
Extensions of Nominal Terms

Dominic Phillip Mulligan

All work carried out under the supervision of:

Dr. Murdoch J. Gabbay and Prof. Philip W. Trinder

Submitted in total fulfilment of the requirements of the degree of:

Doctor of Philosophy

Dependable Systems Group,

Department of Computer Science,

School of Mathematics and Computer Science,

Heriot-Watt University,

Edinburgh

March 2011

The copyright in this thesis is owned by the author. Any quotation from the

thesis or use of any of the information contained in it must acknowledge this thesis

as the source of the quotation or information.

Abstract

This thesis studies two major extensions of nominal terms. In particular, we

study an extension with λ-abstraction over nominal unknowns and atoms, and an

extension with an arguably better theory of freshness and α-equivalence.

Nominal terms possess two levels of variable: atoms a represent variable symbols,

and unknowns X are ‘real’ variables. As a syntax, they are designed to facilitate

metaprogramming; unknowns are used to program on syntax with variable symbols.

Originally, the role of nominal terms was interpreted narrowly. That is, they

were seen solely as a syntax for representing partially-specified abstract syntax with

binding.

The main motivation of this thesis is to extend nominal terms so that they can

be used for metaprogramming on proofs, programs, etc. and not just for metapro-

gramming on abstract syntax with binding. We therefore extend nominal terms

in two significant ways: adding λ-abstraction over nominal unknowns and atoms—

facilitating functional programing—and improving the theory of α-equivalence that

nominal terms possesses.

Neither of the two extensions considered are trivial. The capturing substitution

action of nominal unknowns implies that our notions of scope, intuited from working

with syntax possessing a non-capturing substitution, such as the λ-calculus, is no

longer applicable. As a result, notions of λ-abstraction and α-equivalence must be

carefully reconsidered.

In particular, the first research contribution of this thesis is the two-level λ-

calculus, intuitively an intertwined pair of λ-calculi. As the name suggests, the

two-level λ-calculus has two level of variable, modelled by nominal atoms and un-

knowns, respectively. Both levels of variable can be λ-abstracted, and requisite

notions of β-reduction are provided. The result is an expressive context-calculus.

The traditional problems of handling α-equivalence and the failure of commutation

between instantiation and β-reduction in context-calculi are handled through the

use of two distinct levels of variable, swappings, and freshness side-conditions on

unknowns, i.e. ‘nominal technology’.

The second research contribution of this thesis is permissive nominal terms,

an alternative form of nominal term. They retain the ‘nominal’ first-order flavour

of nominal terms (in fact, their grammars are almost identical) but forego the use

of explicit freshness contexts. Instead, permissive nominal terms label unknowns

with a permission sort, where permission sorts are infinite and coinfinite sets of

atoms. This infinite-coinfinite nature means that permissive nominal terms recover

two properties—we call them the ‘always-fresh’ and ‘always-rename’ properties—

that nominal terms lack. We argue that these two properties bring the theory of

α-equivalence on permissive nominal terms closer to ‘informal practice’.

The reader may consider λ-abstraction and α-equivalence so familiar as to be

‘solved problems’. The work embodied in this thesis stands testament to the fact

that this isn’t the case. Considering λ-abstraction and α-equivalence in the context

of two levels of variable poses some new and interesting problems and throws light

on some deep questions related to scope and binding.

Acknowledgments

This thesis would not exist without the extensive help, support and guidance of a large number

of people. Chief amongst these are my two supervisors, Murdoch J. Gabbay (Jamie) and Philip

W. Trinder (Phil).

Jamie introduced me to the research area I now call my own and has gone way beyond what

could reasonably be expected of a PhD supervisor in terms of support and guidance. Phil also

provided extensive support and guidance, and meetings with Phil always served to focus my

attention on better understanding concepts that I thought I understood (but really didn’t).

Jamie and Phil also deserve recognition for teaching me how to write in a suitably academic

manner. Their advice and effort proof reading this thesis helped to knock the document into its

final shape. I hope they forgive me wherever I ignored their advice, and whatever errors that

remain within are entirely due to me.

The fact that I now consider myself a Computer Scientist, with ideas of work that I would

like to carry out on my own, is entirely due to the hard work of both Jamie and Phil.

My parents, John and Anne, along with the rest of my family, have provided extensive

emotional (and financial!) support over the past three years, and never doubted that I could

achieve what I wanted to achieve.

Victoria, for the past year, has given me a life outside of computer science, given me her love,

kept me sane, fed, and in clothes. I promise I love you more than maths books and computer

games, Vickie (even if you don’t believe it).

I would also like to thank the other members of the Dependable Systems Group at Heriot-

Watt, the Sunday night football gang, the players and coaches of Lismore rugby club, and my

flatmate Simon, purveyor of terrible banter and jokes.

Finally, I’d like to thank Maribel and Greg for agreeing to be my examiners.1

1Naturally, my thanks is rescinded if they fail me.

iii

For Victoria

ACADEMIC REGISTRY
Research Thesis Submission

Name:

School/PGI:

Version: (i.e. First,
Resubmission, Final)

Degree Sought
(Award and
Subject area)

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1) the thesis embodies the results of my own work and has been composed by myself
2) where appropriate, I have made acknowledgement of the work of others and have made reference to

work carried out in collaboration with other persons
3) the thesis is the correct version of the thesis for submission and is the same version as any electronic

versions submitted*.
4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made

available for loan or photocopying and be available via the Institutional Repository, subject to such
conditions as the Librarian may require

5) I understand that as a student of the University I am required to abide by the Regulations of the
University and to conform to its discipline.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis
is submitted.

Signature of
Candidate:

Date:

Submission

Submitted By (name in capitals):

Signature of Individual Submitting:

Date Submitted:

For Completion in Academic Registry

Received in the Academic
Registry by (name in capitals):

Method of Submission
(Handed in to Academic Registry; posted
through internal/external mail):

E-thesis Submitted (mandatory for
final theses from January
2009)

Signature: Date:

Contents

Contents vii

List of Figures x

1 Introduction 1

1.1 Background and motivation . 1

1.1.1 Abstract syntax and binding . 1

1.1.2 The beginning: the two-level λ-calculus 3

1.1.3 The middle: permissive nominal terms . 4

1.1.4 The end: adoption of permissive nominal terms 6

1.2 Contributions . 6

1.3 Publications . 8

2 Background 9

2.1 The λ-calculus . 9

2.2 Encoding syntax and languages with binding . 11

2.2.1 De Bruijn indices . 11

2.2.2 Locally nameless and locally named approaches 13

2.2.3 Higher-order abstract syntax . 14

2.2.3.1 Higher-order unification . 16

2.2.3.2 Comparing names: α-inequality 18

2.2.3.3 Use in Coq and adequacy . 18

2.2.4 The Pronominal Approach . 19

2.2.5 Calculus of Nominal Inductive Constructions (CNIC) 20

2.3 Nominal techniques . 21

2.3.1 Nominal sets and foundations . 21

2.3.2 Nominal terms and unification . 21

2.3.3 Nominal algebras . 24

2.3.4 Nominal type systems . 26

2.3.5 Nominal rewriting . 27

2.3.6 Languages and libraries . 28

2.3.7 Nominal logics . 30

2.3.8 Use in proof assistants . 31

2.3.9 Language semantics . 32

3 The two-level λ-calculus 33

3.1 Introduction . 34

vii

3.2 Terms . 38

3.2.1 Permutation and instantiation actions . 39

3.3 The theory of derivable freshness . 44

3.4 Reductions and confluence . 47

3.4.1 Confluence of level one reductions . 54

3.4.2 Confluence of level two reductions . 64

3.4.3 Confluence of level one and level two reductions 67

3.5 Conclusions . 69

3.5.1 Related work . 70

4 Permissive nominal terms and their unification 75

4.1 Introduction . 76

4.2 Permissive terms . 78

4.2.1 Permutations and α-equivalence . 80

4.2.2 Substitutions . 85

4.3 Unification of terms . 88

4.3.1 Unification problems and their solutions 88

4.3.2 A unification algorithm . 89

4.3.2.1 Support reduction . 89

4.3.2.2 Unification problem simplification 95

4.3.3 Principal solutions . 98

4.3.4 The algorithm in action . 103

4.4 Relation with nominal terms . 105

4.4.1 Nominal terms . 105

4.4.2 Derivable freshness and equality . 106

4.4.3 The translation . 107

4.4.4 Substitutions and solutions to unification problems 110

4.5 Conclusions . 113

5 Implementing permissive nominal terms 115

5.1 Introduction . 115

5.1.1 Conventions . 117

5.2 Building terms . 118

5.2.1 Atoms . 118

5.2.2 Permutations . 119

5.2.3 Permission sorts . 120

5.2.3.1 Operations on permission sorts 121

5.2.4 Unknowns . 123

5.2.5 Terms . 123

5.2.6 Implementing substitutions . 125

5.3 Unification of terms . 126

5.3.1 Support reduction . 126

5.3.2 Unification algorithm . 131

5.4 The PNT Frontend . 135

5.4.1 Example interaction . 136

5.5 Conclusions . 138

6 Conclusions 139

6.1 Summary of thesis . 139

6.2 Unifying themes of doctoral research . 141

6.3 Future work . 143

6.3.1 The two-level λ-calculus . 143

6.3.2 Permissive nominal terms and their unification 144

6.3.3 Implementing permissive nominal terms 146

A Additional proofs: the two-level λ-calculus 149

B Additional proofs: permissive nominal terms 163

C BNF Grammar for PNT Frontend 170

Bibliography 173

List of Figures

3.1 Level one permutation and level two instantiation actions 39

3.2 Derivable freshness rules . 45

3.3 Congruence, reduction and parallel reduction rules 48

4.1 Rules for α-equivalence . 81

4.2 Support inclusion problem simplification . 90

4.3 Unification problem simplification rules . 96

4.4 Rules for derivable freshness on nominal terms . 106

4.5 Rules for derivable equality on nominal terms . 106

5.1 Example interaction: PNT Frontend input script . 137

5.2 Output from the PNT Frontend . 137

x

CHAPTER 1

Introduction

The book is divided into chapters, which are divided into sections, which are divided

into paragraphs, which are divided into sentences, which are divided into words, which are

divided into letters. For reference purposes, each letter in the book has a number (actually

a finite sequence of positive integers) attached to it.

Carl E. Linderholm, Mathematics Made Difficult

1.1 Background and motivation

The work presented in this thesis tells a story, and like most stories, this thesis has a beginning,

middle and end. We first set the scene.

1.1.1 Abstract syntax and binding

Many tasks in computer science require the automated manipulation of abstract syntax. By

abstract syntax, we mean a usually tree-based representation of syntax, suitable for manipulation

and traversal. For example: a C compiler must parse raw input strings to an abstract tree-based

representation of parse-trees.

Those familiar with the implementation of proof assistants, theorem provers, source code

transformation tools, interpreters, and so on, will recognise the importance of manipulating

abstract syntax. So we would expect abstract syntax to be well-understood. But is it?

Problems arise when we wish to reason about, and manipulate, languages whose syntax

involves name binding. Name binding is common: it is found in virtually every programming

language, in the myriad calculi and formal logics that computer scientists use to reason about

systems, and even in the integral calculus taught in schools. In particular when working with

abstract syntax with name binding there are a few recurring operations that we would like to

implement: we would like to test for α-equivalence; we would like to generate fresh names; we

would like to implement capture-avoiding substitutions. Most of all we would like to do these

tasks correctly and with a minimum of fuss.

Unfortunately handling name binding correctly looks deceptively simple, yet in practice is

tricky to get right, and often leads to insidious and hard to find bugs as the authors of early

versions of the LCF proof assistant discovered [Pau88]. Moreover techniques that were adequate

for implementing and reasoning about abstract syntax without name binding now flounder when

we näıvely implement and reason about abstract syntax with name binding.

The ‘name binding problem’—as we’ll refer to it from now on—has led many researchers

to invest significant energy in trying to find elegant methods for working with abstract syntax

with name binding. Many diverse techniques have been suggested: de Bruijn indices [dB72],

higher-order abstract syntax [PE88], Fraenkel-Mostowski (‘nominal’) techniques [GP99], locally

nameless representations [MM04], Sato’s representation [Sat08] and other locally named ap-

proaches, and so on.

1

1. INTRODUCTION 2

In particular, we’ll focus on nominal terms [UPG04]. These originated with the aforemen-

tioned research into Fraenkel-Mostowski techniques by Gabbay and Pitts in the late 1990s [GP99,

Gab00].

Nominal terms were proposed as a metalanguage for embedding syntax with binding into.

Nominal terms possess two levels of variable: atoms, elements with a name, and no internal

structure, and unknowns, variables with an associated substitution action. One may abstract

atoms in a term, allowing one to work up to α-equivalence—the native notion of equality for

syntax with binding. Syntax is embedded into nominal terms through the use of termformers,

and binding at the syntax level is facilitated by atoms abstraction in nominal terms.

In particular nominal terms were proposed to try to capture queries like the following [UPG04,

pg. 5]:

Assuming a and b are distinct variables, is it possible to find a λ-term M that

makes λa.λb.Mb and λb.λa.aM α-equivalent?

Analysing this query in detail will help to motivate nominal terms.

For instance, M may be instantiated to any term—it is a hole—even under the bound

name x. This is modeled in nominal terms by making use of the two levels of variable: we

may bind an atom in a term, but instantiating any unknown laying under that binder will not

necessarily avoid capture. Similarly, we may have informal freshness side-condition on holes.

This is modeled in nominal terms by making use of freshness assumptions on unknowns, and

using a derivable freshness relation as a generalisation of the free variables of a term.

Nominal terms have a straightforward denotation in Fraenkel-Mostowski sets. They also

have excellent computational properties: unification of nominal terms is efficiently decidable

and produces most general unifiers. A large amount of ancillary research has been carried

out imposing typing systems [FG07a], investigating rewriting [FGM04, FG05, FG07b], defining

algebras [GM08a, GM09a, GM07a, GM07c], and extending Prolog’s term language with nominal

terms [CU08, CU04].

These applications interpret nominal terms as a language for working with abstract syntax

with binding, sometimes consciously so, as in the case of αProlog (see [CU08, pg. 15]). However,

a body of research exemplified by Gabbay, amongst others, has begun to look at other uses for

nominal terms [Gab05, GL08, GM09a, FGM04]. Specifically, Gabbay uses nominal terms not

just as a tool for embedding syntax with binding, but as a metalanguage for embedding languages

with binding. Whereas the native notion of equivalence for syntax with binding is α-equivalence,

languages with binding may have more complex forms of equivalence, for instance β-equivalence

in the case of the λ-calculus. These forms of equivalence may be captured in a suitable nominal

framework, for instance nominal rewriting [FGM04] or nominal algebra [GM09a].

Many metalanguages already exist and they collectively possess a range of features that make

them suitable as a target for embedding into. This thesis asks: ‘can nominal terms borrow any

features from these metalanguages, and what do the resulting systems look like? ’.

1. INTRODUCTION 3

1.1.2 The beginning: the two-level λ-calculus

Many metalanguages feature λ-abstraction. Can we extend nominal terms with λ-abstraction

for both atoms and nominal unknowns? Further, once we have made this extension, what does

the resulting system look like?

Chapter 3 introduces the two-level λ-calculus. This is as an extension of nominal terms,

where both atoms and unknowns may be λ-bound. Intuitively, the two-level λ-calculus is a pair

of λ-calculi intertwined around each other, one at ‘level one’, and the other at ‘level two’, with

requisite notions of β-reduction at both levels.

The two-level λ-calculus is a context-calculus. A context is a λ-term with ‘some holes’,

and context-calculi promote contexts to a first-class status; contexts may be returned from

and passed as arguments to functions. Context-calculi were proposed to formalise the informal

notion of context used regularly in computer science. For instance, observational equivalence

proofs for program fragments rely on an informal notion of context (for example, see the work of

Pitts [Pit94]). However, context-calculi are also interesting in their own right, as tools for investi-

gating novel programming language designs [Has98], for investigating dynamic linking [Dam98],

and many other applications (see [HO01] for an overview of possible uses).

In a context-calculus there are two levels of variable. Filling a hole—where holes are variables

of the λ-calculus at level two—does not avoid capture of λ-bound variables from the level one

calculus. The same holds for the two-level λ-calculus: the substitution action on unknowns,

inherited from nominal terms, does not avoid capture for λ-bound atoms.

Like all context-calculi, the two-level λ-calculus must overcome two difficulties: how to handle

α-equivalence in the presence of two levels of variable, and how to handle a failure of commutation

between näıve β-reduction and hole filling. In the two-level λ-calculus, ‘nominal technology’ is

brought to bear, solving these problems.

We handle α-equivalence using swappings, and freshness side-conditions. Swappings are a

trademark feature of nominal techniques, and possess some excellent properties: they are self

inverse, and nearly all relations defined over two-level λ-terms are equivariant.

The two-level λ-calculus doesn’t just benefit from an explicit nominal influence—with the

use of swappings and freshness constraints—but also from an implicit influence, in realising that

there are two types of variable in context-calculi, and they should behave differently.

We prevent a term like (λa.X)t reducing to X, unless we specifically have hypothesised that

a is fresh for X. It is the failure to prevent this reduction—the failure to realise that there are

two levels of variable in a context-calculus—which leads to a non-confluent system.

The two-level λ-calculus is confluent, and the proof of this fact is non-trivial. The proof of

confluence is split into two halves: we prove the confluence of the level one fragment (Theo-

rem 3.4.24) and the confluence of the level two fragment (Theorem 3.4.36) separately, before

stitching the two proofs together (Theorem 3.4.42). Level two confluence is proved using Tait’s

parallel reduction strategy. Level one confluence is proved using a canonical form (Defini-

tion 3.4.13) and a novel ‘backwards’ lemma (Lemma 3.4.23). This proof technique seems to be a

powerful method for proving confluence in general, and was used to prove several other systems

confluent [GM09b, GM10b].

1. INTRODUCTION 4

Despite the novelty of the proof strategy, the technical ‘meat’ of the confluence proof is

obscured by manipulations of freshness contexts. During the confluence proof, we regularly

need to push substitutions under various λ-binders. This may not be possible depending on the

ambient freshness context that we are working in: it simply may not have enough ‘freshness’

to allow us to rename our λ-abstracted variables to something fresh. For instance, if we are

working in the empty freshness context, no renaming can be made.

To retain confluence, it is routinely necessary to ‘freshen’ a context with some fresh vari-

ables. Most lemmas and theorems within the confluence proof are parameterised by a freshness

context; they take a freshness context as ‘input’, perform some reasoning, and ‘output’ a new

freshness context with sufficient freshness for the lemma to hold. A lemma in this pattern is

Lemma 3.4.23. However we must be careful to define the ‘freshening’ operation for contexts:

improper management of freshness contexts would mean that any freshness side-condition can

be met. Sometimes a freshness side-condition should never be met, regardless of the ambient

freshness context we are working in.

Apart from the obscuration of confluence proofs, there are a number of other problems with

the use of explicit freshness contexts. Retaining freshness contexts complicates the quotienting

of terms by α-equivalence. Potential α-equivalence classes are constructed with respect to a

term and a freshness context, and expanding or contracting this context affects the size of

the α-equivalence class. A nominal term does not have an associated α-equivalence class; a

nominal-term-in-context does.

Problems with explicit freshness contexts also pose problems for other nominal calculi and

logics. Expanding a freshness context in nominal algebra [Mat07], for instance, results in more

provable equalities. Similarly, plans for constructing a higher-order logic from the two-level λ-

calculus (as discussed in Chapter 3) are complicated by the fact that expanding or contracting

ambient freshness contexts affects what is provable within the logic, as more equivalences may

hold, depending on the freshness context at hand!

Contexts of assumptions are common throughout theoretical computer science. For instance

typing contexts are used heavily in various type theories to record the types of variables. However

typing contexts and freshness contexts are fundamentally different. Expanding a typing context

usually doesn’t make more terms equal; expanding a freshness context does.

In order to fix these problems, we must rid ourselves of explicit freshness contexts that can

contract and expand, and instead focus on some fixed, global notion of freshness. This is what

we attempt to do with permissive nominal terms.

1.1.3 The middle: permissive nominal terms

Permissive nominal terms are presented in Chapter 4. In permissive nominal terms, explicit

freshness contexts are elided, instead, unknowns are labeled by an infinite and coinfinite set of

atoms, called a permission sort.

Permissive nominal terms retain the ‘nominal’ first-order flavour of nominal terms (they in

fact have an almost identical grammar). They also recover some useful properties that informal

1. INTRODUCTION 5

presentations of syntax with binding have, but nominal terms, and by extension two-level λ-

terms, lack. Namely, these are what we refer to as the ‘always fresh’ and ‘always rename’

properties.

The ‘always fresh’ property states that, for every term, there are always infinitely many

fresh names. The ‘always rename’ property states that any bound name can always be renamed

to something conveniently fresh. These two properties help smooth the treatment of informal

syntax with binding: we can always push substitutions under binders, as we can always ‘just

rename’.

Informal syntax with binding is also routinely quotiented by α-equivalence. For instance in

first-order logic it is routine to consider ∀x.x = x and ∀y.y = y as being the same formula.

Permissive nominal terms use the particular form of the permission sorts to recover the ‘always

fresh’ (Corollary 4.2.17) and ‘always rename’ (Corollary 4.2.18) properties, and therefore make

it easy to quotient permissive nominal terms by α-equivalence. Specifically, the infinite and

coinfinite nature of permission sorts makes it possible to find infinitely many fresh atoms for

any term, and to always ‘just rename’, if necessary.

Freshness in permissive nominal terms now becomes a structural property of the term itself.

There is no derivable theory of freshness, parameterised by a freshness context. Instead, a term’s

freshness is fixed when that term is created and permission sorts for unknowns are picked. We

define a notion of the free atoms of a term by structural induction on the term itself. As a result,

quotienting permissive nominal terms by α-equivalence is straightforward, and α-equivalence

classes of permissive nominal terms are not liable to expand and contract depending on the

ambient freshness context that we are working in.

Like nominal terms, we introduce a unification algorithm for their permissive counterparts,

and the lack of explicit freshness contexts simplifies matters. A nominal unification solution

consists of a substitution and a freshness context [UPG04]. In contrast, first- and higher-order

unification algorithms return only a substitution as their solutions [BS01].

Permissive nominal unification solutions are akin to first- and higher-order unification solu-

tions, in that they consist solely of a substitution (Definition 4.3.3). The permissive unification

algorithm internalises freshness, solving constraints in a separate ‘support reduction’ phase. The

burden of handling freshness contexts is removed from the user.

A selling point of nominal terms has been their tractable computational properties. Do

permissive nominal terms also possess these properties? We prove that they do: in particular,

most general unifiers exist (Theorem 4.3.56), unification of permissive nominal terms is decidable,

and the algorithm of Definition 4.3.39 is correct (Theorem 4.3.58).

Despite their different treatments of freshness, permissive nominal terms and nominal terms

share a close correspondence. In particular, we present a non-trivial translation between nominal

terms (Definition 4.4.12), and their permissive counterparts, under the assumption that we only

use atoms in the nominal world from some fixed permission sort. We prove in Theorem 4.4.24

that this translation also preserves unifiers.

Finally, the infinite and coinfinite nature of permission sorts is not a barrier to straight-

forward implementation. We prove this constructively, with an ‘existential proof’, a prototype

implementation of permissive nominal terms and their unification called PNT, in Haskell. We

1. INTRODUCTION 6

discuss PNT in detail in Chapter 5, and demonstrate that permissive nominal terms can be

implemented in a straightforward manner, without having to resort to using Haskell’s laziness

to represent infinite datastructures (in fact, all datastructures in the implementation are finite).

1.1.4 The end: adoption of permissive nominal terms

We introduced permissive nominal terms as a variant of nominal terms that recovered several

properties that informal presentations of syntax with binding enjoy. Namely, these were the

‘always fresh’ and ‘always rename’ properties. The informal slogan of nominal techniques has

always been ‘ε-away from informal practice’, and we believe that by recovering the ‘always fresh’

and ‘always rename’ properties, we move nominal techniques even closer to informal, pen-and-

paper style reasoning. It remains to adopt permissive nominal techniques.

In [GM09e], Gabbay and Mulligan introduced permissive nominal algebra. A translation

between the permissive nominal algebra theory ULAME and λ-theories was provided, and the

translation was proved sound and complete in a suitable sense.

In [DGM10], Dowek and Gabbay prove that permissive nominal terms and higher-order

patterns are ‘essentially’ the same thing. That is, there is a translation between permissive

nominal terms and higher-order patterns which preserves unifiers, and is in some sense optimal.

This result builds on a body of work by Levy and Villaret, and Cheney, but uses permissive

nominal technology to simplify the proofs, cutting out ‘cruft’ dealing with freshness contexts.

In [DG10], Dowek and Gabbay introduced Permissive Nominal Logic. Intuitively, this can

be seen as a first-order logic, with permissive nominal terms as its term language. Unknowns

may be universally quantified over, and the labeling of unknowns with permission sorts makes

this feasible. The logic was introduced specifically to encode, and reason about, formal systems

that possess a name binding structure. Again, the use of permissive nominal terms simplifies

the treatment of α-equivalence.

1.2 Contributions

The contributions of this thesis, along with references, are as follows:

The two-level λ-calculus. The two-level λ-calculus is a novel context calculus, presented in

Chapter 3. It may be seen as an extension of nominal terms, where atoms and unknowns may

be λ-bound. Associated notions of β-reduction are present for both levels.

Like all context-calculi, the two-level λ-calculus must overcome two hurdles: how best to

handle α-equivalence in the presence of multiple levels of variable, and how best to handle a

well known failure of commutation between näıve β-reduction and hole filling. The two-level

λ-calculus solves both of these problems by bringing nominal techniques to bear.

We handle α-equivalence through the use of swappings, and explicit freshness constraints.

Swappings have excellent properties: they are self-inverse, and all important relations defined

on two-level λ-terms are equivariant (invariant under swapping).

The failure of commutation between β-reduction and hole filling is handled by imposing

restrictions on the β-reduction of applications. This is similar in spirit to limitations that

Sato [SSKI03] places on reductions in his calculus-of-contexts.

1. INTRODUCTION 7

A strategy for proving confluence. The two-level λ-calculus is confluent (see Subsec-

tion 3.4.3 in Chapter 3). We split the proof of confluence into two halves: proving confluence of

a ‘level one’ fragment of the calculus separately from confluence of a ‘level two’ fragment, then

stitching the two together.

Of particular interest is the strategy for proving confluence of the level one fragment (Sub-

section 3.4.1). Here, we define a canonical form (Definition 3.4.13), pushing all substitutions

down as far as possible, and prove that all terms eventually reduce to it (Theorem 3.4.22). We

then show that if a term r reduces to s, then the canonical form of s reduces to the canonical

form of r (Lemma 3.4.23). Confluence follows.

This technique appears to be useful in proving other calculi confluent, too. For instance, we

reused the technique to prove one-and-a-half-level [GM09b] terms and the permissive two-level

λ-calculus [GM10b] are confluent.

Permissive nominal terms. Permissive nominal terms are a variant of nominal terms [UPG04],

presented in Chapter 4. Permissive nominal terms forego explicit freshness contexts. Instead,

unknowns are labeled with an infinite and coinfinite set of atoms, called their permission sort.

Intuitively, a permission sort controls how an unknown is instantiated. We may only instan-

tiate an unknown with a term whose free atoms is a subset of the unknown’s permission sort.

Further, the infinite and coinfinite nature of permission sorts allows us to recover two important

properties that nominal terms lack: the ‘always fresh’ (the ability to find infinitely many fresh

atoms for any term) and ‘always rename’ (ability to rename an abstracted atom to something

fresh as needed) properties. Though these two properties are almost always assumed when

working informally with the λ-calculus, for example, nominal terms lack these, and indeed we

investigated permissive nominal terms because of the trouble with renaming in the confluence

proof of the two-level λ-calculus.

Chapter 4 also introduces a unification algorithm for permissive nominal terms. We demon-

strate that unification of permissive nominal terms is decidable, and the unification algorithm

will always terminate (Theorem 4.3.42) with a ‘correct’ answer, in the following sense: if a uni-

fication problem has no solution, then the algorithm halts in a failing state, otherwise a most

general unifier will be found. This is Theorem 4.3.58.

Finally, we provide a not entirely trivial translation between the nominal and permissive

nominal worlds, and show that this translation preserves nominal unification solutions.

A prototype implementation of permissive nominal terms. The infinite and coinfinite

nature of permission sorts seems to imply that permissive nominal terms has an infinitary syntax,

and therefore hard to implement. Chapter 5 dispels those fears by providing an ‘existential proof’

that permissive nominal terms can be implemented in a straightforward manner.

Specifically, we introduce a prototype implementation of permissive nominal terms and their

unification algorithm, called PNT. A frontend, allowing a user to easily define permission sorts

and terms, is also provided, for ease of use.

1. INTRODUCTION 8

1.3 Publications

The following is a list of publications written during the course of doctoral study. Forward links

are included specifying which publications formed a basis for which chapters.

1. ‘The two-level λ-calculus, part one’, Murdoch J. Gabbay and Dominic P. Mulligan, Jour-

nal of Logic and Computation, under review, 2010.

2. ‘Permissive nominal terms and their unification: an infinite, coinfinite approach to nominal

techniques’, Gilles Dowek, Murdoch J. Gabbay and Dominic P. Mulligan, Logic Journal

of the Interest Group in Pure and Applied Logic, vol. 18, iss. 6, pgs. 769–822,

2010.

3. ‘One-and-a-halfth-order terms: Curry-Howard for incomplete derivations’, Murdoch J.

Gabbay and Dominic P. Mulligan, Journal of Information and Computation, vol.

208, iss. 3, pgs. 230–258, 2010.

4. ‘Universal algebra over lambda-terms and nominal terms: the connection in logic between

nominal techniques and higher-order variables’, Murdoch J. Gabbay and Dominic P. Mul-

ligan, Presented at the 4th International Workshop on Logical Frameworks and

Meta-languages: Theory and Practice (LFMTP 2009).

5. ‘The two-level λ-calculus’, Murdoch J. Gabbay and Dominic P. Mulligan, Electronic

Notes in Theoretical Computer Science vol. 246 pgs. 1-7–129, 2009.

6. ‘Permissive nominal terms and their unification’, Gilles Dowek, Murdoch J. Gabbay and

Dominic P. Mulligan, Presented at the 24th Convegno Italiano di Logica Com-

putazionale (CILC 2009).

7. ‘Semantic nominal terms’, Murdoch J. Gabbay and Dominic P. Mulligan, Presented at

the 2nd International Workshop on the Theory and Applications of Abstrac-

tion, Substitution and Naming (TAASN 2009).

8. ‘One-and-a-half level terms: Curry-Howard for incomplete derivations’, Murdoch J. Gab-

bay and Dominic P. Mulligan, Proceedings of the 15th International Workshop on

Logic, Language, Information and Computation (WoLLIC 2008), Lecture Notes

in Artificial Intelligence 5110, pgs. 179–193, 2008.

9. ‘Dynamic relational rippling in HOL’, Lucas Dixon and Dominic P. Mulligan, Presented

at the Automated Reasoning Workshop (ARW 2008).

CHAPTER 2

Background

This Chapter places nominal terms in a wider research context.

In Section 2.2 we provide a survey of the many techniques, other than the ‘nominal ap-

proaches’, developed by researchers for tackling the ‘name binding problem’—how to work with

abstract syntax and languages with binding. In Section 2.3 we provide a detailed survey of

nominal techniques which have been developed to tackle the ‘name binding problem’ and their

applications.

2.1 The λ-calculus

We provide a brief overview of the λ-calculus, enough to give the reader unfamiliar with the

λ-calculus enough of a foothold to understand the rest of the thesis (particularly Chapter 3).

Functions are of fundamental importance in computer science and mathematics. Mainstream

mathematicians interpret a ‘function’ as a set of pairs, where no two identical pairs possess

identical first components (see any introductory text on set theory, for example [JW95]). For

instance, in line with the standard set theoretical foundations of mathematics, the ‘identity

function’ on real numbers is interpreted as the set:

{(x, x) | x ∈ R}

However, there is an alternative interpretation of a ‘function’, not as a potentially infinite set

of pairs, but rather a rule of correspondence, which maps a series of inputs to some potentially

transformed output. Recast, our squaring function now can be written in the following style:

x 7→ x

Here the input x is mapped to itself, x. This was the interpretation of function that Alonzo

Church took when inventing the λ-calculus [Chu36, Bar84], a formal system intended to capture

the notions of function definition via rules of correspondence, and function application.

The syntax of the λ-calculus is exceedingly simple, consisting of (in most presentations) just

three syntactic classes. Let x, y, z and so on range over variables. Terms r, s, t, and so on, of the

λ-calculus are then constructed using the following grammar:

r, s, t ::= x | rs | λx.r

We call rs an application and λx.r an abstraction. Application models ordinary function ap-

plication. Abstraction models the intuitive notion of abstracting a variable in order to form

a function. For example, our previous example of identity function x 7→ x is modelled as the

λ-term λx.x.

Note that, for simplicity’s sake, the λ-calculus is a calculus of functions that only accept

single inputs. Functions taking multiple inputs can be modelled within the calculus through

a process known as Currying. That is, all functions accepting multiple inputs are modelled as

9

2. BACKGROUND 10

functions accepting a single input, and returning another function accepting another input, and

so on. For example, the second projection function on pairs (x, y) 7→ y can be modelled within

the λ-calculus as the Curried function λx.λy.y.

Further, note that in λx.r, the λ-abstracted variable x is bound within the body of the

abstraction, r. Reconsidering our previous example of the identity function, we note that the

mappings x 7→ x and y 7→ y clearly denote the same function—the identity. So it is within the

λ-calculus, where λx.x and λy.y are considered α-equivalent, or equivalent up to a systematic

change in bound variables. α-equivalence, not syntactic identity, is the native form of equivalence

on λ-terms.

We noted earlier that application rs models function application. Suppose our previous

example of the identity function x 7→ x. What should be the result of applying this function

to 5? To apply a function to an input, we must perform a substitution, wherein x is replaced

by 5 throughout the body of the function. That is, evaluating (x 7→ x)5 = 5, and ((x 7→ (y 7→
x))5)3 = (y 7→ 5)3 = 5. Again, so it is in the λ-calculus, where (λx.x)y one-step β-reduces to y.

Note that function application makes use of substitution of terms for variables. We write

r[x 7→ s] for the term r with free occurrences of x replaced by s throughout. Care, however, is

needed when definining substitution. Through improper substitution, it’s easy to destroy the

functional meaning of a term by not properly respecting bound variables. For instance, the term

λx.x, the identity function, can easily have its functional meaning changed through the näıve

substitution of x for y, resulting in the term λx.y. This latter term corresponds to a constant

function, always returning y, quite distinct from the identity. For this reason, substitution in the

λ-calculus is carefully defined, and pushing a substitution under a λ-abstracted variable requires

a careful analysis of freshness conditions, and possible renaming of bound variables. Concretely,

with careful substitution, and suitable renaming, the result of our previous näıve substitution

should properly be (λx.x)[x 7→ y] = (λx′.x′)[x 7→ y] = λx′.x′, where x′ is a fresh variable.

The λ-calculus is confluent. If a term β-reduces in many steps to two distinct terms, then

we can always close this ‘gap’ through more reductions, reducing both to a common term. The

confluence property states that the order in which we β-reduce subterms of any particular term

is irrelevant, and cements our intuition that the λ-calculus is indeed a calculus of functions.

We note that what has been presented here is the untyped λ-calculus. The untyped λ-calculus

allows the definition of ‘paradoxical’ terms that never reduce to a normal form—a term that

can no longer be reduced. For instance, Turing’s ω combinator (λx.xx)(λx.xx) reduces to itself

in one step, and therefore we can construct an infinitely long reduction sequence by continually

reducing this term.

Further, the untyped λ-calculus provides no facility for outlawing the application of func-

tions to certain kinds of data, where this application would be senseless. In mathematics, it

makes no sense to apply the square root function on the Reals to a Group, yet there is no

way in the untyped λ-calculus to prevent a λ-encoded square root function being applied to a

λ-encoded Group. These problems motivate the study of various typed λ-calculi, which aim to

prevent various non-sensical reductions, and in many cases ensure that all terms reduce to a

normal form [US06]. Further discussion of typed λ-calculi, though, is outside the scope of this

introduction.

2. BACKGROUND 11

2.2 Encoding syntax and languages with binding

Abstract syntax manipulation is an important process in computer science. Many languages

also incorporate name binding constructs. Finding methods for safely and elegantly working

with abstract syntax with binding is therefore a major research field. This is reflected in the

many different methods that have been proposed to handle the ‘name binding problem’. We

now survey the major approaches.

2.2.1 De Bruijn indices

Nicholaas de Bruijn invented his eponymous indices [dB72] as a ‘nameless’ representation of

the λ-calculus for use in the Automath proof assistant [dB80]. The encoding technique does

not rely on any peculiarities of the λ-calculus and as a result is commonly used as a nameless

representation for other languages with binding.

De Bruijn’s insight was to note that the particular choice of a bound name does not matter.

However, what does matter is the occurence of a bound name within a term which ‘points’ to

a particular binder. Bound variables can then be replaced by numeric pointers—indices in de

Bruijn’s parlance—which represent the particular binding site that is binding them.

The technique is best explained by example. Consider the following collection of λ-terms:

λa.λb.a λa.λb.λc.bc λa.a λb.λc.(b(λd.c))

Through the use of underlining, we can connect a bound variable occurence with its binding site.

Consider the previous collection of λ-terms, coloured, where the bound variable and respective

binder are underscored with the same number of lines:

λa.λb.a λa.λb.λc.bc λa.a λb.λc.(b(λd.c))

To complete the process, we now replace each underscored variable by a natural number. Intu-

itively, the index signifies how many binders to the right we need to traverse in order to reach

the binder with the same number of underscores as the variable. We then drop variable names

from terms altogether by replacing λa by λ. Performing this operation, we obtain the following

de Bruijn encodings of the previous collection of λ-terms:

λλ 2 λλλ (2 1) λ 1 λλ (2 (λ 2))

Free variables are assumed ‘bound at top level’; a free variable is represented by a numerical

index into a global context, associating indices with concrete names.

De Bruijn also derives a number of common operations, for instance capture-avoiding substi-

tution, for working on languages encoded with his representation. The details of these operations

involve some quite involved arithmetic in order to ensure that variables aren’t inadvertently

captured. This arithmetical manipulation is often cited as a key disadvantage of the de Bruijn

representation along with the fact that the terms aren’t human readable [BU06]. This makes

them unsuitable for use in ‘customer facing roles’—the interface between human users and the

implemented system—for instance.

2. BACKGROUND 12

A related disadvantage of the de Bruijn representation comes when reasoning needs to be

performed on an encoded language. Berghofer and Urban [BU06] used a de Bruijn encoding to

formalise in Isabelle the substitution lemma from the λ-calculus. They point out that additional

lemmas are particularly hard to spot, due to the arithmetic involved in substitutions, and when

the lemmas finally are found they are extremely brittle. They quote Nipkow, in support of their

claim [BU06, pg. 6]:

Initially, I tried to find and prove these lemmas from scratch but soon decided to

steal them from Rasmussen’s ZF proofs, instead, which has obvious advantages:

— I did not have to find this collection of non-obvious lemmas myself . . .

Despite this, Berghofer and Urban point out that the lemmas do not change much between

different encoded languages, and are particularly amenable to this form of borrowing.

Despite these drawbacks, de Bruijn indices do have a number of nice properties. Perhaps

most significant is the fact that α-equivalence test now coincides precisely with syntactic identity

on de Bruijn terms. For instance, it should be intuitively clear that the two λ-terms λa.λb.a

and λc.λd.c are both mapped to the same de Bruijn representation, λλ 2, and in general the

de Bruijn encoding is invariant under α-conversion. This is a particularly important feature of

de Bruijn encodings as it allows us to easily compute functions that operate on α-equivalence

classes.

Another key advantage is the first-order nature of the encoding. We do not need to resort to

anything as complex as, for instance, function spaces to represent binding. Instead, a de Bruijn

representation allows a programmer to use standard features of many programming languages,

like algebraic datatypes, to encode a language.

Berkling’s encoding [Ber76] of the λ-calculus is closely related to the de Bruijn encoding. In

Berkling’s encoding aliased bound names are annotated with an index, which denotes how many

binders need to be skipped for that particular variable name, not counting binders for variables

with different names. The Calculus of Indexed Names and Named Indices (CINNI) [Ste00], a

calculus of explicit substitutions designed for embedding object languages into, uses Berkling’s

notation.

Many other techniques are based on, or variations of, de Bruijn’s encoding [MM04, Pol93,

MP97]. Subsection 2.2.2 will introduce a series of closely related techniques.

Pros: Syntactic identity and α-equivalence coincide. As a first-order approach, any imple-

mentation can use existing infrastructure provided by most functional programming languages:

recursive datatypes, pattern matching etc.

Cons: The definition of standard operations requires tricky arithmetic. Reasoning about en-

coded languages in a proof assistant requires ‘non-obvious’ lemmas. Encodings are hard to read

for humans.

2. BACKGROUND 13

2.2.2 Locally nameless and locally named approaches

Locally nameless Locally nameless approaches [MM04, Pol93, Gor93] use a mixed represen-

tation of de Bruijn indices and variable names. Bound variables are represented using de Bruijn

indices whilst free variables are given explicit names. This goes some way to ameliorating the

readability problem of de Bruijn indices. Like de Bruijn encodings, locally nameless encodings

have the advantage of syntactic identity and α-equivalence coinciding.

McBride and McKinna use a locally nameless approach within the implementation of Epi-

gram, a dependently typed functional language [McB04]. However, locally nameless approaches

have a history dating back to Pollack’s work on the LEGO proof assistant [Pol93] and publica-

tions by Gordon [Gor93] implementing the technique in the HOL proof assistant.

Locally nameless approaches still require some arithmetical manipulation when defining op-

erations on terms, but compared to de Bruijn indices, this is reduced.

Several tools have been implemented for automatically generating locally nameless encodings

of languages with binding from a grammar. Ott [SNO+10] compiles a grammar, similar to

an informal pen-and-paper based presentation of syntax with binding, into a locally nameless

encoding provided as a series of definitions in an Isabelle, HOL or Coq theory file, or alternatively

into a LATEX file for publication. LNGen [AW10] further extends Ott by automating many of the

routine ‘nameplate’ lemmas that need to be proved about locally nameless encodings. However,

LNGen presently only targets Coq.

Pros: Syntactic identity and α-equivalence coincide. As a first-order approach, any imple-

mentation can use existing infrastructure provided by most functional programming languages:

recursive datatypes, pattern matching etc. Encodings use explicit names for free variables, so

are more readable than de Bruijn encodings.

Cons: The definition of standard operations requires some arithmetic, though this is reduced

compared to de Bruijn encodings.

Locally named Locally named approaches [MP97] use names for both bound and free vari-

ables. To handle issues with α-equivalence, bound and free variables are assumed to come from

two disjoint syntactic classes: parameters are used for free variables, whilst variables are used

for binding.

The use of parameters facilitates a straightforward definition of capture-avoiding substitu-

tion, but unlike de Bruijn indices, α-equivalence and syntactic identity no longer necessarily

coincide. Care must also be taken to ensure that terms are well-formed, and have no dangling

free variables (in Pollack and McKinna’s terminology, ensure that the terms are ‘vclosed’).

The use of parameters for bound variables has a long history in logic (for instance, Smullyan’s

book on predicate logic [Smu95]). Pollack and McKinna used the locally nameless approach

to formalise a large amount of type theory in the LEGO proof assistant [MP97]. Locally

nameless approaches were also applied to formalising the metatheory of programming lan-

guages [ACP+08], and to the POPLMark challenge [Ler07].

2. BACKGROUND 14

A variation of the locally named approach is the Sato representation [Sat08, SP10]. This is

‘canonical’ in the sense that terms are placed into an α-normal form, where α-equivalence and

syntactic identity coincide, restoring this important property that de Bruijn encodings enjoy

but other locally named approaches do not.

Pros: As a first-order approach, any implementation can use existing infrastructure provided

by most functional programming languages: recursive datatypes, pattern matching etc. Unlike

de Bruijn and locally nameless approaches, encodings use no numerical indices.

Cons: Syntactic identity and α-equivalence need not coincide. Care must be taken to ensure

encoded terms are well formed.

2.2.3 Higher-order abstract syntax

Pfenning and Elliott introduced the slogan ‘higher-order abstract syntax’ [PE88] referring to a

mechanism that they were using for representing object languages with name binding constructs

in Ergo, a language generic development environment.

Higher-order abstract syntax uses metalevel function spaces as the means of representing

name binding in object level languages. Typically, this is achieved by using a typed λ-calculus

as the meta-language in which object languages are embedded. For instance, Pfenning and

Elliot originally used the simply typed λ-calculus extended with products and polymorphism.

However, the term is also widely used to refer to similar embeddings in other meta-languages,

such as Haskell (for instance, see [Aug06]).

Pfenning and Elliott merely popularised the term ‘higher-order abstract syntax’ not the tech-

nique with which it later became synonymous. A similar technique, where object level binders

were being implemented in terms of metalevel binders, was already being used in the Edinburgh

Logical Framework at the time of publication of [PE88]. Further, what exactly constitutes

‘higher-order abstract syntax’ is open to dispute. For instance, Felty and Pientka [FP10, pg 1]

characterise higher-order abstract syntax as:

Our focus in this paper is on encoding metatheory of programming languages

using higher-order abstract syntax (HOAS), where we encode object-level binders

with metalevel binders.

Washburn and Weirich also give a similar definition [WW03, pg 1]:

The main idea is elegant: instead of representing object variables explicitly, we

use metalanguage variables.

As does Atkey [Atk09, pg 2]:

Another common approach is to use higher-order abstract syntax [13]. In this

approach, we use the binding structure of the meta-language to represent binding in

the object-language.

2. BACKGROUND 15

Such definitions, whilst useful as a very high level overview of the technique, are clearly deficient

as encodings of object languages in nominal terms also use metalevel binding for encoding object

level binders! However nominal terms are routinely characterised as an extended first-order

technique not higher-order.

To properly distinguish between nominal encodings and higher-order encodings we insist

that, when discussing higher-order abstract syntax, the meta-language in question is the λ-

calculus, or some variant of. This isn’t an idiosyncratic choice as many authors wishing to

discuss the advantages and disadvantages of higher-order abstract syntax also make a similar

assumption. For instance, Cheney’s critique of higher-order abstract syntax [Che05c] makes

little sense without the implicit assumption that the metalevel calculus in question is some form

of the simply-typed λ-calculus.

The use of metalevel function spaces for representing object level name binding can be traced

back to Church’s work on the simple theory of types [Chu40]. Church worked in the simply typed

λ-calculus, and hypothesised two base types: ι the type of individuals and o the type of truth

values. A constant symbol ∀ with type (ι → o) → o was introduced and Church embedded

the object level universal quantifier into the simply typed λ-calculus using this constant. For

example, ∀(λx.⊥), where ⊥ is a constant of type o representing falsehood, can be correctly typed

with o.

In the previous example, we see that object level binding (the universal quantifier) is handled

by the metalevel binder (the λ of the simply typed λ-calculus). Using this pattern, we obtain

a generic method for embedding languages with binding. In addition, tricky operations such

as capture-avoiding substitutions, fresh name generation and α-equivalence tests are inherited

by the object languages from the meta-language. These operations need therefore only be

implemented once at the metalevel and forgotten about. This is a significant time saver and

also serves to reduces bugs.

Higher-order abstract syntax, widely construed, is implemented in a large range of systems.

For instance, Isabelle, amongst many other proof assistants, use higher-order abstract syntax

for representing its object logics [Pau10]. A recent trend has seen programming languages being

implemented with the explicit goal of working with higher-order data, representing deductive

systems implemented in Edinburgh LF. A language in this mould is Beluga [PD08, PD10],

though Delphin [PS08b] (and Elphin, it’s simply typed cousin [SPS05]) predate Beluga. This

trend throws up additional challenges, for instance, it is now useful to be able to perform case

analysis on higher-order data [DP08].

Higher-order abstract syntax has a number of advantages: it is widely implemented, relatively

conceptually simple and does save significant time and effort, as many operations on encodings

can be relegated to the metalevel. However, the technique also has a number of disadvantages.

The next few subsections will characterise the major flaws of higher-order abstract syntax, and

attempt to survey the large body of research that has been carried out seeking solutions to these

problems.

2. BACKGROUND 16

2.2.3.1 Higher-order unification

Higher-order unification is the unification up to βη-equivalence of simply-typed λ-terms (though

the phrase is also used to describe the unification of terms with more expressive types). Higher-

order unification was investigated in the hope of finding an automated theorem proving method

for higher-order logic [Dow01].

Higher-order unification is widely used. Notably, when working with higher-order abstract

syntax first-order unification is not sufficient and higher-order unification must be used due to the

presence of function variables. In addition, higher-order unification finds uses in computational

linguistics [GK96a, GK96b] and in type inference for some programming languages [Pfe88],

amongst other varied uses.

Higher-order unification is undecidable and this can be shown via a reduction to Hilbert’s

tenth problem [Dow01]. (In fact, Goldfarb proved a more general result, that second or-

der unification is undecidable, and the undecidability of higher-order unification follows from

that [Gol81].) By undecidable, we mean that no algorithm exists that takes a higher-order

unification problem and outputs an answer if it has a solution or not. However, higher-order

unification is semi-decidable in that a unification algorithm exists that terminates and returns

an answer if a unification problem has a solution, possibly diverging otherwise. The most famous

semi-decision procedure along these lines is Huet’s algorithm [Hue75], though a semi-decision

procedure using explicit substitutions is also widely known [DHK95].

Intuitively, Huet’s algorithm follows a ‘generate and test’ pattern. Unification problems are

split into three groups: rigid-rigid, flexible-rigid and flexible-flexible. A λ-term is said to be rigid

if its head symbol is a constant or bound variable; a term is flexible if its head symbol is a free

variable.

Rigid-rigid terms may be simplified directly, whilst flexible-rigid terms require all possible

substitutions making the two terms βη-equivalent to be enumerated (fortunately, this process

may be restricted) and applied to the terms, one by one. However, flexible-flexible terms also

require the enumeration of all possible substitutions, but there is no way to restrict this blind

enumeration process. To counter this, Huet demonstrated that every flexible-flexible pair of

terms has a unifier—useful if all we care about is the existence of a unifier.

When compared with first-order unification, higher-order unification has poor computational

properties. Higher-order unification may not terminate, and, if it does, the resulting unifier

may not be most general (in fact, unique most general unifiers need not exist). These poor

computational properties have led many researchers to attempt to identify subsets of λ-terms

with better computational properties. One subset of particular importance is Miller’s higher-

order patterns.

Higher-order patterns Miller [Mil91a] identified a subset of λ-terms for use in the logic

programming language Lλ that admitted a decidable unification algorithm with most general

unifiers. Nipkow later named this subset ‘higher-order patterns’ [Nip93a] and distilled the rigor-

ous but high-level description of the algorithm by Miller into an algorithm for unifying higher-

order patterns suitable for implementation in a functional programming language. Higher-order

2. BACKGROUND 17

patterns are used widely, for instance in the logic programming language λProlog [NM88], and

the proof assistants Abella [Gac08] and Isabelle [Pau98].

Intuitively higher-order patterns are a linearised form of λ-term. Miller first noted that every

λ-term may be placed into β-normal-η-long form where no β-redexes exist and no η-expansion

can be performed without introducing another β-reduction. Normal forms of this sort correspond

to the following grammar (due to Cheney [Che05d]):

g ::= λx̄.y ḡ | λx̄.Y ḡ

Here, Y is a metavariable, and ḡ denotes a vector of λ-terms.

Miller’s insight was in noting that the nondeterminism in higher-order unification stems from

the uncertainty in how a metavariable Y may act on its argument list of terms ḡ. This list of

arguments may itself contain other metavariables or repeated terms. This insight was further

motivated by noting that higher-order unification can be decomposed into higher-order pattern

unification and a suitable search strategy, separating issues dealing with name binding from the

search aspect [Mil91b].

Miller removed the uncertainty surrounding the behaviour of metavariables on argument lists

by placing restrictions on what form an argument list may take. Each list ḡ must consist of

distinct bound variables, and, as a result of this restriction, the flexible-flexible pairs of Huet’s

algorithm may always be solved.

The unification theory of higher-order patterns is well-understood. A linear time and space

algorithm for higher-order patterns was investigated by Qian [Qia93], although never imple-

mented1. Dowek and Pfenning designed a pattern unification algorithm using explicit substitu-

tions [HDKP98]. Pientka and Pfenning proposed several optimisations, notably a form of lin-

earisation which further removes occurs checks, and justified the use of these optimisations with

a modal type theory [PP03]. Pfenning extended higher-order pattern unification to dependent

types (specifically the Calculus of Constructions) [Pfe91]. Pientka investigated optimisations of

higher-order pattern unification in a dependently typed setting [Pie06].

In addition to (syntactic) higher-order pattern unification, pattern antiunification [Pfe91],

pattern E-unification (i.e. semantic unification with respect to an equational theory) [Bou00,

BC97, BC01], pattern complement [MP03] and relative complement [MP99], and disunifica-

tion, with Lugiez identifying some decidable subcases [Lug94], have all been investigated. A

slight relaxation of higher-order patterns have been profitably used in a program transformation

framework [YHT04]. Higher-order patterns have also been incorporated into rewriting frame-

works; Nipkow defined higher-order rewrite systems using higher-order patterns and pattern

unification [Nip91, Nip93b], for instance.

Though undecidable higher-order unification has been reported to work well in practice [Pau88].

Empirical evidence suggests that higher-order pattern unification is sufficient to solve the over-

whelming majority of higher-order unification problems [Pau98]. Nipkow discovered that 97%

of all higher-order unification problems that arise through everyday use of Isabelle can be solved

by higher-order pattern unification alone. This suggests a possible explanation for higher-order

1Dale Miller, personal communication.

2. BACKGROUND 18

unification’s good computational behaviour in practice (in Paulson’s words: higher-order uni-

fication ‘performs sufficiently well in practice’ [Pau88]), and Isabelle now defaults to solving

higher-order unification problems with higher-order pattern unification, only using full higher-

order unification when necessary.

Higher-order pattern unification and nominal unification share a close relationship with each

other. A recent body of research suggests that higher-order patterns and nominal terms have

‘morally’ the same expressive power [Che05d, LV08, DGM10]. This will be discussed later in

the thesis.

2.2.3.2 Comparing names: α-inequality

Unlike nominal approaches bound names in higher-order abstract syntax do not enjoy an in-

dependent denotational existence, as names are taken to α-vary. This makes defining natural

relations between terms, such as α-inequivalence, tricky. The Twelf implementation of the Ed-

inburgh Logical Framework, a major user of higher-order abstract syntax, employs hypothetical

judgments for handling this problem [CH06].

2.2.3.3 Use in Coq and adequacy

Imagine a higher-order abstract syntax embedding of the λ-calculus. A type trm is introduced

representing the type of λ-terms, and two constants, app : trm → (trm → trm) and lam :

(trm → trm) → trm representing application and λ-abstraction, respectively. These constants

are not the constructors of an inductive type, as there is a negative appearance of trm in the

type of lam. (To maintain the consistency of their logics, type theory based proof assistants

like Coq or Matita incorporate a positivity checker, which checks that types do not incorporate

a negative occurence, leading to possible non-termination.) As a result, an induction principle

for this type cannot be formulated, and implementing this embedding in type-theories like the

Calculus of Constructions, as used by Coq [BC04], is impossible.

Further, suppose we extend our simply typed metalanguage with a feature for case distinc-

tion. Then, not every well-typed term of trm represents a valid λ-term. For instance:

lam(λx.case x of app l r ⇒ app r l | lam b⇒ lam b)

This term can be successfully typed as trm but does not represent any valid λ-term. By allowing

case distinction on bound variables we have lost adequacy in our encoding.

How can these problems be handled?

As Coq is a widely used proof assistant, the problems with higher-order abstract syntax in

Coq have led many researchers to investigate alternative formulations of the technique, suitable

for use in type-theory based proof assistants. Of particular note is ‘weak higher-order abstract

syntax’ [DFH95]. Weak higher-order abstract syntax introduces a dedicated type for variables

var, injected with a dedicated constructor variable : var → trm, and replaces the negative

occurence of trm in the type of lam with var. That is, the type of lam now becomes (var →
lam)→ lam.

Parametric higher-order abstract [Chl08] syntax expands upon this idea, by limiting how

inhabitants of this var type may be analysed with parametricity.

2. BACKGROUND 19

A significant body of research has been undertaken addressing the adequacy problems of

higher-order abstract syntax. Washburn and Weirich used System-F style polymorphism to

limit how bound variables may be analysed [WW03]. That is, they claim the following type

∀a.((a→ a)→ a)→ (a→ a→ a)→ a

represents exactly the untyped λ-terms. Here, the carrier type a has been universally quantified

over, but the two operations of higher-order abstract syntax, lam and app are captured in the

type. Washburn and Weirich provide some fold-like operators and associated reasoning principles

for working with inhabitants of this type.

Intuitively, it seems obvious that this type does capture untyped λ-terms, as the quantifi-

cation over the carrier type means it is no longer possible to perform the case analysis that

destroys adequacy (the parametricity means that we cannot assume anything about the carrier

type). However, Washburn and Weirich do not offer a formal proof that this is the case. Simi-

larly, Coquand and Huet state without proof that this type represents untyped λ-terms [CH85],

and Chlipala’s previously mentioned parametric higher-order abstract syntax uses a similar

idea [Chl08], again, without proofs of correctness.

Recently, Atkey provided a proof that the previous type does in fact represent untyped λ-

terms [Atk09]. Using Kripke logical relations, Atkey demonstrated that the denotation of the

type is isomorphic to closed de Bruijn terms (de Bruijn terms without dangling pointers). The

proof was formalised inside a version of Coq.

An alternative approach to regaining adequacy was investigated by Fegaras and Sheard [FS96].

Here, case analysis and pattern matching of bound variables is restricted, without the use of

Atkey’s System-F style of polymorphism, ensuring adequacy.

Pros: Pushes frequently needed operations on encoded languages to the metalevel. The tech-

nique is widely implemented. Common restricted cases use efficient higher-order pattern unifi-

cation.

Cons: There are problems with adequacy and use in type theory based proof assistants. The

general case requires undecidable higher-order unification. There are problems defining ‘natural’

relations on encoded languages, such as α-inequality.

2.2.4 The Pronominal Approach

The pronominal approach [HLZ09, LZH08] may be seen as a variation of higher-order abstract

syntax. Subsubsection 2.2.3.3 has already summarised the problems of negative occurences in

higher-order abstract syntax, especially with regards to implementation in type-theory based

proof assistants. The pronominal approach counters this problem by introducing two function

spaces: one with positive polarity for ordinary computation in the style of the λ-calculus, and

another function space with negative polarity for constructing datatypes with binding. The

negative polarity of the binding function space makes pattern matching and recursion under

binders easy to implement.

The pronominal approach retains many of the advantages of higher-order abstract syntax.

For instance, binding is still handled at the metalevel by a function space, just one of a different

2. BACKGROUND 20

polarity to standard higher-order abstract syntax, and hence capture-avoiding substitution, α-

equivalence tests and fresh name generation can all be relegated to the metalevel, once and for

all.

The most recently investigated pronominal type theory is simply typed. However, plans exist

for a dependently typed version along the lines of Edinburgh LF [LZH08].

Pros: Pushes frequently needed operations on encoded languages to the metalevel. One can

easily construct data types with binding that can be analysed using pattern matching in a

straightforward manner.

Cons: The technique is not very widely implemented. Two function spaces, one for computa-

tion, and another for name binding, are needed.

2.2.5 Calculus of Nominal Inductive Constructions (CNIC)

The Calculus of Constructions, a dependent type theory, is the most expressive of all eight

systems in the λ-cube [US06]. As a consequence, the calculus and its immediate extensions,

notably the Calculus of Inductive Constructions (CIC), has been used as foundations for many

widely used proof assistants, including Coq [BC04], Lego [Bur91] and Matita [ACTZ07].

Many users of proof assistants based on CIC wish to formalise the metatheory of program-

ming languages, logics, calculi, and other formal systems with name binding structures. How-

ever, techniques like higher-order abstract syntax are awkward to use in CIC proof assistants

like Coq, as discussed in Subsubsection 2.2.3.3.

Westbrook et al propose the Calculus of Nominal Inductive Constructions (CNIC) [WSA09].

This extends CIC with an intensional name binding construct ν which introduces a fresh name in

a local scope. Despite the name CNIC is not closely related to the nominal techniques described

in Section 2.3.

CNIC’s ν binder satisfies four properties: name freshness (the generated name is distinct

from all others), terms including ν are equal up to α-equivalence, a name cannot escape from

its scope, and different types of variables can be bound. To complement ν CNIC also introduces

features for deconstructing terms with bound names.

Westbrook et al prove that CNIC is a suitable for use in a logical framework by proving con-

sistency and strong normalisation via a suitable reduction to CIC. A prototype implementation

of CNIC called Cinic is also described. Work on CNIC and Cinic continues.2

Pros: The technique supports straightforward encodings of languages with name binding, and

manipulating those encodings, in a dependent type theory.

Cons: The technique is not very widely implemented (prototype implementation still under

active development).

2Edwin Westbrook, personal e-mail.

2. BACKGROUND 21

2.3 Nominal techniques

Nominal techniques were introduced just over a decade ago, by Gabbay and Pitts [GP99, Gab00].

Since then, a large amount of work has been carried out, extending the field in different direc-

tions. What follows is a brief summary of this work, sectioned into related areas for easy

navigation.

2.3.1 Nominal sets and foundations

Fraenkel-Mostowski (FM) is a set theory with atoms (urelemente in set theory parlance). FM

set theory was applied by Fraenkel to the study of the independence of the axiom of choice

from other axioms in first Zermelo-Fraenkel with Atoms (ZFA) [Fra22], and later—by Cohen—

ZF [Coh63]. Eventually, FM was rediscovered and applied to the problem of abstract syntax

with name binding by Gabbay and Pitts [GP99, Gab00].

Several set theories, and classes of sets within these theories, related to nominal techniques

exist: ZFA, FM, equivariant FM sets and nominal sets. The FM sets hierarchy resides inside

the ZFA hierarchy. Within the FM sets hierarchy resides the class of equivariant FM sets.

Equivariant FM sets provide a model for ‘nominal sets’. Nominal sets are an axiomatisation of

a set with a finitely supported permutation action upon it, and related operations, that facilitate

straightforward concrete definitions of abstract syntax with binding.

As standard set-theoretic constructions such as functions and products can also be defined in

the FM set hierarchy, atom abstraction can be used to model bound names in structures other

than abstract syntax. In addition, the notion of ‘equivariance’, or invariance under permutation,

captures the idea that particular choices of name do not matter.

Various case studies support the claim that FM sets correctly capture abstract syntax

with name bining up to α-equivalence. For instance, Gabbay encoded the π-calculus in FM

sets [Gab03], and encodings of the untyped λ-calculus up to α-equivalence also exist [GP99].

Gabbay also demonstrated that FM sets provide a model for capture-avoiding substitution, as

well as abstract syntax up to α-equivalence [GG08]. Clouston and Pitts used FM sets to develop

Nominal Equational Logic [CP07], a simple logic of equality, with a natural interpretation in

nominal sets. Turner and Winskel applied domains constructed within FM sets to the study of

concurrent calculi, obtaining adequacy and soundness results [TW09].

Gabbay made an attempt at providing automated support for FM-style reasoning in the

Isabelle proof assistant [Gab00, Gab02b]. Nominal Isabelle continued in this vein (Section 2.3.7).

FM sets facilitate a generic atoms abstraction definition, but only single atoms may be

abstracted in a set. Gabbay later generalised nominal sets to allow the binding of infinitely

many atoms [Gab07b].

2.3.2 Nominal terms and unification

Terms Nominal terms [UPG04] were developed as a metalanguage for encoding object lan-

guages with binding with a concrete semantics in FM sets. Specifically, nominal terms were

2. BACKGROUND 22

proposed in order to capture statements like the following, taken from the metatheory of the

λ-calculus, inside a formal language:

(λx.r)[y 7→t] = λx.(r[y 7→t]) (if x 6∈ fv(t)) (2.1)

Looking closely at this statement, we see the following unique features:

• The ‘terms’ r and t are really metavariables which can be instantiated to any term

• The name x is bound in the metavariable r

• There exists a freshness side-condition on t, stating that the name x must not occur in

whatever t is instantiated to

Nominal terms attempt to internalise these features inside a formal syntax:

r, s, t ::= a | π·X | [a]r | f(r1, . . . , rn)

Here, a ranges over atoms, π over permutations, X over unknowns, and f over term-formers. A

term of the form [a]r is an abstraction, and in π·X we state that π is suspended on X.

Atoms a model ‘names’ and are intended to capture the role of x in Equation 2.1. They may

be compared with other atoms for equality and inequality, but have no other internal structure.

Many ‘natural’ relations between terms, such as α-inequivalence, rely on the ability to compare

atoms for inequality. An atom may be abstracted in a term [a]r. This abstraction is intensional:

it aims to capture what λ, π, ν, and all other name binders, have in common.

Unknowns X, on the other hand, model metavariables, such as r and t. Unknowns have a

capturing substitution action, intended to model metavariable instantiation. We write [X:=t]

for the substitution mapping X to t, and we can easily extend substitutions to a substitution

action on terms r[X:=t]. For example, ([a]X)[X:=a] ≡ [a]a, whilst ([b]a)[X:=c] ≡ [b]a, where

≡ denotes syntactic equality between nominal terms.

Permutations π are finitely supported bijections on atoms3. Nominal terms use permuta-

tions, specifically ‘swappings’ of atoms, to handle α-equivalence, as, in Cheney’s words, they

are ‘inherently capture avoiding’ [Che05c]; swapping fresh atoms in a term always leads to an

α-equivalent term. Swappings also have some other properties that make them preferable to

using substitutions: they are self-inverse, easy to compose, and most relations are equivariant,

or invariant under permutation.

A permutation action π·r on terms is also easy to define: permutations ‘just’ traverse through

the structure of a term until they reach an atom, in which case they act, or hit an unknown, in

which case they suspend. For instance, writing (b a) for the permutation that swaps b with a

with b, and leaves all other c fixed, we have:

(b a)·[a]f(b,X, c) ≡ [b]f(a, (b a)·X, c)
3Alternatively, permutations are often taken as finite lists of pairs of atoms. This is the approach taken

in the original nominal unification paper [UPG04], for instance, and also within earlier versions of Nominal
Isabelle [UNB07]. The latest versions of Nominal Isabelle now assume permutations are finitely supported
bijections of atoms [HU10].

2. BACKGROUND 23

Intuitively, a suspended permutation, such as (b a)·X, in the example above, waits to act

on whatever X is eventually instantiated to. This creates a sort of ‘memory’, where nomi-

nal unknowns, modelling metavariables, remember name changes modelling α-equivalence for

abstracted atoms that may lie above them in the term.

These are several alternative presentations of nominal terms, tailored to specific purposes.

For instance [GM09e] elides termformer arguments, using constants and term application in-

stead:

r, s, t ::= a | π·X | f | rs | [a]r

This style of nominal term was proposed to make proofs relating nominal algebras and λ-

algebras more convenient. Calvès also introduces several variants of nominal terms better suited

to implementation [Cal10] in his thesis. For instance, he introduces compact nominal terms

with explicit suspended substitutions, a technical device used in the implementation of efficient

unification algorithms:

r, s, t ::= a | X | f | rs | [a]r | π·t

Derivable freshness and α-equivalence Nominal terms may contain unknowns X. Un-

knowns may be substituted for any term, and therefore behave as if they have an infinite set of

free atoms. A generalisation of the free atoms of a term therefore needs to be found.

Nominal terms use a derivable freshness relation; syntax directed rules dictate when an atom

a may be considered fresh for a term r, with respect to some assumptions about the freshness

of atoms relative to unknowns. We write ∆ ` a#r for ‘a is derivably fresh from r using the

assumptions in ∆’. Here, ∆ is a finite set of freshness assumptions of the form a#X; we read

a#X as ‘a is assumed fresh for X’.

With freshness described, we can express Equation 2.1:

a#Y ` Sub([b](Lam([a]X)), Y) −→ Lam([a](Sub([b]X,Y)))

Here, we render Equation 2.1 inside the framework of nominal rewriting (discussed in Sub-

section 2.3.5), where the informal equality of Equation 2.1 is replaced by a directed equality,

interpreted as a rewrite arrow −→. Two termformers, Lam and Sub, model λ-abstraction and

substitution. The holes, r and t, in Equation 2.1 are modeled by the nominal unknowns X

and Y . The bound variable x in r is modeled by abstracting a in X. The informal freshness

side-condition is captured by the freshness assumption a#X.

Derivable freshness is a central component in α-equivalence checking. Nominal terms in-

troduce an intensional name binding construct [a]r, and this implies that the native notion

of equality on nominal terms should be α-equivalence. Like freshness, α-equivalence is defined

through a derivable relation, induced by a series of syntax directed rules, with respect to a fresh-

ness context. Derivable α-equivalence is parameterised by a freshness context because we need

to check α-equality for ‘open terms’—terms with occurences of unknowns. We write ∆ ` r ≈ s
for ‘r and s are derivably equal, under the freshness assumptions in ∆’.

2. BACKGROUND 24

Unification Nominal terms have a computationally tractable unification algorithm: nomi-

nal unification is decidable, despite nominal terms possessing a notion of name binding. The

unification algorithm of [UPG04] works by recursive descent, simplifying nominal unification

problem (finite sets of pairs of terms of the form r
?
= s). Nominal unification returns, as output,

a substitution θ and a freshness context ∆, where given r
?
= s as input ∆ ` rθ ≈ sθ is derivable.

The näıve algorithm of [UPG04] works by recursive descent, and has exponential worst-case

running time (the same examples that make näıve first-order unification algorithms exponential

also work for the recursive descent nominal unification algorithm). However, a large amount of

research, by Calvès and Fernández, has been expended trying to define a more efficient form of

the algorithm than the näıve recursive descent algorithm presented in [UPG04]. A polynomial

time algorithm for nominal unification, based on optimisations taken from implementations of

first-order unification, was discovered and implemented [CF07, CF08a, CF08b].

These polynomial asymptotic time bounds for nominal unification have recently been sharp-

ened by two independent results. Fernández and Calvès introduced a quadratic time nominal

unification algorithm, based on the Martelli and Montari first-order unification algorithm [Cal10].

Similarly, Levy and Villaret have also produced a quadratic time nominal version of the Patter-

son and Wegman first-order unification algorithm [LV10].

Further, Kumar and Norrish have also investigated more efficient forms of nominal uni-

fication [KN10]. Their unification algorithm uses ‘triangular substitutions’, which unlike the

substitutions returned as a solution from the standard nominal unification algorithm, need not

be necessarily idempotent, but is better suited to backtracking search in logic programming.

They use their unification algorithm in the αLeanTAP theorem prover [NBF09].

Calvès later implemented nominal terms in the Haskell Nominal Toolkit [Cal09]. He provided

associated zipper data structures for traversing them, and with several algorithms defined over

them, including nominal unification and matching.

Nominal unification is unification of nominal terms up to α-equivalence, i.e. given two

terms r and s, find a θ such that ∆ ` rθ ≈ sθ. However, for some applications (for instance

rewriting and αProlog) nominal unification is not enough, and equivariant unification is required.

Equivariant unification unifies terms up to permutation, i.e. given two terms r and s, find a

θ and π such that ∆ ` rθ ≈ π·sθ. Unfortunately, equivariant unification is known to be NP-

complete [Che04a, Che05a].

Fernández and Gabbay first anticipated this phenomenom whilst investigating nominal rewrit-

ing (see Subsection 2.3.5 for a description of the problem in the context of rewriting sys-

tems), and introduced the notion of ‘closed terms’ which do not require equivariant unifica-

tion [FGM04]. Cheney later formally demonstrated that the equivariant unification problem is

NP-complete [Che04a, Che05a]. However, Cheney and Urban were able to mitigate this by show-

ing that in a large percentage of cases equivariant unification can be avoided in αProlog [UC05]

by using the notion of closed terms, introduced by Fernández and Gabbay.

2.3.3 Nominal algebras

Nominal algebra [GM06, GM07b, Mat07, GM09e, GM09a] is a simple logic of equality over

nominal terms. Nominal algebra may be seen as a variant of universal algebra, with the addition

2. BACKGROUND 25

of a name binding construct and freshness side-conditions. The λ-calculus [GM07a, GM10a],

capture avoiding substitution [GM08a] and first-order logic [GM09a], amongst other theories,

have all been axiomatised within nominal algebra.

Nominal algebra is the application of nominal techniques to algebraic reasoning in the pres-

ence of atoms, unknowns, atoms abstraction and freshness side-conditions. Informal equivalences

may be internalised and formalised within nominal algebra with a close approximation to in-

formal practice. For instance, η-equality in the λ-calculus may be formally captured by the

following axiom:

a#X ` λ[a](Xa) = X (2.2)

Here, λ is a term-former, and a#X is a freshness side-condition, stating that a must be fresh

for X for the equality to hold. In Equation 2.2, we sugar App(X, a), where App is another

term-former, to Xa, for reasons of legibility.

Equation 2.2 also reveals something interesting about nominal algebra. Namely, nominal

algebra axioms appear to have an implicational flavour, in that they are conditional on a fresh-

ness side-condition, in this case a#X, being met. In what sense, then, is nominal algebra an

algebra—a simple logic of equality?

Birkhoff’s theorem, otherwise known as the HSP theorem for ‘homomorphism, subalgebra,

product’, is a fundamental theorem in universal algebra [BS81]. The theorem characterises mod-

els of an algebraic theory as a class closed under the operations of homomorphism, subalgebra

and product. Intuitively, it allows one to ‘factor out’ complexity in models of algebraic theories.

The HSP theorem states that classes of algebras satisfying some equations must be closed un-

der the HSP operations, and also the converse, namely, classes of algebras satisfying the HSP

operations must be equational. Proving that nominal algebra satisfies the HSP theorem, or a

variant thereof, will therefore adequately demonstrate that nominal algebra is in fact an algebra,

or equational logic.

Gabbay showed that a suitably strengthened form of Birkhoff’s theorem, called HSPA, holds

for nominal algebra [Gab09], and therefore we are justified in calling nominal algebra a logic of

equality. HSPA extends ‘homomorphism, subalgebra, product’ with ‘atoms abstraction’, taking

into account the ability to abstract atoms in nominal algebra.

Kurtz and Petrişan have also studied the HSP theorem for nominal algebra [KP09, KPV10,

KP10], using a different proof technique. Intuitively, Kurtz and Petrişan have discovered a way

of reducing HSPA in nominal algebra and nominal equational logic to HSP in first-order logic,

through a ‘compilation’ process. Work on this technique is ongoing.

Permissive nominal terms (Chapter 4) are a form of nominal term with an alternative notion

of freshness, relative to nominal terms. Permissive nominal algebra shares the same relationship

with permissive nominal terms as nominal algebra shares with nominal terms: it is a simple

logic of equality over permissive nominal terms (Chapter 4) [GM09e].

Permissive nominal algebra and λ-algebras, logics of equality over λ-terms, are closely re-

lated [GM09e]. Gabbay and Mulligan provided a non-trivial translation between a permissive

nominal algebra theory ULAME and λ-theories, and proved it sound and complete in a suitable

sense.

2. BACKGROUND 26

Nominal equational logic [CP07] is another ‘nominal’ equational logic. The equational frag-

ment of both nominal equational logic and nominal algebra are sound and complete with respect

to their models in nominal sets. With respect to the freshness fragment of both algebras, Clous-

ton and Pitts claim that [CP07, pg. 32]

... nominal algebra does not provide a complete axiomatisation of the semantic

notion of freshness within nominal sets.

This is in some sense true, but also misleading, as freshness within nominal sets can be charac-

terised in purely equational terms, and one may write down equational axioms in nominal algebra

that capture this semantic notion of freshness. Since both logics are sound and complete for

equality in nominal sets, they are equivalent in expressive power.

The difference in the treatment of freshness affects the computational properties of the

two algebras. Freshness in nominal algebra is usually handled with the derivable freshness

relation defined on nominal terms, whereas freshness in nominal equational logic is taken as the

underlying ‘semantic freshness’, inherited from nominal sets. Freshness in nominal algebra is

therefore decidable, whereas freshness in nominal equational logic is not.

2.3.4 Nominal type systems

When implementing a type system for a nominal calculus what should the type of atoms be?

Should atoms inhabit only their own sort, or collection of sorts, or should atoms inhabit every

type?

The first rudimentary typing (sorting) system for nominal terms was introduced by Urban et

al [UPG04]. This was used to provide a ‘nominal signature’, where every term-former in scope

is ascribed a fixed sort. Here, there are a collection of atom sorts, and every atom is assumed to

belong to one of these sorts. The correctness of the derivable α-equivalence relation for nominal

terms was proved with respect to a particular signature, i.e. if ∆ ` r ≈ s then r and s have the

same sort.

A more advanced type system with atom sorts was Schöpp and Stark’s dependent type theory

with names and binders [SS04, Sch06]. Introduced with the aim of providing ‘a dependent type

theory for programming and reasoning with such names’, the type theory is able to capture

many idioms familiar from FreshML. For instance, FreshML introduced a ‘new’ operator which

introduced an arbitrarily chosen fresh name into a local scope [PG00]. Schöpp and Stark’s type

theory also can express this, but the fact that the new name is chosen completely fresh is also

captured by the typing system.

Fernández and Gabbay introduced a Curry-style rank 1 polymorphic types to nominal terms,

where atoms could inhabit any type [FG07a]. Care was taken defining permutations, which if

left unrestrained may change the type of a term when acting upon it. Further, the presence of

unknowns, and their capturing substitution action, also complicated the design of the typing

system, as terms could be moved from the global typing context to a local context under a

binder. Solving this problem required a notion of consistency for typing contexts. In the same

paper, Fernández and Gabbay introduced a notion of typed rewriting over nominal terms, and

proved subject reduction.

2. BACKGROUND 27

Gabbay and Mulligan defined a typing system for a subset of two-level λ-terms where types

corresponded to first-order predicate logic [GM09b]. Their aim was to define a notion of proof

term, under the Curry-Howard correspondence, for incomplete derivations in first-order logic.

Typed nominal unknowns represent incomplete derivations—parts of the derivation tree that

are yet to be specified. This mode of incomplete derivation is often found in the proof states

of proof assistants like Isabelle or Matita. Like the typing system of Fernández and Gabbay,

atoms could populate any type. Soundness and completeness for closed terms, with respect to

Natural Deduction, are proved.

Pitts introduced a nominal version of Gödel’s System T [Pit10], which introduces a new

recursion principle for inductive data with bound names modulo α-equivalence. Pitts demon-

strated the adequacy of his system using a novel normalization-by-evaluation argument, making

use of a notion of local names in Gabbay-Pitts nominal sets, introduced by Fernández and

Gabbay [FG05]. Atoms are assumed to belong to a sort of atoms.

Cheney introduced Simple Nominal Type Theory [Che08]. This is an extension of the simply-

typed λ-calculus with facilities for abstracting an atom in a term, with the aim of providing a

foundation for developing more complex type theories with name binding, along the lines of

Schöpp and Stark. Confluence and strong normalisation hold for the system, and atoms are

assumed to belong to a sort of atoms.

2.3.5 Nominal rewriting

Term rewriting systems are a generic formalism for capturing the dynamic behaviour of various

formal systems. However, first-order rewrite systems (i.e. rewriting on first-order terms) struggle

to capture rewriting on abstract syntax trees with binding. For instance, capturing the β-

reduction rule from λ-calculus involves freshness side-conditions, working up to α-equivalence,

and the definition of capture-avoiding substitution which also requires more freshness side-

conditions. Various prior attempts had been made to define rewriting systems that capture

these notions effectively, therefore Gabbay and Fernández introduced a ‘nominal system’.

These problems motivated investigation into nominal rewriting [FG07b, FGM04], that is,

term rewrite systems defined over nominal terms. Nominal rewriting incorporates freshness

side-conditions and α-equivalence, without sacrificing the ‘nameful’ syntax (i.e. resorting to de

Bruijn indices, or some other nameless approach). First-order matching is replaced by nominal

matching.

Nominal terms were later imbued with a Curry-style polymorphic typing scheme [FG07a].

Nominal rewriting was extended to typed nominal terms, and subject reduction was proved.

As a result, typed calculi, like the simply-typed λ-calculus, can just as easily be captured in

nominal rewriting as their untyped counterparts.

Recent work by Fernández and Rubio has generalised the recursive path ordering [Nip98], a

widely used measure for proving termination of a rewrite system, to nominal terms [FR10]. A

general method for proving termination of nominal rewrite systems, and a completion procedure,

follows.

Nominal rewrite systems have one small problem: selecting a suitable nominal rewrite rule

to apply to a term is in general NP-complete. This inefficiency is for the same reasons that

2. BACKGROUND 28

equivariant unification is inefficient; Cheney’s theorem [Che04a, Theorem 1 and Corollary 3] ex-

plained the reason for the inefficiency. However, closed nominal rewriting rules are a restricted

form of rewrite rule where matching rules with terms becomes much more efficient (polyno-

mial) [FGM04, Theorem 4.9]. Intuitively, closed nominal rewrite rules are rules where no atom

appears free (i.e. all atoms are bound by some abstraction).

Closed nominal rules are very expressive. All systems that arise naturally in functional

programming (including the λ-calculus) are closed. In addition, nominal rewrite systems using

closed rules are at least as expressive as higher-order rewrite systems. However, some ‘natural’

systems, like the π-calculus, fall outside of this restriction. Attempting to capture these sys-

tems in a nominal rewriting framework led to research on nominal rewrite systems with name

generation [FG05].

There exists a close correspondence between closed nominal rewriting systems and derivable

equality in nominal algebra [FG10]. Nominal rewriting is sound and complete for nominal algebra

when all axioms are closed, but only complete for open axioms. If an equational theory can be

represented by a confluent and normalising rewrite system, then the soundness and completeness

result immediately implies a method for efficiently deciding the equality of two nominal terms

with respect to this equational theory.

2.3.6 Languages and libraries

The need to write programs, such as compilers, interpreters and proof assistants, that manip-

ulate abstract syntax with name binders was the original raison d’être of nominal techniques.

Accordingly, a large amount of work was put into developing extensions of existing programming

languages, and developing libraries for existing languages, that could handle this task.

αProlog αProlog [CU03, CU04, CU08, Che04b] is a logic programming system, similar to

Prolog, whose term language has been enriched with facilities for name binding and expressing

freshness side-conditions. αProlog has driven a lot of investigation into the semantics of nominal

logic, on which it takes a large amount of inspiration, and nominal unification, which it uses

heavily.

Cheney investigated the semantics of nominal logic programs [Che06b]. He provided a deno-

tational semantics for αProlog programs, as well as proof theoretic and CLP semantics. Cheney

also defined a notion of uniform proof, suitable for αProlog.

Cheney later went on to develop a system similar to Haskell’s QuickCheck for αProlog [CM07].

αKanren αKanren [BF07] is an implementation of nominal logic programming in R5 Scheme.

It is built atop the Kanren Scheme logic programming system.

αLeanTAP [NBF09], a theorem prover for first-order classical logic, is built atop αKanren.

Haskell Nominal Toolkit The Haskell Nominal Toolkit [Cal09] (HNT) is an implementation

of nominal terms and their unification algorithm

2. BACKGROUND 29

FreshLib FreshLib is a Haskell library that provides nominal abstract syntax to Haskell pro-

grammers [Che05b]. Binding constructs are introduced, as well as monads for fresh names gen-

eration, and generic functions for swapping names. The library’s aim is to reduce the amount

of nameplate code that a programmer, wanting to encode object languages with binding, has to

write.

FreshML and Fresh O’Caml FreshML [PG00, SPG03] and FreshO’Caml [Shi03, Shi05] are

extensions of Standard ML and O’Caml, respectively, with support for binding, fresh name

generation and writing functions that operate on α-equivalence classes. FreshO’Caml is the

direct descendent of FreshML.

In early versions of FreshML [Gab00] the typing system maintained purity. However, the

compile time typing checks for maintaining purity were expensive and conservative in that

valid and useful programs could not be typed. Shinwell, in later versions of FreshML and

FreshO’Caml, relaxed the typing constraints, at the expense of purity. However, Pottier was

able to recover purity for a restricted subset of FreshML by definining a proof system that

sits atop the FreshML typing system [Pot07]. In Pottier’s approach, freshness constraints are

reduced to SAT problems, and then solved. In another extension to the FreshML typing system,

Pitts and Shinwell demonstrated that many other relations, such as total orderings, in addition

to equality, can be placed on atoms, without disturbing the fundamental properties of the type

system [PS08a]. Further, as a result of investigations into FreshML and FreshO’Caml, Pitts and

Shinwell investigated nominal domain theory [SP05].

The designs of FreshML and FreshO’Caml were influential in the design of a calculus for

name management by D’Ancona and Moggi [DM04], which uses FreshML style names.

MLSOS and αML MLSOS [LP08] and αML [Lak09] are metalanguages designed for ani-

mating structural operational semantics. αML is functional logic programming language, and

is the direct descendent of the now defunct MLSOS.

Nominal calculi typically employ the permutative convention, popularised by Gabbay, where

distinct names are assumed to range over distinct atoms [GM08a]. αML makes use of an alter-

native form of nominal abstract syntax—non-permutative nominal abstract syntax (NPNAS)—

which shuns the permutative convention [LP10]. Instead, αML uses ordinary metavariables to

range over atoms, where distinctly named metavariables may denote the same atom. Freshness

side-conditions are encoded as constraints.

NPNAS was developed in response to the problems with incomplete proof search in ‘nominal’

programming languages such as αProlog, where equivariant unification, or syntactic restrictions

on terms, are needed, as described in Subsection 2.3.5 and Subsection 2.3.2. In particular, the

constraint language of αML and equivariant unification are both NP-complete, and therefore

both polynomial-time reducible to each other. However, αML’s proof search is shown to be

complete for a simply yet powerful class of inductive definitions [LP09].

2. BACKGROUND 30

2.3.7 Nominal logics

LGNω LGNω is a logic which incorporates generic judgments and equivariant reasoning, as

inspired by nominal techniques [Tiu08]. Names are represented by a predicate, and although

there are infinitely many of them, only finitely many names can be mentioned by the judgments

of the logic. As a result, judgments are finitely supported, and hence the validity of judgments

is invariant under swapping of names.

‘Nominal’ logics arising from FM Sets What we would now call a ‘nominal’ logic was

discovered in the form of FM Sets and used in the study of the independence of the axiom of

choice from the other axioms of set theory [Fra22] (see Subsection 2.3.1). Thus, the first ‘nominal’

logic was FM set theory. It was applied to study abstract syntax with binding in [GP99, Gab00].

Nominal Logic [Pit03] is another first-order theory—a set of axioms. The difference from

FM Sets is that Nominal Logic does not commit to a cumulative hierarchy of sets. Nominal

Logic has influenced in particular αProlog and Nominal Isabelle.

One striking feature of nominal style reasoning is the NEW quantifier N. This quantifier

expresses ‘true for all but finitely many names’. This is not a new idea; for instance Krivine

used it (interestingly, also for reasoning on syntax) in [KC93]. What makes NEW different, in

the context of nominal techniques, is its interaction with equivariance [Gab00]. This gives NEW

properties of both a universal and existential quantifier; its characteristic some/any property as

discussed for example in [GP99, pg. 5].

This raises the question: ‘What is a good proof-theory for NEW?’. Several proof the-

ories have been suggested. Gabbay introduced the first sequent calculus style presentation of

NEW [Gab07a]. Gabbay and Cheney later developed another sequent calculus for NEW [GC04].

This was later simplified by Cheney [Che05e]. A very different treatment of NEW is in [DG10,

fig. 2, pg. 4].

Cheney showed completeness for Nominal Logic and developed Herbrand models for it [Che06a].

Staton used ideas from nominal sets and Nominal Logic to investigate name passing calculi [Sta06],

and worked with Fiore in the same area [FS09]. Miculan showed how to translated specifi-

cations in Nominal Logic into the Calculus of Inductive Constructions, using the Theory of

Contexts [MSH05]. Yasmeen implemented Mobile Ambients in Nominal Logic [YG08].

Schöpp investigated encoding generic judgments and provided a semantics for Miller and

Tiu’s ∇ quantifier. A translation between Nominal Logic and Miller and Tiu’s logic, was recov-

ered [Sch07].

One-and-a-halfth order logic One-and-a-halfth order logic is a logic similar to first-order

logic, but with predicate unknowns in a nominal style [GM07d]. The purpose of the logic is to

capture common metalevel statements, as often used when writing down axioms for logics and

calculi, mentioning freshness conditions acting on meta-variables.

Cut elimination is proved for the logic, as well as the correctness of an interpretation of

first-order logic within it.

2. BACKGROUND 31

Spatial logic Caires and Cardelli introduced Spatial Logic [CC02], a modal logic for describing

the spatial behaviour of distributed systems. The logic includes primitives for composition, as

well as the nominal NEW quantifier, for name hiding.

2.3.8 Use in proof assistants

Specialised support for object languages with binders is needed in proof assistants in order to

simplify working with and using these languages, and also to ensure that non-theorems are

not proved [Urb08]. Nominal techniques have been extremely influential in the design and

implementation of such packages.

Agda Pouillard and Pottier [PP10] introduced a library consisting of a number of types and

definitions for working with abstract syntax with binding in the dependently typed proof assis-

tant Agda [Nor09]. The library uses the notion of a ‘world’ in order to control the use of atoms.

If worlds are taken to be integers, then a de Bruijn index style of programming is obtained. If

worlds are taken to be atoms, then a nominal style of programming is obtained. That is, the

true nature of name is kept completely abstract.

The dependent typing of Agda is used to maintain several invariants. These invariants are

used to ensure the following three conditions are never violated: name abstraction cannot be

violated, names do not escape their scope, and names with different scopes cannot be mixed.

Coq and HOL Aydemir et al developed a nominal module in the Coq proof assistant and

proved it correct with respect to an encoding of the untyped λ-calculus [ABW07]. Aydemir’s

development demonstrated that nominal techniques are implementable in a dependently typed

system, such as Coq, but require axiomatisation, which makes some operations inconvenient (for

example, the axiomatisation of key concepts means unfolding is impossible [ABW07, pg. 6]).

Norrish mechanized the metatheory of the λ-calculus using a first-order representation in

the HOL proof assistant, using techniques borrowed from Nominal Isabelle (such as permuta-

tions) [Nor06].

Isabelle The first attempt at providing proof assistant support for languages with binding,

based on nominal techniques, was by Gabbay [Gab02a, Gab02b]. Gabbay attempted to ‘retarget’

Isabelle/ZF as Isabelle/ZFA. On a much larger scale, Urban subsequently developed Nominal

Isabelle [UN05, UT05, UNB07], an extension of Isabelle/HOL. Since then, a large amount of

work on Nominal Isabelle has been carried out, attempting to automate as much as possible:

the automatic derivation of inversion principles [BU08], Barendregt style induction rules for

nominal datatypes [UBN07]) and attempting to make working with the Nominal Isabelle package

as straightforward as possible (such as developing recursion operators for easy encodings of

recursive functions over α-equivalence classes [UB06]).

A number of large theorems and algorithms have been verified using Nominal Isabelle. These

include a verification of the W principal typing algorithm for Hindley-Milner style type sys-

tems [NU09], the verification of some typical structural operational semantics proofs [UN09],

2. BACKGROUND 32

the formalisation of a key lemma from Urban’s PhD thesis on cut elimination, demonstrat-

ing that the proof is correct [UZ08], a mechanization of a proof of Craig’s interpolation theo-

rem [CMU08], a formalisation of Crary’s proof of completeness for equivalence checking [NU08],

an implementation of the Spi calculus [KM08], various studies of the π-calculus [BP07, BP09a],

an implementation of the ψ-calculus (an extension of the π-calculus) [BP09b], a formalisation

of Intuitionistic Linear Logic, and a study of proof planning of dialogue [DST09], the study of

a small functional programming language with references (a la Standard ML) [BKBH07], and a

mechanization of the metatheory of Edinburgh LF [UCB08].

The formalisation of Crary’s completeness proof resulted in several changes from the pen-

and-paper proof. Similarly, the proof of correctness for Urban’s key lemma resulted in several

errors in supporting lemmas from his PhD thesis being discovered [UZ08, pg. 3].

Norrish demonstrated that de Bruijn terms really are isomorphic to λ-terms in Isabelle using

techniques (permutations, and equivariance) inspired by nominal work [NV07].

2.3.9 Language semantics

Abramsky et al provided the first fully abstract model for the ν-calculus, a calculus with fresh

name generation, using nominal games—games constructed within nominal sets [AGM+04].

Nominal games were also employed by Tzvelekos to provide a fully abstract model for the ν-

calculus with integer references [Tze07].

Turner and Winskel used nominal domain theory to provide semantics for higher-order con-

current calculi, proving adequacy and soundness results [TW09].

Finally, Mousavi et al made some brief investigations into nominal operation semantics [MGR06].

CHAPTER 3

The two-level λ-calculus

Abstract

The two-level λ-calculus is an extension of nominal terms where both atoms and

nominal unknowns may be λ-bound, with requisite notions of β-reduction defined

for both ‘levels’ of the calculus.

In particular, the two-level λ-calculus is a novel context calculus. A context may

be though of as a λ-term with ‘some holes’, and context-calculi promote contexts to

first class entities. Context-calculi have two levels of variable: variables of level two

modeling holes, and variables of level one which can be bound in holes. Notably,

‘filling’ a hole in a context calculus is not capture avoiding for λ-bound variables of

level one.

Context-calculi have been used as a research tool for many purposes, including

investigating dynamic binding, module systems, and novel programming languages,

amongst other uses. Context-calculi may also be used to formalise the informal

notion of context as a ‘term with some holes’ familiar from work on contextual

equivalence of program fragments.

Intuitively, the two-level λ-calculus behaves like a pair of λ-calculi wrapped

around each other; for instance, substitution within a level is capture avoiding in

the usual sense. However, the interaction between levels is interesting, as substi-

tution of unknowns does not avoid capture of λ-bound atoms, but substitution of

atoms does avoid capture of λ-bound unknowns.

Like all context-calculi, the two-level λ-calculus must overcome two problems:

how to α-convert bound variables in the presence of ‘holes’, and how to avoid a well-

known failure of commutation between β-reduction and hole filling. In handling these

problems, the ‘nominal influence’ on the calculus shines through, both explicitly (in

our handling of α-equivalence) and implicitly (in our handling of β-reduction).

We handle α-conversion through swappings and explicit freshness side-conditions.

Swappings are particularly associated with nominal techniques, and possess useful

properties: they are self-inverse and all relations defined on two-level λ-terms are

equivariant.

We handle the failure of commutation between hole filling and β-reduction by pro-

hibiting the reduction of a term like (λa.X)t to X, unless a freshness side-condition

states that it is safe to do so. This is the implicit nominal influence: atoms and un-

knowns are different types of variable, and should absolutely not be conflated with

each other.

The two-level λ-calculus is confluent. Proving this is non-trivial. We split the

confluence proof in two: we prove the confluence of the level one and level two frag-

ments separately, before finally stitching the two proofs together to obtain confluence

for the whole calculus. The proof of confluence for the level one fragment uses a novel

proof technique which appears to be quite general.

The Chapter concludes with a survey of prior art.

33

3. THE TWO-LEVEL λ-CALCULUS 34

3.1 Introduction

This Chapter introduces a novel context-calculus—the result of extending nominal terms with

λ-binders for atoms and nominal unknowns—in the spirit of [SSKI03, GL08, HO01], called the

two-level λ-calculus. Intuitively, a context is a λ-term with some ‘holes’.

The two-level λ-calculus has, as the name suggests, two levels of variable. We use atoms

and unknowns, familiar from nominal terms [UPG04], to model the variables of the respective

calculi. Atoms, a and b in the example reductions above, model level one variables. Unknowns,

X and Y in the example reductions above, model level two variables. Both levels of variable

may be freely λ-abstracted and the requisite notions of reduction exist at both levels. In effect,

the two-level λ-calculus is an intertwining of two copies of the ordinary, untyped λ-calculus, and

the essence of the two-level λ-calculus is best revealed through a series of example reductions:

∆ ` (λX.(λa.X))a→ λa.a ∆ ` λX.(λY.X)Y → λX ′.Y ∆ ` λa.(λb.a)b→ λb′.b

In the leftmost reduction, substitution of unknowns is not capture avoiding for λ-bound

atoms. The remaining two reductions, centre and rightmost, reinforce the intuition that the

two-level λ-calculus is ‘just’ two copies of the untyped λ-calculus intertwined: substitution

within a level is capture-avoiding. Note, however, that the following is not a valid reduction in

the two-level λ-calculus:

∆ ` λa.(λX.a)X 6→ λX.X

That is, the levels of variable induce a kind of ‘power structure’, where, compared to level one

variables, level two variables are strictly more ‘powerful’. Level two variables may ignore the

bindings of level one variables, but the reverse does not hold.

The reader will no doubt have noticed the numerous occurrences of ∆ in the example reduc-

tions above. We use ∆ to range over freshness contexts. For the purposes of this introduction,

these can be safely ignored, but are important cogs in the machinery of the two-level λ-calculus

(see Section 3.3 for a full explanation).

In principle, it is possible to extend the two-level λ-calculus, to three, four, an indeed, an

infinity of levels (presumably obtaining the ω-level λ-calculus in the process). A few other

context-calculi have employed an infinity of levels [GL08, SSKI03]. However, we make the

conservative choice of sticking to just two levels, as this suffices for studying the interesting

interactions between levels of the calculus, without additional notational overload.

So far, we have focussed our attention on what we have done, as opposed to why we have

done it. We produced another context-calculus because context-calculi are incredibly useful, not

just as a means of formalising the informal concept of a ‘term with holes’, familiar from work

on e.g. contextual equivalence of program fragments as exemplified by Pitts [Pit97], but also

because we believe that context-calculi have an independent mathematical interest. Further, we

thought nominal techniques could bring some new ideas to the research area, in the handling of

α-equivalence in the presence of two levels of variable.

The general idea of a context-calculus has existed since at least the 1970s. De Bruijn in-

vestigated a limited type of context, called a segment, as part of the Automath project [dB78].

Here, de Bruijn was interested in providing definitional mechanisms, and the ability to create

3. THE TWO-LEVEL λ-CALCULUS 35

shorthands, for mathematical expressions. Section 3.5 studies de Bruijn’s segments in more

detail.

Later investigation revealed that contexts, or ‘open terms’, appear to be quite common in

everyday mathematical parlance. For instance, note:

∀x.(φ→ ψ) = φ→ ∀x.ψ (if x 6∈ fv(φ))

Here, φ and ψ are both ‘holes’, which can be plugged with any formula, even under a binder

(in this case, ∀). Examples of this sort are readily apparent when studying the metatheory of

formal calculi, from programming languages to logics. Indeed, possibly the best way to spot a

context ‘in the wild’ is to open a textbook on logic.

Another excellent source of open terms are proof assistants, such as Isabelle [Pau88]. The

predominant mode of reasoning in Isabelle is backward reasoning: to prove a conjecture, we work

backwards, splitting our conjecture into subgoals (and therein recursively splitting subgoals into

hopefully simpler subgoals), until we reach a state where all open subgoals can be solved directly.

Now, consider the (ExI) rule, familiar from Natural Deduction:

Γ ` P (t)
(ExI)

Γ ` ∃x.P (x)

Read backwards, this rule states that to prove a goal of the form Γ ` ∃x.P (x) we must exhibit

some t such that Γ ` P (t) holds. From the viewpoint of practical proof construction, this is rather

awkward. Ideally, we’d really like to build t incrementally, as opposed to ‘pulling a rabbit from a

hat’, so to speak, and producing t on the spot. Isabelle handled this by introducing Skolemised

metavariables, i.e. by working with open formulae, allowing the user to introduce a metavariable

in lieu of a concrete choice of t [Pau98]. This metavariable may later be instantiated, but this

instantiation is nothing more than the hole filling operation in a context-calculus.

A similar phenomenon occurs in type theory based proof assistants such as Coq, Lego or

Matita which depend heavily on the Curry-Howard correspondence. Here, the types of some

typed-λ calculus (typically the Calculus of Constructions, or some extension thereof) correspond

to formulae in some logic (in the case of the Calculus of Constructions, higher-order logic).

Theorems are proved in the system by attempting to inhabit a type with a proof term. Again,

for purposes of practical proof construction, this proof term is ideally built incrementally. In

order to facilitate this, proof assistants enrich their typed λ-calculi with metavariables, standing

for unknown, or yet to be completed sections of a proof.

For example, suppose we work in an imaginary type theory based proof assistant based on

the simply typed λ-calculus enriched with metavariables (corresponding, under Curry-Howard,

to propositional logic). To prove φ → φ we introduce a typed metavariable ` X : φ → φ.

Incrementally constructing a proof term to inhabit this type, we introduce a fresh variable of

type φ into our context a : φ ` X : φ→ φ before λ-abstracting over a fresh metavariable of type

φ, as follows a : φ ` λa : φ.X ′ : φ → φ. Finally, completing the construction of the proof term,

we instantiate X ′ to a, discharging a, to obtain ` λa : φ.a : φ→ φ. This term type-checks with

the correct type, confirming that our conjecture is indeed a theorem of propositional logic.

Above, we constructed a proof incrementally by slowly building a witnessing λ-term to

inhabit a type. In proof assistants, these construction steps are handled by ‘tactics’, or small

3. THE TWO-LEVEL λ-CALCULUS 36

programs that exist at the metalevel, written in a programming language independent from

the logical layer of the assistant itself. However, it’s worth noting here that tactics are merely

functions from open proof terms to open proof terms. If we accept that λa:φ.X is an open proof

term, then what is λX.λa : φ.X? This also appears to be a function from open proof terms to

open proof terms—or, a rudimentary tactic.

Here, then, we also obtain a further motivation for investigating context calculi. The

metavariables of type theory based proof assistants are clearly the ‘holes’, or unknowns X

of a context calculus. Abstracting over these holes allows us to write functions from open proof

terms to open proof terms, or tactics. Therefore, a typed λ-calculus is itself a primitive type

theory based proof assistant, where tactics can be written by the user at level two, and level one

corresponds to the logical level of the assistant.

Further motivation for context calculi also exist, outwith proof assistants. Contexts also arise

naturally when trying to formalise what it means for two expressions, in some given programming

language, to be equivalent. Intuitively, two expressions are contextually equivalent when, after

plugging each expression into a complete program, the results of executing that program are

identical. Again, this process of ‘plugging in’ an expression is nothing more than the hole filling

operation in a context-calculus.

The previous series of examples are evidence that contexts and open terms are in fact surpris-

ingly common. However, the role of contexts, and how contexts can be manipulated, is usually

glossed over. Sato [SSKI03] and Gabbay [GP99], amongst others, both investigated calculi of

contexts to provide a firm foundational footing for working with open terms.

Context-calculi also appear to possess some independent mathematical interest, and we see

an allegory with the history of the λ-calculus along these lines. Despite being initially proposed

as part of a foundational framework for mathematics, the λ-calculus has positioned itself as

the de facto syntax for expressing functions in computer science, and as a fundamental tool

for investigating programming language denotations. It therefore seems natural to ask what

additional uses we may have for context-calculi. In fact, a large amount of work has applied

context-calculi, and other calculi with open terms, to various problems, including investigating

dynamic binding [Dam98], module systems [LF96], novel programming languages [Has98] and

proof terms for incomplete derivations [Muñ97, GJ02, Joj03, GM09b].

Hopefully, we have now given the reader an idea of why context-calculi are of interest.

However, many context-calculi already exist: why investigate another, and what do we see as

the novel features of the two-level λ-calculus?

Any context-calculus design must overcome two well-known problems: how to perform α-

conversion on contexts, and how to avoid the problems commuting näıve β-reduction and hole

filling (for instance, these problems are discussed in [SSKI03]). Consider the two contexts

∆ ` λa.X and ∆ ` λb.X. We simply cannot state that ∆ ` λa.X and ∆ ` λb.X are α-

equivalent. To see why, consider filling X with a, which leads to two α-inequivalent terms

∆ ` λa.a and ∆ ` λb.a.

One possible solution to this problem is to work with ‘nameless’ terms using de Bruijn’s

encodings, for instance. We view de Bruijn encodings as being potentially hard to read, and

for this reason, we prefer a ‘nameful’ syntax. Another possible solution is to use a calculus of

3. THE TWO-LEVEL λ-CALCULUS 37

explicit substitutions, in the spirit of [Ste00] or [Muñ97]. Here, ∆ ` λa.X can be α-converted

to ∆ ` λb.(X[a7→b]), with the substitution [a 7→b] suspending on the hole X, waiting to act on

whatever X is filled with. However, the design of calculi of explicit substitutions is a subtle

affair, and hard to perfect.

Instead of explicit substitutions, we use the much weaker notion of swappings on atoms.

Now, ∆ ` λa.X is considered α-equivalent to ∆ ` λb.((b a)·X), where (b a) is a swapping.

Swappings map from b to a to b and fix all other c. Swappings, and permutations in general,

are the ‘poster child’ of nominal techniques1, and possess some useful properties: they are self-

inverse, commute nicely with each other, and all relations that we define on two-level λ-terms are

pleasantly equivariant (invariant under swappings). Leveraging nominal techniques also opens

up the possibility of using nominal sets for a concrete denotation (see Section 3.5 for ideas along

these lines).

The other main problem that any context-calculus must overcome is that näıve β-reduction

and hole filling do not commute. To see this consider näıvely β-reducing ∆ ` (λa.X)t→ X and

filling X with a to obtain ∆ ` (λa.a)t. Reducing we obtain ∆ ` (λa.a)t → t. However, t 6≡ a,

and therefore there is a failure of commutativity and ultimately, a failure of confluence.

We address this problem within the two-level λ-calculus is by noting that reducing (λa.X)t

to X does not make any sense, because a and X are different kinds of variable. At any point, X

may be filled, and the behaviour of the final, closed term, under reduction will depend on what

X is filled with. We therefore prevent ∆ ` (λa.X)t from reducing further (it is ‘stuck’) until

it is filled with another term. However, we make one exception: if we explicitly hypothesise

within our freshness context that a is ‘fresh for’ X, we permit the ‘safe’ reduction ∆ ` (λa.

X)t → X. Following our reduction scheme, we note that open terms may still be reduced, if

there is opportunity for doing so. For example, using the rules in Definition 3.4.3, it is still the

case that ∆ ` ((λa.X)t)((λa.a)b)→ ((λa.X)t)b, regardless if a is fresh for X or not.

We now provide a high-level overview of the Chapter. Section 3.2 introduces the syntax

of the calculus. Subsection 3.2.1 introduces a permutation and instantiation action on terms.

Permutations are used to handle bound variable renamings in the presence of holes, and instan-

tiations are the mechanism through which said holes are filled. Section 3.3 introduces a theory

of derivable freshness, a generalisation of the notion of the free atoms of a term—a generalisa-

tion necessary when working with open terms (open terms essentially have an infinite set of free

atoms).

Section 3.4 introduces a reduction relation for the calculus, and proves it confluent. The proof

of confluence is split into two; one proof of confluence for each level. Subsection 3.4.1 handles

the proof of confluence for level one reductions, Subsection 3.4.2 handles the proof of confluence

for level two reductions. The two halves of the full confluence proof are finally ‘stitched together’

in Subsection 3.4.3, which includes the main theorem of the Chapter, Theorem 3.4.42, overall

confluence of the system.

Finally, Section 3.5 concludes the Chapter. We include a survey of related work in Subsec-

tion 3.5.1.

1By this, we mean that permutations have come to be associated closely with the nominal approach. For
instance, see [Tiu08], wherein Tiu describes his approach as in a ‘nominal-style’, due to his use of permutations
on names and equivariance.

3. THE TWO-LEVEL λ-CALCULUS 38

The work presented within this Chapter is an expanded version of a workshop paper [GM09d],

authored with Murdoch J. Gabbay. A journal version of this Chapter is currently under re-

view [GM10c]. The initial idea for the work was Gabbay’s. The design of the term language was

made jointly with Gabbay, based on a modified initial suggestion by Gabbay. The mathematics

was carried out by myself, with supervision and advice from Gabbay.

3.2 Terms

Fix a countably infinite set of atoms A. We use atom to model variables of level one. We

use a, b, c, and so on, to range over atoms (variables of level one), and employ a permutative

convention (that is, a and b denote distinct atoms).

Fix a countably infinite set of unknowns. We use unknowns to model variables of level

two. We use X,Y, Z to range over variables of level two. We also employ a permutative

convention with unknowns (variables of level two), so X and Y always denote distinct unknowns.

Fix a countably infinite set of constant symbols. We used c, d, e, and so on, to range over

constant symbols permutatively.

Definition 3.2.1: Suppose f is a function from atoms to atoms. Define:

nontriv(f) = {a | f(a) 6= a}

Call a bijection π on variables of level one a permutation whenever nontriv(π) is finite.

Requiring finite nontriv(π) is the familiar notion of ‘finite support’ from nominal techniques

recast. We use π, π′, π′′, and so on, to range over permutations.

We write π-1 for the inverse of a permutation, π. We write π◦π′ for the functional com-

position of two permutations, so (π◦π′)(a) = π(π′(a)). Further, we write id for the iden-

tity permutation, so that id(a) = a for all variables of level one. Note, in particular, that

(π-1◦π) = id = (π◦π-1).

Permutations of particular importance are swappings. We write (b a) for the permutation

mapping b to a to b, and fixing all other c. All swappings are self-inverse.

Definition 3.2.2: Define terms of the two-level λ-calculus by:

r, s, t ::= a | c | π·X | λa.r | λX.r | rs

We equate terms up to α-equivalence of λX bound variables, but do not do this for λa bound

variables. We write ≡ for syntactic equivalence up to λX α-conversion. As a corollary, we write

6≡ for syntactic inequivalence. For example:

λX.X ≡ λY.Y λX.(λa.X) ≡ λY.(λa.Y) λa.a 6≡ λb.b λa.(λX.a) 6≡ λb.(λY.b)

We write r[a7→t] as a shorthand for (λa.r)t. Note that X isn’t a term, but an unknown, but

id·X is. For typographical convenience, however, we will often abbreviate id·X as simply X.

In ‘π·X’, we say that π is suspended on X. Intuitively, π waits to act (in the sense of

Definition 3.2.4) on whatever X is instantiated with. Suspended permutations may be thought

of as a special case of suspended substitutions, familiar from calculi of explicit substitutions.

For instance, the following term, with an explicit substitution λx.(r[y 7→x]), roughly corresponds

to λa.((b a)X) in our syntax.

3. THE TWO-LEVEL λ-CALCULUS 39

π·a ≡ π(a) π·(π′·X) ≡ (π◦π′)·X π·c ≡ c π·rs ≡ (π·r)(π·s)
π·λa.r ≡ λπ(a).(π·r) π·λX.r ≡ λX.(π·r[X:=π-1·X])

a[X:=r] ≡ a c[X:=r] ≡ c (π·X)[X:=r] ≡ π·r (π·Y)[X:=r] ≡ π·Y
(st)[X:=r] ≡ (s[X:=r])(t[X:=r]) (λb.s)[X:=r] ≡ λb.(s[X:=r])

(λX.r)[X:=r] ≡ λX.r
(λY.s)[X:=r] ≡ λY.(s[X:=r]) (if Y 6∈ fV (r))

Figure 3.1 Level one permutation and level two instantiation actions

3.2.1 Permutation and instantiation actions

Permutations and capturing substitutions for unknowns (instantiations) are hallmarks of nom-

inal terms. Permutations are used to handle α-equivalence in nominal calculi in an elegant

manner, as in e.g. nominal algebra [Mat07, Definition 2.3.1]. We can model capture-avoiding

substitutions with instantiations by carefully managing freshness assumptions.

This Subsection introduces the permutation and instantiation actions, as well as some useful

results for manipulating permutations and instantiations. Definition 3.2.4 introduces the per-

mutation and instantiation actions. Definition 3.2.7 introduces a notion of ‘depth’ for a term,

useful in later inductive proofs.

Lemmas 3.2.13 and 3.2.16 are important results for manipulating permutations and instan-

tiations, will be used extensively throughout the rest of the Chapter, and may be thought of

as the most important results in this Subsection. Lemma 3.2.13 states that two permutations

acting on a term in sequence are equivalent to the composition of those two permutations acting

on the term. Lemma 3.2.16 states that the permutation and instantiation actions commute.

Definition 3.2.3: Define the free variables of level two of a term by:

fV (a) = ∅ fV (c) = ∅ fV (π·X) = X fV (rs) = fV (r) ∪ fV (s)

fV (λa.r) = fV (r) fV (λX.r) = fV (r) \ {X}

Definition 3.2.4: Define level one permutation and level two instantiation actions by the

rules in Figure 3.1. The side-condition Y 6∈ fV (r) for the λY.s case in the definition of the

instantiation action can always be guaranteed, simply by renaming.

The instantiation action r[X:=t] pushes an instantiation as far inside a term as possible,

acting on unknowns, or evaporating on atoms and constants. Note that instantiation is capture-

avoiding for λ-bound unknowns, but is not capture-avoiding for λ-bound atoms. Similarly, the

permutation action attempts to push a permutation as far as possible inside a term, acting

on atoms or suspending on unknowns. The permutation action has one oddity—the case of

λX.r—which requires a partial intertwining of the instantiation and permutation actions. This

coupling of the two action is explained below.

We note that there is a distinction between π·a and π(a). The latter is an atom, the image

of a under π, and itself a term of the calculus. In contrast, the permutation action on terms π·r

3. THE TWO-LEVEL λ-CALCULUS 40

is a ‘recipe’ for how to make a term, by pushing a permutation as far as possible inside it, from

r.

Further, we note that the permutation and instantiation actions are intertwined, defined

mutually, unlike previous definitions of permutation and instantiation actions in other nominal

calculi. This is due to the presence of λX. To see why this is so, consider the following series of

equivalences, easily verified using the rules in Figure 3.1:

π·λX.X ≡ λX.(π·X[X:=π-1·X]) ≡ λX.(π·(π-1·X)) ≡ λX.((π◦π-1)·X) ≡ λX.X

Permutations acting on λX.r distribute into the body of the term. Doing this incorrectly may

‘break’ the bindings of bound occurrences of X. To counteract this effect, the action of the

permutation on bound occurences of X must be fixed with a corrective instantiation. Note that:

π·λX.(XY) ≡ λX.((π·X[X:=π-1·X])(π·Y)) ≡ λX.(X(π·Y))

That is, only bound unknowns are affected by the actions of counteracting instantiations.

Note, however, that we could have made an alternative design decision, and allowed permu-

tations π to distribute throughout λX.r in the following manner:

π·λX.r ≡ λπ·X.(π·r)

This could have been made to work, with slight alterations to the mathematics. However, we

chose the alternative design for the simple reason that we think that suspending a permutation

on a λ-abstracted unknown, as in λπ·X.r, looks ugly2.

Lemma 3.2.5: fV (r) = fV (r[X:=π·X])

Proof. By induction on r. See Appendix A. 4

Lemma 3.2.6 is a standard equivariance result for the set of free variables of level one of a term.

Lemma 3.2.6: fV (r) = fV (π·r)

Proof. By induction on r, using Lemma 3.2.5. See Appendix A. 4

Definition 3.2.7 will be used in later inductive proofs. See, for instance, the proof of

Lemma 3.2.13. Lemma 3.2.8 and Lemma 3.2.9 are invariance and equivariance results for the

depth of a term.

Definition 3.2.7: Define a notion of depth on a term by:

depth(a) = 1 depth(c) = 1 depth(π·X) = 1 depth(rs) = depth(r) + depth(s)

depth(λa.r) = 1 + depth(r) depth(λX.r) = 1 + depth(r)

Lemma 3.2.8: depth(r) = depth(r[X:=π·Y])

2More seriously, the instantiation [X:=π-1·X] is reminiscent of the conjugation action on Nominal
Sets [Gab00].

3. THE TWO-LEVEL λ-CALCULUS 41

Proof. By induction on r. See Appendix A. 4

Lemma 3.2.9: depth(r) = depth(π·r)

Proof. By induction on r, using Lemma 3.2.8. See Appendix A. 4

The following technical lemma is used in the proof of Lemma 3.2.13:

Lemma 3.2.10: r[X:=π·X][X:=π′·X] ≡ r[X:=(π◦π′)·X]

Proof. By induction on r. See Appendix A. 4

Lemma 3.2.11 states that identity instantiations ‘evaporate’ on terms3. Similarly, Lemma 3.2.12

states that the identity permutation evaporates on terms.

Lemma 3.2.11: r[X:=id·X] ≡ r.

Proof. By induction on r. See Appendix A. 4

Lemma 3.2.12: id·r ≡ r

Proof. By induction on r, using Lemma 3.2.11. See Appendix A. 4

Lemma 3.2.13 will be used extensively throughout the rest of the Chapter. Permutations

are used extensively for handling α-equivalence. Lemma 3.2.13 formalises the intuition that

α-renaming a term twice is precisely equivalent to performing a single composite renaming.

Lemma 3.2.13: π·(π′·r) ≡ (π◦π′)·r

Proof. By induction on depth(r).

• The case a. By Definition 3.2.4 we have π·(π′·a) ≡ π·π′(a). By Definition 3.2.4 we have

π·π′(a) ≡ π(π′(a)). It is a fact that π(π′(a)) ≡ (π◦π′)(a). By Definition 3.2.4 we have

(π◦π′)(a) ≡ (π◦π′)·a. The result follows.

• The case c. By Definition 3.2.4 we have π·(π′·c) ≡ c. By Definition 3.2.4 we have (π◦π′)·
c ≡ c. The result follows.

• The case π′′·X. By Definition 3.2.4 we have π·(π′·(π′′·X)) ≡ π·((π′◦π′′)·X). Defini-

tion 3.2.4 we have π·((π′◦π′′)·X) ≡ (π◦(π′◦π′′))·X. It is a fact that (π◦(π′◦π′′))·X ≡
((π◦π′)◦π′′)·X. By Definition 3.2.4 we have ((π◦π′)◦π′′)·X ≡ (π◦π′)·(π′′·X). The result

follows.

• The case rs. By Definition 3.2.4 we have π·(π′·rs) ≡ π·((π′·r)(π′·s)). By Definition 3.2.4

we have π·((π′·r)(π′·s)) ≡ (π·(π′·r))(π·(π′·s)). By inductive hypothesis (π·(π′·r))(π·(π′·
s)) ≡ ((π◦π′)·r)((π◦π′)·s). By Definition 3.2.4 we have ((π◦π′)·r)((π◦π′)·s) ≡ (π◦π′)·rs.
The result follows.

3Of course, ‘identity instantiations’ are not unique; [X:=id·X] and [Y :=id·Y] both act like the identity.

3. THE TWO-LEVEL λ-CALCULUS 42

• The case λa.r. By Definition 3.2.4 we have π·(π′·λa.r) ≡ π·(λπ′(a).(π′·r)). Definition 3.2.4

we have π·(λπ′(a).(π′·r)) ≡ λπ(π′(a)).(π·(π′·r)). By inductive hypothesis λπ(π′(a)).(π·(π′·
r)) ≡ λπ(π′(a)).((π◦π′)·r). It is a fact that λπ(π′(a)).((π◦π′)·r) ≡ λ(π◦π′)(a).((π◦π′)·r).
By Definition 3.2.4 we have λ(π◦π′)(a).((π◦π′)·r) ≡ (π◦π′)·λa.r. The result follows.

• The case λX.r. First, we note (π◦π′)-1 = π′-1◦π-1. By Definition 3.2.4 we have π·(π′·λX.
r) ≡ π·λX.(π′·r[X:=π′-1·X]). By Definition 3.2.4 we have π·λX.(π′·r[X:=π′-1·X]) ≡ λX.

(π·(π′·r)[X:=π′-1·X][X:=π-1·X]). By Lemma 3.2.10 we have λX.(π·(π′·r)[X:=π′-1·X][X:=

π-1·X]) ≡ λX.(π·(π′·r)[X:=(π′-1◦π-1)·X]). By inductive hypothesis and Lemma 3.2.8 we

have λX.(π·(π′·r)[X:=(π′-1◦π-1)·X]) ≡ λX.((π◦π′)·r[X:=(π′-1◦π-1)·X]). It is a fact that

λX.((π◦π′)·r[X:=(π′-1◦π-1)·X]) ≡ λX.((π◦π′)·r[X:=(π◦π′)-1·X]). By Definition 3.2.4 we

have λX.((π◦π′)·r[X:=(π◦π′)-1·X]) ≡ (π◦π′)·λX.r. The result follows.

4

Lemma 3.2.14: If Y 6∈ fV (r) then r[Y :=s] ≡ r.

Proof. By induction on r.

• The case a. By Definition 3.2.4 we have a[X:=t] ≡ a. The result follows.

• The case c. By Definition 3.2.4 we have c[X:=t] ≡ c. The result follows.

• The case π·Y . By Definition 3.2.4 we have (π·Y)[X:=t] ≡ π·Y . The result follows.

• The case rs. Suppose Z 6∈ fV (rs). By Definition 3.2.3 we have Z 6∈ fV (r) ∪ fV (s),

therefore Z 6∈ fV (r) and Z 6∈ fV (s). By Definition 3.2.4 we have (rs)[Z:=t] ≡ (r[Z:=

t])(s[Z:=t]). By inductive hypothesis (r[Z:=t])(s[Z:=t]) ≡ rs. The result follows.

• The case λa.r. Suppose Y 6∈ fV (λa.r). By Definition 3.2.3 we have X 6∈ fV (r). By

Definition 3.2.4 we have (λa.r)[Y :=s] ≡ λa.(r[Y :=s]). By inductive hypothesis λa.(r[Y :=

s]) ≡ λa.r. The result follows.

• The case λX.r. By Definition 3.2.4 we have (λX.r)[X:=r] ≡ λX.r. The result follows.

• The case λY.s. Suppose X 6∈ fV (λY.s), and Y 6∈ fV (r), which can be guaranteed by

renaming. By Definition 3.2.3 we have X 6∈ fV (s) \ {Y }, therefore X 6∈ fV (s). By

Definition 3.2.4 we have (λY.s)[X:=r] ≡ λY.(s[X:=r]). By inductive hypothesis λY.(s[X:=

r]) ≡ λY.s. The result follows.

4

Lemma 3.2.15: If Y 6∈ fV (t) then r[Y :=s][Z:=t] ≡ r[Z:=t][Y :=s[Z:=t]].

Proof. By induction on r.

• The case a. By Definition 3.2.4 we have a[Y :=s][X:=t] ≡ a. By Definition 3.2.4 we have

a[Z:=t][Y :=s[Z:=t]] ≡ a. The result follows.

• The case c. By Definition 3.2.4 we have c[Y :=s][X:=t] ≡ c. By Definition 3.2.4 we have

c[Z:=t][Y :=s[Z:=t]] ≡ c. The result follows.

• The case π·X. By Definition 3.2.4 we have (π·X)[Y :=s][Z:=t] ≡ (π·X)[Z:=t]. By Defi-

nition 3.2.4 we have (π·X)[Z:=t] ≡ π·X. By Definition 3.2.4 we have π·X ≡ (π·X)[Y :=

s[Z:=t]]. By Definition 3.2.4 we have (π·X)[Y :=s[Z:=t]] ≡ (π·X)[Z:=t][Y :=s[Z:=t]]. The

result follows.

3. THE TWO-LEVEL λ-CALCULUS 43

• The case π·Y . By Definition 3.2.4 we have (π·Y)[Y :=s][Z:=t] ≡ (π·s)[Z:=t]. By Defini-

tion 3.2.4 we have (π·s)[Z:=t] ≡ (π·Y)[Y :=s[Z:=t]]). By Definition 3.2.4 and the fact that

Y 6∈ fV (t) we have (π·Y)[Y :=s[Z:=t]]) ≡ (π·Y)[Z:=t][Y :=s[Z:=t]]. The result follows.

• The case π·Z. By Definition 3.2.4 we have (π·Z)[Y :=s][Z:=t] ≡ (π·Z)[Z:=t]. By Defini-

tion 3.2.4 we have (π·Z)[Z:=t] ≡ π·t. By Lemma 3.2.14 and the fact that Y 6∈ fV (t) we

have π·t ≡ (π·t)[Y :=s[Z:=t]]. By Definition 3.2.4 and the fact that Y 6∈ fV (t) we have (π·
t)[Y :=s[Z:=t]] ≡ (π·Z)[Z:=t][Y :=s[Z:=t]]. The result follows.

• The case rs. By Definition 3.2.4 we have (rs)[Y :=s][Z:=t] ≡ ((r[Y :=s])(s[Y :=s]))[Z:=t].

By Definition 3.2.4 we have ((r[Y :=s])(s[Y :=s]))[Z:=t] ≡ (r[Y :=s][Z:=t])(s[Y :=s][Z:=t]).

By inductive hypothesis (r[Y :=s][Z:=t])(s[Y :=s][Z:=t]) ≡ (r[Z:=t][Y :=s[Z:=t]])(s[Z:=

t][Y :=s[Z:=t]]). By Definition 3.2.4 we have (r[Z:=t][Y :=s[Z:=t]])(s[Z:=t][Y :=s[Z:=t]]) ≡
((r[Z:=t])(s[Z:=t]))[Y :=s[Z:=t]]. By Definition 3.2.4 we have ((r[Z:=t])(s[Z:=t]))[Y :=

s[Z:=t]] ≡ (rs)[Z:=t][Y :=s[Z:=t]]. The result follows.

• The case λa.r. By Definition 3.2.4 we have (λa.r)[Y :=s][Z:=t] ≡ (λa.(r[Y :=s]))[Z:=t].

By Definition 3.2.4 we have (λa.(r[Y :=s]))[Z:=t] ≡ λa.(r[Y :=s][Z:=t]). By inductive

hypothesis λa.(r[Y :=s][Z:=t]) ≡ λa.(r[Z:=t][Y :=s[Z:=t]]). By Definition 3.2.4 we have

λa.(r[Z:=t][Y :=s[Z:=t]]) ≡ (λa.(r[Z:=t]))[Y :=s[Z:=t]]. By Definition 3.2.4 we have (λa.

(r[Z:=t]))[Y :=s[Z:=t]] ≡ (λa.r)[Z:=t][Y :=s[Z:=t]]. The result follows.

• The case λX.r. By Definition 3.2.4 we have (λX.r)[Y :=s][Z:=t] ≡ (λX.r[Y :=s])[Z:=

t]. By Definition 3.2.4 we have (λX.r[Y :=s])[Z:=t] ≡ λX.(r[Y :=s][Z:=t]). By inductive

hypothesis λX.(r[Y :=s][Z:=t]) ≡ λX.(r[Z:=t][Y :=s[Z:=t]]). By Definition 3.2.4 we have

λX.(r[Z:=t][Y :=s[Z:=t]]) ≡ λX.(r[Z:=t])[Y :=s[Z:=t]]. By Definition 3.2.4 we have λX.

(r[Z:=t])[Y :=s[Z:=t]] ≡ (λX.r)[Z:=t][Y :=s[Z:=t]]. The result follows.

• The case λY.s. By Definition 3.2.4 we have (λY.s)[Y :=s][Z:=t] ≡ (λY.(s)[Z:=t]. By

Definition 3.2.4 we have (λY.(s)[Z:=t] ≡ λY.(s[Z:=t]). By Definition 3.2.4 we have λY.

(s[Z:=t]) ≡ λY.(s[Z:=t])[Y :=s[Z:=t]]. By Definition 3.2.4 we have λY.(s[Z:=t])[Y :=s[Z:=

t]] ≡ λY.(s)[Z:=t][Y :=s[Z:=t]]. The result follows.

• The case λZ.t. By Definition 3.2.4 we have (λZ.t)[Y :=s][Z:=t] ≡ (λZ.(t[Y :=s])[Z:=t]. By

Definition 3.2.4 we have (λZ.(t[Y :=s])[Z:=t] ≡ λZ.(t[Y :=s]). By Definition 3.2.4 we have

λZ.(t[Y :=s]) ≡ (λZ.t)[Y :=s]. By Definition 3.2.4 we have (λZ.t)[Y :=s] ≡ (λZ.t)[Z:=t[Y :=

s]][Y :=s]. The result follows.

4

Lemma 3.2.16, that the permutation and instantiation actions commute, is another result

that will be used extensively throughout the rest of the Chapter. Lemma 3.2.16 makes formal the

intuition that the order that one chooses to α-rename a bound level one variable, or instantiate

an unknown, is irrelevant.

Lemma 3.2.16: (π·r)[Y :=s] ≡ π·(r[Y :=s])

Proof. By induction on depth(r).

• The case a. By Definition 3.2.4 we have π·(a[Y :=s]) ≡ π·a. By Definition 3.2.4 we have

π·a ≡ π(a). By Definition 3.2.4 we have π(a) ≡ π(a)[Y :=s]. By Definition 3.2.4 we have

π(a)[Y :=s] ≡ (π·a)[Y :=s]. The result follows.

3. THE TWO-LEVEL λ-CALCULUS 44

• The case c. By Definition 3.2.4 we have π·(c[Y :=s]) ≡ π·c. By Definition 3.2.4 we have π·
c ≡ c. By Definition 3.2.4 we have c ≡ c[Y :=s]. By Definition 3.2.4 we have c[Y :=s] ≡ (π·
c)[Y :=s]. The result follows.

• The case π′·X. By Definition 3.2.4 we have π·((π′·X)[Y :=s]) ≡ π·(π′·X). By Defini-

tion 3.2.4 we have π·(π′·X) ≡ (π◦π′)·X. By Definition 3.2.4 we have (π◦π′)·X ≡ ((π◦π′)·
X)[Y :=s]. By Definition 3.2.4 we have ((π◦π′)·X)[Y :=s] ≡ (π·(π′·X))[Y :=s]. The result

follows.

• The case π′·Y . By Lemma 3.2.13 we have (π·(π′·Y))[Y :=s] ≡ ((π◦π′)·Y)[Y :=s]. By

Definition 3.2.4 we have ((π◦π′)·Y)[Y :=s] ≡ (π◦π′)·s. By Lemma 3.2.13 we have (π◦π′)·
s ≡ π·(π′·s). By Definition 3.2.4 we have π·(π′·s) ≡ π·((π′·Y)[Y :=s]). The result follows.

• The case rs. By Definition 3.2.4 we have (π·rs)[Z:=t] ≡ ((π·r)(π·s))[Z:=t]. By Defini-

tion 3.2.4 we have ((π·r)(π·s))[Z:=t] ≡ ((π·r)[Z:=t])((π·s)[Z:=t]). By inductive hypothesis

((π·r)[Z:=t])((π·s)[Z:=t]) ≡ (π·(r[Z:=t]))(π·(s[Z:=t])). By Definition 3.2.4 we have (π·
(r[Z:=t]))(π·(s[Z:=t])) ≡ π·((r[Z:=t])(s[Z:=t])). By Definition 3.2.4 we have π·((r[Z:=

t])(s[Z:=t])) ≡ π·((rs)[Z:=t]). The result follows.

• The case λa.r. By Definition 3.2.4 we have (π·λa.r)[Y :=s] ≡ (λπ(a).(π·r))[Y :=s]. By Def-

inition 3.2.4 we have (λπ(a).(π·r))[Y :=s] ≡ λπ(a).((π·r)[Y :=s]). By inductive hypothesis

λπ(a).((π·r)[Y :=s]) ≡ λπ(a).(π·(r[Y :=s])). By Definition 3.2.4 we have λπ(a).(π·(r[Y :=

s])) ≡ π·(λa.(r[Y :=s])). By Definition 3.2.4 we have π·(λa.(r[Y :=s])) ≡ π·((λa.r)[Y :=s]).

The result follows.

• The case λX.r. Suppose X 6∈ fV (s), which can be guaranteed by renaming. By Defi-

nition 3.2.4 we have (π·λX.r)[Y :=s] ≡ (λX.(π·r[X:=π-1·X]))[Y :=s]. By Definition 3.2.4

we have (λX.(π·r[X:=π-1·X]))[Y :=s] ≡ (λX.(π·r[X:=π-1·X][Y :=s])). By Lemma 3.2.15

we have (λX.(π·r[X:=π-1·X][Y :=s])) ≡ λX.(π·r[Y :=s][X:=π-1·X]). By Definition 3.2.4

we have λX.(π·r[Y :=s][X:=π-1·X]) ≡ π·(λX.r[Y :=s]). By Definition 3.2.4 we have π·(λX.
r[Y :=s]) ≡ π·((λX.r)[Y :=s]). The result follows.

• The case λY.s. By Definition 3.2.4 we have π·((λY.s)[Y :=s]) ≡ π·λY.s. By Definition 3.2.4

we have π·λY.s ≡ λY.((π·s)[Y :=π-1·Y]). By Definition 3.2.4 we have λY.((π·s)[Y :=π-1·
Y]) ≡ (λY.((π·s)[Y :=π-1·Y]))[Y :=s]. By Definition 3.2.4 we have (λY.((π·s)[Y :=π-1·Y]))[Y :=

s] ≡ (π·λY.s)[Y :=s]. The result follows.

4

3.3 The theory of derivable freshness

Derivable freshness is a generalisation of the ‘free variables’ of a term in the presence of nominal

unknowns, as unknowns behave like they have an infinite set of free atoms, that is, they may

be instantiated to any term. This Section introduces the theory of derivable freshness for

terms of the two-level λ-calculus. Definition 3.3.3 introduces the derivable freshness judgment.

Lemmas 3.3.8 and 3.3.9 are basic results regarding derivable freshness, used throughout the rest

of the Chapter, and may be considered the main results in this Section.

3. THE TWO-LEVEL λ-CALCULUS 45

(#b)
∆ ` a#b

(#c)
∆ ` a#c

(π-1(a)#X ∈ ∆)
(#X)

∆ ` a#π·X

∆ ` a#r ∆ ` a#s
(#rs)

∆ ` a#rs
(#λa)

∆ ` a#λa.r

∆ ` a#s
(#λb)

∆ ` a#λb.s

∆, a#X ` π(a)#π·r
(#λX)

∆ ` π(a)#π·(λX.r)

Figure 3.2 Derivable freshness rules

Definition 3.3.1: A freshness is a pair of the form a#r. We call a pair a#X (where r ≡ X)

a primitive freshness.

Definition 3.3.2: Call a finite set of primitive freshnesses a freshness context. ∆,∆′,∆′′,

and so on, will range over freshness contexts.

For typographical convenience, we drop set brackets, and write a#X, b#Y instead of {a#X, b#Y }
and write ∆, a#X instead of ∆ ∪ {a#X}.

Definition 3.3.3: Define a notion of derivable freshness using the rules in Figure 3.2.

We may write ∆ ` a#r as a shorthand for ‘∆ ` a#r is derivable’. Write ∆ 6` a#r as a

shorthand for ‘∆ ` a#r is not derivable’.

Freshness is a generalisation of ‘the free variables of’ relation familiar from the λ-calculus,

applied to nominal terms. This generalisation is necessary as nominal unknowns X behave as

if they have an infinite set of free atoms, due to the possibility of their instantiation with any

term.

Note, also, that the freshness relation of Definition 3.3.3 is a ‘positive’ statement, compared

to the ‘negativity’ of the usual ‘free variables of’ relation. That is, freshness asserts something

positive: ∆ ` a#r states that a is fresh for r, whereas a 6∈ fv(r) states that a is not in the

free variables of a term r. This difference, once again, can be explained by looking at nominal

unknowns: we need to hypothesise the freshness of individual atoms with respect to unknowns

in a freshness context ∆. This is why (#X) in Definition 3.3.3 is necessary.

The only other freshness derivation rule of note is (#λX). This is essentially in the form

that it is to make Lemma 3.3.9 work.

Definition 3.3.4: An instantiation θ is a finitely supported map from level two variables to

terms. (In this context, finitely supported means that the set {X | θ(X) 6≡ id·X} is finite.)

Instantiations act on terms rθ in the natural way, extending the instantiation action of

Definition 3.2.4.

Definition 3.3.5: Define the range of an instantiation by:

rng(θ) =
⋃
{fV (θ(X)) | for every X such that θ(X) 6≡ id·X }

3. THE TWO-LEVEL λ-CALCULUS 46

Definition 3.3.6: Define a pointwise instantiation action on freshness contexts by:

∆θ = {a#θ(X) | a#X ∈ ∆}

Definition 3.3.7: Suppose F is a finite set of freshnesses. Write ∆ ` F whenever ∆ ` a#r

for all a#r ∈ F .

Lemma 3.3.8 intuitively states that derivable freshness is invariant under instantiation.

Lemma 3.3.8: If ∆′ ` ∆θ then if ∆ ` a#r then ∆′ ` a#(rθ).

Proof. By induction on the derivation of ∆ ` a#r.

• The case (#b). By Definition 3.2.4 we have bθ ≡ b. The result follows.

• The case (#c). By Definition 3.2.4 we have cθ ≡ c. The result follows.

• The case (#X). Suppose π-1(a)#X ∈ ∆, therefore ∆ ` a#π·X. It is a fact that

π-1(a)#Xθ ∈ ∆θ therefore ∆θ ` a#π·(Xθ). By Lemma 3.2.16 we have ∆θ ` a#(π·
X)θ. The result follows.

• The case (#rs). Suppose ∆ ` a#r and ∆ ` a#s. By inductive hypotheses ∆θ ` a#rθ

and ∆θ ` a#sθ. Using (#rs) we obtain ∆θ ` a#(rθ)(sθ). By Definition 3.2.4 we have

(rθ)(sθ) ≡ (rs)θ. The result follows.

• The case (#λa). By Definition 3.2.4 we have (λa.r)θ ≡ λa.(rθ). Using (#λa) we obtain

∆θ ` a#λa.(rθ). The result follows.

• The case (#λb). Suppose ∆ ` a#s. By inductive hypothesis ∆θ ` a#sθ. Using (#λa) we

obtain ∆θ ` a#λb.(sθ). By Definition 3.2.4 we have λb.(sθ) ≡ (λb.s)θ. The result follows.

• The case (#λX). Suppose ∆ ` a#λX.r and suppose X 6∈ rng(θ), which can be guaranteed

by renaming. It is a fact that ∆, a#X ` a#r. By inductive hypothesis ∆′, a#Xθ ` a#rθ.

By assumption X 6∈ rng(θ) therefore ∆′, a#X ` rθ. Using (#λX) we obtain ∆′ ` a#λX.

(rθ). By Definition 3.2.4 we have λX.(rθ) ≡ (λX.r)θ. The result follows.

4

Lemma 3.3.9 is a basic equivariance result for derivable freshness.

Lemma 3.3.9: If ∆ ` a#r then ∆ ` π(a)#π·r.

Proof. By induction on the derivation of ∆ ` a#r.

• The case (#b). By Definition 3.2.4 we have π·b ≡ π(b). Using (#b) we obtain ∆ `
π(a)#π(b). The result follows.

• The case (#c). By Definition 3.2.4 we have π·c ≡ c. Using (#c) we obtain ∆ ` π(a)#c.

The result follows.

• The case (#X). Suppose a#X ∈ ∆. It is a fact that (π◦π′)-1(π(a))#X ∈ ∆. Using (#X)

we obtain ∆ ` π(a)#(π◦π′)·X. By Definition 3.2.4 we have (π◦π′)·X ≡ π·(π′·X). The

result follows.

3. THE TWO-LEVEL λ-CALCULUS 47

• The case (#rs). Suppose ∆ ` a#r and ∆ ` a#s. By inductive hypotheses ∆ ` π(a)#π·r
and ∆ ` π(a)#π·s. Using (#rs) we obtain ∆ ` π(a)#((π·r)(π·s)). By Definition 3.2.4 we

have ((π·r)(π·s)) ≡ π·rs. The result follows.

• The case (#λa). Using (#λa) we obtain ∆ ` π(a)#λπ(a).(π·r). By Definition 3.2.4 we

have λπ(a).(π·r) ≡ π·λa.r. The result follows.

• The case (#λb). Suppose ∆ ` a#s. By inductive hypothesis ∆ ` π(a)#π·s. Using (#λb)

we obtain ∆ ` π(a)#λπ(b).(π·s). By Definition 3.2.4 we have λπ(b).(π·s) ≡ π·λb.s. The

result follows.

• The case (#λX). Suppose ∆, a#X ` π′(a)#π′·r. By inductive hypothesis ∆, a#X `
π(π′(a))#π·(π′·r). By Lemma 3.2.13 we have ∆, a#X ` (π◦π′)·a#(π◦π′)·r. Using (#λX)

we obtain ∆ ` (π◦π′)·a#(π◦π′)·λX.r. By Lemma 3.2.13 we have ∆ ` π(π′(a))#π·(π′·λX.
r). The result follows.

4

Derivable freshness is invariant under freshness context weakening. Lemma 3.3.10 makes this

formal.

Lemma 3.3.10: If ∆ ` a#r and Y 6∈ ∆ then ∆, b#Y ` a#r.

Proof. By induction on the derivation of ∆ ` a#r. See Appendix A. 4

3.4 Reductions and confluence

In this Section, we prove various soundness and correctness results of the calculus, centering on

a reduction relation defined in Definition 3.4.3. The main result of this Section is a proof that

the reduction relation of Definition 3.4.3 is confluent (Theorem 3.4.42 in Subsection 3.4.1).

Lemma 3.4.4 is ‘subject reduction for freshness’, stating that reduction preserves the freshness

of a term. Lemma 3.4.5 states that reduction is invariant under instantiation. Lemma 3.4.8 states

that the reduction relation is equivariant. The confluence proof is split across three Subsections,

corresponding to a division of the reduction rules into ‘level one’ and ‘level two’ reductions.

Subsection 3.4.1 handles the confluence of level one reductions. Subsection 3.4.2 handles the

confluence of level two reductions. Finally, Subsection 3.4.3 handles the confluence of level one

and level two reductions together by stitching the two preceeding confluence proofs into a single

confluence result.

Definition 3.4.1: Define the level of a term by the following rules:

level(a) = 1 level(c) = 1 level(π·X) = 2

level(rs) = max(level(r), level(s)) level(λa.r) = level(r) level(λX.r) = 2

Definition 3.4.1 is used in the definition of the reduction relation (Definition 3.4.3). Intu-

itively, if a term r mentions a variable of level two, then level(r) = 2, otherwise level(r) = 1.

For instance, level(λX.X) = 2, level(λX.a) = 2 and level(λa.a) = 1.

3. THE TWO-LEVEL λ-CALCULUS 48

∆ ` r . s
(.λa)

∆ ` λa.r . λa.s

∆ ` r . t
(.rs1)

∆ ` rs . ts

∆ ` s . t
(.rs2)

∆ ` rs . rt

∆ ` r . s (X 6∈ ∆)
(.λX)

∆ ` λX.r . λX.s

∆ ` r . s ∆ ` a#r ∆ ` b#r
(.α)

∆ ` (b a)·r . s

(→a)
∆ ` a[a7→t]→ t

∆ ` a#r
(→#)

∆ ` r[a 7→t]→ r

∆ ` a#s
(→rs1)

∆ ` (rs)[a7→t]→ (r[a7→t])s

(level(r) = 1)
(→rs2)

∆ ` (rs)[a7→t]→ (r[a7→t])(s[a7→t])

∆ ` b#t
(→λb)

∆ ` (λb.s)[a 7→t]→ λb.(s[a7→t])

(X 6∈ fV (t))
(→λX)

∆ ` (λX.r)[a7→t]→ λX.(r[a7→t])
(→β)

∆ ` (λX.r)t→ r[X:=t]

(⇒a)
∆ ` a⇒ a

(⇒X)
∆ ` π·X ⇒ π·X

(⇒c)
∆ ` c⇒ c

∆ ` r ⇒ t ∆ ` s⇒ u
(⇒rs)

∆ ` rs⇒ tu

∆ ` r ⇒ s
(⇒λa)

∆ ` λa.r ⇒ λa.s

∆ ` r ⇒ s
(⇒λX)

∆ ` λX.r ⇒ λX.s

∆ ` r ⇒ t ∆ ` s⇒ u ∆ ` tu (level2)→ v
(⇒ε)

∆ ` rs⇒ v

∆ ` r ⇒ s ∆ ` a#r ∆ ` b#r
(⇒α)

∆ ` (b a)·r ⇒ s

Figure 3.3 Congruence, reduction and parallel reduction rules

3. THE TWO-LEVEL λ-CALCULUS 49

Definition 3.4.2: Write ∆ ` −.− for a binary relation on terms, parameterised by a freshness

context, ∆. Call a relation . a congruence when it is closed under the congruence rules in

Figure 3.3.

Definition 3.4.2 intuitively will allow us to reduce, when applicable, at any point inside a

term. Our notion of congruence also incorporates a notion of α-renaming with (.α). This is a

design decision; we could easily have defined an independent notion of α-equivalence.

Definition 3.4.3: Let ∆ ` r → s be the least congruence closed under the reduction rules in

Figure 3.3.

Recall that r[a7→t] is sugar for (λa.r)t. In rule (→β) level 2 β-reduction occurs in one

step using [X:=t]. The rest of the rules are implementing a multi-step reduction for level 1 β-

reduction, in the style of a calculus of explicit substitutions (though we do not put the explicit

substitution in as a distinct syntactic form).

This is a design decision. A one-step substitution action [a:=t] can indeed be defined (see

Definition 3.4.12); it could also be used in Figure 3.3. We do not do this because level 1 reduction

is more complex due to the presence of level 2 variables X, so it is convenient to treat it one

small step at a time.

The rules (rs1) and (rs2) in Definition 3.4.3 have particularly interesting side-conditions.

To understand why they are there, consider adding the following faulty reduction rule:

∆ ` (rs)[a7→t] (BAD)→ (r[a7→t])(s[a7→t])

Then we have the following divergent reduction paths:

∆ ` ((λX.((b a)·X))b)[b 7→c] (→β)→ (((b a)·X)[X:=b])[b7→c]
≡ a[b 7→c]

(→#)→ a

∆ ` ((λX.((b a)·X))b)[b 7→c] (BAD)→ ((λX.((b a)·X)[b 7→c])(b[b 7→c])
(→λX)→ (λX.(((b a)·X)[b 7→c]))(b[b7→c])
(→a)→ (λX.(((b a)·X)[b 7→c]))c
(→β)→ (((b a)·X)[b 7→c])[X:=c]

≡ (c[b7→c])
(→#)→ c

Where a and c are unjoinable. Therefore it is clear that some side-condition on (BAD) must

be imposed.

To close a divergence in ((λX.r)t)[b 7→u] between (→β) and (BAD) we must join r[X:=

t][b 7→u] and r[b 7→u][X:=t[b 7→u]] where X 6∈ fV (u) and X 6∈ fV (t), in a freshness context such

that ∆ ` b#u. It is not possible to close this divergence in general: take r ≡ (b a)·X, t ≡ a and

u ≡ c. However, it is possible to close this divergence if level(r) = 1 or if ∆ ` b#t—motivating

the side-conditions we see on (rs1) and (rs2) of Definition 3.4.3.

Lemma 3.4.4 is our first correctness result, stating that freshness is preserved by the reduction

relation. Intuitively, the lemma states that reduction does not create any new atoms, and

corresponds to the fact that reduction in the λ-calculus reduces the free variables of a term.

3. THE TWO-LEVEL λ-CALCULUS 50

Lemma 3.4.4: If ∆ ` a#r and ∆ ` r → s then ∆ ` a#s.

Proof. By induction on the derivation of ∆ ` r → s.

• The case (→a). Suppose ∆ ` b[b 7→u] → u and suppose ∆ ` a#b[b 7→u]. By definition

b[b7→u] ≡ (λb.b)u therefore ∆ ` a#λb.b and ∆ ` a#u. The result follows.

• The case (→#). There are two cases:

• The case r[a7→t]. Suppose ∆ ` r[a7→t] → r and ∆ ` a#r and ∆ ` a#r[a7→t]. The

result follows by assumption.

• The case r[b 7→u]. Suppose ∆ ` r[b7→u] → r and ∆ ` a#r and ∆ ` a#r[b7→u]. By

definition r[b 7→u] ≡ (λb.r)u therefore ∆ ` a#λb.r, therefore ∆ ` a#r. The result

follows.

• The case (→rs1). There are two cases:

• The case (rs)[a7→t]. Suppose ∆ ` a#s so that ∆ ` (rs)[a7→t] → (r[a7→t])s and

∆ ` a#(rs)[a 7→t]. By definition (rs)[a7→t] ≡ (λa.(rs))t therefore ∆ ` a#t. The result

follows.

• The case (rs)[b 7→u]. Suppose ∆ ` b#s so that ∆ ` (rs)[b7→u] → (r[b7→u])s and

∆ ` a#(rs)[b7→u]. By definition (rs)[b7→u] ≡ (λb.(rs))u therefore ∆ ` a#r, ∆ ` a#s

and ∆ ` a#u. The result follows.

• The case (→rs2). Suppose level(r) = 1. There are two cases:

• The case (rs)[a7→t]. Suppose ∆ ` (rs)[a7→t]→ (r[a7→t])(s[a7→t]) and ∆ ` a#(rs)[a7→
t]. By definition (rs)[a 7→t] ≡ (λa.(rs))t therefore ∆ ` a#t. The result follows.

• The case (rs)[b 7→u]. Suppose ∆ ` (rs)[b 7→u]→ (r[b7→u])(s[b7→u]) and ∆ ` a#(rs)[b 7→
u]. By definition (rs)[b7→u] ≡ (λb.(rs))u therefore ∆ ` a#r, ∆ ` a#s and ∆ ` a#u.

The result follows.

• The case (→λb). There are two cases:

• The case (λb.s)[a7→t]. Suppose ∆ ` b#t so that ∆ ` (λb.s)[a7→t] → λb.(s[a7→t]). By

definition (λb.s)[a 7→t] ≡ (λa.(λb.s))t, therefore ∆ ` a#t. The result follows.

• The case (λb.s)[c7→u]. Suppose ∆ ` b#u so that ∆ ` (λb.s)[c7→u]→ λb.(s[c 7→u]). By

definition (λb.s)[c 7→u] ≡ (λc.(λb.s))u, therefore ∆ ` a#s and ∆ ` a#u. The result

follows.

• The case (→β). Suppose ∆ ` a#(λX.r)t so ∆ ` a#t and ∆, a#X ` a#r. By Lemma 3.3.8

we have ∆ ` a#r[X:=t]. The result follows.

• The case (→λX). There are two cases:

• The case (λX.r)[a 7→t]. Suppose ∆ ` a#(λX.r)[a7→t] therefore ∆ ` a#t. Suppose

also that X 6∈ fV (t), which can be guaranteed, so that ∆ ` (λX.r)[a7→t]→ λX.(r[a7→
t]). By definition λX.(r[a7→t]) ≡ λX.((λa.r)t). Using (#λX) we have ∆ ` a#λX.

((λa.r)t) whenever ∆, a#X ` a#(λa.r)t. By assumption and Lemma 3.3.10 we have

∆, a#X ` a#t. The result follows.

• The case (λX.r)[b 7→u]. Suppose ∆ ` a#(λX.r)[b 7→u] so that ∆, a#X ` a#r and

∆ ` a#u. Suppose also that X 6∈ fV (u), which can be guaranteed, so that ∆ ` (λX.

r)[b 7→u] → λX.(r[b 7→u]). By definition λX.(r[b 7→u]) ≡ λX.((λb.r)u). Using (#λX)

3. THE TWO-LEVEL λ-CALCULUS 51

we have ∆ ` a#λX.((λb.r)u) whenever ∆, a#X ` a#r and ∆ ` a#u. By assumption

and Lemma 3.3.10 we have ∆, a#X ` a#r and ∆ ` a#u. The result follows.

• The case (.λa). There are two cases:

• The case λa.r. Since ∆ ` a#λa.r always.

• The case λb.s. Suppose ∆ ` a#λb.s therefore ∆ ` a#s. Suppose also that ∆ ` s→ t

therefore ∆ ` a#s implies ∆ ` a#t by inductive hypothesis. Then ∆ ` a#λb.t. The

result follows.

• The case (.rs1). Suppose ∆ ` a#rs therefore ∆ ` a#r and ∆ ` a#s. Suppose also that

∆ ` r → t therefore ∆ ` a#r implies ∆ ` a#t by inductive hypothesis. Then ∆ ` a#ts.

The result follows.

• The case (.rs2). Suppose ∆ ` a#rs therefore ∆ ` a#r and ∆ ` a#s. Suppose also that

∆ ` s → t therefore ∆ ` a#s implies ∆ ` a#t by inductive hypothesis. Then ∆ ` a#rt.

The result follows.

• The case (.λX). Suppose ∆ ` a#λX.r therefore ∆, a#X ` a#r. Suppose also that ∆ `
a#r implies ∆ ` a#s by inductive hypothesis. By Lemma 3.3.10 we have ∆, a#X ` a#r

implies ∆, a#X ` a#s, therefore ∆ ` a#λX.s. The result follows.

• The case (.α). Suppose ∆ ` r → s so that ∆ ` c#r implies ∆ ` c#s by inductive

hypothesis. Suppose also that ∆ ` a#s and ∆ ` b#s. Suppose ∆ ` c#r, therefore

∆ ` c#s. By Lemma 3.3.9 we have ∆ ` c#(b a)·s. The result follows.

4

We have already noted that for any term r not mentioning a variable of level two we have

level(r) = 1 by Definition 3.4.1. The following result therefore encodes common sense. As

there are no variables of level two present within the term to instantiate, there is therefore no

opportunity to increase the level of the term.

Lemma 3.4.5: If level(r) = 1 then level(rθ) = 1.

Proof. By induction on r. See Appendix A. 4

Lemma 3.4.6 is our second correctness result, stating that reduction is invariant under instanti-

ation.

Lemma 3.4.6: If ∆′ ` ∆θ and ∆ ` r → s then ∆′ ` rθ → sθ.

Proof. By induction on the derivation of ∆ ` r → s.

• The case (→a). Suppose ∆ ` a[a 7→t] → t. By definition, a[a 7→t] ≡ (λa.a)t and therefore

(a[a7→t])θ ≡ a[a7→tθ]. Using (→a) we obtain ∆′ ` a[a 7→tθ]→ tθ. The result follows.

• The case (→#). Suppose ∆ ` a#r therefore ∆ ` r[a7→t]→ r. By definition r[a7→t] ≡ (λa.

r)t therefore (r[a7→t])θ ≡ rθ[a 7→tθ]. By Lemma 3.3.8 we have ∆′ ` a#rθ. Using (→#) we

obtain ∆′ ` (rθ)[a7→tθ]→ rθ. The result follows.

3. THE TWO-LEVEL λ-CALCULUS 52

• The case (→rs1). Suppose ∆ ` a#s therefore ∆ ` (rs)[a 7→t]→ (r[a7→t])s. By Lemma 3.3.8

we have ∆′ ` a#sθ. By definition (rs)[a7→t] ≡ (λa.rs)t therefore ((rs)[a 7→t])θ ≡ ((rθ)(sθ))[a7→
tθ]. Using (→rs1) we obtain ∆′ ` ((rθ)(sθ))[a 7→tθ] → ((rθ)[a7→tθ])(sθ). As ((rθ)[a7→
tθ])(sθ) ≡ ((r[a 7→t])s)θ, the result follows.

• The case (→rs2). Suppose level(r) = 1 therefore ∆ ` (rs)[a7→t]→ (r[a7→t])(s[a7→t]). By

Lemma 3.4.5 we have level(rθ) = 1. By definition (rs)[a7→t] ≡ (λa.rs)t therefore ((rs)[a7→
t])θ ≡ ((rθ)(sθ))[a7→tθ]. Using (→rs2) we obtain ∆′ ` ((rθ)(sθ))[a 7→tθ] → ((rθ)[a7→
tθ])((sθ)[a 7→tθ]). As ((rθ)[a7→tθ])((sθ)[a7→tθ]) ≡ ((r[a7→t])(s[a7→t]))θ, the result follows.

• The case (→λb). Suppose ∆ ` b#t therefore ∆ ` (λb.s)[a7→t] → λb.(s[a7→t]). By

Lemma 3.3.8 we have ∆′ ` b#tθ. By definition (λb.s)[a7→t] ≡ (λa.(λb.s))t therefore ((λb.

s)[a7→t])θ ≡ (λb.(sθ))[a7→tθ]. Using (→λb) we obtain ∆′ ` (λb.(sθ))[a7→tθ]→ λb.((sθ)[a7→
tθ]). As λb.((sθ)[a7→tθ]) ≡ λb.(s[a 7→t])θ, the result follows.

• The case (→λX). Suppose X 6∈ rng(θ), which can be guaranteed by renaming. We have

((λX.r)[a 7→t])θ ≡ λX.(rθ)[a7→tθ]. Using (→λX) we obtain ∆′ ` λX.(rθ)[a7→tθ] → λX.

(rθ[a7→tθ]). As λX.(rθ[a7→tθ]) ≡ λX.(r[a7→t])θ, the result follows.

• The case (→β). Suppose X 6∈ rng(θ), which can be guaranteed by renaming. We have

((λX.r)t)θ ≡ (λX.(rθ))tθ. Using (→β) we obtain ∆′ ` (λX.(rθ))tθ → (rθ)[X:=tθ]. By

Lemma 3.2.15 we have (rθ)[X:=tθ] ≡ (r[X:=t])θ. The result follows.

• The case (.λa). Suppose ∆ ` r → s. By inductive hypothesis ∆′ ` rθ → sθ. Using (.λa)

we obtain ∆′ ` λa.(rθ)→ λa.(sθ). As λa.(rθ) ≡ (λa.r)θ, the result follows.

• The case (.rs1). Suppose ∆ ` r → t. By inductive hypothesis ∆′ ` rθ → tθ. Using

(.rs1) we obtain ∆′ ` (rθ)(sθ)→ (tθ)(sθ). As (rθ)(sθ) ≡ (rs)θ, the result follows.

• The case (.rs2). Suppose ∆ ` s→ t. By inductive hypothesis ∆′ ` sθ → tθ. Using (.rs2)

we obtain ∆′ ` (rθ)(sθ)→ (rθ)(tθ). As (rθ)(sθ) ≡ (rs)θ, the result follows.

• The case (.λX). Suppose ∆ ` r → s, X 6∈ ∆, and also X 6∈ rng(θ), picking fresh X

if necessary. By inductive hypothesis ∆′ ` rθ → sθ. Using (.λX) we obtain ∆′ ` λX.
(rθ)→ λX.(sθ). As λX.(rθ) ≡ (λX.r)θ, the result follows.

• The case (.α). Suppose ∆ ` r → s, ∆ ` a#r and ∆ ` b#r. By inductive hypothesis

∆′ ` rθ → sθ. By Lemma 3.3.8 we have ∆′ ` a#rθ and ∆′ ` b#rθ. Using (.α) we obtain

∆′ ` (b a)·rθ → sθ. By Lemma 3.2.16 we have ∆′ ` ((b a)·r)θ → sθ. The result follows.

4

Lemma 3.4.7 is a standard equivariance result for the level of a term, and used in the proof of

Lemma 3.4.8.

Lemma 3.4.7: level(r) = level(π·r)

Proof. By induction on r, using Lemma 3.2.13. See Appendix A. 4

Lemma 3.4.8 is our third correctness result, stating that the reduction relation is equivariant.

Lemma 3.4.8: If ∆ ` r → s then ∆ ` π·r → π·s.

3. THE TWO-LEVEL λ-CALCULUS 53

Proof. By induction on the derivation of ∆ ` r → s.

• The case (→a). Suppose ∆ ` a[a7→t] → t. By definition a[a7→t] ≡ (λa.a)t. By Defini-

tion 3.2.4 we have π·(a[a7→t]) ≡ π(a)[π(a) 7→π·t]. The result follows.

• The case (→#). Suppose ∆ ` a#r therefore ∆ ` r[a7→t]→ r. By definition r[a7→t] ≡ (λa.

r)t. By Definition 3.2.4 we have π·(r[a 7→t]) ≡ (π·r)[π(a)7→π·t]. By Lemma 3.3.9 we have

∆ ` π(a)#π·r. The result follows.

• The case (→rs1). Suppose ∆ ` a#s therefore ∆ ` (rs)[a 7→t]→ (r[a7→t])s. By definition

(rs)[a7→t] ≡ (λa.(rs))t. By Definition 3.2.4 we have π·((rs)[a7→t]) ≡ ((π·r)(π·s))[π(a)7→π·
t]. By Lemma 3.3.9 we have ∆ ` π(a)#π·s. The result follows.

• The case (→rs2). Suppose level(r) = 1 therefore ∆ ` (rs)[a7→t]→ (r[a 7→t])(s[a 7→t]). By

definition (rs)[a7→t] ≡ (λa.(rs))t. By Definition 3.2.4 we have π·((rs)[a7→t]) ≡ ((π·r)(π·
s))[π(a)7→π·t]. By Lemma 3.4.7 we have level(π·r) = 1. The result follows.

• The case (→λb). Suppose ∆ ` b#t therefore ∆ ` (λb.s)[a7→t] → λb.(s[a7→t]). By defini-

tion (λb.s)[a 7→t] ≡ (λa.(λb.s))t. By Definition 3.2.4 we have π·((λb.s)[a7→t]) ≡ (λπ(b).(π·
s))[π(a)7→(π·t)]. By Lemma 3.3.9 we have ∆ ` π(b)#π·t. The result follows.

• The case (→λX). Suppose X 6∈ fV (t), which can be guaranteed, therefore ∆ ` (λX.

r)[a7→t] → λX.(r[a7→t]). By definition (λX.r)[a7→t] ≡ (λa.(λX.r))t. By Definition 3.2.4

we have π·(λa.(λX.r))t ≡ λπ(a).(λX.(π·r[X:=π-1·X]))(π·t). By definition λπ(a).(λX.(π·
r[X:=π-1·X]))(π·t) ≡ λX.(π·r[X:=π-1·X])[π(a) 7→(π·t)]. Using (→λX) we obtain λX.(π·
r[X:=π-1·X][π(a)7→(π·t)]). By Lemma 3.2.6 we have X 6∈ fV (π·t) therefore λX.(π·r[X:=

π-1·X][π(a) 7→(π·t)]) ≡ λX.(π·r[X:=π-1·X][π(a)7→(π·t)[X:=π-1·X]]). It is a fact that λX.

(π·r[X:=π-1·X][π(a)7→(π·t)[X:=π-1·X]]) ≡ λX.(π·r[π(a)7→(π·t)][X:=π-1·X]). By Lemma 3.2.16

we have λX.(π·r[π(a)7→(π·t)][X:=π-1·X]) ≡ λX.((π·r)[π(a)7→(π·t)][X:=π-1·X]). By Defini-

tion 3.2.4 we have λX.((π·r)[π(a) 7→(π·t)][X:=π-1·X]) ≡ π·λX.(r[a7→t]). The result follows.

• The case (→β). Suppose ∆ ` (λX.r)t → r[X:=t]. By Definition 3.2.4 we have π·((λX.
r)t) ≡ (λX.(π·r[X:=π-1·X]))(π·t). By Lemma 3.2.16 we have (λX.((π·r)[X:=π-1·X]))(π·
t). Using (→β) we obtain (π·r)[X:=π-1·X][X:=π·t]. By Lemma 3.2.10 we have (π·r)[X:=

(π-1◦π)·t] therefore (π·r)[X:=t]. By Lemma 3.2.16 we have π·(r[X:=t]), as required.

• The case (.λa). Suppose ∆ ` r → s. By inductive hypothesis ∆ ` π·r → π·s. Using (.λa)

we obtain ∆ ` λπ(a).(π·r)→ λπ(a).(π·s). As λπ(a).(π·r) ≡ π·λa.r, the result follows.

• The case (.rs1). Suppose ∆ ` r → t. By inductive hypothesis ∆ ` π·r → π·t. Using

(.rs1) we obtain ∆ ` (π·r)(π·s)→ (π·t)(π·s). As (π·r)(π·s) ≡ π·rs, the result follows.

• The case (.rs2). Suppose ∆ ` s → u. By inductive hypothesis ∆ ` π·s → π·u. Using

(.rs2) we obtain ∆ ` (π·r)(π·s)→ (π·r)(π·u). As (π·r)(π·s) ≡ π·rs, the result follows.

• The case (.λX). Suppose ∆ ` r → s with X 6∈ ∆. By inductive hypothesis ∆ ` π·r → π·
s. By Lemma 3.4.6 we have ∆[X:=π-1·X] ` (π·r)[X:=π-1·X] → (π·s)[X:=π-1·X]. As

X 6∈ ∆ it is the case that ∆[X:=π-1·X] = ∆. By Lemma 3.2.16 we have ∆ ` π·r[X:=π-1·
X] → π·s[X:=π-1·X]. Using (.λX) we obtain ∆ ` λX.(π·r[X:=π-1·X]) → λX.(π·s[X:=

π-1·X]). As λX.(π·r[X:=π-1·X]) ≡ π·(λX.r), the result follows.

• The case (.α). Suppose ∆ ` r → s, ∆ ` a#r and ∆ ` b#r. By inductive hypothesis

∆ ` π·r → π·s. By Lemma 3.3.9 we have ∆ ` π(a)#π·r and ∆ ` π(b)#π·r. Using (.α)

3. THE TWO-LEVEL λ-CALCULUS 54

we obtain ∆ ` ((π(b) π(a))·(π·r)) → π·s. By Lemma 3.2.13 we have ∆ ` ((π(b) π(a))◦π)·
r → π·s. By elementary properties of permutations we have (π(b) π(a))◦π = π◦(b a)

therefore ∆ ` (π◦(b a))·r → π·s. By Lemma 3.2.13 we have ∆ ` π·((b a)·r) → π·s. The

result follows.

4

3.4.1 Confluence of level one reductions

This Subsection presents a proof of confluence of the ‘level one’ fragment of the two-level λ-

calculus.

Definition 3.4.13 presents a canonical form for terms. Theorem 3.4.22 states that all terms

eventually reduce to their canonical form. Lemma 3.4.23 states that if r reduces to s then the

canonical form of s reduces eventually to the canonical form of r. Theorem 3.4.24, the confluence

result for the level one fragment of the calculus, and the main result of this Subsection, essentially

follows as a corollary of the previous two results.

Definition 3.4.9: Let (level1) be the set {(→a), (→#), (→rs1), (→rs2), (→λa), (→λX)}
from Figure 3.3. Let ∆ ` r (level1)→ s be the least congruence closed under the rules in (level1).

Definition 3.4.10: Say that ∆+ is a fresh extension of ∆ whenever ∆+ = ∆ ∪∆′, ∆ and

∆′ are disjoint, and for all a#X ∈ ∆′ we have a 6∈ ∆ but X ∈ ∆.

To reduce a term fully, we may need to introduce some fresh atoms into our freshness

context. For instance, consider an attempt to reduce ∆ ` (λa.r)[b 7→u] where ∆ 6` a#u. This

should reduce as one would expect, ∆ ` (λa.r)[b 7→u] → λa.(r[b 7→u]), but is being prevented

from doing so by ‘insufficient freshness’ in ∆. Without reductions of this sort, confluence fails.

To restore confluence, we introduce the notion of fresh extensions in Definition 3.4.10. The

purpose of these extensions is to enrich a given freshness context with additional fresh atoms.

Using these fresh atoms, we can rename abstracted atoms with something suitably fresh, guar-

anteeing that no reduction paths become needlessly stuck due to insufficient freshness.

Definition 3.4.11: Choose some arbitrary yet fixed ordering on atoms. If S is a finite set of

atoms say ‘for the first atom not in S’ to mean ‘for the least atom in our arbitrary yet fixed

ordering, that is not in S’.

Definition 3.4.12: For a given ∆ define a level one substitution action r[a:=t] as fol-

lows:

• r[a:=t] ≡ r provided ∆ ` a#r

• a[a:=t] ≡ t
• (π·X)[a:=t] ≡ (π·X)[a7→t]
• (rs)[a:=t] ≡ (r[a:=t])(s[a:=t]) provided level(r) = 1

• (rs)[a:=t] ≡ (r[a:=t])s provided ∆ ` a#s

• (rs)[a:=t] ≡ (rs)[a7→t] provided ∆ 6` a#s and level(r) = 2

3. THE TWO-LEVEL λ-CALCULUS 55

• (λb.s)[a:=t] ≡ λb.(s[a:=t]) provided ∆ ` b#t
• (λb.s)[a:=t] ≡ λc.(((c b)·s)[a:=t]) provided ∆ 6` b#t. Here c is the first atom, distinct from

a and b, not mentioned in s or t, and such that ∆ ` c#s and ∆ ` c#t, if such an atom

exists.

• (λb.s)[a:=t] ≡ (λb.s)[a 7→t] provided ∆ 6` b#t and no fresh atom exists.

• (λX.r)[a:=t] ≡ λX.(r[a:=t]) renaming λX if needed so as to ensure X 6∈ fV (t).

Definition 3.4.13: For a given ∆ define a canonical form r? as follows:

a? ≡ a c? ≡ c (π·X)? ≡ π·X (λa.r)? ≡ λa.(r?) (λX.r)? ≡ λX.(r?) (if X 6∈ ∆)

(r[a7→t])? ≡ r?[a:=t?] ((λX.r)t)? ≡ r?[X:=t?] (rs)? ≡ r?s?

Here, earlier rules have priority, read left-to-right and top-to-bottom. We can always rename

λX to ensure X 6∈ ∆.

Intuitively r? is a canonical form of r, pushing all unreduced β-reducts r[a7→t] as far as

possible inside r, and collecting all garbage.4

The strategy we use for proving confluence is vaguely reminiscent of a strategy developed by

Takahashi [Tak95]. We define a canonical form (Definition 3.4.13). In Takahashi’s terminology,

the canonical form is referred to as a complete development. We then prove that all terms

eventually reduce to their canonical form (Theorem 3.4.22). Finally, we prove that a term r

reducing to another term s implies the canonical form of s reduces to the canonical form of r

(Lemma 3.4.23). As an almost immediate corollary, we obtain the confluence of the calculus

(Theorem 3.4.24).

It is important to note that the canonical form of Definition 3.4.13 is not necessarily a

normal form. The calculus is untyped and normal forms need not exist. For example, consider

the following pair of reduction paths, both of whom fail to terminate like their counterparts in

the untyped λ-calculus:

∆ ` (λa.aa)(λa.aa)→∗ (λa.aa)(λa.aa)→∗ (λa.aa)(λa.aa)→∗ . . .

∆ ` (λX.XX)(λX.XX)→∗ (λX.XX)(λX.XX)→∗ (λX.XX)(λX.XX)→∗ . . .

Definition 3.4.14: Call ∆ ` −.− reflexive when ∆ ` r.r always. Call ∆ ` −.− transitive

when ∆ ` r . s and ∆ ` s . t imply ∆ ` r . t always. Write ∆ ` − .∗ − for the least transitive

reflexive relation containing ∆ ` − .−.

The following six lemmas—Lemmas 3.4.15 through to 3.4.21—are technical results used in the

proof of Theorem 3.4.22.

Lemma 3.4.15: For every ∆, r, a, and t there exists a ∆+ such that ∆+ ` r[a7→t] →∗ r[a:=

t].

Proof. By induction on the depth of r.

4By ‘garbage’ we mean terms of the form r[a7→t] where ∆ ` a#r.

3. THE TWO-LEVEL λ-CALCULUS 56

• The case a. By Definition 3.4.12 we have a[a:=t] ≡ t for every ∆. Using (→a) we obtain

∆ ` a[a 7→t]→ t for every ∆. We take ∆+ = ∆. The result follows.

• The case b. By Definition 3.4.12 we have b[a:=t] ≡ b for every ∆. Using (→#) we obtain

∆ ` b[a7→t]→ b for every ∆. We take ∆+ = ∆. The result follows.

• The case c. By Definition 3.4.12 we have c[a:=t] ≡ c for every ∆. Using (→#) we obtain

∆ ` c[a7→t]→ c for every ∆. We take ∆+ = ∆. The result follows.

• The case π·X. There are two cases:

• The case ∆ ` a#π·X. By Definition 3.4.12 we have (π·X)[a:=t] ≡ π·X. Using (→#)

we obtain ∆ ` (π·X)[a7→t]→ π·X. We take ∆+ = ∆. The result follows.

• The case ∆ 6` a#π·X. By Definition 3.4.12 we have (π·X)[a:=t] ≡ (π·X)[a7→t]. By

Definition 3.4.14 we have ∆ ` (π·X)[a7→t] →∗ (π·X)[a7→t] for every ∆. We take

∆+ = ∆. The result follows.

• The case rs. There are three cases:

• The case ∆ ` a#s. By Definition 3.4.12 we have (rs)[a:=t] ≡ (r[a:=t])s. By inductive

hypothesis ∆′
+

exists such that ∆′
+ ` r[a7→t]→∗ r[a:=t]. By Definition 3.4.14 we have

∆ ` s →∗ s for every ∆. Using (→rs2) we obtain ∆ ` (rs)[a7→t] → (r[a7→t])s. We

take ∆+ = ∆′
+

. The result follows.

• The case level(r) = 1. By Definition 3.4.12 we have (rs)[a:=t] ≡ (r[a:=t])(s[a:=t]).

By inductive hypothesis there exists some ∆′
+

such that ∆′
+ ` r[a7→t]→∗ r[a:=t] and

some ∆′′
+

such that ∆′′
+ ` s[a7→t]→∗ s[a:=t]. Using (→rs1) we obtain ∆ ` (rs)[a7→

t]→ r[a7→t](s[a7→t]). We take ∆+ = ∆′
+ ∪∆′′

+
. The result follows.

• The case ∆ 6` a#s and level(r) = 2. By Definition 3.4.12 we have (rs)[a:=t] ≡
(rs)[a7→t]. By Definition 3.4.14 we have ∆ ` (rs)[a7→t]→∗ (rs)[a7→t] for every ∆. We

take ∆+ = ∆. The result follows.

• The case λa.r. For every ∆, we have (λa.r)[a:=t] ≡ λa.r by Definition 3.4.12. Similarly,

for every ∆, we have ∆ ` (λa.r)[a7→t] → λa.r by (→#). We take ∆+ = ∆. The result

follows.

• The case λb.s. There are three cases:

• The case ∆ ` a#λb.s. By Definition 3.4.12 we have ∆ ` (λb.s)[a:=t] ≡ λb.s. Using

(→#) we obtain ∆ ` (λb.s)[a7→t]→ λb.s. We take ∆+ = ∆. The result follows.

• The case ∆ ` b#t. By Definition 3.4.12 we have ∆ ` (λb.s)[a:=t] ≡ λb.(s[a:=t]).

Using (→λb) we obtain ∆ ` (λb.s)[a7→t] → λb.(s[a7→t]). By inductive hypothesis

there exists an ∆+ such that ∆+ ` s[a7→t]→∗ s[a:=t]. Using (.λa) we obtain ∆+ ` λb.
(s[a7→t])→∗ λb.(s[a:=t]). The result follows.

• The case ∆ 6` b#s. Take ∆′
+

to be ∆ extended with the first fresh c, according to our

arbitrary yet fixed ordering, such that ∆′
+ ` c#s and ∆′

+ ` c#t. By Definition 3.4.12

we have (λb.s)[a:=t] ≡ λc.(((c b)·s)[a:=t]), calculated for ∆′
+

. By Lemma 3.2.9 we have

depth((b a)·s) = depth(s). By inductive hypothesis ∆′′
+

exists such that ∆′′
+ ` ((c b)·

r)[a7→t] →∗ ((c b)·s)[a:=t]. Using (.α) we obtain ∆′
+ ` (λb.s)[a7→t] → λc.((c b)·

s)[a7→t]. Using (→λa) we obtain ∆′
+ ` (λb.s)[a7→t] → λc.(((c b)·s)[a7→t]). We take

∆+ = ∆′
+ ∪∆′′

+
. The result follows.

3. THE TWO-LEVEL λ-CALCULUS 57

• The case λX.r. Suppose X 6∈ ∆ and X 6∈ fV (t), which can always be guaranteed by

renaming. By Definition 3.4.12 we have (λX.r)[a:=t] ≡ λX.(r[a:=t]). Using (→λX) we

obtain ∆ ` (λX.r)[a7→t] → λX.(r[a7→t]). By inductive hypothesis there exists ∆+ such

that ∆+ ` r[a7→t]→∗ r[a:=t]. Using (.λX) we obtain ∆+ ` λX.(r[a7→t])→∗ λX.(r[a:=t]).

The result follows.

4

Lemma 3.4.16: Fix ∆. Then for canonical forms calculated for ∆, we have:

1. (π·r)? ≡ π·r?.

2. If (π·t)? ≡ π·t? for all π then (r[X:=t])? ≡ r?[X:=t?].

Proof. By mutual induction on depth(r). We handle the claims separately. The first claim:

• The case a. By Definition 3.2.4 we have π·a ≡ π(a). By Definition 3.4.13 we have (π(a))? ≡
π(a) and a? ≡ a. The result follows.

• The case c. By Definition 3.2.4 we have π·c ≡ c. By Definition 3.4.13 we have c? ≡ c. The

result follows.

• The case π′·X. By Definition 3.2.4 we have π·(π′·X) ≡ (π◦π′)·X. By Definition 3.4.13 we

have ((π◦π′)·X)? ≡ (π◦π′)·X and (π′·X)? ≡ π′·X. The result follows.

• The case rs. There are two cases:

• The case (λX.r)t. By Definition 3.2.4 we have π·((λX.r)t) ≡ (λX.((π·r)[X:=π-1·
X]))(π·t). By Definition 3.4.13 we have ((λX.((π·r)[X:=π-1·X]))(π·t))? ≡ ((π·r)[X:=

π-1·X])?[X:=(π·t)?]. By the second claim we have ((π·r)[X:=π-1·X])?[X:=t?] ≡ (π·
r)?[X:=(π-1·X)?][X:=(π·t)?]. By Definition 3.4.13 we have (π·r)?[X:=π-1·X?][X:=

t?] ≡ (π·r)?[X:=π-1·X][X:=(π·t)?]. By inductive hypothesis (π·r)?[X:=π-1·X][X:=

(π·t)?] ≡ (π·r?)[X:=π-1·X][X:=(π·t?)]. By Lemma 3.2.10 we have (π·r?)[X:=π-1·
X][X:=(π·t?)] ≡ (π·r?)[X:=t?]. By Lemma 3.2.16 we have (π·r?)[X:=t?] ≡ π·(r?[X:=

t?]. By Definition 3.4.13 we have π·(r?[X:=t?] ≡ π·((λX.r)t)?. The result follows.

• The case rs. By Definition 3.2.4 we have π·(rs) ≡ (π·r)(π·s). By Definition 3.4.13 we

have (π·r)(π·s)? ≡ (π·r)?(π·s)?. By inductive hypotheses we have (π·r)?(π·s)? ≡ (π·
r?)(π·s?). By Definition 3.2.4 we have (π·r?)(π·s?) ≡ π·(r?s?). By Definition 3.4.13

we have π·(r?s?) ≡ π·(rs)?. The result follows.

• The case λa.r. By Definition 3.2.4 we have π·λa.r ≡ λπ(a).(π·r). By Definition 3.4.13 we

have (λπ(a).(π·r))? ≡ λπ(a).(π·r)?. By inductive hypothesis λπ(a).(π·r)? ≡ λπ(a).(π·r?).
By Definition 3.2.4 we have λπ(a).(π·r?) ≡ π·(λa.r?). By Definition 3.4.13 we have π·(λa.
r?) ≡ π·(λa.r)?. The result follows.

• The case λX.r. By Definition 3.2.4 we have π·λX.r ≡ λX.((π·r)[X:=π-1·X]). By Defi-

nition 3.4.13 we have (λX.((π·r)[X:=π-1·X]))? ≡ λX.((π·r)[X:=π-1·X])?. By the second

claim we have λX.((π·r)[X:=π-1·X])? ≡ λX.((π·r)?[X:=(π-1·X)?]). By Definition 3.4.13

we have λX.((π·r)?[X:=(π-1·X)?]) ≡ λX.((π·r)?[X:=π-1·X]). By inductive hypothesis λX.

((π·r)?[X:=π-1·X]) ≡ λX.((π·r?)[X:=π-1·X]). By Definition 3.2.4 we have λX.((π·r?)[X:=

π-1·X]) ≡ π·(λX.r?). By Definition 3.4.13 we have π·(λX.r?) ≡ π·(λX.r)?. The result fol-

lows.

3. THE TWO-LEVEL λ-CALCULUS 58

The second claim:

• The case a. By Definition 3.2.4 we have a[X:=t] ≡ a. By Definition 3.4.13 we have a? ≡ a.

The result follows.

• The case c. By Definition 3.2.4 we have c[X:=t] ≡ c. By Definition 3.4.13 we have c? ≡ c.

The result follows.

• The case π·X. By Definition 3.2.4 we have (π·X)[X:=t] ≡ π·t. By assumption (π·t)? ≡ π·
t?. By Definition 3.4.13 we have (π·X)?[X:=t?] ≡ π·t?. The result follows.

• The case π·Y . By Definition 3.2.4 we have (π·Y)[X:=t] ≡ π·Y . By Definition 3.4.13 we

have (π·Y)? ≡ π·Y . The result follows.

• The case rs. By Definition 3.2.4 we have (rs)[X:=t] ≡ (r[X:=t])(s[X:=t]). By Defini-

tion 3.4.13 we have ((r[X:=t])(s[X:=t]))? ≡ (r[X:=t])?(s[X:=t])?. By inductive hypothe-

ses (r[X:=t])?(s[X:=t])? ≡ (r?[X:=t?])(s?[X:=t?]). By Definition 3.2.4 we have (r?[X:=

t?])(s?[X:=t?]) ≡ (r?s?)[X:=t?]. By Definition 3.4.13 we have (r?s?)[X:=t?] ≡ (rs)?[X:=

t?]. The result follows.

• The case λa.r. By Definition 3.2.4 we have (λa.r)[X:=t] ≡ λa.(r[X:=t]). By Defini-

tion 3.4.13 we have (λa.(r[X:=t]))? ≡ λa.(r[X:=t])?. By inductive hypothesis λa.(r[X:=

t])? ≡ λa.(r?[X:=t?]). By Definition 3.2.4 we have λa.(r?[X:=t?]) ≡ (λa.r?)[X:=t?]. By

Definition 3.4.13 we have (λa.r?)[X:=t?] ≡ (λa.r)?[X:=t?]. The result follows.

• The case λX.r. By Definition 3.2.4 we have (λX.r)[X:=t] ≡ λX.r. The result follows.

• The case λY.s. Suppose Y 6∈ fV (t) which can be guaranteed. By Definition 3.2.4 we have

(λY.s)[X:=t] ≡ λY.(s[X:=t]). By Definition 3.4.13 we have (λY.(s[X:=t]))? ≡ λY.(s[X:=

t])?. By inductive hypothesis λY.(s[X:=t])? ≡ λY.(s?[X:=t?]). By Definition 3.2.4 we have

λY.(s?[X:=t?]) ≡ (λY.s?)[X:=t?]. By Definition 3.4.13 we have (λY.s?)[X:=t?] ≡ (λY.

s)?[X:=t?]. The result follows.

4

Lemma 3.4.17: If ∆ ` a#r and ∆ ` a#t then ∆ ` a#r[a:=t].

Proof. By induction on depth(r), using Lemma 3.2.9. See Appendix A. 4

Lemma 3.4.18: If ∆ ` a#r and ∆ ` a#u then ∆ ` a#r[b:=u].

Proof. By induction on depth(r), using Lemma 3.2.9. See Appendix A. 4

Intuitively Lemma 3.4.19 states that the canonical form does not introduce any extraneous

variable of level one.

Lemma 3.4.19: If ∆ ` a#r then ∆ ` a#r? where r? is calculated for ∆.

Proof. By induction on the derivation of ∆ ` a#r.

• The case (#b). Suppose ∆ ` a#b by (#b). By Definition 3.4.13 we have b? ≡ b. The

result follows.

3. THE TWO-LEVEL λ-CALCULUS 59

• The case (#c). Suppose ∆ ` a#c by (#c). By Definition 3.4.13 we have c? ≡ c. The

result follows.

• The case (#X). Suppose π-1(a)#X ∈ ∆ so that ∆ ` a#π·X by (#X). By Defini-

tion 3.4.13 we have (π·X)? ≡ π·X. The result follows.

• The case (#rs). There are several cases:

• The case (λa.r)t. Suppose ∆ ` a#t so that ∆ ` a#(λa.r)t by (#rs). By Defini-

tion 3.4.13 we have ((λa.r)t)? ≡ r?[a:=t?]. By inductive hypothesis ∆ ` a#t?. By

Lemma 3.4.17 we have ∆ ` a#r?[a:=t?]. The result follows.

• The case (λb.s)t. Suppose ∆ ` a#λb.s and ∆ ` a#t so that ∆ ` a#(λb.s)t by

(#rs). By Definition 3.4.13 we have ((λb.s)t)? ≡ s?[b:=t?]. By inductive hypothesis

∆ ` a#(λb.s)? and ∆ ` a#t?. By Definition 3.4.13 we have ∆ ` a#λb.(s?). By (#λb)

we have ∆ ` a#s?. By Lemma 3.4.18 we have ∆ ` a#s?[a:=t?]. The result follows.

• The case (λX.r)t. Suppose ∆ ` a#λX.r and ∆ ` a#t so that ∆ ` a#(λX.r)t. By

inductive hypotheses ∆ ` a#λX.r? and ∆ ` a#t?. By Definition 3.4.13 we have λX.

r? ≡ λX.(r?). By Definition 3.4.13 we have ((λX.r)t)? ≡ r?[X:=t?]. By Lemma 3.3.8

and calculation we have ∆ ` a#r?[X:=t?]. The result follows.

• All other cases. Suppose ∆ ` a#r and ∆ ` a#s. By inductive hypotheses ∆ ` a#r?

and ∆ ` a#s?. Using (#rs) we obtain ∆ ` a#r?s?. By Definition 3.4.13 we have

r?s? ≡ rs?. The result follows.

• The case (#λa). By Definition 3.4.13 λa.r? ≡ λa.(r?). Using (#λa) we obtain ∆ ` a#λa.

(r?). The result follows.

• The case (#λb). Suppose ∆ ` a#s. By inductive hypothesis ∆ ` a#s?. Using (#λa) we

obtain ∆ ` a#λb.(s?). By Definition 3.4.13 we have λb.(s?) ≡ (λb.s)?. The result follows.

• The case (#λX). Suppose ∆, a#X ` π(a)#π·r. By inductive hypothesis ∆, a#X `
π(a)#π·r?. By Lemma 3.4.16 we have π·r? ≡ π·r?. Using (#λX) we obtain ∆ ` π(a)#π·
λX.(r?). By Definition 3.4.13 we have π·λX.(r?) ≡ π·(λX.r)?. By Lemma 3.4.16 we have

π·(λX.r)? ≡ (π·λX.r)?. The result follows.

4

Intuitively, Lemma 3.4.20 states that the canonical form does not introduce any extraneous

variables of level two.

Lemma 3.4.20: Fix ∆. Then for r? calculated for ∆ we have fV (r?) ⊆ fV (r).

Proof. By induction on r. See Appendix A. 4

Lemma 3.4.21: Fix ∆. Then for canonical forms calculated for ∆ we have (r[a:=t])? ≡ r?[a:=

t?].

Proof. By induction on depth(r).

• The case a. By Definition 3.4.12 we have (a[a:=t])? ≡ t?. By Definition 3.4.12 we have

t? ≡ a[a:=t?]. By Definition 3.4.13 we have a[a:=t?] ≡ a?[a:=t?]. The result follows.

3. THE TWO-LEVEL λ-CALCULUS 60

• The case b. By Definition 3.4.12 we have b[a:=t]? ≡ b?. By Definition 3.4.13 we have

b? ≡ b. By Definition 3.4.12 we have b ≡ b[a:=t?]. By Definition 3.4.13 we have b[a:=

t?] ≡ b?[a:=t?]. The result follows.

• The case c. For every ∆ we have ∆ ` a#c. By Definition 3.4.12 we have c[a:=t]? ≡ c?.

By Definition 3.4.13 we have c? ≡ c. By Definition 3.4.12 we have c ≡ c[a:=t?]. The result

follows.

• The case π·X. There are two cases:

• The case ∆ ` a#π·X. By Definition 3.4.13 we have (π·X)?[a:=t?] ≡ (π·X)[a:=t?].

By Definition 3.4.12 we have (π·X)[a:=t?] ≡ π·X. By Definition 3.4.12 we have π·
X ≡ (π·X)[a:=t]. By Definition 3.4.13 we have (π·X)[a:=t] ≡ ((π·X)[a:=t])?. The

result follows.

• The case ∆ 6` a#π·X. By Definition 3.4.13 we have (π·X)?[a:=t?] ≡ (π·X)[a:=t?].

By Definition 3.4.12 we have (π·X)[a:=t?] ≡ (π·X)[a 7→t?]. By definition (π·X)[a7→
t?] ≡ (λa.(π·X))t?. By Definition 3.4.13 we have (λa.(π·X))t? ≡ ((λa.(π·X))t)?. By

definition ((λa.(π·X))t)? ≡ ((π·X)[a 7→t])?. By Definition 3.4.12 we have ((π·X)[a7→
t])? ≡ ((π·X)[a:=t])?. The result follows.

• The case rs. By Definition 3.4.12 we have ((rs)[a:=t])? ≡ (r[a:=t])(s[a:=t])?. By in-

ductive hypothesis (r[a:=t])(s[a:=t])? ≡ (r?[a:=t?])(s?[a:=t?]). By Definition 3.4.12 we

have (r?[a:=t?])(s?[a:=t?]) ≡ (r?s?)[a:=t?]. By Definition 3.4.13 we have (r?s?)[a:=t?] ≡
(rs)?[a:=t?]. The result follows.

• The case λa.r. By Definition 3.4.12 we have ((λa.r)[a:=t])? ≡ (λa.r)?. By Definition 3.4.13

we have (λa.r)? ≡ λa.(r?). By Definition 3.4.12 we have λa.(r?) ≡ (λa.(r?))[a:=t?]. By

Definition 3.4.13 we have (λa.(r?))[a:=t?] ≡ (λa.r)?[a:=t?]. The result follows.

• The case λb.s. There are three cases:

• The case ∆ ` b#t. By Definition 3.4.12 we have ((λb.s)[a:=t])? ≡ (λb.(s[a:=t]))?. By

Definition 3.4.13 we have (λb.(s[a:=t]))? ≡ λb.((s[a:=t])?). By inductive hypothesis

λb.((s[a:=t])?) ≡ λb.(s?[a:=t?]). By Definition 3.4.12 we have λb.(s?[a:=t?]) ≡ (λb.

(s?))[a:=t?]. By Definition 3.4.13 we have (λb.(s?))[a:=t?] ≡ (λb.s)?[a:=t?]. The result

follows.

• The case ∆ 6` b#t with ∆ having sufficient freshness. Suppose ∆ 6` b#t. By Defini-

tion 3.4.12 we have ((λb.s)[a:=t])? ≡ (λc.(((c b)·s)[a:=t]))? where c is the first fresh

atom picked with respect to our arbitrary but fixed ordering such that ∆ ` c#s and

∆ ` c#t. By Definition 3.4.13 we have (λc.(((c b)·s)[a:=t]))? ≡ λc.(((c b)·s)[a:=

t])?. By Lemma 3.2.9 we have depth((c b)·s) = depth(s). By inductive hypothesis λc.

(((c b)·s)[a:=t])? ≡ λc.(((c b)·s)?[a:=t?]). By Lemma 3.4.16 we have λc.(((c b)·s)?[a:=

t?]) ≡ λc.(((c b)·s?)[a:=t?]). By Definition 3.4.12 we have λc.(((c b)·s?)[a:=t?]) ≡ (λb.

s?)[a:=t?]. By Definition 3.4.13 we have (λb.s?)[a:=t?] ≡ (λb.s)?[a:=t?]. The result

follows.

• The case ∆ 6` b#t with ∆ not having sufficient freshness. By Definition 3.4.12

we have ((λb.s)[a:=t])? ≡ ((λb.s)[a7→t])?. By definition (λb.s)[a 7→t] ≡ (λa.(λb.s))t.

By Definition 3.4.13 we have ((λa.(λb.s))t)? ≡ λa.(λb.(s?))t?. By definition λa.(λb.

3. THE TWO-LEVEL λ-CALCULUS 61

(s?))t? ≡ (λb.s?)[a7→t?]. By Definition 3.4.12 we have (λb.s?)[a7→t?] ≡ (λb.s?)[a:=t?].

By Definition 3.4.13 we have (λb.s?)[a:=t?] ≡ (λb.s)?[a:=t?]. The result follows.

• The case λX.r. Suppose X 6∈ fV (t), which can be guaranteed by renaming. By Defini-

tion 3.4.12 we have ((λX.r)[a:=t])? ≡ λX.(r[a:=t])?. By Definition 3.4.13 we have λX.

(r[a:=t])? ≡ λX.(r[a:=t]?). By inductive hypothesis λX.(r[a:=t]?) ≡ λX.(r?[a:=t?]). By

Definition 3.4.12 and Lemma 3.4.20 we have λX.(r?[a:=t?]) ≡ (λX.(r?))[a:=t?]. By Defi-

nition 3.4.13 we have (λX.(r?))[a:=t?] ≡ (λX.r)?[a:=t?]. The result follows.

4

Theorem 3.4.22 is an important piece in the machinery of the confluence proof for the level one

fragment. In short, it states that every term eventually reduces to its canonical form.

Theorem 3.4.22: For every ∆ and r there exists ∆+ freshly extending ∆ such that ∆+ `
r

(level1)

→∗ r?.

Proof. By induction on depth(r).

• The case a. By Definition 3.4.13 we have a? ≡ a. We take ∆+ = ∆. The result follows.

• The case c. By Definition 3.4.13 we have c? ≡ c. We take ∆+ = ∆. The result follows.

• The case π·X. By Definition 3.4.13 we have π·X? ≡ π·X. We take ∆+ = ∆. The result

follows.

• The case rs. By definition r[a7→t] ≡ (λa.r)t. There are multiple cases:

• The case (λa.r)[a7→t]. By Definition 3.4.13 we have ((λa.r)[a7→t])? ≡ λa.(r?). Taking

∆+ = ∆, by (→#) we have ∆ ` (λa.r)[a7→t] → λa.r. By inductive hypothesis and

(.λa) we have ∆ ` λa.r
(level1)

→∗ λa.r?. By Definition 3.4.13 we have λa.(r?) ≡ (λa.r)?.

The result follows.

• The case (λb.s)[a 7→t] with ∆ ` b#t. By Definition 3.4.13 we have (λb.s)[a7→t]? ≡ λb.
(r?[a:=t?]). By (→λa) we have ∆ ` (λb.s)[a7→t] → λb.(s[a7→t]). By Lemma 3.4.15

there exists a ∆+
1 freshly extending ∆ such that ∆1

+ ` s[a7→t] →∗ s[a:=t]. By induc-

tive hypothesis and (.λa) there exists ∆+
2 freshly extending ∆+

1 such that ∆+
2 ` s[a:=

t]
(level1)

→∗ (s[a:=t])?. By Lemma 3.4.21 we have (s[a:=t])? ≡ s?[a:=t?]. By Defini-

tion 3.4.13 we have λb.(s?[a:=t?]) ≡ (λb.(s[a7→t]))?. We take ∆+ = ∆+
2 , and the result

follows.

• The case (λb.s)[a7→t] with ∆ 6` b#t. There are two cases:

• The case when ∆ contains sufficient freshness. By Definition 3.4.13 we have ((λb.

s)[a7→t])? ≡ λc.(((c b)·s?)[a:=t?]) where c is a fresh atom, distinct from a and b,

chosen so that ∆ ` c#s and ∆ ` c#t. By (.α) we have ∆ ` (λb.s)[a7→t]→∗ (λc.

((c b)·s))[a7→t]. By (→λa) we have ∆ ` (λc.((c b)·s))[a7→t]→ λc.(((c b)·s)[a7→t]).
By Lemma 3.4.15 there exists ∆+

1 freshly extending ∆ such that ∆+ ` ((c b)·s)[a7→
t]

(level1)

→∗ ((c b)·s)[a:=t]. By inductive hypothesis there exists ∆+
2 freshly extending

∆+
1 such that ∆+

2 ` ((c b)·s)[a:=t]
(level1)

→∗ (((c b)·s)[a:=t])?. By Lemma 3.4.21 we

have (((c b)·s)[a:=t])? ≡ ((c b)·s)?[a:=t?]. By Lemma 3.4.16 we have ((c b)·s)?[a:=

3. THE TWO-LEVEL λ-CALCULUS 62

t?] ≡ ((b c)·s?)[a:=t?]. By Definition 3.4.13 we have λb.(((b c)·s?)[a:=t?]) ≡ λb.

(((c b)·s)[a:=t]). We take ∆+ = ∆+
2 , and the result follows.

• The case when ∆ does not contain sufficient freshness. Let ∆+
1 be a fresh ex-

tension of ∆ such that ∆+ ` c#s and ∆+ ` c#t, where c is the first atom, not

mentioned in s or t, in the ordering of Definition 3.4.12. By Definition 3.4.13 we

have ((λb.s)[a7→t])? ≡ λc.(((c b)·s?)[a:=t?]) where c is our fresh atom. By (.α)

we have ∆+
1 ` (λb.s)[a7→t] →∗ (λc.((c b)·s))[a7→t]. By (→λa) we have ∆+

1 ` (λc.

((c b)·s))[a7→t] → λc.(((c b)·s)[a 7→t]). By Lemma 3.4.15 there exists ∆+
2 freshly

extending ∆+
1 such that ∆+

2 ` ((c b)·s)[a7→t]
(level1)

→∗ ((c b)·s)[a:=t]. By inductive

hypothesis there exists ∆+
3 freshly extending ∆+

2 such that ∆+
2 ` ((c b)·s)[a:=

t]
(level1)

→∗ (((c b)·s)[a:=t])?. By Lemma 3.4.21 we have (((c b)·s)[a:=t])? ≡ ((c b)·
s)?[a:=t?]. By Lemma 3.4.16 we have ((c b)·s)?[a:=t?] ≡ ((b c)·s?)[a:=t?]. By

Definition 3.4.13 we have λb.(((b c)·s?)[a:=t?]) ≡ λb.(((c b)·s)[a:=t]). We take

∆+ = ∆+
3 , and the result follows.

• The case (λX.r)[a 7→t]. Suppose X 6∈ fV (t), which can be guaranteed. By (→λX) we

have ∆ ` (λX.r)[a 7→t] → λX.(r[a7→t]). By inductive hypothesis ∆+ exists such that

∆+ ` r[a 7→t] →∗ (r[a7→t])?. By Definition 3.4.13 we have (r[a7→t])? ≡ r?[a:=t?]. By

Definition 3.4.13 and Lemma 3.4.20 we have ((λX.r)[a 7→t])? ≡ λX.(r?[a:=t?]). The

result follows.

• The case (λX.r)t. By Definition 3.4.13 we have ((λX.r)t)? ≡ r?[X:=t?]. By inductive

hypotheses there exists ∆+
1 freshly extending ∆ such that ∆+

1 ` t
(level1)

→∗ t?, and ∆+
2

freshly extending ∆ such that ∆+
2 ` r

(level1)

→∗ r?. Take ∆+ = ∆+
1 ∪ ∆+

2 . By (.app2)

we have ∆+ ` (λX.r)t
(level1)

→∗ (λX.r)t?. By (.λX) we have ∆+ ` (λX.r)t?
(level1)

→∗ (λX.

r?)t?. By (→β) we have ∆+ ` (λX.r?)t? → r?[X:=t?]. By Lemma 3.4.16 we have

r?[X:=t?] ≡ (r[X:=t])?. The result follows.

• All other cases. By inductive hypotheses there exists ∆+
1 freshly extending ∆ such

that ∆+
1 ` r

(level1)

→∗ r? and ∆+
2 freshly extending ∆ such that ∆+

2 ` s
(level1)

→∗ s?. Taking

∆+ = ∆+
1 ∪∆+

2 , we have ∆+ ` rs
(level1)

→∗ r?s?. By Definition 3.4.13 we have r?s? ≡ (rs)?.

The result follows.

• The case λa.r. By inductive hypothesis there exists ∆+ freshly extending ∆ such that

∆+ ` r
(level1)

→∗ r?. By (.λa) we have ∆+ ` λa.r
(level1)

→∗ λa.r?. The result follows.

• The case λX.r. By inductive hypothesis there exists ∆+ freshly extending ∆ such that

∆+ ` r
(level1)

→∗ r?. By (.λX) we have ∆+ ` λX.r
(level1)

→∗ λX.r?. The result follows.

4

Lemma 3.4.23 is the final missing component in the proof of confluence for the level one fragment.

Lemma 3.4.23: For every ∆, r and s there exists ∆+ freshly extending ∆ such that ∆ `
r

(level1)→ s implies ∆+ ` s?
(level1)

→∗ r? where r? and s? are calculated for ∆+.

Proof. By induction on the derivation of ∆ ` r (level1)→ s.

3. THE TWO-LEVEL λ-CALCULUS 63

• The case (→a). Suppose ∆ ` a[a7→t] (level1)→ t. By Definition 3.4.13 we have (a[a7→t])? ≡ t?.
We obtain ∆ ` t?

(level1)

→∗ t?. We take ∆+ = ∆. The result follows.

• The case (→#). Suppose ∆ ` a#r so that ∆ ` r[a7→t]→ r. By Definition 3.4.13 we have

(r[a 7→t])? ≡ r?. We obtain ∆ ` r?
(level1)

→∗ r?. We take ∆+ = ∆. The result follows.

• The case (→rs1). Suppose ∆ ` a#s so that ∆ ` (rs)[a7→t] (level1)→ (r[a7→t])s. By Defini-

tion 3.4.13 we have ((rs)[a7→t])? ≡ ((r?)[a:=t?])s?. By Definition 3.4.13 we have ((r[a7→
t])s)? ≡ ((r?)[a:=t?])s?. We obtain ∆ ` ((r?)[a:=t?])s?

(level1)

→∗ ((r?)[a:=t?])s?. We take

∆+ = ∆. The result follows.

• The case (→rs2). Suppose level(r) = 1 so that ∆ ` (rs)[a 7→t] (level1)→ (r[a7→t])(s[a7→t]).
By Definition 3.4.13 we have ((rs)[a7→t])? ≡ (r?[a:=t?])(s?[a:=t?]). By Definition 3.4.13

we have ((r[a7→t])(s[a7→t]))? ≡ (r?[a:=t?])(s?[a:=t?]). We obtain ∆ ` (r?[a:=t?])(s?[a:=

t?])
(level1)

→∗ (r?[a:=t?])(s?[a:=t?]). We take ∆+ = ∆. The result follows.

• The case (→λa). Suppose ∆ ` a#u so that ∆ ` (λa.r)[b 7→u]
(level1)→ λa.(r[b7→u]). By

Definition 3.4.13 we have ((λa.r)[b 7→u])? ≡ λa.(r?[b:=u?]). By Definition 3.4.13 we have

(λa.(r[b 7→u]))? ≡ λa.(r?[b:=u?]). We obtain ∆ ` λa.(r?[b:=u?])
(level1)

→∗ λa.(r?[b:=u?]). We

take ∆+ = ∆. The result follows.

• The case (→λX). Suppose X 6∈ fV (t) so that ∆ ` (λX.r)[a7→t] (level1)→ λX.(r[a7→t]). By

Definition 3.4.13 we have ((λX.r)[a7→t])? ≡ λX.(r?[a:=t?]). By Definition 3.4.13 we have

(λX.(r[a 7→t]))? ≡ λX.(r?[a:=t?]). We obtain ∆ ` λX.(r?[a:=t?])
(level1)

→∗ λX.(r?[a:=t?]).

We take ∆+ = ∆. The result follows.

• The case (→β). Suppose ∆ ` (λX.r)t
(level1)→ r[X:=t]. By Definition 3.4.13 we have ((λX.

r)t)? ≡ r?[X:=t?]. By Lemma 3.4.16 we have (r[X:=t])? ≡ r?[X:=t?]. We obtain ∆ `
r?[X:=t?]

(level1)

→∗ r?[X:=t?]. We take ∆+ = ∆. The result follows.

• The case (.λa). Suppose ∆ ` r (level1)→ s. By inductive hypothesis ∆+ exists such that

∆+ ` s?
(level1)

→∗ r?. Using (.λa) we obtain ∆+ ` λa.(s?)
(level1)

→∗ λa.(r?). By Definition 3.4.13

we have λa.(r?) ≡ (λa.r)?. The result follows.

• The case (.rs1) and (.rs2). We consider only the first case, as the second is similar.

• The case (.λX). Suppose ∆ ` r (level1)→ s. By inductive hypothesis ∆+ exists such that

∆+ ` s?
(level1)

→∗ r?. Using (.λX) we obtain ∆+ ` λX.(s?)
(level1)

→∗ λX.(r?). By Defini-

tion 3.4.13 we have λX.(r?) ≡ (λX.r)?. The result follows.

• The case (.α). Suppose ∆ ` r (level1)→ s, ∆ ` a#r and ∆ ` b#r. By inductive hypothesis

there exists ∆′
+

such that ∆′
+ ` s?

(level1)

→∗ r?. By Lemma 3.4.19 we have ∆′′
+

exists such

that ∆′′
+ ` a#r? and ∆′′

+ ` b#r?. By Lemma 3.4.4 we have ∆′′
+ ` a#s? and ∆′′

+ ` b#r?.
Using (.α) we obtain ∆′′

+ ` (b a)·s?
(level1)

→∗ r?. By Lemma 3.4.8 we have ∆′′
+ ` (b a)·((b a)·

s?)
(level1)

→∗ (b a)·r?. By Lemma 3.2.13 we have ∆′′
+ ` ((b a)◦(b a))·s?

(level1)

→∗ (b a)·r?. It is a

fact that ((b a)◦(b a))·s? ≡ s?. By Lemma 3.4.16 we have ∆′′
+ ` s?

(level1)

→∗ ((b a)·r)?. We

take ∆+ = ∆′′
+

. The result follows.

4

Theorem 3.4.24: Suppose ∆ ` r
(level1)

→∗ s and ∆ ` r
(level1)

→∗ t. Then there exists ∆+ freshly

3. THE TWO-LEVEL λ-CALCULUS 64

extending ∆ and some term u such that ∆+ ` s
(level1)

→∗ u and ∆+ ` t
(level1)

→∗ u.

That is, ∆ ` − (level1)→ − is confluent.

Proof. Suppose ∆ ` r
(level1)

→∗ s and ∆ ` r
(level1)

→∗ t. By Theorem 3.4.22 there exists ∆1
+ such

that ∆1
+ ` r

(level1)

→∗ r?, ∆2
+ such that ∆2

+ ` s
(level1)

→∗ s? and ∆3
+ such that ∆3

+ ` t
(level1)

→∗ t?.

By Lemma 3.4.23 there exists ∆4
+ and ∆5

+ such that ∆4
+ ` s?

(level1)

→∗ r? and ∆5
+ ` t?

(level1)

→∗

r?. Taking ∆+ =
⋃

1≤i≤5 ∆i
+, we have the result. 4

Theorem 3.4.24, the confluence of the level one fragment, is the main result in this Subsection.

The proof of Theorem 3.4.24 can be readily visualised with the following diagram:

r

s �
∗

t
∗-

s?
∗? ∗- r?

∗?
�∗ t?

∗?

3.4.2 Confluence of level two reductions

This Subsection handles the proof of confluence for the level two fragment of the reduction

relation, introduced in Definition 3.4.25. We prove confluence for level two using Tait and

Martin-Löf’s parallel reduction method (explained in Barendregt’s tome [Bar84]).

Theorem 3.4.31 demonstrates that the notions of parallel reduction and level two reduction

coincide. Lemma 3.4.35 states that parallel reduction satisfies the ‘diamond property’. Theo-

rem 3.4.36, the confluence of the level two fragment, is the main result in this Subsection.

Definition 3.4.25: Let (level2) be the set {(→β), (→λX)}. Let ∆ ` r (level2)→ s be the least

congruence closed under the rules of (level2).

Lemma 3.4.26 through to Corollary 3.4.30 are technical lemmas used in the proof of Theo-

rem 3.4.31.

Lemma 3.4.26: If ∆ ` r ⇒ s then ∆ ` r
(level2)

→∗ s.

Proof. By induction on the derivation of ∆ ` r ⇒ s.

• The case (⇒a). Suppose ∆ ` a ⇒ a. By Definition 3.4.14 we have ∆ ` a
(level2)

→∗ a. The

result follows.

• The case (⇒X). Suppose ∆ ` π·X ⇒ π·X. By Definition 3.4.14 we have ∆ ` π·X
(level2)

→∗ π·
X. The result follows.

• The case (⇒c). Suppose ∆ ` c ⇒ c. By Definition 3.4.14 we have ∆ ` c
(level2)

→∗ c. The

result follows.

• The case (⇒rs). Suppose ∆ ` r ⇒ s and ∆ ` t ⇒ u. By inductive hypotheses ∆ `
r

(level2)

→∗ s and ∆ ` t
(level2)

→∗ u. Using (.rs1) and (.rs2) we obtain ∆ ` rs
(level2)

→∗ tu. The

result follows.

3. THE TWO-LEVEL λ-CALCULUS 65

• The case (⇒λa). Suppose ∆ ` r ⇒ s. By inductive hypothesis ∆ ` r
(level2)

→∗ s. Using

(.λa) we obtain ∆ ` λa.r
(level2)

→∗ λa.s. The result follows.

• The case (⇒λX). Suppose ∆ ` r ⇒ s. By inductive hypothesis ∆ ` r
(level2)

→∗ s. Using

(.λX) we obtain ∆ ` λX.r
(level2)

→∗ λX.s. The result follows.

• The case (⇒ε). Suppose ∆ ` r ⇒ s, ∆ ` t ⇒ u and ∆ ` su
(level2)→ v. By inductive

hypotheses ∆ ` r
(level2)

→∗ s and ∆ ` t
(level2)

→∗ u. By Definition 3.4.14 we have ∆ ` su
(level2)

→∗ v.

Using (.rs1) and (.rs2) we obtain ∆ ` rt
(level2)

→∗ v. The result follows.

• The case (⇒α). Suppose ∆ ` r ⇒ s, ∆ ` a#r and ∆ ` b#r. By inductive hypothesis

∆ ` r
(level2)

→∗ s. Using (.α) we obtain ∆ ` (b a)·r
(level2)

→∗ s. The result follows.

4

Corollary 3.4.27: If ∆ ` r ⇒∗ s then ∆ ` r →∗ s.

Proof. Immediate from Lemma 3.4.26 and the definition of reflexive, transitive closure. 4

Lemma 3.4.28: ⇒ is reflexive, that is ∆ ` r ⇒ r, for all r.

Proof. By induction on r. See Appendix A. 4

Lemma 3.4.29: If ∆ ` r (level2)→ s then ∆ ` r ⇒ s.

Proof. An immediate corollary of Lemma 3.4.28 and (⇒ε). 4

Corollary 3.4.30: If ∆ ` r
(level2)

→∗ s then ∆ ` r ⇒∗ s.

Proof. Immediate from Lemma 3.4.29 and the definition of reflexive, transitive closure. 4

Theorem 3.4.31 states that the notions of parallel reduction and level two reduction coincide.

Theorem 3.4.31: ∆ ` r ⇒∗ s if and only if ∆ ` r
(level2)

→∗ s.

Proof. Immediate, from Corollaries 3.4.27 and 3.4.30. 4

Lemma 3.4.32 states that parallel reduction is invariant under identity instantiations.

Lemma 3.4.32: If ∆ ` r ⇒ s and ∆′ ` ∆[X:=π·X] then ∆′ ` r[X:=π·X]⇒ s[X:=π·X].

Proof. By induction on the derivation of ∆ ` r ⇒ s, using Lemmas 3.4.6 and 3.2.16. See

Appendix A. 4

Lemma 3.4.33 is a standard equivariance result for parallel reductions:

Lemma 3.4.33: If ∆ ` r ⇒ s then ∆ ` π·r ⇒ π·s.

Proof. By induction on the derivation of ∆ ` r ⇒ s.

3. THE TWO-LEVEL λ-CALCULUS 66

• The case (⇒a). By Definition 3.2.4 we have π·a ≡ π(a). Using (⇒a) we obtain ∆ `
π(a)⇒ π(a). The result follows.

• The case (⇒X). By Definition 3.2.4 we have π·(π′·X) ≡ (π◦π′)·X. Using (⇒X) we obtain

∆ ` (π◦π′)·X ⇒ (π◦π′)·X. The result follows.

• The case (⇒c). By Definition 3.2.4 we have π·c ≡ c. Using (⇒c) we obtain ∆ ` c ⇒ c.

The result follows.

• The case (⇒rs). Suppose ∆ ` r ⇒ s and ∆ ` t ⇒ u. By inductive hypotheses ∆ ` π·
r ⇒ π·s and ∆ ` π·t ⇒ π·u. Using (⇒rs) we obtain ∆ ` (π·r)(π·s) ⇒ (π·t)(π·u). By

Definition 3.2.4 we have (π·t)(π·u) ≡ π·tu. The result follows.

• The case (⇒λa). Suppose ∆ ` r ⇒ s. By inductive hypothesis ∆ ` π·r ⇒ π·s. Using

(⇒λa) we obtain ∆ ` λπ(a).(π·r) ⇒ λπ(a).(π·s). By Definition 3.2.4 we have λπ(a).(π·
s) ≡ π·λa.s. The result follows.

• The case (⇒λX). Suppose ∆ ` r ⇒ s. By inductive hypothesis ∆ ` π·r ⇒ π·s. By

Lemma 3.4.32 we have ∆ ` (π·r)[X:=π-1·X]⇒ (π·s)[X:=π-1·X]. Using (⇒λX) we obtain

∆ ` π·λX.r ⇒ π·λX.s. The result follows.

• The case (⇒ε). Suppose ∆ ` r ⇒ t, ∆ ` s ⇒ u and ∆ ` tu
(level2)→ v. By inductive

hypotheses ∆ ` π·r ⇒ π·t and ∆ ` π·s ⇒ π·u. By Lemma 3.4.8 we have ∆ ` (π·s)(π·
u)

(level2)→ π·v. Using (⇒ε) we have ∆ ` (π·r)(π·s) ⇒ π·v. By Definition 3.2.4 we have (π·
r)(π·s) ≡ π·rs. The result follows.

• The case (⇒α). Suppose ∆ ` r ⇒ s, ∆ ` a#r and ∆ ` b#r. By inductive hypothesis

∆ ` π·r ⇒ π·s. By Lemma 3.3.9 we have ∆ ` π(a)#π·r and ∆ ` π(b)#π·r. Using (⇒α)

we obtain ∆ ` (π(b) π(a))·(π·r)⇒ π·s. It is a fact that (π(b) π(a))·(π·r) ≡ π·((b a)·r). The

result follows.

4

Lemma 3.4.32 is a technical result used in the proof of Lemma 3.4.35.

Lemma 3.4.34: If ∆ ` r ⇒ s and ∆ ` t⇒ u then ∆ ` r[X:=t]⇒ s[X:=u].

Proof. By induction on the derivation of ∆ ` r ⇒ s, using Lemmas 3.4.33, 3.4.6, and 3.2.16.

See Appendix A. 4

Lemma 3.4.35 states that parallel reduction satisfies the ‘diamond property’:

Lemma 3.4.35: If ∆ ` r ⇒ s and ∆ ` r ⇒ t then there exists some u such that ∆ ` s ⇒ u

and ∆ ` t⇒ u.

Proof. We examine all possible non-trivial divergences (where s 6≡ t).

• The case (λX.r)[b 7→u]. Suppose that X 6∈ fV (u). Suppose also that ∆ ` (λX.r)[b 7→
u] ⇒ (λX.r′)[b 7→u′] and ∆ ` (λX.r)[b7→u] ⇒ λX.(r′′[b 7→u′′]). By inductive hypothesis

u′′′ exists such that ∆ ` u′ ⇒ u′′′ and ∆ ` u′′ ⇒ u′′′. Similarly, by inductive hypothesis

r′′′ exists such that ∆ ` r′ ⇒ r′′′ and ∆ ` r′′ ⇒ r′′′. Using (⇒ε) with (→λX) we

obtain ∆ ` (λX.r′)[b 7→u′] ⇒ λX.(r′′′[b 7→u′′′]). Using (⇒λX) we obtain ∆ ` λX.(r′′[b 7→
u′′])⇒ λX.(r′′′[b7→u′′′]). The result follows.

3. THE TWO-LEVEL λ-CALCULUS 67

• The case (λa.r)[b 7→u]. Suppose that ∆ ` a#u. Suppose also that ∆ ` (λa.r)[b 7→u]⇒ (λa.

r′)[b 7→u′] and ∆ ` (λa.r)[b7→u] ⇒ λa.(r′′[b7→u′′]). By inductive hypothesis u′′′ exists such

that ∆ ` u′ ⇒ u′′′ and ∆ ` u′′ ⇒ u′′′. Similarly, by inductive hypothesis r′′′ exists such that

∆ ` r′ ⇒ r′′′ and ∆ ` r′′ ⇒ r′′′. By Lemma 3.4.4 we have ∆ ` a#u′′′. Using (⇒ε) with

(→λa) we obtain ∆ ` (λa.r′)[b7→u′] ⇒ λa.(r′′′[b 7→u′′′]). Using (⇒λa) we obtain ∆ ` λa.
(r′′[b 7→u′′])⇒ λa.(r′′′[b 7→u′′′]). The result follows.

• The case (λX.r)t. Suppose ∆ ` (λX.r)t ⇒ (λX.r′)t′ and ∆ ` (λX.r)t ⇒ r′′[X:=t′′]. By

inductive hypothesis t′′′ exists such that ∆ ` t′ ⇒ t′′′ and ∆ ` t′′ ⇒ t′′′. Similarly, by

inductive hypothesis r′′′ exists that that ∆ ` r′ ⇒ r′′′ and ∆ ` r′′ ⇒ r′′′. By Lemma 3.4.34

we have ∆ ` r′′[X:=t′′] ⇒ r′′′[X:=t′′′]. Using (⇒ε) with (→β) we obtain ∆ ` (λX.

r′)t⇒ r′′′[X:=t′′′]. The result follows.

4

Theorem 3.4.36, confluence of the level two fragment of the reduction relation, is the most

important result in this Subsection, and an immediate corollary of the diamond property of

parallel reductions, and the fact that parallel reduction and level two reduction coincide.

Theorem 3.4.36: ∆ ` − (level2)→ − is confluent.

Proof. An immediate corollary of Lemma 3.4.35 and Theorem 3.4.31. 4

3.4.3 Confluence of level one and level two reductions

This Subsection stitches together the proofs of confluence for the level one and level two frag-

ments of the reduction relation.

The main result in this Subsection, and in the Chapter itself, is Theorem 3.4.42, stating the

reduction relation of Definition 3.4.3 is confluent.

Lemma 3.4.37 is a technical lemma used in the proof of Lemma 3.4.38.

Lemma 3.4.37: If ∆ ` r → s then level(s) ≤ level(r).

Proof. By induction on the derivation of ∆ ` r → s, using Lemma 3.4.7. See Appendix A. 4

Intuitively, Lemma 3.4.38 states that if a parallel reduction and a level one reduction diverge,

then we can close this divergence using only parallel reductions and level one reductions.

Lemma 3.4.38: If ∆ ` r ⇒ s and ∆ ` r (level1)→ t then there exists a u such that ∆ ` s
(level1)

→∗ u

and ∆ ` t⇒ u.

Proof. By considering all possible non-trivial divergences (where s 6≡ t), using Lemmas 3.4.4

and 3.4.37. See Appendix A. 4

The last case of Lemma 3.4.38 demonstrates why (→λX) must be in both (level1) and (level2).

3. THE TWO-LEVEL λ-CALCULUS 68

Corollary 3.4.39: If ∆ ` r ⇒ s and ∆ ` r
(level1)

→∗ t then there exists a u such that ∆ ` s
(level1)

→∗

u and ∆ ` t⇒ u.

Proof. Immediate, from Lemma 3.4.38 and Definition 3.4.14. 4

Lemmas 3.4.40 and 3.4.41 are technical lemmas used in the proof of Theorem 3.4.42.

Lemma 3.4.40: If ∆ ` r (level1)→ s and ∆ ` r →∗ t then there exists some u and some ∆+ such

that ∆+ ` r →∗ u and ∆+ ` t (level1)→ u.

Proof. By induction on the path length of ∆ ` r →∗ t.

• The base case. Suppose r ≡ t. Take ∆+ = ∆ and u ≡ s. The result follows.

• The inductive step. Suppose ∆ ` r (level1)→ s and ∆ ` r →∗ t′ → t. By inductive hypothesis

∆′
+

and u′ exists such that ∆′
+ ` s→∗ u′ and ∆′

+ ` t (level1)→ u′. There are two cases:

• The case t′
(level1)→ u′. By Theorem 3.4.24 we have ∆′′

+
and u exist such that ∆′′

+ `
t

(level1)

→∗ u and ∆′′
+ ` u′

(level1)

→∗ u. We take ∆+ = ∆′′
+

. The result follows.

• The case t′
(level2)→ u′. By Lemma 3.4.38 and Theorem 3.4.31 we have ∆′′

+
and u exist

such that ∆′′
+ ` t

(level1)

→∗ u and ∆′′
+ ` u′

(level2)

→∗ u. We take ∆+ = ∆′′
+

. The result

follows.

4

Lemma 3.4.41: If ∆ ` r (level2)→ s and ∆ ` r →∗ t then there exists some u and some ∆+ such

that ∆+ ` r →∗ u and ∆+ ` t (level2)→ u.

Proof. By induction on the path length of ∆ ` r →∗ t.

• The base case. Suppose r ≡ t. Take ∆+ = ∆ and u ≡ s. The result follows.

• The inductive step. Suppose ∆ ` r (level2)→ s and ∆ ` r →∗ t′ → t. By inductive hypothesis

∆′
+

and u′ exists such that ∆′
+ ` s→∗ u′ and ∆′

+ ` t (level2)→ u′. There are two cases:

• The case t′
(level2)→ u′. By Theorem 3.4.36 we have ∆′′

+
and u exist such that ∆′′

+ `
t

(level2)

→∗ u and ∆′′
+ ` u′

(level2)

→∗ u. We take ∆+ = ∆′′
+

. The result follows.

• The case t′
(level1)→ u′. By Lemma 3.4.38 and Theorem 3.4.31 we have ∆′′

+
and u exist

such that ∆′′
+ ` t

(level1)

→∗ u and ∆′′
+ ` u′

(level2)

→∗ u. We take ∆+ = ∆′′
+

. The result

follows.

4

Theorem 3.4.42 is the main result in this Subsection, and the main result in this Chapter.

It states that the reduction relation of Definition 3.4.3 is confluent.

Theorem 3.4.42: ∆ ` − → − (reduction with rules in (level1)∪(level2)) is confluent. That

is, if ∆ ` r →∗ s and ∆ ` r →∗ t then there exists some u and some ∆+ such that ∆+ ` s→∗ u
and ∆+ ` t→∗ u.

Proof. By induction on the path length of ∆ ` r →∗ s.

3. THE TWO-LEVEL λ-CALCULUS 69

• The base case. Suppose r ≡ s. We take ∆+ = ∆ and u ≡ t. The result follows.

• The inductive step. There are two cases:

• The case (level1). Suppose ∆ ` r →∗ s′ (level1)→ s and ∆ ` r →∗ t. By inductive hy-

pothesis ∆′
+

and u′ exist such that ∆′
+ ` s→∗ u′ and ∆+ ` t→∗ u′. By Lemma 3.4.40

∆′′
+

and u exist such that ∆′′
+ ` u′ (level1)→ u and ∆′′

+ ` s→∗ u. We take ∆+ = ∆′′
+

.

The result follows.

• The case (level2). Suppose ∆ ` r →∗ s′ (level2)→ s and ∆ ` r →∗ t. By inductive hy-

pothesis ∆′
+

and u′ exist such that ∆′
+ ` s→∗ u′ and ∆+ ` t→∗ u′. By Lemma 3.4.41

∆′′
+

and u exist such that ∆′′
+ ` u′ (level2)→ u and ∆′′

+ ` s→∗ u. We take ∆+ = ∆′′
+

.

The result follows.

4

The λ-calculus may be considered as an equational theory. Intuitively, two λ-terms are

considered equal when they are β-equivalent. In a similar fashion, we may also consider the

two-level λ-calculus as an equational theory. Definition 3.4.43 formalises the notion of equality

on two-level λ-terms.

Definition 3.4.43: Define ∆ ` − = − as the least reflexive, transitive and symmetric con-

gruence closed under ∆ ` − → −.

Corollary 3.4.44, the consistency of the two-level equational theory is an immediate consequence

of Theorem 3.4.42.

Corollary 3.4.44: ∆ ` − = − is consistent. That is, there are two terms not related by

reflexive, transitive and symmetric closure of ∆ ` − → −.

Proof. Take λa.λb.a and λa.λb.b. These terms are distinct, and do not reduce to a common

term. By Theorem 3.4.42 we have that ∆ ` − = − is consistent. 4

3.5 Conclusions

This Chapter introduced the two-level λ-calculus, a novel context-calculus which uses nominal

techniques. α-equivalence between terms is handled elegantly through the use of swappings, and

problems with commuting β-reduction and hole filling are sidestepped by restricting reduction.

The calculus is confluent (Theorem 3.4.42) and hence the associated equational theory over

two-level λ-terms is consistent (Corollary 3.4.44).

Context-calculi aim to formalise the informal notion of context, as a ‘term with holes’,

present in many areas of computer science research, most noticably equivalence proofs between

program fragments (see, for example, the work of Pitts [Pit94]). In addition, context-calculi

have an independent research interest, as they can be applied to the study of dynamic binding,

module systems, and novel programming language designs. We survey these applications in

Subsection 3.5.1.

3. THE TWO-LEVEL λ-CALCULUS 70

3.5.1 Related work

Contexts have been the subject of a large amount of prior work, and many researchers have

attempted to adapt context-calculi to many varied applications.

In particular, the two-level λ-calculus fits into a broader research programme, wherein various

nominal context-calculi are investigated [Gab05, GL08, GM10b]. The two-level λ-calculus can be

seen as a ‘successor’ to the NEW calculus of contexts [Gab05] and the λ context-calculus [GL08]

with a more sophisticated notion of α-equivalence, and therefore more permissible reductions.

This Subsection goes on to survey a large body of existing work on other context-calculi.

Gabbay and Lengrand’s λ-context calculus As mentioned, the λ-context calculus of Gab-

bay and Lengrand [GL08] may be viewed as a predecessor calculus to the two-level λ-calculus.

The treatment of α-equivalence in the λ-context calculus is much less sophisticated than in the

two-level λ-calculus. Practically, this means that reductions that are available in the two-level

λ-calculus become stuck in the λ-context calculus.

Another notable difference between the two calculi are the number of levels of variables that

each possess. As its name suggests, the two-level λ-calculus possesses two levels of variable. In

contrast, the λ-context calculus possesses an infinity of levels of variable. We do not see this as

a major disadvantage of the two-level λ-calculus, as we believe an infinity of levels of variable

can be added quite easily.

Sato’s λM. Sato’s λM calculus of metavariables [SSKI03] is the closest calculus in spirt to

the two-level λ-calculus.

Sato places restrictions on reductions in λM similar to the restrictions found in (→rs1) and

(→rs2), in order to preserve confluence of the system. Notably, Sato prevents a redex from

being reduced if it contains a variable of higher level than the level of the redex itself, where

the ‘level of a redex’ is the level of the bound variable, suitably defined. Sato’s calculus has an

infinity of levels, compared to the two levels of the two-level λ-calculus, though in principle the

two-level λ-calculus could be extended.

However, Sato’s calculus differs from the two-level λ-calculus in a number of ways. Certain

reductions in the two-level λ-calculus have no analogue in Sato’s λM. For instance, in λM the

term (λa.(λX.X))b is ‘stuck’, but reduces in the two-level λ-calculus: ∆ ` (λa.(λX.X))b→ λX.

(X[a7→b]), providing we are working in a suitable freshness context. Sato characterises terms

of this form as ‘meaningless’, and imposes a simple sorting system in order to rule them out

as valid terms (his calculus is strongly normalising). In contrast, we prefer to allow as many

reductions as possible.

Sato’s λκε calculus. Sato’s λκε calculus [SSK02] has first-class contexts and environments,

and simple types. The calculus is ‘pure’ in the sense that it is known to be a conservative

extension of the λβ calculus, is strongly normalising and is confluent.

λκε includes a notion of first-class environment that the two-level λ-calculus lacks. First-

class environments are introduced to solve the well-known failure of commutation between hole-

filling and β-reduction, whilst recovering a straightforward notion of reduction for open terms.

3. THE TWO-LEVEL λ-CALCULUS 71

The two-level λ-calculus, λM and Hashimoto’s calculus, amongst others, solve this failure by

placing restrictions on the reduction of applications (see (→rs1) and (→rs2)), or prohibiting

such problem redexes from being reduced outright.

Hashimoto’s calculus with first-class contexts. Hashimoto and Ohori consider a calculus

with first-class contexts [HO01]. This calculus was later developed into an extension of the

functional language Standard ML with first-class contexts [Has98], and later interpreted by

Hideki in the λε calculus of environments [Hid00].

Hashimoto’s calculus is typed to ensure confluence though strong-normalisation is not estab-

lished. Only closed redexes may be reduced, and Hashimoto handles the α-equivalence of open

terms by using contexts decorated with variable renamers.

Pitts’ and Sands’ higher-order approach to contexts. Sands [San98] introduced a context-

calculus inspired by a notion of context due to Pitts5. Pitts represents contexts with higher-order

function variables. This representation has the pleasing property that open terms may be iden-

tified up to α-equivalence [Pit94].

Pitts’ technique is best demonstrated with an example. Suppose ϑ is a function variable. In

Pitt’s approach, all function variables have an explicit arity, dictating how many arguments they

expect. A context is represented by a function variable applied to a vector of arguments, whose

length is the same as the arity of the function variable. For instance, the two-level λ-calculus

term ∆ ` (λX.X)a is represented in Pitts’ and Sands’ approach by the term (λx.ϑ(x))y. α-

equivalence is handled in the normal manner, even in the presence of open terms. For example,

λx.(ϑ(x)) =α λy.(ϑ(y)).

Hole filling is established by substituting for the function variable, using a meta-abstraction.

The hole in (λx.(ϑ(x)))y is filled with x by the substitution [ϑ:=Λx.x], where Λx.x belongs to

a copy of the λ-calculus existing at the metalevel. Performing the substitution, we obtain the

term (λx.((Λx.x)x))y ≡ (λx.x)y, as desired, where ≡ is syntactic equality.

Pitts’ meta-abstractions and Sato’s first-class environments are structurally very similar.

The salient difference between the two is where the features exist; first-class environments are

object level entities, meta-abstractions exist at the metalevel.

De Bruijn’s calculus of segments. De Bruijn introduced the calculus of segments [dB78]

as part of the Automath project. Its intended purpose was the facilitation of definitions and

abbreviations of mathematical expressions. Intuitively, a segment may be viewed as a λ-term

with a single hole in a special place (in the words of Balsters, who studied a simply typed calculus

of segments [Bal87], segments are ‘terms with a kind of open end on the extreme right’ [Bal94,

pg. 346]).

5Mason traces the technique back further, to Aczel and Klopp [Mas99].

3. THE TWO-LEVEL λ-CALCULUS 72

Jojgov and Geuvers’ open proof terms. Jojgov and Geuvers [GJ02, Joj03] investigate

proof terms for incomplete derivations in higher-order logic. Incomplete proofs often appear

within theorem proving environments such as Isabelle, due to the preferred backward style of

proof used, where complex goals are simplified into subgoals for solving. Proof terms can be

obtained from complete derivations using the Curry-Howard correspondence in a straightforward

manner. However, proof terms for incomplete derivations are harder to obtain, as refining a proof

state may mean instantiating a hole with a bound variable.

Jojgov and Geuvers therefore turn to contexts to provide proof terms for incomplete deriva-

tions. However, unlike the two-level λ-calculus, there is no λ-abstraction of holes, and therefore

no notion β-reduction. Rather, terms contain metavariables, labeled with sorts and equipped

with a list of parameters, that can be instantiated later. The notion of substitution for holes

used by Jojgov and Geuvers is more complex than the notion used in the two-level λ-calculus,

where holes are simply filled with a term; metavariable substitution in Jojgov and Geuvers’

calculus sets off a series of other substitutions.

Jojgov and Geuvers have a different focus than we do for investigating their calculus. How-

ever, a subset of the two-level λ-calculus, one-and-a-half level terms, are used by Gabbay and

Mulligan to also provide proof terms for incomplete derivations (see [GM09b]).

Lee and Friedman’s context enriched λ-calculus. Lee and Friedman [LF96] enrich the

λ-calculus with contexts and four additional mechanisms: abstractions, simulating compiled

evolved contexts (here an evolved context is a context without holes), an execution operator,

to execute compiled code, and two additional operators, for building and destructing compiled

code. Their context-calculus is geared toward applications in programming language design,

specifically the design of module systems. As a consequence, they demonstrate how to ex-

press the linking of separately developed programs within the calculus, by careful α-renaming,

and also simulate Garigue’s label-selective λ-calculus [AKG95] and Lamping’s transparent data

parameters [Lam88].

Bognar and de Vrijer’s λc calculus. Bognar and de Vrijer introduced a context-calculus

λc [Bog02, BdV01]. The calculus comes equipped with a notion of pretyping. By varying

the pretyping of terms, λc can emulate various other context-calculi, including de Bruijn’s

segments, and Hashimoto and Ohori’s simply typed calculus. For this reason, λc is probably

best understood as a family of context-calculi, rather than a single calculus.

The treatment of α-equivalence in λc is markedly different to the treatment in the two-level λ-

calculus. Intuitively, problems with α-equivalence of open terms are handled using substitutions

suspending on a hole. However, Bognar and de Vrijer observe that substitutions emerge as the

result of a β-reduction step, and reductions needn’t be applied eagerly. Unreduced redexes are

therefore used to handle α-renamings. Such a scheme works better with multiple substitutions.

λc therefore introduces special operators for binding multiple variables and applying multiple

arguments.

Bognar’s thesis [Bog02] also introduced the context cube λ[]. This is a contextual analogue of

all eight corners of Barendregt’s λ-cube [US06], replacing the λ-calculus with a context-calculus.

Holes may appear not just in terms, but also in types.

3. THE TWO-LEVEL λ-CALCULUS 73

Mason’s calculus. Mason’s context-calculus [Mas99] introduces two notions of variable re-

placements, weak and strong substitutions, which differ in how they behave when they encounter

holes. Holes in terms may be labeled with weak substitutions, and this mechanism is used to

handle α-equivalence. Strong substitutions are used to fill holes in terms.

CHAPTER 4

Permissive nominal terms and their unification

Abstract

The informal slogan of nominal techniques is ‘ε-away from informal practice’. In-

formal presentation of syntax with binding possess two useful properties: the ability

to always find a fresh name for any term (‘always fresh’), and the ability to always

rename a bound variable to something fresh (‘always rename’). Nominal terms exist

in a context of freshness assumptions. Depending on the context, it may not be pos-

sible to find some fresh atom to ‘just rename’ with, that is, nominal terms-in-context

do not possess the ‘always fresh’ and ‘always rename’ properties that informal syntax

enjoys. This became apparent in the confluence proof of the two-level λ-calculus,

where ‘freshening’ operations for contexts were extensively employed.

Can we move nominal techniques closer to informal practice?

Permissive nominal terms are a variant of nominal terms that elide explicit fresh-

ness contexts. Instead, unknowns are labeled with an infinite and coinfinite set of

atoms, called their permission sort, which controls how an unknown may be in-

stantiated. The infinite and coinfinite nature of these permission sorts means that

permissive nominal terms recover the ‘always fresh’ and ‘always rename’ properties

that informal syntax possess, but nominal terms-in-context do not.

Freshness is also simplified through the use of permission sorts. A term’s freshness

now becomes a structural property of the term itself, and we may directly define the

notion of ‘free atoms’ by induction on the structure of the term, as opposed to using

a derivable freshness relation.

Like nominal terms, we introduce permissive nominal terms in the context of a

unification algorithm. One appeal of nominal terms has been their excellent com-

putational properties. We prove that these are not sacrificed by using permissive

nominal techniques. In particular, permissive nominal unification is decidable and

most general unifiers are computed. Further, permissive nominal techniques admit

simpler solutions to unification problems: like first- and higher-order unification,

permissive nominal unification solutions consist solely of a substitution, as opposed

to the substitution-freshness constraint pair that constitutes a nominal unification

solution.

Despite the differences in how freshness is handled, there remains a close cor-

respondence between permissive nominal terms and nominal terms. We make this

formal, by providing a non-trivial translation between the two, and demonstrating

that unifiers are preserved under this translation.

75

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 76

4.1 Introduction

This Chapter introduces a new form of nominal term, the permissive nominal term. Permissive

nominal terms possess all the flavour of their older counterparts (referred to as UPG nominal

terms from hereonin), yet also possess reasoning properties that make working with permissive

nominal terms closer to informal reasoning (that is, closer to the style of reasoning one uses

when working with the λ-calculus, to take one example, with pencil and paper). These new

properties, and why UPG nominal terms lack them, are now explained.

Nominal terms were introduced by Urban, Pitts and Gabbay as a ‘toolkit’ for encoding

languages with binding [UPG04]. The decidability of the nominal unification algorithm has

made nominal terms (and by extension, nominal techniques) an attractive proposition. αProlog,

for instance, uses nominal terms as its term language, and replaces the standard first-order

unification used by Prolog with nominal unification. The decidability of the nominal unification

algorithm is in stark contrast with higher-order unification, which is known to be undecidable.

As a bonus, following a body of work by Calvès and Fernández, nominal unification is known

to be not only decidable, but efficiently so [CF08b, CF08a, Cal10].

Another widely perceived advantage of nominal techniques has been the ease with which

languages with binding can be encoded, and the encodings manipulated formally. Various

stock phrases have come to be associated with nominal encodings: ‘close to informal practice’,

‘close to intuition’, ‘close to pen-and-paper proofs’ etc. (see below for some concrete examples).

Further, existing approaches (usually higher-order abstract syntax [PE88] and de Bruijn encod-

ings [dB72]) for handling name binding are often considered markedly different from informal

practice. For instance [Che05c, pgs 12 and 4]:

The above proof should seem trivial, and this is the point: nominal abstract

syntax facilitates a rigorous style of reasoning with names and binding that is close

to intuition and informal practice.

Higher-order language encodings are often so different from their informal“paper”

presentations that proving “adequacy” (that is, equivalence of the encoding and the

real language) is nontrivial, and elegant-looking encodings can be incorrect for subtle

reasons.

Similar claims of the ‘naturality’ of nominal techniques, and their associated encodings, were

made by Pitts [Pit03, pg 2]:

Indeed, the work reported in [16,17,35] does do better, by providing a mathe-

matical notion of ‘sufficiently fresh name’ that remains very close to the informal

practice described above while enabling α-equivalence classes of parse trees to gain

useful inductive/recursive properties.

Further, Berghofer and Urban have made similar claims about the ‘naturality’ of encodings

in Nominal Isabelle compared to similar de Bruijn encodings. For instance [BU06, pg 13]:

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 77

One big advantage of the nominal data type package, we feel, is the relatively

small “gap” between an informal proof on “paper” and an actual proof in a theorem

prover.

The purpose of the above litany of quotations is to build a case, and justify the following

claim:

Claim 4.1.1: The nominal research community believes one of the major advances of nominal

techniques over competing approaches is the ease through which we can make, and reason about,

encodings of languages with binding.

This claim represents the views of a number of scientists. Although subjective, the above

quotes support the idea that the nominal research community thinks nominal encodings are

more natural than encodings made with competing techniques.

However, recent research extending nominal techniques (presented in Chapter 3 and in recent

publications [GM08b, GM09b]) has demonstrated that in fact nominal techniques aren’t as close

to informal practice as they could be. Consider the following two points, which are supported

by references to Chapter 3 and elsewhere:

1. Suppose we are working on paper with the λ-calculus (to take a specific example—what

follows works just as well with any other calculus or logic). For every λ-term g, there exists

infinitely many a 6∈ fv(g). Furthermore, at any time, we can always ‘simply rename’ a

λ-bound variable to some fresh variable, as convenient.

Now, let’s examine the confluence proof in the two-level λ-calculus (Section 3.4, Chapter 3).

Is it still true that, for a fixed ∆ and term r, we have infinitely many a such that ∆ ` a#r

(the ‘always fresh’ property)? Is it still true that we can ‘simply rename’ a λ-bound atom

with a fresh atom, as necessary (the ‘always rename’ property)? On both counts, the

answer is no.1

In particular, these significant deficiencies force us to include Definition 3.4.10 in Chapter 3

(similar problems can also be seen in the confluence proof of [GM08b, GM09b]). As a direct

result, we also have to ‘thread’ a freshness context through the statement of every lemma

in the confluence proof. This is because we may need to push a substitution under a

binder ∆ ` (λb.s)[a 7→t] → λb.(s[a7→t]). In order to do so, we need to meet a freshness

side-condition ∆ ` b#t, yet depending on the ‘ambient’ freshness context, we may not be

able to meet this freshness side-condition.

Here we see a significant mismatch between informal practice and what (current) nominal

techniques readily permit. Such a mismatch is dangerous in that it gives the impression

that nominal encodings are harder to work with than they need be.

2. Consider trying to unify two higher-order terms with Huet’s higher-order unification al-

gorithm. The solution, if one exists (and if the algorithm halts), will consist of a single

substitution σ unifying the two terms.

1Consider trying to rename a bound atom in the empty freshness context.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 78

Suppose we try to unify two nominal terms with the Urban-Pitts-Gabbay algorithm [UPG04].

The solution, if one exists, will consists of a substitution paired with a series of freshness

constraints. That is, nominal unification solutions are more complex than their higher-

and first-order counterparts. Not only is this bad for ‘selling’ nominal techniques as a so-

lution to the ‘name binding problem’, but programmers who would like to use the nominal

unification algorithm are also forced into extra book keeping, keeping track of freshness

constraints returned by the algorithm.

It seems obvious that, if these two deficiencies with nominal terms were fixed, we’d get

something that allowed us to reason even closer to informal practice. However, is it the case

that these problems are somehow inherent to nominal terms?

This chapter introduces a body of work that we believe demonstrates the two cited problems

above are not an inherent deficiency of nominal terms, but an artefact of the design choices

made by Urban, Pitts and Gabbay. In particular, we introduce a slightly modified form of

nominal term, which we call permissive nominal terms (Definition 4.2.7). Here, unknowns are

labeled with an infinite and coinfinite set of atoms, their permission sort (Definition 4.2.2). As

the name suggests, a permission sort is used to control how an unknown is instantiated, and

this mechanism allows us to recover the ‘always fresh’ (Corollary 4.2.17) and ‘always rename’

(Corollary 4.2.18) properties missing from nominal terms.

In addition, we go on to study the unification of permissive nominal terms (Section 4.3). We

show that, like nominal unification, permissive nominal unification is correct (Theorem 4.3.58),

decidable and synthesises principal unifiers (Theorem 4.3.56). However, unlike nominal unifi-

cation, solutions to a permissive unification problem are simplified, consisting solely of a sub-

stitution. This brings the permissive nominal unification problem in line with its higher- and

first-order counterparts. As a side-effect, from a programmer’s perspective, the interface of the

algorithm is significantly simplified. For this reason, the permissive unification algorithm is

factored into two sub-algorithms: one dealing with support reduction (Subsubsection 4.3.2.1),

and one that synthesises a principal unifier by decomposing an equality problem into simpler

subproblems (Subsubsection 4.3.2.2).

Following the work introduced in this Chapter, we have two alternative forms of nominal

term. Section 4.4 analyses the precise relationship between permissive nominal terms and their

older counterparts. In particular, a translation between the two is presented, and we show that

solutions in the permissive world are mapped to solutions in the nominal world, and vice-versa

(Theorem 4.4.24).

This chapter is based on joint work with Gilles Dowek and Murdoch J. Gabbay, and can be

found in two published papers [DGM09a, DGM10]. The initial idea for the work was due to

Dowek and Gabbay. The majority of the mathematics was carried out by myself, though some

was joint work with Gabbay.

4.2 Permissive terms

In this Section, we introduce basic definitions. Of particular interest will be Definition 4.2.2, the

definition of permission sorts. These control how unknowns are instantiated, and their infinite

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 79

and coinfinite nature is what gives permissive nominal terms their unique flavour. Of further

note is Definition 4.2.7, the definition of permissive terms, which differs only slightly from the

UPG notion of nominal term (compare with Definition 4.4.5).

Fix a countably infinite set of atoms A. Use a, b, c, and so on, to range over atoms. We

employ a permutative convention (that is, a and b denote distinct atoms). We note that, like

all nominal work, we assume that (in)equality on atoms is a decidable relation.

Fix a countably infinite set of term formers. Use f, g, h, and so on, to range over term

formers. We employ a permutative convention (that is, f and g denote distinct term formers).

Definition 4.2.1: Call a set coinfinite when its setwise complement is infinite.

A set may be both infinite and coinfinite. For example, consider the even natural numbers,

an infinite set whose complement (the odd natural numbers) is also infinite.

Definition 4.2.2: Fix an infinite and coinfinite set of atoms comb. Define permission sorts

by the following rules:

• The set comb is a permission sort.

• If S is a permission sort, and A is a finite set, then S \A is a permission sort.

• If S is a permission sort, and A is a finite set, then S ∪A is a permission sort.

Use S, S′, T, T ′, and so on, to range over permission sorts.

Remark 4.2.3: We note that if S and T are permission sorts, then S ∪ T and S ∩ T are also

permission sorts. We use this fact without comment in various proofs later in the Chapter.

We implicitly assume that subset, union, set difference and equality on permission sorts are

decidable relations. We use these assumptions without comment throughout the rest of the

Chapter.

Definition 4.2.4: To every permission sort S fix a countably infinite set of (permissive)

unknowns of sort S. Use X,Y, Z, and so on, to range over unknowns. We do not employ

a permutative convention with unknowns (that is X and Y may refer to the same unknown).

Write XS for ‘X has sort S’.

If S 6= S′ then there is no particular connection between XS and XS′ . However, to avoid

confusion, we will avoid name clashes of this sort, wherever possible.

Definition 4.2.5: Suppose f is a function from atoms to atoms. Then:

nontriv(f) = {a | f(a) 6= a}

Definition 4.2.5 is potentially problematic, in that, depending on f , computing nontriv(f)

may be impossible. However, we are careful to only use nontriv with functions f where

nontriv(f) can easily be computed, or with functions that have an ‘obvious’ concrete reali-

sation where this is true (for example, permutations, which may be implemented as finite lists

of swappings).

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 80

Definition 4.2.6: Call a bijection π on atoms a permutation when nontriv(π) is finite. Use

π, π′, π′′, and so on, to range over permutations.

Write π-1 for the inverse of a permutation, π. Write π◦π′ for the functional composition

of two permutations, so (π◦π′)(a) = π(π′(a)). Further, write id for the identity permutation,

so that id(a) = a for all atoms. Note, in particular, that (π-1◦π) = id = (π◦π-1).

Permutations of particular importance are swappings. Write (b a) for the permutation

mapping b to a to b, leaving all other c unchanged. We note that all swappings are self-inverse.

Definition 4.2.7: Define permissive terms by:

r, s, t ::= a | π·XS | [a]r | f(r, . . . , r)

We call [a]r an abstraction, and say that ‘a is abstracted in r’. Intuitively, [a]r is an inten-

sional binding construct; you may envisage [−]− as what λ−.−, π−.−, etc. have in common,

i.e. that a in [a]r is bound within r.

Write ≡ for syntactic identity. That is, r ≡ s whenever r and s denote identical terms. For

typographic convenience, we may abbreviate id·XS as XS.

The reader will notice the definition of terms given in Definition 4.2.7 is extremely similar

to the traditional definition of nominal terms (for instance [GM09a, Definition 2.4]). The only

difference is the presence of a permission sort tagging permissive unknowns, yet the following

Subsection will demonstrate that this small change makes a significant difference to the reasoning

properties that the two notions of term enjoy.

Remark 4.2.8: We remark that, despite permission sorts being infinite and coinfinite in na-

ture, permissive nominal syntax is not infinitary syntax, any more than the Church-typed λ-term

λa : N.a : N→ N is infinitary syntax. In both cases, terms are taken to be finite trees (finitary

syntax), albeit labeled with an infinite set. These infinite sets need not be expanded.

4.2.1 Permutations and α-equivalence

This Subsection introduces a permutation action, and then a notion of α-equivalence for per-

missive nominal terms. The majority of results are routine checks of correctness for the α-

equivalence relation (equivarience is checked in Lemma 4.2.23, and free atom preservation is

checked in Lemma 4.2.24), as well as routine lemmas concerning the permutation action. Corol-

laries 4.2.17 and 4.2.18 are important, and mark a significant departure from the properties of

nominal terms. However, the main result in this Subsection is Theorem 4.2.27, demonstrating

that α-equivalence is an equivalence relation.

Definition 4.2.9: Define a permutation action on terms by:

π·a ≡ π(a) π·(π′·XS) ≡ (π◦π′)·XS π·[a]r ≡ [π(a)](π·r) π·f(r1, . . . , rn) ≡ f(π·r1, . . . , π·rn)

One of the defining features of nominal techniques is the handling of α-equivalence through

injective permutations.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 81

(=αa)
a =α a

ri =α si (1 ≤ i ≤ n)
(=αf)

f(r1, . . . , rn) =α f(s1, . . . , sn)

r =α s
(=α[a])

[a]r =α [a]s

(b a)·r =α s (b 6∈ fa(r))
(=α[b])

[a]r =α [b]s

π|S = π′|S
(=αX)

π·XS =α π
′·XS′

Figure 4.1 Rules for α-equivalence

Definition 4.2.10: If S ⊆ A define the pointwise permutation action by:

π·S = {π(a) | a ∈ S}

Definition 4.2.11: Define the free atoms of a term by:

fa(a) = {a} fa(π·XS) = π·S fa([a]r) = fa(r) \ {a} fa(f(r1, . . . , rn)) =
⋃

1≤i≤n

fa(ri)

Definition 4.2.12: If S ⊆ A then π|S is the restriction of π to S. That is, π|S is the partial

function such that:

π|S(a) = π(a) if a ∈ S π|S(a) is undefined, otherwise

Definition 4.2.13: Define a notion of α-equivalence on terms, by the rules in Figure 4.1.

Definition 4.2.14: Define the unknowns of a term by:

fV (a) = ∅ fV ([a]r) = fV (r) fV (π·XS) = {XS} fV (f(r1, . . . , rn)) =
⋃

1≤i≤n

fV (ri)

Definition 4.2.15: Define the atoms of a term by:

one(a) = {a} one(f(r1, . . . , rn)) =
⋃

1≤i≤n

one(ri) one([a]r) = one(r) ∪ {a}

one(π·XS) = nontriv(π)

The set of atoms of a term is a purely technical notion used in the proof of Corollary 4.2.17.

Similarly, the following is a technical result used solely in the same proof.

Lemma 4.2.16: fa(r) ⊆ one(r) ∪
⋃
{S | XS ∈ fV (r)}

Proof. By induction on r.

• The case a. By Definition 4.2.15 we have one(a) = {a}. By Definition 4.2.11 we have

fa(a) = {a}. The result follows.

• The case π·XS. By Definition 4.2.15 we have one(π·XS) = nontriv(π) ∪ S. By Defini-

tion 4.2.11 we have fa(π·XS) = π·S. The result follows.

• The case f(r1, . . . , rn). By Definition 4.2.11 we have fa(f(r1, . . . , rn)) =
⋃

1≤i≤n fa(ri).

By inductive hypothesis
⋃

1≤i≤n fa(ri) ⊆
⋃

1≤i≤n one(ri) ∪
⋃
{S | XS ∈ fV (ri)}. By

Definition 4.2.15 we have
⋃

1≤i≤n one(ri)∪
⋃
{S | XS ∈ fV (ri)} = one(f(r1, . . . , rn))∪

⋃
{S |

XS ∈ fV (f(r1, . . . , rn))}. The result follows.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 82

• The case [a]r. By Definition 4.2.15 we have one([a]r) = {a}∪one(r). By Definition 4.2.11

we have fa([a]r) = fa(r) \ {a}. By inductive hypothesis fa(r) ⊆ one(r) ∪
⋃
{S | XS ∈

fV (r)}. The result follows.

4

The following two Corollaries mark a significant difference between permissive nominal terms

and nominal terms. Corollary 4.2.17 states that, for any finite collection of terms, we can always

find an atom that is fresh for that collection (the ‘always fresh’ property). Corollary 4.2.18 states

that, we can always rename a bound atom to something fresh when needed (the ‘always rename’

property).

Corollary 4.2.17: For every r1, . . . , rn there are infinitely many b such that b 6∈ {fa(ri) | 1 ≤
i ≤ n}.

Proof. By Lemma 4.2.16, fa(ri) ⊆ one(ri) ∪
⋃
{S | XS ∈ fV (ri)}. Since the syntax of ri is

finite, one(ri) and fV (ri) are finite also. It follows that
⋃
{S | XS ∈ fV (ri)} for some i is

coinfinite. The result follows. 4

Corollary 4.2.18: For every r and a there exists infinitely many b such that [a]r =α [b]s for

some s.

Proof. Immediate, from Corollary 4.2.17 and (=α[b]). 4

Lemma 4.2.19: id·r ≡ r

Proof. By induction on r. See Appendix B. 4

Lemma 4.2.20: π·(π′·r) ≡ (π◦π′)·r

Proof. By induction on r. See Appendix B. 4

The following two lemmas are checks that the set of free atoms and the set of unknowns of

a term are equivariant:

Lemma 4.2.21: π·fa(r) = fa(π·r)

Proof. By induction on r. See Appendix B. 4

Lemma 4.2.22: fV (π·r) = fV (r)

Proof. By induction on r. See Appendix B. 4

The following two lemmas are basic correctness checks for the α-equivalence relation. Lemma 4.2.23

is a check that α-equivalence is equivariant (invariant under permutation of atoms). Lemma 4.2.24

is a check that α-equivalence only adjusts bound atoms, and neither increases nor reduces the

set of free atoms of a term.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 83

Lemma 4.2.23: If r =α s then π·r =α π·s.

Proof. By induction on the derivation of r =α s.

• The case (=αa). Since π(a) =α π(a) always, using (=αa).

• The case (=αf). Suppose ri =α si for 1 ≤ i ≤ n. By inductive hypotheses π·ri =α π·si for

1 ≤ i ≤ n. Using (=αf) we have f(π·r1, . . . , π·rn) =α f(π·s1, . . . , π·sn). By Definition 4.2.9,

f(π·r1, . . . , π·rn) ≡ π·f(r1, . . . , rn), and the result follows.

• The case (=α[a]). Suppose r =α s. By inductive hypothesis π·r =α π·s. Using (=α[a])

we have [π(a)](π·r) =α [π(a)](π·s). By Definition 4.2.9, [π(a)](π·r) ≡ π·[a]r, and the result

follows.

• The case (=α[b]). Suppose (b a)·r =α s and b 6∈ fa(r). By inductive hypothesis π·((b a)·
r) =α π·s. By Lemma 4.2.21, π(b) 6∈ fa(π·r). By elementary properties of permutations,

π·((b a)·r) ≡ (π(b) π(a))·(π·r). Using (=α[b]) we have [π(a)](π·r) =α [π(b)](π·s). By

Definition 4.2.9, [π(a)](π·r) ≡ π·[a]r, and the result follows.

• The case (=αX). Suppose π′|S = π′′|S so that π·XS =α π
′·XS. Then π◦π′|S = π◦π′′|S ,

therefore (π◦π′)·XS =α (π◦π′′)·XS. By Definition 4.2.9, (π◦π′)·XS ≡ π·(π′·XS), and the

result follows.

4

Lemma 4.2.24: If r =α s then fa(r) = fa(s).

Proof. By induction on the derivation of r =α s.

• The case (=αa). Since fa(a) = fa(a) always.

• The case (=αf). Suppose ri =α si for 1 ≤ i ≤ n. By inductive hypotheses fa(ri) = fa(si)

for 1 ≤ i ≤ n. Therefore
⋃

1≤i≤n fa(ri) =
⋃

1≤i≤n fa(si). Then fa(f(r1, . . . , rn)) =

fa(f(s1, . . . , sn)), as required.

• The case (=α[a]). Suppose r =α s. By inductive hypothesis fa(r) = fa(s). Therefore

fa(r) \ {a} = fa(s) \ {a}. Then fa([a]r) = fa([a]s), as required.

• The case (=α[b]). Suppose [a]r =α [b]s by (=α[b]) so that b 6∈ fa(r). We aim to show

fa([a]r) = fa([b]s), or fa(r)\{a} = fa(s)\{b}. As b 6∈ fa(r) we have (b a)·(fa(r)\{a}) =

fa((b a)·r) \ {b}. By inductive hypothesis fa((b a)·r) = fa(s). The result follows.

• The case (=αX). Suppose π|S = π′|S therefore π·S = π′·S. By Definition 4.2.11 we have

fa(π·XS) = π·S. It is a fact that π·S = π′·S. By Definition 4.2.11 we have π′·S = fa(π′·
XS). The result follows.

4

We introduce the following notion as an aid for inductive proofs (for instance, the proof

of Theorem 4.2.27). Lemma 4.2.26 checks that the size of a term is invariant under atom

permutation.

Definition 4.2.25: Define the size of a term by:

size(a) = 0 size(π·XS) = 0 size([a]r) = 1 + size(r) size(f(r1, . . . , rn)) = 1 +
∑

1≤i≤n

size(ri)

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 84

Lemma 4.2.26: size(π·r) = size(r)

Proof. By induction on r. See Appendix B. 4

Theorem 4.2.27, demonstrating that α-equivalence is an equivalence relation, is our main

result in this Subsection.

Theorem 4.2.27: =α is reflexive, symmetric and transitive.

Proof. We handle the three cases separately.

• The reflexivity case. We show r =α r by induction on r.

• The case a. Using (=αa) we obtain a =α a. The result follows.

• The case π·XS. It is a fact that π|S = π|S . Using (=αX) we obtain π·XS =α π·XS.

The result follows.

• The case f(r1, . . . , rn). Suppose ri =α ri for 1 ≤ i ≤ n. Using (=αf) we obtain

f(r1, . . . , rn) =α f(r1, . . . , rn). The result follows.

• The case [a]r. Suppose r =α r. Using (=α[a]) we obtain [a]r =α [a]r. The result

follows.

• The symmetry case. We show s =α r if r =α s by induction on the derivation of r =α

s.

• The case (=αa). Using (=αa) we obtain a =α a. The result follows.

• The case (=αf). Suppose ri =α si for 1 ≤ i ≤ n. By inductive hypotheses si =α ri

for 1 ≤ i ≤ n. Using (=αf) we obtain f(s1, . . . , sn) =α f(r1, . . . , rn). The result follows.

• The case (=α[a]). Suppose r =α s. By inductive hypothesis s =α r. Using (=α[a])

we obtain [a]s =α [a]r. The result follows.

• The case (=α[b]). Suppose (b a)·r =α s with b 6∈ fa(r). By Lemma 4.2.23 we have

(b a)·((b a)·r) =α (b a)·s. By Lemma 4.2.20 we have ((b a)◦(b a))·r =α (b a)·s. It

is a fact that swappings are self inverse, so id·r =α (b a)·s. By Lemma 4.2.19 we

have r =α (b a)·s. By inductive hypothesis (b a)·s =α r. By Lemma 4.2.21 we have

a 6∈ fa((b a)·r). By Lemma 4.2.24 we have a 6∈ fa(s). Using (=α[b]) we obtain

[b]s =α [a]r. The result follows.

• The case (=αX). It is a fact that equality on partial functions is symmetric. The

result follows.

• The transitivity case. We show r =α t if r =α s and s =α t by induction on the size of

r.

• The case a. Suppose a =α s. By the structure of the derivation rules we have s ≡ a.

Similarly, suppose a =α t. By the structure of the derivation rules we have t ≡ a.

Using (=αa) we obtain a =α a. The result follows.

• The case π·XS. It is a fact that equality on partial functions is transitive. The result

follows.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 85

• The case f(r1, . . . , rn). Suppose ri =α si and si =α ti for 1 ≤ i ≤ n. By inductive

hypotheses ri =α ti for 1 ≤ i ≤ n. Using (=αf) we obtain f(r1, . . . , rn) =α f(t1, . . . , tn).

The result follows.

• The case [a]r. We consider the most general case, as all other cases are similar. Sup-

pose (b a)·r =α s and (c b)·s =α t with b 6∈ fa(r) and c 6∈ fa(s). By Lemma 4.2.23

we have (c b)·((b a)·r) =α (c b)·s. By Lemma 4.2.26 we have (c b)·((b a)·r) =α t. By

Lemma 4.2.20 we have ((c b)◦(b a))·r =α t therefore (c a)·r =α t. By Lemma 4.2.24

we have c 6∈ fa((b a)·r). By Lemma 4.2.21 we have c 6∈ (b a)·fa(r) therefore c 6∈ fa(r).

Using (=α[b]) we obtain [a]r =α [c]t. The result follows.

4

4.2.2 Substitutions

This Subsection introduces a notion of substitution for unknowns, and a substitution action

on terms. The main results are Theorem 4.2.30, a demonstration that the substitution action

reduces or preserves the free atoms of a term, Theorem 4.2.33, and Theorem 4.2.36 demonstrating

that performing a substitution twice on a term is equivalent to performing a single, composed

substitution.

Definition 4.2.28: A substitution θ is a function from unknowns to terms such that fa(θ(XS)) ⊆
S. Use θ, θ′, θ′′, and so on, to range over substitutions.

Write id for the identity substitution mapping XS to id·XS. It will always be clear from

context whether id refers to the identity permutation or identity substitution.

Suppose fa(t) ⊆ S. Write [XS:=t] for the substitution such that:

[XS:=t](XS) ≡ t and [XS:=t](Y T) ≡ id·Y T for all other Y T

In Definition 4.2.28, we note again that, if S 6= S′, then there is no particular connection

between XS and XS′ .

Definition 4.2.29: Define a substitution action on terms by:

aθ ≡ a (π·XS)θ ≡ π·θ(XS) ([a]r)θ ≡ [a](rθ) f(r1, . . . , rn)θ ≡ f(r1θ, . . . , rnθ)

As is standard for nominal terms, permissive nominal substitutions make no attempt to

avoid capture by bound atoms. For instance, if S = comb and a ∈ comb, we have ([a]XS)[XS:=

a] ≡ [a]a.

Theorem 4.2.30: fa(rθ) ⊆ fa(r)

Proof. By induction on r.

• The case a. By Definition 4.2.29 we have aθ ≡ a. The result follows.

• The case π·XS. By Definition 4.2.29 we have (π·XS)θ ≡ π·θ(XS). There are two cases:

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 86

• The case θ(XS) = id·XS. The result follows.

• The case θ(XS) 6= id·XS. Suppose that θ(XS) = id·Y T . By Definition 4.2.28 we have

fa(id·Y T) ⊆ S. By Definition 4.2.11 we have fa(id·Y T) = id·T = T , therefore T ⊆ S.

By Definition 4.2.9 we have π·(id·Y T) ≡ (π◦id)·Y T . It is a fact that π◦id = π and

as T ⊆ S then π·T ⊆ π·S. By Definition 4.2.11 we have fa(π·Y T) ⊆ fa(π·XS). The

result follows.

• The case [a]r. By Definition 4.2.29 we have fa(([a]r)θ) = fa([a](rθ)). By Definition 4.2.11

we have fa([a](rθ)) = fa(rθ) \ {a}. By inductive hypothesis fa(rθ) \ {a} ⊆ fa(r) \ {a}.
By Definition 4.2.11 we have fa(r) \ {a} = fa([a]r). The result follows.

• The case f(r1, . . . , rn). By Definition 4.2.29 we have fa(f(r1, . . . , rn)θ) = fa(f(r1θ, . . . , rnθ)).

By Definition 4.2.11 we have fa(f(r1θ, . . . , rnθ)) =
⋃

1≤i≤n fa(riθ). By inductive hy-

potheses
⋃

1≤i≤n fa(riθ) ⊆
⋃

1≤i≤n fa(ri). By Definition 4.2.11 we have
⋃

1≤i≤n fa(ri) =

fa(f(r1, . . . , rn)). The result follows.

4

The following is a basic commutation property between permutations and substitutions.

Intuitively, Lemma 4.2.31 states that renaming first, then substituting, or substituting and then

renaming both amount to the same thing.

Lemma 4.2.31: π·(rθ) ≡ (π·r)θ

Proof. By induction on r.

• The case a. By Definition 4.2.29 we have aθ ≡ a. The result follows.

• The case π′·XS. By Definition 4.2.29 we have π·((π′·XS)θ) ≡ π·(π′·θ(XS)). By Lemma 4.2.20

we have π·(π′·θ(XS)) ≡ (π◦π′)·θ(XS). By Definition 4.2.29 we have (π◦π′)·θ(XS) ≡
((π◦π′)·XS)θ. By Definition 4.2.9 we have ((π◦π′)·XS)θ ≡ (π·(π′·XS))θ. The result follows.

• The case [a]r. By Definition 4.2.29 we have π·(([a]r)θ) ≡ π·[a](rθ). By Definition 4.2.9

we have π·[a](rθ) ≡ [π(a)](π·(rθ)). By inductive hypothesis [π(a)](π·(rθ)) ≡ [π(a)]((π·r)θ).
By Definition 4.2.29 we have [π(a)]((π·r)θ) ≡ ([π(a)](π·r))θ. By Definition 4.2.9 we have

([π(a)](π·r))θ ≡ (π·[a]r)θ. The result follows.

• The case f(r1, . . . , rn). By Definition 4.2.29 we have π·(f(r1, . . . , rn)θ) ≡ π·f(r1θ, . . . , rnθ).

By Definition 4.2.9 we have π·f(r1θ, . . . , rnθ) ≡ f(π·(r1θ), . . . , π·(rnθ)). By inductive hy-

potheses f(π·(r1θ), . . . , π·(rnθ)) ≡ f((π·r1)θ, . . . , (π·rn)θ). By Definition 4.2.29 we have f((π·
r1)θ, . . . , (π·rn)θ) ≡ f(π·r1, . . . , π·rn)θ. By Definition 4.2.9 we have f(π·r1, . . . , π·rn)θ ≡ (π·
f(r1, . . . , rn))θ. The result follows.

4

The following is a technical result used in the proof of Lemma 4.3.49. As it concerns substi-

tutions, we leave it here.

Lemma 4.2.32: fV (r[XS:=t]) ⊆ fV (r) ∪ fV (t)

Proof. By induction on r, using Lemma 4.2.22. See Appendix B. 4

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 87

Intuitively, the following result states that, if a pair of substitutions ‘agree’ on all un-

knowns occurring in a term, then performing the substitutions on that term leaves us with

an α-equivalent pair of terms.

Theorem 4.2.33: If θ(XS) =α θ
′(XS) for all XS ∈ fV (r) then rθ =α rθ

′.

Proof. By induction on r.

• The case a. By Definition 4.2.14 we have fV (a) = ∅. There is nothing to prove.

• The case π·XS. Suppose θ(XS) =α θ′(XS). By Lemma 4.2.23 we have π·θ(XS) =α π·
θ′(XS). By Definition 4.2.29 we have (π·XS)θ =α (π·XS)θ′. The result follows.

• The case [a]r. Suppose θ(XS) =α θ
′(XS) for all XS ∈ fV ([a]r). By Definition 4.2.14 we

have θ(XS) =α θ
′(XS) for all XS ∈ fV (r), as fV ([a]r) = fV (r). By inductive hypothesis

rθ =α rθ′. Using (=α[a]) we obtain [a](rθ) =α [a](rθ′). By Definition 4.2.29 we have

([a]r)θ =α ([a]r)θ′. The result follows.

• The case f(r1, . . . , rn). Suppose θ(XS) =α θ′(XS) for all XS ∈ fV (f(r1, . . . , rn)). By

Definition 4.2.14 θ(XS) =α θ
′(XS) for all XS ∈ fV (ri) for 1 ≤ i ≤ n, as fV (f(r1, . . . , rn)) =⋃

1≤i≤n fV (ri). By inductive hypotheses riθ =α riθ
′ for 1 ≤ i ≤ n. Using (=αf) we have

f(r1θ, . . . , rnθ) =α f(r1θ
′, . . . , rnθ

′). By Definition 4.2.29 f(r1, . . . , rn)θ =α f(r1, . . . , rn)θ as

required.

4

Lemma 4.2.34 checks that the substitution action preserves α-equivalence.

Lemma 4.2.34: If r =α s then rθ =α sθ.

Proof. By induction on the derivation of r =α s.

• The case (=αa). By Definition 4.2.29 we have aθ ≡ a. The result follows.

• The case (=αX). Suppose π|S = π′|S so that π·XS =α π′·XS. By Definition 4.2.28 we

have fa(θ(XS)) ⊆ S. The result follows.

• The case (=α[a]). Suppose r =α s. By inductive hypothesis rθ =α sθ. Using (=α[a]) we

obtain [a](rθ) =α [a](sθ). By Definition 4.2.29 we have [a](rθ) ≡ ([a]r)θ. The result follows.

• The case (=α[b]). Suppose (b a)·r =α s with b 6∈ fa(r). By inductive hypothesis ((b a)·
r)θ =α sθ. By Theorem 4.2.30 we have b 6∈ fa(rθ). By Lemma 4.2.31 we have (b a)·
(rθ) =α sθ. Using (=α[b]) we obtain [a](rθ) =α [b](sθ). By Definition 4.2.29 we have

[a](rθ) ≡ ([a]r)θ. The result follows.

• The case (=αf). Suppose ri =α si for 1 ≤ i ≤ n. By inductive hypothesis riθ =α siθ.

Using (=αf) we obtain f(r1θ, . . . , rnθ) =α f(s1θ, . . . , snθ). By Definition 4.2.29 we have

f(r1θ, . . . , rnθ) ≡ f(r1, . . . , rn)θ. The result follows.

4

Definition 4.2.35: Define composition of substitutions by (θ◦θ′)(XS) ≡ (θ(XS))θ′.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 88

We note that, compared to composition of permutations (Definition 4.2.6), composition of

substitutions is reversed. This reflects the fact that we usually write substitutions in a postfix

style (for instance, r[XS:=t]).

Theorem 4.2.36: r(θ◦θ′) ≡ (rθ)θ′

Proof. By induction on r.

• The case a. By Definition 4.2.29 we have aθ ≡ a. The result follows.

• The case π·XS. By Definition 4.2.29 we have (π·XS)(θ◦θ′) ≡ π·((θ◦θ′)(XS)). By Defini-

tion 4.2.35 we have π·((θ◦θ′)(XS)) ≡ π·(θ(XS)θ′). By Lemma 4.2.31 we have π·(θ(XS)θ′) ≡
(π·(θ(XS)))θ′. By Definition 4.2.29 we have (π·(θ(XS)))θ′ ≡ ((π·XS)θ)θ′. By Lemma 4.2.31

we have ((π·XS)θ)θ′ ≡ ((π·XS)θ)θ′. The result follows.

• The case [a]r. By Definition 4.2.29 we have ([a]r)(θ◦θ′) ≡ [a](r(θ◦θ′)). By inductive

hypothesis [a](r(θ◦θ′)) ≡ [a]((rθ)θ′). By Definition 4.2.29 we have [a]((rθ)θ′) ≡ ([a](rθ))θ′.

By Definition 4.2.29 we have ([a](rθ))θ′ ≡ (([a]r)θ)θ′. The result follows.

• The case f(r1, . . . , rn). By Definition 4.2.29 we have f(r1, . . . , rn)(θ◦θ′) ≡ f(r1(θ◦θ′), . . . , rn(θ◦θ′)).
By inductive hypotheses f(r1(θ◦θ′), . . . , rn(θ◦θ′)) ≡ f((r1θ)θ

′, . . . , (rnθ)θ
′). By Definition 4.2.29

we have f((r1θ)θ
′, . . . , (rnθ)θ

′) ≡ f(r1θ, . . . , rnθ)θ
′. By Definition 4.2.29 we have f(r1θ, . . . , rnθ)θ

′ ≡
(f(r1, . . . , rn)θ)θ′. The result follows.

4

4.3 Unification of terms

4.3.1 Unification problems and their solutions

This Subsection introduces the important notion of a unification problem (Definition 4.3.2), as

well as what it means for a substitution to be a solution to said unification problems (Defini-

tion 4.3.3).

Definition 4.3.1: Call a pair r
?
= s an equality.

Definition 4.3.2: Call a finite set of equalities a unification problem. Use P,P ′,P ′′, and

so on, to range over unification problems.

Definition 4.3.3: Call a substitution θ a solution to a unification problem P when:

rθ =α sθ for every r
?
= s ∈ P

Definition 4.3.4: Write Sol(P) for the set of solutions of a unification problem P. Call P
solvable when Sol(P) is non-empty.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 89

4.3.2 A unification algorithm

This Subsection introduces the permissive nominal unification algorithm proper. As stated,

unlike the nominal unification algorithm, the permissive nominal unification algorithms is fac-

tored into two separate sub-algorithms, and to reflect this, the Subsection is divided into two.

Subsubsection 4.3.2.1 describes the support reduction procedure, a subprocedure that’s used

by the rest of the algorithm to remove the burden of handling freshness constraints from the

user. Subsubsection 4.3.2.2 describes the remainder of the algorithm, and proves important

correctness results.

4.3.2.1 Support reduction

This Subsubsection introduces the notion of support reduction. At first glance, support reduc-

tion, and its motivation, may seem mysterious. However, the following example may help to

remove the mystery from the process.

Suppose a, b 6∈ comb such that S = comb ∪ {a} and T = comb ∪ {b}. Suppose also that we

wish to unify id·XS and id·Y T . We saw in an earlier section that a permissive substitutions

must reduce the free atoms of a term that it acts on (Theorem 4.2.30). With this in mind, we

see that there is no direct substitution that makes id·XS and id·Y T α-equivalent.

However, what we can do is first substitute id·XS and id·Y T for the fresh unknown Z with

sort U = comb \ {a, b}. It’s easy to check that for both XS and Y T a substitution of the form

[XS:=id·ZU]◦[Y T :=id·ZU] is support reducing, and solves the problem of unifying id·XS and

id·Y T . Support reduction is the process of finding support reducing substitutions of this form.

Definition 4.3.6 introduces the notion of a support reduction problem and Definition 4.3.7

introduces the important concept of a solution to support reduction problems. Definition 4.3.8

introduces a support reduction algorithm given by a series of syntax-directed rewrite rules. The

rest of the Subsubsection is dedicated to proving that this rewrite relation generates solutions

of the correct form (Lemma 4.3.23) and always terminates (Theorem 4.3.13).

Definition 4.3.5: A support reduction is a pair r v S of a term and a permission sort.

Definition 4.3.6: A support reduction problem is a finite set of support reductions.

Inc, Inc′, Inc′′, and so on, will range over support reduction problems.

Definition 4.3.7: Call a substitution θ a solution to a support reduction problem Inc when:

fa(rθ) ⊆ S for every r v S ∈ Inc

Write Sol(Inc) for the set of solutions to a support reduction problem. Call Inc solvable

whenever Sol(Inc) 6= ∅.

Definition 4.3.8: Define a simplification rewrite relation on support reduction problems by

the rules in Figure 4.2.

The rules of Definition 4.3.8 split support reduction problems into either simpler problems,

or solve them outright, eliminating them from the problem set (in the cases of (va) and (vX)).

The following technical lemma is used heavily in the proof of Theorem 4.3.10.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 90

(va) a v S, Inc =⇒ Inc (a ∈ S)
(vf) f(r1, . . . , rn) v S, Inc =⇒ r1 v S, . . . , rn v S, Inc
(v[]) [a]r v S, Inc =⇒ r v S ∪ {a}, Inc
(vX) π·XS v T, Inc =⇒ XS v π-1·T, Inc (S 6⊆ π-1·T, π 6= id)
(vX′) π·XS v T, Inc =⇒ Inc (S ⊆ π-1·T)

Figure 4.2 Support inclusion problem simplification

Lemma 4.3.9: We have:

1. If a ∈ S then fa(aθ) ⊆ S always.

2. fa(f(r1, . . . , rn)θ) ⊆ S if and only if fa(riθ) ⊆ S for all 1 ≤ i ≤ n.

3. fa(([a]r)θ) ⊆ S if and only if fa(rθ) ⊆ S ∪ {a}.

4. fa((π·XS)θ) ⊆ T if and only if fa(XSθ) ⊆ π-1·T .

5. If S ⊆ π-1·T then fa(π·XS) ⊆ T always.

Proof. We handle the claims individually:

• Claim One. Suppose a ∈ S. By Definition 4.2.29 we have aθ ≡ a. By Definition 4.2.11 we

have fa(aθ) = {a}. It is a fact that a ∈ S if and only if {a} ⊆ S. The result follows.

• Claim Two. We handle the two implications separately:

• The left-to-right case. Suppose fa(f(r1, . . . , rn)θ) ⊆ S. We have
⋃

1≤i≤n fa(riθ) ⊆ S,

as:
fa(f(r1, . . . , rn)θ) ≡ fa(f(r1θ, . . . , rnθ))

by Definition 4.2.29

≡
⋃

1≤i≤n fa(riθ)

Therefore fa(riθ) ⊆ S for 1 ≤ i ≤ n. The result follows.

• The right-to-left case. Suppose fa(riθ) ⊆ S for 1 ≤ i ≤ n therefore
⋃

1≤i≤n fa(riθ) ⊆
S. By Definition 4.2.11 we have fa(f(r1θ, . . . , rnθ)) ⊆ S. By Definition 4.2.29 we have

fa(f(r1, . . . , rn)θ) ⊆ S. The result follows.

• Claim Three. We handle the two implications separately:

• The left-to-right case. Suppose fa(([a]r)θ) ⊆ S. By Definition 4.2.29 we have fa([a](rθ)) ⊆
S. By Definition 4.2.11 we have fa(rθ) \ {a} ⊆ S, therefore fa(rθ) ⊆ S ∪ {a}. The

result follows.

• The right-to-left case. Suppose fa(rθ) ⊆ S ∪ {a} therefore fa(rθ) \ {a} ⊆ S. By

Definition 4.2.11 we have fa([a](rθ)) ⊆ S. By Definition 4.2.29 we have fa(([a]r)θ) ⊆
S. The result follows.

• Claim Four. We handle the two implications separately:

• The left-to-right case. Suppose fa((π·XS)θ) ⊆ T . By Definition 4.2.29 we have fa(π·
θ(XS)) ⊆ T . By Lemma 4.2.21 we have π·fa(θ(XS)) ⊆ T . It is a fact that ⊆ is

equivariant, so (π-1◦π)·fa(θ(XS)) ⊆ π-1·T . It is a fact that (π-1◦π) = id, therefore

fa(θ(XS)) ⊆ π-1·T . By Definition 4.2.29 we have fa(XSθ) ⊆ π-1·T . The result follows.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 91

• The right-to-left case. Suppose fa(XSθ) ⊆ π-1·T . By Definition 4.2.29 we have

fa(θ(XS)) ⊆ π-1·T . It is a fact that ⊆ is equivariant, so π·fa(θ(XS)) ⊆ (π◦π-1)·
T . It is a fact that (π◦π-1) = id, therefore π·fa(θ(XS)) ⊆ T . By Lemma 4.2.21 we

have fa(π·θ(XS)) ⊆ T . By Definition 4.2.29 we have fa((π·XS)θ) ⊆ T . The result

follows.

• Claim Five. Suppose S ⊆ π-1·T . It is a fact that ⊆ is equivariant, so π·S ⊆ (π◦π-1)·T . It

is a fact that (π◦π-1) = id, therefore π·S ⊆ T . By Definition 4.2.11 we have fa(π·XS) ⊆ T .

The result follows.

4

Intuitively, Theorem 4.3.10 states that the support reduction relation does not throw away

any solutions, as it simplifies a problem.

Theorem 4.3.10: If Inc =⇒ Inc′ then Sol(Inc) = Sol(Inc′).

Proof. We proceed by case analysis on Inc =⇒ Inc′:

• The case (va). Suppose a ∈ S so that a v S, Inc =⇒ Inc by (va), and suppose θ ∈
Sol(Inc). By Claim One of Lemma 4.3.9 we have θ ∈ Sol(a v S, Inc). The result follows.

Otherwise, suppose θ ∈ Sol(a v S, Inc). By Definition 4.3.7 we have θ ∈ Sol(Inc). The

result follows.

• The case (vf). Suppose f(r1, . . . , rn), Inc =⇒ r1 v S, . . . , rn v S, Inc by (vf), and

suppose θ ∈ Sol(r1 v S, . . . , rn v S, Inc). By Claim Two of Lemma 4.3.9 we have

θ ∈ Sol(f(r1, . . . , rn) v S, Inc). The result follows.

Otherwise, suppose θ ∈ Sol(f(r1, . . . , rn) v S, Inc). By Claim Two of Lemma 4.3.9 we

have θ ∈ Sol(r1 v S, . . . , rn v S, Inc). The result follows.

• The case (v[]). Suppose [a]r v S, Inc =⇒ r v S ∪ {a}, Inc by (v[]), and suppose

θ ∈ Sol(r v S∪{a}, Inc). By Claim Three of Lemma 4.3.9 we have θ ∈ Sol([a]r v S, Inc).
The result follows.

Otherwise, suppose θ ∈ Sol([a]r v S, Inc). By Claim Three of Lemma 4.3.9 we have

θ ∈ Sol(r v S ∪ {a}, Inc). The result follows.

• The case (vX). Suppose π·XS v T, Inc =⇒ XS v π-1·T, Inc by (vX), and suppose

θ ∈ Sol(XS v π-1·T, Inc). By Claim Four of Lemma 4.3.9 we have θ ∈ Sol(π·XS v T, Inc).
The result follows.

Otherwise, suppose θ ∈ Sol(π·XS v T, Inc). By Claim Four of Lemma 4.3.9 we have

θ ∈ Sol(XS v π-1·T, Inc). The result follows.

• The case (vX′). Suppose S ⊆ π-1·T so that π·XS v T, Inc =⇒ Inc by (vX′), and

suppose θ ∈ Sol(Inc). By Claim Five of Lemma 4.3.9 we have θ ∈ Sol(π·XS v T, Inc).

The result follows.

Otherwise, suppose θ ∈ Sol(π·XS v T, Inc). By Definition 4.3.7 we have θ ∈ Sol(Inc).
The result follows.

4

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 92

Definition 4.3.11: The size of a support inclusion problem size(Inc) is a tuple (T,A, P, S)

where:

• T is the number of term-formers appearing within terms in Inc,

• A is the number of abstractions appearing within terms in Inc,

• P is the number of suspended permutations, distinct from the identity permutation, ap-

pearing within terms in Inc,

• S is the number of support inclusions appearing within Inc.

Order tuples lexicographically.

Example 4.3.12: If Inc = [a]b v S, f(π·XS, a) v T then size(Inc) = (1, 1, 1, 2). Simi-

larly, if Inc′ = f(π·XS, a) then size(Inc′) = (0, 0, 1, 1). By the lexicographic ordering we have

size(Inc′) < size(Inc).

Theorem 4.3.13: The support inclusion simplification relation is strongly normalizing (that

is, every reduction path eventually terminates).

Proof. By case analysis on r v S, Inc showing that all rules reduce the size of a support

inclusion problem. See Appendix B. 4

Definition 4.3.14: For every support inclusion problem Inc pick an arbitrary normal form

nf(Inc) guaranteed to exist by Theorem 4.3.13.

Definition 4.3.15: Call Inc non-trivial whenever nf(Inc) 6= ∅.

Definition 4.3.16: Call Inc consistent whenever a v S 6∈ nf(Inc) for all a and S.

Lemma 4.3.17: If nf(Inc) is consistent then all inc ∈ nf(Inc) have the form Y T v S where

S 6⊆ T .

Proof. By inspection of the rules in Definition 4.3.8. 4

Definition 4.3.18: Define fV (Inc) by fV (Inc) =
⋃
{fV (r) | ∃S.r v S}.

Intuitively, fV (Inc) is the set of unknowns appearing in Inc.

Definition 4.3.19: Let V range over sets of unknowns.

Definition 4.3.20: Suppose Inc is consistent. For every XS ∈ V make a fixed but arbitrary

choice of X ′S
′

such that X ′S
′ 6∈ V and S′ = S ∩

⋂
{T | XS v T ∈ nf(Inc)}.

We make our choice injectively; that is, for distinct XS and Y T ∈ V it is always the case that

X ′S
′

and Y ′T
′

are distinct. It will be convenient to write V̄Inc for our choices {X ′S′ | XS ∈ Inc}.

Definition 4.3.21: Define a substitution ρVInc by:

ρVInc(X
S) = id·X ′S′ if XS ∈ V and ρVInc(X

S) = id·XS otherwise

Lemma 4.3.22 checks that ρVInc is a substitution by our definition (Definition 4.3.7).

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 93

Lemma 4.3.22: fa(ρVInc(X
S)) ⊆ S

Proof. Suppose XS ∈ V. By Definition 4.3.21 we have ρVInc(X
S) = id·X ′S′ . By Definition 4.3.20

we have S′ ⊆ S. By Definition 4.2.11 we have fa(id·X ′S′) = S′. The result follows.

Otherwise we have XS 6∈ V. By Definition 4.3.21 we have ρVInc(X
S) = id·XS. The result

follows. 4

Lemma 4.3.23: If Inc is consistent then ρVInc ∈ Sol(Inc).

Proof. Suppose Inc is in normal-form. For every XS v T ∈ Inc we have ρVInc(X
S) = id·X ′S′ for

an S′ that satisfies S′ ⊆ T . The result follows.

Otherwise, if Inc is not a normal-form. By Theorem 4.3.10 we have Sol(Inc) = Sol(nf(Inc)),

and we use the previous paragraph. 4

Theorem 4.3.24 states that the notions of consistency (Definition 4.3.16) and solvability

(Definition 4.3.4) co-incide.

Theorem 4.3.24: Inc is consistent if and only if Inc is solvable.

Proof. By Theorem 4.3.10 we have Sol(Inc) = Sol(nf(Inc)). It therefore suffices to show the

claim holds for the case where Inc is a normal-form.

Suppose Inc is inconsistent. By Definition 4.3.16 we have some a exists such that a v S ∈ Inc
where a 6∈ S. By Definition 4.2.29 we have aθ ≡ a always. It is a fact that no substitution exists

so that {aθ} ⊆ S, and therefore Inc is not solvable. The result follows.

Suppose Inc is consistent. By Lemma 4.3.23 we have Inc is solvable. The result follows. 4

Definition 4.3.25: Suppose that Inc is consistent, fV (Inc) ⊆ V and θ ∈ Sol(Inc). Define a

substitution (θ−ρVInc) by:

• (θ−ρVInc)(X ′S
′
) = θ(XS) if XS ∈ V and ρVInc(X

S) = id·X ′S′ ,
• (θ−ρVInc)(XS) = θ(XS) if XS 6∈ V.

It remains to check whether Definition 4.3.25 is well-defined:

Lemma 4.3.26: If (θ−ρVInc) exists then it is well-defined.

Proof. Suppose (θ−ρVInc) exists. There are four cases:

• The case XS 6= Y T , XS 6∈ V and Y T 6∈ V. By Definition 4.3.25 we have (θ−ρVInc)(XS) =

θ(XS). By Definition 4.3.25 we have (θ−ρVInc)(Y T) = θ(Y T). It is a fact that substitutions

are well-defined. The result follows.

• The case X ′S
′ 6= Y ′T

′
, ρVInc(X

S) = id·X ′S′ , ρVInc(Y T) = id·Y ′T ′ , XS 6∈ V and Y T 6∈ V.

By Definition 4.3.25 we have (θ−ρVInc)(X ′S
′
) = θ(XS). By Definition 4.3.25 we have

(θ−ρVInc)(Y ′T
′
) = θ(Y T). It is a fact that substitutions are well-defined. The result fol-

lows.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 94

• The case X ′S
′ 6= Y T , ρVInc(X

S) = id·X ′S′ , XS 6∈ V and Y T ∈ V. By Definition 4.3.25 we

have (θ−ρVInc)(Y T) = θ(Y T). By Definition 4.3.25 we have (θ−ρVInc)(X ′S
′
) = θ(XS). By

Definition 4.3.21 we have ρVInc(X
S) 6= id·Y T as Y T ∈ V. It is a fact that substitutions are

well-defined. The result follows.

• The case XS 6= Y ′T
′
, ρVInc(Y

T) = id·Y ′T ′ , Y T 6∈ V and XS ∈ V. This is similar to the

previous case.

4

Lemma 4.3.27 and Lemma 4.3.28 are basic checks of correctness for the definition of ρVInc.

Lemma 4.3.27: If θ ∈ Sol(Inc) then ρVInc exists.

Proof. By Definition 4.3.7 we have Inc is solvable. By Theorem 4.3.24 we have Inc is consistent.

By Definition 4.3.21 we have ρVInc exists. The result follows. 4

Lemma 4.3.28: If ρVInc exists then it is well-defined.

Proof. Suppose ρVInc exists and that XS 6= Y T . Then:

• The case XS ∈ V and Y T ∈ V. By Definition 4.3.21 we have ρVInc(X
S) = id·X ′S′ and

by Definition 4.3.21 we have ρVInc(Y
T) = id·Y ′T ′ where X ′S

′
and Y ′T

′
are chosen so that

X ′S
′ 6= Y ′T

′
. The result follows.

• The case XS 6∈ V and Y T 6∈ V. By Definition 4.3.21 we have ρVInc(X
S) = id·XS and

ρVInc(Y
T) = id·Y T . By assumption we have XS 6= Y T . The result follows.

• The case XS ∈ V and Y T 6∈ V. By Definition 4.3.21 we have ρVInc(X
S) = id·X ′S′ and

ρVInc(Y
T) = id·Y T . By Definition 4.3.20 we have X ′S

′ 6∈ V. The result follows.

• The case XS 6∈ V and Y T ∈ V. This is similar to the previous case.

4

Lemma 4.3.29 checks that the support reduction simplification rewrite relation does not

introduce extraneous unknowns into a simplified problem.

Lemma 4.3.29: If Inc =⇒ Inc′ then fV (Inc′) ⊆ fV (Inc).

Proof. By case analysis of the simplification rules in Definition 4.3.8. See Appendix B. 4

Corollary 4.3.30: fV (nf(Inc)) ⊆ fV (Inc)

Proof. Immediate, from Lemma 4.3.29 and Definition 4.3.14. 4

Lemma 4.3.31: If θ ∈ Sol(Inc) and fV (Inc) ⊆ V then (θ−ρVInc) is a substitution.

Proof. By Lemma 4.3.27 we have that ρVInc exists. We show for all XS that fa((θ−ρVInc)(XS)) ⊆
S by cases:

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 95

• The case id·X ′S′ ≡ ρVInc(XS) for someXS ∈ V. By Corollary 4.3.30 we have fV (nf(Inc)) ⊆
fV (Inc). It is a fact that fV (nf(Inc)) ⊆ V as fV (Inc) ⊆ V by assumption. There are

two cases:

• The caseXS 6∈ fV (nf(Inc)). Then S = S′ and by Definition 4.3.25 we have (θ−ρVInc)(X ′S
′
) ≡

θ(XS). By Definition 4.2.28 we have fa(θ(XS)) ⊆ S. The result follows.

• The case XS ∈ fV (nf(Inc)). By assumption θ ∈ Sol(Inc). By Theorem 4.3.10

we have θ ∈ Sol(nf(Inc)). By Definition 4.3.7 we have fa(θ(XS)) ⊆ T for every

XS v T ∈ nf(Inc). By Definition 4.3.20 we have S′ = S∩
⋂
{T | ∃r.r v T ∈ nf(Inc)}.

It is a fact that S′ ⊆ S. The result follows.

• Otherwise, (θ−ρVInc)(XS) ≡ θ(XS), and by Definition 4.2.28 we have fa(θ(XS)) ⊆ S.

4

Intuitively, Theorem 4.3.32 claims that any substitution that is a solution to a support

reduction problem can be expressed in terms of ρVInc and another, simpler substitution.

Theorem 4.3.32: If θ ∈ Sol(Inc) and fV (Inc) ⊆ V then θ(XS) ≡ (ρVInc◦(θ−ρVInc))(XS) for

every XS ∈ V.

Proof. By Definition 4.2.35 we have (ρVInc◦(θ−ρVInc))(XS) ≡ (ρVInc(X
S))(θ−ρVInc). By Defini-

tion 4.3.21 and the fact that X ′S
′ 6∈ V we have (ρVInc(X

S))(θ−ρVInc) ≡ (id·X ′S′)(θ−ρVInc). By

Definition 4.2.29 we have (id·X ′S′)(θ−ρVInc) ≡ id·((θ−ρVInc)(X ′S
′
)). By Definition 4.3.25 we have

id·((θ−ρVInc)(X ′S
′
)) ≡ id·(θ(XS)). By Lemma 4.2.19 we have id·(θ(XS)) ≡ θ(XS). The result

follows. 4

4.3.2.2 Unification problem simplification

This Subsubsection introduces the unification algorithm proper, which calls the support re-

duction machinery of Subsubsection 4.3.2.1 as a subprocedure (see (I3) in Figure 4.3). The

unification algorithm is given in the common simplification relation style (Definition 4.3.35).

The main result in this Subsubsection are Theorem 4.3.42, demonstrating that the simplifi-

cation rules of Definition 4.3.35 always terminate.

Lemma 4.3.33: (θ◦θ′) ∈ Sol(P) if and only if θ′ ∈ Sol(Pθ).

Proof. Suppose θ′ ∈ Sol(Pθ) and rθ
?
= sθ ∈ Pθ. By Theorem 4.2.36 we have (rθ)θ′ =α r(θ◦θ′).

By assumption r(θ◦θ′) ≡ s(θ◦θ′). By Theorem 4.2.36 we have s(θ◦θ′) ≡ (sθ)θ′. The result

follows.

Otherwise, suppose θ◦θ′ ∈ Sol(P). By Theorem 4.2.36 we have r(θ◦θ′) ≡ (rθ)θ′. By

assumption (rθ)θ′ =α (sθ)θ′. By Theorem 4.2.36 we have (sθ)θ′ ≡ s(θ◦θ′). The result follows.

4

Definition 4.3.34: If P is a unification problem, define its related support inclusion prob-

lem Pv by:

Pv = {r v fa(s), s v fa(r) | r ?
= s ∈ P}

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 96

(
?
=a) V; a

?
= a,P =⇒ V;P

(
?
=f) V; f(r1, . . . , rn)

?
= f(s1, . . . , sn),P =⇒ V; ri

?
= si,P (1 ≤ i ≤ n)

(
?
=[a]) V; [a]r

?
= [a]s,P =⇒ V; r

?
= s,P

(
?
=[b]) V; [a]r

?
= [b]s,P =⇒ V; (b a)·r ?

= s,P (b 6∈ fa(r))

(
?
=X) V;π·XS ?

= π·XS,P =⇒ V;P

(I1) V;π·XS ?
= s,P [XS :=π-1·s]

=⇒ V;P[XS:=π-1·s]
(XS 6∈ fV (s), fa(s) ⊆ S)

(I2) V; r
?
= π·XS,P [XS :=π-1·r]

=⇒ V;P[XS:=π-1·r]
(XS 6∈ fV (r), fa(r) ⊆ S)

(I3) V;P
ρVPv
=⇒ V ∪ V ′VPv ;PρVPv

(Pv consistent and non-trivial)

Figure 4.3 Unification problem simplification rules

Definition 4.3.35: Define a simplification rewrite relation on unification problems by the

rules in Figure 4.3.

Call (
?
=a), (

?
=f), (

?
=[a]), (

?
=[b]) and (

?
=X) non-instantiating rules. Call (I1), (I2) and

(I3) instantiating rules. Write =⇒∗ for the reflexive transitive closure of =⇒.

The side condition XS 6∈ fV (s) on (I1) (and the similar side-condition on (I2)) may be

thought of as akin to the familiar ‘occurs-check’ from first-order unification algorithms. Most

rules in Definition 4.3.35 are straightforward; problems are either split into simpler problems,

or solved outright. However, (I3) is potentially more difficult to understand. Here, ρVPv is

the support reducing substitution ρ constructed from Pv. We will see later, when defining a

unification algorithm, that (I3) is only applied when all other rules have been exhausted.

Lemma 4.3.36: If V;P =⇒ V ′;P ′ by a non-instantiating rule then Sol(P) = Sol(P ′).

Proof. By case analysis on the rules defined in Definition 4.3.35, using Lemma 4.2.31 and The-

orems 4.2.30 and 4.2.27. See Appendix B. 4

Definition 4.3.37: Define fV (P) by:

fV (P) =
⋃
{fV (r) ∪ fV (s) | r ?

= s ∈ P}

Definition 4.3.38: Suppose V is a set of unknowns. Define the restriction of a substitution

θ to V by:

θ|V(XS) = θ(XS) if XS ∈ V and θ|V(XS) = id·XS otherwise

Definition 4.3.39: If P is a unification problem, define a unification algorithm by:

1. Rewrite fV (P);P using the rules of Definition 4.3.35 as much as possible, with top-down

precedence.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 97

2. If we obtain V ′; ∅ then we succeed and return θ|V′ where θ is the functional composition

of all the substitution labeling rewrites. If there are no substitutions labeling rewrites, we

take θ = id. If we do not obtain V ′; ∅ then we fail.

Definition 4.3.40: Define the size of a unification problem size(P) to be a tuple (T,E,A),

where:

• T is the number of term-formers appearing within terms in the equalities of the unification

problem,

• E is the number of equalities appearing in the unification problem,

• A is the number of abstractions appearing within terms in the equalities of the unification

problem.

Order tuples lexicographically.

Example 4.3.41: If P = f(a, b)
?
= f(a, b), [a]a

?
= [b]b then size(P) = (2, 2, 2). Similarly, if

P ′ = f(π·XS, a)
?
= f([a]a, a) then size(P ′) = (2, 1, 1). By the lexicographic ordering we have

size(P ′) < size(P).

Theorem 4.3.42: The unification algorithm of Definition 4.3.39 always terminates.

Proof. By case analysis on the rules in Definition 4.3.35, checking that all rules reduce the size

of the unification problem. See Appendix B. 4

Lemma 4.3.43 states that solutions to unification problems are not perturbed by α-equivalence.

Lemma 4.3.43: Suppose θ(XS) =α θ
′(XS) for all XS ∈ fV (P). Then θ ∈ Sol(P) if and only

if θ′ ∈ Sol(P).

Proof. By Definition 4.3.3 it suffices to show rθ =α sθ if and only if rθ′
?
= sθ′ for all r

?
= s ∈ P.

Suppose θ ∈ Sol(P). By Definition 4.3.3 we have rθ =α sθ. By assumption θ(XS) =α θ
′(XS)

for all XS ∈ fV (P). By Definition 4.3.37 we have fV (r) ⊆ fV (P) and fV (s) ⊆ fV (P). By

Theorem 4.2.33 we have rθ =α rθ
′ and sθ =α sθ

′. By Theorem 4.2.27 we have rθ′ =α sθ
′. By

Definition 4.3.3 we have θ′ ∈ Sol(P). The result follows.

Otherwise, suppose θ′ ∈ Sol(P). By Definition 4.3.3 we have rθ′ =α sθ′. By assumption

θ′(XS) =α θ(XS) for all XS ∈ fV (P). By Definition 4.3.37 we have fV (r) ⊆ fV (P) and

fV (s) ⊆ fV (P). By Theorem 4.2.33 we have rθ′ =α rθ and sθ′ =α sθ. By Theorem 4.2.27 we

have rθ =α sθ. By Definition 4.3.3 we have θ ∈ Sol(P). The result follows. 4

Definition 4.3.44: Suppose θ is a substitution. Define (θ−XS) by:

(θ−XS)(XS) = id·XS and (θ−XS)(Y T) = θ(Y T) for all other Y T

Theorem 4.3.45 is a similar result to Theorem 4.3.32. Intuitively, the result states that any

substitution making XS and s α-equivalent can be refactored into a substitution which is only

non-trivial on XS and another substitution which is trivial on XS.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 98

Theorem 4.3.45: Suppose XSθ =α sθ and XS 6∈ fV (s). Then:

XSθ =α X
S([XS:=s]◦(θ−XS)) and Y Tθ =α Y

T ([XS:=s]◦(θ−XS))

Proof. We handle the two claims separately:

• The first claim. By Definition 4.2.29 we have XS([XS:=s]◦(θ−XS)) ≡ s(θ−XS). By

Theorem 4.2.33 and as XS 6∈ fV (s) we have s(θ−XS) ≡ sθ. By assumption sθ =α X
Sθ.

The result follows.

• The second claim. By Definition 4.2.29 we have Y T ([XS:=s]◦(θ−XS)) ≡ Y T (θ−XS). By

Definition 4.3.44 we have Y T (θ−XS) ≡ Y Tθ. The result follows.

4

4.3.3 Principal solutions

This Subsection shows that the unification algorithm outlined in Subsection 4.3.2 generates

principal (most general) solutions.

Definition 4.3.46 defines the important concept of the instantiation ordering, the measure

by which we compare solutions to unification problems for principality. Theorem 4.3.51 shows

that the unification algorithm generates solutions to unification problems. Theorem 4.3.56 goes

further, and demonstrates that the solutions generated are principal. Finally, Theorem 4.3.58

is a basic check of correctness for the unification algorithm, demonstrating that, for a given

unification problem, the algorithm will either produced a correct solution, or enter a failing

state in a finite number of steps.

Definition 4.3.46: Define the instantiation ordering, by:

θ ≤ θ′ if there exists θ′′ such that θ′(XS) =α (θ◦θ′′)(XS)

Example 4.3.47: We have [XS:=s] ≤ [XS:=id·XS]◦[XS:=s].

Lemma 4.3.48 and Lemma 4.3.49 demonstrate that the simplification rules defined in Defi-

nition 4.3.35 do not introduce any extraneous variables when simplifying a problem.

Lemma 4.3.48: If fV (P) ⊆ V and V;P =⇒ V ′;P ′ using a non-instantiating rule then

fV (P ′) ⊆ V ′.

Proof. By case analysis on the non-instantiating rules in Definition 4.3.35, using Lemma 4.2.22.

See Appendix B. 4

Lemma 4.3.49: If fV (P) ⊆ V and V;P θ
=⇒ V ′;P ′θ using an instantiating rule then fV (P ′θ) ⊆

V.

Proof. By case analysis on the instantiating rules in Definition 4.3.35, using Lemmas 4.2.32

and 4.3.29. See Appendix B. 4

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 99

Lemma 4.3.50: If XS ∈ V then ([XS:=s]◦θ)|V = [XS:=s]◦θ|V .

Proof. There are three cases:

• The case XS with XS ∈ V. By Definition 4.3.38 we have ([XS:=s]◦θ)|V(XS) = ([XS:=

s]◦θ)(XS). By Definition 4.2.35 we have ([XS:=s]◦θ)(XS) = ([XS:=s](XS))θ. By Defi-

nition 4.2.28 we have ([XS:=s](XS))θ = sθ. By Definition 4.2.28 we have sθ = ([XS:=

s](XS))θ. By Definition 4.3.38 we have ([XS:=s](XS))θ = ([XS:=s](XS))θ|V . By Defini-

tion 4.2.35 we have ([XS:=s](XS))θ|V = ([XS:=s]◦θ|V)(XS). The result follows.

• The case Y T with Y T ∈ V. By Definition 4.3.38 we have ([XS:=s]◦θ)|V(Y T) = ([XS:=

s]◦θ)(Y T). By Definition 4.2.35 we have ([XS:=s]◦θ)(Y T) = ([XS:=s](Y T))θ. By Defini-

tion 4.2.28 we have ([XS:=s](Y T))θ = Y Tθ. By Definition 4.3.38 we have Y Tθ = Y Tθ|V .

By Definition 4.2.28 we have Y Tθ|V = ([XS:=s](Y T))θ|V . By Definition 4.2.35 we have

([XS:=s](Y T))θ|V = ([XS:=s]◦θ|V)(Y T). The result follows.

• The case Y T with Y T 6∈ V. By Definition 4.3.38 we have ([XS:=s]◦θ)|V(Y T) = id·
Y T . By Definition 4.2.28 we have id·Y T = (id·([XS:=s](Y T))). By Definition 4.2.29 we

have (id·([XS:=s](Y T))) = ((id·Y T)[XS:=s]). By Definition 4.3.38 we have ((id·Y T)[XS:=

s]) = ((id·Y T)[XS:=s])θ|V . By Definition 4.2.29 we have ((id·Y T)[XS:=s])θ|V = id·(([XS:=

s]Y T)θ|V). By Definition 4.2.35 we have id·(([XS:=s]Y T)θ|V) = id·(([XS:=s]◦θ|V)(Y T)).

By Lemma 4.2.19 we have id·(([XS:=s]◦θ|V)(Y T)) = ([XS:=s]◦θ|V)(Y T). The result fol-

lows.

4

Theorem 4.3.51 states that generated substitutions solve unification problems.

Theorem 4.3.51: If fV (P) ⊆ V and V;P
θ

=⇒∗ V ′; ∅ then θ|V ∈ Sol(P).

Proof. By induction on the path length of =⇒∗.

• Length 0. Then P = ∅ and θ = id. The result follows.

• Length k+1. There are four cases.

• The non-instantiating case. Suppose:

V;P =⇒ V;P ′
θ

=⇒∗ V ′; ∅

By Lemma 4.3.48 we have fV (P ′) ⊆ V. By inductive hypothesis θ|V ∈ Sol(P ′). By

Lemma 4.3.36 we have θ|V ∈ Sol(P). The result follows.

• The case (I1). Suppose:

V;P [XS :=π-1·s]
=⇒ V;P[XS:=π-1·s]

θ′

=⇒∗ V ′; ∅

By Lemma 4.3.49 we have fV (P[XS:=π-1·s]) ⊆ V. By inductive hypothesis θ|V ∈
Sol(P[XS:=π-1·s]). By Lemma 4.3.33 we have [XS:=π-1·s]◦θ|V ∈ Sol(P). By Lemma 4.3.50

we have [XS:=π-1·s]◦θ|V = ([XS:=π-1·s]◦θ)|V . The result follows.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 100

• The case (I2). Suppose:

V;P [XS :=π-1·r]
=⇒ V;P[XS:=π-1·r]

θ
=⇒∗ V ′; ∅

By Lemma 4.3.49 we have fV (P[XS:=π-1·r]) ⊆ V. By inductive hypothesis θ|V ∈
Sol(P[XS:=π-1·r]). By Lemma 4.3.33 we have [XS:=π-1·r]◦θ|V ∈ Sol(P). By Lemma 4.3.50

we have [XS:=π-1·r]◦θ|V = ([XS:=π-1·r]◦θ)|V . The result follows.

• The case (I3). Suppose:

V;P
ρVPv
=⇒ V ′;PρVPv

θ
=⇒∗ V ′′; ∅

By Lemma 4.3.49 we have fV (PρVPv) ⊆ V. By inductive hypothesis θ|V′ ∈ Sol(PρVPv).

By Lemma 4.3.33 we have ρVPv◦θ|V′ ∈ Sol(P). By Lemma 4.3.50 we have ρVPv◦θ|V′ =

ρVPv◦θ|V′ . By Lemma 4.3.43 we have ρVPv◦θ|V ∈ Sol(P). The result follows.

4

Lemma 4.3.52: If θ′ ≤ θ′′ then θ◦θ′ ≤ θ◦θ′′.

Proof. Suppose θ′ ≤ θ′′. By Definition 4.3.46 there exists a θ′′′ such that XSθ′′ =α X
S(θ′◦θ′′′).

By Definition 4.2.35 we have XS(θ◦θ′′) ≡ (θ(XS))θ′′. By Theorem 4.2.33 we have (θ(XS))θ′′ =α

(θ(XS))(θ′◦θ′′′). By Theorem 4.2.36 we have (θ(XS))(θ′◦θ′′′) ≡ XS(θ◦(θ′◦θ′′′)). The result

follows. 4

Lemma 4.3.53 checks that the instantiation ordering of Definition 4.3.46 remains invariant

under α-equivalence.

Lemma 4.3.53: Suppose XSθ =α X
Sθ′ always. Then θ′′ ≤ θ implies θ′′ ≤ θ′.

Proof. Suppose θ′′ ≤ θ. By Definition 4.3.46 there exists a θ′′′ such that XSθ =α X
S(θ′′◦θ′′′).

By assumption XSθ =α XSθ′. By Theorem 4.2.27 we have XSθ′ =α XS(θ′′◦θ′′′). By Defini-

tion 4.3.46 we have θ′′ ≤ θ′. The result follows. 4

Lemma 4.3.54 and Lemma 4.3.55 are technical results used in the proof of Theorem 4.3.56.

Lemma 4.3.54: If θ ∈ Sol(P) then θ ∈ Sol(Pv).

Proof. Suppose θ ∈ Sol(P), and suppose r
?
= s ∈ P. By Definition 4.3.3 we have rθ =α sθ. By

Lemma 4.2.24 we have fa(rθ) = fa(sθ). By Definition 4.3.7 we have θ ∈ Sol(Pv). The result

follows. 4

Lemma 4.3.55: If XS ∈ V then (θ−XS)|V = θ|V−XS.

Proof. There are three cases:

• The case XS with XS ∈ V. By Definition 4.3.38 we have (θ−XS)|V(XS) = (θ−XS)(XS).

By Definition 4.3.44 we have (θ−XS)(XS) = id·XS. By Definition 4.3.44 we have id·
XS = (θ|V−XS)(XS). The result follows.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 101

• The case Y T with Y T ∈ V. By Definition 4.3.38 we have (θ−XS)|V(Y T) = (θ−XS)(Y T).

By Definition 4.3.44 we have (θ−XS)(Y T) = θ(Y T). By Definition 4.3.44 we have θ(Y T) =

(θ|V−XS)(Y T). The result follows.

• The case Y T with Y T 6∈ V. By Definition 4.3.38 we have (θ−XS)|V(Y T) = id·Y T . By

Definition 4.3.38 we have id·Y T = θ(Y T)|V . By Definition 4.3.44 we have θ(Y T)|V =

(θ|V−XS)(Y T). The result follows.

4

Theorem 4.3.56 and Theorem 4.3.58 are the main results in Section 4.3. Theorem 4.3.56

demonstrates that substitutions generated by the simplification relation of Definition 4.3.35 are

principal solutions to a given unification problem.

Theorem 4.3.56: If fV (P) ⊆ V and V;P
θ

=⇒∗ V ′; ∅ then θ|V is a principal solution to P.

Proof. By Theorem 4.3.51 we have θ|V ∈ Sol(P). We proceed by induction on the path length

of V;P =⇒∗ V ′; ∅.

• The base case. Then P = ∅ and θ = id|V . By Definition 4.3.46 we have id|V ≤ θ′|V . The

result follows.

• The step case. There are three cases:

• The non-instantiating case. Suppose:

VP =⇒ VP ′
θ

=⇒∗ V ′; ∅

By inductive hypothesis θ|V is a principal solution to P ′. By Lemma 4.3.36 we have

Sol(P) = Sol(P ′). It is a fact that θ|V is a principal solution to P. The result follows.

• The case (I1) or (I2). We consider only the first case, as the second is similar. Suppose

fa(s) ⊆ π·S and XS 6∈ fV (s). We have:

V;XS ?
= s, P [XS :=π-1·s]

=⇒ V;P[XS:=π-1·s]
θ

=⇒∗ V ′; ∅

Suppose that θ′|V ∈ Sol(P).

By Theorem 4.3.51 we have θ′|V ∈ Sol(P[XS:=π-1·s]). By Lemma 4.3.49 we have

fV (P[XS:=π-1·s]) ⊆ V. By Theorem 4.3.45 we have ([XS:=π-1·s]◦(θ′|V−XS))(XS) =α

θ′|V(XS) for all XS ∈ V. By Lemma 4.3.43 we have ([XS:=π-1·s]◦(θ′|V−XS)) ∈
Sol(P). By Lemma 4.3.33 we have θ′|V−XS ∈ Sol(P[XS:=π-1·s]). By Lemma 4.3.55

we have (θ′−XS)|V ∈ Sol(P[XS:=π-1·s]).
By inductive hypothesis we have θ|V ≤ (θ′−XS)|V . By Lemma 4.3.52 we have [XS:=

π-1·s]◦(θ|V) ≤ [XS:=π-1·s]◦(θ′−XS)|V . By Lemma 4.3.50 we have [XS:=π-1·s]◦(θ|V) =

([XS:=π-1·s]◦θ)|V , therefore [XS:=π-1·s]◦θ|V ≤ [XS:=π-1·s]◦(θ′−XS)|V . By Lemma 4.3.55

we have (θ′−XS)|V = θ′−XS|V therefore [XS:=π-1·s]◦θ|V ≤ [XS:=π-1·s]◦θ′−XS|V . By

Theorem 4.3.45 and Lemma 4.3.53 we have [XS:=π-1·s]◦θ|V ≤ θ′|V . The result follows.

• The case (I3). Suppose Pv is consistent and non-trivial. We have:

V;P
ρVPv
=⇒ V ′;PρVPv

θ
=⇒∗ V ′′; ∅

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 102

Further, suppose that θ′|V ∈ Sol(P).

By Theorem 4.3.51 we have θ′|V′ ∈ Sol(PρVPv). It is a fact that V ′ = V ∪V ′′ρVPv there-

fore we have fV (PρVPv) ⊆ V ′. By Lemma 4.3.54 we have θ′|V ∈ Sol(Pv). By Theo-

rem 4.3.32 and Lemma 4.3.43 we have ρVPv◦(θ
′|V − ρVPv) ∈ Sol(P). By Lemma 4.3.33

we have θ′|V − ρVPv ∈ Sol(PρVPv). By inductive hypothesis θ|V ≤ θ′|V − ρVPv . By

Lemma 4.3.52 we have ρVPv◦θ|V ≤ ρVPv◦(θ
′|V − ρVPv). It is a fact that ρVPv◦θ|V =

(ρVPv◦θ)|V . By Theorem 4.3.32 and Lemma 4.3.53 we have (ρVPv◦θ)|V ≤ θ′|V . The

result follows.

4

Lemma 4.3.57 is a technical result used in the proof of Theorem 4.3.58.

Lemma 4.3.57: We have:

1. Suppose fa(s) ⊆ π·S and XS 6∈ fV (s).

If V;P [XS :=π-1·s]
=⇒ V;P ′ with (I1) or (I2) then θ ∈ Sol(P) implies θ −XS ∈ Sol(P ′).

2. If V;P
ρVPv
=⇒ V ′;P ′ with (I3) then θ ∈ Sol(P) implies θ − ρVPv ∈ Sol(P

′).

Proof. We consider the claims separately:

• We consider only the first case, as the case of (I2) is similar. Suppose V;π·XS ?
= s, P ′ [XS :=π-1·s]

=⇒
V;P ′[XS:=π-1·s]. Suppose also that θ ∈ Sol(P). By Lemma 4.3.43 and Theorem 4.3.45 we

have [XS:=π-1·s]◦(θ − XS)) ∈ Sol(P). By Lemma 4.3.33 we have θ − XS ∈ Sol(P[XS:=

π-1·s]). It is a fact that θ −XS ∈ Sol(P ′[XS:=π-1·s]). The result follows.

• Suppose Pv is consistent and non-trivial. Suppose V;P
ρVPv
=⇒ V ′′;PρVPv . Suppose also that

θ ∈ Sol(P). By Lemma 4.3.43 and Theorem 4.3.32 we have ρVPv◦(θ − ρ
V
Pv) ∈ Sol(P). By

Lemma 4.3.33 we have θ − ρVPv ∈ Sol(Pρ
V
Pv). The result follows.

4

Theorem 4.3.58 shows that the unification algorithm of Definition 4.3.39 is ‘correct’. That

is, if a solution to a given unification problem exists, then the unification algorithm will find

a principal solution to that problem. On the other hand, is a given unification problem is

unsolvable, then the unification algorithm will halt in a failing state.

Theorem 4.3.58: Given a unification problem P, if the unification algorithm of Defini-

tion 4.3.39 succeeds then it returns a principal solution, and if it fails, there is no solution.

Proof. In the case that the algorithm succeeds, we use Theorem 4.3.56.

Otherwise, the algorithm generates equalities of the form f(r1, . . . , rn)
?
= f(s1, . . . , sm) where

n 6= m, f(r1, . . . , rn)
?
= g(s1, . . . , sm), f(r1, . . . , rn)

?
= [a]r, f(r1, . . . , rn)

?
= a, [a]r

?
= a, [a]r

?
= b,

a
?
= b, a P where Pv is inconsistent, or elements of the form π·XS ?

= s or r
?
= XS where

XS ∈ fV (r) or XS ∈ fV (s). It is a fact that none of these have a solution. By Lemma 4.3.57

we have P has no solution. The result follows. 4

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 103

4.3.4 The algorithm in action

This Subsection provides a number of examples of the unification algorithm in action. Exam-

ple 4.3.59 demonstrates the support reduction algorithm. Examples 4.3.60 and 4.3.61 demon-

strate successful attempts to unify two terms. Example 4.3.62 demonstrates two terms that the

algorithm fails to unify. We place a coloured box around the equality currently under attention.

Example 4.3.59: Suppose a, c ∈ comb and b, d 6∈ comb. Take S = comb = T , U = comb∪{b}
and V = comb ∪ {d}. We first run the support reduction algorithm (Definition 4.3.8) on Inc =

{a v S, f([a]a, id·Y T) v T, (c a)·ZU v S, (b a)·W V v T}:

Remaining Problem Rule Used

a v S , f([a]a, id·Y T) v T, (c a)·ZU v S, (b a)·W V v T =⇒ (va)

f([a]a, id·Y T) v T , (c a)·ZU v S, (b a)·W V v T =⇒ (vf)

[a]a v T , id·Y T v T, (c a)·ZU v S, (b a)·W V v T =⇒ (v[])

id·Y T v T , (c a)·ZU v S, (b a)·W V v T =⇒ (vX′)

(c a)·ZU v S , (b a)·W V v T =⇒ (vX)

ZU v (c a)·S, (b a)·W V v T =⇒ (vX)

ZU v (c a)·S,W V v (b a)·T

We take nf(Inc) = {ZU v (c a)·S, W V v (b a)·T}. By Definition 4.3.14 we have nf(Inc)

is consistent, therefore by Theorem 4.3.24 a solution for Inc exists.

We now construct ρVInc. Take W ′ and Z ′ as our injective choices of fresh unknowns. Take

U ′ = U ∩ ((c a)·S ∩ (b a)·T) and V ′ = V ∩ ((c a)·S ∩ (b a)·T). An easy calculation shows that

U ′ = comb \ {a} = V ′. We define ρVInc (Definition 4.3.21) piecewise:

ρVInc(Z
U) = id·Z ′U

′

ρVInc(W
V) = id·W ′V

′

ρVInc(X
S) = id·XS (for all other XS)

Example 4.3.60: Suppose a, c ∈ comb and b, d 6∈ comb. Take S = comb ∪ {b, d}, T =

comb ∪ {f} and U = comb. Take V = {XS, Y T}. Suppose a term-former f.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 104

We apply the algorithm to {f([a]b, id·ZU , id·XS)
?
= f([d]b, [a]a, id·Y T)}:

Remaining Problem Rule Used

V; f([a]b, id·ZU , id·XS)
?
= f([d]b, [a]a, id·Y T) =⇒ (

?
=f)

V; [a]b
?
= [d]b , id·ZU ?

= [a]a, id·XS ?
= id·Y T =⇒ (

?
=[b])

V; (d a)·b ?
= b , id·ZU ?

= [a]a, id·XS ?
= id·Y T =⇒ (

?
=a)

V; id·ZU ?
= [a]a , id·XS ?

= id·Y T
[ZU :=[a]a]

=⇒ (
?
=I1)

V; id·XS ?
= id·Y T

[XS :=X′S
′
][Y T :=Y ′T

′
]

=⇒ (I3)

V ∪ {X ′S′ , Y ′T ′}; id·X ′S′ ?
= id·Y ′T ′ [X′S

′
:=Y ′T

′
]

=⇒ (I1)

V ∪ {X ′S′ , Y ′T ′}; id·Y ′T ′ ?
= id·Y ′T ′ =⇒ (

?
=X)

V ∪ {X ′S′ , Y ′T ′}; ∅ (Success!)

Here X ′ and Y ′ are the choice of unknown made in Definition 4.3.20, with S′ = comb = T ′.

The algorithm succeeds and returns the substitution

[X ′S
′
:=Y ′T

′
]◦[XS:=X ′S

′
]◦[Y T :=Y ′T

′
]◦[ZU :=[a]a]

Example 4.3.61: Suppose a, c ∈ comb and d 6∈ comb. Take S = comb and V = {XS}.
We apply the algorithm to {g([a](id·XS), [a]a)

?
= g([d]c, [d]d)}:

Remaining Problem Rule Used

V; g([a](id·XS), [a]a)
?
= g([d]c, [d]d) =⇒ (

?
=f)

V; [a](id·XS)
?
= [d]c , [a]a

?
= [d]d =⇒ (

?
=[b])

V; (d a)·XS ?
= a , [a]a

?
= [d]d

[XS :=c]
=⇒ (I1)

V; [a]a
?
= [d]d =⇒ (

?
=[b])

V; (d a)·a ?
= d =⇒ (

?
=a)

V; ∅ (Success!)

The algorithm succeeds and returns the substitution [XS:=c].

Example 4.3.62: An example that fails to unify. Take S = comb and V = {XS}. We run the

algorithm on {[a]([b](id·XS))
?
= [a](id·XS)}:

Remaining Problem Rule Used

V; [a]([b](id·XS))
?
= [a](id·XS) =⇒ (

?
=[a])

V; [b](id·XS)
?
= id·XS (Failure!)

The algorithm fails as the precondition of rule (I2), XS 6∈ fV ([b](id·XS)), the ‘occurs check’,

fails to hold. By Theorem 4.3.58 there is no solution to the unification problem.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 105

4.4 Relation with nominal terms

Following Section 4.2 we have two differing notions of nominal term. The rest of this Section

aims to clarify the precise relation between the two.

Subsection 4.4.1 reintroduces nominal terms. Subsection 4.4.2 reintroduces the notions of

derivable freshness and equality on nominal terms. Subsection 4.4.3 defines a translation between

the two forms of nominal term. Finally, Subsection 4.4.4 demonstrates that the translation of

Subsection 4.4.3 maps solutions to unification problems in either form of term to solutions to

unification problems in the other.

4.4.1 Nominal terms

The following material should be familiar to those acquainted with the Urban, Pitts and Gab-

bay paper on nominal unification [UPG04]. We introduce definitions, and demonstrate basic

properties of nominal terms, that are necessary for proving the correctness of the translation.

Definition 4.4.1: Fix a countably infinite set of nominal atoms Ȧ. Dotted lowercase letters

from the beginning of the alphabet, ȧ, ḃ, ċ, and so on, will range over nominal atoms. As usual,

we employ the permutative convention: ȧ and ḃ denote two distinct nominal atoms.

Definition 4.4.2: Fix a bijection ι between nominal atoms and any permissions sort. For

concreteness, we will assume that this permission sort is comb, but any infinite permission sort

will do.

Definition 4.4.3: Fix a countably infinite set of nominal unknowns. Dotted uppercase let-

ters from toward the end of the alphabet, Ẋ, Ẏ , Ż, and so on, will range over nominal unknowns.

Definition 4.4.4: A nominal permutation π̇ is a bijection on nominal atoms such that

nontriv(π̇) is finite. π̇, π̇′, π̇′′, and so on, will range over nominal permutations.

As for the permissive case, we write π̇-1 for the inverse of a nominal permutation, and write

the composition of two nominal permutation as π̇◦π̇′ (so that (π̇◦π̇′)(ȧ) = π̇(π̇′(ȧ))).

We write (ḃ ȧ) for the nominal swapping permutation that maps ḃ to ȧ to ḃ, and all other

ċ to themselves.

Swappings are self-inverse, so (ḃ ȧ)◦(ḃ ȧ) = ˙id always. Further the order atoms appear within a

swapping does not matter, so (ḃ ȧ) = (ȧ ḃ).

Definition 4.4.5: Define nominal terms by:

ṙ, ṡ, ṫ ::= ȧ | π̇·Ẋ | [ȧ]ṙ | f(ṙ1, . . . , ṙn)

To construct nominal terms, we use the same set of term-formers that we used when constructing

permissive nominal terms.

We write ≡ for syntactic identity between terms, using ≈ for derivable equality, which will

be defined later, and reserve = for setwise equality.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 106

(#ȧ)
∆ ` ȧ#ḃ

(π̇-1(ȧ)#Ẋ ∈ ∆)
(#Ẋ)

∆ ` ȧ#π̇·Ẋ
(#[ȧ])

∆ ` ȧ#[ȧ]ṙ

∆ ` ȧ#ṙi (for 1 ≤ i ≤ n)
(#f)

∆ ` ȧ#f(ṙ1, . . . , ṙn)

∆ ` ȧ#ṡ
(#[ḃ])

∆ ` ȧ#[ḃ]ṡ

Figure 4.4 Rules for derivable freshness on nominal terms

(≈ȧ)
∆ ` ȧ ≈ ȧ

∆ ` ṙi ≈ ṡi (for 1 ≤ i ≤ n)
(≈f)

∆ ` f(ṙ1, . . . , ṙn) ≈ f(ṡ1, . . . , ṡn)

∆ ` ṙ ≈ ṡ
(≈[ȧ])

∆ ` [ȧ]ṙ ≈ [ȧ]ṡ

∆ ` (ḃ ȧ)·ṙ ≈ ṡ ∆ ` ḃ#ṙ
(≈[ḃ])

∆ ` [ȧ]ṙ ≈ [ḃ]ṡ

ȧ#Ẋ ∈ ∆ (for every ȧ such that π̇(ȧ) 6= π̇′(ȧ))
(≈Ẋ)

π̇·Ẋ ≈ π̇′·Ẋ

Figure 4.5 Rules for derivable equality on nominal terms

Definition 4.4.6: Define a nominal permutation action by:

π̇·ȧ ≡ π̇(ȧ) π̇·(π̇′·Ẋ) ≡ (π̇◦π̇′)·Ẋ π̇·[ȧ]ṙ ≡ [π̇(ȧ)](π̇·ṙ)

π̇·f(ṙ1, . . . , ṙn) ≡ f(π̇·ṙ1, . . . , π̇·ṙn)

4.4.2 Derivable freshness and equality

In this section, we introduce derivable freshness, and derivable equality for nominal terms.

Definition 4.4.7: A freshness is a pair ȧ#ṙ. A primitive freshness is a pair ȧ#Ẋ. Call

a finite set of primitive freshnesses a freshness context. ∆,∆′,∆′′, and so on, will range over

freshness contexts.

Read ȧ#ṙ as ‘ȧ is fresh for ṙ’.

Definition 4.4.8: Define derivable freshness on nominal terms by the rules in Figure 4.4.

We use the convenient shorthand ∆ ` ȧ#ṙ for ‘∆ ` ȧ#ṙ is derivable using the rules in Figure 4.4’.

We will employ this notation with the only other judgment form, derivable equality, that we

will be considering in this section.

All rules in Figure 4.4 are syntax directed. A decision procedure that decides whether a

nominal atom is fresh for a nominal term, with respect to a context of freshness assumptions, is

obtained by reading each rule backward.

Definition 4.4.9: An equality is a pair ṙ ≈ ṡ.

Definition 4.4.10: Define derivable equality on nominal terms by the rules in Figure 4.5.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 107

4.4.3 The translation

In this section we define an interpretation function mapping nominal terms into permissive

nominal terms.

The most important result in this section is Theorem 4.4.15, where we demonstrate that

derivable equality in the nominal world is preserved and reflected by derivable equality in the

permissive nominal world, under the interpretation.

Definition 4.4.11: Define a mapping between nominal permutations and permissive nominal

permutations by:

Jπ̇K(ι(ȧ)) = ι(π̇(ȧ)) and Jπ̇K(c) = c for all other c ∈ A \ comb

Definition 4.4.12: For each Ẋ make an arbitrary but fixed injective choice of X (so that the

choices for Ẋ and Ẏ are always distinct). Define an interpretation JṙK∆ by:

JȧK∆ ≡ ι(ȧ) Jπ̇·ẊK ≡ Jπ̇K·XS where S = comb \ {ι(ȧ) | ȧ#Ẋ ∈ ∆}

J[ȧ]ṙK∆ ≡ [ι(ȧ)]JṙK∆ Jf(ṙ1, . . . , ṙn)K∆ ≡ f(Jṙ1K∆, . . . , JṙnK∆)

The only interesting case in Definition 4.4.12 is that for Jπ̇·ẊK∆. Here, we remove elements from

our assumed fixed permission sort, comb, whose image under the mapping of Definition 4.4.11

was assumed fresh for Ẋ in ∆.

Lemma 4.4.13 states that the interpretation commutes with the permutation action on nom-

inal terms.

Lemma 4.4.13: Jπ̇K·JṙK∆ ≡ Jπ̇·ṙK∆

Proof. By induction on ṙ.

• The case ȧ. By Definition 4.4.12 we have JȧK∆ = ι(ȧ). There are two cases:

• The case ι(ȧ) ∈ comb. By Definition 4.4.11 we have Jπ̇K(ι(ȧ)) = ι(π̇(ȧ)). By Defini-

tion 4.4.12 we have ι(π̇(ȧ)) ≡ Jπ̇(ȧ)K∆. By Definition 4.4.6 we have Jπ̇(ȧ)K∆ ≡ Jπ̇·ȧK∆.

The result follows.

• The case ι(ȧ) ∈ comb \ A. By Definition 4.4.2, this case is impossible.

• The case π̇′·Ẋ. By Definition 4.4.6 we have Jπ̇·(π̇′·Ẋ)K∆ ≡ J(π̇◦π̇′)·ẊK∆. By Defini-

tion 4.4.12 we have J(π̇◦π̇′)·ẊK∆ ≡ Jπ̇◦π̇′K·XS, where S = comb \ {ι(ȧ) | ȧ#Ẋ ∈ ∆}. By

Definition 4.4.12 we have Jπ̇◦π̇′K·XS ≡ Jπ̇◦π̇′K·J ˙id·ẊK∆. The result follows.

• The case [ȧ]ṙ. By Definition 4.4.6 we have Jπ̇·[ȧ]ṙK∆ ≡ J[π̇(ȧ)](π̇·ṙ)K∆. By Definition 4.4.12

we have J[π̇(ȧ)](π̇·ṙ)K∆ ≡ [ι(π̇(ȧ))]Jπ̇·ṙK∆. By inductive hypothesis [ι(π̇(ȧ))]Jπ̇·ṙK∆ ≡ [ι(π̇(ȧ))](JπK·
JṙK∆). By Definition 4.4.11 we have [ι(π̇(ȧ))](JπK·JṙK∆) ≡ [Jπ̇K(ι(ȧ)))](JπK·JṙK∆). By Defi-

nition 4.2.9 we have [Jπ̇K(ι(ȧ)))](JπK·JṙK∆) ≡ Jπ̇K·[ι(ȧ)]JṙK∆. By Definition 4.4.12 we have

Jπ̇K·[ι(ȧ)]JṙK∆ ≡ Jπ̇K·J[ȧ]ṙK∆. The result follows.

• The case f(ṙ1, . . . , ṙn). By Definition 4.4.6 we have Jπ̇·f(ṙ1, . . . , ṙn)K∆ ≡ f(Jπ̇·ṙ1, . . . , Jπ̇·
ṙn)K∆. By inductive hypotheses f(Jπ̇·ṙ1K∆, . . . , Jπ̇·ṙnK∆)K ≡ f(Jπ̇K·Jṙ1K∆, . . . , Jπ̇K·JṙnK∆). By

Definition 4.2.9 we have f(Jπ̇K·Jṙ1K∆, . . . , Jπ̇K·JṙnK∆) ≡ Jπ̇K·f(Jṙ1K∆, . . . , JṙnK∆). The result

follows.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 108

4

Lemma 4.4.14 demonstrates that the interpretation also preserves and reflects freshness.

Lemma 4.4.14: ι(ȧ) 6∈ fa(JṙK∆) if and only if ∆ ` ȧ#ṙ.

Proof. We handle the two cases separately:

• The left to right case. By induction on ṙ.

• The case ḃ. Using (#ȧ) we obtain ∆ ` ȧ#ḃ. The result follows.

• The case π̇·Ẋ. Suppose ι(a) 6∈ fa(Jπ̇·ẊK∆). By Definition 4.4.12 we have fa(Jπ̇·
ẊK∆) = fa(JπK·XS) where S = comb \ {ι(ȧ) | ȧ#Ẋ}. By Definition 4.2.11 we have

fa(JπK·XS) = Jπ̇K·S. By Definition 4.4.11 we have π̇-1(ȧ)#Ẋ ∈ ∆. Using (#Ẋ) we

obtain ∆ ` ȧ#Ẋ. The result follows.

• The case [ȧ]ṙ. Using (#[ȧ]) we obtain ∆ ` ȧ#[ȧ]ṙ. The result follows.

• The case [ḃ]ṡ. Suppose ȧ 6∈ fa(J[ḃ]ṡK∆). By Definition 4.4.12 we have fa(J[ḃ]ṡK∆) =

fa(JṡK∆) \ {ι(ḃ)}. By inductive hypothesis ∆ ` ȧ#ṡ. Using (#[ḃ]) we obtain ∆ `
ȧ#[ḃ]ṡ. The result follows.

• The case f(ṙ1, . . . , ṙn). Suppose ȧ 6∈ fa(Jf(ṙ1, . . . , ṙn)K∆). By Definition 4.4.12 we

have fa(Jf(ṙ1, . . . , ṙn)K∆) = fa(f(Jṙ1K∆, . . . , JṙnK∆)). By Definition 4.2.11 we have

fa(f(Jṙ1K∆, . . . ,

JṙnK∆)) =
⋃

1≤i≤n fa(JṙiK∆). By inductive hypothesis ∆ ` ȧ#ṙi for 1 ≤ i ≤ n. Using

(#f) we obtain ∆ȧ#f(ṙ1, . . . , ṙn). The result follows.

• The right to left case. By induction on the derivation of ∆ ` ȧ#ṙ.

• The case (#ȧ). Suppose ∆ ` ȧ#ḃ. By Definition 4.4.12 we have JḃK∆ ≡ ι(ḃ). By

Definition 4.2.11 we have fa(ι(ḃ)) = {ι(ḃ)}. The result follows, as ι is injective.

• The case (#Ẋ). Suppose π̇-1(ȧ)#Ẋ ∈ ∆ therefore ∆ ` ȧ#π̇·Ẋ. By Definition 4.4.12

we have Jπ̇·ẊK∆ ≡ Jπ̇K·XS where S = comb \ {ι(ȧ) | ȧ#Ẋ}. By Definition 4.2.11 we

have fa(Jπ̇K·XS) = Jπ̇K·S. The result follows.

• The case (#[ȧ]). By Definition 4.4.12 we have J[ȧ]ṙK∆ ≡ [ι(ȧ)]JṙK∆. By Defini-

tion 4.2.11 we have ι(ȧ) 6∈ fa([ι(ȧ)]ṙ). The result follows.

• The case (#[ḃ]). Suppose ∆ ` ȧ#ṙ. By inductive hypothesis ι(ȧ) 6∈ fa(JṙK∆). Using

(#[ḃ]) we obtain ∆ ` ȧ#[ḃ]ṙ. By Definition 4.4.12 we have J[ḃ]ṙK∆ ≡ [ι(ḃ)]JṙK∆. By

Definition 4.2.11 we have fa([ι(ḃ)]JṙK∆) = fa(JṙK∆) \ {ι(ḃ)}. The result follows.

• The case (#f). Suppose ∆ ` ȧ#ṙi for 1 ≤ i ≤ n. By inductive hypotheses ι(ȧ) 6∈
fa(JṙiK∆) for 1 ≤ i ≤ n. Using (#f) we obtain ∆ ` ȧ#f(ṙ1, . . . , ṙn). By Defini-

tion 4.4.12 we have Jf(ṙ1, . . . , ṙn)K∆ ≡ f(Jṙ1K∆, . . . , JṙnK∆). By Definition 4.2.11 we

have fa(f(Jṙ1K∆, . . . , JṙnK∆)) =
⋃

1≤i≤n fa(JṙiK∆). The result follows.

4

Theorem 4.4.15 states that the interpretation preserves and reflects derivable equality be-

tween terms.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 109

Theorem 4.4.15: JṙK∆ =α JṡK∆ if and only if ∆ ` ṙ ≈ ṡ.

Proof. We handle the two cases separately:

• The left to right case. By induction on the derivation of JṙK∆ =α JṡK∆.

• The case (=αa). Suppose JȧK∆ =α JȧK∆. Using (≈ȧ) we obtain ∆ ` ȧ ≈ ȧ. The

result follows.

• The case (=αX). Suppose Jπ̇·ẊK =α Jπ̇′·ẊK. By Definition 4.4.12 we have Jπ̇K·XS =α

Jπ̇′K·XS where S = comb \ {ι(ȧ) | ȧ#Ẋ ∈ ∆}. Using (=αX) we see Jπ̇K|S = Jπ̇′K|S .

As ι is injective, we have ȧ#Ẋ ∈ ∆ for all ȧ such that π̇(ȧ) 6= π̇′(ȧ). Using (≈Ẋ) we

obtain ∆ ` π̇·Ẋ ≈ π̇′·Ẋ. The result follows.

• The case (=α[a]). Suppose JṙK∆ =α JṡK∆. By inductive hypothesis ∆ ` ṙ =α ṡ.

Using (=α[a]) we obtain [ι(ȧ)]JṙK∆ =α [ι(ȧ)]JṡK∆. Using (≈[ȧ]) we obtain [ȧ]ṙ ≈ [ȧ]ṡ.

By Definition 4.4.12 we have J[ȧ]ṙK∆ ≡ [ι(ȧ)]JṙK∆. The result follows.

• The case (=α[b]). Suppose J(ḃ ȧ)·ṙK∆ =α JṡK∆ with ι(ḃ) 6∈ fa(JṙK∆). By Defini-

tion 4.4.12 we have J(ḃ ȧ)K·JṙK∆ =α JṡK∆. By Definition 4.4.11 we have (ι(ḃ) ι(ȧ))·
JṙK∆ =α JṡK∆. By Lemma 4.4.14 and Definition 4.4.12 we have ∆ ` ḃ#ṙ. By induc-

tive hypothesis ∆ ` (ḃ ȧ)·ṙ ≈ ṡ. Using (=α[b]) we obtain [ι(ȧ)]JṙK∆ =α [ι(ḃ)]JṡK∆.

Using (≈[ḃ]) we obtain ∆ ` [ȧ]ṙ ≈ [ḃ]ṡ. By Definition 4.4.12 we have J∆ ` [ȧ]ṙK∆ ≡
[ι(ȧ)]JṙK∆. The result follows.

• The case (=αf). Suppose JṙiK∆ =α JṡiK∆ for 1 ≤ i ≤ n. By inductive hypothe-

ses ∆ ` ṙi ≈ ṡi for 1 ≤ i ≤ n. Using (=αf) we obtain f(Jṙ1K∆, . . . , JṙnK∆) =α

f(Jṡ1K∆, . . . , JṡnK∆). Using (≈f) we obtain f(ṙ1, . . . , ṙn) ≈ f(ṡ1, . . . , ṡn). By Defini-

tion 4.4.12 we have Jf(ṙ1, . . . ,

ṙn)K∆ =α Jf(ṡ1, . . . , ṡn)K∆. The result follows.

• The right to left case. By induction on the derivation of ∆ ` ṙ ≈ ṡ.
• The case (≈ȧ). Suppose ∆ ` ȧ ≈ ȧ. By Definition 4.4.12 we have JȧK∆ ≡ ι(ȧ). Using

(=αa) we obtain ι(ȧ) =α ι(ȧ). The result follows.

• The case (≈Ẋ). Suppose ȧ#Ẋ ∈ ∆ for every ȧ such that π̇(a) 6= π̇′(ȧ) therefore π̇·
Ẋ ≈ π̇′·Ẋ. By Definition 4.4.12 we have Jπ̇·ẊK∆ ≡ JπK·XS where S = comb \ {ι(ȧ) |
ȧ#Ẋ ∈ ∆}. It is a fact that JπK|S = JπK′|S . Using (=αX) we obtain JπK·XS =α JπK′·
XS. The result follows.

• The case (≈[ȧ]). Suppose ∆ ` ṙ ≈ ṡ. By inductive hypothesis JṙK∆ =α JṡK∆. Using

(=α[a]) we obtain [ι(ȧ)]JṙK∆ =α [ι(ȧ)]JṡK∆. By Definition 4.4.12 we have J[ȧ]ṙK∆ =α

J[ȧ]ṡK∆. The result follows.

• The case (≈[ḃ]). Suppose ∆ ` (ḃ ȧ)·ṙ ≈ ṡ with ∆ ` ḃ#ṙ. By Lemma 4.4.14 and Def-

inition 4.4.12 we have JḃK∆ 6∈ fa(JṙK∆). By Definition 4.4.12 we have ι(ḃ) 6∈ fa(JṙK∆).

By inductive hypothesis J(ḃ ȧ)·ṙK =α JṡK. By Definition 4.4.12 we have J(ḃ ȧ)K·JṙK∆ ≈
JṡK∆. By Definition 4.4.11 we have J(ḃ ȧ)K·JṙK∆ ≡ (ι(ḃ) ι(ȧ))·JṙK∆. Using (=α[b]) we

obtain [ι(ȧ)]JṙK∆ =α [ι(ḃ)]JṡK∆. By Definition 4.4.12 we have J[ȧ]ṙK∆ =α J[ḃ]ṡK∆. The

result follows.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 110

• The case (≈f). Suppose ∆ ` ṙi ≈ ṡi for 1 ≤ i ≤ n. By inductive hypotheses JṙiK∆ =α

JṡiK∆ for 1 ≤ i ≤ n. Using (=αf) we obtain f(Jṙ1K∆, . . . , JṙnK∆) =α f(Jṡ1K∆, . . . , JṡnK∆).

By Definition 4.4.12 we have Jf(ṙ1, . . . , ṙn)K∆ =α Jf(ṡ1, . . . , ṡn)K∆. The result follows.

4

4.4.4 Substitutions and solutions to unification problems

This Subsection reintroduces the notion of a substitution, and substitution action, on nominal

terms, as well as nominal unification problems and their solutions. Definition 4.4.19 extends

the translation function of Definition 4.4.12 to solutions of nominal unification problems, and

Definition 4.4.21 defines a translation function for nominal unification problems. The Subsection

concludes with Theorem 4.4.24 which states that the translations proferred preserve and reflect

unification solutions.

Definition 4.4.16: A nominal substitution θ̇ is a function from nominal unknowns to

nominal terms such that the set {Ẋ | θ̇(Ẋ) 6= ˙id·Ẋ} is finite. θ̇, θ̇′, θ̇′′, . . . will range over

nominal substitutions. Write ˙id for the identity mapping Ẋ to ˙id·Ẋ.

Definition 4.4.17: Define a nominal substitution action by:

ȧθ̇ ≡ ȧ (π̇·Ẋ)θ̇ ≡ π̇·θ̇(Ẋ) ([ȧ]ṙ)θ̇ ≡ [ȧ](ṙθ̇) f(ṙ1, . . . , ṙn)θ̇ ≡ f(ṙ1θ̇, . . . , ṙnθ̇)

Definition 4.4.18: A nominal unification problem Ṗ is a finite multiset of freshnesses

and equalities. A solution to a unification problem is a pair (∆, θ̇) such that ∆ ` ȧ#ṙθ̇ for

every ȧ#ṙ ∈ Ṗ and ∆ ` ṙθ̇ = ṡθ̇ for every ṙ = ṡ ∈ Ṗ.

Definition 4.4.19: Extend the interpretation of Definition 4.4.12 to solutions of nominal

unification problems by:

J(∆̇, θ̇)K(XS) ≡ Jθ̇(Ẋ)K∆ if id·XS ≡ JẊK∆

and

J(∆̇, θ̇)K(Y T) ≡ id·Y T otherwise

Lemma 4.4.20 states that the interpretation of nominal unification solutions in Defini-

tion 4.4.19 commutes with the interpretation of nominal terms given in Definition 4.4.12.

Lemma 4.4.20: JṙK∆J(∆, θ̇)K ≡ Jṙθ̇K∆

Proof. By induction on ṙ.

• The case ȧ. By Definition 4.4.17 we have Jȧθ̇K∆ ≡ JȧK∆. By Definition 4.4.12 we have

JȧK∆ = ι(ȧ). By Definition 4.2.29 we have ι(ȧ) ≡ ι(ȧ)J(∆, θ̇)K. By Definition 4.4.12 we have

ι(ȧ)J(∆, θ̇)K ≡ JȧK∆J(∆, θ̇)K. The result follows.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 111

• The case π̇·Ẋ. By Definition 4.4.12 we have Jπ̇·ẊK∆J(∆, θ̇)K ≡ (Jπ̇K·XS)J(∆, θ̇)K where

S = comb \ {ι(ȧ) | ȧ#Ẋ ∈ ∆}. By Definition 4.2.29 we have (Jπ̇K·XS)J(∆, θ̇)K ≡ Jπ̇K·
J(∆, θ̇)K(XS). By Definition 4.4.19 we have Jπ̇K·J(∆, θ̇)K(XS) ≡ Jπ̇K·Jθ̇(Ẋ)K∆. By Defini-

tion 4.4.12 we have Jπ̇K·Jθ̇(Ẋ)K∆ ≡ Jπ̇·θ̇(Ẋ)K∆. By Definition 4.4.17 we have Jπ̇·θ̇(Ẋ)K∆ ≡
J(π̇·Ẋ)θ̇K∆. The result follows.

• The case [ȧ]ṙ. By Definition 4.4.17 we have J([ȧ]ṙ)θ̇K∆ ≡ J[ȧ](ṙθ̇)K∆. By Definition 4.4.12

we have J[ȧ](ṙθ̇)K∆ ≡ [ι(ȧ)]Jṙθ̇K∆. By inductive hypothesis [ι(ȧ)]Jṙθ̇K∆ ≡ [ι(ȧ)](JṙK∆J(∆, θ̇)K).
By Definition 4.2.29 we have:

[ι(ȧ)](JṙK∆J(∆, θ̇)K) ≡ ([ι(ȧ)]JṙK∆)J(∆, θ̇)K

By Definition 4.4.12 we have ([ι(ȧ)]JṙK∆)J(∆, θ̇)K ≡ J[ȧ]ṙK∆J(∆, θ̇)K. The result follows.

• The case f(ṙ1, . . . , ṙn). By Definition 4.4.17 we have Jf(ṙ1, . . . , ṙn)θ̇K∆ ≡ Jf(ṙ1θ̇, . . . , ṙnθ̇)K∆.

By Definition 4.4.12 we have

Jf(ṙ1θ̇, . . . , ṙnθ̇)K∆ ≡ f(Jṙ1θ̇K∆, . . . , Jṙ1θ̇K∆)

and by inductive hypotheses:

f(Jṙ1θ̇K∆, . . . , Jṙ1θ̇K∆) ≡ f(Jṙ1K∆J(∆, θ̇)K, . . . , Jṙ1K∆J(∆, θ̇)K)

By Definition 4.2.29 we have

f(Jṙ1K∆J(∆, θ̇)K, . . . , Jṙ1K∆J(∆, θ̇)K) ≡ f(Jṙ1K∆, . . . , Jṙ1K∆)J(∆, θ̇)K

and by Definition 4.4.12 we have:

f(Jṙ1K∆, . . . , Jṙ1K∆)J(∆, θ̇)K ≡ Jf(ṙ1, . . . , ṙ1)K∆J(∆, θ̇)K

The result follows.

4

Definition 4.4.21: Define JṖK∆ by mapping ṙ = ṡ to JṙK∆
?
= JṡK∆ and mapping ȧ#ṙ to

(b ι(ȧ))·JṙK∆
?
= JṙK∆. Here b is chosen fresh (i.e. b 6∈ fa(JṙK∆)).

Lemma 4.4.22 is a technical result used in the proof of Lemma 4.4.23.

Lemma 4.4.22: If a, b 6∈ π·S then ((b a)◦π)|S = π|S .

Proof. By case analysis:

• The cases a and b. We consider only the first case, as the second is similar. Suppose

a ∈ S then a ∈ nontriv(π) and b 6= π(a). By Definition 4.2.12 we have ((b a)◦π)|S(a) =

((b a)◦π)(a). By definition we have ((b a)◦π)(a) = (b a)(π(a)). By assumption (b a)(π(a)) =

π(a). By Definition 4.2.12 we have π(a) = π|S(a). The result follows.

Otherwise, suppose a 6∈ S. By Definition 4.2.12 we have that both permutations are

undefined. The result follows.

• The case c. Suppose c ∈ S. By Definition 4.2.12 we have ((b a)◦π)|S(c) = ((b a)◦π)(c).

By definition we have ((b a)◦π)(c) = (b a)(π(c)). There are three cases:

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 112

• The case a = π(c) or b = π(c). We handle only the first case, as the second is similar.

By assumption we have a 6∈ π·S and c ∈ S. There is nothing to prove.

• The case a 6= π(c) and b 6= π(c). By definition we have (b a)(π(c)) = π(c). By

Definition 4.2.12 we have π(c) = π|S(c). The result follows.

Otherwise, suppose c 6∈ S. By Definition 4.2.12 we have that both permutations are unde-

fined. The result follows.

4

Lemma 4.4.23: If b 6∈ fa(r) then a 6∈ fa(r) if and only if (b a)·r =α r.

Proof. We handle the two implications separately:

• The left to right case. By induction on r.

• The case c. By Definition 4.2.9 we have (b a)·c ≡ c. Using (=αa) we obtain c =α c.

The result follows.

• The case π·XS. Suppose a 6∈ fa(π·XS) and b 6∈ fa(π·XS). By Definition 4.2.11 we

have a 6∈ π·p(X) and b 6∈ π·p(X). By Definition 4.2.9 we have (b a)·(π·XS) ≡ ((b a)◦π)·
XS. By Lemma 4.4.22 we have ((b a)◦π)|S = π|S . Using (=αX) we obtain ((b a)◦π)·
XS =α π·XS. By Definition 4.2.9 we have ((b a)◦π)·XS ≡ (b a)·(π·X). The result

follows.

• The cases [a]r and [b]s. We handle only the first case, as the second is similar.

Suppose a, b 6∈ fa(r). By inductive hypothesis we have (b a)·r =α r. Using (=α[b])

we obtain [b]((b a)·r) =α [a]r. By Definition 4.2.9 we have [b]((b a)·r) ≡ (b a)·[a]r. The

result follows.

• The case [c]t. Suppose b 6∈ fa([c]t) and a 6∈ fa([c]t). By Definition 4.2.11 we have

a 6∈ fa(t)\{c} and b 6∈ fa(t)\{c}. By inductive hypothesis (b a)·t =α t. Using (=α[a])

we obtain [c]((b a)·t) =α [c]t. By Definition 4.2.9 we have [c]((b a)·t) ≡ (b a)·[c]t. The

result follows.

• The case f(r1, . . . , rn). Suppose b 6∈ fa(f(r1, . . . , rn)) and a 6∈ fa(f(r1, . . . , rn)). By

Definition 4.2.11 we have b 6∈
⋃

1≤i≤n fa(ri) and a 6∈
⋃

1≤i≤n fa(ri). By inductive

hypotheses (b a)·ri =α ri for 1 ≤ i ≤ n. Using (=αf) we obtain f((b a)·r1, . . . , (b a)·
rn) =α f(r1, . . . , rn). By Definition 4.2.9 we have f((b a)·r1, . . . , (b a)·rn) ≡ (b a)·
f(r1, . . . , rn). The result follows.

• The right to left case. By induction on r.

• The case c. By Definition 4.2.9 we have (b a)·c ≡ c. The result follows.

• The case π·XS. Suppose b 6∈ fa(π·XS). By Definition 4.2.11 we have b 6∈ π·S. By

Definition 4.2.9 we have (b a)·(π·XS) =α ((b a)◦π)·XS. Suppose ((b a)◦π)·XS =α π·
XS. Using (=αX) we obtain ((b a)◦π)·XS =α π·XS whenever ((b a)◦π)|S = π|S .

Suppose a ∈ π·S therefore π-1(a) ∈ S. By Definition 4.2.12 we have π|S(π-1(a)) =

π(π-1(a)) = a. By Definition 4.2.12 we have ((b a)◦π)|S(π-1(a)) = (b a)(π(π-1(a))) = b.

Therefore if a ∈ π·S we have ((b a)◦π)|S 6= π|S , a contradiction. By Definition 4.2.11

we have a 6∈ fa(π·XS). The result follows.

• The case [a]r. By Definition 4.2.11 we have a 6∈ fa([a]r). The result follows.

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 113

• The case [b]s. By Definition 4.2.9 we have (b a)·[b]s ≡ [a]((b a)·s). Using (=α[b])

we obtain [b]s ≡ [a]((b a)·s) whenever a 6∈ fa(s). By Definition 4.2.11 we have [b]s ≡
[a]((b a)·s) whenever a 6∈ fa([b]s). The result follows.

• The case [c]t. Suppose b 6∈ fa([c]t). By Definition 4.2.11 we have b 6∈ fa(t). By

Definition 4.2.9 we have (b a)·[c]t ≡ [c]((b a)·t). By inductive hypothesis (b a)·t =α t

implies a 6∈ fa(t). By Definition 4.2.11 we have (b a)·t =α t implies a 6∈ fa([c]t). Using

(=α[a]) we obtain [c]((b a)·t) =α [c]t. By Definition 4.2.9 we have [c]((b a)·t) ≡ (b a)·
[c]t. The result follows.

• The case (=αf). Suppose b 6∈ fa(f(r1, . . . , rn)). By Definition 4.2.11 we have b 6∈
fa(ri) for 1 ≤ i ≤ n. By Definition 4.2.9 we have (b a)·f(r1, . . . , rn) ≡ f((b a)·
r1, . . . , (b a)·rn). By inductive hypotheses (b a)·ri =α ri implies a 6∈ fa(ri) for 1 ≤ i ≤
n. By Definition 4.2.11 and (=αf) we obtain f((b a)·r1, . . . , (b a)·rn) =α f(r1, . . . , rn)

implies a 6∈ fa(f(r1, . . . , rn)). By Definition 4.2.9 we have (b a)·f(r1, . . . , rn) =α

f(r1, . . . , rn) implies a 6∈ fa(f(r1, . . . , rn)). The result follows.

4

Theorem 4.4.24 is the main result in Section 4.4. Intuitively, it states that the translation of

Definition 4.4.12 and Definition 4.4.19 are sufficient to preserve and reflect nominal unification

solutions. That is, if there’s a solution to a unification problem using one form of nominal term,

then the translation of that solution is a solution of the translated unification problem.

Theorem 4.4.24: (∆, θ̇) solves Ṗ if and only if J(∆, θ̇)K solves JṖK∆.

Proof. We handle the two implications separately:

• The left to right case. Suppose ∆ ` ṙθ̇ ≈ ṡθ̇. By Lemma 4.4.20 and Theorem 4.4.15 we

have JṙK∆J(∆, θ̇)K =α JṡK∆J(∆, θ̇)K.
Suppose ∆ ` ȧ#ṙθ̇. By Lemma 4.4.14 we have ι(ȧ) 6∈ fa(Jṙθ̇K∆). By Lemma 4.4.20 we have

ι(ȧ) 6∈ fa(JṙK∆J(∆, θ̇)K). By Lemma 4.4.23 we have (b ι(ȧ))·JṙK∆J(∆, θ̇)K =α JṙK∆J(∆, θ̇)K
where b is fresh. By Lemma 4.2.31 we have ((b ι(ȧ))·JṙK∆)J(∆, θ̇)K. The result follows.

• The right to left case. Suppose JṙK∆J(∆, θ̇)K =α JṡK∆J(∆, θ̇)K. By Theorem 4.4.15 we have

∆ ` ṙθ̇ ≈ ṡθ̇.
Suppose ((b ι(ȧ))·JṙK∆)J(∆, θ̇)K. By Lemma 4.2.31 we have (b ι(ȧ))·JṙK∆J(∆, θ̇)K =α JṙK∆J(∆, θ̇)K.
By Lemma 4.4.23 we have ι(ȧ) 6∈ fa(JṙK∆J(∆, θ̇)K). By Lemma 4.4.20 we have ι(ȧ) 6∈
fa(Jṙθ̇K∆). By Lemma 4.4.14 we have ∆ ` ȧ#ṙθ̇. The result follows.

4

4.5 Conclusions

This Chapter has introduced a new form of nominal term, permissive nominal terms. We view

Corollaries 4.2.17 and 4.2.18 (the ‘always fresh’ and ‘always rename’ properties) as significant

improvements over nominal terms, and it is our opinion that these two properties make working

with permissive nominal terms more attractive than working with UPG nominal terms. For

4. PERMISSIVE NOMINAL TERMS AND THEIR UNIFICATION 114

instance, permissive nominal terms can be quotiented by syntax; nominal terms cannot. We

view this as a real improvement on the state-of-the-art. Another improvement, the simplification

of permissive nominal unification solutions, compared to UPG nominal unification solutions, also

brings permissive nominal unification into line with existing unification algorithms.

Ongoing research is already using permissive nominal terms. For instance, Gabbay and Mul-

ligan [GM09e] used permissive nominal techniques relating lambda-algebras and (permissive)

nominal algebra. Similarly, Dowek and Gabbay [DGM10, second half of paper] used permissive

nominal terms to relate the solutions of higher-order pattern unification problems and permis-

sive nominal unification problems. Finally, Dowek and Gabbay introduced Permissive Nominal

Logic [DG10], a foundational logic intended for specifying other logics and calculi, based on

first-order logic with permissive nominal terms as the term language. We believe in all cases

that the use of permissive nominal techniques vastly simplified the work.

Although it may appear that the use of an infinite and coinfinite sorting system a bar to

implementation, Chapter 5 will present an implementation of the permissive nominal unification

algorithm in the functional language Haskell, proving that permission sorts are no barrier to im-

plementation (and in fact, the unification algorithm presented in this Chapter is straightforward

to implement). The reader should note here that implementation in a lazy language such as

Haskell is not necessary, and the work presented in Chapter 5 could well have been implemented

in Standard ML, or another strict language. The relationship between an existing implementa-

tion of nominal techniques, Calvès’ HNT [Cal09], and the permissive implementation, will also

be discussed in Chapter 5.

CHAPTER 5

Implementing permissive nominal terms

Abstract

Permissive nominal terms label nominal unknowns with infinite and coinfinite sets

of atoms called a permission sort. This Chapter provides a constructive ‘proof’ that

these infinite and coinfinite sets do not preclude a straightforward implementation of

permissive nominal terms, nor their unification algorithm. We provide this ‘proof’ by

way of a prototype implementation of permissive nominal terms and their unification

algorithm, which we call PNT, in the programming language Haskell. Moreover, we

do not depend on the lazy evaluation semantics of Haskell to represent permission

sorts; all data structures in the implementation admit a finite representation.

For testing and debugging purposes we include the PNT Frontend that accepts a

small domain specific language for specifying permission sorts, terms and unification

problems for solving. We conclude the Chapter with a demonstration of PNT in

action, unifying two permissive nominal terms via the PNT Frontend.

5.1 Introduction

Chapter 4 introduced permissive nominal terms. Permissive nominal terms eliminate explicit

freshness contexts. Instead unknowns X are labeled with a permission sort, and the infinite

and coinfinite form of these permission sorts allows us to recover the ‘always fresh’ and ‘always

rename’ properties that nominal terms lack.

Reasons for implementing permissive nominal terms are twofold.

First, this Chapter proves that the infinite and coinfinite nature of permission sorts is no

barrier to a straightforward implementation. We do this by providing a ‘constructive proof’,

by way of a prototype implementation in Haskell, called PNT, of permissive nominal terms and

their unification algorithm.

Despite being infinite in size, permission sorts are uniquely characterised by two finite sets of

atoms, and we use this fact to implement permissive nominal terms in a straightforward manner.

Second, we believe that implementing computational mathematics, in of itself, is a good idea.

An implementation provides a concrete framework for exploring permissive nominal terms as an

idea that complements the abstract mathematical description in Chapter 4.

We implement PNT in Haskell [PJ02]. Haskell is a lazy pure functional programming lan-

guage, but we do not rely on Haskell’s purity, nor its laziness, to implement permissive nominal

terms; we could easily have obtained the same results in an eager, impure language like Standard

ML [MTHM97] or Java [GJSB05].

PNT is provided as a Haskell library, i.e. a collection of independent modules, which can

in principle be used in other applications that require a notion of ‘term with binding’. PNT

provides the following features:

115

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 116

• An abstract data type implementing permutations, including functions for computing dif-

ference sets between two permutations, and composing and inverting permutations (Sub-

section 5.2.2).

• An abstract data type implementing permission sorts, including functions for computing

intersections and unions of permission sorts, for adding and subtracting atoms from per-

mission sorts, and testing equality (Subsection 5.2.3).

• An abstract data type implementing permissive nominal terms, including an α-equivalence

test, permutation and substitution actions, functions for the calculation of free atoms, free

variables and calculating a fresh atom for a term (Subsection 5.2.5).

• A module implementing the permissive nominal unification algorithm, including an imple-

mentation of the support-reduction algorithm (Definition 4.3.8), and unification algorithm

(Definition 4.3.39) proper (Section 5.3).

In addition, we also provide the PNT Frontend—a mini language—which allows a user to easily

define permission sorts and terms, and amongst other operations, unify two terms and test for

α-equivalence. The PNT Frontend operates from the command line. The design of the PNT

Frontend, and a sample user interaction, is briefly described in Section 5.4. The complete BNF

grammar of the language accepted by the PNT Frontend is available in Chapter C.

The PNT implementation is a prototype, and not a ‘full’ implementation of (permissive)

nominal terms. We draw a distinction between the work presented in this Chapter, and the

work of Calvès on his implementation of the Haskell Nominal Toolkit (HNT) [Cal09]. Aside

from the obvious difference between HNT and PNT—the difference between standard nominal

terms and permissive nominal terms described in the introductory sections of Chapter 4—the

most striking difference between the two implementations is the choice of unification algorithm

implemented. In particular, Calvès and Fernández have expended significant research effort

investigating efficient (polynomial space and time) nominal unification and matching algorithms.

This is in contrast with the exponential asymptotic running time of the näıve, recursive descent,

permissive unification algorithm.1 The HNT implements efficient unification and matching

algorithms, whereas PNT implements the less efficient recursive descent algorithm.

We see the difference in implemented unification algorithms as a difference in research focus.

The HNT was part of a wider research context, with the aim of finding the most efficient

nominal unification algorithm possible. In contrast, the goals of PNT are more humble: we aim

to show that permissive nominal terms can be implemented in a straightforward manner, as

well as providing a concrete implementation of permissive nominal terms that people can use to

familiarise themselves with permissive nominal technology.

The HNT also goes further than the prototype permissive implementation in implementing

a nominal rewriting algorithm. As a direct consequence, functions and ancillary data structures

for navigating efficiently through terms (i.e. an implementation of Huet’s zipper [Hue97]) are

also provided.

1The permissive nominal unification algorithm of Chapter 4 has exponential worst case running time. This is
for the same reasons as for the näıve recursive descent first-order unification algorithm. Namely, consider trying

to solve the following unification problem: f(X1, X1)
?
= X2, f(X2, X2)

?
= X3, f(X3, X3)

?
= X4,

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 117

In contrast, PNT implements no rewriting algorithms. Again, this represents a difference

of research focus between the two implementations. Rewriting algorithms can easily be im-

plemented on top of the PNT, and the modular design of the implementation should make

this straightforward. In addition, the recursive descent permissive unification algorithm could

also be replaced with minimal changes to the rest of the code base, with the more efficient

Calvès-Fernández algorithm.

In particular, the modular design of the implementation is aided through extensive use

of Haskell’s type classes. This makes it easy to write generic functions that assume as little

as possible about the particular implementation of the data types which they work on. In

addition, we make use of view patterns [Wad87], an extension to the Haskell 98 provided by the

Glasgow Haskell Compiler [Tea10]. These allow us to keep abstract data types truly abstract,

thus preserving important invariants, whilst still retaining the ability to pattern match against

the data type’s constructors.

All source code for this Chapter is available online, at the following address: http://www2.

macs.hw.ac.uk/~dpm8/permissive. Sections within this Chapter, describing particular func-

tionality of the PNT Frontend, make reference to directories in the source code distribution,

where the relevant Haskell code can be found. A web-based version of the PNT Frontend is

also available online at the same location. An example script is preloaded: clicking the button

marked Solve obligations will process the input.

The work in this Chapter is individual work and does not currently appear in published

form.

5.1.1 Conventions

We typeset Haskell source mostly ‘as is’. However, to improve the typography of Haskell ex-

cerpts, and also for reasons of legibility, we make a few changes. These are summarised as

follows:

Convention Description Standard Haskell

◦ Function composition .

λ Anonymous function abstraction \
∧ Boolean conjunction &&

∨ Boolean disjunction ||

== Boolean equality ==

=/= Boolean inequality /=

++ List append ++

Type variables in function type ascriptions and data type declarations are denoted by Greek

lower case letters, α, β, γ, and so on, as opposed to a, b, c, as is standard in Haskell. When

referring to Haskell functions or data types in the narrative, we use an italicised font face (map,

foldr, and so on).

http://www2.macs.hw.ac.uk/~dpm8/permissive
http://www2.macs.hw.ac.uk/~dpm8/permissive

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 118

5.2 Building terms

In this Section, we provide a brief overview of the design decisions taken whilst implementing

the permissive nominal terms subsystem.

5.2.1 Atoms

The excerpts described in this Subsection can be found in the file Terms/Permissive.hs.

Atoms are one of the fundamental building blocks of nominal terms. Formally, we assume

that atoms have no implicit structure; we may test for equality and inequality between two

atoms, and that is it. Fortunately, Haskell has an elegant way of capturing this idea: the Eq

type class; types that are instances of Eq have equality and inequality tests defined.

Ideally what we would like is a single type class that captures all the reasoning that one may

need to perform on atoms. We can then write generic unification functions that operate over

elements of this type class.

However, consideration must be given to the role of permission sorts in permissive nominal

terms. In Definition 4.2.2 we fixed a single permission sort called comb. All other permission

sorts are taken to vary finitely from this permission sort. Similarly, in PNT, we also assume a

single, fixed permission sort comb, and we find it convenient to assume a function inComb that

returns a Boolean value, stating whether an atom lies inside comb or not.

In addition, we’d also like to be able to generate ‘fresh’ atoms based on a list of previously

used atoms, with the obvious property that the generated fresh atom must not appear in the

input list.

class Eq α ⇒ Permissive α

where

inComb :: α → Bool

fresh :: [α] → a

Permissive is the most fundamental type class used in the implementation. Nearly all functions

operating on terms, and many operations in the unification algorithm, make frequent use of it.

One possible weakness in the design of the type class is the coupling of two seemingly separate

concepts. That is, Permissive combines operations that arise naturally on atoms—equality and

inequality tests—with operations that seem to deal with permission sorts. Would it not be a

better idea to factor Permissive into two type classes: keeping atoms as elements of Eq, and

introducing a new Sort type class that does not extend Eq?

We don’t see this as a weakness of our design for two reasons. Firstly, we have a single

fixed permission sort, from which all others differ finitely; the case for admitting multiple fixed

permission sorts (i.e. combi for i = 1, 2, . . . , ω) has not been made. For this reason, testing

whether an atom is a member of this fixed permission sort seems to be just as much a property

of the atoms themselves, as a property of the permission sort. Secondly, the use of a single

Permissive type class seems neater.

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 119

For the sake of the PNT Frontend, and to allow us to test our development, we provide

a single instance of Permissive, for the Haskell Int type. Note that any user of the library is

entirely free to use their own implementation of atoms as long as it satisfies the constraints of

the Permissive type class. Though we provide an implementation entirely in terms of integers,

the unification algorithm is ambivalent about the underlying representation of atoms, and this

representation can be changed by the user as needed.

We assume that odd integers are outside comb, whilst even integers lie within it. We assume

that only positive integers are used. This allows us to provide particularly simple functions that

satisfy Permissive for the Int type.

Generating a fresh Int is as simple as adding all the previously used integers together.

Depending on the value of this addition, we then add a constant—1, if the result is even, 2 if

the result is odd—to obtain a final Int that lies outside comb.

5.2.2 Permutations

The excerpts described in this Subsection can be found in the file Terms/Permutations.hs.

Permutations are the means through which α-equivalence in permissive nominal terms are

handled. They hold a prominent place in nominal techniques. We choose to implement a

Permutation data type with a simple representation—lists of pairs of atoms:

data Permutation α = Permutation [(α, α)]

Each pair (a, b) represents a swapping of b with a with b, and fixing on all other atoms c.

This choice of representation is a standard construction. For instance, it was taken as the

definition of a permutation in the paper introducing nominal unification [UPG04]. It has the

attractive property that composing two permutations is as straightforward as appending their

underlying association lists. Similarly, inverting a permutation is as straightforward as reversing

its underlying association list.

There is, however, one subtlety. In several places in the unification algorithm (notably (vX)

in Definition 4.3.8 we need to test whether a particular permutation is the identity. Unfortu-

nately, representing permutations as lists means that there is no single ‘canonical’ representation

of the identity permutation.

For example, the empty list [] may serve as the identity: it acts on no atoms, therefore every

atom is fixed by it. However, the lists [(b, a), (a, b)] and [(c, a), (a, c)] also serve as the identity

permutation. It is a rather obvious fact that the identity permutation, under this representation

scheme, has an infinity of different representations!

To solve this problem we define an auxiliary function atomsIn. This can be thought of

collecting all the atoms that appear anywhere within the Permutation’s underlying lists into

another list. These atoms are exactly the atoms that possibly could be mapped to some other

atom by the permutation. atomsIn is defined in a straightforward manner, as follows:

atomsIn :: Permissive α ⇒ Permutation α → [α]

atomsIn (Permutation []) = []

atomsIn (Permutation ((a, b):t)) = nub $ [a, b] ++ atomsIn (Permutation t)

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 120

Here nub is a Haskell Prelude function that removes duplicated items from a list. Using atomsIn,

we define a test for permutations, isIdentity :

isIdentity :: Permissive α ⇒ Permutation α → Bool

isIdentity (Permutation []) = True

isIdentity prm = map (act prm) (atomsIn prm) == atomsIn prm

Here act is a function that applies a permutation to an atom. isIdentity first computes all the

candidate atoms that could be mapped non-trivially by the input Permutation, using atomsIn.

It then applies, successively, the Permutation to each candidate. If we get the same list of atoms

back, after mapping the Permutation, then the Permutation does indeed represent the identity.

Clearly, isIdentity has poor computational properties as it traverses lists representing per-

mutations multiple times, both in building the lists of candidate atoms, and then mapping the

Permutation across the candidates. If the prototype is expanded into a full implementation of

permissive nominal terms, a more effective representation of permutations, ideally facilitating a

canonical representation, would improve efficiency matters. However, the identity test performs

satisfactorily for our purposes.

5.2.3 Permission sorts

The excerpts described in this Subsection can be found in the file Terms/Sorts.hs.

In Chapter 4 we characterise permission sorts as sets of atoms of the form comb ∪ A \ B.

Here comb is a single fixed coinfinite and infinite set of atoms, whilst A and B are both finite

sets of atoms.

However, what really matters are the sets A and B, which uniquely determine any particular

permission sort (as comb is fixed). Conveniently, A and B are also assumed to be finite, and

hence by recording A and B we have a way of uniquely and finitely identifying any permission

sort.

There is, however, one subtlety.

A basic operation on terms is the calculation of free atoms. Free atoms calculations under-

pin α-equivalence and unification. Now consider the following two clauses, taken from Defini-

tion 4.2.11:

fa(a) = {a} fa(π·XS) = π·S

The free atoms of an atom is a singleton set. However, the free atoms of an unknown is an

infinite and coinfinite set—a permission sort.

Definition 4.2.11 seems to demand that free atom calculations on terms returns a permission

sort as the result. This is convenient, as we can take the union of the free atoms of terms by

unioning permission sorts, and so on. However, this slightly complicates the design of our data

type representing permission sorts, as we must also take into account finite sets of atoms. This

propagates through the implementation of all functions we wish to define on permission sorts:

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 121

union, intersection, and so on. Our Sort data type is therefore a union type with constructors

for finite sets of atoms and infinite permission sorts:

data Sort α = Finite [α]

| Infinite [α] [α]

The Infinite constructor carries two lists. The first corresponds to atoms added to the permission

sort that lie outside comb. The second corresponds to atoms removed from the permission

sort, that lie outside comb. We maintain the invariant that only atoms outside of comb are

members of the first list, and only atoms inside comb are members of the second list. Using this

representation, comb itself has a particularly simple definition:

comb :: Permissive α ⇒ Sort α

comb = Infinite [] []

That is, a permission sort where no atoms are added nor any atoms are removed from the

implicit fixed sort comb.

5.2.3.1 Operations on permission sorts

Sort is our data type representing permission sorts. We’d like to use Sort to write functions that

compute the union of two sorts; intersection of two sorts; remove atoms from sorts; compute

whether one sort is a subset of another; permute sorts with an Permutation. Fortunately, most

of these operations are entirely straightforward to implement, for instance, calculating whether

one permission sort is a subset of another:

subset :: Permissive α ⇒ Sort α → Sort α → Bool

subset (Finite []) = True

subset (Finite (h:t)) (Finite fsrt) =

elem h fsrt ∧ subset (Finite t) (Finite fsrt)

subset (Finite (h:t)) (Infinite add sub)

| inComb h =

if elem h sub then

False

else

subset (Finite t) (Infinite add sub)
| elem h add = subset (Finite t) (Infinite add sub)

| otherwise = False
subset (Infinite add sub) (Infinite add ′ sub′) =

let

subset ′ :: Eq α ⇒ [α] → [α] → Bool

subset ′ [] = True

subset ′ (h:t) lst = elem h lst ∧ subset ′ t lst
in

subset ′ add add ′ ∧ subset ′ sub′ sub
subset i@(Infinite) f @(Finite) = False

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 122

Here elem is a Haskell Prelude function that tests an element for membership of a set. The

cases for finite Sorts are straightforward: the empty set is a subset of all other permission sorts,

and for non-empty finite sorts, a finite set is a subset of another if all its members also belong

to the other set.

Similarly, comparing a finite set of atoms with an infinite permission sort is easy. For each

atom in the finite set, if the atom is in comb we need only check that we haven’t removed that

atom from the permission sort. If the atom isn’t in comb, then we check that we have added it

to the permission sort.

The only complicated test is between two infinite sorts. Suppose we have two Sorts repre-

senting the following permission sorts: S = comb ∪ A \ B and S′ = comb ∪ A′ \ B′. To check

whether S ⊆ S′, we must check that all elements of A are also elements of A′ and all elements

of B′ are elements of B.

The remaining functions operating on permission sorts are also as straightforward. For

instance, removing an atom from a Sort is just list manipulation, checking whether the atom to

remove lies inside comb or not:

remove ′ :: Permissive α ⇒ Sort α → α → Sort α

remove ′ (Finite fsrt) elem =

Finite $ delete elem fsrt

remove ′ (Infinite add sub) elem =

if inComb elem then then

Infinite add $ nub $ elem:sub

else

(Infinite $ delete elem add) sub

remove :: Permissive α ⇒ [α] → Sort α → Sort α

remove atms srt =

foldl remove ′ srt atms

Here delete is a Haskell Prelude function that deletes an element from a list. The Prelude

function foldl performs a left-fold over a list. We provide two functions for removing atoms from

Sorts: remove’ removes single atoms, whilst remove removes multiple atoms (in the form of a

list) at once.

However, there is one remarkable exception to the ease through which Sort permits straight-

forward implementations of operations on permission sorts—the pointwise action of a Permu-

tation on a Sort. Whilst we can define this operation in a single line, mathematically (Defini-

tion 4.2.10), implementing pointwise in Haskell leads to a 100-line function involving dozens of

case splits.

To understand why Definition 4.2.10 blows up like it does, consider the following. Suppose

you have a single swapping π = (b a). There are multiple ways that, under our Sort represen-

tation, atoms can be acted on:

• π acts on c, in which case nothing changes.

• π acts on b, b lies outside comb, but a is inside comb, so the Sort ’s underlying lists have to

be modified, swapping a and b in to and out of the Sort.

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 123

• π acts on b, b lies inside comb, but a is also inside comb, in which case nothing changes.

• π acts on b, b lies inside comb, but b has been removed from the particular Sort we are

operating on, in which case if a lies inside the Sort, the underlying lists have to be modified,

swapping a and b in to and out of the Sort.

...and many more cases thereafter. For this reason, we elide a Haskell excerpt for pointwise

here, as it is simply too large. We refer the reader to the definition of pointwise in the file

Terms/Sorts.hs.

5.2.4 Unknowns

The excerpts described in this Subsection can be found in the file Terms/Unknowns.hs.

Unknowns are another fundamental building block of nominal terms. We provide a dedicated

data type for representing unknowns, called Unknown, as during the course of the unification

algorithm’s execution, we need to be able to manipulate sets of unknowns (see for instance the

rules in Definition 4.3.35).

We introduce an Unknown data type that carries an Identifier combined with a Sort. Iden-

tifier is a minor data type that handles objects with names throughout the system:

data Unknown α β = Unknown (Identifier α) (Sort β)

deriving (Eq , Ord)

We automatically derive an instance of Ord for Unknown; this is necessary to make use of the

Haskell Prelude Set collection data type.

5.2.5 Terms

The excerpts described in this Subsection can be found in the file Terms/Terms.hs.

We now have all the necessary components for defining a data type that adequately represents

permissive nominal terms:

data Term α β = Atm β

| Unk (Permutation β) (Unknown α β)

| Abs β (Term α β)

| TFr (Identifier α) [Term α β]

Term has a constructor for each possible element of a permissive nominal term: atoms, un-

knowns with suspended permutation, abstractions and term formers. The Term data type

admits straightforward implementations for basic operations on permissive nominal terms. For

instance, computing the free atoms of a term is particularly straightforward, and corresponds

naturally to Definition 4.2.11:

fa :: (Eq α, Permissive β) ⇒ Term α β → Sort β

fa (Atm atm) = finiteSort [atm]

fa (Unk prm unk) = pointwise prm (srt unk)

fa (Abs abs bdy) = remove [abs] (fa bdy)

fa (TFr nm args) = foldr (union ◦ fa) empty args

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 124

Free atom calculations in permissive nominal terms return a permission sort, as discussed in

Subsection 5.2.3. Calculating the free atoms of a single atom entails returning a finite sort (here,

finiteSort is a function that takes a list of atoms and returns a Sort). Calculating the free atoms

of an unknown involves permuting the unknown’s sort with its suspended permutation.

The case for calculating the free atoms of a term former may seem a little opaque. We

calculate the free atoms of each argument of the term former, and then union them together

with foldr, a Haskell Prelude function, that performs a right-fold over a list.

Similarly, the implementation of α-equivalence is remarkably close to the mathematical def-

inition (Definition 4.2.13):

aeq :: (Eq α, Permissive β) ⇒ Term α β → Term α β → Bool

aeq (Atm atm) (Atm atm ′) = atm == atm ′

aeq (Unk prm unk) (Unk prm ′ unk ′) =

srt unk == srt unk ′ ∧ (finiteSort (ds prm prm ′) ‘intersection‘ srt unk) == empty

aeq (Abs abs bdy) (Abs abs ′ bdy ′)

| abs == abs ′ = aeq bdy bdy ′

|member abs ′ (fa bdy) = False

| otherwise = permutationAction (permute abs abs ′) bdy ‘aeq ‘ bdy ′

aeq (TFr nm args) (TFr nm ′ args ′) =

length args == length args ′ ∧ (and ◦ zipWith aeq args args ′)

aeq = False

Here length (returns the length of a list), and (returns the logical conjunction of a list of boolean

values) and zipWith (combines two lists into one pointwise using a given function) are Haskell

Prelude functions.

The α-equivalence test proceeds by induction on the structure of the two terms. Two atoms

are α-equivalent if they are identical. The only remarkable difference between the Haskell

implementation of α-equivalence, and the mathematical definition previously referenced, lies

in the α-equivalence test for unknowns. In Definition 4.2.13, the following rule is used for

unknowns:
(π|S = π′|S)

(=αX)
π·XS =α π

′·XS

Here π|S denotes the permutation π restricted to S, an infinite set. To implement (=αX), we

would have to find some way of restricting permutations to Sorts, a feat that doesn’t immediately

have an obvious remedy.

Fortunately, there is a way around this problem. We write ds(π, π′) = {a | π(a) 6= π′(a)}
and call ds(π, π′) the difference set of π and π′. Intuitively, ds(π, π′) are all the atoms that

π and π′, when acting, ‘disagree on’. Using ds(π, π′) we can formulate an alternative rule to

(=αX):
(ds(π, π′) ∩ S = ∅)

(=αX′)
π·XS =α π

′·XS

It is a fact that (=αX) and (=αX′) are equivalent: if we can derive two terms as being α-

equivalent with (=αX), then we can do the same with (=αX′), and vice-versa. Indeed, early

Definitions of α-equivalence for permissive nominal terms used (=αX′) instead of (=αX) (see for

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 125

instance [DGM09b, Definition 9]). However, (=αX′) is much more straightforward to implement

than (=αX), as it relies on ‘standard’ operations on the Sort data type, like the intersection

function, and Sort equality tests.

We implement difference sets for our Permutation data type using a function, ds. This is

used in the case for unknowns in aeq.

The only other subtlety to aeq ’s definition is the catch-all pattern matching case. This

catches any other case not previously matched. Clearly, if this case is ‘fired’, the two input

terms are not α-equivalent.

5.2.6 Implementing substitutions

The implementation of permissive nominal terms uses two notions of substitution. First, there

is a simple Substitution data type, corresponding simply to an association list of unknowns and

terms.

data Substitution α β = Substitution [((Unknown α β), (Term α β))]

We provide a single mechanism for constructing simple unknowns, through a smart constructor,

which checks our constructed substitution is in fact support-reducing in the sense of Defini-

tion 4.2.28:

substitution :: (Eq α, Permissive β)⇒ Unknown α β

→ Term α β → Maybe (Substitution α β)

substitution unk trm

| fa trm ‘subseteq ‘ srt unk = Just (Substitution [(unk , trm)])

| otherwise = Nothing

Here Maybe is the standard Haskell monad for denoting some computation that could possibly

fail. Nothing is returned when substitution detects that the constructed substitution is not

support reducing.

Composing two Substitutions is as simple as appending their lists. Similarly, computing the

domain and range of the substitution is straightforward: simply map first or second projection

functions across the underlying list representation. We define a substitution action on Terms

with:

substitutionAction :: (Eq α, Permissive β) ⇒ Substitution α β→ Term α β→ Term α β

substitutionAction (Substitution []) trm = trm

substitutionAction subs (Atm atm) = Atm atm

substitutionAction (Substitution ((unk , trm):t)) (Unk prm unk ′)

| unk == unk ′ = substitutionAction (Substitution t) $ permutationAction prm trm

| otherwise = substitutionAction (Substitution t) $ Unk prm unk ′

substitutionAction subs (Abs abs bdy) =

Abs abs $ substitutionAction subs bdy

substitutionAction subs (TFr nm args) =

TFr nm $ (map ◦ substitutionAction) subs args

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 126

Applying a Substitution is a case of descending through the Term structure, until we hit the

unknowns. As permissive nominal term substitutions are not capture avoiding, we obtain a

straightforward implementation. The most interesting case is when we descend through the

term, and hit an unknown. If the unknown in question matches an unknown in the underlying

Unknown-Term list carried by the inputted Substitution, we perform a replacement, then proceed

recursively once more on the new Term.

The simple list of Unknown-Term pairs representation for substitutions is fine for most

applications, where we simply wish to descend into a term and replace all instances of some

unknown with a term. However, the unification algorithm of Chapter 4 also makes heavy use

of another type of substitution, where this representation no longer works as well. Notably, the

‘support reducing substitution’ ρ of Definition 4.3.21 requires a notion of state. We repeat the

most relevant line of the definition here, for convenience:

ρVInc(X
S) = id·X ′S′ if XS ∈ V and ρVInc(X

S) = id·XS otherwise

The particular trappings of the definition are irrelevant for our discussion, but can be inferred

from the context of Definition 4.3.21, and surrounding definitions. What matters is the fact

that ρ carries an ‘internal state’, so to speak: how ρ acts cannot be described using a simple

list of Unknown-Term pairs. Instead, we must introduce another type, corresponding to these

substitutions with state, called ConditionalSubstitution:

type ConditionalSubstitution α β = (Unknown α β → Substitution α β)

Intuitively, ConditionalSubstitution represents a specific kind of closure, which takes an un-

known as input and returns a straightforward substitution. Like their Substitution counterparts,

we define an action on terms for ConditionalSubstitutions, in roughly an analogous fashion.

However, unlike Substitutions, defining substitution composition now becomes tricky. For-

tunately, the algorithm of Chapter 4 only uses substitutions with state in a small number of

places, most prominently in rule (I3) in Definition 4.3.35. Notably, (I3) is applied after every

other simplification rule has been applied, and therefore we do not need to be able to explicitly

compose ConditionalSubstitutions to implement the permissive unification algorithm.

5.3 Unification of terms

The previous section introduced functions and data types for working with and manipulating

permissive nominal terms. In this Section, we describe the implementation of the permissive

unification algorithm of Chapter 4. The unification algorithm is split into two submodules:

support reduction (described in Subsection 5.3.1) and the unification algorithm proper (described

in Subsection 5.3.2).

5.3.1 Support reduction

The excerpts described in this Subsection can be found in the file Unification/SupportReduction.hs.

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 127

Trying to unify id·XS and id·Y T where S 6= T requires that we find a new permission sort

U where U ⊆ S and U ⊆ T . This ‘joining’ of permission sorts is called support reduction

(Subsubsection 4.3.2.1). Accordingly, a support reduction problem is a list of pairs of Terms

and Sorts, and is easily representable as a data type:

data SupportReduction α β = SupportReduction [(Term α β, Sort β)]

Using this list-based representation, like the Substitution and Permutation data types, we

implement the union of two SupportReductions by simply concatenating their underlying list

representations. We also calculate the free variables of a support reduction problem by sim-

ply mapping a function for calculating the free variables of terms across the underlying list

representation:

fV :: (Ord α, Ord β, Eq α, Permissive β) ⇒ SupportReduction α β → Set (Unknown α β)

fV (SupportReduction []) = Set .empty

fV (SupportReduction ((trm, srt):t)) =

Terms.Terms.fV trm ‘Set .union‘ fV (SupportReduction t)

In Definition 4.3.14 we defined a notion of normal form for a support reduction problem, and

provided a characterisation of normal forms in Lemma 4.3.17. Moreover, we proved that we can

calculate this normal form using a reduction relation, defined in Definition 4.3.8. This relation

always halts, on any input, a result proved in Theorem 4.3.13. We implement the support

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 128

reduction simplification relation, using the following function, nf :

nf :: (Eq α, Permissive β) ⇒ SupportReduction α β → SupportReduction α β

nf (SupportReduction []) = SupportReduction []

nf (SupportReduction (a@(Terms.view → AtmView atm, srt):t)) =

if member atm srt then

nf (SupportReduction t)

else

union (SupportReduction [a]) (nf (SupportReduction t))
nf (SupportReduction ((Terms.view → TFrView nm args, srt):t)) =

let

argsSupp = foldr union empty (map (λx → (SupportReduction [(x , srt)])) args)

in

nf $ union argsSupp $ SupportReduction t
nf (SupportReduction ((Terms.view → AbsView abs bdy , srt):t)) =

let

newsrt = Sorts.union srt $ finiteSort [abs]

in

nf $ SupportReduction $ (bdy , newsrt):t
nf (SupportReduction (u@(Terms.view → UnkView prm unk , srt ′):t)) =

let

invSrt = pointwise (inverse prm) srt ′

in

if not (isIdentity prm) ∧ not (srt unk ‘subseteq ‘ invSrt) then

nf $ SupportReduction $ (mkUnk identity unk , invSrt):t

else

if srt unk ‘subseteq ‘ invSrt then

nf $ SupportReduction t

else

union (SupportReduction [u]) $ nf $ SupportReduction t

Here inverse is the function for inverting a Permutation, by reversing its underlying list repre-

sentation.

The empty SupportReduction is already in normal form. Otherwise, suppose we have a

Term-Sort pair at the head of our SupportReduction, representing the support reduction a v S.

If a ∈ S then we ‘discharge’, removing the head, and simplifying the rest of the problem. If

a 6∈ S, we keep the associated Term-Sort pair, and return it with the remainder of the simplified

problem.

Simplifying a support reduction with a termformer is straightforward, as we simply traverse

into the termformer and simplify its arguments. Similarly, simplifying a SupportReduction with

a Term-Sort pair at the head, representing the support reduction [a]r v S, is as straightforward

as simplifying the Term-Sort pair representing r v S ∪ {a}.
The hardest case comes when simplifying a SupportReduction with a Term-Sort pair at

the head, representing the support reduction π·XS v T . In this case we have a case split,

corresponding to the two side conditions on (vX) and (vX′) from Definition 4.3.8. In particular,

we first check whether π is the identity and then whether S 6⊆ π-1·T . If so, we attempt to

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 129

simplify a SupportReduction with a Term-Sort pair corresponding to XS v π-1·T at the head.

Otherwise, we check whether S ⊆ π-1·T , in which case we discharge, and simplify the rest of the

SupportReduction. Any other case is ‘stuck’.

Using nf we may test whether a support reduction problem is inconsistent. A SupportRe-

duction in normal form is inconsistent if it contains a Term-Sort pair representing a support

reduction of the form a v S (Definition 4.3.14):

isConsistent :: (Eq α, Permissive β) ⇒ SupportReduction α β → Bool

isConsistent suppinc =

let

isConsistent ′ :: (Eq α, Permissive β) ⇒ SupportReduction α β → Bool

isConsistent ′ (SupportReduction []) = True

isConsistent ′ (SupportReduction ((Terms.view → AtmView atm, srt):t)) = False

isConsistent ′ (SupportReduction (suppinc:t)) = isConsistent ′ $ SupportReduction t

nfrm = nf suppinc
in

isConsistent ′ nfrm

Similarly, using nf we may also check whether a SupportReduction is trivial. Following Defini-

tion 4.3.15, a SupportReduction is trivial if its associated normal form is empty.

isTrivial :: (Eq α, Permissive β) ⇒ SupportInclusion α β → Bool

isTrivial suppinc =

case nf suppinc of

SupportInclusion [] → True

→ False

The following function corresponds to an important building block in the support reduction

algorithm. Namely, injectiveChoice is a function that corresponds to Definition 4.3.20. The

function takes two arguments: an Unknown and a SupportReduction. As output, the function

returns a fresh unknown, injectively picked based on the input Unknown. The output Unknown’s

Sort is the intersection of the Sorts of Unknowns appearing in the input SupportReduction,

after being placed into normal form. injectiveChoice produces the fresh unknowns necessary for

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 130

joining distinct unknowns with differing permission sorts in the unification algorithm.

injectiveChoice :: (Injective α, Permissive β) ⇒Unknown α β → Set (Unknown α β) →
SupportReduction α β → Unknown α β

injectiveChoice unk unks suppinc =

case nf suppinc of

SupportInclusion [] → unk

SupportInclusion supps →
let

injectiveChoice ′ unk unks s =

let

name = (id ◦ nm) unk

sort = srt unk

name ′ = identifier $ injective name unks

toIntersect = map snd s

injectiveChoice ′′ :: Permissive a ⇒ [Sort α] → Sort α

injectiveChoice ′′ [] = error “injectiveChoice : the impossible happened”

injectiveChoice ′′ [srt] = srt

injectiveChoice ′′ (h:t) = intersection h $ injectiveChoice ′′ t

sort ′ = injectiveChoice ′′ $ sort :toIntersect

unk ′ = unknown name ′ sort ′
in

unk ′

in

injectiveChoice ′ unk supps

We see that injectiveChoice makes use of the Injective type class. This type class is reproduced

below:

class Eq α ⇒ Injective α

where

injective :: α → [α] → α

Injective allows us to make an injective choice of fresh object. That is, we enforce the condition

that if x and y are distinct, then injective x s and injective y s are also distinct, where s is

a list of atoms, and the fresh choice of object does not appear within the second argument of

injective. Moreover, we provide a simple instance of the Injective type class for the Haskell

String type, which we use as the underlying implementation of identifiers for unknowns in the

implementation.

There is the possibility of injectiveChoice raising a runtime exception. This occurs if the

SupportInclusion passed to injectiveChoice happens to be trivial. Before calling injectiveChoice,

we ensure that this is not the case.

The operation of injectiveChoice is largely straightforward. We first place the input Sup-

portReduction into normal form, though we ensure that this is already the case before calling

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 131

injectiveChoice. Then, we collect all the permission sorts from the normal form SupportReduc-

tion into a list, and collectively intersect them with each other, and set this as the permission

sort of a freshly picked unknown.

injectiveChoice is used as a subroutine in the definition of rho, a function capturing the

support reducing substitution from Definition 4.3.21. rho is an example of a ConditionalSubsti-

tution—a substitution with state, or a closure. We remind the reader that a ConditionalSub-

stitution is a function from Unknowns to a Substitution. rho takes as input a Set of Unknowns

and the behaviour of the resulting ConditionalSubstitution is determined by whether the sub-

stitution’s input Unknown is a member of this Set.

rho :: (Ord α, Ord β, Injective α, Permissive β) ⇒ Set (Unknown α β) →
SupportReduction α β →

ConditionalSubstitution α β

rho v suppinc x =

if Set .member x v then

let

inj = injectiveChoice x suppinc

subst = substitution x $ mkUnk Terms.Permutations.identity inj
in

case subst of

Just s → s

Nothing → error “rho : substitution has incorrect support”
else

case substitution x $ mkUnk Permutations.identity x of

Just s → s

Nothing → error “rho : substitution has incorrect support”

Once more, there is the possibility that rho will raise a runtime exception. This occurs if the

substitution constructed has incorrect support (i.e. takes the form [XS:=Y T] where T 6⊆ S). If

the permission sort intersection calculation carried out in injectiveChoice is correct, this should

never occur.

rho solves a given support reduction problem. As a result, it plays a fundamental part in

the operation of the unification algorithm.

5.3.2 Unification algorithm

The excerpts described in this Subsection can be found in the file Unification/Unification.hs.

The unification problem described in this section builds on all the Haskell excerpts so-far

described. In particular, it uses the support reduction algorithm of Subsection 5.3.1 as a sub-

procedure for ‘joining’ unknowns of differing permission sorts. We start by introducing a data

type, Unification, that represents unification problems:

data Unification α β = Unification [(Term α β, Term α β)]

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 132

We encode unification problems as lists of Term-Term pairs. Once more, this enables us to easily

represent the empty unification problem (an empty list) and facilitates an easy implementation

of union (list concatenation).

It is often necessary to apply a substitution to each term appearing in a Unification. This

is especially true when computing the unification problem simplification procedure of Defini-

tion 4.3.35. Notably, the instantiation rules, (I1) through to (I3), require that we implement a

function for applying Substitutions pointwise to Unifications, and also a function for applying

ConditionalSubstitutions to Unifications. These two functions are provided below:

substitutionAction :: (Eq α, Permissive β) ⇒ Substitution α β → Unification α β → Unification α β

substitutionAction subst (Unification uni) =

Unification $ map (Terms.substitutionAction subst ∗∗∗ Terms.substitutionAction subst) uni

condSubstitutionAction :: (Eq α, Permissive β) ⇒ ConditionalSubstitution α β →
Unification α β →
(Unification α β, Substitution α β)

condSubstitutionAction subst (Unification uni) =

let

temp = map (Terms.condSubstitutionAction subst ∗∗∗ Terms.condSubstitutionAction subst) uni

uni ′ = map (fst ∗∗∗ fst) temp

subst ′ = foldr compose identity (map (uncurry compose . (snd ∗∗∗ snd)) temp)
in

(Unification uni ′, subst ′)

Here, *** is a Haskell function in the Control.Arrow module, which takes two functions and a

pair as input, then applies one function to the left element of the pair, and the other function

to the right element of the pair.

substitutionAction is largely straightforward, simply mapping across the underlying list of

the Unification, applying the substitutionAction function to each Term. More subtle is the

condSubstitutionAction, especially its return type. First, we apply the ConditionalSubstitution

to each Term in the Unification, just as in the case of substitutionAction.

Note that a ConditionalSubstitution is really a function from Unknowns to Substitutions.

That is, a ConditionalSubstitution is morally a ‘hidden’ substitution, which is only revealed

once we apply the ConditionalSubstitution to an Unknown. However, in order to eventually

present the unifier, computed by the unification algorithm, to the user as feedback, we need to

be able to record these hidden substitutions. We therefore collect the ‘unhidden’ Substitutions

by composing them into a single Substitution, subst’, and return this Substitution as part of the

output of the function.

Only one other function of note is included in the unification module, solve, an implementa-

tion of the unification algorithm defined in Definition 4.3.39. Notably, if properly implemented,

this function is guaranteed to always terminate (Theorem 4.3.42) and always return a most

general unifier (Theorem 4.3.56). The implementation of solve is rather lengthy, we therefore

present only a few cases and refer the reader to Unification.hs for the full function definition.

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 133

The function solve takes two inputs. The first argument is a Set of Unknowns at least

as large as the set of free unknowns of the unification problem. The second argument is the

unification algorithm to solve.

We note that solve returns an object of type Either Unification Substitution. Here, Either

is the standard Haskell sum type. solve returns either a Unification which cannot be further

simplified, therefore no solution exists, or a Substitution, which solves the input Unification

problem.

Simplifying a Unification problem with a Term-Term pair at the head, corresponding to

a
?
= a is straightforward:

solve unks (Unification ((Terms.view → AtmView atm, Terms.view → AtmView atm ′):t)) =

if atm == atm ′ then

solve unks (Unification t)

else

inject (mkAtm atm, mkAtm atm ′) (solve unks (Unification t))

That is, if the two Terms at the head of the Unification represent identical atoms, we discharge,

and simplify the rest of the Unification.

The alternative case, the two Terms at the head of the Unification represent differing atoms,

represented by the else-branch in the previous excerpt, is slightly more complicated. Here,

inject is a small helper function used to make the implementation of solve clearer. Intuitively,

inject is called when the unification problem currently under consideration cannot be solved. In

this case, we call inject to simplify the rest of the Unification, before ‘consing’ the unsolvable

obligation onto the front of the Unification. The definition of inject is slightly complicated by

the fact that simplifying the rest of the Unification problem returns either another Unification

or a Substitution.

Simplifying a Unification with a Term-Term pair at the head corresponding to two abstrac-

tions involves a case split. If the two abstracted atoms are identical, then we simplify their

bodies. Otherwise, we check whether a renaming is possible to make the abstracted atom iden-

tical, without sacrificing α-equivalence, perform the renaming, and then simplify the bodies:

solve unks (Unification ((Terms.view → AbsView abs bdy , Terms.view → AbsView abs ′ bdy ′):t))

| abs == abs ′ = solve unks (Unification ((bdy , bdy ′):t))

| not (abs ′ ‘member ‘ fa bdy) =

let

newBdy = permutationAction (permute abs abs ′) bdy

in

solve unks (Unification ((newBdy , bdy ′):t))
| otherwise = inject (mkAbs abs bdy , mkAbs abs ′ bdy ′) (solve unks (Unification t))

To simplify a Unification with two termformers at the head we simply traverse through the

termformer and simplify its arguments.

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 134

The hardest case to implement is the case where two Unknowns must be unified: Suppose our

two Unknowns have identical Permutations suspended upon them, and identical Sorts. Then

we discharge, and simplify the rest of the Unification:

solve unks (Unification ((Terms.view → UnkView prm unk , Terms.view → UnkView prm ′ unk ′):t))

| prm == prm ′ ∧ unk == unk ′ = solve unks (Unification t)

Otherwise, suppose our Unknowns are different, but the free atoms of one is a subset of the

other. In this case, we may directly build a Substitution that unifies these two Unknowns. This

step corresponds to an application of either (I1) or (I2). We show only the Haskell excerpt

implementing (I1), as the case for (I2) is similar:

| unk =/= unk ′ ∧ (fa (mkUnk prm ′ unk ′) ‘subseteq ‘ fa (mkUnk prm unk)) =

let

subst = (substitution unk (mkUnk (Permutations.compose (inverse prm) prm ′) unk ′))

in

case subst of

Nothing → error “solve : error constructing substitution”

Just subst ′ → let

newProb = substitutionAction subst ′ (Unification t)

tail = solve unks newProb
in

case tail of

Right (subst ′′) → (Right (subst ′ ‘compose‘ subst ′′))

→ tail

Finally, we implement (I3). Note that (I3) is the last attempt at unifying two unknowns, per

Definition 4.3.39. We first construct our support reducing substitution rhoSubst and apply it

across the Unification. As noted, condSubstitutionAction returns a new Unification and also

a Substitution. If the rest of the Unification can be further simplified, into a solved state, by

recursively calling solve, then we return this Substitution as part of the answer, otherwise we

return the rest of the unsolvable Unification. Note, we expand the set of Unknowns that were

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 135

passed to solve as input, to include the set of freshly generated Unknowns picked injectively:

| otherwise =

let

suppIncL = map (second fa) ((mkUnk prm unk , mkUnk prm ′ unk ′):t)

suppIncR = map (second fa) ((mkUnk prm unk , mkUnk prm ′ unk ′):t)

suppInc = supportInclusionL (List .nub (suppIncL ++ suppIncR))
in

if isConsistent suppInc ∧ not (isTrivial suppInc) then

let

maxInjectiveChoices = Set .map (λx → injectiveChoice x suppInc)

(fV (Unification ((mkUnk prm unk , mkUnk prm ′ unk ′):t))

rhoSubst = rho unks (nf suppInc)

(newUni , subs) = condSubstitutionAction rhoSubst

(Unification ((mkUnk prm unk , mkUnk prm ′ unk ′):t))

tail = solve (maxInjectiveChoices ‘Set .union‘ unks) newUni
in

case tail of

Right subs ′ → Right (subs ‘compose‘ subs ′)

→ tail
else

inject (mkUnk prm unk , mkUnk prm ′ unk ′) (solve unks (Unification t))

All other cases are routine.

5.4 The PNT Frontend

The excerpts described in this Section can be found in the directory Frontend.

We built the PNT Frontend to provide a simple text-based interaction layer between the

underlying PNT library and the user. The PNT Frontend serves as a simple means of using

the functionality of the PNT library, and was also instrumental in testing and debugging the

implementation.

The PNT Frontend accepts a language describing sorts, unknowns, terms and ‘obligations’.

Here obligations are goals to solve, and fall into five classes:

1. Unification obligations take two terms and attempt to find a substitution unifying the

two. If one does not exist, a message saying so is printed as output, otherwise the required

substitution is pretty-printed.

2. Fresh name obligations take a term and print an atom fresh for that term as output.

3. α-equivalence obligations take two terms and test them for α-equivalence. A Boolean value

is printed as output.

4. Permutation obligations take a term and a permutation and return and pretty-print the

permuted term as output.

5. Free atoms obligations take a term and print the free atoms of the term as output.

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 136

A BNF grammar of the language supported by the PNT Frontend is provided in Appendix C.

However, we provide the following table to allow the reader to quickly translate between a

permissive nominal term (and associated definitions) and a possible representation in the PNT

Frontend:

Permissive nominal term PNT Frontend representation

a, b, c, . . . 1, 2, 3, . . .

comb comb

comb \ {a} ∪ {b} comb union { 1 } minus { 2 }
XS X^S

(b a)·X (1 2) . X

[a]a [1]1

f([a]a, c) f([1]1, 3)

An example script, complete with the PNT Frontend response, is provided in Subsection 5.4.1.

PNT Frontend interaction with the user either proceeds by the executable loading a file,

or the user pasting a ‘module’ as the command line arguments of the executable. Results are

returned to the user on the command line, pretty printed.

5.4.1 Example interaction

In this Subsection we present an example interactions between the user and the PNT Frontend.2.

Example 5.4.1: We wish to unify and otherwise manipulate the two permissive terms Tst([a]a, id·
XS, [a](id·Y T)) and Tst([b]b, id·Y T , [a]a), and manipulate the permissive term [e]f . We re-

fer to these terms as terms one, two and three, respectively, and define S = comb and T =

comb \ {b, d} ∪ {a, c}. We work under the convention that a, c, e lie outside comb whereas b, d, f

lie inside comb. Tst is an arbitrary termformer of arity 3.

Concretely, in terms of working with the PNT implementation, we take a, c, e to be the

integers 1, 3, 5, respectively, and b, d, f to be the integers 2, 4, 6, respectively. Note the fact that

the underlying representation of atoms is visible to the user is a failure in the PNT Frontend.

A more sophisticated layer built on top of the PNT library would keep the implementation of

atoms completely abstract, allowing the user to write that a 6∈ comb and b ∈ comb, as needed.

The corresponding input to the PNT Frontend is listed in Figure 5.1. Note, in the syntax of

the PNT Frontend, the ascription of permission sorts to unknowns occurs once, after which we

only ever refer to an unknown by its name (i.e. we do not write XS, but only X). We did this

to remove syntactic clutter.

The PNT Frontend enforces the convention that even positive integers are in comb, whilst odd

positive integers are outside comb. We aim to unify terms one and two (Obligation o1), calculate

a fresh name for term one (Obligation o2), test terms one and two for α-equivalence (Obligation

o3), permute term three with the swapping (e f) (Obligation o5) and finally calculate the free

atoms of term four (Obligation o6).

Figure 5.2 reproduces in abbreviated form the output produced by the PNT Frontend after

processing the obligations. Formatted and translated, this output reads:

2As previously mentioned, a web-based version of the PNT Frontend is available at http://www2.macs.hw.

ac.uk/~dpm8/permissive

http://www2.macs.hw.ac.uk/~dpm8/permissive
http://www2.macs.hw.ac.uk/~dpm8/permissive

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 137

module Test begin

sorts begin

sort S is comb

sort T is comb minus {2, 4} union {1, 3}

end

unknowns begin

unknown X has sort S

unknown Y has sort T

end

termformers begin

termformer Tst

end

terms begin

term t1 is Tst(1, id . X, [1](id . Y))

term t2 is Tst(2, id . Y, 1)

term t3 is [5](6)

end

obligations begin

obligation o1 is unify t1 and t2

obligation o3 is fresh name for t1

obligation o4 is aeq t1 and t2

obligation o5 is permute t3 with (5 6)

obligation o6 is free atoms of t1

end

end

Figure 5.1 Example interaction: PNT Frontend input script

"o1" has solution ["X’"<comb - {4 2}> := 1] o

["Y’"<comb - {4 2} + {3 1}> := Id."X’"<comb - {4 2}>] o

["Y"<comb - {4 2} + {3 1}> := Id."Y’"<comb - {4 2} + {3 1}>] o

["X"<comb> := Id."X’"<comb - { 4 2 }>]

"o3" has solution 5

"o4" is False

"o5" has solution [6](5)

"o6" has solution comb + {3}

Figure 5.2 Output from the PNT Frontend

Obligation Solution

1 [X ′:=a]◦[Y ′T ′ :=id·X ′S′]◦[Y T :=id·Y ′T ′]◦[XS:=id·X ′S′]
2 e

3 false

4 [f]e

5 comb ∪ {c}

Here, T ′ = comb\{b, d} and S′ = comb\{b, d}. A simple check confirms that [X ′:=a]◦[Y ′T ′ :=
id·X ′S′]◦[Y T :=id·Y ′T ′]◦[XS:=id·X ′S′] indeed unifies terms one and two.

5. IMPLEMENTING PERMISSIVE NOMINAL TERMS 138

5.5 Conclusions

This Chapter provided an overview of a prototype implementation of permissive nominal terms

and their associated unification algorithm, called PNT. We also provide the text-based PNT

Frontend, for easily defining permission sorts and terms, and computing unifiers. PNT is written

in Haskell, though neither its design nor implementation depend on Haskell’s laziness, as all data

types are finite.

One other implementation of nominal terms exists, Calvès’ Haskell Nominal Toolkit exists,

though we are careful to draw a distinction between the HNT, a ‘full’ implementation of nominal

terms, with a focus on efficiency, and our implementation of permissive nominal terms. In

contrast to Calvès, we aimed not to provide a feature full and efficient implementation, but to

show that the infinite and coinfinite nature of permissive nominal terms’ permission sorts are

no barrier to a straightforward implementation.

Also of note is Cheney’s FreshLib [Che05b]. This is an implementation of a library for

generic programming, which aims to reduce the amount of nameplate source code—fresh name

generation, capture avoiding substitution etc.—that Haskell programmers must write when im-

plementing data types representing abstract syntax with binding. FreshLib uses many nominal

ideas, but is not an implementation of nominal terms.

Aside from the HNT, to the best of our knowledge, no other stand-alone implementation of

nominal terms exists.

CHAPTER 6

Conclusions

Section 6.1 provides a brief summary of the work presented in this thesis. Section 6.2 summarises

the broader body of doctoral research, not necessarily included in this thesis, and attempts to

draw some unifying themes.

6.1 Summary of thesis

Nominal terms were proposed as a metalanguage for embedding syntax with binding [UPG04].

They have excellent computational properties, and a concrete semantics in nominal sets.

A recent body of work by Gabbay and others [Gab05, GL08, GM09a, FG07b] has examined

nominal terms as a metalanguage for embedding object languages into. As opposed to pure

syntax, where equality is taken to be α-equivalence, object languages may have their own, more

complex, forms of equality, such as β-equivalence for the λ-calculus. These forms of equivalence

are captured by equalities in the case of nominal algebra, or rewrite rules in the case of nominal

rewriting. This is in contrast to the narrow focus of nominal terms as a system for embedding

syntax, as exemplified by the work of Cheney and Urban on αProlog, for instance [CU08, pg.

14]:

As reflected by our choice of examples, at present we view αProlog as rather

narrowly focused on the domain of prototyping and experimenting with logics, op-

erational semantics for programming and concurrency calculi, and type systems and

other program analyses.

The work presented in this thesis continues in the tradition of treating nominal terms as a

metalanguage. Chapters 1 and 2 introduce the thesis. However, the main body of work in

Chapters 3 through 5 implicitly ask: how can this metalanguage be extended, and can we

import ideas from other metalanguages for use with nominal terms?

In Chapter 3, we extended nominal terms with λ-abstraction for atoms and unknowns.

Associated notions of β-reduction were provided for both λ-bound atoms and unknowns. λ-

abstraction is a prominent feature in many metalanguages, but something nominal terms lack.

A novel context calculus—useful research tools for investigating dynamic linking, module

systems, novel programming language designs, amongst many other uses—called the two-level

λ-calculus was the result of extending nominal terms with λ-bound atoms and unknowns.

Both an explicit and implicit nominal influence on the two-level λ-calculus can be detected. The

explicit influence—the use of swappings and freshness side-conditions—led to a straightforward

theory of α-equivalence whilst retaining a ‘nameful’ syntax. The implicit influence—the clear

conceptual separation of two levels of variable—led to a simple solution to the well-known failure

of commutation and hole filling in context-calculi.

The two-level λ-calculus is confluent (Theorem 3.4.42). Proving that this is so was non-

trivial. The confluence proof is split into two parts: a confluence proof for the level one fragment

139

6. CONCLUSIONS 140

(Subsection 3.4.1), and a confluence proof for the level two fragment (Subsection 3.4.2). Finally,

these two proofs are stitched together to form a proof of confluence for the whole calculus

(Subsection 3.4.2).

The proof of confluence for the level two fragment uses a standard proof technique, due to

Tait. However, confluence for the level one fragment uses a novel proof technique, using a notion

of canonical forms (Definition 3.4.13) that all terms must eventually reduce to. This technique

appears to be quite general; we have used the same proof technique in confluence proofs for

one-and-a-half-level terms [GM08b, GM09b] and the permissive two-level λ-calculus [GM10b].

The confluence proof for the two-level λ-calculus also taught us something important. Namely,

though the tacit slogan of nominal techniques has always been ‘ε-away from informal practice’,

in actual fact, nominal terms do not possess some important properties that informal terms do.

Two properties, ‘always fresh’ and ‘always rename’, mean that it is always possible to rename a

bound variable to some name chosen fresh when working with informal syntax. These properties

do not hold for nominal terms.

The confluence proof of the two-level λ-calculus showed that these properties matter. Often

we would like to ‘just rename’ a bound atom to something fresh, in order to push a substitution

under a binder. But, depending on the context we are working in, this may or may not be

possible. Our solution to this was to introduce a ‘freshening’ operation, extending a freshness

context with some fresh atoms (Definition 3.4.10). Yet this freshening operation had the effect of

obscuring the technical meat of the confluence proof and complicating the statements of various

lemmas and theorems.

Chapter 4 introduced permissive nominal terms, a variant of nominal terms which elide

explicit freshness contexts, and therefore recover the ‘always fresh’ and ‘always rename’ proper-

ties that nominal terms lack (Corollaries 4.2.17 and 4.2.18). Instead of explicit freshness contexts,

unknowns are labeled with an infinite and coinfinite set of atoms, called their permission sort

(Definition 4.2.2). Intuitively, a permission sort controls how an unknown is instantiated, and

its special infinite and coinfinite form means it is always possible to find a fresh atom for any

term. With permissive nominal terms, it is always possible to ‘just rename’.

Permissive nominal terms handle freshness differently to nominal terms. Freshness now

becomes a structural property of the term itself, similar to the notion of ‘free variables of’;

we define a notion of the ‘free atoms of’ a term by structural induction on the term itself

(Definition 4.2.11), not via a derivable freshness relation.

Nominal terms enjoy attractive computational properties: unification is decidable, and most

general unifiers exist. Do permissive nominal terms retain these same computational properties?

The answer is ‘yes’: permissive nominal unification is decidable (though the algorithm presented

in this thesis computes unifiers in worst-case exponential time), and most general unifiers ex-

ist (Theorem 4.3.58) modulo the reasonable assumptions regarding the decidability of certain

relations on permission sorts that we made in Chapter 4.

There remains a close correspondence between permissive nominal terms and nominal terms.

We make this correspondence formal with a non-trivial translation between the permissive and

the nominal worlds (Definition 4.4.12), and we show that unifiers are preserved under this

translation (Theorem 4.4.24).

6. CONCLUSIONS 141

Finally, Chapter 5 demonstrates that the infinite and coinfinite nature of permission sorts

is no barrier to straightforward implementation of permissive nominal terms. We demonstrate

this constructively, by way of a prototype implementation of permissive nominal terms and their

unification algorithm, called PNT. An implementation is also considerably more ‘tactile’ than

the abstract mathematical description of permissive nominal terms of Chapter 4. Users can

explore permissive nominal terms, and obtain a feel for how they differ from nominal terms.

PNT is implemented in Haskell, a pure lazy functional language, and all data structures

within the implementation are finite. PNT comes equipped with a frontend (PNT Frontend)

accepting as input a domain specific language for defining permission sorts, terms, and unifi-

cation obligations (described in Section 5.4). We demonstrate PNT in action with an example

session, unifying two permissive nominal terms (Subsection 5.4.1).

6.2 Unifying themes of doctoral research

This thesis does not present all work that I carried out as a doctoral student (in order to form

a coherent ‘story’ with this thesis). This extra work is now summarised. We can group the

publications presented in Section 1.3 into several strands of related material, as follows:

Extensions of nominal terms The two-level λ-calculus [GM09d, GM10c], one-and-a-half

level terms [GM08b, GM09b] and the permissive two-level λ-calculus [GM10b] have a great deal

in common. All three systems may be seen as taking an underlying notion of nominal term, and

providing λ-abstraction for atoms (in the case of one-and-a-half level terms), or for both atoms

and unknowns (in the case of the two-level λ-calculus and permissive two-level λ-calculus).

The two-level λ-calculus, as Chapter 3 made clear, is a ‘vanilla’ context-calculus, and moti-

vation for investigating pure context-calculi was discussed within that chapter.

One-and-a-half-level terms [GM08b, GM09b], endowed with a type-system corresponding to

first-order logic, serve as proof terms for incomplete derivations. The Curry-Howard correspon-

dence allows one to construct a ‘witnessing λ-term’ for any Natural Deduction proof. However,

the correspondence has a ‘forward’ bias: it is easier to construct proof terms corresponding to

a derivation from axioms towards goals (‘forwards proof’), rather than a derivation from goal

towards axioms (‘backwards proof’). However, backwards proof is often the predominant form

of proof in proof assistants like Isabelle, where at any stage the derivation may be incomplete.

Proof terms for incomplete derivations require some notion of metavariable, modeling a cur-

rently unknown branch of the derivation which will hopefully be refined at some later point. We

therefore extend nominal terms with the ability to λ-bind an atom, and use nominal unknowns

to model incomplete branches of a derivation tree.

Soundness and completeness for closed terms (with no free unknowns) is proved with respect

to Natural Deduction [GM09b, Theorems 41 and 42]. The associated notion of β-reduction on

terms corresponds to a proof normalisation procedure for incomplete derivations [GM09b, Def-

inition 43]. Nominal technology allows us to manage α-equivalence in the presence of unknown

terms.

The permissive two-level λ-calculus [GM10b] is another context-calculus in the mould of the

two-level λ-calculus of Chapter 4. However, the permissive two-level λ-calculus uses a different

6. CONCLUSIONS 142

notion of freshness and α-equivalence, making use of the permissive technology introduced in

Chapter 4.

Further, the focus of the two-level and permissive two-level λ-calculi differ. The permissive

two-level λ-calculus has a case statement for atoms, allowing the level two fragment of the

calculus to inspect the level one fragment. As a result, the permissive two-level λ-calculus is

not a vanilla context-calculus, rather designed specifically with the goal of meta-programming

in mind. Again, the use of nominal technology allows us to handle α-equivalence in the presence

of unknowns.

Although these three calculi—the two-level λ-calculus, one-and-a-half-order terms and the

permissive two-level λ-calculus—share many traits, their focus is remarkably different. The au-

thor and M. J. Gabbay have employed extensions of nominal terms in the interdisciplinary study

of context-calculi [GM09d, GM10c], proof terms for incomplete derivations [GM08b, GM09b]

and meta-programming [GM10b]. We believe that this wide range of applications validates the

informal thesis that two-levels of variable, capturing substitution for unknowns, binding atoms in

unknowns, freshness side-conditions are useful, and the nominal terms syntax, which internalises

all of these features, is of independent research interest.

Different notions of nominal term A second thread of research has been the investigation

of different notions of pure nominal terms. This thread is exemplified by investigation into

permissive nominal terms [DGM09a, DGM10] and semantic nominal terms [GM09c].

Chapter 4 introduced permissive nominal terms, and the reasons for introducing these were

discussed in detail within that chapter.

Semantic nominal terms are an attempt to correct an asymmetry in the semantics of nominal

terms. Whilst atoms have an independent denotational existence in the cumulative hierarchy

of nominal sets, unknowns do not, and a denotation is provided using a valuation, as with

first-order variables.

Semantic nominal terms were proposed to give unknowns an independent denotation, in line

with atoms, and now α-equivalence and syntactic identity coincide. Unknowns are taken to be

infinite lists of atoms, and permutations no longer suspend on semantic unknowns, but directly

act pointwise on the elements of these representative lists. This yields a syntax where open

terms become members of an inductively defined nominal abstract datatype.

Just as permissive nominal terms may be seen as a refinement of nominal terms, semantic

nominal terms may be seen as a further evolution of permissive nominal terms.

Other work The final thread of research concerns the investigation of the relation between

nominal techniques and higher-order techniques. This thread is exemplified by the work relating

universal algebra over nominal terms and λ-terms [GM09e].

There exists a close relationship between nominal syntax and higher-order abstract syn-

tax. Specifically, the relation between nominal and higher-order pattern unification has been

extensively studied, first by Cheney [Che05d], and finally independently by Levy and Villaret,

and Dowek and Gabbay [LV08, DGM10], who conclusively established the relationship between

nominal unification and higher-order pattern unification.

6. CONCLUSIONS 143

This relationship was further studied by relating nominal algebra theories with λ-theories—

equational logic over λ-terms [GM09e]. Non-trivial translations were presented between theories

and derivations, and this translation was proved sound and complete in a suitable sense.

6.3 Future work

We survey some ideas for further work, based on the work presented in this thesis.

6.3.1 The two-level λ-calculus

Denotations. Section 3.4 presented an operational semantics for the two-level λ-calculus.

However, the task of identifying a suitable denotation for the two-level λ-calculus remains. A

suitable denotation could possibly be constructed using nominal sets. Another potential source

of denotations would be a suitably enriched notion of Scott domain, following their use in the

denotation of the λ-calculus.

An expressive higher-order logic. Through imposing Church-style simple types on the

λ-calculus we obtain higher-order logic. Working analogously, imposing Church-style simple

types on the two-level λ-calculus, we obtain a highly expressive higher-order logic. For instance,

consider the following example axiom, the introduction rule for the universal quantifier taken

from Natural Deduction, encoded in the logic:

ΛXo.(aι#Xo ⊃ Xo ⊃ ∀aι.Xo)

Here o is the type of propositions and ι is the type of individuals, familiar from higher-

order logic. Further, Λ is the metalevel universal quantifier, belonging to the two-level higher-

order logic. #, short for λ#, and ∀, short for λ∀ are typed constants, corresponding to an

internalisation of the nominal freshness judgment, and object level universal quantification,

respectively. The axiom models ‘if a 6∈ fv(φ) then φ ⊃ ∀a.φ’.

Extending the calculus with Church-style types should be straightforward. Rules for calcu-

lating freshness will become slightly different, corresponding to the additional ways two atoms

of differing types can be fresh for each other. Further, the notion of congruence from Defini-

tion 3.4.2 will also need to be slightly modified, in particular the rule (.α):

∆ ` r . s ∆ ` a#r ∆ ` b#r
(.α)

∆ ` (b a)·r . s

In particular, consider the swapping (b a) which is completely unconstrained. In order to

preserve subject reduction, we need to ensure that both b and a are of the same type, and to do

this we need to parameterise reduction rules with a typing context. The congruence rule (.α)

then becomes:

Γ; ∆ ` r . s Γ; ∆ ` a#r Γ; ∆ ` b#r Γ ` π
(.α)

Γ; ∆ ` (b a)·r . s

6. CONCLUSIONS 144

Here Γ is a typing context. The assertion Γ ` π ensures that π is ‘well behaved’, mapping

atoms of type φ to other atoms of type φ, only.

As a result of these changes, being fully formal about the matter, the reduction relation is

sufficiently different that a new proof of confluence for the Church-style simply typed system

will have to be written. This is expected to cause no real difficulties, and will essentially follow

the structure of the confluence proof presented earlier, in Chapter 3.

A proof of strong normalisation is also not expected to cause any additional difficulty com-

pared to a similar proof for the simply typed λ-calculus.

Formal relationship with other context-calculi. As highlighted in Subsection 3.5.1, a

host of other context-calculi have been developed. Formally relating the two-level λ-calculus

with other context-calculi, or environment calculi in the style of Sato et al’s λε, is an interesting

avenue for future work.

6.3.2 Permissive nominal terms and their unification

Efficiency A large body of research by Calvès and Fernández has been undertaken investigat-

ing the efficiency of nominal unification (for instance, see [CF07, CF08a, CF08b]). A polynomial

time algorithm, co-opting standard techniques from first-order unification, is currently the most

efficient nominal unification algorithm [CF08b].

The algorithm of Section 4.3 is optimised for ease of mathematical reasoning and exposition,

not for efficiency. However, we believe that many of the techniques pioneered by Cálves and

Fernández could be reused in a permissive setting to obtain a faster permissive algorithm,

hopefully with a similar asymptotic running time.

This will not be a trivial translation of Cálves and Fernández’ work. For instance, the näıve

nominal and permissive nominal unification algorithms significantly differ in their treatment of

freshness constraints. Nominal unification simply returns a series of freshness constraints, and

foregoes the support reduction procedure of Subsubsection 4.3.2.1. Nevertheless, we believe that

the algorithms are close enough, and obviously ‘morally’ do the same thing, that an expectation

of obtaining a polynomial time algorithm is justified.

Further, the asymptotic time complexity of nominal unification is still an open problem,

and with it, the overall efficiency of permissive nominal unification. As mentioned, Dowek and

Gabbay shows that higher-order pattern unification and nominal unification are ‘essentially’ the

same thing (using permissive nominal techniques). A linear time algorithm for higher-order

pattern unification exists [Qia93], and we believe that this, coupled with Dowek and Gabbay’s

work, is evidence that a linear time (permissive) nominal unification algorithm is attainable.

Cálves and Fernández state that obtaining such a linear time algorithm will likely be ‘significant

work’. As the Dowek-Gabbay translation forces an exponential blow up in the size of a translated

term, and hence simply translating permissive nominal terms into higher-order patterns for

unifying, and then back again, cannot be used, Cálves and Fernández appear to be correct in

their prediction.

6. CONCLUSIONS 145

Permissive nominal antiunification Antiunification is dual to unification: wheres unifica-

tion attempts to find most general unifiers, antiunification attempts to find least general gener-

alisers [AEMO09]. For example, given two permissive nominal terms, f(a, g(b)) and f(c, g(d)),

the least general generaliser of these two terms is the term f(XS, g(Y T)), where XS and Y T

are fresh variables of level two, with a, c ∈ S and b, d ∈ T . Intuitively, the previous example

demonstrates that antiunification attempts to find the ‘skeleton’ of a pair of terms, that is, the

structure of a term common to both. If correctly computed, the inputs to an antiunification

problem should be substitutative instances of the returned ‘skeleton’. Indeed, a quick check will

convince the reader that through applying the substitution [XS:=a]◦[Y T :=b] to f(XS, g(Y T))

we recover f(a, g(b)).

Antiunification was first introduced in the 1970s by Plotkin [Plo70] and Reynolds [Rey70]

for inductive reasoning in logic programming. Until recently, antiunification gained little at-

tention, other than occasionally being used in applications as wide-ranging as supercompila-

tion [SG95] and setting mathematics in Maple [OSW05]. However, a recent body of research

has demonstrated that antiunification is also useful for finding invariants and refactoring pro-

grams [BM08, BM09, BKZ09] (the Code Digger tool uses antiunification at the AST level to

find duplicated code [Bul08]).

Nominal antiunification hasn’t previously been studied, and could form an interesting topic

for future work. In particular, αProlog extends Prolog’s term language with nominal terms, and

antiunification could form a fundamental component of a refactoring tool for that language.

There is good reason to believe that a nominal antiunification enjoys good computational

properties. Research by Pfenning on antiunification in the Calculus of Constructions demon-

strates that, if we restrict terms to higher-order pattern form, antiunification is decidable, and

computes least general generalisers [Pfe91]. Given the recent body of work relating higher-order

patterns to nominal terms, and their respective unification algorithms, this is strong evidence

that the as-of-yet undiscovered nominal antiunification is also decidable, and computes least

general generalisers.

Resolution for permissive nominal logic Permissive Nominal Logic (PNL) is an extension

of first-order predicate logic where function symbols can bind names in their arguments [DG10].

To a first degree of approximation, PNL is first-order logic with the simple term language

replaced with permissive nominal terms.

PNL was introduced as a ‘foundational logic’, a framework for encoding other logics. In

particular, the use of permissive nominal terms allows straight forward encodings of logics and

languages that feature name binding constructs. PNL could serve as the meta-logic for a generic

proof assistant, similar to the role that higher-order logic plays in Isabelle.

A significant first step toward using PNL as a meta-logic would be the implementation of

a resolution procedure. One of Isabelle’s advances over the LCF line of proof assistants was

the implementation of Natural Deduction via resolution [Pau85]. Whereas LCF implemented

each inference rule in the logic by a pair of functions: one for forward reasoning and another for

backwards reasoning, Isabelle implements inference rules as Horn clauses. Applying an inference

rule implemented as a Horn Clause involves unifying the current open goal with the head of

6. CONCLUSIONS 146

the clause, and opening the premises of the unified clause as new subgoals. This process allows

Isabelle to encode a wide range of logics, when compared to the LCF approach.

A proof assistant based on PNL would presumably work in a similar fashion. Any imple-

mentation could use the unification code presented in Chapter 5 as a base.

6.3.3 Implementing permissive nominal terms

A library for structural operational semantics Chapter 5 covers a prototype implementa-

tion of permissive nominal unification. However, we believe that permissive nominal techniques

could be used to develop an ergonomic library for animating structural operational semantics

(SOS), embedded in a language such as Haskell. Alternatively, permissive nominal techniques

could be incorporated into an existing tool, such as Maude [CELM00], for exploring structural

operational semantics.

The first step toward this goal would be the investigation of permissive nominal rewriting.

Gabbay and Fernández have already performed a large amount of research into nominal rewrit-

ing. We believe that this research will transfer quite readily to the permissive nominal world,

yet benefit from the improved reasoning properties that permissive nominal terms enjoy over

their traditional counterparts.

Further, a type system, similar to the one developed by Gabbay and Fernández for nominal

terms could be added to permissive nominal terms. This will add a certain level of type safety

to the encodings of operational rules.

Finally, a method for embedding reduction rules into Haskell, such as the following, will need

to be investigated:

〈a0, σ〉 → n0 〈a1, σ〉 → n1 (n = n0 · n1)

〈a0 × a1, σ〉 → n

Rule taken from Winskel’s book [Win93, pg 14].

Here, we envision a translation of the rule above into the proposed tool representing ×
as a permissive nominal term former (possibly typed) taking two arguments, a0 and a1 are

permissive unknowns (meta-variables). Integer literals are wrapped in ‘silent’ term formers,

and functions are provided to extract integers from these wrappers, and inject them back in,

allowing the user to perform operations on computed values (for instance, the multiplication

n = n0 · n1). Permissive nominal rewriting, employing permissive nominal unification, is used

to rewrite the current state using encoded operational rules. We envision using Haskell’s type

system, particularly polymorphism, to carry around state, here represented by σ, within rules.

What really sets the nominal approach apart is the promise of handling SOS rules involving name

binders seamlessly. For instance, handling the following rule could potentially be simplified using

a (permissive) nominal approach:

rec f.(λx.t)→ λx.t[recf.λx.t/f]

Rule taken from Winskel’s book [Win93, pg 257].

6. CONCLUSIONS 147

The advantage of providing a Haskell library, versus writing a special purpose language (such

as Lakin’s MLSOS/αML [LP08]) is the ability to use Haskell’s predefined data structures for

the complex book keeping sometimes needed in SOS. Further, users will be able to reuse their

existing Haskell knowledge1, as opposed to having to learn a new language and associated set of

libraries. In particular, we view the improved reasoning properties of permissive nominal terms

as what would make such a project viable. Every rule needn’t explicitly manipulate freshness

contexts; book keeping of this sort is kept hidden from the programmer.

Fernández-Gabbay polymorphic type system Further possible ideas are an implementa-

tion of the Fernández-Gabbay polymorphic typing system for nominal terms [FG07a]. Existing

‘hooks’ into the PNT Frontend for defining types already exist; the termformer ascription block,

for instance, is intended as a block for assigning types to terms.

1Providing, of course, that they have any in the first place.

APPENDIX A

Additional proofs: the two-level λ-calculus

Proof of Lemma 3.2.5.

Proof. By induction on r.

• The case a. By Definition 3.2.4 we have a[X:=π·X] ≡ a. The result follows.

• The case c. By Definition 3.2.4 we have c[X:=π·X] ≡ c. The result follows.

• The case π′·X. By Definition 3.2.3 we have fV (π′·X) = {X}. By Definition 3.2.4 we have

fV ((π′·X)[X:=π·X]) = fV ((π′◦π)·X). By Definition 3.2.3 we have fV ((π′◦π)·X) = {X}.
The result follows.

• The case rs. By Definition 3.2.4 we have fV ((rs)[X:=π·X]) = fV ((r[X:=π·X])(s[X:=

π·X])). By Definition 3.2.3 we have fV ((r[X:=π·X])(s[X:=π·X])) = fV (r[X:=π·X]) ∪
fV (s[X:=π·X]). By inductive hypotheses fV (r[X:=π·X]) ∪ fV (s[X:=π·X]) = fV (r) ∪
fV (s). By Definition 3.2.3 we have fV (r) ∪ fV (s) = fV (rs). The result follows.

• The case λa.r. By Definition 3.2.4 we have fV ((λa.r)[X:=π·X]) = fV (λa.(r[X:=π·X])).

By Definition 3.2.3 we have fV (λa.(r[X:=π·X])) = fV (r[X:=π·X]). By inductive hypoth-

esis fV (r[X:=π·X]) = fV (r). By Definition 3.2.3 we have fV (r) = fV (λa.r). The result

follows.

• The case λX.r. By Definition 3.2.4 we have (λX.r)[X:=π·X] ≡ λX.r. The result follows.

• The case λY.s. By Definition 3.2.4 we have fV ((λY.s)[X:=π·X]) = fV (λY.(s[X:=π·X])).

By Definition 3.2.3 we have fV (λY.(s[X:=π·X])) = fV (s[X:=π·X]) \ {Y }. By inductive

hypothesis fV (s[X:=π·X])\{Y } = fV (s)\{Y }. By Definition 3.2.3 we have fV (s)\{Y } =

fV (λY.s). The result follows.

4

Proof of Lemma 3.2.6.

Proof. By induction on r.

• The case a. By Definition 3.2.3 we have fV (a) = ∅. The result follows.

• The case c. By Definition 3.2.4 we have π·c ≡ c. By Definition 3.2.3 we have fV (c) = ∅.
The result follows.

• The case π′·X. By Definition 3.2.3 we have fV (π′·X) = {X}. By Definition 3.2.4 we have

fV (π·(π′·X)) = fV ((π◦π′)·X). By Definition 3.2.3 we have fV ((π◦π′)·X) = {X}. The

result follows.

• The case rs. By Definition 3.2.4 we have fV (π·rs) ≡ fV ((π·r)(π·s)). By Definition 3.2.3

we have fV ((π·r)(π·s)) = fV (π·r) ∪ fV (π·s). By inductive hypotheses fV (π·r) ∪ fV (π·
s) = fV (r) ∪ fV (s). By Definition 3.2.3 we have fV (r) ∪ fV (s) = fV (rs). The result

follows.

149

A. ADDITIONAL PROOFS: THE TWO-LEVEL λ-CALCULUS 150

• The case λa.r. By Definition 3.2.4 we have fV (π·λa.r) = fV (λπ(a).(π·r)). By Defini-

tion 3.2.3 we have fV (λπ(a).(π·r)) = fV (π·r). By inductive hypothesis fV (π·r) = fV (r).

By Definition 3.2.3 we have fV (r) = fV (λa.r). The result follows.

• The case λX.r. By Definition 3.2.4 we have fV (π·λX.r) = fV (λX.π·r[X:=π-1·X]). By

Definition 3.2.3 we have fV (λX.π·r[X:=π-1·X]) = fV (π·r[X:=π-1·X])\{X}. By Lemma 3.2.5

we have fV (π·r[X:=π-1·X]) \ {X} = fV (π·r) \ {X}. By inductive hypothesis fV (π·
r) \ {X} = fV (r) \ {X}. By Definition 3.2.3 we have fV (r) \ {X} = fV (λX.r). The

result follows.

4

Proof of Lemma 3.2.8.

Proof. By induction on r.

• The case a. By Definition 3.2.4 we have a[X:=π·Y] ≡ a. The result follows.

• The case c. By Definition 3.2.4 we have c[X:=π·Y] ≡ c. The result follows.

• The case π′·X. By Definition 3.2.7 we have depth(π′·X) = 1. By Definition 3.2.4 we

have depth((π′·X)[X:=π·Y]) = depth((π′◦π)·Y). By Definition 3.2.7 we have depth((π◦π′)·
Y) = 1. The result follows.

• The case π′·Z. By Definition 3.2.4 we have depth((π′·Z)[X:=π·Y]) ≡ depth(π′·Z). The

result follows.

• The case rs. By Definition 3.2.7 we have depth(rs) = depth(r) + depth(s). By induc-

tive hypotheses we have depth(r[X:=π·Y]) + depth(s[X:=π·Y]). By Definition 3.2.7 we

have depth(r[X:=π·Y]) + depth(s[X:=π·Y]) = depth((r[X:=π·Y])(s[X:=π·Y])). By Defi-

nition 3.2.4 we have depth((r[X:=π·Y])(s[X:=π·Y])) = depth((rs)[X:=π·Y]). The result

follows.

• The case λa.r. By Definition 3.2.7 we have depth(λa.r) = 1 + depth(r). By inductive hy-

pothesis 1+depth(r) = 1+depth(r[X:=π·Y]). By Definition 3.2.7 we have 1+depth(r[X:=

π·Y]) = depth(λa.(r[X:=π·Y])). By Definition 3.2.4 we have depth(λa.(r[X:=π·Y])) =

depth((λa.r)[X:=π·Y]). The result follows.

• The case λX.r. By Definition 3.2.4 we have depth((λX.r)[X:=π·Y]) ≡ depth(λX.r). The

result follows.

• The case λZ.t. Suppose Z 6= Y and Z 6= X, which can always be guaranteed by renaming.

By Definition 3.2.7 we have depth(λZ.t) = 1 + depth(t). By inductive hypothesis 1 +

depth(t) = 1 + depth(t[X:=π·Y]). By Definition 3.2.7 we have 1 + depth(t[X:=π·Y]) =

depth(λZ.(t[X:=π·Y])). By Definition 3.2.4 we have depth(λZ.(t[X:=π·Y])) = depth((λZ.

t)[X:=π·Y]). The result follows.

4

Proof of Lemma 3.2.9.

Proof. By induction on r.

A. ADDITIONAL PROOFS: THE TWO-LEVEL λ-CALCULUS 151

• The case a. By Definition 3.2.7 we have depth(a) = 1. By Definition 3.2.4 we have depth(π·
a) = depth(π(a)). By Definition 3.2.7 we have depth(π(a)) = 1. The result follows.

• The case c. By Definition 3.2.4 we have depth(π·c) ≡ depth(c). The result follows.

• The case π′·X. By Definition 3.2.7 we have depth(π′·X) = 1. By Definition 3.2.4 we have

depth(π·(π′·X)) = depth((π◦π′)·X). By Definition 3.2.7 we have depth((π◦π′)·X) = 1.

The result follows.

• The case rs. By Definition 3.2.7 we have depth(rs) = depth(r) + depth(s). By inductive

hypothesis depth(r) + depth(s) = depth(π·r) + depth(π·s). By Definition 3.2.7 we have

depth(π·r) + depth(π·s) = depth((π·r)(π·s)). By Definition 3.2.4 we have depth((π·r)(π·
s)) = depth(π·rs). The result follows.

• The case λa.r. By Definition 3.2.7 we have depth(λa.r) = 1 + depth(r). By inductive

hypothesis 1 + depth(r) = 1 + depth(π·r). By Definition 3.2.7 we have 1 + depth(π·r) =

depth(λπ(a).(π·r)). By Definition 3.2.4 we have depth(λπ(a).(π·r)) = depth(π·λa.r). The

result follows.

• The case λX.r. By Definition 3.2.7 we have depth(λX.r) = 1 + depth(r). By inductive

hypothesis 1 + depth(r) = 1 + depth(π·r). By Lemma 3.2.8 1 + depth(π·r) = 1 + depth(π·
r[X:=π-1·X]). By Definition 3.2.7 1 + depth(π·r[X:=π-1·X]) = depth(λX.(π·r[X:=π-1·
X])). By Definition 3.2.4 depth(λX.(π·r[X:=π-1·X])) = depth(π·λ.r). The result follows.

4

Proof of Lemma 3.2.10.

Proof. By induction on r.

• The case a. By Definition 3.2.4 we have a[X:=π·X][X:=π′·X] ≡ a. By Definition 3.2.4

we have a[X:=(π◦π′)·X] ≡ a. The result follows.

• The case c. By Definition 3.2.4 we have c[X:=π·X][X:=π′·X] ≡ c. By Definition 3.2.4 we

have c[X:=(π◦π′)·X] ≡ c. The result follows.

• The case π′′·X. By Definition 3.2.4 we have (π′′·X)[X:=(π◦π′)·X] ≡ π′′·((π◦π′)·X). By

Definition 3.2.4 we have π′′·((π◦π′)·X) ≡ π′′·(π·(π′·X)). By Definition 3.2.4 we have π′′·(π·
(π′·X)) ≡ (π′′·(π·X))[X:=π′·X]. By Definition 3.2.4 we have (π′′·(π·X))[X:=π′·X] ≡ (π′′·
X)[X:=π·X][X:=π′·X]. The result follows.

• The case π′′·Y . By Definition 3.2.4 we have (π′′·Y)[X:=π·X][X:=π′·X] ≡ π′′·Y . By

Definition 3.2.4 we have (π′′·Y)[X:=(π◦π′)·X] ≡ π′′·Y . The result follows.

• The case rs. By Definition 3.2.4 we have (rs)[X:=π◦π′·X] ≡ (r[X:=π◦π′·X])(s[X:=

π◦π′·X]). By inductive hypothesis (r[X:=π◦π′·X])(s[X:=π◦π′·X]) ≡ (r[X:=π·X][X:=π′·
X])(s[X:=π·X][X:=π′·X]). By Definition 3.2.4 (r[X:=π·X][X:=π′·X])(s[X:=π·X][X:=

π′·X]) ≡ ((r[X:=π·X])(s[X:=π·X]))[X:=π′·X]). By Definition 3.2.4 we have ((r[X:=π·
X])(s[X:=π·X]))[X:=π′·X]) ≡ (rs)[X:=π·X][X:=π′·X]. The result follows.

• The case λa.r. By Definition 3.2.4 we have (λa.r)[X:=π◦π′·X] ≡ (λa.r[X:=π◦π′·X]). By

inductive hypothesis (λa.r[X:=π◦π′·X]) ≡ λa.(r[X:=π·X][X:=π′·X]). By Definition 3.2.4

we have λa.(r[X:=π·X][X:=π′·X]) ≡ (λa.(r[X:=π·X]))[X:=π′·X]. By Definition 3.2.4 we

have (λa.(r[X:=π·X]))[X:=π′·X] ≡ (λa.r)[X:=π·X][X:=π′·X]. The result follows.

A. ADDITIONAL PROOFS: THE TWO-LEVEL λ-CALCULUS 152

• The case λX.r. By Definition 3.2.4 we have (λX.r)[X:=π·X][X:=π′·X] ≡ λX.r. By

Definition 3.2.4 we have (λX.r)[X:=(π◦π′)·X] ≡ λX.r. The result follows.

• The case λY.s. Suppose Y 6∈ fV (π·X) ∪ fV (π′·X) ∪ fV ((π◦π′)·X). This side-condition

can always be guaranteed by renaming. By Definition 3.2.4 (λY.s)[X:=(π◦π′)·X] ≡ λY.

(s[X:=(π◦π′)·X]). By inductive hypothesis λY.(s[X:=(π◦π′)·X]) ≡ λY.(s[X:=π·X][X:=

π′·X]). By Definition 3.2.4 we have λY.(s[X:=π·X][X:=π′·X]) ≡ (λY.(s[X:=π·X]))[X:=

π′·X]. By Definition 3.2.4 we have (λY.(s[X:=π·X]))[X:=π′·X] ≡ (λY.s)[X:=π·X][X:=π′·
X]. The result follows.

4

Proof of Lemma 3.2.11.

Proof. By induction on r.

• The case a. By Definition 3.2.4 we have a[X:=id·X] ≡ a. The result follows.

• The case c. By Definition 3.2.4 we have c[X:=id·X] ≡ c. The result follows.

• The case π·X. By Definition 3.2.4 we have (π·X)[X:=id·X] ≡ (π◦id)·X. It is a fact that

π◦id = id. The result follows.

• The case π·Y . By Definition 3.2.4 we have (π·Y)[X:=id·X] ≡ π·Y . The result follows.

• The case rs. By Definition 3.2.4 we have (rs)[X:=id·X] ≡ (r[X:=id·X])(s[X:=id·X]). By

inductive hypotheses (r[X:=id·X])(s[X:=id·X]) ≡ rs. The result follows.

• The case λa.r. By Definition 3.2.4 we have (λa.r)[X:=id·X] ≡ λa.(r[X:=id·X]). By

inductive hypothesis λa.(r[X:=id·X]) ≡ λa.r. The result follows.

• The case λX.r. By Definition 3.2.4 we have (λX.r)[X:=id·X] ≡ λX.r. The result follows.

• The case λY.s. By Definition 3.2.4 we have (λY.s)[X:=id·X] ≡ λY.(s[X:=id·X]). By

inductive hypothesis λY.(s[X:=id·X]) ≡ λY.s. The result follows.

4

Proof of Lemma 3.2.12.

Proof. By induction on r.

• The case a. By Definition 3.2.4 we have id·a ≡ id(a). By definition id(a) = a. The result

follows.

• The case c. By Definition 3.2.4 we have id·c ≡ c. The result follows.

• The case π·X. By Definition 3.2.4 we have id·(π·X) ≡ (id◦π)·X. It is a fact that id◦π = π.

The result follows.

• The case rs. By Definition 3.2.4 we have id·rs ≡ (id·r)(id·s). By inductive hypotheses

(id·r)(id·s) ≡ rs. The result follows.

• The case λa.r. By Definition 3.2.4 we have id·λa.r ≡ λid(a).(id·r). By inductive hypoth-

esis λid(a).(id·r) ≡ λid(a).r. By definition id(a) = a. The result follows.

A. ADDITIONAL PROOFS: THE TWO-LEVEL λ-CALCULUS 153

• The case λX.r. By Definition 3.2.4 we have id·λX.r ≡ λX.((id·r)[X:=id-1·X]). It is a fact

that id-1 = id. By Lemma 3.2.11 we have λX.((id·r)[X:=id·X]) ≡ λX.(id·r). By inductive

hypothesis λX.(id·r) ≡ λX.r. The result follows.

4

Proof of Lemma 3.3.10.

Proof. By induction on the derivation of ∆ ` a#r.

• The case (#b). Using (#b) we obtain ∆, b#Y ` a#c. The result follows.

• The case (#c). Using (#c) we obtain ∆, b#Y ` a#c. The result follows.

• The case (#X). Suppose π-1(a)#X ∈ ∆ therefore ∆ ` a#π·X by (#X). It is a fact that

π-1(a)#X ∈ ∆, b#Y . Using (#X) we obtain ∆, b#Y ` a#π·X. The result follows.

• The case (#rs). Suppose ∆ ` a#r and ∆ ` a#s. By inductive hypotheses we have

∆, b#Y ` a#r and ∆, b#Y ` a#s. Using (#rs) we obtain ∆, b#Y ` a#rs. The result

follows.

• The case (#λa). Using (#λa) we obtain ∆, b#Y ` a#λa.r. The result follows.

• The case (#λb). Suppose ∆ ` a#t. By inductive hypothesis ∆, b#Y ` a#t. Using (#λb)

we obtain ∆, b#Y ` a#λc.t. The result follows.

• The case (#λX). Suppose ∆, a#X ` π(a)#π·r. By inductive hypothesis ∆, a#X, b#Y `
π(a)#π·r. Using (#λX) we obtain ∆, b#Y ` a#λX.r. The result follows.

4

Proof of Lemma 3.4.5.

Proof. By induction on r.

• The case a. By Definition 3.2.4 we have aθ ≡ a. The result follows.

• The case c. By Definition 3.2.4 we have cθ ≡ c. The result follows.

• The case π·X. By Definition 3.4.1 we have level(π·X) = 2. There is nothing to prove.

• The case rs. By Definition 3.4.1 we have level(rs) = 1 implies level(r) = 1 and level(s) =

1. By Definition 3.4.1 we have level(rs) = max(level(r), level(s)). By inductive hy-

pothesis max(level(r), level(s)) = max(level(rθ), level(sθ)). By Definition 3.4.1 we have

max(level(rθ),

level(sθ)) = level((rθ)(sθ)). By Definition 3.2.4 we have level((rθ)(sθ)) = level((rs)θ).

The result follows.

• The case λa.r. By Definition 3.4.1 we have level(λa.r) = 1 implies level(r) = 1. By Defini-

tion 3.4.1 we have level(λa.r) = level(r). By inductive hypothesis level(r) = level(rθ). By

Definition 3.4.1 we have level(rθ) = level(λa.(rθ)). By Definition 3.2.4 we have level(λa.

(rθ)) = level((λa.r)θ). The result follows.

• The case λX.r. By Definition 3.4.1 we have level(λX.r) = 2. There is nothing to prove.

4

A. ADDITIONAL PROOFS: THE TWO-LEVEL λ-CALCULUS 154

Proof of Lemma 3.4.7.

Proof. By induction on r.

• The case a. By Definition 3.4.1 we have level(a) = 1. By Definition 3.2.4 we have level(π·
a) = level(π(a)). By Definition 3.4.1 we have level(π(a)) = 1. The result follows.

• The case c. By Definition 3.2.4 we have π·c ≡ c. The result follows.

• The case π′·X. By Definition 3.4.1 we have level(π′·X) = 1. By Lemma 3.2.13 we have

level(π·(π′·X)) = level((π◦π′)·X). By Definition 3.4.1 we have level(π′·X) = level((π◦π′)·
X). The result follows.

• The case rs. By Definition 3.4.1 we have level(rs) = max(level(r), level(s)). By inductive

hypothesis max(level(r), level(s)) = max(level(π·r), level(π·s)). By Definition 3.4.1 we

have max(level(π·r), level(π·s)) = level((π·r)(π·s)). By Definition 3.2.4 we have level((π·
r)(π·s)) = level(π·rs). The result follows.

• The case λa.r. By Definition 3.4.1 we have level(λa.r) = level(r). By inductive hypothesis

level(r) = level(π·r). By Definition 3.4.1 we have level(π·r) = level(λπ(a).(π·r)). By

Definition 3.2.4 we have level(λπ(a).(π·r)) = level(π·λa.r). The result follows.

• The case λX.r. By Definition 3.4.1 we have level(λX.r) = 2. By Definition 3.2.4 we

have level(π·λX.r) = level(λX.(π·r[X:=π-1·X])). By Definition 3.4.1 we have level(λX.

((π·r)[X:=π-1·X])) = 2. The result follows.

4

Proof of Lemma 3.4.17.

Proof. By induction on depth(r).

• The case a. By Definition 3.4.12 we have a[a:=t] ≡ t. By assumption ∆ ` a#t. The result

follows.

• The case b. By Definition 3.4.12 we have b[a:=t] ≡ b. Using (#b) we obtain ∆ ` a#b.

The result follows.

• The case c. By Definition 3.4.12 we have c[a:=t] ≡ c. Using (#c) we obtain ∆ ` a#c.

The result follows.

• The case π·X. There are two cases:

• The case ∆ ` a#π·X. By Definition 3.4.12 we have (π·X)[a:=t] ≡ π·X. The result

follows.

• The case ∆ 6` a#π·X. By Definition 3.4.12 we have (π·X)[a:=t] ≡ (π·X)[a7→t]. By

definition (π·X)[a7→t] ≡ (λa.(π·X))t. Using (#rs) and (#λa) we obtain ∆ ` a#(λa.

(π·X))t. The result follows.

• The case rs. There are multiple cases:

• The case level(r) = 1. By Definition 3.4.12 we have (rs)[a:=t] ≡ (r[a:=t])(s[a:=t]).

By inductive hypotheses ∆ ` a#r[a:=t] and ∆ ` a#s[a:=t]. Using (#rs) we obtain

∆ ` a#(r[a:=t])(s[a:=t]). The result follows.

A. ADDITIONAL PROOFS: THE TWO-LEVEL λ-CALCULUS 155

• The case ∆ ` a#s. By Definition 3.4.12 we have (rs)[a:=t] ≡ r(s[a:=t]). By inductive

hypothesis ∆ ` a#s[a:=t]. Using (#rs) we obtain ∆ ` a#r(s[a:=t]). The result

follows.

• The case level(r) = 2 and ∆ 6` a#s. There is nothing to prove as ∆ ` a#s by

assumption.

• The case λa.r. By Definition 3.4.12 we have (λa.r)[a:=t] ≡ λa.r. Using (#λa) we obtain

∆ ` a#λa.r. The result follows.

• The case λb.s. There are three cases:

• The case ∆ ` b#t. By Definition 3.4.12 we have (λb.s)[a:=t] ≡ λb.(s[a:=t]). By

inductive hypothesis ∆ ` a#s[a:=t]. Using (#λb) we obtain ∆ ` a#λb.(s[a:=t]). The

result follows.

• The case ∆ 6` b#t with ∆ containing sufficient freshness. Suppose ∆ 6` b#t. By

Definition 3.4.12 we have (λb.s)[a:=t] ≡ λc.(((c b)·s)[a:=t]) where c is a fresh atom,

distinct from a and b, chosen so that ∆ ` c#s and ∆ ` c#t. By Lemma 3.2.9 we

have depth((c b)·s) = depth(s). By inductive hypothesis ∆ ` a#((c b)·s)[a:=t]. Using

(#λb) we obtain ∆ ` a#λc.(((c b)·s)[a:=t]). The result follows.

• The case ∆ 6` b#t with ∆ not containing sufficient freshness. By Definition 3.4.12

we have (λb.s)[a:=t] ≡ (λb.s)[a7→t]. By definition (λb.s)[a7→t] ≡ (λa.(λb.s))t. Using

(#rs) and (#λa) we obtain ∆ ` a#(λa.(λb.s))t. The result follows.

• The case λX.r. Suppose X 6∈ fV (t) which can be guaranteed. By Definition 3.4.12 we

have (λX.r)[a:=t] ≡ λX.(r[a:=t]). By inductive hypothesis ∆, a#X ` a#r[a:=t]. Using

(#λX) we obtain ∆ ` a#λX.(r[a:=t]). The result follows.

4

Proof of Lemma 3.4.18.

Proof. By induction on depth(r).

• The case b. By Definition 3.4.12 we have b[b:=u] ≡ u. The result follows.

• The case c. By Definition 3.4.12 we have c[b:=u] ≡ c. The result follows.

• The case c. By Definition 3.4.12 we have c[b:=u] ≡ c. The result follows.

• The case π·X. There are two cases:

• The case ∆ ` b#π·X. By Definition 3.4.12 we have (π·X)[b:=u] ≡ π·X. The result

follows.

• The case ∆ 6` b#π·X. By Definition 3.4.12 we have (π·X)[b:=u] ≡ (π·X)[b 7→u]. By

definition (π·X)[b 7→u] ≡ (λb.(π·X))u. Using (#λa) and (#rs) we obtain ∆ ` a#(λb.

(π·X))u. The result follows.

• The case rs. There are multiple cases:

• The case level(r) = 1. Suppose ∆ ` a#rs therefore ∆ ` a#r and ∆ ` a#s. By

Definition 3.4.12 we have (rs)[b:=u] ≡ (r[b:=u])(s[b:=u]). By inductive hypotheses

∆ ` a#r[b:=u] and ∆ ` a#s[b:=u]. Using (#rs) we obtain ∆ ` a#((r[b:=u])(s[b:=

u])). The result follows.

A. ADDITIONAL PROOFS: THE TWO-LEVEL λ-CALCULUS 156

• The case ∆ ` a#s. Suppose ∆ ` a#rs so that ∆ ` a#r. By Definition 3.4.12 we

have (rs)[b:=u] ≡ r(s[b:=u]]). By inductive hypothesis ∆ ` a#s[b:=u]. Using (#rs)

we obtain ∆ ` a#r(s[b:=u]). The result follows.

• The case level(r) = 2 and ∆ 6` a#s. There is nothing to prove, as ∆ ` a#s by

assumption.

• The case λa.r. There are three cases:

• The case ∆ ` a#u. By Definition 3.4.12 we have (λa.r)[b:=u] ≡ λa.(r[b:=u]). Using

(#λa) we obtain ∆ ` a#λa.(r[b:=u]). The result follows.

• The case ∆ 6` a#u with ∆ containing sufficient freshness. By Definition 3.4.12 we

have (λa.r)[b:=u] ≡ λc.(((c a)·r)[b:=u]), where c is a fresh atom, distinct from a and

b, chosen so that ∆ ` c#r and ∆ ` c#t. By Lemma 3.2.9 we have depth((c a)·
r) = depth(r). By inductive hypothesis ∆ ` a#((c a)·r)[b:=u]. Using (#λb) we

obtain ∆ ` a#λc.(((c a)·r)[b:=u]). By Definition 3.4.12 we have ∆ ` a#(λa.r)[b:=u].

The result follows.

• The case ∆ 6` a#u with ∆ not containing sufficient freshness. By Definition 3.4.12

we have (λa.r)[b:=u] ≡ (λa.r)[b7→u]. By definition (λa.r)[b 7→u] ≡ (λb.(λa.r))u. Using

(#rs), (#λb) and (#λa) we obtain ∆ ` a#(λb.(λa.r))u. The result follows.

• The case λc.t. There are three cases:

• The case ∆ ` c#u. Suppose ∆ ` a#λc.t so that ∆ ` a#t. By Definition 3.4.12

we have (λc.t)[b:=u] ≡ λc.(t[b:=u]). By inductive hypothesis ∆ ` a#t[b:=u]. Using

(#λb) we obtain ∆ ` a#λc.(t[b:=u]). By Definition 3.4.12 we have ∆ ` a#(λc.t)[b:=

u]. The result follows.

• The case ∆ 6` c#u with ∆ containing sufficient freshness. Suppose ∆ ` a#λc.t so

that ∆ ` a#t. By Definition 3.4.12 we have (λc.t)[b:=u] ≡ λd.(((d c)·t)[b:=u]), where

d is a fresh atom, distinct from a, c and b, chosen so that ∆ ` d#t and ∆ ` d#u. By

Lemma 3.2.9 we have depth((d c)·t) = depth(t). By inductive hypothesis ∆ ` a#((d c)·
t)[b:=u]. Using (#λb) we obtain ∆ ` a#λd.(((d c)·t)[b:=u]). By Definition 3.4.12 we

have ∆ ` a#(λc.t)[b:=u]. The result follows.

• The case ∆ 6` c#u with ∆ not containing sufficient freshness. By Definition 3.4.12

we have (λc.t)[b:=u] ≡ (λc.t)[b7→u]. By definition (λc.t)[b7→u] ≡ (λb.(λc.t))u. Using

(#rs) and (#λb) we obtain ∆ ` a#(λb.(λc.t))u. The result follows.

• The case λb.s. By Definition 3.4.12 we have (λb.s)[b:=u] ≡ λb.s. The result follows.

• The case λX.r. Suppose ∆ ` a#λX.r and ∆ ` a#u with X 6∈ fV (u), which can be

guaranteed. By Definition 3.4.12 we have (λX.r)[b:=u] ≡ λX.(r[b:=u]). By inductive

hypothesis ∆, a#X ` a#r[b:=u]. Using (#λX) we obtain ∆ ` a#λX.(r[b:=u]). The result

follows.

4

Proof of Lemma 3.4.20.

Proof. By induction on r.

• The case a. By Definition 3.4.13 we have a? ≡ a. The result follows.

A. ADDITIONAL PROOFS: THE TWO-LEVEL λ-CALCULUS 157

• The case c. By Definition 3.4.13 we have c? ≡ c. The result follows.

• The case π·X. By Definition 3.4.13 we have (π·X)? ≡ π·X. The result follows.

• The case rs. By Definition 3.4.13 we have rs? ≡ r?s?. By Definition 3.2.3 we have

fV (r?s?) = fV (r?) ∪ fV (s?). By inductive hypotheses fV (r?) ⊆ fV (r) and fV (s?) ⊆
fV (s) therefore fV (r?) ∪ fV (s?) ⊆ fV (r) ∪ fV (s). By Definition 3.2.3 we have fV (r) ∪
fV (s) = fV (rs). The result follows.

• The case λa.r. By Definition 3.4.13 we have (λa.r)? ≡ λa.(r?). By Definition 3.2.3 we

have fV (λa.(r?)) = fV (r?). By inductive hypothesis fV (r?) ⊆ fV (r). By Definition 3.2.3

we have fV (r) = fV (λa.r). The result follows.

• The case λX.r. By Definition 3.4.13 we have (λX.r)? = λX.(r?). By Definition 3.2.3 we

have fV (λX.(r?)) = fV (r?) \ {X}. By inductive hypothesis fV (r?) ⊆ fV (r) therefore

fV (r?) \ {X} ⊆ fV (r) \ {X}. By Definition 3.2.3 we have fV (r) \ {X} = fV (λX.r). The

result follows.

4

Proof of Lemma 3.4.28.

Proof. By induction on r.

• The case a. Using (⇒a) we obtain ∆ ` a⇒ a. The result follows.

• The case π·X. Using (⇒X) we obtain ∆ ` π·X ⇒ π·X. The result follows.

• The case c. Using (⇒c) we obtain ∆ ` c⇒ c. The result follows.

• The case rs. By inductive hypotheses ∆ ` r ⇒ r and ∆ ` s⇒ s. Using (⇒rs) we obtain

∆ ` rs⇒ rs. The result follows.

• The case λa.r. By inductive hypothesis ∆ ` r ⇒ r. Using (⇒λa) we obtain ∆ ` λa.
r ⇒ λa.r. The result follows.

• The case λX.r. By inductive hypothesis ∆ ` r ⇒ r. Using (⇒λX) we obtain ∆ ` λX.
r ⇒ λX.r. The result follows.

4

Proof of Lemma 3.4.32.

Proof. By induction on the derivation of ∆ ` r ⇒ s.

• The case (⇒a). Suppose ∆ ` a⇒ a. By Definition 3.2.4 we have a[X:=π·X] ≡ a. Using

(⇒a) we obtain ∆′ ` a[X:=π·X]⇒ a[X:=π·X]. The result follows.

• The case (⇒X). There are two cases:

• The case π′·X. Suppose ∆ ` π′·X ⇒ π′·X. By Definition 3.2.4 we have (π′·X)[X:=

π·X] ≡ (π′◦π)·X. Using (⇒X) we obtain ∆′ ` (π′◦π)·X ⇒ (π′◦π)·X. The result

follows.

• The case π′·Y . Suppose ∆ ` π′·Y ⇒ π′·Y . By Definition 3.2.4 we have (π′·Y)[X:=

π·X] ≡ π′·Y . Using (⇒X) we obtain ∆′ ` (π′·Y)[X:=π·X] ⇒ (π′·Y)[X:=π·X]. The

result follows.

A. ADDITIONAL PROOFS: THE TWO-LEVEL λ-CALCULUS 158

• The case (⇒c). Suppose ∆ ` c ⇒ c. By Definition 3.2.4 we have c[X:=π·X] ≡ c. Using

(⇒c) we obtain ∆′ ` c[X:=π·X]⇒ c[X:=π·X]. The result follows.

• The case (⇒rs). Suppose ∆ ` r ⇒ t and ∆ ` s ⇒ u. By inductive hypothesis ∆′ `
r[X:=π·X] ⇒ t[X:=π·X] and ∆ ` s[X:=π·X] ⇒ u[X:=π·X]. Using (⇒rs) we obtain

∆′ ` (r[X:=π·X])(s[X:=π·X]) ⇒ (t[X:=π·X])(u[X:=π·X]). By Definition 3.2.4 we have

(t[X:=π·X])(u[X:=π·X]) ≡ (tu)[X:=π·X]. The result follows.

• The case (⇒λa). Suppose ∆ ` r ⇒ s. By inductive hypothesis ∆′ ` r[X:=π·X]⇒ s[X:=

π·X]. Using (⇒λa) we obtain ∆′ ` λa.(r[X:=π·X])⇒ λa.(s[X:=π·X]). By Definition 3.2.4

we have λa.(s[X:=π·X]) ≡ (λa.s)[X:=π·X]. The result follows.

• The case (⇒λX). Suppose ∆ ` r ⇒ s. By inductive hypothesis ∆′ ` r[X:=π·X]⇒ s[X:=

π·X]. Using (⇒λX) we obtain ∆′ ` λY.(r[X:=π·X]) ⇒ λY.(s[X:=π·X]) where Y 6= X.

By Definition 3.2.4 we have λY.(s[X:=π·X]) ≡ (λY.s)[X:=π·X]. The result follows.

• The case (⇒ε). Suppose ∆ ` r ⇒ t, ∆ ` s ⇒ u and ∆ ` tu
(level2)→ v. By induc-

tive hypotheses ∆′ ` r[X:=π·X] ⇒ t[X:=π·X] and ∆′ ` s[X:=π·X] ⇒ u[X:=π·X]. By

Lemma 3.4.6 we have ∆′ ` (t[X:=π·X])(u[X:=π·X])
(level2)→ v[X:=π·X]. Using (⇒ε) we

obtain ∆′ ` (r[X:=π·X])(s[X:=π·X]) ⇒ v[X:=π·X]. By Definition 3.2.4 we have (r[X:=

π·X])(s[X:=π·X]) ≡ (rs)[X:=π·X]. The result follows.

• The case (⇒α). Suppose ∆ ` r ⇒ s, ∆ ` a#r and ∆ ` b#r. By inductive hypothesis

∆′ ` r[X:=π·X] ⇒ s[X:=π·X]. By Lemma 3.3.8 we have ∆′ ` a#r[X:=π·X] and ∆′ `
b#r[X:=π·X]. Using (⇒α) we obtain ∆′ ` (b a)·(r[X:=π·X]) ⇒ s. By Lemma 3.2.16 we

have (b a)·(r[X:=π·X]) ≡ ((b a)·r)[X:=π·X]. The result follows.

4

Proof of Lemma 3.4.34.

Proof. By induction on the derivation of ∆ ` r ⇒ s.

• The case (⇒a). By Definition 3.2.4 we have a[X:=t] ≡ a and a[X:=u] ≡ a. Using (⇒a)

we obtain ∆ ` a→ a. The result follows.

• The case (⇒X). There are two cases:

• The case π·X. By Definition 3.2.4 we have (π·X)[X:=t] ≡ π·t and (π·X)[X:=u] ≡ π·
u. By Lemma 3.4.33 we have ∆ ` π·t⇒ π·u. The result follows.

• The case π·Y . By Definition 3.2.4 we have (π·Y)[X:=t] ≡ π·Y and (π·Y)[X:=u] ≡ π·
Y . Using (⇒X) we obtain ∆ ` π·Y ⇒ π·Y . The result follows.

• The case (⇒c). By Definition 3.2.4 we have c[X:=t] ≡ c and c[X:=u] ≡ c. Using (⇒c)

we obtain ∆ ` c→ c. The result follows.

• The case (⇒rs). Suppose ∆ ` r ⇒ r′ and ∆ ` s⇒ s′. By inductive hypotheses ∆ ` r[X:=

t]⇒ r′[X:=u] and ∆ ` s[X:=t]⇒ s′[X:=u]. Using (⇒rs) we obtain ∆ ` (r[X:=t])(s[X:=

t])⇒ (r′[X:=u])(s′[X:=u]). By Definition 3.2.4 we have (r′[X:=u])(s′[X:=u]) ≡ (r′s′)[X:=

u]. The result follows.

• The case (⇒λa). Suppose ∆ ` r ⇒ s. By inductive hypothesis ∆ ` r[X:=t] ⇒ s[X:=u].

Using (⇒λa) we obtain ∆ ` λa.(r[X:=t])⇒ λa.(s[X:=u]). By Definition 3.2.4 we have λa.

(s[X:=u]) ≡ (λa.r)[X:=u]. The result follows.

A. ADDITIONAL PROOFS: THE TWO-LEVEL λ-CALCULUS 159

• The case (⇒λX). Suppose ∆ ` r ⇒ s. By inductive hypothesis ∆ ` r[X:=t]⇒ s[X:=u].

Using (⇒λX) we obtain ∆ ` λY.(r[X:=t]) ⇒ λY.(s[X:=u]). By Definition 3.2.4 we have

λY.(s[X:=u]) ≡ (λY.r)[X:=u], where Y 6∈ fV (u) ∪ fV (t). The result follows.

• The case (⇒ε). Suppose ∆ ` r ⇒ r′, ∆ `⇒ s ⇒ s′ and ∆ ` r′s′ (level2)→ v. By inductive

hypotheses ∆ ` r[X:=t] ⇒ r′[X:=u] and ∆ ` s[X:=t] ⇒ s′[X:=u]. By Lemma 3.4.6 we

have ∆ ` (r′[X:=u])(s′[X:=u])
(level2)→ v[X:=u]. Using (⇒ε) we obtain ∆ ` (r[X:=t])(s[X:=

t]) ⇒ v[X:=u]. By Definition 3.2.4 we have (r[X:=t])(s[X:=t]) ≡ (rs)[X:=t]. The result

follows.

• The case (⇒α). Suppose ∆ ` r ⇒ s, ∆ ` a#r and ∆ ` a#s. By inductive hypothesis

∆ ` r[X:=t] ⇒ s[X:=u]. By Lemma 3.3.8 we have ∆ ` a#r[X:=t] and ∆ ` b#r[X:=t].

Using (⇒α) we obtain ∆ ` (b a)·(b a)·(r[X:=t]) ⇒ s[X:=u]. By Lemma 3.2.16 we have

(b a)·(r[X:=t]) ≡ ((b a)·r)[X:=t]. The result follows.

4

Proof of Lemma 3.4.37.

Proof. By induction on the derivation of ∆ ` r → s.

• The case (→a). Suppose ∆ ` a[a7→t] → t. By Definition 3.4.1 we have level(a[a7→t]) =

level(t). The result follows.

• The case (→#). Suppose ∆ ` a#r so that ∆ ` r[a7→t] → r. By Definition 3.4.1 we

have level(r[a7→t]) = max(level(r), level(t)). If max(level(r), level(t)) = level(r) then

the result follows. If max(level(r), level(t)) = level(t) then level(r) ≤ level(t). The result

follows.

• The case (→rs1). Suppose ∆ ` a#s so that ∆ ` (rs)[a7→t] → (r[a7→t])s. By Defini-

tion 3.4.1 we have level((rs)[a7→t]) = max(level(rs), level(t)). By Definition 3.4.1 we have

max(level(rs), level(t)) = max(level(r), level(s), level(t)). By Definition 3.4.1 we have

max(level(r), level(s), level(t)) = level((r[a7→t])s). The result follows.

• The case (→rs2). Suppose level(r) = 1 so that ∆ ` (rs)[a7→t] → (r[a 7→t])(s[a 7→t]). By

Definition 3.4.1 we have level((rs)[a7→t]) = max(level(rs), level(t)). By Definition 3.4.1

we have max(level(rs), level(t)) = max(level(r), level(s), level(t)). By Definition 3.4.1

we have max(level(r), level(s), level(t)) = level((r[a7→t])(s[a7→t])). The result follows.

• The case (→λb). Suppose ∆ ` b#t so that ∆ ` (λb.s)[a7→t] → λb.(s[a 7→t]). By Defi-

nition 3.4.1 we have level((λb.s)[a7→t]) = max(level(s), level(t)). By Definition 3.4.1 we

have level(λb.(s[a7→t])) = max(level(s), level(t)). The result follows.

• The case (→λX). Suppose X 6∈ fV (t) so that ∆ ` (λX.r)[a7→t] → λX.(r[a7→t]). By

Definition 3.4.1 we have level((λX.r)[a7→t]) = 2. By Definition 3.4.1 we have λX.(r[a7→
t]) = 2. The result follows.

• The case (→β). Suppose ∆ ` (λX.r)t→ r[X:=t]. By Definition 3.4.1 we have level((λX.

r)t) = 2. The result follows.

• The case (.λa). Suppose ∆ ` r → s. By inductive hypothesis level(s) ≤ level(r). Using

(.λa) we obtain ∆ ` λa.r → λa.s. By Definition 3.4.1 we have level(s) = level(λa.s). The

result follows.

A. ADDITIONAL PROOFS: THE TWO-LEVEL λ-CALCULUS 160

• The case (.rs1). Suppose ∆ ` r → t. By inductive hypothesis level(t) ≤ level(r). Using

(.rs1) we obtain ∆ ` rs→ ts. It is a fact that max(level(t), level(s)) ≤ max(level(r), level(s)).

By Definition 3.4.1 we have max(level(t), level(s)) = level(ts). The result follows.

• The case (.rs2). Suppose ∆ ` s→ u. By inductive hypothesis level(u) ≤ level(s). Using

(.rs2) we obtain ∆ ` rs→ ru. It is a fact that max(level(r), level(u)) ≤ max(level(r), level(s)).

By Definition 3.4.1 we have max(level(r), level(u)) = level(ru). The result follows.

• The case (.λX). Suppose ∆ ` λX.r → λX.s. By Definition 3.4.1 we have level(λX.

r) = 2. The result follows.

• The case (.α). Suppose ∆ ` a#r, ∆ ` b#r and ∆ ` r → s. By inductive hypothesis

level(s) ≤ level(r). Using (.α) we obtain ∆ ` (b a)·r → s. By Lemma 3.4.7 we have

level((b a)·r) = level(r). The result follows.

4

Proof of Lemma 3.4.38.

Proof. By considering all possible non-trivial divergences (where s 6≡ t). We assume ∆ ` t⇒ t′,

∆ ` s⇒ s′, and so on.

• The case a[a7→t] and (⇒ε) with (→a). Suppose that ∆ ` a[a7→t] ⇒ t and ∆ ` a[a7→
t]

(level1)→ a[a7→t′]. By inductive hypothesis there exists t′′ such that ∆ ` t
(level1)

→∗ t′′ and

∆ ` t′ ⇒ t′′. Using (⇒ε) with (→a) and various congruence rules we obtain ∆ ` a[a7→
t′]⇒ t′′ and ∆ ` t

(level1)

→∗ t′′. The result follows.

• The case b[a7→t] and (⇒ε) with (→#). Suppose that ∆ ` b[a7→t] ⇒ b and ∆ ` b[a7→
t]

(level1)→ b[a 7→t′]. Using (⇒ε) with (→#) we obtain ∆ ` b[a7→t′] ⇒ b and ∆ ` b
(level1)

→∗ b.

The result follows.

• The case c[a7→t] and (⇒ε) with (→#). Suppose that ∆ ` c[a7→t] ⇒ c and ∆ ` c[a7→
t]

(level1)→ c[a7→t′]. Using (⇒ε) with (→#) we obtain ∆ ` c[a7→t′] ⇒ c and ∆ ` c
(level1)

→∗ c.

The result follows.

• The case (π·X)[a7→t] and (⇒ε) with (→#). Suppose ∆ ` a#π·X so that ∆ ` (π·X)[a7→
t] ⇒ π·X and ∆ ` (π·X)[a7→t] (level1)→ (π·X)[a7→t′]. Using (⇒ε) with (→#) we obtain

∆ ` (π·X)[a7→t′]⇒ π·X and ∆ ` π·X
(level1)

→∗ π·X. The result follows.

• The case (rs)[a7→t] and (→#). Suppose that ∆ ` a#rs so that ∆ ` (rs)[a7→t] ⇒ rs

and ∆ ` (rs)[a 7→t] (level1)→ (r′s′)[a7→t′]. By inductive hypotheses there exists r′′ and s′′

such that ∆ ` r
(level1)

→∗ r′′ and ∆ ` r′ ⇒ r′′, and ∆ ` s
(level1)

→∗ s′′ and ∆ ` s′ ⇒ s′′. By

Lemma 3.4.4 we have ∆ ` a#r′s′. Using (⇒ε) with (→#) and various congruence rules we

obtain ∆ ` (r′s′)[a7→t′]⇒ r′′s′′ and ∆ ` rs
(level1)

→∗ r′′s′′. The result follows.

• The case (rs)[a7→t] and (⇒ε) with (→rs1). Suppose ∆ ` a#s so that ∆ ` (rs)[a7→
t] ⇒ (r′[a7→t′])s′ and ∆ ` (rs)[a7→t] (level1)→ (r′′s′′)[a7→t′′]. By inductive hypotheses there

exists r′′′, s′′′ and t′′′ such that ∆ ` r′
(level1)

→∗ r′′′ and ∆ ` r′′ ⇒ r′′′, ∆ ` s′
(level1)

→∗ s′′′

and ∆ ` s′′ ⇒ s′′′, and ∆ ` t′
(level1)

→∗ t′′′ and ∆ ` t′′ ⇒ t′′′. By Lemma 3.4.4 we have

∆ ` a#s′′. Using (⇒ε) with (→rs1) and various congruence rules we obtain ∆ ` (r′′s′′)[a7→
t′′]⇒ (r′′′[a7→t′′′])s′′′ and ∆ ` (r′[a 7→t′])s′

(level1)

→∗ (r′′′[a7→t′′′])s′′′. The result follows.

A. ADDITIONAL PROOFS: THE TWO-LEVEL λ-CALCULUS 161

• The case (rs)[a7→t] and (⇒ε) with (→rs2). Suppose level(r) = 1 so that ∆ ` (rs)[a7→
t] ⇒ (r′[a7→t′])(s′[a 7→t′]) and ∆ ` (rs)[a7→t] (level1)→ (r′′s′′)[a 7→t′′]. By inductive hypotheses

there exists r′′′, s′′′ and t′′′ such that ∆ ` r′
(level1)

→∗ r′′′ and ∆ ` r′′ ⇒ r′′′, ∆ ` s′
(level1)

→∗ s′′′

and ∆ ` s′′ ⇒ s′′′, and ∆ ` t′
(level1)

→∗ t′′′ and ∆ ` t′′ ⇒ t′′′. By Lemma 3.4.37 we

have level(r′′) = 1. Using (⇒ε) with (→rs2) and various congruence rules we obtain

∆ ` (r′′s′′)[a7→t′′] ⇒ (r′′′[a7→t′′′])(s′′′[a 7→t′′′]) and ∆ ` (r′[a7→t′])(s′[a7→t′])
(level1)

→∗ (r′′′[a7→
t′′′])(s′′′[a7→t′′′]). The result follows.

• The case (λa.r)[a7→t] and (⇒ε) with (→#). Suppose ∆ ` (λa.r)[a7→t] ⇒ λa.r′ and ∆ `
(λa.r)[a7→t] (level1)→ (λa.r′′)[a7→t′′]. By inductive hypothesis there exists r′′′ such that ∆ `
r′

(level1)

→∗ r′′′ and ∆ ` r′′ ⇒ r′′′. Using (⇒ε) with (→#) and various congruence rules we

obtain ∆ ` (λa.r′′)[a7→t′′]⇒ λa.r′′′ and ∆ ` λa.r′
(level1)

→∗ λa.r′′′. The result follows.

• The case (λa.r)[b7→u] and (⇒ε) with (→λb). Suppose ∆ ` a#u so that ∆ ` (λa.r)[b 7→
u] ⇒ λa.(r′[b 7→u′]) and ∆ ` (λa.r)[b 7→u]

(level1)→ (λa.r′′)[b7→u′′]. By inductive hypotheses

there exists r′′′ and u′′′ such that ∆ ` r′
(level1)

→∗ r′′′ and ∆ ` r′′ ⇒ r′′′. and ∆ ` u′
(level1)

→∗ u′′′

and ∆ ` u′′ ⇒ u′′′. By Lemma 3.4.4 we have ∆ ` a#u′′. Using (⇒ε) with (→λb) and

various congruence rules we obtain ∆ ` (λa.r′′)[b 7→u′′] ⇒ λa.(r′′′[b7→u′′′]) and ∆ ` λa.

(r′[b 7→u′])
(level1)

→∗ λa.(r′′′[b 7→u′′′]). The result follows.

• The case (λX.r)[a7→t] and (⇒ε) with (→#). Suppose ∆ ` a#λX.r so that ∆ ` (λX.

r)[a7→t] ⇒ λX.r′ and ∆ ` (λX.r)[a7→t] (level1)→ (λX.r′′)[a 7→t′′]. By inductive hypothesis

there exists r′′′ such that ∆ ` r′
(level1)

→∗ r′′′ and ∆ ` r′′ ⇒ r′′′. By Lemma 3.4.4 we have

∆ ` a#λX.r′′. Using (⇒ε) with (→#) and various congruence rules we obtain ∆ ` (λX.

r′′)[a7→t′′]⇒ λX.r′′′ and ∆ ` λX.r′
(level1)

→∗ λX.r′′′. The result follows.

• The case (λX.r)[a7→t] and (⇒ε) with (→λX). Suppose X 6∈ fV (t′) which can be guaran-

teed by renaming, so that ∆ ` (λX.r)[a7→t] ⇒ λX.(r′[a 7→t′]) and ∆ ` (λX.r)[a7→t] (level1)→
(λX.r′′)[a7→t′′]. By inductive hypotheses there exists r′′′ and t′′′ such that ∆ ` r′

(level1)

→∗ r′′′

and ∆ ` r′′ ⇒ r′′′, and ∆ ` t′
(level1)

→∗ t′′′ and ∆ ` t′′ ⇒ t′′′. Using (⇒ε) with (→λX) and

various congruence rules we obtain ∆ ` (λX.r′′)[a7→t′′] ⇒ λX.(r′′′[a 7→t′′′]) and ∆ ` λX.
(r′[a7→t′])

(level1)

→∗ λX.(r′′′[a7→t′′′]). The result follows.

• The case ((λX.r)t)[b 7→u] and (⇒ε) with (→β). Suppose ∆ ` ((λX.r)t)[b 7→u] ⇒ r′[X:=

t′][b7→u′] and ∆ ` ((λX.r)t)[b7→u]
(level1)→ ((λX.r′′)t′′)[b 7→u′′]. By inductive hypotheses there

exists r′′′, t′′′ and u′′′ such that ∆ ` r′
(level1)

→∗ r′′′ and ∆ ` r′′ ⇒ r′′′, ∆ ` u′
(level1)

→∗ u′′′ and

∆ ` u′′ ⇒ u′′′, and ∆ ` t′
(level1)

→∗ t′′′ and ∆ ` t′′ ⇒ t′′′. Using (⇒ε) with (→β) and various

congruence rules we obtain ∆ ` ((λX.r′′)t′′)[b7→u′′]⇒ r′′′[X:=t′′′][b 7→u′′′] and ∆ ` r′′[X:=

t′′][b 7→u′′]
(level1)

→∗ r′′′[X:=t′′′][b7→u′′′]. The result follows.

• The case ((λX.r)t)[b7→u] and (⇒ε) with (→rs1). Suppose ∆ ` b#t, so that ∆ ` ((λX.

r)t) ⇒ ((λX.r′)[b7→u′])t′ and ∆ ` ((λX.r)t)[b 7→u]
(level1)→ ((λX.r′′)t′′)[b 7→u′′]. By inductive

hypotheses there exists r′′′, t′′′ and u′′′ such that ∆ ` r′
(level1)

→∗ r′′′ and ∆ ` r′′ ⇒ r′′′,

∆ ` u′
(level1)

→∗ u′′′, and ∆ ` u′′ ⇒ u′′′, and ∆ ` t′
(level1)

→∗ t′′′ and ∆ ` t′′ ⇒ t′′′. By

Lemma 3.4.4 we have ∆ ` b#t′′. Using (⇒ε) with (→rs1) and various congruence rules we

obtain ∆ ` ((λX.r′′)t′′)[b 7→u′′] ⇒ ((λX.r′′′)[b 7→u′′′])t′′′ and ∆ ` ((λX.r′′)[b 7→u′′])t′′
(level1)

→∗

A. ADDITIONAL PROOFS: THE TWO-LEVEL λ-CALCULUS 162

((λX.r′′′)[b7→u′′′])t′′′. The result follows.

• The case ((λX.r)t)[b 7→u] and (⇒ε) with (→β). Suppose X 6∈ fV (u), which can be guar-

anteed by renaming. Suppose ∆ ` b#t, so that ∆ ` ((λX.r)t)[b7→u]⇒ r′[X:=t′][b 7→u′] and

∆ ` ((λX.r)t)[b7→u]
(level1)→ ((λX.r′′)[b 7→u′′])t′′. By inductive hypotheses there exists r′′′, t′′′

and u′′′ such that ∆ ` r′
(level1)

→∗ r′′′ and ∆ ` r′′ ⇒ r′′′, ∆ ` u′
(level1)

→∗ u′′′, and ∆ ` u′′ ⇒ u′′′,

and ∆ ` t′
(level1)

→∗ t′′′ and ∆ ` t′′ ⇒ t′′′. Using (⇒ε) with (→λX) and (→β) we obtain

∆ ` r′[X:=t′][b 7→u′]
(level1)

→∗ r′′′[X:=t′′′][b 7→u′′′] and ∆ ` ((λX.r′′)[b 7→u′′])t′′ ⇒ r′′′[X:=

t′′′][b 7→u′′′]. The result follows.

4

APPENDIX B

Additional proofs: permissive nominal terms

Proof of Lemma 4.2.19.

Proof. By induction on r.

• The case a. Since id(a) = a.

• The case π·XS. Since id◦π = π.

• The case f(r1, . . . , rn). By Definition 4.2.9 id·f(r1, . . . , rn) ≡ f(id·r1, . . . , id·rn). By induc-

tive hypothesis f(id·r1, . . . , id·rn) ≡ f(r1, . . . , rn). The result follows.

• The case [a]r. By Definition 4.2.9 id·[a]r ≡ [id(a)](id·r). By definition id(a) = a for all

a therefore [id(a)](id·r) ≡ [a](id·r). By inductive hypothesis [a](id·r) ≡ [a]r. The result

follows.

4

Proof of Lemma 4.2.20.

Proof. By induction on r.

• The case a. Since π·(π′·a) ≡ π(π′(a)) ≡ (π◦π′)·a.

• The case π′′·XS. By Definition 4.2.9 we have π·(π′·(π′′·XS)) ≡ π·((π′◦π′′)·XS). By Def-

inition 4.2.9 we have π·((π′◦π′′)·XS) ≡ (π◦(π′◦π′′))·XS. It is a fact that (π◦(π′◦π′′))·
XS ≡ ((π◦π′)◦π′′)·XS. By Definition 4.2.9 we have ((π◦π′)◦π′′)·XS ≡ (π◦π′)·(π′′·XS).

The result follows.

• The case f(r1, . . . , rn). By Definition 4.2.9 we have π·(π′·f(r1, . . . , rn)) ≡ π·f(π′·r1, . . . , π
′·

rn). By Definition 4.2.9 we have π·f(π′·r1, . . . , π
′·rn) ≡ f((π·(π′·r1), . . . , π·(π′·rn)). By

inductive hypotheses f((π·(π′·r1), . . . , π·(π′·rn)) ≡ f((π◦π′)·r1, . . . , (π◦π′)·rn). By Defini-

tion 4.2.9 we have f((π◦π′)·r1, . . . , (π◦π′)·rn) ≡ (π◦π′)·f(r1, . . . , rn). The result follows.

• The case [a]r. By Definition 4.2.9 we have π·(π′·[a]r) ≡ π·[π′(a)](π′·r). By Definition 4.2.9

we have π·[π′(a)](π′·r) ≡ [π(π′(a))](π·(π′·r)). It is a fact that [π(π′(a))](π·(π′·r)) ≡
[(π◦π′)(a)](π·(π′·r)). By inductive hypothesis [(π◦π′)(a)](π·(π′·r)) ≡ [(π◦π′)(a)]((π◦π′)·
r). By Definition 4.2.9 we have [(π◦π′)(a)]((π◦π′)·r) ≡ (π◦π′)·[a]r. The result follows.

4

Proof of Lemma 4.2.21.

Proof. By induction on r.

• The case a. By Definition 4.2.11 we have π·fa(a) = π·{a}. By Definition 4.2.10 we have

π·{a} = {π(a)}. By Definition 4.2.11 we have {π(a)} = fa(π(a)). By Definition 4.2.9 we

have fa(π(a)) = fa(π·a). The result follows.

163

B. ADDITIONAL PROOFS: PERMISSIVE NOMINAL TERMS 164

• The case π′·XS. By Definition 4.2.11 we have π·fa(π′·XS) = π·(π′·S). By Definition 4.2.10

we have π·(π′·S) = (π◦π′)·S. By Definition 4.2.11 we have (π◦π′)·S = fa((π◦π′)·XS). By

Definition 4.2.9 we have fa((π◦π′)·XS) = fa(π·(π′·XS)). The result follows.

• The case f(r1, . . . , rn). By Definition 4.2.11 we have π·fa(f(r1, . . . , rn)) = π·
⋃

1≤i≤n fa(ri).

By Definition 4.2.10 we have π·
⋃

1≤i≤n fa(ri) =
⋃

1≤i≤n(π·fa(ri)). By inductive hy-

potheses
⋃

1≤i≤n(π·fa(ri)) =
⋃

1≤i≤n fa(π·ri). By Definition 4.2.11 we have
⋃

1≤i≤n fa(π·
ri) = fa(f(π·r1, . . . , π·rn)). By Definition 4.2.9 we have fa(f(π·r1, . . . , π·rn)) = fa(π·
f(r1, . . . , rn)). The result follows.

• The case [a]r. By Definition 4.2.11 we have π·fa([a]r) = π·(fa(r) \ {a}). By Defini-

tion 4.2.10 we have π·(fa(r) \ {a}) = (π·fa(r)) \ (π·{a}). By Definition 4.2.10 we have (π·
fa(r)) \ (π·{a}) = (π·fa(r)) \ {π(a)}. By inductive hypothesis (π·fa(r)) \ {π(a)} = fa(π·
r) \ {π(a)}. By Definition 4.2.11 we have fa(π·r) \ {π(a)} = fa([π(a)](π·r)). By Defini-

tion 4.2.9 we have fa([π(a)](π·r)) = fa(π·[a]r). The result follows.

4

Proof of Lemma 4.2.22.

Proof. By induction on r.

• The case a. Since fV (a) = ∅ = fV (π(a)).

• The case π′·XS. By Definition 4.2.9 we have fV (π·(π′·XS)) = fV ((π◦π′)·XS). By Defini-

tion 4.2.14 we have fV ((π◦π′)·XS) = {XS}. By Definition 4.2.14 we have {XS} = fV (π′·
XS). The result follows.

• The case f(r1, . . . , rn). By Definition 4.2.9 we have fV (π·f(r1, . . . , rn)) = fV (f(π·r1, . . . , π·
rn)). By Definition 4.2.14 we have fV (f(π·r1, . . . , π·rn)) =

⋃
1≤i≤n fV (π·ri). By in-

ductive hypotheses
⋃

1≤i≤n fV (π·ri) =
⋃

1≤i≤n fV (ri). By Definition 4.2.14 we have⋃
1≤i≤n fV (ri) = fV (f(r1, . . . , rn)). The result follows.

• The case [a]r. By Definition 4.2.9 we have fV (π·[a]r) = fV ([π(a)](π·r)). By Defini-

tion 4.2.14 we have fV ([π(a)](π·r)) = fV (π·r). By inductive hypothesis fV (π·r) = fV (r).

By Definition 4.2.14 we have fV (r) = fV ([a]r). The result follows.

4

Proof of Lemma 4.2.26.

Proof. By induction on r.

• The case a. Since size(a) = 1 = size(π(a)).

• The case π′·XS. Since size(π′·XS) = 1 = size((π◦π′)·XS).

• The case f(r1, . . . , rn). By Definition 4.2.9 we have size(π·f(r1, . . . , rn)) = size(f(π·r1, . . . , π·
rn)). By Definition 4.2.25 we have size(f(π·r1, . . . , π·rn)) =

∑
1≤i≤n size(π·ri). By in-

ductive hypotheses
∑

1≤i≤n size(π·ri) =
∑

1≤i≤n size(ri). By Definition 4.2.25 we have∑
1≤i≤n size(ri) = size(f(r1, . . . , rn)). The result follows.

B. ADDITIONAL PROOFS: PERMISSIVE NOMINAL TERMS 165

• The case [a]r. By Definition 4.2.9 we have size(π·[a]r) = size([π(a)](π·r)). By Defini-

tion 4.2.25 we have size([π(a)](π·r)) = 1 + size(π·r). By inductive hypothesis 1 + size(π·
r) = 1 + size(r). By Definition 4.2.25 we have 1 + size(r) = size([a]r). The result follows.

4

Proof of Lemma 4.2.32.

Proof. By induction on r.

• The case a. By Definition 4.2.29 we have a[XS:=t] ≡ a. By Definition 4.2.14 we have

fV (a) = ∅. The result follows.

• The case π·XS. By Definition 4.2.29 we have fV ((π·XS)[XS:=t]) = fV (π·t). By Lemma 4.2.22

we have fV (π·t) = fV (t). It is a fact that fV (t) ⊆ {XS} ∪ fV (t). By Definition 4.2.14 we

have {XS} ∪ fV (t) = fV (π·XS) ∪ fV (t). The result follows.

• The case π·Y T . By Definition 4.2.29 we have fV ((π·Y T)[XS:=t]) = fV (π·Y T). By Def-

inition 4.2.14 we have fV (π·Y T) = {Y T}. It is a fact that {Y T} ⊆ {Y T} ∪ fV (t). By

Definition 4.2.14 we have {Y T} ∪ fV (t) = fV (Y T) ∪ fV (t). By Lemma 4.2.22 we have

fV (Y T) ∪ fV (t) = fV (π·Y T) ∪ fV (t). The result follows.

• The case [a]r. By Definition 4.2.29 we have fV (([a]r)[XS:=t]) = fV ([a](r[XS:=t])). By

Definition 4.2.14 we have fV ([a](r[XS:=t])) = fV (r[XS:=t]). By inductive hypothesis

fV (r[XS:=t]) ⊆ fV (r) ∪ fV (t). By Definition 4.2.14 we have fV (r) ∪ fV (t) = fV ([a]r) ∪
fV (t). The result follows.

• The case f(r1, . . . , rn). By Definition 4.2.29 we have fV (f(r1, . . . , rn)[XS:=t]) = fV (f(r1[XS:=

t], . . . , rn[XS:=t])). By Definition 4.2.14 we have fV (f(r1[XS:=t], . . . , rn[XS:=t])) =
⋃

1≤i≤n
fV (ri[X

S:=t]). By inductive hypotheses
⋃

1≤i≤n fV (ri[X
S:=t]) ⊆

⋃
1≤i≤n fV (ri) ∪ fV (t).

By Definition 4.2.14 we have
⋃

1≤i≤n fV (ri)∪fV (t) = fV (f(r1, . . . , rn))∪fV (t). The result

follows.

4

Proof of Theorem 4.3.13.

Proof. By case analysis on r v S, Inc showing that all rules reduce the size of a support

inclusion problem.

• The case a v S, Inc. Suppose size(a v S, Inc) = (T,A, P, S). Suppose also that

a v S, Inc =⇒ Inc. Then size(Inc) = (T,A, P, S−1). The result follows.

• The case f(r1, . . . , rn) v S, Inc. Suppose size(f(r1, . . . , rn) v S, Inc) = (T,A, P, S).

Suppose also that f(r1, . . . , rn) v S, Inc =⇒ r1 v S, . . . , rn v S, Inc. Then size(r1 v
S, . . . , rn v S, Inc) = (T−1, A, P, S+n−1). The result follows.

• The case [a]r v S, Inc. Suppose size([a]r v S, Inc) = (T,A, P, S). Suppose also that

[a]r v S, Inc =⇒ r v S ∪ {a}, Inc. Then size(r v S ∪ {a}, Inc) = (T,A−1, P, S). The

result follows.

• The case π·XS v T, Inc. There are two cases:

B. ADDITIONAL PROOFS: PERMISSIVE NOMINAL TERMS 166

• The (vX) case. Suppose size(π·XS v T, Inc) = (T,A, P, S). Suppose also that π·
XS v T, Inc =⇒ XS v π-1·T, Inc. Then size(XS v π-1·T, Inc) = (T,A, P−1, S).

The result follows.

• The (vX′) case. Suppose size(π·XS v T, Inc) = (T,A, P, S). Suppose also that π·
XS v T, Inc =⇒ Inc. Then size(Inc) = (T,A, P−1, S−1). The result follows.

4

Proof of Lemma 4.3.29.

Proof. By case analysis of the simplification rules in Definition 4.3.8.

• The case (va). Suppose a v S, Inc =⇒ Inc by (va). By Definition 4.3.18 we have

fV (a v S, Inc) = fV (Inc). The result follows.

• The case (vf). Suppose f(r1, . . . , rn) v T, Inc =⇒ r1 v T, . . . , rn v T, Inc by (vf). By

Definition 4.3.18 we have fV (f(r1, . . . , rn)) =
⋃

1≤i≤n(fV (ri)). It is a fact that fV (f(r1, . . . , rn) v
T, Inc) = fV (r1 v T, . . . , rn v T, Inc). The result follows.

• The case (v[]). Suppose [a]r v T, Inc =⇒ r v T ∪{a}, Inc by (v[]). By Definition 4.3.18

we have fV ([a]r v T, Inc) = fV (r v T ∪ {a}, Inc). The result follows.

• The case (vX). Suppose π·XS v T, Inc =⇒ XS v π-1·T, Inc by (vX). By Defini-

tion 4.3.18 we have fV (π·XS v T, Inc) = fV (XS v π-1·T, Inc). The result follows.

• The case (vX′). Suppose π·XS v T, Inc =⇒ Inc by (vX′). By Definition 4.3.18 we have

fV (π·XS v T, Inc) = {XS} ∪ fV (Inc). The result follows.

4

Proof of Lemma 4.3.36.

Proof. By case analysis on the rules defined in Definition 4.3.35.

• The case (
?
=a). Suppose V; a

?
= a, P =⇒ V;P by (

?
=a). Suppose also that θ ∈ Sol(P).

By Definition 4.2.29 we have aθ ≡ a. Using (=αa) we obtain aθ =α aθ. It is a fact that

θ ∈ Sol(a ?
= a, P). The result follows.

Otherwise, suppose θ ∈ Sol(a ?
= a,P). By Definition 4.3.3 we have θ ∈ Sol(P). The result

follows.

• The case (
?
=f). Suppose V; f(r1, . . . , rn)

?
= f(s1, . . . , sn), P =⇒ V; ri

?
= si, P for 1 ≤ i ≤ n

by (
?
=f). Suppose also that θ ∈ Sol(ri

?
= si, P) for 1 ≤ i ≤ n. By Definition 4.3.3 we

have riθ =α siθ for 1 ≤ i ≤ n. Using (=αf) we obtain f(r1θ, . . . , rnθ) =α f(s1θ, . . . , snθ).

By Definition 4.2.29 we have f(r1, . . . , rn)θ =α f(s1, . . . , sn)θ. By Definition 4.3.3 we have

θ ∈ Sol(f(r1, . . . , rn)
?
= f(s1, . . . , sn), P). The result follows.

Otherwise, suppose θ ∈ Sol(f(r1, . . . , rn)
?
= f(s1, . . . , sn), P). By Definition 4.3.3 we

have f(r1, . . . , rn)θ =α f(s1, . . . , sn)θ. By Definition 4.2.29 we have f(r1θ, . . . , rnθ) =α

f(s1θ, . . . , snθ). Using (=αf) we obtain riθ =α siθ for 1 ≤ i ≤ n. By Definition 4.3.3 we

have θ ∈ Sol(ri
?
= si, P) for 1 ≤ i ≤ n. The result follows.

B. ADDITIONAL PROOFS: PERMISSIVE NOMINAL TERMS 167

• The case (
?
=[a]). Suppose V; [a]r

?
= [a]s, P =⇒ V; r

?
= s, P by (

?
=[a]). Suppose also

that θ ∈ Sol(r ?
= s, P). By Definition 4.3.3 we have rθ =α sθ. Using (=α[a]) we obtain

[a](rθ) =α [a](sθ). By Definition 4.2.29 we have ([a]r)θ =α ([a]s)θ. By Definition 4.3.3 we

have θ ∈ Sol([a]r
?
= [a]s, P). The result follows.

Otherwise, suppose θ ∈ Sol([a]r
?
= [a]s, P). By Definition 4.3.3 we have ([a]r)θ =α ([a]s)θ.

By Definition 4.2.29 we have [a](rθ) =α [a](sθ). Using (=α[a]) we obtain rθ =α sθ. By

Definition 4.3.3 we have θ ∈ Sol(r ?
= s, P). The result follows.

• The case (
?
=[b]). Suppose V; [a]r

?
= [b]s, P =⇒ V; (b a)·r ?

= s, P as b 6∈ fa(r) by (
?
=[b]).

Suppose also that θ ∈ Sol((b a)·r ?
= s, P). By Definition 4.3.3 we have ((b a)·r)θ =α sθ.

By Lemma 4.2.31 we have (b a)·(rθ) =α sθ. By Theorem 4.2.30 we have b 6∈ fa(rθ). Using

(=α[b]) we obtain [a](rθ) =α [b](sθ). By Definition 4.2.29 we have ([a]r)θ =α ([b]s)θ. By

Definition 4.3.3 we have θ ∈ Sol([a]r
?
= [b]s, P). The result follows.

Otherwise, suppose θ ∈ Sol([a]r
?
= [b]s, P). By Definition 4.3.3 we have ([a]r)θ =α ([b]s)θ.

By Definition 4.2.29 we have [a](rθ) =α [b](sθ). Using (=α[b]) we obtain (b a)·(rθ) =α sθ.

By Lemma 4.2.31 we have ((b a)·r)θ =α sθ. By Definition 4.3.3 we have θ ∈ Sol((b a)·
r

?
= s, P). The result follows.

• The case (
?
=X). Suppose V;π·XS ?

= π·XS, P =⇒ V;P by (
?
=X). Suppose also that

θ ∈ Sol(P). By Theorem 4.2.27 we have θ ∈ Sol(π·XS ?
= π·XS, P). The result follows.

Otherwise, suppose θ ∈ Sol(π·XS ?
= π·XS, P). By Definition 4.3.3 we have θ ∈ Sol(P).

The result follows.

4

Proof of Theorem 4.3.42.

Proof. By case analysis on the rules in Definition 4.3.35, checking that all rules reduce the size

of the unification problem.

• The case (
?
=a). Suppose size(a

?
= a, P) = (T,E,A). Suppose also that V; a

?
= a, P =⇒

V;P by (
?
=a). It is a fact that size(P) = (T,E−1, A). The result follows.

• The case (
?
=f). Suppose size(f(r1, . . . , rn)

?
= f(s1, . . . , sn), P) = (T,E,A). Suppose also

that V; f(r1, . . . , rn)
?
= f(s1, . . . , sn), P =⇒ V; ri

?
= si, P for 1 ≤ i ≤ n by (

?
=f). It is a fact

that size(ri
?
= si, P) = (T−1, E+n−1, A). The result follows.

• The case (
?
=[a]). Suppose size([a]r

?
= [a]s, P) = (T,E,A). Suppose also that V; [a]r

?
=

[a]s, P =⇒ V; r
?
= s, P by (

?
=[a]). It is a fact that size(r

?
= s, P) = (T,E,A−1). The

result follows.

• The case (
?
=[b]). Suppose size([a]r

?
= [b]s, P) = (T,E,A). Suppose also that b 6∈ fa(r)

so that V; [a]r
?
= [b]s, P =⇒ V; (b a)·r ?

= s, P by (
?
=[b]). It is a fact that size((b a)·

r
?
= s, P) = (T,E,A−1). The result follows.

• The case (
?
=X). Suppose size(π·XS ?

= π·XS, P) = (T,E,A). Suppose also that V;π·
XS ?

= π·XS, P =⇒ V;P by (
?
=X). It is a fact that size(V) = (T,E−1, A). The result

follows.

• The case (I1). Suppose size(π·XS ?
= s, P) = (T,E,A). Suppose also that XS 6∈ fV (s)

and π 6= id, so that V;π·XS ?
= s, P [XS :=π-1·s]

=⇒ V;P[XS:=π-1·s] by (I1). It is a fact that

size(P[XS:=π-1·s]) = (T,E−1, A). The result follows.

B. ADDITIONAL PROOFS: PERMISSIVE NOMINAL TERMS 168

• The case (I2). Suppose size(r
?
= π·XS, P) = (T,E,A). Suppose also that XS 6∈ fV (r)

and π 6= id, so that V; r
?
= π·XS, P [XS :=π-1·r]

=⇒ V;P[XS:=π-1·r] by (I2). It is a fact that

size(P[XS:=π-1·r]) = (T,E−1, A). The result follows.

• The case (I3). As Pv is non-trivial, (I3) always terminates.

4

Proof of Lemma 4.3.48.

Proof. By case analysis on the non-instantiating rules in Definition 4.3.35.

• The case (
?
=a). Suppose V; a

?
= a, P =⇒ V;P. By Definition 4.3.37 we have fV (a

?
=

a, P) = fV (P). The result follows.

• The case (
?
=f). Suppose V; f(r1, . . . , rn)

?
= f(s1, . . . , sn)P =⇒ V; ri

?
= si, P for 1 ≤ i ≤ n.

By Definition 4.2.14 we have fV (f(r1, . . . , rn)) =
⋃

1≤i≤n fV (ri). By Definition 4.3.37 we

have fV (f(r1, . . . , rn)
?
= f(s1, . . . , sn)P) = fV (ri

?
= si, P). The result follows.

• The case (
?
=[a]). Suppose V; [a]r

?
= [a]s, P =⇒ V; r

?
= s, P. By Definition 4.2.14 we have

fV ([a]r) = fV (r). By Definition 4.3.37 we have fV ([a]r
?
= [a]s, P) = fV (r

?
= s, P). The

result follows.

• The case (
?
=[b]). Suppose V; [a]r

?
= [b]sP =⇒ V; (b a)·r ?

= s, P. By Definition 4.2.14

we have fV ([a]r) = fV (r). By Lemma 4.2.22 we have fV (r) = fV ((b a)·r). By Defini-

tion 4.3.37 we have fV ([a]r
?
= [b]s, P) = fV ((b a)·r ?

= s, P). The result follows.

• The case (
?
=X). Suppose V;π·XS ?

= π·XS, P =⇒ V;P. By Definition 4.3.37 we have

fV (π·XS ?
= π·XS, P) = {XS} ∪ fV (P). The result follows.

4

Proof of Lemma 4.3.49.

Proof. By case analysis on the instantiating rules in Definition 4.3.35.

• The case (I1). Suppose fV (π·XS ?
= s, P) ⊆ V. Suppose also that V;π·XS ?

= s, P [XS :=π-1·s]
=⇒

V;P[XS:=π-1·s] by (I1). By Definition 4.3.37 we have fV (π·XS ?
= s, P) = {XS}∪fV (s)∪

fV (P). By Lemma 4.2.32 we have {XS}∪fV (s)∪fV (P) ⊇ fV (P[XS:=π-1·s]). The result

follows.

• The case (I2). Suppose fV (r
?
= π·XS, P) ⊆ V. Suppose also that V; r

?
= π·XS, P [XS :=π-1·r]

=⇒
V;P[XS:=π-1·r] by (I1). By Definition 4.3.37 we have fV (r

?
= π·XS, P) = {XS}∪fV (r)∪

fV (P). By Lemma 4.2.32 we have {XS}∪fV (r)∪fV (P) ⊇ fV (P[XS:=π-1·r]). The result

follows.

• The case (I3). This is an immediate corollary of Lemma 4.3.29.

4

APPENDIX C

BNF Grammar for PNT Frontend

169

C. BNF GRAMMAR FOR PNT FRONTEND 170

C. BNF GRAMMAR FOR PNT FRONTEND 171

<digit> ::= 0 | 1 . . .
<upper> ::= A | B . . .
<lower> ::= a | b . . .
<alphanum> ::= <digit> | <upper> | <lower>
<atom> ::= <digit>+

<atomlst> ::= <atom> | <atom>, <atoms>

<swapping> ::= (<atom> <atom>)

<swappings> ::= ε | <swapping><swappings>
<idpermutation> ::= id

<permutation> ::= <idpermutation> | <swappings>
<tfident> ::= <upper>+

<alphanum>
∗

<unkident> ::= <upper>+

<oblident> ::= <lower>+
<alphanum>

∗

<srtident> ::= <upper>+

<termident> ::= <lower>+
<alphanum>

∗

<modident> ::= <upper>+
<alphanum>

∗

<term> ::= <atom> | <permutation> . <unkident> |
[<atom>]<term> | <tfident>(<termlst>)

<termlst> ::= ε | <terms′>
<termlst′> ::= <term> | <term>,<terms′>

<terms> ::= <term>
∗

<termasc> ::= term <termident> is <term>

<termascs> ::= <termasc>∗

<termblk> ::= terms begin <termascs> end

<unifobl> ::= obligation <oblident> is unify <termident> and <termident>

<aeqobl> ::= obligation <oblident> is aeq <termident> and <termident>

<faobl> ::= obligation <oblident> is free atoms of <termident>

<permobl> ::= obligation <oblident> is permute <termident> with <permutation>

<freshobl> ::= obligation <oblident> is fresh name for <termident>

<oblasc> ::= <unifobl> | <aeqobl> | <faobl> | <permobl> | <freshobl>
<oblascs> ::= <oblasc>∗

<oblblk> ::= obligations begin <oblascs> end

<implst> ::= import <modident>

<atomset> ::= { <atomlst> }
<psort> ::= comb <psort′>

<psort′> ::= union <atomset> | minus <atomset> | (<psort′>)

<srtasc> ::= sort <srtident> is <psort>

<srtascs> ::= <srtasc>∗

<srtblk> ::= sorts begin <srtascs> end

<unkasc> ::= unknown <unkident> has sort <srtident>

<unkascs> ::= <unkasc>∗

<unkblk> ::= unknowns begin <unkascs> end

<tfasc> ::= termformer <tfident>

<tfascs> ::= <tfasc>∗

<tfblk> ::= termformers begin <tfascs> end

<module> ::= module <modident> begin

<implst> <srtascs> <unkascs> <tfascs> <trmascs> <oblascs>

end

Bibliography

[ABW07] Brian Aydemir, Aaron Bohannon, and Stephanie Weirich. Nominal reasoning tech-

niques in Coq. Electronic Notes in Theoretical Computer Science, 174(5):69–77,

2007.

[ACP+08] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and

Stephanie Weirich. Engineering formal metatheory. In Proceedings of the 35th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL

2008), pages 3–15, 2008.

[ACTZ07] Andrea Asperti, Claudo Sacerdoti Coen, Enrico Tassi, and Stefano Zacchiroli. Craft-

ing a Proof Assistant, pages 18–32. Lecture Notes in Computer Science. Springer-

Verlag, 2007.

[AEMO09] Maŕıa Alpuente, Santiago Escobar, José Meseguer, and Pedro Ojeda. Order-sorted

generalization. Electronic Notes in Theoretical Computer Science, 246:27–38, 2009.

[AGM+04] Samson Abramsky, Dan R. Ghica, Andrzej Murawski, Chih-Hao Luke Ong, and Iain

D. B. Stark. Nominal games and full abstraction for the ν-calculus. In Proceedings

of the 19th Annual IEEE Symposium on Logic in Computer Science: (LICS 2004),

pages 150–159, 2004.

[AKG95] Hassan Aı̈t-Kaci and Jacques Garrigue. Label selective λ-calculus: syntax and

confluence. Theoretical Computer Science, 151:353–383, 1995.

[Atk09] Robert Atkey. Syntax for free: representing syntax with binding with parametricity.

In Proceedings of the 9th International Conference on Typed Lambda Calculi and

Applications (TLCA 2009), volume 5608 of Lecture Notes in Computer Science,

pages 35–49, 2009.

[Aug06] Lennart Augustsson. Lambda calculus cooked four ways. Unpublished, 2006.

[AW10] Brian Aydemir and Stephanie Weirich. LNGen: Tool support for locally nameless

representations. Draft, 2010.

[Bal87] Herman Balsters. Lambda calculus extended with segments. Mathematical Logic

and Theoretical Computer Science, pages 15–27, 1987.

[Bal94] Herman Balsters. Lambda calculus extended with segments, pages 339–367. North

Holland, 1994.

[Bar84] Henk Barendregt. The λ-calculus: Its Syntax and Semantics. Studies in Logic.

Elsevier, 1984.

173

C. BIBLIOGRAPHY 174

[BC97] Alexandre Boudet and Evelyne Countejean. AC-unification of higher-order patterns.

In Proceedings of the 3rd International Conference on Principles and Practice of

Constraint Programming (CP 1997), pages 267–281, 1997.

[BC01] Alexandre Boudet and Evelyne Countejean. Combining pattern E-unification algo-

rithms. In Proceeedings of the International Conference on Rewriting Techniques

and Applications (RTA 2001), pages 63–76, 2001.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-

velopment Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

[BdV01] Mirna Bognar and Roel de Vrijer. A calculus of lambda calculus contexts. Journal

of Automated Reasoning, 27:29–59, 2001.

[Ber76] Klaus J. Berkling. A symmetric complement to the λ-calculus. Technical Report

ISF-76-7, Gesellschaft Fur Mathematik Und Datenverarbeitung MbH, 1976.

[BF07] William E. Byrd and Daniel Friedman. αKanren: A fresh name in Nominal Logic

programming. In Prooceedings of the 2007 Workshop on Scheme and Functional

Programming, pages 79–90, 2007.

[BKBH07] Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. Relational

semantics for effect-based program transformations with dynamic allocation. In

Proceedings of the 9th ACM SIGPLAN International Conference on Principles and

Practice of Declarative Programming (PPDP 2007), pages 87–96, 2007.

[BKZ09] Peter Bulychev, Egor V. Kostylev, and Vladimir A. Zakharov. Antiunification

algorithms and their applications in program analysis. In Proceedings of the 7th In-

ternational Andrei Ershov Memorial Conference, Perspective of System Informatics

(PSI 2009), 2009.

[BM08] Peter Bulychev and Marius Minea. Duplicate code detection using antiunification.

In Proceedings of the Spring/Summer Young Researchers Colloquium on Software

Engineering (SyRCoSE 2008), pages 51–54, 2008.

[BM09] Peter Bulychev and Marius Minea. An evaluation of duplicate code detection using

antiunification. In Proceedings of the 3rd International Workshop on Software Clones

(IWSC 2009), 2009.

[Bog02] Mirna Bognar. Contexts in Lambda Calculus. PhD thesis, Vrije Universiteit Ams-

terdam, 2002.

[Bou00] Alexandre Boudet. Unification of higher-order patterns modulo simple syntactic

equational theories. Journal of Discrete Mathematics and Theoretical Computer

Science, 4:11–30, 2000.

[BP07] Jesper Bengtson and Joachim Parrow. A completeness proof for bisimulation in

the pi-calculus using Isabelle. Electronic Notes in Theoretical Computer Science,

192(1):61–75, 2007.

C. BIBLIOGRAPHY 175

[BP09a] Jesper Bengtson and Joachim Parrow. Formalising the π-calculus using Nominal

Logic. Logical Methods in Computer Science, 5:16, 2009.

[BP09b] Jesper Bengtson and Joachim Parrow. Psi-calculi in Isabelle. In Proceedings of

the 22nd International Conference on Theorem Proving in Higher Order Logics

(TPHOLs 2009), pages 99–114, 2009.

[BS81] Stanley Burris and H. P. Sankappanavar. A Course in Universal Algebra. Springer,

1981.

[BS01] Franz Baader and Wayne Snyder. Unification Theory, pages 445–533. Elsevier and

MIT Press, 2001.

[BU06] Stefan Berghofer and Christian Urban. A head-to-head comparison of de Bruijn

indices and names. In Proceedings of the 1st International Workshop on Logical

Frameworks and Meta-Languages : Theory and Practice (LFMTP 2006), volume

147(5) of Electronic Notes in Theoretical Computer Science, pages 25–32, 2006.

[BU08] Stefan Berghofer and Christian Urban. Nominal inversion principles. In 21st Inter-

national Conference on Theorem Proving in Higher Order Logics, 2008. To appear.

[Bul08] Peter Bulychev. Duplicate code detection using Code Digger. Python Magazine,

2008.

[Bur91] Rod Burstall. Computer assisted proof for mathematics: an introduction using the

LEGO proof system. Technical Report ECS-LFCS-91-132, LFCS, Department of

Informatics, University of Edinburgh, 1991.

[Cal09] Christophe Calvès. A Haskell nominal toolkit. In Informal Proceedings of the 2nd

International Workshop on Theory and Applications of Abstraction, Substitution

and Naming (TAASN 2009), page Available Online, 2009.

[Cal10] Christophe Calvès. Complexity and Implementation of Nominal Algorithms. PhD

thesis, Department of Computer Science, King’s College London, 2010.

[CC02] Lúıs Caires and Luca Cardelli. A spatial logic for concurrency (part ii). In 13th

International Conference on Concurrency (CONCUR 2002), pages 209–225, 2002.

[CELM00] Manuel Clavel, Steven Eker, Patrick Lincoln, and Joseph Meseguer. Principles of

Maude. In Electronic Notes in Theoretical Computer Science, volume 4, 2000.

[CF07] Christophe Calvès and Maribel Fernández. Implementing nominal unification. Elec-

tronic Notes in Theoretical Computer Science, 176(1):25–37, 2007.

[CF08a] Christophe Calvès and Maribel Fernández. Nominal matching and α-equivalence

(extended abstract). In Workshop on Logic, Language and Information in Compu-

tation (WoLLIC) 2008, pages 111–122, 2008.

[CF08b] Christophe Calvès and Maribel Fernández. A polynominal nominal unification al-

gorithm. Theoretical Computer Science, 403:285–306, 2008.

C. BIBLIOGRAPHY 176

[CH85] Thierry Coquand and Gerard Huet. Constructions: a higher-order proof system for

mechanising mathematics. In Proceedings of the European Conference on Computer

Algebra (EUROCAL 1985), volume 203 of Lecture Notes in Computer Science, pages

151–184, 1985.

[CH06] Karl Crary and Robert Harper. Logic Column 16: Higher-Order Abstract Syntax—

Setting the Record Straight, volume 37, pages 93–96. Association of Computing

Machinery, 2006.

[Che04a] James Cheney. The Complexity of Equivariant Unification, pages 332–344. Lecture

Notes in Computer Science. Springer, 2004.

[Che04b] James Cheney. Nominal Logic Programming. PhD thesis, Cornell University, 2004.

[Che05a] James Cheney. Equivariant unification. In Rewriting Techniques and Applications

(RTA 2005), pages 74–89. Springer, 2005.

[Che05b] James Cheney. Functional pearl – scrap your nameplate. In Proceedings of the Tenth

ACM SIGPLAN International Conference on Functional Programming, pages 180–

191, 2005.

[Che05c] James Cheney. Logic Column 14: Nominal Logic and Abstract Syntax, volume 36,

pages 47–69. Association of Computing Machinery, 2005.

[Che05d] James Cheney. Relating higher order pattern unification and nominal unification.

In Proceedings of the 19th International Conference on Unification (UNIF 2005),

pages 104–119, 2005.

[Che05e] James Cheney. A simpler proof theory for Nominal Logic. In Foundations of Soft-

ware Science and Computational Structures, pages 379–394, 2005.

[Che06a] James Cheney. Completeness and Herbrand results for Nominal Logic. Journal of

Symbolic Logic, 81(1):299–320, 2006.

[Che06b] James Cheney. The semantics of Nominal Logic programs. In International Con-

ference on Logic Programming 2006, pages 361–375, 2006.

[Che08] James Cheney. Simple nominal type theory. In Proceedings of the 3rd Interna-

tional Workshop on Logical Frameworks and Meta-Languages: Theory and Practice

(LFMTP 2008), 2008.

[Chl08] Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics.

In 13th ACM SIGPLAN International Conference on Functional Programming 2008

(ICFP 2008), 2008. To appear.

[Chu36] Alonzo Church. A note on the Entscheidungsproblem. The Journal of Symbolic

Logic, 1(1):40–41, 1936.

[Chu40] Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic

Logic, 5:56–68, 1940.

C. BIBLIOGRAPHY 177

[CM07] James Cheney and Alberto Momigliano. Mechanized metatheory model-checking.

In Proceedings of the 9th ACM SIGPLAN International Conference on Principles

and Practice of Declarative Programming (PPDP 2007), pages 75–86, 2007.

[CMU08] Peter Chapman, James MacKinna, and Christian Urban. Mechanising a proof of

Craig’s interpolation theorem for intuitionistic logic in Nominal Isabelle. In Pro-

ceedings of the 9th AISC International Conference, the 15th Calculemas Symposium,

and the 7th International MKM Conference on Intelligent Computer Mathematics,

pages 38–52, 2008.

[Coh63] Paul J. Cohen. The independence of the continuum hypothesis. Proceedings of the

National Academy of Sciences of the United States of America, 50:1143–1148, 1963.

[CP07] Ranald A. Clouston and Andrew M. Pitts. Nominal equational logic. In Compu-

tation, Meaning and Logic, Articles Dedicated to Gordon Plotkin, volume 1496 of

Electronic Notes in Theoretical Computer Science, pages 223–257. Elsevier, 2007.

[CU03] James Cheney and Christian Urban. System description: α-Prolog, a fresh approach

to logic programming modulo α-equivalence. In Proceedings of the 17th International

Workshop on Unification, pages 15–19, 2003.

[CU04] James Cheney and Christian Urban. αProlog: A logic programming language with

names, binding and α-equivalence. In Proceedings of the 20th International Confer-

ence on Logic Programming (ICLP 2004), number 3132 in Lecture Notes in Com-

puter Science, pages 269–283. Springer-Verlag, 2004.

[CU08] James Cheney and Christian Urban. Nominal Logic programming. ACM Transac-

tions on Programming Language Systems, 30(5):1–47, 2008.

[Dam98] Laurent Dami. A lambda-calculus with dynamic binding. Theoretical Computer

Science, 192:201–231, 1998.

[dB72] Nicolaas G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation. Indagationes Mathematicae, 34:381–392, 1972.

[dB78] Nicholaas G. de Bruijn. A namefree λ-calculus with facilities for internal definition

of expressions and segments. Technical Report 78-WSK-03, Technische Universiteit

Eindhoven, 1978.

[dB80] Nicolas G. de Bruijn. A survey of the project AUTOMATH. In To Haskell B.

Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic

Press, 1980.

[DFH95] Joëlle Despeyroux, Amy Felty, and André Hirschowitz. Higher-order abstract syntax

in Coq. In Proceedings of the International Conference on Typed Lambda Calculi

and Applications, volume 902 of Lecture Notes in Computer Science, pages 124–138.

Springer-Verlag, 1995.

C. BIBLIOGRAPHY 178

[DG10] Gilles Dowek and Murdoch J. Gabbay. Permissive Nominal Logic. In Proceedings

of the 12th International ACM SIGPLAN Symposium on Principles and Practice

of Declarative Programming (PPDP 2010), pages 165–176, 2010.

[DGM09a] Gilles Dowek, Murdoch J. Gabbay, and Dominic P. Mulligan. Permissive nomi-

nal terms. In Proceedings of the 24th Convegno Italiano di Logica Computazionale

(CILC 2009), 2009.

[DGM09b] Gilles Dowek, Murdoch J. Gabbay, and Dominic P. Mulligan. Permissive nominal

terms and their unification. Technical Report 6682, INRIA, 2009.

[DGM10] Gilles Dowek, Murdoch J. Gabbay, and Dominic P. Mulligan. Permissive nominal

terms and their unification: An infinite, coinfinite approach to nominal techniques.

Logic Journal of the Interest Group in Pure and Applied Logic, 18:769–822, 2010.

[DHK95] Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Higher-order unification via

explicit substitutions. In Proceedings of the 10th Annual IEEE Symposium on Logic

in Computer Science (LICS 1995), pages 366–374, 1995.

[DM04] Davide D’Ancona and Eugenio Moggi. A fresh calculus for names management. In

Proceedings of the 3rd International Conference on Generative Programming and

Component Engineering (GPCE 2004), pages 206–224, 2004.

[Dow01] Gilles Dowek. Higher-order unification and matching, pages 1009–1062. Elsevier,

2001.

[DP08] Joshua Dunfield and Brigitte Pientka. Case analysis of higher-order data. In In-

ternational Workshop on Logical Frameworks and Meta-Languages: Theory and

Practice (LFMTP’08), Electronic Notes in Theoretical Computer Science, 2008.

[DST09] Lucas Dixon, Alan Smaill, and Tracy Tsang. Plans, actions and dialogues using

linear logic. Journal of Logic, Language and Information, 18(2):251–289, 2009.

[FG05] Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting with name genera-

tion: Abstraction vs. locality. In PPDP ’05: Proceedings of the 7th ACM SIGPLAN

International Conference on Principles and Practice of Declarative Programming,

pages 47–58, 2005.

[FG07a] Maribel Fernández and Murdoch J. Gabbay. Curry-style types for nominal terms.

In Proceedings of TYPES’06, Lecture Notes in Computer Science, 2007.

[FG07b] Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting. Information and

Computation, 205:917–965, 2007.

[FG10] Maribel Fernández and Murdoch J. Gabbay. Closed nominal rewriting and efficiently

computable nominal algebra equality. In Proceedings of the 5th International Work-

shop on Logical Frameworks and Meta-languages: Theory and Practice (LFMTP

2010), 2010.

C. BIBLIOGRAPHY 179

[FGM04] Maribel Fernández, Murdoch J. Gabbay, and Ian Mackie. Nominal rewriting sys-

tems. In PPDP ’04: Proceedings of the 6th ACM SIGPLAN International Confer-

ence on Principles and Practice of Declarative Programming, pages 108–119, 2004.

[FP10] Amy P. Felty and Brigitte Pientka. Reasoning with higher-order abstract syntax

and contexts. In Proceedings of the International Conference on Theorem Proving

(ITP 2010), Lecture Notes in Computer Science, 2010.

[FR10] Maribel Fernández and Albert Rubio. Reduction orderings and completion for

rewrite systems with binding. In Proceedings of the 5th International Workshop on

Higher-Order Rewriting (HOR 2010), 2010.

[Fra22] Abraham Fraenkel. Der begriff ‘definit’ und die unabhngigkeit des auswahlsaxioms.

Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-

mathematische Klasse, pages 253–257, 1922.

[FS96] Leonidas Fegaras and Timothy Sheard. Revisiting catamorphisms over datatypes

with embedded functions. In Proceedings of the 23rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL 1996), pages 284–294,

1996.

[FS09] Marcelo Fiore and Sam Staton. A congruence rule format for name-passing process

calculi. Information and Computation, 207(2):209–236, 2009.

[Gab00] Murdoch J. Gabbay. A Theory of Inductive Definitions with α-equivalence. PhD

thesis, DPMMS, University of Cambridge, 2000.

[Gab02a] Murdoch J. Gabbay. Automating Fraenkel-Mostowski syntax. In Proceedings of

the 15th International Conference on Theorem Proving in Higher Order Logics

(TPHOLS 2002), pages 60–70, 2002.

[Gab02b] Murdoch J. Gabbay. FM-HOL, a higher-order theory of names. In Workshop on

Thirty Five Years of Automath, 2002.

[Gab03] Murdoch J. Gabbay. The π-calculus in FM. In Fairouz Kamareddine, editor, 35

Yes of AUTOMATH, Applied Logic Series. Kluwer, 2003.

[Gab05] Murdoch J. Gabbay. A NEW calculus of contexts. In PPDP ’05: Proceedings of

the 7th ACM SIGPLAN International Conference on Principles and Practice of

Declarative Programming, pages 94–105, 2005.

[Gab07a] Murdoch J. Gabbay. Fresh Logic. Journal of Applied Logic, 2007. In Press.

[Gab07b] Murdoch J. Gabbay. A general mathematics of names. Information and Computa-

tion, 205:982–1011, 2007.

[Gab09] Murdoch J. Gabbay. Nominal algebra and the HSP theorem. Journal of Logic and

Computation, 19:341–367, 2009.

C. BIBLIOGRAPHY 180

[Gac08] Andrew Gacek. The Abella interactive theorem prover (system description). In

Proceedings of the 4th International Joint Conference on Automated Reasoning (IJ-

CAR 2008), volume 5195 of Lecture Notes in Artificial Intelligence, pages 154–161,

2008.

[GC04] Murdoch J. Gabbay and James Cheney. A sequent calculus for Nominal Logic. In

19th Annual IEEE Symposium on Logic in Computer Science (LICS 2004), pages

139–148, 2004.

[GG08] Murdoch J. Gabbay and Michael Gabbay. Substitution for Fraenkel-Mostowski

foundations. In Proceedings of the 2008 AISB Symposium on Computing and Phi-

losophy, 2008.

[GJ02] Herman Geuvers and Gueorgui I. Jojgov. Open proofs and open terms: A basis for

interactive logic. In CSL ’02: Proceedings of the 16th International Workshop and

11th Annual Conference of the EACSL on Computer Science Logic, pages 537–552,

2002.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Defini-

tion. Addison-Wesley, 3rd edition, 2005.

[GK96a] Claire Gardent and Michael Kohlasse. Focus and higher-order unification. In Pro-

ceedings of the 16th Conference on Computational Linguistics (ICCL 1996), pages

430–435, 1996.

[GK96b] Claire Gardent and Michael Kohlasse. Higher-order coloured unification and natural

language semantics. In Proceedings of the 34th Annual Meeting of the Association

for Computational Linguistics (ACL 1996), pages 1–9, 1996.

[GL08] Murdoch J. Gabbay and Stéphane Lengrand. The lambda context calculus. Elec-

tronic Notes in Theoretical Computer Science, 196:19–35, 2008.

[GM06] Murdoch J. Gabbay and Aad Mathijssen. Nominal algebra. In Proceedings of the

18th Nordic Workshop on Programming Theory (NWPT’06), page Talk Abstract,

2006.

[GM07a] Murdoch J. Gabbay and Aad Mathijssen. Festschrift in Honour of Peter B. Andrews

on his 70th Birthday, chapter The Lambda-calculus is Nominal Algebraic. Studies

in Logic and the Foundations of Mathematics. IFCoLog, 2007.

[GM07b] Murdoch J. Gabbay and Aad Mathijssen. A formal calculus for informal equality

with binding. In Proceedings of the 14th Workshop on Logic, Language, Information

and Computation 2007, (WoLLIC 2007), Lecture Notes in Computer Science, pages

162–176, 2007.

[GM07c] Murdoch J. Gabbay and Aad Mathijssen. Nominal algebra and the HSP theorem.

Technical Report HW-MACS-TR-0057, Heriot-Watt University, DSG, 2007.

[GM07d] Murdoch J. Gabbay and Aad Mathijssen. One-and-a-halfth order logic. Journal of

Logic and Computation, 2007.

C. BIBLIOGRAPHY 181

[GM08a] Murdoch J. Gabbay and Aad Mathijssen. Capture avoiding substitution as a nom-

inal algebra. Formal Aspects of Computing, 20:451–479, 2008.

[GM08b] Murdoch J. Gabbay and Dominic P. Mulligan. One-and-a-halfth order terms:

Curry-Howard for incomplete derivations. In Proceedings of 2008 Workshop on

Logic, Language and Information in Computation (WoLLIC 2008), volume 5110 of

Lecture Notes in Artificial Intelligence, pages 180–194, 2008.

[GM09a] Murdoch J. Gabbay and Aad Mathijssen. Nominal universal algebra: Equational

logic with names and binding. Journal of Logic and Computation, 19:1455–1580,

2009.

[GM09b] Murdoch J. Gabbay and Dominic P. Mulligan. One-and-a-half-order terms: Curry-

Howard for incomplete derivations. Journal of Information and Computation,

208:230–258, 2009.

[GM09c] Murdoch J. Gabbay and Dominic P. Mulligan. Semantic nominal terms. In Informal

proceedings of the 2nd International Workshop on the Theory and Applications of

Abstraction, Substitution and Naming (TAASN 2009), 2009.

[GM09d] Murdoch J. Gabbay and Dominic P. Mulligan. The two-level λ-calculus. In Proceed-

ings of the 17th Workshop on Functional and Logic Programming (WFLP 2008),

volume 246 of Electronic Notes in Theoretical Computer Science, pages 107–129,

2009.

[GM09e] Murdoch J. Gabbay and Dominic P. Mulligan. Universal algebra over λ-terms and

nominal terms: the connection in logic between nominal techniques and higher-order

variables. In Informal Proceedings of the 4th International Workshop on Logical

Frameworks and Meta-languages: Theory and Practice (LFMTP 2009), 2009.

[GM10a] Murdoch J. Gabbay and Aad Mathijssen. A nominal axiomatisation of the lambda-

calculus. Information and Computation, 20:501–531, 2010.

[GM10b] Murdoch J. Gabbay and Dominic P. Mulligan. The permissive two-level λ-calculus.

To be submitted, 2010.

[GM10c] Murdoch J. Gabbay and Dominic P. Mulligan. The two-level λ-calculus, part one.

Journal of Logic and Computation, 2010. Submitted.

[Gol81] Warren D. Goldfarb. The undecidability of the second-order unification problem.

Theoretical Computer Science, 13:225–230, 1981.

[Gor93] Andrew D. Gordon. A mechanisation of name carrying syntax up to alpha conver-

sion. In Proceedings of Higher Order Logic Theorem Proving and its Applications,

Lecture Notes in Computer Science, pages 414–426, 1993.

[GP99] Murdoch J. Gabbay and Andrew M. Pitts. A NEW approach to abstract syntax

involving binders. In 14th Annual Symposium on Logic in Computer Science, pages

214–224, 1999.

C. BIBLIOGRAPHY 182

[Has98] Masatomo Hashimoto. First-class contexts in ML. In Proceedings of Advances in

Computing Science (ASIAN 1998), pages 206–223, 1998.

[HDKP98] Thérèse Hardin, Gilles Dowek, Claude Kirchner, and Frank Pfenning. Unification

via explicit substitutions: The case of higher-order patterns. In Proceedings of Joint

International Conference and Symposium on Logic Programming (JICSLP 1996),

pages 259–273, 1998.

[Hid00] Sakurada Hideki. An interpretation of a context calculus in an environment calculus.

Transactions of Information Processing Society of Japan, 41:8–24, 2000.

[HLZ09] Robert Harper, Daniel R. Licata, and Noam Zeilberger. A pronominal approach

to binding and computation. In Proceedings of the 9th International Conference on

Typed Lambda Calculi and Applications (TLCA 2009), pages 3–4, 2009.

[HO01] Masatomo Hashimoto and Atsushi Ohori. A typed context calculus. Theoretical

Computer Science, 266(1–2):249–272, 2001.

[HU10] Brian Huffman and Christian Urban. Proof Pearl: A new foundation for Nominal

Isabelle. In Proceedings of the International Conference on Interactive Theorem

Proving (ITP 2010), 2010.

[Hue75] Gerard Huet. A unification algorithm for typed lambda calculus. Theoretical Com-

puter Science, 1:27–57, 1975.

[Hue97] Gérard Huet. Functional pearl: The zipper. Journal of Functional Programming,

7(5), 1997.

[Joj03] Gueorgui I. Jojgov. Holes with Binding Power, volume 2646/2003 of Lecture Notes

in Computer Science, page 617. Springer, 2003.

[JW95] Winfried Just and Martin Weese. Discovering Modern Set Theory I: The Basics.

American Mathematical Society, 1995.

[KC93] Jean Louis Krivine and Rene Cori. Lambda calculus, types and models. Ellis Hor-

wood, 1993.

[KM08] Temesghen Kahsai and Marino Miculan. Implementing spi calculus using nominal

techniques. In Proceedings of the 4th conference on Computability in Europe (CiE

2008), pages 294–305, 2008.

[KN10] Ramana Kumar and Michael Norrish. (Nominal) Unification by recursive descent

with triangular substitutions. In International Conference on Interactive Theorem

Proving (ITP 2010), 2010.

[KP09] Alexander Kurtz and Daniela Petrişan. Towards universal algebra over nominal

sets. In Informal Proceedings of Topology, Algebra and Categories in Logic (TACL

2009), 2009.

C. BIBLIOGRAPHY 183

[KP10] Alexander Kurz and Daniela Petrişan. On universal algebra over nominal sets. To

appear, 2010.

[KPV10] Alexander Kurz, Daniela Petrişan, and Jĭŕı Velebil. Algebraic theories over nominal

sets. Submitted, 2010.

[Lak09] Matthew R. Lakin. Representing names with variables in nominal abstract syn-

tax. In Informal Proceedings of the 2nd International Workshop on Theory and

Applications of Abstraction, Substitution and Naming (TAASN 2009), 2009.

[Lam88] John Lamping. A unified system of parameterization for programming languages.

In Proceedings of the ACM Conference on Lisp and functional programming (LFP

1988), pages 316–326, 1988.

[Ler07] Xavier Leroy. A locally nameless solution to the POPLmark challenge. Technical

Report 6098, INRIA, 2007.

[LF96] Shinn-Der Lee and Daniel P. Friedman. Enriching the λ-calculus with contexts:

Toward a theory of incremental program construction. In Proceedings of the

1st ACM SIGPLAN International Conference on Functional Programming (ICFP

1996), pages 239–250, 1996.

[LP08] Matthew Lakin and Andrew M. Pitts. A metalanguage for structural operational

semantics. In Trends in Functional Programming Volume 8, pages 19–35. Intellect,

2008.

[LP09] Matthew R. Lakin and Andrew M. Pitts. Resolving inductive definitions with

binders in higher-order typed functional programming. In Proceedings of the 18th

European Symposium on Programming (ESOP 2009), volume 5502 of Lecture Notes

in Computer Science, pages 47–61, 2009.

[LP10] Matthew R. Lakin and Andrew M. Pitts. Encoding abstract syntax without fresh

names. Journal of Automated Reasoning, 2010. To appear.

[Lug94] Denis Lugiez. Higher order disunification: Some decidable cases. In Proceedings

of the 1st International Conference on Constraints in Computational Logics (CCL

1994), pages 121–135, 1994.

[LV08] Jordi Levy and Mateu Villaret. Nominal unification from a higher-order perspective.

In Proceedings of the 19th international conference on Rewriting Techniques and

Applications (RTA 2008), pages 246–260, 2008.

[LV10] Jordi Levy and Mateu Villaret. An efficient nominal unification algorithm. In

Proceedings of the 21st International Conference on Rewriting Techniques and Ap-

plications (RTA 2010), 2010.

[LZH08] Daniel R. Licata, Noam Zeilberger, and Robert Harper. Focusing on binding and

computation. In Proceedings of the 23rd Annual IEEE Symposium on Logic in

Computer Science (LICS 2008), pages 241–252, 2008.

C. BIBLIOGRAPHY 184

[Mas99] Ian A. Mason. Computing with contexts. Higher-order and Symbolic Computation,

12:171–201, 1999.

[Mat07] Aad Mathijssen. Logical Calculi for Reasoning with Binding. PhD thesis, Technische

Universiteit Eindhoven, 2007.

[McB04] Conor McBride. The Epigram tutorial. Association of Functional Programming

Summer School, 2004.

[MGR06] MohammadReza Mousavi, Murdoch J. Gabbay, and Michel A. Reniers. Nomi-

nal SOS. In Proceedings of the 18th Nordic Workshop on Programming Theory

(NWPT’06), page Talk Abstract, 2006.

[Mil91a] Dale Miller. A logic programming language with λ-abstraction, function variables

and simple unification. Journal of Logic and Computation, 1(4):497–536, 1991.

[Mil91b] Dale Miller. Unification of simply-typed λ-terms as logic programming. In Proceed-

ings of the 8th International Conference on Logic Programming (LP 1991), pages

255–269, 1991.

[MM04] Conor McBride and James McKinna. Functional pearl: I am not a number—I am

a free variable. In Haskell ’04: Proceedings of the 2004 ACM SIGPLAN Workshop

on Haskell, pages 1–9, 2004.

[MP97] James Mckinna and Randy Pollack. Some lambda calculus and type theory formal-

ized. Journal of Automated Reasoning, 23:373–409, 1997.

[MP99] Alberto Momigliano and Frank Pfenning. The relative complement problem for

higher-order patterns. In Proceedings of the International Conference on Logic Pro-

gramming (ICLP 1999), pages 380–394, 1999.

[MP03] Alberto Momigliano and Frank Pfenning. Higher-order pattern complement and

the strict λ-calculus. ACM Transaction on Computational Logic, 4:493–529, 2003.

[MSH05] Marino Miculan, Ivan Scagnetto, and Furio Honsell. Translating specifications

from Nominal Logic to CIC with the theory of contexts. In Proceedings of the 3rd

ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with Vari-

able Binding (MERLIN 2005), pages 41–49, 2005.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition

of Standard ML. MIT Press, 1997.

[Muñ97] César Muñoz. A Calculus of Explicit Substitutions for Incomplete Proof Represen-

tation in Type Theory. PhD thesis, INRIA Rocqencourt, Projet Coq, 1997.

[NBF09] Joseph P. Near, William E. Byrd, and Daniel P. Friedmann. αLeanTAP: A declara-

tive theorem prover for first-order classical logic. In Proceedings of the 25th Interna-

tional Conference on Logic Programming (ICLP 2009), Lecture Notes in Computer

Science, pages 238–252, 2009.

C. BIBLIOGRAPHY 185

[Nip91] Tobias Nipkow. Higher-order critical pairs. In Proceedings of the 6th IEEE Sympo-

sium on Logic in Computer Science (LICS 1991), pages 342–349, 1991.

[Nip93a] Tobias Nipkow. Functional unification of higher-order patterns. In Proceedings of

the 8th IEEE Symposium on Logic in Computer Science (LICS 1993), pages 64–74,

1993.

[Nip93b] Tobias Nipkow. Orthogonal higher-order rewrite systems are confluent. In Pro-

ceedings of the International Conference on Typed Lambda Calculi and Applications

(TLCA 1993), volume 664 of Lecture Notes in Computer Science, pages 306–317,

1993.

[Nip98] Tobias Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[NM88] Gopalan Nadathur and Dale Miller. An overview of λ-Prolog. In Fifth International

Logic Programming Conference, pages 810–827, 1988.

[Nor06] Michael Norrish. Mechanising λ-calculus using a classical first order theory of terms

with permutations. Higher Order Symbolic Computation, 19(2–3):169–195, 2006.

[Nor09] Ulf Norell. A brief overview of Agda—a functional language with dependent types.

In Proceedings of the 22nd International Conference on Theorem Proving in Higher-

order Logics (TPHOLS 2009), pages 73–78, 2009.

[NU08] Julien Narboux and Christian Urban. Formalising in Nominal Isabelle Crary’s com-

pleteness proof for equivalence checking. Electronic Notes in Theoretical Computer

Science, 196:3–18, 2008.

[NU09] Julian Narboux and Christian Urban. Nominal verification of typical SOS proofs.

In Proceedings of the 3rd Workshop on Logical and Semantic Frameworks with Ap-

plications (LFSA 2008), Electronic Notes in Theoretical Computer Science, pages

139–155, 2009.

[NV07] Michael Norrish and René Vestergaard. Proof pearl: de Bruijn terms really do work.

In Proceedings of the 20th International Conference on Theorem Proving in Higher

Order Logics (TPHOLS 2007), pages 207–222, 2007.

[OSW05] Cosmin Oancea, Claire So, and Steven M. Watt. Generalization in Maple. Maple

Conference, 2005.

[Pau85] Lawrence Paulson. Natural deduction as higher-order resolution (revised edition).

Technical Report UCAM-CL-TR-83, University of Cambridge, Computer Labora-

tory, 1985.

[Pau88] Lawrence C. Paulson. Isabelle: The next 700 theorem provers (UCAM-CL-TR-143).

Technical report, University of Cambridge, Computer Laboratory, 1988.

[Pau98] Lawrence C. Paulson. Strategic principles in the design of Isabelle. In Workshop

on Strategies in Automated Deduction, pages 11–17, 1998.

C. BIBLIOGRAPHY 186

[Pau10] Lawrence C. Paulson. Isabelle’s Logics, 2010.

[PD08] Brigitte Pientka and Joshua Dunfield. Programming with proofs and explicit con-

texts. In ACM SIGPLAN Symposium on Principles and Practice of Declarative

Programming (PPDP ’08), 2008.

[PD10] Brigitte Pientka and Joshua Dunfield. Beluga: A framework for programming and

resoning with deductive systems (system description). In Proceedings of the Inter-

national 5th Joint Conference on Automated Reasoning (IJCAR 2010), 2010.

[PE88] Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In PLDI ’88:

Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language

Design and Implementation, pages 199–208, 1988.

[Pfe88] Frank Pfenning. Partial polymorphic type inference and higher-order unification.

In Proceedings of the 1988 ACM Conference on Lisp and Functional Programming,

1988.

[Pfe91] Frank Pfenning. Unification and anti-unification in the Calculus of Constructions.

In Proceedings of the 6th Annual IEEE Symposium on Logic in Computer Science

(LICS 1991), pages 74–85, 1991.

[PG00] Andrew M. Pitts and Murdoch J. Gabbay. A metalanguage for programming with

bound names modulo renaming. In Proceedings of 5th International Conference

on the Mathematics of Program Construction. (MPC2000), volume 1837 of Lecture

Notes in Computer Science, pages 230–255, 2000.

[Pie06] Brigitte Pientka. Eliminating redundancy in higher-order unification: a lightweight

approach. In Proceedings of the 3rd International Joint Conference on Automated

Reasoning (IJCAR 2006), Lecture Notes in Computer Science, pages 362–376, 2006.

[Pit94] Andrew M. Pitts. Some notes on inductive and co-inductive techniques in the

semantics of functional programs. Technical Report NS-94-5, BRICS, Department

of Computer Science, University of Aarhus, 1994.

[Pit97] Andrew M. Pitts. Operationally-based theories of program equivalence. In Seman-

tics and Logics of Computation, pages 241–298, 1997.

[Pit03] Andrew M. Pitts. Nominal Logic, a first order theory of names and binding. Infor-

mation and Computation, 186:165–193, 2003.

[Pit10] Andrew M. Pitts. Nominal System T. In Proceedings of the 37th ACM SIGACT-

SIGPLAN Symposium on Principles of Programming Languages (POPL 2010),

2010. To appear.

[PJ02] Simon Peyton-Jones, editor. Haskell 98 Language and Libraries: The Revised Re-

port. Cambridge University Press, 2002.

[Plo70] Gordon Plotkin. A note on inductive generalisation. Machine Intelligence, 5:153–

163, 1970.

C. BIBLIOGRAPHY 187

[Pol93] Randy Pollack. Closure under alpha-conversion. In Informal Proceedings of the

Workshop on Types for Proofs and Programs (TYPES 1993), pages 313–332, 1993.

[Pot07] François Pottier. Static name control for FreshML. In LICS ’07: Proceedings of

the 22nd Annual IEEE Symposium on Logic in Computer Science, pages 356–365,

2007.

[PP03] Brigitte Pientka and Frank Pfenning. Optimizing higher-order pattern unifica-

tion. In Proceedings of the 19th International Conference on Automated Deduction

(CADE 2003), pages 473–487, 2003.

[PP10] Nicolas Pouillard and François Pottier. A fresh look at programming with names

and binders. Submitted, 2010.

[PS08a] Andrew M. Pitts and Mark Shinwell. Generative unbinding of names. Logical

Methods in Computer Science, 4(1:4):1–33, 2008.

[PS08b] Adam Poswolsky and Carsten Schürmann. Practical programming with higher-order

encodings and dependent types. In Proceedings of the 17th European Conference on

Programming Languages and Systems (EAPLS 2008), pages 93–107, 2008.

[Qia93] Zhenyu Qian. Linear unification of higher-order patterns. In Proceedings of the

International Joint Conference CAAP/FASE on Theory and Practice of Software

Development (TAPSOFT 1993), pages 391–405, 1993.

[Rey70] John C. Reynolds. Transformational systems and the algebraic structure of atomic

formulas. Machine Intelligence, 5:135–151, 1970.

[San98] David Sands. Computing with contexts: A simple approach. Electronic Notes in

Theoretical Computer Science, 10:134–149, 1998.

[Sat08] Masahiko Sato. External and internal syntax of the λ-calculus. In Symbolic Com-

putation in Software Science Austrian-Japanese Workshop (SCSS 2008), 2008.

[Sch06] Ulrich Schöpp. Names and Binding in Type Theory. PhD thesis, Department of

Informatics, University of Edinburgh, 2006.

[Sch07] Ulrich Schöpp. Modelling generic judgements. Electronic Notes in Theoretical Com-

puter Science, 174(5):19–35, 2007.

[SG95] Morten Heine Sørensen and Robert Glück. An algorithm of generalization in positive

supercompilation. In Proceedings of the International Logic Programming Sympo-

sium (ILPS 1995), pages 465–479, 1995.

[Shi03] Mark R. Shinwell. Swapping the atom: Programming with binders in FreshO’Caml.

In Proceedings of the 2nd ACM SIGPLAN Workshop on Mechanized Reasoning

about Languages with Variable Binding (MERLIN 2003), 2003.

[Shi05] Mark R. Shinwell. The Fresh Approach: Functional Programming with Names and

Binders. PhD thesis, Computer Laboratory, University of Cambridge, 2005.

C. BIBLIOGRAPHY 188

[Smu95] Raymond Smullyan. First-order logic. Dover, 1995.

[SNO+10] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge,

Susmit Sarkar, and Rok Strnǐsa. Ott: Effective tool support for the working seman-

ticist. Journal of Functional Programming, 20(1):71–122, 2010.

[SP05] Mark R. Shinwell and Andrew M. Pitts. On a monadic semantics for freshness.

Theoretical Computer Science, 342:28–55, 2005.

[SP10] Masahijo Sato and Randy Pollack. A canonical locally named representation of

binding. Journal of Automated Reasoning, 2010. Under review.

[SPG03] Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. FreshML: Program-

ming with binders made simple. In Eighth ACM SIGPLAN International Conference

on Functional Programming (ICFP 2003), Uppsala, Sweden, pages 263–274, 2003.

[SPS05] Carsten Schürmann, Adam Poswolsky, and Jeffrey Sarnat. The ∇-calculus: func-

tional programming with higher-order encodings. In Proceedings of the 7th Interna-

tional Conference on Typed Lambda Calculi and Applications (TLCA 2005), pages

339–353, 2005.

[SS04] Ulrich Schöpp and Iain Stark. A dependent type theory with names and binding. In

Computer Science Logic, volume 3210 of Lecture Notes in Computer Science, pages

235–249, 2004.

[SSK02] Masahiko Sato, Takafumi Sakurai, and Yukiyoshi Kameyama. A simply typed con-

text calculus with first-class environments. Journal of Functional and Logic Pro-

gramming, 2002:359–374, 2002.

[SSKI03] Masahiko Sato, Takafumi Sakurai, Yukiyoshi Kameyama, and Atsushi Igarashi.

Calculi of meta-variables. In Computer Science Logic, volume 2803 of Lecture Notes

in Computer Science, pages 484–497, 2003.

[Sta06] Sam Staton. Name-Passing Process Calculi: Operational Models and Structural

Operational Semantics. PhD thesis, Computer Laboratory, University of Cambridge,

2006.

[Ste00] Mark E. Stehr. CINNI—a generic calculus of explicit contexts, and it’s application

to λ-, π- and ς-calculi. Electronic Notes in Theoretical Computer Science, 36:70–92,

2000.

[Tak95] Masahako Takahashi. Parallel reduction in the λ-calculus. Information and Com-

putation, 118(1):120–127, 1995.

[Tea10] The Glasgow Haskell Compiler Team. User guide: Glasgow Haskell Compiler, ver-

sion 6.12.1, 2010.

[Tiu08] Alwen Tiu. On the role of names in reasoning about λ-tree syntax. In Proceedings

of the International Workshop on Logical Frameworks and Metalanguages: Theory

and Practice (LFMTP 2008), 2008.

C. BIBLIOGRAPHY 189

[TW09] David Turner and Glyn Winskel. Nominal domain theory for concurrency. In Pro-

ceedings of the 23rd International Conference on Computer Science Logic (CSL

2009) and the 18th European Annual Conference on Computer Science Logic

(EACSL 2009), Lecture Notes in Computer Science, pages 546–560, 2009.

[Tze07] Nikos Tzevelekos. Full abstraction for nominal general references. In Proceedings

of the 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007),

pages 399–410, 2007.

[UB06] Christian Urban and Stefan Berghofer. A recursion operator for nominal datatypes

implemented in Isabelle/HOL. In Proceedings of the 3rd International Joint Con-

ference on Automated Deduction (IJCAR 2006), pages 498–512, 2006.

[UBN07] Christian Urban, Stefan Berghofer, and Michael Norrish. Barendregt’s variable

convention in rule inductions. In Proceedings of the 21st International Conference

on Automated Deduction (CADE-21), pages 35–50, 2007.

[UC05] Christian Urban and James Cheney. Avoiding equivariance in α-Prolog. In Proceed-

ings of the 7th International Conference on Typed Lambda Calculi and Applications

(TLCA 2005), pages 401–416, 2005.

[UCB08] Christian Urban, James Cheney, and Stefan Berghofer. Mechanizing the metatheory

of LF. In Logic in Computer Science (LICS 2008), pages 45–46, 2008.

[UN05] Christian Urban and Michael Norrish. A formal treatment of the Barendregt con-

vention in rule inductions (extended abstract). In Proceedings of the ACM Work-

shop on Mechanized Reasoning about Languages with Variable Binding and Names

(MERLIN 2005), pages 25–32, 2005.

[UN09] Christian Urban and Tobias Nipkow. Nominal verification of algorithm W. In

Gerard Huet, Jean-Jacques Lévy, and Gordon Plotkin, editors, From Semantics to

Computer Science: Essays in Honour of Gilles Kahn, pages 363–382. Cambridge

University Press, 2009.

[UNB07] Christian Urban, Julien Narboux, and Stefan Berghofer. The Nominal Datatype

Package (Preliminary Manual), 2007.

[UPG04] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal unification.

Theoretical Computer Science, 323(1–3):473–497, 2004.

[Urb08] Christian Urban. How to prove false using the variable convention. Poster, Tools

and Techniques for Verification of System Infrastructure, 2008.

[US06] Pawel Urzyczyn and Morten Sørensen. Lectures on the Curry-Howard Isomorphism,

volume 149 of Studies in Logic. Elsevier, 2006.

[UT05] Christian Urban and Christine Tasson. Nominal techniques in Isabelle/HOL. In

Proceedings of the 20th Conference on Automated Deduction (CADE), volume 3632

of Lecture Notes in Artificial Intelligence, pages 38–53, 2005.

C. BNF GRAMMAR FOR PNT FRONTEND 190

[UZ08] Christian Urban and Bozhi Zhu. Revisiting cut-elimination: One difficult proof is

really a proof. In Proceedings of the 19th International Conference on Rewriting

Techniques and Applications (RTA 2008), pages 409–424, 2008.

[Wad87] Phil Wadler. Views: A way for pattern matching to cohabit with data abstraction. In

Proceedings of the 14th ACM Symposium on Principles of Programming Languages

(POPL 1987), pages 307–313, 1987.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages (An Introduc-

tion). Foundations of Computing. The MIT Press, 1993.

[WSA09] Edwin Westbrook, Aaron Stump, and Evan Austin. The calculus of nominal induc-

tive constructions: An intensional approach to encoding name-bindings. In Proceed-

ings of the 4th International Workshop on Logical Frameworks and Meta-Languages

(LFMTP 2009), pages 74–83, 2009.

[WW03] Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: Encoding higher or-

der abstract syntax with parametric polymorphism. In Proceedings of the 8th ACM

SIGPLAN International Conference on Functional Programming (ICFP 2003),

pages 249–262, 2003.

[YG08] Ayesha Yasmeen and Elsa L. Gunter. Implementing secure broadcast ambients in

Isabelle using Nominal Logic. In Emerging Trends Report of the 21st International

Conference on Theorem Proving in Higher Order Logics (TPHOLs 2008), pages

123–134, 2008.

[YHT04] Tetsuo Yokoyama, Zhenjiang Hu, and Masato Takeichi. Deterministic higher-order

patterns for program transformation. In Proceedings of the 13th International Sym-

posium on Logic Based Program Synthesis and Transformation (LOPSTR 2004),

volume 3018 of Lecture Notes in Computer Science, pages 128–142, 2004.

	Contents
	List of Figures
	Introduction
	Background and motivation
	Abstract syntax and binding
	The beginning: the two-level -calculus
	The middle: permissive nominal terms
	The end: adoption of permissive nominal terms

	Contributions
	Publications

	Background
	The -calculus
	Encoding syntax and languages with binding
	De Bruijn indices
	Locally nameless and locally named approaches
	Higher-order abstract syntax
	Higher-order unification
	Comparing names: -inequality
	Use in Coq and adequacy

	The Pronominal Approach
	Calculus of Nominal Inductive Constructions (CNIC)

	Nominal techniques
	Nominal sets and foundations
	Nominal terms and unification
	Nominal algebras
	Nominal type systems
	Nominal rewriting
	Languages and libraries
	Nominal logics
	Use in proof assistants
	Language semantics

	The two-level -calculus
	Introduction
	Terms
	Permutation and instantiation actions

	The theory of derivable freshness
	Reductions and confluence
	Confluence of level one reductions
	Confluence of level two reductions
	Confluence of level one and level two reductions

	Conclusions
	Related work

	Permissive nominal terms and their unification
	Introduction
	Permissive terms
	Permutations and -equivalence
	Substitutions

	Unification of terms
	Unification problems and their solutions
	A unification algorithm
	Support reduction
	Unification problem simplification

	Principal solutions
	The algorithm in action

	Relation with nominal terms
	Nominal terms
	Derivable freshness and equality
	The translation
	Substitutions and solutions to unification problems

	Conclusions

	Implementing permissive nominal terms
	Introduction
	Conventions

	Building terms
	Atoms
	Permutations
	Permission sorts
	Operations on permission sorts

	Unknowns
	Terms
	Implementing substitutions

	Unification of terms
	Support reduction
	Unification algorithm

	The PNT Frontend
	Example interaction

	Conclusions

	Conclusions
	Summary of thesis
	Unifying themes of doctoral research
	Future work
	The two-level -calculus
	Permissive nominal terms and their unification
	Implementing permissive nominal terms

	Additional proofs: the two-level -calculus
	Additional proofs: permissive nominal terms
	BNF Grammar for PNT Frontend
	Bibliography

