speed of nodes
Speed 15 Speed 20 Speed 25
Pause Population Mean Population Mean Population Mean
Time | Mean | StD | Coln Range Mean | StD | Coln Range Mean | StD | Coln Range
from to from to from to
0 0.70 | 1.53 | 0.55 | 0.15 1.25 260 | 342 | 1.22 | 1.38 3.82 243 | 2.81 | 1.01 | 143 3.44
50 0.73 | 1.48 | 0.53 | 0.20 1.26 1.50 | 2.08 | 0.74 | 0.76 2.24 240 | 321 | 1.15 | 1.25 3.55
100 0.63 | 1.19 | 043 | 0.21 1.06 093 | 196 | 0.70 | 0.23 1.64 090 | 1.56 | 0.56 | 0.34 1.46
150 0.83 | 1.23 | 044 | 0.39 1.27 1.57 | 3.10 | 1.11 | 0.46 2.68 093 | 2.12 | 0.76 | 0.18 1.69
200 0.33 | 1.15 | 0.41 | -0.08 0.75 0.57 | 1.65 | 0.59 | -0.03 1.16 0.50 | 1.74 | 0.62 | -0.12 1.12

Table B.6: Failure Packets vs Pause Time (related to Figure 6.6 in Chapter 6)
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MDSDYV and DSDV comparison Data

This appendix presents the data that are used to produce all the figures in Chapter
7. The data included in the appendix represents the quantitative comparison of the
DSDV and MDSDV routing protocols. Results are based on simulation of 30 runs,
and the error bars represent the 95% confidence interval of the mean.

We conduct three experiments to produce the data. The network size is varied in the
first experiment (Appendix C.1), the Pause time is varied in the second experiment
(Appendix C.2), and the speed of nodes is varied in the third experiment (Appendix
C.3).

Each row in the table contains the parameter (i.e., number of nodes, pause time, or
speed of nodes), mean, Standard Deviation (StD), Confidence Interval (Coln), and

the Population Mean Range.
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C.1 Network Size (Varying Number of Nodes)

DSDV MDSDV
Number Population Mean Population Mean
of nodes | Mean | StD | Coln Range Mean | StD | Coln Range
from to from to

20 65.37 | 6.50 | 2.33 | 63.04 | 67.69 96.49 | 1.90 | 0.68 | 95.81 97.17
30 68.81 | 5.14 | 1.84 | 66.97 70.65 98.99 | 046 | 0.16 | 98.83 99.16
40 7242 | 548 | 1.96 | 7046 | 74.38 99.04 | 0.58 | 0.21 | 98.83 99.25
50 68.99 | 5.03 | 1.80 | 67.19 | 70.79 99.13 | 0.39 | 0.14 | 98.99 99.27
60 70.05 | 6.58 | 2.35 | 67.69 | 72.40 99.16 | 0.41 | 0.15 | 99.01 99.30
70 71.71 | 6.46 | 2.31 | 69.39 | 74.02 99.07 | 0.61 | 0.22 | 98.85 99.29
80 71.72 | 435 | 1.56 | 70.16 | 73.28 99.06 | 0.47 | 0.17 | 98.90 | 99.23
90 70.57 | 7.16 | 2.56 | 68.01 73.13 98.89 | 0.69 | 0.25 | 98.64 | 99.14
100 70.02 | 6.15 | 2.20 | 67.81 72.22 98.78 | 0.63 | 0.23 | 98.56 99.01

Table C.1: PDF vs Number of Nodes (related to Figure 7.1 in Chapter 7)

DSDV MDSDV
Number Population Mean Population Mean
of nodes | Mean | StD | Coln Range Mean | StD | Coln Range
from to from to

20 88.54 | 14.38 | 5.15 | 83.39 93.68 90.29 | 14.86 | 5.32 | 84.95 95.58
30 97.00 | 1.99 | 0.71 | 96.29 97.71 99.66 | 0.80 | 0.29 | 99.37 99.94
40 9735 | 1.67 | 0.60 | 96.75 97.94 9991 | 0.15 | 0.05 | 99.86 99.97
50 97.58 | 1.44 | 0.52 | 97.07 98.10 99.92 | 0.16 | 0.06 | 99.86 99.98
60 97.48 | 1.60 | 0.57 | 96.91 98.05 99.95 | 0.06 | 0.02 | 99.92 99.97
70 98.30 | 1.23 | 0.44 | 97.86 98.74 99.96 | 0.06 | 0.02 | 99.94 99.98
80 97.77 | 139 | 0.50 | 97.28 98.27 99.96 | 0.07 | 0.03 | 99.93 99.98
90 97.87 | 1.68 | 0.60 | 97.27 98.47 99.95 | 0.05 | 0.02 | 99.93 99.97
100 9753 | 132 | 047 | 97.06 98.00 99.95 | 0.06 | 0.02 | 99.93 99.97

Table C.2: PDF vs Number of Nodes (related to Figure 7.2 in Chapter 7)
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DSDV MDSDV
Number Population Mean Population Mean
of nodes | Mean | StD | Coln Range Mean | StD | Coln Range
from to from to

20 36.60 | 17.11 | 6.12 | 30.48 | 4272 | 4553 | 19.71 | 7.05 | 38.48 52.59
30 29.34 | 16.55 | 592 | 23.42 35.26 30.58 | 9.64 | 345 | 27.14 | 34.03
40 32.60 | 26.47 | 947 | 23.13 42.07 32.85 | 13.81 | 494 | 2791 37.80
50 36.81 | 31.13 | 11.14 | 25.67 | 47.95 39.70 | 12.39 | 4.43 | 3527 | 44.13
60 32.07 | 21.14 | 7.57 | 24.51 39.64 | 40.00 | 16.35 | 5.85 | 34.15 45.85
70 42.88 | 3833 | 13.72 | 29.16 | 56.59 49.37 | 20.72 | 7.42 | 41.95 56.78
80 33.72 | 20.67 | 7.40 | 2632 | 41.12 5496 | 22.13 | 7.92 | 47.04 | 62.88
90 43.24 | 3831 | 13.71 | 29.54 | 56.95 62.45 | 45.19 | 16.17 | 46.28 | 78.62
100 4193 | 3439 | 1231 | 29.62 | 54.24 | 79.81 | 48.75 | 17.45 | 62.37 97.26

Table C.3: Average End to End Delay vs Number of Nodes (related to Figure 7.3) in Chapter 7)

DSDV MDSDV
Number Population Mean Population Mean
of nodes | Mean | StD | Coln Range Mean | StD | Coln Range
from to from to

20 1944 | 649 | 2.32 | 17.12 21.77 20.68 | 9.08 | 3.25 | 17.43 23.93
30 18.61 | 475 | 1.70 | 16.91 20.31 18.96 | 8.11 | 2.90 | 16.05 21.86
40 1839 | 5.06 | 1.81 | 16.58 20.20 17.49 | 497 | 1.78 | 15.71 19.27
50 18.68 | 4.62 | 1.65 | 17.03 20.33 17.56 | 433 | 1.55 | 16.01 19.11
60 19.34 | 478 | 1.71 | 17.63 21.05 17.80 | 4.37 | 1.56 | 16.24 19.37
70 18.72 | 422 | 1.51 | 17.21 20.24 17.21 | 3.97 | 142 | 15.79 18.64
80 1845 | 499 | 1.79 | 16.66 20.23 16.51 | 428 | 1.53 | 14.98 18.04
90 2045 | 649 | 2.32 | 18.13 22.78 18.08 | 6.32 | 2.26 | 15.82 20.34
100 20.14 | 5.52 | 1.98 | 18.17 22.12 1691 | 4.08 | 1.46 | 15.45 18.37

Table C.4: Average End to End Delay vs Number of Nodes (related to Figure 7.4 in Chapter 7)
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AODV MDSDV
Number Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range
from to from to
20 0.1307 | 0.0161 | 0.0058 | 0.1249 | 0.1365 | 0.1850 | 0.0172 | 0.0061 | 0.1788 | 0.1911
30 0.2009 | 0.0215 | 0.0077 | 0.1932 | 0.2086 | 0.3171 | 0.0171 | 0.0061 | 0.3110 | 0.3232
40 0.2698 | 0.0307 | 0.0110 | 0.2588 | 0.2808 | 0.5046 | 0.0286 | 0.0102 | 0.4944 | 0.5149
50 0.3880 | 0.0372 | 0.0133 | 0.3747 | 0.4013 | 0.7066 | 0.0359 | 0.0129 | 0.6938 | 0.7195
60 0.4818 | 0.0574 | 0.0205 | 0.4612 | 0.5023 | 0.9595 | 0.0312 | 0.0111 | 0.9484 | 0.9707
70 0.5722 | 0.0695 | 0.0249 | 0.5473 | 0.5971 | 1.2607 | 0.0545 | 0.0195 | 1.2412 | 1.2802
80 0.6827 | 0.0526 | 0.0188 | 0.6639 | 0.7015 | 1.5887 | 0.0556 | 0.0199 | 1.5688 | 1.6086
90 0.8287 | 0.0966 | 0.0346 | 0.7942 | 0.8633 | 1.9534 | 0.0711 | 0.0254 | 1.9279 | 1.9788
100 0.9495 | 0.1152 | 0.0412 | 0.9083 | 0.9908 | 2.3520 | 0.0893 | 0.0320 | 2.3200 | 2.3839
Table C.5: NRL vs Number of Nodes (related to Figure 7.5 in Chapter 7)
AODV MDSDV
Number Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range
from to from to

20 0.0923 | 0.0169 | 0.0061 | 0.0862 | 0.0983 | 0.0916 | 0.0186 | 0.0067 | 0.0850 | 0.0983
30 0.1355 | 0.0052 | 0.0019 | 0.1336 | 0.1373 | 0.1183 | 0.0031 | 0.0011 | 0.1172 | 0.1194
40 0.1934 | 0.0093 | 0.0033 | 0.1901 | 0.1967 | 0.1565 | 0.0029 | 0.0010 | 0.1555 | 0.1576
50 0.2504 | 0.0106 | 0.0038 | 0.2466 | 0.2542 | 0.1957 | 0.0038 | 0.0014 | 0.1943 | 0.1970
60 0.3120 | 0.0148 | 0.0053 | 0.3067 | 0.3173 | 0.2344 | 0.0038 | 0.0014 | 0.2330 | 0.2357
70 0.3871 | 0.0218 | 0.0078 | 0.3793 | 0.3949 | 0.2736 | 0.0060 | 0.0021 | 0.2715 | 0.2758
80 0.4535 | 0.0313 | 0.0112 | 0.4423 | 0.4647 | 0.3114 | 0.0046 | 0.0017 | 0.3097 | 0.3130
90 0.5516 | 0.0309 | 0.0111 | 0.5406 | 0.5627 | 0.3547 | 0.0089 | 0.0032 | 0.3515 | 0.3579
100 0.6086 | 0.0392 | 0.0140 | 0.5946 | 0.6227 | 0.3894 | 0.0071 | 0.0026 | 0.3869 | 0.3920

Table C.6: NRL vs Number of Nodes (related to Figure 7.6 in Chapter 7)
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DSDV MDSDV
Number Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range
from to from to
20 2089.20 | 390.80 | 139.85 | 1949.35 | 2229.05 | 199.70 | 109.08 | 39.04 | 160.66 | 238.74
30 1883.37 | 310.14 | 110.98 | 1772.39 | 1994.35 | 56.77 | 2532 | 9.06 | 47.71 65.83
40 1665.40 | 330.37 | 118.22 | 1547.18 | 1783.62 | 55.57 | 33.85 | 12.11 | 43.45 67.68
50 1868.67 | 303.93 | 108.76 | 175991 | 1977.43 | 49.47 | 23.59 | 8.44 | 41.02 | 57091
60 1804.97 | 394.00 | 140.99 | 1663.98 | 194596 | 48.83 | 24.23 | 8.67 | 40.16 | 57.50
70 1704.63 | 387.78 | 138.77 | 1565.87 | 1843.40 | 53.57 | 33.65 | 12.04 | 41.53 65.61
80 1703.70 | 261.74 | 93.66 | 1610.04 | 1797.36 | 52.13 | 2479 | 887 | 43.26 | 61.01
90 1774.00 | 432.10 | 154.63 | 1619.37 | 1928.63 | 63.70 | 40.26 | 14.41 | 49.29 | 78.11
100 1806.80 | 370.40 | 132.55 | 1674.25 | 1939.35 | 71.47 | 35.69 | 12.77 | 58.70 84.24
Table C.7: Data Dropped vs Number of Nodes (related to Figure 7.7 in Chapter 7)
DSDV MDSDV
Number Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range
from to from to
20 687.00 | 860.47 | 307.92 | 379.08 | 994.92 | 570.33 | 892.43 | 319.35 | 250.98 | 889.69
30 180.73 | 119.84 | 42.88 | 137.85 | 223.62 | 17.63 | 43.43 15.54 2.09 33.18
40 159.57 | 100.30 | 35.89 | 123.67 | 195.46 | 2.93 3.55 1.27 1.66 4.20
50 145.37 | 87.08 | 31.16 | 114.21 | 176.53 3.50 9.05 3.24 0.26 6.74
60 151.17 | 96.31 | 34.47 | 116.70 | 185.63 1.97 2.68 0.96 1.01 293
70 102.10 | 74.10 | 26.52 | 75.58 | 128.62 1.67 3.34 1.19 0.47 2.86
80 133.53 | 83.63 | 29.93 | 103.61 | 163.46 1.83 3.51 1.26 0.58 3.09
90 127.80 | 101.49 | 36.32 | 91.48 | 164.12 | 2.00 2.55 0.91 1.09 291
100 14823 | 79.13 | 28.32 | 119.92 | 176.55 2.03 291 1.04 0.99 3.07

Table C.8: Data Dropped vs Number of Nodes (related to Figure 7.8 in Chapter 7)
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C.2 Varying Pause Time

DSDV MDSDV
Pause Population Mean Population Mean
Time | Mean | StD | Coln Range Mean | StD | Coln Range
from to from to
0 9499 | 2.81 | 1.00 | 93.99 | 96.00 | 99.96 | 0.04 | 0.02 | 99.95 99.98
50 95.73 | 222 | 0.79 | 9494 | 96.52 99.96 | 0.04 | 0.01 | 99.95 99.98
100 | 96.42 | 1.98 | 0.71 | 95.71 97.13 99.95 | 0.05 | 0.02 | 99.93 99.97
150 | 96.62 | 1.98 | 0.71 | 9592 | 97.33 99.91 | 0.13 | 0.05 | 99.87 99.96
200 | 97.70 | 1.25 | 045 | 97.25 98.14 99.95 | 0.05 | 0.02 | 99.94 | 99.97
Table C.9: PDF vs Pause Time (related to Figure 7.9 in Chapter 7)
DSDV MDSDV
Pause Population Mean Population Mean
Time | Mean | StD | Coln Range Mean | StD | Coln Range
from to from to
0 68.99 | 5.03 | 1.80 | 67.19 | 70.79 99.13 | 0.39 | 0.14 | 98.99 99.27
50 73.17 | 6.09 | 2.18 | 70.99 | 75.35 99.21 | 0.39 | 0.14 | 99.08 99.35
100 | 85.63 | 434 | 1.55 | 84.08 87.19 9947 | 042 | 0.15 | 9932 | 99.62
150 | 87.68 | 3.50 | 1.25 | 86.43 88.94 99.33 | 049 | 0.17 | 99.16 | 99.50
200 | 97.58 | 1.44 | 052 | 97.07 | 98.10 | 99.92 | 0.16 | 0.06 | 99.86 | 99.98

Table C.10: PDF vs Pause Time (related to Figure 7.10 in Chapter 7)
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DSDV MDSDV
Pause Population Mean Population Mean
Time | Mean | StD | Coln Range Mean | StD | Coln Range
from to from to
0 15.11 | 3.55 | 1.27 | 13.84 16.38 14.20 | 2.77 | 099 | 13.21 15.19
50 15.84 | 3.85 | 1.38 | 14.46 17.22 15.19 | 3.92 | 1.40 | 13.79 16.60
100 | 18.39 | 445 | 1.59 | 16.80 19.99 1645 | 3.71 | 1.33 | 15.12 17.77
150 | 18.76 | 4.86 | 1.74 | 17.02 20.50 17.74 | 485 | 1.74 | 16.00 19.47
200 | 1832 | 444 | 1.59 | 16.73 19.91 17.15 | 3.86 | 1.38 | 15.77 18.53

Table C.11: Average End-to-End Delay vs Pause Time (related to Figure 7.11 in Chapter 7)

DSDV MDSDV
Pause Population Mean Population Mean
Time | Mean | StD | Coln Range Mean | StD | Coln Range
from to from to
0 36.81 | 31.13 | 11.14 | 25.67 | 47.95 39.70 | 12.39 | 4.43 | 3527 | 44.13
50 21.60 | 16.19 | 5.79 | 15.81 2740 | 28.64 | 10.07 | 3.60 | 25.03 32.24
100 | 16.46 | 2.78 1.00 | 15.46 17.45 18.05 | 426 | 1.52 | 16.52 19.57
150 | 18.88 | 4.23 1.51 | 17.37 2040 | 2032 | 542 | 194 | 18.38 22.27
200 | 18.68 | 4.62 1.65 | 17.03 20.33 17.56 | 433 | 1.55 | 16.01 19.11

Table C.12: Average End-to-End Delay vs Pause Time (related to Figure 7.12 in Chapter 7)
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DSDV MDSDV
Pause Population Mean Population Mean
Time | Mean StD Coln Range Mean StD Coln Range
from to from to
0 0.2602 | 0.0134 | 0.0048 | 0.2554 | 0.2650 | 0.2107 | 0.0044 | 0.0016 | 0.2091 | 0.2123
50 0.2617 | 0.0131 | 0.0047 | 0.2570 | 0.2663 | 0.2052 | 0.0035 | 0.0013 | 0.2039 | 0.2064
100 | 0.2608 | 0.0135 | 0.0048 | 0.2559 | 0.2656 | 0.2017 | 0.0030 | 0.0011 | 0.2006 | 0.2027
150 | 0.2565 | 0.0159 | 0.0057 | 0.2508 | 0.2622 | 0.1970 | 0.0038 | 0.0014 | 0.1956 | 0.1983
200 | 0.2493 | 0.0093 | 0.0033 | 0.2459 | 0.2526 | 0.1948 | 0.0032 | 0.0011 | 0.1936 | 0.1959
Table C.13: NRL vs Pause Time (related to Figure 7.13 in Chapter 7)
DSDV MDSDV
Pause Population Mean Population Mean
Time | Mean StD Coln Range Mean StD Coln Range
from to from to
0 0.3880 | 0.0372 | 0.0133 | 0.3747 | 0.4013 | 0.7066 | 0.0359 | 0.0129 | 0.6938 | 0.7195
50 0.4120 | 0.0438 | 0.0157 | 0.3964 | 0.4277 | 0.4790 | 0.0244 | 0.0087 | 0.4703 | 0.4878
100 | 0.3233 | 0.0274 | 0.0098 | 0.3135 | 0.3331 | 0.3405 | 0.0189 | 0.0068 | 0.3337 | 0.3472
150 | 0.3145 | 0.0236 | 0.0085 | 0.3061 | 0.3230 | 0.2727 | 0.0159 | 0.0057 | 0.2670 | 0.2783
200 | 0.2504 | 0.0106 | 0.0038 | 0.2466 | 0.2542 | 0.1957 | 0.0038 | 0.0014 | 0.1943 | 0.1970

Table C.14: NRL vs Pause Time (related to Figure 7.14 in Chapter 7)
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DSDV MDSDV
Pause Population Mean Population Mean
Time | Mean StD Coln Range Mean | StD | Coln Range
from to from to
0 301.87 | 169.50 | 60.66 | 241.21 | 362.52 | 1.43 | 2.03 | 0.73 | 0.71 2.16
50 257.30 | 133.78 | 47.87 | 209.43 | 305.17 | 1.50 | 2.08 | 0.74 | 0.76 2.24
100 | 215.60 | 119.64 | 42.81 | 172.79 | 258.41 | 1.77 | 1.99 | 0.71 | 1.05 248
150 | 203.33 | 119.51 | 42.77 | 160.57 | 246.10 | 3.23 | 524 | 1.87 | 1.36 5.11
200 | 138.80 | 74.99 | 26.83 | 111.97 | 165.63 | 1.47 | 1.76 | 0.63 | 0.84 2.10

Table C.15: Data Dropped vs Pause Time (related to Figure 7.15 in Chapter 7)

DSDV MDSDV
Pause Population Mean Population Mean
Time Mean StD Coln Range Mean | StD | Coln Range
from to from to
0 1868.67 | 303.93 | 108.76 | 175991 | 1977.43 | 49.47 | 23.59 | 8.44 | 41.02 57.91
50 1617.20 | 367.95 | 131.67 | 1485.53 | 1748.87 | 43.23 | 21.73 | 7.78 | 35.46 51.01
100 865.07 | 261.32 | 93.51 771.56 | 958.58 | 28.57 | 23.69 | 8.48 | 20.09 37.04
150 742.27 | 210.52 | 75.33 | 66693 | 817.60 | 34.80 | 26.29 | 9.41 | 2539 | 44.21
200 145.37 | 87.08 | 31.16 114.21 176.53 | 3.50 | 9.05 | 3.24 | 0.26 6.74

Table C.16: Data Dropped vs Pause Time (related to Figure 7.16 in Chapter 7)
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C.3 Varying Speed of Nodes

DSDV MDSDV
Speed Population Mean Population Mean
of nodes | Mean | StD | Coln Range Mean | StD | Coln Range
from to from to
1 9499 | 2.81 | 1.00 | 93.99 96.00 99.96 | 0.04 | 0.02 | 99.95 99.98
5 85.05 | 4.68 | 1.67 | 83.38 86.72 99.81 | 0.15 | 0.05 | 99.76 99.87
10 76.36 | 5.68 | 2.03 | 74.33 78.40 99.50 | 0.34 | 0.12 | 99.38 99.63
15 73.52 | 6.73 | 241 | 71.11 75.92 99.36 | 0.27 | 0.10 | 99.26 99.46
20 68.99 | 5.03 | 1.80 | 67.19 70.79 99.13 | 0.39 | 0.14 | 98.99 99.27
25 66.41 | 592 | 2.12 | 64.29 68.53 98.88 | 0.45 | 0.16 | 98.72 99.04
Table C.17: PDF vs Speed of Nodes (related to Figure 7.17 in Chapter 7)
DSDV MDSDV
Speed Population Mean Population Mean
of nodes | Mean | StD | Coln Range Mean | StD | Coln Range
from to from to
1 97.70 | 1.25 | 045 | 97.25 98.14 99.95 | 0.05 | 0.02 | 99.94 99.97
5 98.11 | 1.18 | 0.42 | 97.69 98.53 99.96 | 0.04 | 0.01 | 99.95 99.98
10 97.77 | 1.61 | 0.57 | 97.20 98.35 99.96 | 0.04 | 0.01 | 99.95 99.98
15 97.76 | 1.93 | 0.69 | 97.07 98.45 99.92 | 0.20 | 0.07 | 99.85 99.99
20 9758 | 144 | 0.52 | 97.07 98.10 99.92 | 0.16 | 0.06 | 99.86 99.98
25 97.96 | 1.37 | 049 | 97.47 98.45 99.96 | 0.07 | 0.02 | 99.93 99.98

Table C.18: PDF vs Speed of Nodes (related to Figure 7.18 in Chapter 7)
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DSDV MDSDV
Speed Population Mean Population Mean
of nodes | Mean | StD | Coln Range Mean | StD | Coln Range
from to from to
1 15.11 | 355 | 1.27 | 13.84 16.38 1420 | 277 | 099 | 13.21 15.19
5 18.27 | 9.11 | 3.26 | 15.01 21.53 16.64 | 11.33 | 4.06 | 12.58 | 20.70
10 2949 | 21.04 | 7.53 | 21.96 | 37.02 | 23.33 | 12.01 | 4.30 | 19.04 | 27.63
15 29.77 | 23.12 | 827 | 21.50 | 38.04 | 29.72 | 12.10 | 4.33 | 2539 | 34.05
20 36.81 | 31.13 | 11.14 | 25.67 | 47.95 39.70 | 12.39 | 4.43 | 3527 | 44.13
25 51.36 | 29.36 | 10.51 | 40.86 | 61.87 | 52.76 | 1455 | 5.21 | 47.55 | 57.97

Table C.19: Average End to End Delay vs Speed of Nodes (related to Figure 7.19 in Chapter 7)

DSDV MDSDV
Speed Population Mean Population Mean
of nodes | Mean | StD | Coln Range Mean | StD | Coln Range
from to from to
1 18.32 | 444 | 1.59 | 16.73 19.91 17.15 | 3.86 | 1.38 | 15.77 18.53
5 17.61 | 3.62 | 1.30 | 16.32 18.91 1645 | 3.25 | 1.16 | 15.28 17.61
10 17.36 | 446 | 1.60 | 15.77 18.96 1643 | 4.18 | 1.49 | 1494 17.93
15 18.63 | 7.19 | 2.57 | 16.06 | 21.20 16.85 | 6.29 | 2.25 | 14.60 19.10
20 18.68 | 4.62 | 1.65 | 17.03 20.33 17.56 | 433 | 1.55 | 16.01 19.11
25 17.83 | 4.20 | 1.50 | 16.33 19.33 16.65 | 3.73 | 1.33 | 15.31 17.98

Table C.20: Average End to End Delay vs Speed of Nodes (related to Figure 7.20 in Chapter 7)
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AODV MDSDV
Speed Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range
from to from to

1 0.2602 | 0.0134 | 0.0048 | 0.2554 | 0.2650 | 0.2107 | 0.0044 | 0.0016 | 0.2091 | 0.2123

5 0.2973 | 0.0246 | 0.0088 | 0.2885 | 0.3061 | 0.3591 | 0.0200 | 0.0072 | 0.3519 | 0.3663
10 0.3419 | 0.0335 | 0.0120 | 0.3299 | 0.3539 | 0.5199 | 0.0276 | 0.0099 | 0.5100 | 0.5298
15 0.3527 | 0.0387 | 0.0139 | 0.3389 | 0.3666 | 0.6376 | 0.0289 | 0.0103 | 0.6273 | 0.6479
20 0.3880 | 0.0372 | 0.0133 | 0.3747 | 0.4013 | 0.7066 | 0.0359 | 0.0129 | 0.6938 | 0.7195
25 0.3934 | 0.0470 | 0.0168 | 0.3766 | 0.4102 | 0.7794 | 0.0284 | 0.0102 | 0.7693 | 0.7896

Table C.21: NRL vs Speed of Nodes (related to Figure 7.21 in Chapter 7)
AODV MDSDV
Speed Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range
from to from to

1 0.2493 | 0.0093 | 0.0033 | 0.2459 | 0.2526 | 0.1948 | 0.0032 | 0.0011 | 0.1936 | 0.1959

5 0.2479 | 0.0110 | 0.0039 | 0.2440 | 0.2519 | 0.1947 | 0.0028 | 0.0010 | 0.1937 | 0.1957
10 0.2507 | 0.0110 | 0.0039 | 0.2468 | 0.2547 | 0.1952 | 0.0042 | 0.0015 | 0.1937 | 0.1967
15 0.2487 | 0.0124 | 0.0044 | 0.2442 | 0.2531 | 0.1960 | 0.0073 | 0.0026 | 0.1934 | 0.1986
20 0.2504 | 0.0106 | 0.0038 | 0.2466 | 0.2542 | 0.1957 | 0.0038 | 0.0014 | 0.1943 | 0.1970
25 0.2484 | 0.0143 | 0.0051 | 0.2433 | 0.2536 | 0.1956 | 0.0037 | 0.0013 | 0.1942 | 0.1969

Table C.22: NRL vs Speed of Nodes (related to Figure 7.22 in Chapter 7)
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Speed Population Mean Population Mean
of nodes | Mean StD Coln Range Mean | StD | Coln Range
from to from to
1 301.87 | 169.50 | 60.66 | 241.21 | 362.52 143 | 203 | 0.73 | 0.71 2.16
5 901.87 | 282.69 | 101.16 | 800.71 | 1003.03 | 10.07 | 7.90 | 2.83 | 7.24 12.90

10 1425.03 | 342.16 | 122.44 | 1302.59 | 1547.48 | 28.80 | 19.61 | 7.02 | 21.78 35.82

15 1596.67 | 405.46 | 145.09 | 1451.58 | 1741.76 | 37.10 | 15.83 | 5.66 | 31.44 | 42.76

20 1868.67 | 303.93 | 108.76 | 1759.91 | 1977.43 | 49.47 | 23.59 | 8.44 | 41.02 5791

25 2025.23 | 357.18 | 127.81 | 1897.42 | 2153.05 | 63.67 | 24.36 | 8.72 | 54.95 72.38

VLT

Table C.23: Data Dropped vs Speed of Nodes (related to Figure 7.23 in Chapter 7)

DSDV MDSDV
Speed Population Mean Population Mean
of nodes | Mean StD Coln Range Mean | StD | Coln Range
from to from to
1 138.80 | 74.99 | 26.83 | 111.97 | 165.63 | 147 | 1.76 | 0.63 | 0.84 2.10
5 113.60 | 71.53 | 25.60 | 88.00 | 139.20 | 1.10 | 1.40 | 0.50 | 0.60 1.60

10 133.80 | 96.75 | 34.62 | 99.18 | 168.42 | 1.13 | 1.53 | 0.55 | 0.59 1.68
15 13490 | 116.18 | 41.58 | 93.32 | 17648 | 1.97 | 743 | 2.66 | -0.69 4.62
20 14537 | 87.08 | 31.16 | 114.21 | 176.53 | 3.50 | 9.05 | 3.24 | 0.26 6.74
25 122.27 | 82.34 | 2947 | 92.80 | 151.73 | 1.77 | 3.08 | 1.10 | 0.66 2.87

Table C.24: Data Dropped vs Speed of Nodes (related to Figure 7.24 in Chapter 7)
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MDSDYV, AODYV, and DSR comparison

Data

This appendix presents the data that are used to produce all the figures in Chapter
8. The data included in the appendix represents the quantitative comparison of the
AODV, MDSDYV, and DSR routing protocols. Results are based on simulation of 30
runs, and the error bars represent the 95% confidence interval of the mean.

We conduct four experiments to produce the data. We varied the number of sources
in the first experiment (Appendix D.1), the network size is varied in the second ex-
periment (Appendix D.2), the pause time is varied in the third experiment (Appendix
D.3), and the speed of nodes is varied in the fourth experiment (Appendix D.4).
Each row in the table contains the parameter (i.e., number of sources, number of
nodes, pause time, or speed of nodes), mean, Standard Deviation (StD), Confidence

Interval (Coln), and the Population Mean Range.
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D.1 Varying Number of Sources)

AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of sources | Mean | StD | Coln Range Mean | StD | Coln Range Mean | StD | Coln Range
from to from to from to
10 98.54 | 0.89 | 0.32 | 98.22 | 98.85 97.87 | 143 | 0.51 | 97.36 | 98.38 97.88 | 1.63 | 0.58 | 97.30 | 98.46
20 98.31 | 0.85 | 0.30 | 98.00 | 98.61 97.72 | 1.38 | 049 | 97.23 98.21 98.17 | 1.51 | 0.54 | 97.63 98.71
30 95.16 | 347 | 1.24 | 9391 9640 | 96.21 | 2.27 | 0.81 | 9540 | 97.03 94.81 | 4.15 | 1.49 | 93.33 96.30
40 92.63 | 4.12 | 148 | 91.16 | 94.11 94.52 | 3.13 | 1.12 | 93.41 95.65 92.14 | 497 | 1.78 | 90.36 | 93.91
50 90.71 | 433 | 1.55 | 89.17 9226 | 93.02 | 3.66 | 1.31 | 91.71 94.33 89.64 | 571 | 2.04 | 87.60 | 91.69
Table D.1: PDF vs Number of Sources (related to Figure 8.1 in Chapter 8)
AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of sources | Mean | StD | Coln Range Mean | StD | Coln Range Mean | StD | Coln Range
from to from to from to
10 99.64 | 0.89 | 0.32 | 99.32 | 9996 | 9994 | 0.07 | 0.03 | 99.92 | 99.97 99.96 | 0.04 | 0.01 | 99.94 | 99.97
20 98.55 | 2.36 | 0.84 | 97.71 99.39 99.90 | 0.10 | 0.04 | 99.86 | 99.93 99.85 | 0.32 | 0.12 | 99.73 99.96
30 86.42 | 7.71 | 2.76 | 83.66 89.18 96.71 | 3.38 | 1.21 | 9550 | 97.93 90.20 | 9.04 | 3.24 | 86.97 93.44
40 81.76 | 6.60 | 2.36 | 79.39 84.12 | 93.69 | 4.13 | 1.48 | 92.22 | 95.17 85.36 | 8.17 | 2.92 | 82.44 88.29
50 79.75 | 729 | 2.61 | 77.14 8236 | 91.23 | 422 | 1.51 | 89.72 | 92.74 8242 | 7.84 | 2.81 | 79.62 85.23

Table D.2: PDF vs Number of Sources (related to Figure 8.2 in Chapter 8)
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AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of sources | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
10 6542 | 6797 | 2432 | 41.10 | 89.74 | 41.01 | 28.96 | 10.36 | 30.65 51.37 | 27.64 | 14.70 5.26 2238 | 32.90
20 60.32 | 35.87 | 12.83 | 4749 | 73.16 | 47.12 | 28.61 | 10.24 | 36.88 | 57.36 | 56.54 | 51.94 | 1859 | 37.96 | 75.13
30 119.44 | 67.92 | 2431 | 95.13 | 143.75 | 111.46 | 80.22 | 28.71 | 82.75 | 140.16 | 266.83 | 204.54 | 73.19 | 193.64 | 340.02
40 174.61 | 108.99 | 39.00 | 135.61 | 213.61 | 176.07 | 113.75 | 40.70 | 135.37 | 216.78 | 396.60 | 333.98 | 119.51 | 277.09 | 516.11
50 221.78 | 109.91 | 39.33 | 182.45 | 261.11 | 218.94 | 128.87 | 46.12 | 172.83 | 265.06 | 511.07 | 312.32 | 111.76 | 399.31 | 622.83
Table D.3: Average End to End Delay vs Number of Sources (related to Figure 8.3 in Chapter 8)
AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of sources | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
10 4270 | 53.01 | 18.97 | 23.73 61.67 14.60 2.37 0.85 13.76 15.45 16.69 4.11 1.47 15.22 18.16
20 5378 | 4391 | 1571 | 38.06 | 69.49 | 20.09 4.24 1.52 | 18.57 | 21.61 2528 | 13.04 4.67 20.62 29.95
30 293.13 | 206.86 | 74.02 | 219.11 | 367.16 | 170.53 | 186.76 | 66.83 | 103.70 | 237.36 | 516.61 | 529.77 | 189.58 | 327.03 | 706.19
40 369.41 | 169.73 | 60.74 | 308.68 | 430.15 | 260.54 | 204.03 | 73.01 | 187.52 | 333.55 | 747.08 | 529.57 | 189.50 | 557.58 | 936.58
50 456.64 | 221.99 | 79.44 | 377.21 | 536.08 | 417.15 | 262.08 | 93.78 | 323.37 | 510.93 | 875.38 | 536.97 | 192.15 | 683.23 | 1067.54

Table D.4: Average End to End Delay vs Number of Sources (related to Figure 8.4 in Chapter 8)
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AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of sources | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
10 1.0846 | 0.2855 | 0.1022 | 0.9825 | 1.1868 | 0.8933 | 0.0635 | 0.0227 | 0.8706 | 0.9161 | 0.3026 | 0.0987 | 0.0353 | 0.2672 | 0.3379
20 1.1005 | 0.2328 | 0.0833 | 1.0171 | 1.1838 | 0.5952 | 0.0400 | 0.0143 | 0.5809 | 0.6096 | 0.3377 | 0.1082 | 0.0387 | 0.2990 | 0.3765
30 1.3796 | 0.4139 | 0.1481 | 1.2315 | 1.5278 | 0.4554 | 0.0369 | 0.0132 | 0.4422 | 0.4686 | 0.4296 | 0.1463 | 0.0524 | 0.3773 | 0.4820
40 1.5382 | 0.4234 | 0.1515 | 1.3867 | 1.6897 | 0.4482 | 0.0394 | 0.0141 | 0.4341 | 0.4623 | 0.4608 | 0.1439 | 0.0515 | 0.4093 | 0.5122
50 1.6130 | 0.3858 | 0.1381 | 1.4749 | 1.7511 | 0.4453 | 0.0420 | 0.0150 | 0.4302 | 0.4603 | 0.5041 | 0.1476 | 0.0528 | 0.4513 | 0.5569
Table D.5: NRL vs Number of Sources (related to Figure 8.5 in Chapter 8)
AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of sources | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
10 0.2855 | 0.0932 | 0.0334 | 0.2522 | 0.3189 | 0.2684 | 0.0033 | 0.0012 | 0.2672 | 0.2696 | 0.1226 | 0.0322 | 0.0115 | 0.1111 | 0.1341
20 0.6037 | 0.4828 | 0.1728 | 0.4309 | 0.7764 | 0.1793 | 0.0045 | 0.0016 | 0.1777 | 0.1809 | 0.1257 | 0.0433 | 0.0155 | 0.1102 | 0.1412
30 22560 | 1.1730 | 0.4197 | 1.8363 | 2.6758 | 0.1757 | 0.0394 | 0.0141 | 0.1616 | 0.1898 | 0.3929 | 0.2622 | 0.0938 | 0.2990 | 0.4867
40 2.6409 | 1.0576 | 0.3785 | 2.2624 | 3.0193 | 0.1884 | 0.0394 | 0.0141 | 0.1744 | 0.2025 | 0.4837 | 0.2396 | 0.0858 | 0.3980 | 0.5695
50 27384 | 1.2549 | 0.4491 | 2.2893 | 3.1874 | 0.1990 | 0.0385 | 0.0138 | 0.1852 | 0.2128 | 0.5240 | 0.2221 | 0.0795 | 0.4445 | 0.6034

Table D.6: NRL vs Number of Sources (related to Figure 8.6 in Chapter 8)
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AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of sources | Mean StD Coln Range Mean StD | Coln Range Mean StD Coln Range
from to from to from to
10 32.83 19.29 | 6.90 | 25.93 39.73 | 44.33 | 29.84 | 10.68 | 33.65 55.01 42.17 | 3473 | 1243 | 29.74 | 54.60
20 5623 | 2722 | 974 | 4649 | 6597 | 63.57 | 34.21 | 12.24 | 51.32 | 75.81 45.17 | 33.49 | 11.98 | 33.18 | 57.15
30 185.50 | 135.05 | 48.33 | 137.17 | 233.83 | 108.20 | 56.46 | 20.21 | 87.99 | 128.41 | 104.87 | 6434 | 23.02 | 81.84 | 127.89
40 275.73 | 157.45 | 56.34 | 219.39 | 332.07 | 131.47 | 73.33 | 26.24 | 105.23 | 157.71 | 156.30 | 117.31 | 41.98 | 114.32 | 198.28
50 340.53 | 164.42 | 58.84 | 281.70 | 399.37 | 161.37 | 90.71 | 32.46 | 128.91 | 193.83 | 188.40 | 121.37 | 43.43 | 14497 | 231.83
Table D.7: Data Dropped vs Number of Sources (related to Figure 8.7 in Chapter 8)
AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of sources | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
10 7.63 19.74 7.07 0.57 14.70 0.73 0.98 0.35 0.38 1.08 0.40 0.67 0.24 0.16 0.64
20 4370 | 72.45 | 2592 | 17.78 69.62 1.70 2.53 0.91 0.79 2.61 1.50 2.36 0.84 0.66 2.34
30 528.00 | 311.74 | 111.55 | 416.45 | 639.55 | 63.40 | 81.37 | 29.12 | 34.28 92.52 | 164.50 | 196.09 | 70.17 | 94.33 | 234.67
40 707.13 | 293.99 | 105.20 | 601.93 | 812.34 | 109.83 | 99.56 | 35.63 | 74.21 | 145.46 | 280.67 | 232.07 | 83.05 | 197.62 | 363.71
50 800.77 | 326.06 | 116.68 | 684.09 | 917.45 | 178.47 | 124.49 | 44.55 | 133.92 | 223.01 | 356.33 | 232.31 | 83.13 | 273.20 | 439.46

Table D.8: Data Dropped vs Number of Sources (related to Figure 8.8 in Chapter 8)
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D.2 Network Size (Varying Number of Nodes)

AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of nodes | Mean | StD | Coln Range Mean | StD | Coln Range Mean | StD | Coln Range
from to from to from to
30 96.71 | 2.79 | 1.00 | 95.71 97.71 94.18 | 591 | 2.11 | 92.07 96.30 | 96.26 | 4.11 | 147 | 9479 | 97.74
40 93.15 | 457 | 1.64 | 91.51 94.79 92.00 | 6.16 | 2.20 | 89.80 | 9420 | 9146 | 6.48 | 2.32 | 89.15 93.78
50 95.16 | 347 | 1.24 | 9391 9640 | 96.22 | 2.27 | 0.81 | 9540 | 97.03 94.82 | 4.15 | 1.49 | 93.33 96.30
60 92.23 | 5.19 | 1.86 | 90.37 94.09 93.75 | 542 | 1.94 | 91.81 95.68 90.69 | 7.03 | 2.52 | 88.18 93.21
70 90.52 | 6.04 | 2.16 | 88.36 | 92.68 9348 | 4.57 | 1.64 | 91.85 95.12 8932 | 746 | 2.67 | 86.65 91.99
80 89.35 | 543 | 1.94 | 8741 91.29 9294 | 534 | 191 | 91.03 94.85 87.57 | 8.83 | 3.16 | 84.41 90.73
90 88.11 | 591 | 2.11 | 86.00 | 90.23 92.05 | 5.53 | 1.98 | 90.07 94.03 81.84 | 7.86 | 2.81 | 79.03 84.65
100 85.62 | 6.81 | 2.44 | 83.18 88.06 90.50 | 6.20 | 2.22 | 88.28 92.72 | 78.38 | 13.48 | 4.82 | 73.56 83.21
Table D.9: PDF vs Number of Nodes (related to Figure 8.9 in Chapter 8)
AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of nodes | Mean | StD | Coln Range Mean | StD | Coln Range Mean | StD | Coln Range
from to from to from to
30 92.18 | 795 | 2.84 | 89.34 | 95.02 | 9446 | 6.73 | 2.41 | 92.05 96.87 92.54 | 9.58 | 3.43 | 89.11 95.97
40 86.96 | 871 | 3.12 | 83.85 90.08 93.33 | 5.69 | 2.04 | 91.29 | 95.37 87.71 | 10.18 | 3.64 | 84.07 91.35
50 86.42 | 7.71 | 2.76 | 83.66 89.18 96.72 | 3.38 | 1.21 | 95.50 | 97.93 90.20 | 9.04 | 3.24 | 86.97 93.44
60 82.51 | 10.62 | 3.80 | 78.71 86.31 95.10 | 545 | 1.95 | 93.15 97.05 87.44 | 11.12 | 3.98 | 83.46 91.42
70 79.52 | 9.71 | 3.48 | 76.04 82.99 95.52 | 397 | 1.42 | 94.10 | 96.94 86.38 | 9.46 | 3.39 | 83.00 89.77
80 76.26 | 10.38 | 3.72 | 7254 | 79.97 95.98 | 3.58 | 1.28 | 9470 | 97.26 83.44 | 10.14 | 3.63 | 79.81 87.07
90 78.62 | 11.15 | 3.99 | 74.63 82.61 96.96 | 2.74 | 0.98 | 95.98 97.94 85.08 | 11.89 | 4.26 | 80.83 89.34
100 71.09 | 12.98 | 4.64 | 66.45 75.73 94.54 | 425 | 1.52 | 93.02 | 96.06 78.33 | 12.58 | 4.50 | 73.83 82.83

Table D.10: PDF vs Number of Nodes (related to Figure 8.10 in Chapter 8)
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DID(] uostindutod Y puv AdOV AdSAW -d Xipuaddy

AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
30 85.76 | 87.80 | 31.42 | 5434 | 117.18 | 207.39 | 343.83 | 123.04 | 84.35 | 330.42 | 191.69 | 204.54 | 73.19 | 118.50 | 264.88
40 150.97 | 101.84 | 36.44 | 114.52 | 187.41 | 384.36 | 399.12 | 142.82 | 241.53 | 527.18 | 614.07 | 508.70 | 182.04 | 432.04 | 796.11
50 119.44 | 6792 | 2431 | 95.13 | 143.75 | 111.46 | 80.22 | 28.71 | 82.75 | 140.16 | 266.83 | 204.54 | 73.19 | 193.64 | 340.02
60 187.71 | 107.86 | 38.60 | 149.11 | 226.31 | 244.67 | 230.51 | 82.49 | 162.19 | 327.16 | 503.86 | 394.46 | 141.16 | 362.70 | 645.02
70 255.77 | 162.19 | 58.04 | 197.73 | 313.81 | 232.37 | 19533 | 69.90 | 162.48 | 302.27 | 524.08 | 408.29 | 146.10 | 377.97 | 670.18
80 295.77 | 124.88 | 44.69 | 251.08 | 340.46 | 356.17 | 372.43 | 133.27 | 222.90 | 489.44 | 707.49 | 606.87 | 217.17 | 490.32 | 924.66
90 335.14 | 151.43 | 54.19 | 280.96 | 389.33 | 348.32 | 300.23 | 107.43 | 240.89 | 455.75 | 1048.20 | 604.38 | 216.28 | 831.92 | 1264.47
100 422.33 | 232.40 | 83.16 | 339.17 | 505.50 | 408.00 | 356.32 | 127.51 | 280.50 | 535.51 | 1133.77 | 748.99 | 268.02 | 865.75 | 1401.79
Table D.11: Average End to End Delay vs Number of Nodes (related to Figure 8.11 in Chapter 8)
AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
30 117.82 | 12238 | 43.79 | 74.03 | 161.62 | 147.52 | 212.10 | 75.90 | 71.62 | 223.42 | 327.38 | 462.18 | 16539 | 161.99 | 492.77
40 239.03 | 157.19 | 56.25 | 182.78 | 295.28 | 301.57 | 320.26 | 114.60 | 186.97 | 416.18 | 723.13 | 659.25 | 23591 | 487.22 | 959.04
50 293.13 | 206.86 | 74.02 | 219.11 | 367.16 | 170.53 | 186.76 | 66.83 | 103.70 | 237.36 | 516.61 | 529.77 | 189.58 | 327.03 | 706.19
60 406.28 | 317.06 | 113.46 | 292.83 | 519.74 | 278.48 | 415.98 | 148.86 | 129.62 | 427.33 | 790.97 | 848.42 | 303.60 | 487.36 | 1094.57
70 550.78 | 356.13 | 127.44 | 423.34 | 678.22 | 252.64 | 24493 | 87.65 | 164.99 | 340.29 | 798.77 | 617.21 | 220.87 | 577.90 | 1019.63
80 680.35 | 374.96 | 134.18 | 546.17 | 814.53 | 233.49 | 241.39 | 86.38 | 147.10 | 319.87 | 1024.06 | 813.81 | 291.22 | 732.84 | 1315.27
90 611.01 | 394.07 | 141.02 | 469.99 | 752.02 | 167.06 | 174.78 | 62.54 | 104.51 | 229.60 | 860.42 | 844.79 | 302.30 | 558.12 | 1162.73
100 807.55 | 470.87 | 168.50 | 639.05 | 976.05 | 330.28 | 297.97 | 106.63 | 223.65 | 436.91 | 1314.17 | 855.92 | 306.29 | 1007.88 | 1620.46

Table D.12: Average End to End Delay vs Number of Nodes (related to Figure 8.12 in Chapter 8)
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AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
30 0.7367 | 0.2711 | 0.0970 | 0.6397 | 0.8338 | 0.2501 | 0.0350 | 0.0125 | 0.2376 | 0.2626 | 0.2754 | 0.1111 | 0.0398 | 0.2356 | 0.3152
40 1.2902 | 0.4727 | 0.1692 | 1.1210 | 1.4593 | 0.3563 | 0.0537 | 0.0192 | 0.3371 | 0.3755 | 0.4428 | 0.1631 | 0.0584 | 0.3844 | 0.5012
50 1.3796 | 0.4139 | 0.1481 | 1.2315 | 1.5278 | 0.4554 | 0.0369 | 0.0132 | 0.4422 | 0.4686 | 0.4296 | 0.1463 | 0.0524 | 0.3773 | 0.4820
60 2.0237 | 0.7883 | 0.2821 | 1.7416 | 2.3058 | 0.6200 | 0.0690 | 0.0247 | 0.5954 | 0.6447 | 0.6132 | 0.2370 | 0.0848 | 0.5284 | 0.6980
70 2.5243 | 0.9214 | 0.3297 | 2.1946 | 2.8540 | 0.8107 | 0.0705 | 0.0252 | 0.7855 | 0.8359 | 0.7764 | 0.3351 | 0.1199 | 0.6565 | 0.8964
80 3.1449 | 09168 | 0.3281 | 2.8168 | 3.4730 | 1.0027 | 0.1159 | 0.0415 | 0.9612 | 1.0442 | 0.9554 | 0.4462 | 0.1597 | 0.7958 | 1.1151
90 3.6770 | 1.1033 | 0.3948 | 3.2822 | 4.0719 | 1.2481 | 0.1351 | 0.0483 | 1.1997 | 1.2964 | 1.4684 | 0.5633 | 0.2016 | 1.2668 | 1.6699
100 4.6128 | 1.5070 | 0.5393 | 4.0736 | 5.1521 | 1.5242 | 0.1519 | 0.0543 | 1.4698 | 1.5785 | 2.0734 | 1.3759 | 0.4924 | 1.5810 | 2.5658
Table D.13: NRL vs Number of Nodes (related to Figure 8.13 in Chapter 8)
AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
30 0.8759 | 0.7808 | 0.2794 | 0.5964 | 1.1553 | 0.1294 | 0.0442 | 0.0158 | 0.1136 | 0.1452 | 0.2381 | 0.2168 | 0.0776 | 0.1605 | 0.3157
40 1.7182 | 1.0160 | 0.3636 | 1.3546 | 2.0818 | 0.1682 | 0.0506 | 0.0181 | 0.1501 | 0.1863 | 0.4005 | 0.2556 | 0.0915 | 0.3090 | 0.4920
50 2.2560 | 1.1730 | 0.4197 | 1.8363 | 2.6758 | 0.1757 | 0.0394 | 0.0141 | 0.1616 | 0.1898 | 0.3929 | 0.2622 | 0.0938 | 0.2990 | 0.4867
60 3.3359 | 1.8974 | 0.6790 | 2.6569 | 4.0149 | 0.2182 | 0.0588 | 0.0210 | 0.1971 | 0.2392 | 0.5510 | 0.3990 | 0.1428 | 0.4082 | 0.6938
70 4.1556 | 2.0144 | 0.7208 | 3.4348 | 4.8765 | 0.2430 | 0.0444 | 0.0159 | 0.2271 | 0.2589 | 0.7050 | 0.4045 | 0.1447 | 0.5602 | 0.8497
80 5.4082 | 2.7015 | 0.9667 | 4.4415 | 6.3749 | 0.2728 | 0.0467 | 0.0167 | 0.2561 | 0.2895 | 0.8971 | 0.5395 | 0.1931 | 0.7040 | 1.0901
90 5.1804 | 2.6575 | 0.9510 | 4.2295 | 6.1314 | 0.2891 | 0.0428 | 0.0153 | 0.2738 | 0.3044 | 0.9702 | 0.7244 | 0.2592 | 0.7110 | 1.2295
100 7.8822 | 4.2943 | 1.5367 | 6.3455 | 9.4189 | 0.3467 | 0.0558 | 0.0200 | 0.3267 | 0.3667 | 1.4956 | 0.9664 | 0.3458 | 1.1498 | 1.8415
Table D.14: NRL vs Number of Nodes (related to Figure 8.14 in Chapter 8)
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AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
30 117.63 | 101.16 | 36.20 | 81.43 | 153.83 | 155.17 | 146.68 | 52.49 | 102.68 | 207.65 | 62.47 | 6496 | 23.24 | 39.22 | 85.71
40 270.17 | 175.38 | 62.76 | 207.41 | 332.93 | 214.17 | 177.38 | 63.47 | 150.69 | 277.64 | 179.77 | 163.67 | 58.57 | 121.20 | 238.34
50 185.50 | 135.05 | 48.33 | 137.17 | 233.83 | 108.20 | 56.46 | 20.21 | 87.99 | 128.41 | 104.87 | 64.34 | 23.02 | 81.84 | 127.89
60 307.70 | 209.91 | 75.11 | 232.59 | 382.81 | 167.10 | 127.64 | 45.68 | 121.42 | 212.78 | 173.03 | 133.69 | 47.84 | 125.19 | 220.87
70 359.30 | 235.58 | 84.30 | 275.00 | 443.60 | 165.10 | 101.74 | 36.41 | 128.69 | 201.51 | 214.67 | 167.34 | 59.88 | 154.79 | 274.55
80 410.87 | 230.39 | 82.44 | 328.42 | 493.31 | 198.90 | 142.89 | 51.13 | 147.77 | 250.03 | 260.17 | 207.88 | 74.39 | 185.78 | 334.55
90 459.90 | 242.14 | 86.65 | 373.25 | 546.55 | 210.63 | 121.55 | 43.49 | 167.14 | 254.13 | 368.30 | 19597 | 70.13 | 298.17 | 438.43
100 549.93 | 266.61 | 95.41 | 454.53 | 645.34 | 263.90 | 188.95 | 67.61 | 196.29 | 331.51 | 463.10 | 357.09 | 127.78 | 335.32 | 590.88
Table D.15: Data Dropped vs Number of Nodes (related to Figure 8.15 in Chapter 8)
AODV MDSDV DSR
Number Population Mean Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
30 262.07 | 275.39 | 98.55 | 163.52 | 360.61 | 172.13 | 231.38 | 82.80 | 89.33 | 254.93 | 161.50 | 250.51 | 89.64 | 71.86 | 251.14
40 519.07 | 365.12 | 130.66 | 388.41 | 649.72 | 175.03 | 164.82 | 58.98 | 116.05 | 234.01 | 256.07 | 274.74 | 98.31 | 157.75 | 354.38
50 528.00 | 311.74 | 111.55 | 41645 | 639.55 | 63.40 | 81.37 | 29.12 | 34.28 | 92.52 | 164.50 | 196.09 | 70.17 | 94.33 | 234.67
60 697.23 | 429.80 | 153.80 | 543.43 | 851.04 | 96.30 | 130.02 | 46.53 | 49.77 | 142.83 | 255.27 | 308.87 | 110.53 | 144.74 | 365.79
70 790.00 | 405.36 | 145.06 | 644.94 | 935.06 | 77.43 | 82.19 | 29.41 | 48.02 | 106.84 | 260.83 | 234.56 | 83.94 | 176.90 | 344.77
80 920.37 | 430.08 | 153.90 | 766.46 | 1074.27 | 72.10 | 87.15 | 31.19 | 40.91 | 103.29 | 356.63 | 277.17 | 99.18 | 257.45 | 455.82
90 819.80 | 454.33 | 162.58 | 657.22 | 982.38 | 48.23 | 49.59 | 17.75 | 30.49 | 6598 | 304.43 | 33530 | 119.99 | 184.45 | 424.42
100 1107.17 | 517.66 | 185.24 | 921.92 | 1292.41 | 103.33 | 102.87 | 36.81 | 66.52 | 140.14 | 432.00 | 305.29 | 109.25 | 322.75 | 541.25

Table D.16: Data Dropped vs Number of Nodes (related to Figure 8.16 in Chapter 8)
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D.3

Varying Pause Time

AODV MDSDV DSR
Pause Population Mean Population Mean Population Mean
Time | Mean | StD | Coln Range Mean | StD | Coln Range Mean | StD | Coln Range
from to from to from to
0 9296 | 695 | 2.49 | 9047 95.45 98.60 | 2.00 | 0.71 | 97.88 99.31 95.96 | 589 | 2.11 | 93.86 | 98.07
25 8795 | 792 | 2.83 | 85.12 | 90.79 96.87 | 4.02 | 1.44 | 95.43 98.31 9241 | 825 | 295 | 89.46 | 95.36
50 86.96 | 6.86 | 2.46 | 84.51 89.42 96.52 | 295 | 1.06 | 95.47 97.58 90.36 | 8.08 | 2.89 | 87.46 | 93.25
75 83.94 | 10.46 | 3.74 | 80.19 87.68 94.38 | 4.66 | 1.67 | 92.71 96.05 85.87 | 10.00 | 3.58 | 82.30 89.45
100 | 89.74 | 592 | 2.12 | 87.62 | 91.85 97.17 | 3.04 | 1.09 | 96.08 98.26 | 93.22 | 596 | 2.13 | 91.09 | 95.35
Table D.17: PDF vs Pause Time (related to Figure 8.17 in Chapter 8)
AODV MDSDV DSR
Pause Population Mean Population Mean Population Mean
Time | Mean | StD | Coln Range Mean | StD | Coln Range Mean | StD | Coln Range
from to from to from to
0 95.16 | 347 | 1.24 | 9391 96.40 96.22 | 227 | 0.81 | 95.40 | 97.03 94.82 | 4.15 | 1.49 | 93.33 96.30
25 9142 | 598 | 2.14 | 89.28 93.56 93.89 | 5.69 | 2.04 | 91.86 | 95.93 89.99 | 7.92 | 2.83 | 87.15 92.82
50 93.79 | 3.96 | 142 | 92.37 95.20 96.73 | 2.34 | 0.84 | 95.89 97.57 9498 | 440 | 1.58 | 93.40 | 96.55
75 86.97 | 6.27 | 2.24 | 84.73 89.22 92.14 | 538 | 1.93 | 90.21 94.06 88.48 | 8.73 | 3.12 | 8536 | 91.61
100 | 86.42 | 7.71 | 2.76 | 83.66 89.18 96.72 | 3.38 | 1.21 | 95.50 | 97.93 90.20 | 9.04 | 3.24 | 86.97 93.44

Table D.18: PDF vs Pause Time (related to Figure 8.18 in Chapter 8)

pIv(q uostndutod Y puv AdOV AdSAW -d Xipuaddy



G8¢C

AODV MDSDV DSR
Pause Population Mean Population Mean Population Mean
Time | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
0 201.75 | 198.65 | 71.09 | 130.67 | 272.84 | 80.25 | 98.95 | 3541 | 44.84 | 115.66 | 259.85 | 377.97 | 135.26 | 124.59 | 395.10
25 264.70 | 203.35 | 7277 | 191.93 | 337.47 | 17490 | 268.62 | 96.12 | 78.77 | 271.02 | 427.17 | 500.98 | 179.27 | 247.89 | 606.44
50 265.60 | 144.48 | 51.70 | 213.90 | 317.30 | 190.84 | 157.44 | 56.34 | 134.50 | 247.18 | 649.37 | 664.03 | 237.62 | 411.75 | 886.99
75 399.72 | 316.35 | 113.20 | 286.51 | 512.92 | 300.21 | 301.48 | 107.88 | 192.33 | 408.10 | 839.24 | 636.79 | 227.87 | 611.37 | 1067.12
100 | 222.67 | 129.60 | 46.38 | 176.30 | 269.05 | 145.27 | 166.76 | 59.67 | 85.60 | 204.94 | 314.57 | 338.58 | 121.16 | 193.41 | 435.72
Table D.19: Average End to End Delay vs Pause Time (related to Figure 8.19 in Chapter 8)
AODV MDSDV DSR
Pause Population Mean Population Mean Population Mean
Time | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
0 119.44 | 67.92 | 2431 | 95.13 | 143.75 | 111.46 | 80.22 | 28.71 | 82.75 | 140.16 | 266.83 | 204.54 | 73.19 | 193.64 | 340.02
25 187.55 | 114.35 | 40.92 | 146.63 | 228.46 | 172.01 | 156.09 | 55.86 | 116.16 | 227.87 | 478.51 | 475.86 | 170.28 | 308.23 | 648.79
50 156.75 | 95.49 | 34.17 | 122.57 | 190.92 | 103.89 | 79.38 | 28.40 | 75.48 | 132.29 | 268.20 | 239.46 | 85.69 | 182.51 | 353.89
75 318.66 | 196.53 | 70.33 | 248.33 | 388.98 | 250.03 | 220.50 | 78.90 | 171.12 | 328.93 | 642.18 | 657.88 | 235.42 | 406.76 | 877.60
100 | 293.13 | 206.86 | 74.02 | 219.11 | 367.16 | 170.53 | 186.76 | 66.83 | 103.70 | 237.36 | 516.61 | 529.77 | 189.58 | 327.03 | 706.19

Table D.20: Average End to End Delay vs Pause Time (related to Figure 8.20 in Chapter 8)
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AODV MDSDV DSR
Pause Population Mean Population Mean Population Mean
Time | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
0 1.1783 | 0.9639 | 0.3449 | 0.8333 | 1.5232 | 0.1563 | 0.0273 | 0.0098 | 0.1465 | 0.1661 | 0.2236 | 0.1663 | 0.0595 | 0.1641 | 0.2831
25 1.8813 | 1.0594 | 0.3791 | 1.5022 | 2.2604 | 0.1719 | 0.0423 | 0.0152 | 0.1567 | 0.1871 | 0.3215 | 0.2476 | 0.0886 | 0.2329 | 0.4101
50 2.1613 | 1.0956 | 0.3921 | 1.7693 | 2.5534 | 0.1808 | 0.0332 | 0.0119 | 0.1690 | 0.1927 | 0.3841 | 0.2443 | 0.0874 | 0.2967 | 0.4715
75 2.5701 | 1.6038 | 0.5739 | 1.9961 | 3.1440 | 0.1896 | 0.0437 | 0.0156 | 0.1739 | 0.2052 | 0.5253 | 0.3086 | 0.1104 | 0.4149 | 0.6357
100 | 1.7146 | 0.8908 | 0.3188 | 1.3958 | 2.0333 | 0.1666 | 0.0296 | 0.0106 | 0.1560 | 0.1772 | 0.3144 | 0.1765 | 0.0632 | 0.2513 | 0.3776
Table D.21: NRL vs Pause Time (related to Figure 8.21 in Chapter 8)
AODV MDSDV DSR
Pause Population Mean Population Mean Population Mean
Time | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
0 1.3796 | 0.4139 | 0.1481 | 1.2315 | 1.5278 | 0.4554 | 0.0369 | 0.0132 | 0.4422 | 0.4686 | 0.4296 | 0.1463 | 0.0524 | 0.3773 | 0.4820
25 1.7202 | 0.6911 | 0.2473 | 1.4729 | 1.9675 | 0.3608 | 0.0580 | 0.0208 | 0.3400 | 0.3816 | 0.5100 | 0.2717 | 0.0972 | 0.4128 | 0.6072
50 1.3155 | 0.4696 | 0.1681 | 1.1475 | 1.4836 | 0.2405 | 0.0222 | 0.0080 | 0.2325 | 0.2485 | 0.3523 | 0.1144 | 0.0409 | 0.3114 | 0.3932
75 1.9307 | 0.7454 | 0.2667 | 1.6640 | 2.1975 | 0.1909 | 0.0360 | 0.0129 | 0.1780 | 0.2038 | 0.4774 | 0.2625 | 0.0939 | 0.3835 | 0.5713
100 | 2.2560 | 1.1730 | 0.4197 | 1.8363 | 2.6758 | 0.1757 | 0.0394 | 0.0141 | 0.1616 | 0.1898 | 0.3929 | 0.2622 | 0.0938 | 0.2990 | 0.4867

Table D.22: NRL vs Pause Time (related to Figure 8.22 in Chapter 8)
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AODV MDSDV DSR
Pause Population Mean Population Mean Population Mean
Time | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
0 265.60 | 279.37 | 99.97 | 165.63 | 365.57 | 26.30 | 38.68 | 13.84 | 12.46 | 40.14 54.27 | 94.05 | 33.65 | 20.61 87.92
25 460.87 | 314.66 | 112.60 | 348.27 | 573.47 | 72.57 | 112.24 | 40.17 | 32.40 | 112.73 | 145.53 | 199.71 | 71.47 | 74.07 | 217.00
50 508.53 | 284.39 | 101.77 | 406.76 | 610.30 | 72.60 | 74.78 | 26.76 | 45.84 | 99.36 191.60 | 222.52 | 79.63 | 111.97 | 271.23
75 624.27 | 413.75 | 148.06 | 476.21 | 772.33 | 121.63 | 113.41 | 40.58 | 81.05 | 162.22 | 270.13 | 275.43 | 98.56 | 171.57 | 368.69
100 | 396.80 | 243.54 | 87.15 | 309.65 | 483.95 | 53.27 | 60.92 | 21.80 | 31.47 75.07 9340 | 11942 | 42.73 | 50.67 | 136.13
Table D.23: Data Dropped vs Pause Time (related to Figure 8.23 in Chapter 8)
AODV MDSDV DSR
Pause Population Mean Population Mean Population Mean
Time | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
0 185.50 | 135.05 | 48.33 | 137.17 | 233.83 | 108.20 | 56.46 | 20.21 | 87.99 | 128.41 | 104.87 | 64.34 | 23.02 | 81.84 | 127.89
25 330.70 | 232.32 | 83.13 | 247.57 | 413.83 | 147.80 | 182.80 | 65.42 | 82.38 | 213.22 | 180.50 | 219.09 | 78.40 | 102.10 | 258.90
50 235.67 | 147.67 | 52.84 | 182.82 | 288.51 | 81.73 | 5255 | 1881 | 62.93 | 100.54 | 75.77 | 64.73 | 23.16 | 52.60 | 98.93
75 509.67 | 265.78 | 95.11 | 414.56 | 604.78 | 177.47 | 136.85 | 48.97 | 128.50 | 226.44 | 227.50 | 254.66 | 91.13 | 136.37 | 318.63
100 | 528.00 | 311.74 | 111.55 | 416.45 | 639.55 | 63.40 | 81.37 | 29.12 | 34.28 92.52 | 164.50 | 196.09 | 70.17 | 94.33 | 234.67

Table D.24: Data Dropped vs Pause Time (related to Figure 8.24 in Chapter 8)
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D.4

Varying Speed of Nodes
AODV MDSDV DSR
Speed Population Mean Population Mean Population Mean
of nodes | Mean | StD | Coln Range Mean | StD | Coln Range Mean | StD | Coln Range
from to from to from to
1 9296 | 6.95 | 2.49 | 9047 | 95.45 98.60 | 2.00 | 0.71 | 97.88 | 99.31 9596 | 5.89 | 2.11 | 93.86 | 98.07
5 95.51 | 493 | 1.76 | 93.74 | 97.27 | 9859 | 1.97 | 0.70 | 97.89 | 99.29 | 97.00 | 4.75 | 1.70 | 95.30 | 98.70
10 9529 | 3.54 | 1.27 | 94.02 | 96.55 97.61 | 2.73 | 098 | 96.64 | 98.59 | 9591 | 3.63 | 1.30 | 94.61 97.20
15 95.04 | 251 | 090 | 94.14 | 9594 | 96.58 | 2.04 | 0.73 | 95.85 | 97.31 94.75 | 423 | 1.51 | 93.24 | 96.27
20 95.16 | 347 | 1.24 | 93.91 9640 | 96.22 | 2.27 | 0.81 | 9540 | 97.03 94.82 | 4.15 | 1.49 | 93.33 96.30
Table D.25: PDF vs Speed of Nodes (related to Figure 8.25 in Chapter 8)
AODV MDSDV DSR
Speed Population Mean Population Mean Population Mean
of nodes | Mean | StD | Coln Range Mean | StD | Coln Range Mean | StD | Coln Range
from to from to from to
1 89.74 | 592 | 2.12 | 87.62 | 91.85 97.17 | 3.04 | 1.09 | 96.08 | 98.26 | 9322 | 596 | 2.13 | 91.09 | 95.35
5 86.05 | 7.55 | 2.70 | 83.35 88.75 95.67 | 439 | 1.57 | 94.10 | 97.24 | 89.46 | 8.51 | 3.04 | 86.42 | 9251
10 85.72 | 9.24 | 331 | 8241 89.02 | 96.04 | 444 | 1.59 | 9445 | 97.63 90.77 | 9.43 | 3.37 | 87.40 | 94.15
15 86.37 | 7.86 | 2.81 | 83.56 | 89.18 | 9536 | 3.74 | 1.34 | 94.02 | 96.70 | 89.30 | 8.01 | 2.86 | 86.44 | 92.17
20 86.42 | 7.71 | 2.76 | 83.66 | 89.18 | 96.72 | 3.38 | 1.21 | 9550 | 97.93 90.20 | 9.04 | 3.24 | 86.97 | 93.44

Table D.26: PDF vs Speed of Nodes (related to Figure 8.26 in Chapter 8)
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AODV MDSDV DSR
Speed Population Mean Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD | Coln Range Mean StD Coln Range
from to from to from to

1 201.75 | 198.65 | 71.09 | 130.67 | 272.84 | 80.25 | 98.95 | 3541 | 44.84 | 115.66 | 259.85 | 377.97 | 135.26 | 124.59 | 395.10

5 131.17 | 121.71 | 43.55 | 87.62 | 174.72 | 61.57 | 76.18 | 27.26 | 34.31 88.82 176.75 | 275.86 | 98.72 | 78.03 | 275.46

10 105.77 | 77.11 | 27.59 | 78.18 | 133.36 | 78.36 | 88.01 | 31.49 | 46.86 | 109.85 | 231.88 | 258.03 | 92.34 | 139.54 | 324.21

15 121.17 | 75.57 | 27.04 | 94.13 | 14821 | 110.08 | 79.61 | 28.49 | 81.59 | 138.57 | 281.99 | 295.59 | 105.78 | 176.21 | 387.76

20 119.44 | 67.92 | 2431 | 95.13 | 143.75 | 111.46 | 80.22 | 28.71 | 82.75 | 140.16 | 266.83 | 204.54 | 73.19 | 193.64 | 340.02

Table D.27: Average End to End Delay vs Speed of Nodes (related to Figure 8.27 in Chapter 8)
AODV MDSDV DSR
Speed Population Mean Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
1 222.67 | 129.60 | 46.38 | 176.30 | 269.05 | 145.27 | 166.76 | 59.67 | 85.60 | 204.94 | 314.57 | 338.58 | 121.16 | 193.41 | 435.72
5 296.19 | 168.48 | 60.29 | 23591 | 356.48 | 225.26 | 235.16 | 84.15 | 141.11 | 309.41 | 547.84 | 473.65 | 169.49 | 378.35 | 717.33
10 37233 | 411.45 | 147.23 | 225.10 | 519.57 | 192.03 | 228.71 | 81.84 | 110.18 | 273.87 | 508.55 | 579.80 | 207.48 | 301.07 | 716.03
15 289.69 | 194.41 | 69.57 | 220.12 | 359.26 | 244.01 | 244.14 | 87.37 | 156.64 | 331.37 | 585.67 | 489.77 | 175.26 | 410.41 | 760.93
20 293.13 | 206.86 | 74.02 | 219.11 | 367.16 | 170.53 | 186.76 | 66.83 | 103.70 | 237.36 | 516.61 | 529.77 | 189.58 | 327.03 | 706.19
Table D.28: Average End to End Delay vs Speed of Nodes (related to Figure 8.28 in Chapter 8)
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AODV MDSDV DSR
Speed Population Mean Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
1 1.1783 | 0.9639 | 0.3449 | 0.8333 | 1.5232 | 0.1563 | 0.0273 | 0.0098 | 0.1465 | 0.1661 | 0.2236 | 0.1663 | 0.0595 | 0.1641 | 0.2831
5 0.9806 | 0.5410 | 0.1936 | 0.7870 | 1.1742 | 0.2126 | 0.0251 | 0.0090 | 0.2036 | 0.2216 | 0.2241 | 0.1447 | 0.0518 | 0.1723 | 0.2759
10 1.1022 | 0.3876 | 0.1387 | 0.9635 | 1.2409 | 0.3188 | 0.0299 | 0.0107 | 0.3081 | 0.3295 | 0.3135 | 0.1155 | 0.0413 | 0.2722 | 0.3548
15 1.3590 | 0.3513 | 0.1257 | 1.2333 | 1.4847 | 0.3955 | 0.0357 | 0.0128 | 0.3827 | 0.4082 | 0.3934 | 0.1246 | 0.0446 | 0.3488 | 0.4380
20 1.3796 | 0.4139 | 0.1481 | 1.2315 | 1.5278 | 0.4554 | 0.0369 | 0.0132 | 0.4422 | 0.4686 | 0.4296 | 0.1463 | 0.0524 | 0.3773 | 0.4820
Table D.29: NRL vs Speed of Nodes (related to Figure 8.29 in Chapter 8)
AODV MDSDV DSR
Speed Population Mean Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
1 1.7146 | 0.8908 | 0.3188 | 1.3958 | 2.0333 | 0.1666 | 0.0296 | 0.0106 | 0.1560 | 0.1772 | 0.3144 | 0.1765 | 0.0632 | 0.2513 | 0.3776
5 2.1861 | 1.1302 | 0.4044 | 1.7816 | 2.5905 | 0.1814 | 0.0460 | 0.0165 | 0.1649 | 0.1978 | 0.4204 | 0.2859 | 0.1023 | 0.3181 | 0.5227
10 2.2637 | 1.4071 | 0.5035 | 1.7602 | 2.7672 | 0.1753 | 0.0400 | 0.0143 | 0.1610 | 0.1896 | 0.3509 | 0.2372 | 0.0849 | 0.2660 | 0.4358
15 2.1569 | 1.1473 | 0.4105 | 1.7463 | 2.5674 | 0.1834 | 0.0402 | 0.0144 | 0.1690 | 0.1978 | 0.4083 | 0.2278 | 0.0815 | 0.3267 | 0.4898
20 22560 | 1.1730 | 0.4197 | 1.8363 | 2.6758 | 0.1757 | 0.0394 | 0.0141 | 0.1616 | 0.1898 | 0.3929 | 0.2622 | 0.0938 | 0.2990 | 0.4867

Table D.30: NRL vs Speed of Nodes (related to Figure 8.30 in Chapter 8)
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AODV MDSDV DSR
Speed Population Mean Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD | Coln Range Mean StD | Coln Range
from to from to from to
1 265.60 | 279.37 | 99.97 | 165.63 | 365.57 | 26.30 | 38.68 | 13.84 | 12.46 | 40.14 5427 | 94.05 | 33.65 | 20.61 87.92
5 162.87 | 186.72 | 66.82 | 96.05 | 229.68 | 30.07 | 45.01 | 16.11 | 13.96 | 46.17 48.27 | 88.34 | 31.61 | 16.65 | 79.88
10 173.93 | 133.59 | 47.81 | 126.13 | 221.74 | 64.63 | 88.22 | 31.57 | 33.07 | 96.20 71.23 | 62.79 | 22.47 | 48.76 | 93.70
15 190.20 | 88.75 | 31.76 | 158.44 | 221.96 | 83.80 | 48.48 | 17.35 | 66.45 | 101.15 95.63 | 76.43 | 27.35 | 68.28 | 122.99
20 185.50 | 135.05 | 48.33 | 137.17 | 233.83 | 108.20 | 56.46 | 20.21 | 87.99 | 128.41 | 104.87 | 64.34 | 23.02 | 81.84 | 127.89
Table D.31: Data Dropped vs Speed of Nodes (related to Figure 8.31 in Chapter 8)
AODV MDSDV DSR
Speed Population Mean Population Mean Population Mean
of nodes | Mean StD Coln Range Mean StD Coln Range Mean StD Coln Range
from to from to from to
1 396.80 | 243.54 | 87.15 | 309.65 | 483.95 | 53.27 | 6092 | 21.80 | 31.47 | 75.07 9340 | 11942 | 42.73 | 50.67 | 136.13
5 53493 | 302.13 | 108.11 | 426.82 | 643.05 | 89.70 | 108.96 | 38.99 | 50.71 | 128.69 | 194.63 | 224.55 | 80.36 | 114.28 | 274.99
10 559.53 | 369.35 | 132.17 | 427.36 | 691.70 | 87.30 | 112.24 | 40.16 | 47.14 | 127.46 | 178.67 | 256.75 | 91.88 | 86.79 | 270.54
15 535.33 | 32393 | 11592 | 41942 | 651.25 | 9593 | 96.72 | 34.61 | 61.32 | 130.54 | 207.77 | 212.26 | 75.96 | 131.81 | 283.72
20 528.00 | 311.74 | 111.55 | 416.45 | 639.55 | 63.40 | 81.37 | 29.12 | 3428 | 92.52 164.50 | 196.09 | 70.17 | 94.33 | 234.67

Table D.32: Data Dropped vs Speed of Nodes (related to Figure 8.32 in Chapter 8)
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Appendix

NS2 simulator modification

This appendix presents the NS2 simulator model code. The code is also available at:

http://www.macs.hw.ac.uk/~etorban/.
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Appendix E: NS2 simulator modification

E.1 NS2 modified Files

File 1 packet.h

53 #define HDR_CMN (p) (hdr_cmn: :access (p))
61 #define HDR_IP (p) (hdr_ip::access (p))

75 enum packet_t {

76 PT_TCP,

77 PT_UDP,

78 PT_CBR,

96 PT_HELLO, //

97 PT_AVAILABLE,

98 PT_FULL_DUMP, //

99 PT_UPDATE_PACKET, //
100 PT_ERROR_PACKET, //
101 PT_FAILURE, //

123 /* CMU/Monarch’s extnsions =*/
124 PT_ARP,

125 PT_MAC,

126 PT_TORA,

127  PT_DSR,

128 PT_AODV,

129 PT_MDSDV,

130  PT_IMEP,

185 };

186 <class p_info {
187 public:

188 p_info () {

189 name_ [PT_TCP]= "tcp";

190 name_ [PT_UDP]= "udp";

191 name_ [PT_CBR]= "cbr";

209 name_ [PT_HELLO] = "HELLO";

210 name_ [PT_AVAILABLE] = "AVAILABLE";
211 name_ [PT_FULL_DUMP] = "FULL_DUMP";
212 name_ [PT_UPDATE_PACKET] = "UPDATE_P";
213 name_ [PT_ERROR_PACKET] = "ERROR_P";
214 name_ [PT_FAILURE] = "FAILURE_P";
232 name_ [PT_MAC]= "MAC";

233 name_ [PT_TORA]= "TORA";

234 name_ [PT_DSR]= "DSR";

235 name_ [PT_AODV]= "AODV";

236 name_ [PT_MDSDV]= "MDSDV";

237 name_ [PT_IMEP]= "IMEP";

470 struct hdr_cmn {

20
21
22
23
24
25
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471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

490
491
492
493

541

}

enum dir_t { DOWN= -1, NONE= 0, UP= 1 };

packet_t ptype_; // packet type

int size_; // simulated packet size

int uid_; // unique id

int error_; // error flag

int errbitcnt_; // # of corrupted bits jahn

int fecsize_;

double ts_; // timestamp: for g-delay measurement
int iface_; // receiving interface (label)

dir_t direction_; // direction: O=none, l=up,

// source routing
char src_rt_valid;
double ts_arr_;

//Monarch extn begins

nsaddr_t prev_hop_; // IP addr of forwarding hop

nsaddr_t next_hop_; // next hop for this packet

int addr_type_; // type of next_hop_ addr

nsaddr_t last_hop_; // for tracing on multi-user channels

//MDSDV extn begins

nsaddr_t current_node_ // Ip address of the node that is dealing with the packet.
nsaddr_t first_node_ // the neigbour that the source used to send the packet.
nsaddr_t forwarded_node_ // the second hop field of the chosen entry.

// Required by Marker of JOBS

File 2 ns-lib.tcl

119
120
121

122
123
124
125

126
127
128
129
130
131

190
191
192

597
598

599
600
601
602
603

proc delay_parse { spec } {
return [time_parse $spec]

}

# Create the core OTcl class called "Simulator".

# This is the principal interface to the simulation engine.

#
#Class Simulator

#

# XXX Whenever you modify the source list below, please also change the

# OTcl script dependency list in Makefile.in
#

source ns—autoconf.tcl

source ns—address.tcl

source ../mobility/dsdv.tcl
source ../mobility/mdsdv.tcl
source ../mobility/dsr.tcl

# create node instance
set node [eval $self create-node-instance $args]

# basestation address setting

if { [info exist wiredRouting_] && S$wiredRouting_ == "ON"
Snode base-station [AddrParams addr2id [$node node-addr]]

}

switch -exact $routingAgent_ {

}

{
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604 DSDV {

605 set ragent [$self create-dsdv-agent S$node]
606 }

607 MDSDV {

608 set ragent [$self create-mdsdv-agent $node]
609 }

610 DSR {

611 $self at 0.0 "$node start-dsr"

612 }

613 AODV {

614 set ragent [$self create-aodv—-agent $node]
615 }

616 TORA {

617 Simulator set IMEPFlag_ ON

618 set ragent [$self create-tora-agent $node]
619 }

801 Simulator instproc create-mdsdv-agent { node } {

802 # Create a mdsdv routing agent for this node

803 set ragent [new Agent/MDSDV]

804 # Setup address (supports hier-addr) for mdsdv agent
805 # and mobilenode

806 set addr [$node node-addr]

807 Sragent addr $addr

808 Sragent node $node

809 if [Simulator set mobile_ip_1]1 {

810 Sragent port-dmux [$node demux]

811 }

812 $node addr $addr

813 $Snode set ragent_ $Sragent

814 Sself at 0.0 "S$Sragent start-mdsdv" ; # start updates
815 return $ragent

}

File 3 mdsdv.tcl

38 #

39 # Default Script Options

40 4

41 Agent/MDSDV set sport_ 0

42  Agent/MDSDV set dport_ 0

43 Agent/MDSDV set wstO_ 6 ;# As specified by Pravin
44 Agent/MDSDV set perup_ 10 ;# update period

45 Agent/MDSDV set use_mac_ 0 ;# Performance suffers with this on
46 Agent/MDSDV set be_random_ 1 ;# Flavor the performance numbers
47 Agent/MDSDV set alpha_ 0.875 ;# 7/8, as in RIP(?)
48 Agent/MDSDV set min_update_periods_ 3 ;# Missing perups before linkbreak
49 Agent/MDSDV set verbose_ 0 P #

50 Agent/MDSDV set trace_wst_ 0 P #

51

52

53 set opt(ragent) Agent /MDSDV

65 Agent/MDSDV instproc init args {

66 eval $self next $args
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67 }

73 proc create-MDSDV-routing-agent { node id } {

74 global ns_ ragent_ tracefd opt

75

76 # Create the Routing Agent and attach it to port 255.

77 set ragent_ ($id) [new S$opt (ragent) ]

78 set ragent $ragent_ ($id)

79

80 ## setup address (supports hier-addr) for MDSDV agent and mobilenode.
81 set addr [$node node-addr]

114 }

117 proc mdsdv-create-mobile-node { id args } {

118 global ns ns_ chan prop topo tracefd opt node_
119 global chan prop tracefd topo opt

120

121 set ns_ [Simulator instance]

185 return $node

186 1}

File 4 Makefile

159 OBJ_CC = \

160 mdsdv/mdsdv.o mdsdv/rtable02.0 \
161 tools/random.o tools/rng.o tools/ranvar.o common/misc.o common/timer-handler.o \
162 common/scheduler.o common/object.o common/packet.o \

437 tcl/mobility/dsdv.tcl \
438 tcl/mobility/mdsdv.tcl \
439 tcl/mobility/dsr.tcl \

E.2 Header Files added

File 5 mdsdv.h

#ifndef cmu_dsdv_h_
#define cmu_dsdv_h_

#include "config.h"

296



Appendix E: NS2 simulator modification

#include "agent.h"
#include "ip.h"
#include "delay.h"
#include "scheduler.h"
#include "queue.h"
#include "trace.h"
#include "arp.h"
#include "11.h"
#include "mac.h"
#include "priqueue.h"

#include "rtable.h"

#if defined (WIN32) && !defined(snprintf)
#define snprintf _snprintf
#endif /» WIN32 && !snprintf =/

typedef double Time;

#define MAX_QUEUE_LENGTH 5
#define ROUTER_PORT Oxff

class MDSDV_Helper;

class MDSDV_Agent : public Agent {
friend class MDSDV_Helper;
public:
MDSDV_Agent () ;
virtual int command(int argc, const char % const x argv);
void lost_link (Packet «*p);

protected:
void helper_callback (Event =xe);
Packetx rtable(int);
virtual void Recv_Packet (Packet %, Handler x);
void trace(char* fmt, ...);
void tracepkt (Packet *, double, int, const char «x);

Packet * Generate_Hello_Message (int new_seq);

Packet x Make_Fulldump (nsaddr_t dst);

Packet * Generate_Update_Packet (int change_count) ;

Packet » Generate_Failure_Packet (nsaddr_t src, nsaddr_t dst,nsaddr_t first);

// update old_rte in routing table to to new_rte
int updateRoute (rtable_ent xold_rte, rtable_ent #*new_rte);
void Receive_Control_Packet (Packet x p);

void Receive_Hello_Message (Packet * p);

void Receive_Fulldump (Packet * p);

void Receive_Updatepacket (Packet * p);

void Receive_Error_packet (Packet * p);

void Receive_Failure_Packet (Packet * p);

void addNewNeighbour (nsaddr_t dst, int seq);
void Forward_Packet (Packet * p);

void startUp();

int diff_subnet (int dst);

void sendOutBCastPkt (Packet =*p);

void addNewEntry (nsaddr_t dst, int new_seq);

Trace *tracetarget; // Trace Target

MDSDV_Helper +helper_; // MDSDV Helper, handles callbacks
RoutingTable *table_; // Routing Table

NeighbourTable xntable_; // neighbours table

PriQueue x11_qgueue; // link level output queue

int seqno_; // Sequence number to advertise with...
int myaddr_; // My address...

int linkno_; // link id added by ali
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Vi

// Extensions for mixed type simulations using wired and wireless nodes
char xsubnet_; // My subnet

MobileNode *node_; // My node

// for debugging

char xaddress;

NsObject *port_dmux_; // my port dmux

Event xperiodic_callback_; // notify for periodic update
Event #*periodic_update_;

// Randomness/MAC/logging parameters
int be_random_;

int use_mac_;

int verbose_;

int trace_wst_;

// last time a periodic update was sent...
double lasttup_; // time of last triggered update
double next_tup; // time of next triggered update

// MDSDV constants:

double alpha_; // 0.875

double wstO_; // 6 (secs)

double perup_; // 10 (secs) period between updates

int min_update_periods_; // 3 we must hear an update from a neighbor every

// min_update_periods or we declare them unreachable

void output_rte(const char xprefix, rtable_ent *prte, MDSDV_Agent =a);

class MDSDV_Helper : public Handler {

bi

public:
MDSDV_Helper (MDSDV_Agent =*a_) {
virtual void handle (Event =xe) {

a = a_; }
a->helper_callback(e); }

private:
MDSDV_Agent =*a;

#endif

File 6 rtable.h

#ifndef cmu_rtable_h_
#define cmu_rtable_h_

#include "config.h"
#include "scheduler.h"
#include "queue.h"

#define BIG 250

#define NEW_ROUTE_SUCCESS_NEWENT
#define NEW_ROUTE_SUCCESS_OLDENT
#define NEW_ROUTE_METRIC_TOO_HIGH
#define NEW_ROUTE_ILLEGAL_CANCELLATION
#define NEW_ROUTE_INTERNAL_ERROR

S w N e o

#ifndef uint
typedef unsigned int uint;
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#endif // !'uint

class rtable_en

public:
rtable_ent ()
nsaddr_t ds
nsaddr_t ho

nsaddr_t sh
uint me
uint se
uint 1i
double ch
double ne
double ws

bi

class RoutingTa
public:
RoutingTabl

t {

{ bzero(this, sizeof (rtable_ent));}

destination

next hop

second hop

distance

last sequence number we saw

link id

when route last changed

when we last heard a new seq number
running wst info

t; //
P //

op; //
tric; //
gnum; //
nk_no; //
anged_at; //
w_seqnum_at; //
t; //

ble {

e();

int Add_Entry (const rtable_ent &ent,nsaddr_t =xid);
int Sort_Entry(const rtable_ent &ent,int first_entry_position, nsaddr_t nod_id);

int Remaini
void InitLo

ngLoop () ;
op();

int number_of_elts();
void local_rep(nsaddr_t nod_id);
void stale_routes (nsaddr_t nod_id);

rtable_ent
rtable_ent

rtable_ent
private:
rtable_ent
int maxe
int elts
int ctr;

bi

[/ %k ok ok ok k ok kok ok ok ok ok
class ntable_en
public:
ntable_ent ()
nsaddr_t
uint
uint

uint
uint
double
Event
PacketQueue
bool

Vi

class Neighbour
public:
NeighbourTa

*NextLoop () ;

*GetEntryl (nsaddr_t dest, nsaddr_t via,nsaddr_t smyaddr );
*GetEntry2 (nsaddr_t dest, nsaddr_t via, nsaddr_t previous,nsaddr_t myaddr );

*rtab;

1ts;

’

x%x% dealing with the neighbours table &k kkxkkkkkk &k &k xk

t |

{ bzero(this, sizeof (ntable_ent));}

dst;
neighbour;
metric;

segnum;
link_no;
changed_at;
*timeout_event;
*d;

active;

Table {

ble();

/7
//
//

/7

destination
is it a neighbour or no (1 means a neighbour)
distance

last sequence number we saw

link id

when route last changed

event used to schedule timeout action

//pkts queued for dst

/7

is it an active

// functions belongs to ntable..

void nInitL

oop () ;
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void nAddEntry (const ntable_ent &ent);
int nRemainingLoop () ;

ntable_ent *nNextLoop () ;

ntable_ent *nGetEntry (nsaddr_t dest);

private:
ntable_ent =xntab;

int nmaxelts;
int nelts;
int nctr;

[/ xkHkxKkxkxkrxkkxkxxkx% dealing with the Queue table Fxkxkxkkkkkkkhxkxk*
class gtable_ent {

public:
gtable_ent () { bzero(this, sizeof (gtable_ent));}
gsaddr_t dst; // destination
PacketQueue *q; //pkts queued for dst

bi

class QueueTable {
public:
QueueTable () ;

// functions belongs to gtable..
void gAddEntry (const ntable_ent &ent);
ntable_ent *gGetEntry(nsaddr_t dest);

private:
ntable_ent x*gtab;

int nmaxelts;
int nelts;
int nctr;

Vi

#endif

E.3 Functions

Function 1 startUp

void MDSDV_Agent::startUp ()
{

// Each node starts by creating an entry belongs to itself in its routing table

Time now = Scheduler::instance().clock();
subnet_ = Address::instance () .get_subnetaddr (myaddr_) ;
address = Address::instance () .print_nodeaddr (myaddr_) ;
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rtable_ent rte;
bzero (&rte, sizeof (rte));

rte.dst = myaddr_;
rte.hop = myaddr_;

rte.shop = -99;
rte.metric = 0;
rte.segqnum = seqno_;

rte.link_no = myaddr_x10000+myaddr_;

seqno_ += 2;

rte.advertise_ok_at = 0.0;
rte.advert_segnum = true;
rte.advert_metric = true;
rte.changed_at = now;
rte.new_seqgnum_at = now;
rte.wst = 0;
rte.timeout_event = 0;
rte.q = 0;

nsaddr_t *my_ip = &myaddr_;

table_->Add_Entry (rte, my_ip);

periodic_callback_ = new Event

Scheduler::instance () .schedule

()
(helper_,
jitter

periodic_callback_,
(DSDV_STARTUP_JITTER, be_random_));

Function 2 MDSDV _Agent

MDSDV_Agent: :MDSDV_Agent (): Agent (PT_MESSAGE), 11_qgqueue (0),
myaddr_ (0), subnet_ (0), node_ (0), port_dmux_(0),
periodic_callback_ (0), be_random_ (1),
use_mac_ (0), verbose_ (1), trace_wst_ (0), lasttup_ (-10),
alpha_ (0.875), wstO_ (2), perup_ (10),
periodic_update_ (0), min_update_periods_ (3) // constants

{
table_ = new RoutingTable ();
ntable_ = new NeighbourTable ();
helper_ = new MDSDV_Helper (this);

bind_time ("wstO_", &wstO_);

’

bind_time ("perup_", &perup_);

bind ("use_mac_", &use_mac_
bind ("be_random_", &be_random_);

bind ("alpha_", &alpha_);

bind ("min_update_periods_",
bind ("verbose_", &verbose_
bind ("trace_wst_", &trace_wst_);

address = 0;

)

)i

&min_update_periods_);

seqno__

(0),

linkno_

(0),
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Function 3 Recv_Packet

void
MDSDV_Agent::Recv_Packet (Packet » p, Handler «)
{
Scheduler & s = Scheduler::instance ();
hdr_ip xiph = HDR_IP (p);
hdr_cmn #cmh = HDR_CMN (p) ;
int src = Address::instance () .get_nodeaddr (iph->saddr());
int dst = Address::instance () .get_nodeaddr (iph->daddr());

Time now = Scheduler::instance () .clock();

if (src == myaddr_ && cmh->num_forwards () == 0)
{

cmh—->size () += IP_HDR_LEN;

iph->ttl_ = IP_DEF_TTL;

else if(src == myaddr_)

{
drop (p, DROP_RTR_ROUTE_LOOP) ;
return;

else
{
// If the Time To Live (TTL) is over, drop the packet.
if (-—iph->ttl_ —= 0)
{
drop (p, DROP_RTR_TTL) ;

return;
}
}
if ((src != myaddr_) && (iph->dport () == ROUTER_PORT))
Receive_Control_Packet (p);
else if (iph->daddr() == ((int)IP_BROADCAST) && (iph->dport () != ROUTER_PORT))
{
if (src == myaddr_)
sendOutBCastPkt (p) ; // handle to broadcast the packet
else
port_dmux_->Recv_Packet (p, (Handlerx)O0); // hand it over to the port-demux.
}
else
Forward_Packet (p) ; // forward the packet.

Function 4 Forward_Packet

void MDSDV_Agent::Forward_Packet (Packet * p)
{
hdr_ip xiph = HDR_IP (p);
Scheduler & s = Scheduler::instance ();
double now = s.clock ();
hdr_cmn xhdrc = HDR_CMN (p);

rtable_ent *prte; // pointer to an entry in Routing Table (NT)
ntable_ent #nprte; // pointer to an entry in Neighbours Table (NT)
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hdrc->direction() = hdr_cmn: :DOWN;
int src = Address::instance () .get_nodeaddr (iph->saddr()); // get the source’s address.
int dst = Address::instance () .get_nodeaddr (iph->daddr()); // get the destination’s address.

if (diff_subnet (iph->daddr()))
{
// get the best route to the destination...
prte = table_->GetEntry2 (dst,-99, -99,myaddr_);

if (prte && prte->metric != BIG)
goto send; // a valid route is found, send the packet
dst = node_->base_stn();
prte = table_->GetEntry2 (dst,-99, -99,myaddr_);
if (prte && prte->metric != BIG)
goto send;
else

{
//drop the packet with warning
fprintf (stderr, "warning: Route to base_stn not known: dropping pkt\n");
Packet::free(p);
return;

if (hdrc->num_forwards () == 0) // This means the source needs to send a data...
{
// Search for the best route to the destination. If a valid is route is found,
// forward the packet, Otherwise queue it.
prte = table_->GetEntry2 (dst,-99, hdrc->prev_hop_,myaddr_);
if (prte && prte->metric != BIG)
goto send; // a valid route is found, send the packet.
else
{
// There is no route to the destination in the routing table. Queue the packet.
// Find the entry in the QT that belongs to the destination.

gtable_ent *gprte = gtable_->gGetEntry (dst);
if (gprte)
{
// The entry is found. Queue the packet.
if (!'gprte->q)
gprte->g = new PacketQueue ();

gprte->g->enque (p) ;

if (verbose_)
trace ("VBP %$.5f _%d_ %d:%d -> %d:%d", now, myaddr_, iph->saddr (), iph->sport(),
iph->daddr (), iph->dport());

while (gprte->g->length () > MAX_QUEUE_LENGTH)
drop (gprte->g->deque (), DROP_RTR_QFULL) ;

return;
}
else

{

// The entry is not found... create a new entry and queue the packet
gtable_ent grte;

bzero (&qrte, sizeof (grte));
grte.dst = dst;

grte.q = new PacketQueue();
grte.g—->enque (p) ;

assert (grte.g->length() == 1 && 1 <= MAX_QUEUE_LENGTH) ;
gtable_->gAddEntry (grte);
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if (verbose_)
trace ("VBP %.5f _%d_ %d:%d -> %d:%d", now, myaddr_, iph->saddr (), iph->sport(),
iph->daddr (), iph->dport());

return;

}

else // This means an intermediate node plans to forward the packet....
{
nsaddr_t via = hdrc->forwarded_node_;
if (hdrc->forwarded_node_ == -99)
via = dst;

// Search for a route to the destination through the node its address is specified
// in hdrc->forwarded_node_ field...
prte = table_->GetEntryl (dst, via, é&myaddr_);
if (prte && prte->metric != BIG)
goto send; // a valid route is found, send the packet
else

{

// The intermediate node did not find the specified route, it should generate and
// send a Failure packet to the source node, and try to find an alternative route.

Generate_Failure_Packet (src, dst, hdrc->prev_hop_);

prte = table_->GetEntry2 (dst,-99,hdrc->prev_hop_,myaddr_);
if (prte && prte->metric != BIG)

goto send; // an alternative route is found, send the packet.
else

{

// No alternative route is found. So, must queue the packet..

gtable_ent xgprte = gtable_->gGetEntry (dst); // find entry belongs to the destination in NT.
if (gprte)
{
// The entry is found. Queue the packet.
if (!gprte->q)
gqprte->g = new PacketQueue ();

gprte->g->enque (p) ;

if (verbose_)
trace ("VBP %.5f _%d_ %d:%d -> %d:%d", now, myaddr_, iph->saddr(), iph->sport(),
iph->daddr (), iph->dport());

while (gprte->g->length () > MAX_QUEUE_LENGTH)
drop (gprte->g->deque (), DROP_RTR_QFULL);

return;
}
else

{

// The entry is not found... create a new entry and queue the packet
gtable_ent grte;

bzero (&grte, sizeof (grte));
grte.dst = dst;

grte.qg = new PacketQueue();
grte.g->enque (p) ;

assert (grte.g->length() == 1 && 1 <= MAX_QUEUE_LENGTH) ;
gtable_->gAddEntry (grte) ;

if (verbose_)
trace ("VBP %.5f _%d_ %d:%d -> %d:%d", now, myaddr_, iph->saddr (), iph->sport(),
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iph->daddr (), iph->dport());

return;
}
}

}
}
send:
hdrc->addr_type_ = NS_AF_INET;
hdrc->xmit_failure_ = mac_callback;
hdrc->xmit_failure_data_ = this;

if (prte->metric > 1)

hdrc->next_hop_ = prte->hop;
else
hdrc->next_hop_ = dst;

if (hdrc->num_forwards () == 0)
hdrc->first_node_ = hdrc->next_hop_; // to inform the source regarding a link failure.

// hdrc->forwarded_node_ is used to force the receiver to forward the packet to this node.
// hdrc->current_node_ is used to ask the receiver not to forward the packet pack to me.
hdrc->forwarded_node_ = prte->shop;

hdrc->current_node_ = myaddr_;

if (verbose_)

{
trace ("Routing pkts outside domain: \ VFP %.5f _%d_ %d:%d -> %d:%d", now, myaddr_,
iph->saddr (), iph->sport (), iph->daddr (), iph->dport());

assert (!HDR_CMN (p)->xmit_failure_ || HDR_CMN (p)->xmit_failure_ == mac_callback);
target_->recv(p, (Handler =x)0);

return;

}

Function 5 sendOutBCastPkt

void MDSDV_Agent: :sendOutBCastPkt (Packet x*p)
{
Scheduler & s = Scheduler::instance ();
// send out bcast pkt with jitter to avoid sync
s.schedule (target_, p, Jjitter (DSDV_BROADCAST_JITTER, be_random_));

s.cancel (periodic_callback_); // cancel the next periodic callback
s.schedule (helper_, periodic_callback_, 0); // reschedule the next peridic update

Function 6 Receive_Control_Packet

void MDSDV_Agent::Receive_Control_Packet (Packet x p)
{

int HELLO = 20;

int FULL_DUMP = 22;

int UPDATE_P = 23;
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int ERROR_P = 24;
int FAILURE_P = 25;

hdr_ip xiph = HDR_IP (p);
hdr_cmn xhdrc = HDR_CMN (p);

unsigned char xd = p->accessdata (); // A pointer to the begining of the received packet.
unsigned char »w = d + 1; // A pointer to the next byte of the received packet.

// What kind of routing packet is received?
if ( hdrc->ptype() == HELLO) // is it a hello packet?
Receive_Hello_Message (p) ;

if (hdrc—>ptype() == FULL_DUMP) // is it a Full dump ?
Receive_Fulldump (p) ;

if (hdrc->ptype () == UPDATE_P) // is it an update packet?
Receive_Updatepacket (p) ;

if (hdrc->ptype() == ERROR_P) // is it an Errore packet?
Receive_Error_packet (p);

if (hdrc->ptype() == FAILURE_P) // is it a Failure packet?
Receive_Failure_Packet (p);

Function 7 Receive_Hello_Message

void MDSDV_Agent: :Receive_Hello_Message (Packet * p)

{

hdr_ip xiph = HDR_IP (p);
hdr_cmn xhdrc = HDR_CMN (p);

int src = Address::instance () .get_nodeaddr (iph->saddr());

Scheduler & s = Scheduler::instance ();
double now = s.clock ();

unsigned char *d = p->accessdata (); // A pointer to the begining of the received packet.
unsigned char »w = d + 1; // A pointer to the next byte of the received packet.
int change_count = «d;

rtable_ent xprte; // pointer to an entry in the Routing Table (RT)

prte = NULL;

ntable_ent xnprte; // pointer to an entry in the Neighbours Table (NT)
nprte = NULL;

gtable_ent x*gprte; // pointer to an entry in the Queue Table (QT)
gprte = NULL;

// extracting the sequence number from the Update packet....

int new_sequence = * (w++);

new_sequence = new_sequence << 8 | *(w++);
new_sequence = new_sequence << 8 | x (wt++);
new_sequence = new_sequence << 8 | x(wt++);

// Check if there is an entry belongs to the Hello Message sender in the NT.
nprte = ntable_->nGetEntry (src);
if (!nprte)

addNewNeighbour (src, new_sequence); // To add new entry in the NT.
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else
{
if (nprte->metric != BIG)
{
nprte->segnum = new_sequence;
Scheduler::instance ().cancel (nprte->timeout_event);
}
else
{
nprte->timeout_event = new Event ();
nprte->metric = 1;
nprte->changed_at = now;
nprte->segnum = new_sequence;

nprte->1link_no = myaddr_x10000+src;

Packet *xp = Make_Fulldump (src);
if (p) |
assert (!HDR_CMN (p)->xmit_failure_);
s.schedule (target_, p, jitter (DSDV_BROADCAST_JITTER, be_random_));

// reschedule the expected periodic time
s.schedule (helper_, nprte->timeout_event, min_update_periods_ * perup_);

if (verbose_)

{
trace ("VPC %.5f _%d_", now, myaddr_);
tracepkt (p, now, myaddr_, "PU");

// Check if there is a route to the Hello Message sender in the RT....
prte = table_->GetEntryl (src, src,&myaddr_);

if (!prte) // the route is not found, create a route
addNewEntry (src, new_sequence) ;
else
{
if (prte->metric == BIG)
{
// an invalid route is found ... activate it
prte->metric = 1;
prte->segnum = new_sequence;
prte->changed_at = now;
}
else
{
// an active route is found ... update the sequence number and time
prte->segnum = new_sequence;
prte->changed_at = now;

// Check if there are queed packets in the QT belongs to the Hello Message sender.
gprte = gtable_->gGetEntry (src);
if (gprte && gprte->q)
{
gtable_ent grte;
bzero (&qrte, sizeof (grte)); //initialisaion of new entry

int num_of_g packets = 0; //counter for the number of qued packets....

Packet xqueued_p;
while ((queued_p = gprte->g->deque()) && num_of_qg packets < 7)
{
num_of_g packets++;
recv (queued_p, 0); // give the packets to ourselves to forward
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delete gprte->qg;

gprte->q = 0;

bcopy (gprte, &grte,sizeof (gtable_ent));
}
lasttup_ = now;
return;

Function 8 Receive_Fulldump

void MDSDV_Agent: :Receive_Fulldump (Packet x p)
{

hdr_ip *iph = HDR_IP (p);

hdr_cmn xhdrc = HDR_CMN (p);

int src = Address::instance () .get_nodeaddr (iph->saddr());

Scheduler & s = Scheduler::instance ();

double now = s.clock ();

int 1i;

unsigned char xd = p->accessdata (); // A pointer to the begining of the received packet.
unsigned char »w = d + 1; // A pointer to the next byte of the received packet.

rtable_ent rte;
rtable_ent *prte; // pointer to an entry in the Routing Table (RT)

nsaddr_t dst;
prte = NULL;
int kk = xd;
int elements;

rtable_ent *pr2;

// extracting the sequence number from the Full Dump....

int new_sequence = * (w++);

new_sequence = new_sequence << 8 | x(wt++);

new_sequence = new_sequence << 8 | x (wt++);

new_sequence = new_sequence << 8 | & (wt+);

table_->stale_routes (myaddr_); // calling a function to delete stale routes from the RT...
int change_count = 0; // To store number of entries to be included in the Update packet.
int modify_rt = 0; // To store number of overwritten or added entries in the RT...
ntable_ent xnprte; // pointer to an entry in the Neighbours Table (NT)

nprte = NULL;

gtable_ent xgprte; // pointer to an entry in the Queue Table (QT)

gprte = NULL;

// Check if there is an entry belongs to the Full dump sender in the NT...
nprte = ntable_->nGetEntry (src);
if (!nprte)

addNewNeighbour (src, new_sequence) ; // add new entry in the NT.
else
{

if (nprte->metric != BIG)
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nprte->segnum = new_sequence;

Scheduler::instance () .cancel (nprte->timeout_event);
}
else
{

nprte->timeout_event = new Event ();

nprte->metric = 1;

nprte->changed_at = now;

nprte->segnum = new_sequence;
nprte->link_no = myaddr_x10000+src;

}

// reschedule the expected periodic time

s.schedule (helper_, nprte->timeout_event, min_update_periods_ * perup_);

if (verbose_)

{
trace ("VPC %.5f _%d_", now, myaddr_);
tracepkt (p, now, myaddr_, "PU");

// Check if there is a direct route to the Full dump sender in the RT....
prte = table_->GetEntryl (src, src,&myaddr_);

if (!'prte) // the route is not found, create a route
addNewEntry (src, new_sequence) ;
else if (prte->metric == BIG)

{

// an invalid route is found, activate it.

prte->metric = 1;
prte—->segnum = new_sequence;
prte—->changed_at = now;

}

else

{
// an active route is found, update it.
prte—->seqnum = new_sequence;
prte->changed_at = now;

// Check if there are queed packets in the queue table belongs to the Full Dump sender.
gprte = gtable_->gGetEntry (src);
if (gprte && gprte->q)
{
gtable_ent grte;
bzero (&qrte, sizeof (grte)); //initialisaion of new entry

int num_of_g_packets = 0; //counter for the number of qued packets....

Packet xqueued_p;
while ((queued_p = gprte->g->deque()) && num_of_qg packets < 7)
{
num_of_qg_packets++;
recv (queued_p, 0); // give the packets to ourselves to forward

delete gprte->qg;

gprte->q = 0;
bcopy (gprte, &grte,sizeof (gtable_ent));

// Dealing with the Full Dump entry by entry...
for (1 = »d; 1 > 0; i-—-)
{

bzero (&rte, sizeof (rte)); // initialisaion of new entry

309



Appendix E: NS2 simulator modification

// extracting data from the Full Dump....

dst = * (w++); // destination
dst = dst << 8 | *(w++);

dst = dst << 8 | *(w++);

dst = dst << 8 | *(w++);

rte.dst = dst;

rte.hop = * (w++); // the first hop
rte.hop =rte.hop << 8 | * (wt+);
rte.hop =rte.hop << 8 | * (w+t+);
rte.hop =rte.hop << 8 | x(wt++);

rte.shop = * (w++); // the second hop
rte.shop =rte.shop << 8 | * (wt++);
rte.shop =rte.shop << 8 | * (w++);

rte.shop =rte.shop << 8 | * (wt++);
rte.metric = % (w++); // number of hops
rte.link_no = * (w++); // the link id
rte.link_no = rte.link_no << 8 | x(w++);
rte.link_no = rte.link_no << 8 | *(w++);
rte.link_no = rte.link_no << 8 | x(w++);
rte.seqnum = % (wt++); // the sequence number
rte.seqnum = rte.seqnum << 8 | * (w++);
rte.segnum = rte.segnum << 8 | * (wt+);
rte.seqnum = rte.seqgnum << 8 | * (w++);
if (myaddr_== rte.dst || myaddr_== rte.hop || myaddr_== rte.shop)
continue;
if (rte.metric == 0)
continue;
rte.shop=rte.hop;
rte.hop = src;
if (rte.metric != BIG) rte.metric += 1;
rte.changed_at = now;

// check if there is a route to this destination through Full dump sender...
prte = table_->GetEntryl (rte.dst, src,&myaddr_);

/x*xx*xx**xxx+x decide whether to update the routing table xx*x**x*x/
if (!prte)
{
int write = updateRoute (NULL, &rte);
if (write == 1)
modify_rt++; // Number of entries that have been overwritten or added to the RT.
}
else if (rte.metric <= prte->metric) // the route is found ... choose the best
{
int write = updateRoute (prte, &rte);
if (write == 1)
modify_rt++;
}
else
continue;

gtable_ent xgprte; // pointer to an entry in the Queue table (QT)
gprte = NULL;

// Check if there are queed packets in the queue table belongs to the Destination.
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gprte = gtable_->gGetEntry (rte.dst);
if (gprte && gprte->q)
{
gtable_ent grte;
bzero (&qrte, sizeof (grte)); //initialisaion of new entry

int num_of_g_packets = 0; //counter for the number of qued packets....

Packet xqueued_p;
while ((queued_p = gprte->g->deque()) && num_of_g packets < 7)
{
num_of_qg_packets++;
recv (queued_p, 0); // give the packets to ourselves to forward

delete gprte->qg;

gprte->q = 0;
bcopy (gprte, &grte,sizeof (gtable_ent));

Function 9 Receive_Updatepacket

void MDSDV_Agent: :Receive_Updatepacket (Packet * p)
{

hdr_ip xiph = HDR_IP (p);

hdr_cmn xhdrc = HDR_CMN (p);

int src = Address::instance () .get_nodeaddr (iph->saddr());
Scheduler & s = Scheduler::instance ();
double now = s.clock ();

int 1i;
unsigned char xd = p->accessdata (); // A pointer to the begining of the received packet.
unsigned char »w = d + 1; // A pointer to the next byte of the received packet.

rtable_ent rte;
rtable_ent *prte; // pointer to an entry in the Routing Table (RT)
prte = NULL;

nsaddr_t dst;
int kk = xd;

int elements;
rtable_ent *pr2;

int new_sequence = * (w++);

new_sequence = new_sequence << 8 | x (wt++);

new_sequence = new_sequence << 8 | x(wt++);

new_sequence = new_sequence << 8 | % (w++);

table_->stale_routes (myaddr_); // call a function to delete the stale routes....

int change_count = 0; // count of entries to be included in the Update packet.

int modify_rt = 0; // number of entries that have been overwritten or added in the RT
ntable_ent xnprte; // pointer to an entry in neighbours table (NT)

nprte = NULL;
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gtable_ent xgprte; // pointer to an entry in the Queue Table (QT)
gprte = NULL;

// Check if there is an entry belongs to the Update packet sender in the NT...
nprte = ntable_->nGetEntry (src);
if (!nprte)
addNewNeighbour (src, new_sequence);
else
{
if (nprte->metric != BIG)
{
nprte->segnum = new_sequence;
Scheduler::instance ().cancel (nprte->timeout_event);
}
else
{
nprte->timeout_event = new Event ();
nprte->metric = 1;
nprte->changed_at = now;
nprte->segnum = new_sequence;
nprte->link_no = myaddr_x10000+src;

// call a function to generate a full dump and unicast it to the Update packet sender...

Packet xp = Make_Fulldump (src);
if (p)
{
assert (!HDR_CMN (p)->xmit_failure_);
s.schedule (target_, p, jitter (DSDV_BROADCAST_JITTER, be_random_));

// reschedule the expected periodic time
s.schedule (helper_, nprte->timeout_event, min_update_periods_ * perup_);

if (verbose_)

{
trace ("VPC %.5f _%d_", now, myaddr_);
tracepkt (p, now, myaddr_, "PU");

// check if you have a dirct route to the update packet sender.

prte = table_->GetEntryl (src, src,&myaddr_);

if (!prte) // the route is not found, create a route
addNewEntry (src, new_sequence) ;

else if (prte->metric ==BIG)
{

// an invalid route is found, activate it.

prte->metric = 1;
prte->segnum = new_sequence;
prte->changed_at = now;

}

else

{
// an active route is found, update it.
prte->segnum = new_sequence;
prte->changed_at = now;

// Check if there are queed packets in the queue table belongs to the Full Dump sender.
gprte = gtable_->gGetEntry (src);
if (gprte && gprte->q)
{
gtable_ent grte;
bzero (&grte, sizeof (grte)); //initialisaion of new entry
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int num_of_g _packets = 0;
Packet xqueued_p;
while ((queued_p =
{
num_of_qg_packets++;
recv (queued_p, 0);

gqprte->g->deque ()) && num_of_g packets < 7)

// give the packets to ourselves to forward

delete gprte->qg;

gprte->gq = 0;

bcopy (gprte, &grte,sizeof (gtable_ent));

// Dealing with the received Update packet entry by entry...

for

{

(i = xd; 1 > 0; i--)

bzero (&rte, sizeof (rte)); //initialisaion of new entry

// extracting data from the update packet....

dst = * (w++); // destination

dst = dst << 8 | *(w++);

dst = dst << 8 | *(w++);

dst = dst << 8 | *(w++);

rte.dst = dst;

rte.hop = * (wt++); // the first hop

rte.hop =rte.hop << 8 * (W++) ;

rte.hop =rte.hop << 8 * (W++) ;

rte.hop =rte.hop << 8 * (Wt++) ;

rte.shop = * (w++); // the second hop

rte.shop =rte.shop << * (W) ;

rte.shop =rte.shop << * (Wt+) ;

rte.shop =rte.shop << * (W++) ;

rte.metric = % (w++); // number of hops

rte.link_no * (Wt+) ; // the link id

rte.link_no rte.link_no << 8 | *(w++);

rte.link_no rte.link_no << 8 | * (w++);

rte.link_no rte.link_no << 8 | * (w++);

rte.segqnum = *x (W++); // the sequence number

rte.seqnum = rte.seqnum << 8 | * (wt++);

rte.seqnum = rte.seqgnum << 8 | * (wt++);

rte.segqnum = rte.segnum << 8 | * (wt++);

if (myaddr_== rte.dst || myaddr_== rte.hop || myaddr_== rte.shop || rte.metric
continue; // Ignore the entry..

rte.shop=rte.hop;

rte.hop = src;
if (rte.metric != BIG) rte.metric += 1;
rte.changed_at = now;

//counter for the number of qued packets....

0)

// check if there is a route to the destination through The Update packet sender...

prte = table_->GetEntryl (rte.dst, src,&myaddr_);

/***x*x*x+x* decide whether to update our routing table x*x*x*x*x/
if (!prte)
{

int write =

updateRoute (NULL, é&rte);
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if (write == 1)
modify_rt++; // Number of entries that have been overwritten or added to the RT.
}
else if (rte.metric <= prte->metric) // the route is found ... choose the best

{
int write = updateRoute (prte, &rte);
if (write == 1)
modify_rt++;
}
else
continue;

gtable_ent xgprte; // pointer to an entry in the Queue table (QT)
gprte = NULL;

// Check if there are queed packets in the queue table belongs to the Destination.
gprte = gtable_->gGetEntry (rte.dst);
if (gprte && gprte->q)
{
gtable_ent grte;
bzero (&grte, sizeof (grte)); //initialisaion of new entry

int num_of_qg_packets = 0; //counter for the number of qued packets....

Packet xqueued_p;
while ((queued_p = gprte->g->deque()) && num_of_g packets < 7)
{
num_of_g packets++;
recv (queued_p, 0); // give the packets to ourselves to forward

delete gprte->qg;

gprte->q = 0;
bcopy (gprte, &grte,sizeof (gtable_ent));

Function 10 Receive Error_packet

void MDSDV_Agent: :Receive_Error_packet (Packet * p)

{

hdr_ip xiph = HDR_IP (p);
hdr_cmn xhdrc = HDR_CMN (p);

Scheduler & s = Scheduler::instance ();
double now = s.clock ();

unsigned char xd = p->accessdata (); // A pointer to the begining of the received packet.
unsigned char »w = d + 1; // A pointer to the next byte of the received packet.

// extracting data from the Error packet....
int flag = 0;

int packet_sender = x (w++);

packet_sender = packet_sender << 8 | x(w++);
packet_sender = packet_sender << 8 | x (w++);
packet_sender = packet_sender << 8 | x(w++);

int destination = % (w++);
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destination = destination << 8 | =« (w++);
destination = destination << 8 | * (w++);
destination = destination << 8 | * (w++);
int link_no = x (w++);

link_no = link_no << 8 | * (w++);

link_no = link_no << 8 | * (w++);

link_no = link_no << 8 | * (w++);

int new_sequence = * (w++);

new_sequence = new_sequence << 8 | x(wt++);
new_sequence = new_sequence << 8 | x (w++);
new_sequence = new_sequence << 8 | x(wt++);

// To check if I am the Errror packet sender....
if (myaddr_ == packet_sender)
{
Packet::free(p); // do nothing just free the packet...

return;
}
rtable_ent rte; // new rte learned from the Update packet being processed
rtable_ent xprte; // pointer to an entry in the Routing table (RT)

rtable_ent *pr2;

ntable_ent xnprte; // pointer to an entry in the Neighbours Table (NT)
nprte = NULL;

gtable_ent xgprte; // pointer to an entry in the Queue table (QT)
gprte = NULL;

// Check 1f there is an entry belongs to the Error packet sender in the NT...
nprte = ntable_->nGetEntry (hdrc->prev_hop_);
if (!nprte)

addNewNeighbour (hdrc->prev_hop_, new_sequence); // insert a new neighbour in the NT
else
{

if (nprte->metric != BIG)

{
// the Error packet is received from an old neighbour.. updating is needed.
nprte->segnum = new_sequence;
Scheduler::instance ().cancel (nprte->timeout_event);
}
else
{
// the neighbour is not active.. activate it
nprte->timeout_event = new Event ();
nprte->metric = 1;
nprte->changed_at = now;
nprte->segnum = new_sequence;
nprte->1link_no = myaddr_x10000+hdrc->prev_hop_;

// reschedule the expected periodic time
s.schedule (helper_, nprte->timeout_event, min_update_periods_ * perup_);

if (verbose_)

{
trace ("VPC %.5f _%d_", now, myaddr_);
tracepkt (p, now, myaddr_, "PU");

prte = NULL;

315



Appendix E: NS2 simulator modification

// Check if there is a direct route to the Error packet sender in the RT....
prte = table_->GetEntryl (hdrc->prev_hop_, hdrc->prev_hop_, &myaddr_) ;

if (!prte) // the route is not found, create a route
addNewEntry (hdrc->prev_hop_, new_sequence) ;
else if (prte->metric == BIG)

{

// an invalid route is found, activate it.

prte->metric = 1;
prte->segnum = new_sequence;
prte->changed_at = now;

}

else

{
// an active route is found, update it.
prte->segnum = new_sequence;
prte->changed_at = now;

// Check if there are queed packets in the queue table belongs to the Error packet sender.
gprte = gtable_->gGetEntry (src);
if (gprte && gprte->q)
{
gtable_ent grte;
bzero (&grte, sizeof (grte)); //initialisaion of new entry

int num_of_g_packets = 0; //counter for the number of qued packets....

Packet *queued_p;
while ((queued_p = gprte->g->deque()) && num_of_g packets < 7)
{

num_of_qg_packets++;
recv (queued_p, 0); // give the packets to ourselves to forward

delete gprte->qg;

gprte->gq = 0;
bcopy (gprte, &grte,sizeof (gqtable_ent));

prte = NULL;

if (verbose_)
trace ("VTIO %.5f _%d_ %$d->%d", now, myaddr_, myaddr_, prte—->dst);

if (myaddr_ == destination && packet_sender==hdrc->prev_hop_)
return;

int Flags=0;

// Check that I am neither the destination nor the sender in the Error packet....
if ((myaddr_ != destination) && (myaddr_ != packet_sender))
{

int link_nol = packet_sender * 10000 + destination;

int link_no2 = destination x 10000 + packet_sender;

int bad2 = 0; // counter of the bad routes

// Check the Routing table and delete any entry that contains the same link number included

for (table_->InitLoop (); (pr2 = table_—->NextLoop ()); )
{
if ((pr2->link_no == link_nol || pr2->link_no == link_no2) && pr2->metric != BIG)
{
Flags=1;

if (verbose_)
trace ("VIO %.5f _%d_ marking %d", now, myaddr_, pr2->dst);

pr2->metric = BIG; // assign this route as an invalid route
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pr2->changed_at = now;
pr2->seqnum = 0;
bad2++;

table_->local_rep (myaddr_);

return;

Function 11 Receive_Failure_Packet

void MDSDV_Agent::Receive_Failure_Packet (Packet * p)
{

hdr_ip xiph = HDR_IP (p);

hdr_cmn xhdrc = HDR_CMN (p);

int src = Address::instance () .get_nodeaddr (iph—->saddr());
int dst = Address::instance () .get_nodeaddr (iph->daddr());

Scheduler & s = Scheduler::instance ();

double now = s.clock ();

unsigned char xd = p->accessdata (); // A pointer to the begining of the received packet.
unsigned char »w = d + 1; // A pointer to the next byte of the received packet.
rtable_ent *prte; // pointer to an entry in the Rrouting Table (RT)

// extracting data from the Failure packet....

int source = x (w++); // the source node address in the Failure packet...

source = source << 8 | *(w++);

source = source << 8 | * (w++);

source = source << 8 | *(wt+);

int destination = * (w++); // the destination node address in the Failure packet...

destination = destination << 8 | * (w++);

destination = destination << 8 | = (w++);

destination = destination << 8 | * (w++);

int first_hop = x(w++); // the neighbour node that the source node used to send the data packet.

first_hop = first_hop << 8 | * (w++);
first_hop = first_hop << 8 | = (w++);
first_hop = first_hop << 8 | «* (w++);

if (myaddr_ == source)
{
// this means that I am the source of the data packet....
if (verbose_)
trace ("VTO %.5f _%d_ %d->%d", now, myaddr_, myaddr_, prte->dst);

// Check If there is a route to the destination through the first hop mentioned in
// the failure Packet...

prte = NULL;

prte = table_->GetEntryl (destination, first_hop, &myaddr_);

if (prte)
{

// the route is found, and should be assigned as an invalid route.
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prte->metric = BIG;
prte->changed_at = now;
prte->segnum = 0;

table_->local_rep (myaddr_); // call this function to delete stale routes...

}

else

{

// I am not the source. The Failure packet should be forwarded to the source node...

iph->saddr () = myaddr_;

iph->daddr () = source;

hdrc->addr_type () = NS_AF_INET;;

hdrc->direction() = hdr_cmn: :DOWN; //important: change the packet’s direction

// forward the Failure Packet, jitter to avoid sync...
Scheduler::instance ().cancel (p);
s.schedule (target_, p, jitter (DSDV_BROADCAST_JITTER, be_random_));

Function 12 Stale_Routes

void RoutingTable::Stale_Routes (nsaddr_t nod_id)
{
//Function to aasigin some routes as invalid...
Scheduler & s = Scheduler::instance ();
double now = s.clock ();

int kk = 0;
rtable_ent *krte = NULL;
rtable_ent ent;

for (int max=0;max<elts;max++)
{
if (rtab[max].metric != 250 && rtab[max].metric > 1 && (now - rtab[max].changed_at > 25.0))
rtab[max] .metric = BIG; // assign this route as an invalid route

Function 13 Local repaire

void RoutingTable::Local_repaire (nsaddr_t nod_id)

{
// Function to remove invalid routes from the Routing Table
Scheduler & s = Scheduler::instance ();
double now = s.clock ();

int kk = 0;
int remove_entry = 0;

rtable_ent *krte = NULL;
rtable_ent ent;

for (int max=0;max<elts;max++)

{
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// searech for invalid routes

if (rtab[max].metric == 250 && rtab[max].dst != rtab[max].hop && !rtab[max].q)
{
remove_entry = 1;
break;
}
}
if (remove_entry == 1)
{
int 1 = max;
int k = max++;

while (k < elts)
{

if ((rtab[k].metric != 250) || (rtablk]l.q) || (rtab[k].metric == 250 && rtab[k].dst == rtab[k].
{
rtab[i] = rtablk];
i++;
}
k++;
}
for (ctr = i; (krte = NextLoop ()); )

{
if (krte->timeout_event)
krte->timeout_event = 0;

elts = i++;

rtable_ent xtmp = rtab;
assert (temp) ;

rtab = new rtable_ent[maxelts];

assert (rtab);

bcopy (tmp, rtab, eltsxsizeof (rtable_ent));
delete tmp;

Function 14 Generate Hello_Message

Packet xMDSDV_Agent::Generate_Hello_Message (int new_seq)
{

double now = Scheduler::instance ().clock ();
Packet xp = allocpkt ();

hdr_ip *iph = hdr_ip::access (p);
hdr_cmn xhdrc = HDR_CMN (p);

// The packet we send wants to be broadcast

hdrc—->next_hop_ = IP_BROADCAST;

hdrc->addr_type_ = NS_AF_INET;

hdrc—>ptype () = PT_HELLO; // packet type is a hello message
hdrc->error () = 0;

hdrc->prev_hop_ = myaddr_;

iph->saddr () = myaddr_;
iph->sport () ROUTER_PORT;
iph->daddr () = IP_BROADCAST << Address::instance () .nodeshift ();
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iph->dport () = ROUTER_PORT;

int change_count = 0;

//hdrc->size_ = change_count * 12 + IP_HDR_LEN; // MDSDV + IP
hdrc->size_ = IP_HDR_LEN;

unsigned char =*walk;

// Allocate 5 bytes (1B for the Sequence number and 1B for the number of entries).
p—->allocdata (5);

walk = p->accessdata ();

* (walk++) = change_count;

* (walk++) = new_seq >> 24;

* (walk++) = (new_seq >> 16) & OxFF;
* (walk++) = (new_seq >> 8) & OxFF;
* (walk++) = (new_seq >> 0) & OxFF;
return p;

Function 15 Make_Fulldump

Packet x MDSDV_Agent: :Make_Fulldump (nsaddr_t dst)

{

rtable_ent =xprte;
ntable_ent *nprte;

seqno_ += 2; // increment my sequence number.

int change_count; // To store number of entries in the Full Dump.

int rtbl_sz; // To store the total entries in the Routing Table (RT).
int unadvertiseable; // To store the number of routes we can’t advertise yet
change_count = 0;

rtbl_sz = 0;

unadvertiseable = 0;

double old_time;
int old_segnum = 0;

int defualt =-88;
nsaddr_t old_dst = defualt;

uint old_metric = 255;

// Check the Routing Table to decide how many entries should be in Full Dump.

for (table_->InitLoop (); (prte = table_->NextLoop ()); )
{
if (prte->metric == 250) // Exclude invalid routes.
continue;
if (prte->dst != old_dst) // Only one route for each destination is considered.

{
change_count++;
old_dst = prte->dst;
}

continue;
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defualt =-88;
old_dst = defualt;
old_metric = 255;

// Allocating the packet.

Packet *pl = allocpkt ();

hdr_ip *iph = hdr_ip::access (pl);
hdr_cmn xhdrc = HDR_CMN (pl);

double now = Scheduler::instance ().clock ();
unsigned char =*walk;
unsigned char xlast_walk=walk; // to keep last position

// The packet we send wants to be unicast.

hdrc->next_hop_ = dst;

hdrc->addr_type_ = NS_AF_INET;

hdrc->ptype () = PT_FULL_DUMP; // packet type is a Full dump.
iph->daddr () = dst;

iph->dport () = ROUTER_PORT;

hdrc->prev_hop_ = myaddr_;

//Allocate 21 Bytes for each entry + 1 Byte for cheange_count + 4 Bytes for packet sender
pl->allocdata ((change_count % 21) + 5);
walk = pl->accessdata ();

* (walk++) = change_count; // Number of entries in the Full Dump.
* (walk++) = seqno_ >> 24; // New sequence number.

* (walk++) = (segno_ >> 16) & OxFF;

* (walk++) = (seqno_ >> 8) & OxFF;

* (walk++) = (segno_ >> 0) & OxFF;

int num_of_entries = 0;

// Include the entries in Full Dump.

for (table_->InitLoop (); (prte = table_->NextLoop ()); )
{
if (prte->metric == 250) // Exclude invalid routes.
continue;

// Only one route is included for each destination. The route should be the best route.
// The shortest route (with least number of hops) is chosen. If two routes have the
// same number of hops, the one with highest sequence number is chosen.

if (prte->dst != old_dst || ((prte->dst == old_dst) && (prte->metric < old_metric)) ||
((prte->dst == old_dst) && (prte->metric == old_metric) && (prte->seqnum > old_seqnum)))
{
if (prte->dst == old_dst)

{
walk=last_walk;
change_count++;
num_of_entries——;
}
last_walk=walk; // To store the last position.

// include this entry in the udate packet.
x (walk++) = prte->dst >> 24; // destination

* (walk++) = (prte->dst >> 16) & OxFF;

* (walk++) = (prte->dst >> 8) & OxFF;

* (walk++) = (prte->dst >> 0) & OxFF;

* (walk++) = prte->hop >> 24; // first hop
* (walk++) = (prte->hop >> 16) & OxFF;
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* (walk++) = (prte->hop >> 8) & OxFF;

* (walk++) = (prte->hop >> 0) & OxFF;

*x (walk++) = prte->shop >> 24; // second hop

* (walk++) = (prte->shop >> 16) & OxFF;

* (walk++) = (prte->shop >> 8) & OxFF;

* (walk++) = (prte->shop >> 0) & OxFF;

x (walk++) = prte->metric; // numbaer of hops
* (walk++) = (prte->link_no) >> 24; // link number

* (walk++) = ((prte->link_no) >> 16) & OxFF;

* (walk++) = ((prte->link_no) >> 8) & OxFF;

* (walk++) = (prte->link_no) & OxFF;

* (walk++) = (prte->segnum) >> 24; // Sequence number
* (walk++) = ((prte->segnum) >> 16) & OxFF;

* (walk++) = ((prte->segnum) >> 8) & OxFF;

* (walk++) = (prte->seqnum) & OxFF;

change_count——;

old_dst = prte->dst;

old _metric = prte->metric;
old_time = prte->changed_at;
old_segnum = prte->seqgnum;

prte—->advertise = false; // no need to advertise this entry again.

assert (change_count == 0);
return pl;

Function 16 Generate _Update_Packet

Packet xMDSDV_Agent: :Generate_Update_Packet (int change_count)

{

//=============== Function to generate an Update Packet
rtable_ent *prte; // pointer to an entry in the Routing Table (RT)
ntable_ent xnprte; // pointer to an entry in the Neighbours Table (NT)

Packet xpl = allocpkt ();
hdr_ip *iph = hdr_ip::access(pl);
hdr_cmn xhdrc = HDR_CMN (pl);

double now = Scheduler::instance ().clock ();
unsigned char xwalk;
unsigned char xlast_walk=walk; // to store last position.

// The packet we send wants to be broadcast

hdrc->next_hop_ = IP_BROADCAST;

hdrc—->addr_type_ = NS_AF_INET;

hdrc->ptype () = PT_UPDATE_PACKET; // Packet type is an Update Packet.
iph->daddr () = IP_BROADCAST << Address::instance () .nodeshift ();
iph->dport () = ROUTER_PORT;

// Allocate 17 Bytes for each entry + 1 Byte for cheange_count + 4 Bytes for packet
pl->allocdata ( (change_count * 21) + 5);
walk = pl->accessdata ();
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* (walk++) = change_count; // Include the number of entries of the Update packet.
* (walk++) = seqno_ >> 24; // Include the sender address in the Updat packet

* (walk++) = (segno_ >> 16) & OxFF;

* (walk++) = (seqno_ >> 8) & OxFF;

* (walk++) = (segno_ >> 0) & OxFF;

int defualt =-88;
nsaddr_t old_dst = defualt;
uint old_metric = 255;

int num_of_entries = 0;
int old_segnum = 0;
double old_time;

// Filling the Update Packet entries....
for (table_->InitLoop (); (prte = table_->NextLoop ()); )
{
// Exclude invalid routes...
if (prte->error || prte->metric < 1 || prte->metric == 250)
continue;

// include this entry in the udate packet.

* (walk++) = prte->dst >> 24; // save 4 Bytes for the destination in update packet

* (walk++) = (prte->dst >> 16) & OxFF;

* (walk++) = (prte->dst >> 8) & OxFF;

* (walk++) = (prte->dst >> 0) & OxFF;

* (walk++) = prte->hop >> 24; // save 4 Bytes for the first hop in update packet

* (walk++) = (prte->hop >> 16) & OxFF;

* (walk++) = (prte->hop >> 8) & OxFF;

* (walk++) = (prte->hop >> 0) & OxFF;

* (walk++) = prte->shop >> 24; // save 4 Bytes for the second hop in update packet
* (walk++) = (prte->shop >> 16) & OxFF;

* (walk++) = (prte->shop >> 8) & OxFF;

* (walk++) = (prte->shop >> 0) & OxFF;

* (walk++) = prte->metric; // save 1 Byte for the numbaer of hops in update packet
* (walk++) = (prte->link_no) >> 24; // save 4 Bytes for the link number in update packet
* (walk++) = ((prte->link_no) >> 16) & OxFF;

* (walk++) = ((prte->link_no) >> 8) & OxFF;

* (walk++) = (prte->link_no) & OxFF;

* (walk++) = (prte->seqnum) >> 24; // save 4 Bytes for the seqg number in update packet
* (walk++) = ((prte->segnum) >> 16) & OxFF;

* (walk++) = ((prte->segnum) >> 8) & OxFF;

* (walk++) = (prte->seqnum) & OxFF;

change_count——;

old_dst = prte->dst;

old _metric = prte->metric;
old_time = prte->changed_at;
old_segnum = prte->seqgnum;

prte->advertise = false; // no need to advertise this entry again
}
assert (change_count == 0);
return pl;
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Function 17 Generate_Failure_Packet

Packet xMDSDV_Agent: :Generate_Failure_Packet (nsaddr_t src, nsaddr_t dst,nsaddr_t first_hop)
{

// Generate and unicast a Failure Packet...

Packet xp = allocpkt ();

hdr_ip xiph = hdr_ip::access (p);

hdr_cmn xhdrc = HDR_CMN (p);

unsigned char »*walk;
hdrc->ptype () = PT_Failure; // packet type is a Failure packet.

// The packet we send wants to be unicast to a specific destination which the source node.

hdrc->next_hop_ = src; // Unicast to the source of the data packet.
hdrc->addr_type_ = NS_AF_INET;

iph->daddr () = src; // Unicast

iph->dport () = ROUTER_PORT;

hdrc->error () = 0;

iph->saddr () = myaddr_; // the source of the Failure packet

iph->sport () = ROUTER_PORT;

hdrc->prev_hop_ = myaddr_;

int change_count = 1; // Only one entry to be included in the Failure Packet.

p—->allocdata ( (change_count = 12) + 1);
walk = p->accessdata ();

* (walk++) = change_count;

* (walk++) = src >> 24; // the data packet sender address.
* (walk++) = (src >> 16) & OxFF;

* (walk++) = (src >> 8) & OxFF;

* (walk++) = (src >> 0) & OxFF;

* (walk++) = dst >> 24; // the destination address

* (walk++) = (dst >> 16) & OxFF;

* (walk++) = (dst >> 8) & OxFF;

* (walk++) = (dst >> 0) & OxFF;

% (walk++) = (first_hop) >> 24; // the first node that the source used to send the data packet.
* (walk++) = ((first_hop) >> 16) & OxFF;

* (walk++) = ((first_hop) >> 8) & OxFF;

* (walk++) = (first_hop) & OxFF;

assert (!HDR_CMN (p)->xmit_failure_);
s.schedule (target_, p, 0);

Function 18 helper_callback

void MDSDV_Agent::helper_callback (Event * e)
{
// This function is called in two cases: periodic callback or timeout...
Scheduler & s = Scheduler::instance ();
double now = s.clock ();
rtable_ent =xprte;
rtable_ent *pr2;
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ntable_ent *nprte;
Packet *p;

// Check for periodic callback
if (periodic_callback_ && e == periodic_callback_)
{

seqno_ += 2;

prte = table_->GetEntryl (myaddr_, myaddr_, &myaddr_);
if (prte)
prte->segqnum = seqno_;

int change_count = 0;

int defualt =-88;

nsaddr_t old_dst = defualt;
uint old_metric = 255;

// Check the Routing Table (RT) to find valid routes.
for (table_->InitLoop (); (prte = table_->NextLoop ()); )
{

// Exclude the invalid routes...

if (prte->error || prte->metric < 1 || prte->metric == 250)
continue;
if (prte->dst != old_dst)

{
change_count++;
old_dst = prte->dst;
}

continue;

// If no valid routes found in the RT, broadcast a Hello Message, otherwise broadcast an Update I
if (change_count > 0)

p = Generate_Update_Packet (change_count);
else

p = Generate_Hello_Message (seqno_) ;

if (verbose_)

{
trace ("VPC %.5f _%d_", now, myaddr_);
tracepkt (p, now, myaddr_, "PU");

if (p)
{ // Broadcast the packet.
assert (!HDR_CMN (p)->xmit_failure_);
s.schedule (target_, p, jitter (DSDV_BROADCAST_JITTER, be_random_));

s.schedule (helper_, periodic_callback_, perup_ * (0.75 + jitter (0.25, be_random_)));
lasttup_ = now;
return;

// If it is a timeout, check the Neighbours Table (NT)

for (ntable_->nInitLoop (); (nprte = ntable_->nNextLoop ());)
if (nprte->timeout_event && (nprte->timeout_event == e))
break;
if (nprte)

{
if (verbose_)
trace ("VTO %.5f _%d_ %d->%d", now, myaddr_, myaddr_, prte->dst);

325



Appendix E: NS2 simulator modification

if (nprte->timeout_event)

Scheduler::instance ().cancel (nprte->timeout_event);

nprte->timeout_event = 0;
nprte->neighbour = 0;

nprte->metric = BIG; // assign this route as an invalid route

nprte->changed_at = now;
nprte->seqnum = 0;
nprte->active = false;
seqno_ += 2;

// Generating and broadcasting an Error Packet ===============

Packet xp = allocpkt ();
hdr_ip *iph = hdr_ip::access(p);
hdr_cmn xhdrc = HDR_CMN (p);

double now = Scheduler::instance ().clock ();
unsigned char xwalk;
int change_count = 1; // Number of entries in the Error Packet.

// The packet we send wants to be broadcast

hdrc->prev_hop_ = myaddr_;

hdrc->next_hop_ = IP_BROADCAST;

hdrc->addr_type_ = NS_AF_INET;

hdrc->ptype () = PT_ERROR_PACKET; // Packet type is an Error packet
iph->daddr () = IP_BROADCAST << Address::instance () .nodeshift ();
iph->dport () = ROUTER_PORT;

hdrc->iface () = -2;

hdrc->error () = 0;

iph->saddr () = myaddr_;

iph->sport () = ROUTER_PORT;

p->allocdata ((change_count = 16) + 1);

walk = p->accessdata ();

* (walk++) = change_count;

* (walk++) = myaddr_ >> 24; // the sender in Error packet
* (walk++) = (myaddr_ >> 16) & OxFF;

* (walk++) = (myaddr_ >> 8) & OxFF;

* (walk++) = (myaddr_ >> 0) & OxFF;

x (walk++) = nprte->dst >> 24; // the destination in Error packet
* (walk++) = (nprte->dst >> 16) & OxFF;

* (walk++) = (nprte->dst >> 8) & OxFF;

* (walk++) = (nprte->dst >> 0) & OxFF;

% (walk++) = nprte->link_no >> 24; // link number in Error packet
* (walk++) = (nprte->link_no >> 16) & OxFF;

* (walk++) = (nprte->link_no >> 8) & OxFF;

* (walk++) = (nprte->link_no >> 0) & OxFF;

* (walk++) = seqgno_ >> 24; // link number in Error packet
* (walk++) = (seqno_ >> 16) & OxFF;

* (walk++) = (seqno_ >> 8) & OxFF;

* (walk++) (seqno_ >> 0) & OxFF;
//I've discovedred lost link so.
s.schedule (target_, p, 0);

//checking the Routing Table (RT)
for (table_->InitLoop (); (pr2 =
{

Broadcasting an Error packet immediatelly.

table_->NextLoop ()); )

if (pr2->hop == nprte->dst && pr2->metric != BIG)

{
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if (verbose_)

trace ("VIO %.5f _%d_ marking %d", now,
pr2->metric = BIG;
pr2->changed_at
pr2->segnum = 0;

now;

}

table_->local_rep (myaddr_);
}
else

{

// unknown event on
fprintf (stderr, "DFU:
abort () ;

queue
unknown queue event\n");

myaddr_,

pr2->dst);

// assign this route as an invalid route

Function 19 lost_link

void MDSDV_Agent::lost_link (Packet =p)

{

double now

Scheduler::instance ().clock ();

hdr_ip::access (p);
HDR_CMN (p);

hdr_ip *iph
hdr_cmn xhdrc

int src =
int dst

ntable_ent *nprte ntable_->nGetEntry

if (use_mac_ == 0)
{
if
{
Scheduler::instance () .cancel
helper_callback (nprte->timeout_event);

(nprte && nprte->timeout_event)

Generate_Failure_Packet (src, dst,

rtable_ent xprte table_->GetEntry2 (dst,-99,
if (!'prte || prte->metric == BIG)

{

hdrc->prev_hop_

-99,myaddr_) ;

Address::instance () .get_nodeaddr (iph->saddr () ) ;
Address::instance () .get_nodeaddr (iph->daddr () ) ;

(hdrc—>next_hop_) ;

(nprte->timeout_event);
// report lost link

(timeout event) immediatly.

); // generate and unicast a Failure packet.

// Find an alternative path.

// No alternative path found. Must queue the packet in the QT.

// find the entry belongs to the destination in

myaddr_, iph->saddr (), iph->sport(),

gtable_ent *gprte = gtable_->gGetEntry (dst);
if (gprte)
{
if (!'gprte->q)
gprte->g = new PacketQueue ();
gprte->g->enque (p) ;
if (verbose_)
trace ("VBP %.5f _%d_ %d:%d —-> %d:%d", now,
iph->daddr (), iph->dport());
while (gprte->g->length () > MAX_QUEUE_LENGTH)
drop (gprte->g->deque (), DROP_RTR_QFULL) ;
return;
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}

else

{
// Brand new destination
gtable_ent grte;

bzero (&qgrte, sizeof (grte));
grte.dst = dst;

grte.qg = new PacketQueue();
grte.g->enque (p) ;

assert (grte.g->length() == 1 && 1 <= MAX_QUEUE_LENGTH) ;
gtable_->gAddEntry (grte);

if (verbose_)

trace ("VBP %$.5f _%d_ %d:%d -> %d:%d", now, myaddr_, iph->saddr (), iph->sport(),

iph->daddr (), iph->dport());
return;
else
recv(p, 0);

return;

Function 20 mac_callback

static void mac_callback (Packet x p, void xarg)

{
((MDSDV_Agent x) arg)->lost_link (p);

Function 21 updateRoute

int MDSDV_Agent::updateRoute (rtable_ent xold_rte, rtable_ent *new_rte)
{

int negvalue = -1;

assert (new_rte);

Time now = Scheduler::instance().clock();
new_rte->changed_at = now;

char buf[1024];

snprintf (buf, 1024, "%c %.5f _%d_ (%d,%d->%d, $d->%d, %d—>%d, $f)",

(new_rte->metric != BIG && (!old_rte || old_rte->metric != BIG)) 2 ’'D’ : 'U’,
now, myaddr_, new_rte->dst, old_rte ? old_rte->metric : negvalue, new_rte->metric,
old_rte ? old_rte->segnum : negvalue, new_rte->seqnum, old_rte ? old_rte->hop : -1,

new_rte->hop, new_rte->advertise_ok_at);
rtable_ent =xprte;

nsaddr_t *my_ip = &myaddr_;
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if (new_rte->metric > 0)
new_rte->advertise = true;

if (new_rte->metric > 1)
new_rte->timeout_event = 0;

int write =table_->Add_Entry (*new_rte, my_ip);
if (trace_wst_)
trace ("VWST %.121f frm %d to %d wst %.121f nxthp %d [of %d]", now, myaddr_,

new_rte->dst, new_rte->wst, new_rte->hop, new_rte->metric);

if (verbose_)
trace ("VS%s", buf);

return (write);

Function 22 addNewEntry

void MDSDV_Agent::addNewEntry (nsaddr_t dst, int new_seq)

{
// This function is used to prepare a new entry to be inserted in the routing table.
Scheduler & s = Scheduler::instance ();
double now = s.clock ();

rtable_ent rte;
bzero (&rte, sizeof (rte));

rte.dst = dst;

rte.hop = dst;

rte.shop = -99;

rte.metric = 1;

rte.segqnum = new_sedq;

rte.link_no = myaddr_ » 10000 + dst;

rte.changed_at = now;
rte.new_seqgnum_at = now;
rte.wst = 0;

nsaddr_t *my_ip = &myaddr_;
table_->Add_Entry (rte, my_ip); // call this function to add the entry.

Function 23 addNewNeighbour

void MDSDV_Agent: :addNewNeighbour (nsaddr_t dst, int seq)

{
// This function is used to create an entry for a new neighbour.
Scheduler & s = Scheduler::instance ();
double now = s.clock ();

ntable_ent rte;
bzero (&rte, sizeof (rte));
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rte.dst = dst;

rte.neighbour = 1;

rte.metric = 1;

rte.segqnum = seq;

rte.link_no = myaddr_ = 10000 + dst;

rte.changed_at = now;
rte.timeout_event = 0;
rte.timeout_event = new Event ();

s.schedule (helper_, rte.timeout_event, min_update_periods_ * perup_);

rte.active = true;
rte.q = 0;

// call nAddEntry () function to add a new neighbour in the Neigbours table.
ntable_->nAddEntry (rte);

Function 24 Add_Entry

int RoutingTable::Add_Entry (const rtable_ent &ent,nsaddr_t xmy_ipl)
{

nsaddr_t nod_idl =xmy_ipl;

rtable_ent *it;

assert (ent.metric <= BIG);

Scheduler & s = Scheduler::instance ();
double now = s.clock ();
int kk=0;

int c=2;

int N=0; //the smallest section
int eltsl=0;

int minl=0;

int max1=0;

int first_entry_position;

int first_entry;

int foundl=0;
int found2=0;
int found3=0;
int return_or_no;

if (elts > 0)
{
maxl=elts-1;
if (max1l==0)
eltsl=0;
else
eltsl=round(max1l/2.0);

do

{
c = checkl (&ent, &rtableltsl], »my_ipl);

if (c==0)

{
foundl=0;
found2=0;
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found3=0;
int entry_no=0;

int positionl=-99;
int position2=-99;
int position3=-99;

// move to the 1lst entry belongs to this destination
while (rtableltsl].dst==ent.dst && eltsl >=0)
{

eltsl-—;
if (eltsl < 0)
break;
}
eltsl++; // this is the 1st entry belongs to this destination

first_entry_position=eltsl;
entry_no = eltsl;

while (rtableltsl].dst==ent.dst)
{
if ((rtableltsl].dst==ent.dst)&& (rtableltsl].hop==ent.hop)&&
(rtableltsl].shop==ent.shop) && (rtableltsl] .metric==ent.metric) &&
(rtabl[eltsl].link_no==ent.link_no)&& eltsl >= 0)

// Just modify the sequence number and Changed_at fields
rtab[eltsl].segnum=ent.segnum;
rtab[eltsl].changed_at=now;

return (0) ;

if ((rtab[eltsl].dst==ent.dst)&& (rtabl[eltsl].hop==ent.hop) &&
(rtableltsl] .metric<ent.metric) &&(rtableltsl].metric!=BIG)&& eltsl >= 0)

// Discard the received entry. Same destination, same first hop, and

// greater number of hops

return (0);
if ((rtableltsl].dst==ent.dst) && (rtabl[eltsl].hop!=ent.hop) &&
((rtableltsl].hop==ent.shop) || (rtableltsl].shop==ent.hop)) &&
(ent.shop!=ent.dst) && (rtableltsl].metric<=ent.metric) &&
(rtab[eltsl] .metric!=BIG) && eltsl >= 0)
// Discard the received entry. Same destination, same second hop, greater
// number of hops, and first hop = second hop of an entry in the RT

return (0) ;

if ((rtab[eltsl].dst==ent.dst) && (rtab[eltsl].hop!=ent.hop) &&
(rtableltsl].shop==ent.shop) && (ent.shop!=ent.dst) &&
(rtab[eltsl] .metric!=BIG) && eltsl >= 0)

// two entries with the same destination , different first hop, same second
// hop and destination <> second hop
if (rtab[eltsl].segnum>ent.seqnum || rtab[eltsl].metric<ent.metric)
// Discard the received entry. The sequence number is smaller or the number
// of hops is greater
return (0) ;

if ((rtab[eltsl].dst==ent.dst)&& (rtab[eltsl].link_no==ent.link_no) &&
(rtableltsl] .metric<ent.metric) && (rtableltsl].metric!=BIG)&& eltsl >= 0)
// Discard the received entry. Same destination, same link no, and the number
// of hops is greater
return (0) ;
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if ((rtabl[eltsl].dst==ent.dst) && ((rtab[eltsl].hop!=ent.hop) &&
(rtableltsl].shop==ent.shop)&& (rtableltsl].dst!=ent.shop))&& eltsl >= 0)

found3=1; // Lowest Periority
entry_no=eltsl;
position3=eltsl;

if ((rtab[eltsl].dst==ent.dst)&& (rtabl[eltsl].link_no==ent.link_no)&& eltsl >= 0)
{

found2=1; //Midium Periority

entry_no=eltsl;

position2=eltsl;

if ((rtab[eltsl].dst==ent.dst) && (rtab[eltsl].hop==ent.hop) &&
(rtableltsl] .hop==BIG) && eltsl >= 0)

foundl=1; // Highest Periority
entry_no=eltsl;

positionl=eltsl;

eltsl++;

if (foundl+found2+found3==1)
eltsl=entry_no; // Only one entry is similar to the received entry , overwrite.

if (foundl+found2+found3==2)
{
if (positionl==position2 || positionl==position3 || position2==position3)
eltsl=entry_no;
else
return (0) ;

if (foundl+found2+found3>2)
{
// Discard the received entry, because more than one entry similar to the received
// entry are found.
eltsl=entry_no;
return (0) ;

if (foundl+found2+found3==0)
{
eltsl=first_entry_ position;
while(rtab[eltsl].dst==ent.dst)
{
if ((rtableltsl].dst==ent.dst)&& (rtableltsl].hop>ent.hop))
break;
eltsl++;

kk=eltsl;
goto insert_entry;

kk=eltsl;
if ((c==0)]|| (eltsl==0) || (minl==maxl))
break;
if (c==1) // not found , and it is could be up side part

maxl=eltsl-1;
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if (maxl<minl)
maxl=minl;

if (c== 2) // not found , and it is could be down side part
minl=eltsl+l;

if (minl>max1)
minl=maxl;

eltsl=round((minl+maxl)/2.0) ;// executed in both c==1 or c==2

} while (eltsl>=N);

if (¢ == 0 && elts != 0)
{
it=&rtab[kk]; // A pointer to an entry (kk) in the routing table
int F_sort=0; // flag for swapping: zero means no need to swap two entries in the RT

// check 1f we need to sort the routing table

if ((rtablkk].dst == ent.dst) && (rtablkk].hop != ent.hop))

F_sort=1; // to check if the new entry (ent) is overwritten in the right position
if ((rtab[kk].metric > ent.metric) || (rtablkk].segnum < ent.seqnum) || ent.metric == BIG)
{

if (rtab[kk].dst == rtablkk].hop && ent.dst != ent.hop)

return (0);
bcopy (&ent, it, sizeof (rtable_ent)); // overwirte the new entry (&ent)

nsaddr_t nod_id =xmy_ipl;

if (F_sort==1)
// Check if the new entry (ent) is overwritten in a wrong position. If so,
// swapping is needed
int z= Sort_Entry(ent,first_entry_position, nod_id);

return (1) ; // return 1 when the enry has been overwritten.

return (0) ; // return 0 when the enry has not been overwritten.

insert_entry:

// Check the RT’s size. If it is full, double its size
if (elts == maxelts)
{
rtable_ent xtmp = rtab;
assert (temp) ;

maxelts x= 2;

rtab = new rtable_ent[maxelts];

assert (rtab) ;

bcopy (tmp, rtab, eltsxsizeof (rtable_ent));
delete tmp;

if ((c==2) && (elts!=0))
kk++;

int max=kk;

// moving the entries of the RT, starting from the end of the table, one by one till
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// reaching the position where the new entry should be inserted.
int i = elts-1;
while (i >= max)
{

rtab[i+1] = rtabl[i];

i-—;

if (max < 0)
max = 0;

//insert the new entry in the righ position (max).

bcopy (&ent, &rtablmax], sizeof (rtable_ent));

if ((c==1)1|| (c=2 && ent.dst == rtab[max].dst))
rtab[max].trigger_event = 0;

elts++; //increament elts counter

return (1) ;

Function 25 Sort_Entry

int RoutingTable::Sort_Entry(const rtable_ent &ent,int first_entry_position, nsaddr_t nod_id)
{
// this function is used only in one case; if a new entry (ent) is overwritten because of
// similarity. In this case; sometimes the new entry is inserted in a wrong position

int sort = 1;
rtable_ent rtel;
bzero (&rtel, sizeof (rtel));

do
{

sort = 1; // flag to continue or to stop sorting
int kk = first_entry_position; // first entry belongs to the destination in the RT

// sort only a specific part of the RT (where the new entry is inserted)
while ((rtab[kk].dst == ent.dst) && (rtabl[kk+1l].dst == ent.dst))
{

// Each time check two entries. If they are not sorted, swap them

if ((rtab[kk].hop > rtablkk+1l].hop) && (kk+l < elts))

{

sort=0;
// ( SWAP )
bcopy (&rtab[kk], &rtel, sizeof (rtable_ent));
rtab[kk] = rtab[kk+1];
bcopy (&rtel, &rtab[kk+1l], sizeof (rtable_ent));
// ( End of SWAP )

}

kk++;

}
}while (sort == 0);

return 0;
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Function 26 GetEntryl

rtable_ent » RoutingTable::GetEntryl (nsaddr_t dest,
{
rtable_ent ent;
ent.dst = dest;
ent.hop = via ;

// a new empty entry
// assign new entry destination
// assign new entry hop

rtable_ent =xprte;

int ¢ = 2;
int N 0;
int eltsl =
int minl =
int maxl
if (elts >
{
maxl=elts-1;
if (maxl == 0)
eltsl = 0;
else
eltsl=round(max1/2.0);

//the smallest section
0;

’

0
0
0

do
{
c = check2 (&ent, &rtableltsl], =xmyaddr);
if ((c==0) || (eltsl == 0) || (minl == maxl))
break;
if(c == 1) // the entry is not found,
maxl = eltsl-1;

if (maxl < minl)
maxl = minl;

if(c == 2)
minl=eltsl+1l;

if (minl > maxl)
minl = maxl;

eltsl = round((minl+maxl)/2.0);

} while(eltsl>=N);

if (¢ ==

{

0)

// The entry is found, return it
prte=&rtableltsl];

return prte;

return 0;

// the entry is not found,

nsaddr_t via,

// executed in both cases

nsaddr_t »*myaddr )

could be in the upper part

could be in the lower part

(c=1 or c=2)

Function 27 GetEntry2

rtable_ent =«

RoutingTable: :GetEntry2 (nsaddr_t dest, nsaddr_t via,

nsaddr_t from_node,

nsaddr_t myaddr)
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//fu
Sche
doub

// C
rtab
ent
ent
ent
ent
ent.

rtab

int
int
int
int
int

if |
{

ma

if

el

do
{

nction to get the best route
duler & s = Scheduler::instance ();
le now = s.clock ();

reate new entry

le_ent ent; // a new empty entry

.dst = dest; // destination

.hop = via ; // First hop

.metric = 250; // we suppose the worst metric ( to get a better one)
.changed_at = 0; // we suppose the worst time ( to get a better one)
seqnum = 0;

le_ent «it;

c = 2;
N = 0;
eltsl = 0;
minl = 0;
maxl = 0;

elts > 0)

xl=elts-1;

(maxl == 0)

eltsl =0 ;

se

eltsl = round(maxl1/2.0);

c = checkl (&ent, &rtab[eltsl], myaddr);

if(c == 0)
{
int entry_no = 0;
while (rtab[eltsl].dst == ent.dst && eltsl >= 0)
{
eltsl—-—;
}
eltsl++; // the position of the first entry belongs to the destination

it = &rtableltsl];

while (rtab[eltsl].dst == ent.dst)
{
if ((rtab[eltsl].metric < ent.metric && rtab[eltsl].hop != from_node) ||
(rtableltsl] .metric == ent.metric && rtableltsl].metric < BIG &&
rtab[eltsl].segqnum > ent.seqnum && rtab[eltsl].hop != from_node))

int Jj=eltsl;

ent.metric = rtabl[eltsl].metric;
ent.changed_at = rtab[eltsl].changed_at;
ent.segqnum = rtab[eltsl].segnum;

it=&rtableltsl];
}

eltsl++;
}
}
if ((c==0) || (eltsl==0) || (minl == maxl))
break;
if(c == 1) // the entry is not found, could be in the upper part

maxl = eltsl-1;

if (maxl < minl)
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maxl = minl;

if(c == 2) // the entry is not found, could be in the lower part
minl = eltsl + 1;

if (minl > maxl)
minl = maxl;

eltsl = round((minl + maxl)/2.0) ; // executed in both cases (c=1 or c=2)
} while(eltsl >= N);

if(c == 0 && (it->dst >= 0 && it->dst <= 250))
return it; // return the entry.

}

return 0;

Function 28 checkl

static int checkl (const void =*a, const void xb,nsaddr_t nod_id)

{

nsaddr_t dst_a = ((const rtable_ent x) a)->dst;
nsaddr_t dst_b = ((const rtable_ent x) Db)->dst;
if (dst_a == dst_b)

return 0; // the entry is found

if (dst_a < dst_b)
return 1; // the entry is not found continue search up

if (dst_a > dst_b)
return 2; // the entry is not found continue search down

Function 29 check2

static int check2 (const void =*a, const void xb,nsaddr_t nod_id)
{

const rtable_ent x) a)->dst;

const rtable_ent ) Db)->dst;

const rtable_ent x) a)->hop;

const rtable_ent x) b)->hop;

nsaddr_t ial =
nsaddr_t ibl =
nsaddr_t ia2 =

((
((
((
nsaddr_t ib2 = ((

if ((ial == ibl)e&& (ia2 == ib2))

return 0; // the entry is found
if ((ial < ibl) || ((ial == ibl) && (ia2 < ib2)))

return 1; // the entry is not found continue search up
if ((ial > ibl) || ((ial == ibl)s&& (ia2 > ib2)))

return 2; // the entry is not found continue search down
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Function 30 local rep

void RoutingTable::local_rep(nsaddr_t nod_id)
{

// This function is used to remove the invalid routes from the node’s routing table.

Scheduler & s = Scheduler::instance ();
double now = s.clock ();

int kk = 0;
rtable_ent *krte = NULL;

rtable_ent ent;

int max;
int invalid_route = 0;

for (max=0; max<elts; max++)

{
// check for an invalid route.
if (rtab[max].metric == 250 && rtab[max].dst != rtab[max].hop && !rtabl[max].q)
{

// an invalid route is found

invalid_route = 1;
break;
}
}
if (invalid_route == 1)
{
int i = max;

int k = max++;
while (k < elts)
{
if ((rtab[k].metric != 250) || (rtablk].q) ||
(rtab[k] .metric == 250 && rtabl[k].dst == rtabl[k].hop))

// overwrite the entry by the next one (shifting all the rest entries)

rtab[i] = rtab[k];
i++;
}
k++;
}
int counterl = 0;

for (ctr = 1i; (krte = NextLoop ()); )
{

counterl++;

if (krte->timeout_event)
krte->timeout_event = 0;

elts = i++;

rtable_ent xtmp = rtab;
assert (temp) ;

rtab = new rtable_ent[maxelts];

assert (rtab);

bcopy (tmp, rtab, eltsxsizeof (rtable_ent));
delete tmp;
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Function 31 stale_routes

void RoutingTable::stale_routes (nsaddr_t nod_id)

{
// This function is used to assign stale routes as invalid routes
Scheduler & s = Scheduler::instance ();
double now = s.clock ();

rtable_ent xkrte = NULL;
rtable_ent ent;

int counterl = 0;
for (int max = 0; max <elts; max++)
{ if (rtab[max].metric != 250 && rtab[max].metric > 1 && (now - rtab[max].changed_at > 25.0))
{ rtab[max] .metric = BIG; // assign this route as an invalid route
counterl++;

Function 32 nAddEntry

void NeighbourTable: :nAddEntry (const ntable_ent &ent)

{
// This function is to create an entry for a new neigbour
ntable_ent xit;
assert (ent.metric <= BIG);

// search for an entry belongs to the neighbour
if ((it = (ntable_ent=*) bsearch(&ent, ntab, nelts, sizeof (ntable_ent), rtent_trich)))
{

// the entry is found

bcopy (&ent, it, sizeof (ntable_ent));

return;

// check the size of the Neighbours table. If it is full, double it
if (nelts == nmaxelts)
{

ntable_ent *tmp = ntab;

nmaxelts *= 2;

ntab = new ntable_ent [nmaxelts];

bcopy (tmp, ntab, neltsxsizeof (ntable_ent));

delete tmp;

int max;
for (max=0;max<nelts;max++)
{
if (ent.dst < ntab[max].dst)
break;
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// shift the entries strating from the end of the table to insert the new entry in the

// right position
int i = nelts-1;
while (i >= max)

{

ntab[i+l] = ntab[i];
i-—;
}
bcopy (&ent, &ntablmax], sizeof (ntable_ent)); // insert the entry
nelts++;
return;

Function 33 nGetEntry

ntable_ent x NeighbourTable::nGetEntry (nsaddr_t dest)

{

// This function is to check if the node (dest) is a neighbour

ntable_ent ent;

ent.dst = dest;

return (ntable_ent %) bsearch(&ent, ntab, nelts, sizeof (ntable_ent), rtent_trich);
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