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Abstract
Driven by advances in data collection and storage, increasingly large and high di-

mensional datasets are being stored. Without special tools, human analysts can no
longer make sense of such enormous volumes of data. Hence, intelligent data mining
(DM) techniques are being developed to semi-automate the process of mining nuggets of
hidden knowledge, and extract them in forms that can be readily utilised in areas such
as decision support. Clustering high dimensional data is especially challenging due to
the inherent sparsity of the dataspace. Evolutionary algorithms (EAs) are a promising
technique for DM clustering as population-based searches have intrinsic search paral-
lelism, their stochastic nature avoids local optima and recovers from poor initialisation.

This thesis investigates the use of evolutionary algorithms to effectively and effi-
ciently mine clusters from massive and high dimensional numerical databases. The
fundamental question addressed by this thesis is: can a stochastic search cluster large
high dimensional datasets, and extract knowledge that conforms to the important re-
quirements for DM clustering? Experimental results on both artificial and real-world
datasets lead us to conclude that it can.

The thesis proposes a novel EA methodology for DM clustering with the follow-
ing three phases. Firstly, a sophisticated quantisation algorithm (TSQ: Two Stage
Quantisation) imposes a uniform multi-dimensional grid onto the dataspace to reduce
the search combinations. TSQ quantises the dataspace using a novel statistical analysis
that reflects the local data distribution. It determines an appropriate grid resolution
that enables the discrimination of clusters, while preserving accuracy and acceptable
computational cost. Secondly, a novel EA (NOCEA: Non-Overlapping Clustering with
Evolutionary Algorithms) discovers high quality clustering rules using several novel
semi-stochastic genetic operators, an integer-valued encoding scheme, and a simple
data coverage maximisation fitness function. Both TSQ and NOCEA rely on a novel
statistical analysis (UDA: Uniform-region Discovery Algorithm) identifying flat den-
sity regions (U-regions) in univariate histograms. U-regions detected in orthogonal
uni-dimensional projections are “signatures” of clusters being embedded in higher di-
mensional spaces. Thirdly, a post-processing simplification phase that removes irrel-
evant dimensions (subspace clustering) and assembles the clusters. The thesis also
explores task parallelism for several genetic operations to improve scalability when the
data to be mined is large and high dimensional.

NOCEA is a generic and robust clustering algorithm that meets the key DM cluster-
ing criteria. The following properties of NOCEA are demonstrated on both benchmark
artificial datasets, and in a substantial real-world case study clustering the seismic activ-
ity associated with the active crustal deformation along the African-Eurasian-Arabian
tectonic plate boundary. NOCEA produces interpretable output in the form of disjoint
and axis-aligned hyper-rectangular clustering rules with homogeneous data distribution;
the output is minimised for ease of comprehension. NOCEA has the ability to discover
homogeneous clusters of arbitrary density, geometry, and data coverage. NOCEA ef-
fectively treats high dimensional data, e.g. 200 dimensions, and it effectively identifies
subspace clusters being embedded in arbitrary subsets of dimensions. NOCEA has near
linear scalability with respect to the database size (number of records), and both data
and cluster dimensionality. NOCEA has substantial potential for task parallelism, e.g.
reaching a speed up of 13.8 on 16 processors. NOCEA produces similar quality results
irrespective initialisation and order of input data. NOCEA is exceptionally resistant to
background noise. Finally, NOCEA has minimal requirements for a priori knowledge,
and does not presume any canonical distribution of the input data.
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Chapter 1

Introduction

1.1 Ethos

This Thesis explores the use of evolutionary algorithms (EAs) to effectively and

efficiently perform data mining (DM) clustering on massive and high dimensional

numerical databases.

The advantages of EAs as underlying search mechanisms for multi-dimensional

optimisation problems are often cited and recited. The fundamental question ad-

dressed by this thesis is: can a stochastic search cluster high dimensional datasets,

and extract knowledge that conforms to the important requirements for DM clus-

tering? From the experimental results reported in the thesis this seems to be true

for a wide variety of artificial and real-world datasets.

Knowledge Discovery in Databases: The importance of collecting data re-

lated to business or scientific activities to achieve competitive advantage is widely

recognised. Powerful systems for collecting and managing data in large databases

are widely used commercially. Driven by these technological advances, increas-

ingly large, complex, and high dimensional datasets are being stored in databases.

Human analysts with no special tools can no longer make sense of enormous vol-

umes of data that require processing in order to make informed business decisions.

Hence, a new generation of techniques and tools are needed with the ability to

intelligently and (semi-)automatically analyse the mountains of data for nuggets

2
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of useful knowledge. These techniques are the subject of Knowledge Discovery

in Databases (KDD) [31, 40, 51]. Data Mining (DM), the core stage of KDD,

refers to the application of intelligent techniques to extract hidden knowledge

from data.

Data Mining Clustering: Clustering is a descriptive DM task seeking to iden-

tify homogeneous groups of data points based on the values of their attributes

[30, 37, 58, 62]. Clustering high dimensional datasets is an especially challenging

task because of the inherent sparsity of the data space and the fact that different

correlations may occur in different subsets of dimensions (subspaces) in different

data neighbourhoods. Emerging DM applications place specific requirements on

clustering techniques such as effective treatment of high dimensionality, end-user

comprehensibility of the results, good scalability with database size and dimen-

sionality, the ability to discover clusters of arbitrary geometry, size and density,

detection of features relevant to clustering, noise tolerance, insensitivity to ini-

tialisation and order of data input, handling of various data types, and minimal

requirements for domain knowledge [40, 51].

Evolutionary Algorithms: Evolutionary Algorithms (EAs) are optimisation

techniques inspired by the abstractions of Darwinian evolution [11, 12, 47, 71]. In

nature, individuals best suited to competition for scare resources survive. Evolv-

ing to adapt to a changing environment is essential for all species. The driving

force of evolution is the combination of natural selection and genetics. Natural

selection leads to the survival and reproduction of the fittest organisms, while

natural genetics are the mechanisms that introduce random variation in the pop-

ulation, e.g. cross breeding and mutation.

EAs are iterative and stochastic processes that utilise the collective learning of

a population of individuals. An individual represents a potential solution in some

problem space through a suitable coding. Each individual is assigned, by means

of a fitness function, a measure of its performance with respect to the target prob-

lem. Individuals are selected for reproduction with a probability proportional to
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their fitness. New points in the search space are sampled using various genetic

operators, such as crossover and mutation. To maintain a fixed-size population

a replacement policy selects the best individuals for survival in the next genera-

tion. The whole process is repeated until some termination criterion is satisfied.

Since highly fit individuals have more chances of surviving and attracting mates

their characteristics conveying a high fitness will spread, and eventually dominate

successive generations.

EAs are a promising technique for DM clustering as population-based searches

have intrinsic search parallelism, their stochastic nature avoids local optima and

recovers from poor initialisation. Additionally, EAs do not make presumptions

about the problem space, and they have no prerequisites on any type of auxil-

iary information, except of course the fitness function. From an implementation

point of view, EAs are highly parallel procedures and can be easily and con-

ventionally used in parallel systems. For instance, since EAs are made up from

several tasks involving a group of individuals rather than the entire population,

several processors can work simultaneously on the same task, thereby improving

scalability.

Parallel Processing: Parallel Processing aims to speed-up the execution time

of a program by sharing the work to be done amongst several processors [43]. To

achieve a substantial reduction in execution time the sequential program must be

decomposed into several threads, independent units of computation, that are si-

multaneously executed on different processors. Introducing the concept of threads

means that mechanisms for generating threads, synchronising threads, commu-

nicating data between threads, and terminating threads have to be established.

Clearly, these aspects of a parallel program are significantly more complex than

those of a sequential program.

Due to their population-based nature, EAs are generally considered as slow

compared to more conventional optimisation techniques that operate on a single

solution at a time. Hence, to establish the practicality of an EA-based clustering

system for high-dimensional datasets, it is vital to introduce parallelism [43, 44].
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1.2 Contributions

Thesis Scope: The thesis addresses the challenging area of DM clustering on

realistic datasets by combining techniques from three main areas of computer

sciences, as depicted in figure 1.1 (shadowed area). In particular, the thesis in-

vestigates how to use EAs with parallel computing architectures to effectively and

efficiently mine homogeneous clusters from massive high dimensional databases.

Parallel Computing

DM
KDDEAs

Clustering
Thesis’s Scope

Figure 1.1: Thesis Scope (Shadowed Area)

Core Idea: The thesis proposes a novel framework for DM clustering that

utilises the powerful search mechanism of EAs along with task parallelism to mine

disjoint and axis-aligned hyper-rectangular clustering rules with homogeneous data

distribution from large and high dimensional numerical databases.

Contributions: The thesis makes the following contributions in the fields of

DM clustering and EAs:

• A novel rule-based clustering EA (NOCEA), described in Chapter 5 and

[87, 88, 89], that:

- Yields interpretable output being minimised for ease of comprehension.

- Discovers highly-homogeneous clusters of arbitrary shape, density, size,

and data coverage. The space enclosed by a homogeneous cluster has

a quasi-uniform distribution of data points.

- Treats high dimensionality effectively, i.e. it can easily discriminate

clusters in very sparse high dimensional spaces.
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- Performs effective subspace clustering, i.e. automatic detection of clus-

ters being embedded in arbitrary subspaces of high dimensional data.

- Produces similar quality results irrespective of initialisation and order

of data input.

- Is exceptionally resistant to the presence of increased background noise.

- Scales linearly with the database size (number of records), data and

cluster dimensionality.

- Does not presume any canonical distribution for the input data.

- Has minimal requirements for domain knowledge, e.g. it automatically

determines the optimal number of clusters and the subspace where each

cluster is embedded, on the fly.

- Operates always on the full dimensional space that guards against

artifacts formed by the joint projection of multiple clusters in lower

dimensional spaces.

- Introduces a simple non-distance or density based clustering criterion.

- Traverses the search space stochastically avoiding easily local optima.

• A novel two-stage statistical quantisation algorithm (TSQ), described in

Chapter 4 and [89], that:

- Automates the construction of a uniform multi-dimensional grid onto

the dataspace to reduce the search combinations for NOCEA.

- Determines an appropriate grid resolution that enables the discrimi-

nation of clusters, while preserving accuracy and acceptable computa-

tional cost.

- Combines standard statistical techniques, e.g. Kernel Density Estima-

tion, with new sophisticated heuristics that reflect the local distribu-

tion of data.

- Is unbiased towards coarse or fine grid resolutions; the optimal resolu-

tion is dictated by the underlying data distribution.
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• A novel histogram analysis algorithm (UDA), described in Chapter 3, iden-

tifying flat density regions (U -regions) in univariate histograms. U -regions

detected in uni-dimensional orthogonal projections are essential for both

data quantisation (Chapter 4) and clustering (Chapter 5), as they are the

“signatures” of clusters existing in higher dimensional spaces. UDA con-

sists of three elaborate statistical tests that can detect U -regions of arbitrary

density even under highly noisy conditions.

• A parallel processing architecture for NOCEA, described in section 5.13 and

[89], that:

- Explores task parallelism for the most expensive genetic operations.

- Delivers a substantial speed up of 13.8 on 16 processors.

• New scientific knowledge and understanding about the distribution, dynam-

ics, and evolution of seismic activity has been acquired by clustering earth-

quakes that occurred along the African-Eurasian-Arabian plate boundary

in a spatio-temporal-magnitude space, as described in Chapter 7 and [89].

The discovered knowledge was exploited to compile improved hazard maps.

Furthermore, it can aid seismologists in gaining a deeper insight into the

phenomenon and allow them to improve the reliability of their estimates.

• Contributions, described in Chapter 5, have also been made in the field

of evolutionary computation including an elaborate integer-valued repre-

sentation scheme, novel mutation and recombination operators, as well as

advanced task-specific operators, i.e. generalisation and homogeneity. In

short, mutation and recombination enable NOCEA to traverse the enor-

mous data space in a cost-effective fashion. Generalisation delivers end-

user comprehensibility and simplification of the clustering results by making

rules as generic as possible. It also reduces computation by minimising the

length, i.e. number of rules, of individuals. Homogeneity manipulates the

candidate rules to ensure that the space enclosed by them has homogeneous

data distribution.
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1.3 Organisation

The remainder of the thesis is made up of four parts. Initially, there is an in-

troductory part describing the context of the thesis and related work. Then,

there is a part to present the system design and implementation of the cluster-

ing, quantisation, and post-processing simplification algorithms. The next part

presents a thorough evaluation of the proposed methodology both on artificial

and real-world datasets. Finally there is concluding part that summarises the

results reported throughout the thesis.

Part I Context

Chapter 2 introduces the computational background to the thesis - a detailed

survey of DM clustering techniques, and a brief discussion regarding the founda-

tions of EAs. The aims of the research in this thesis are also established.

Part II System Design and Implementation

Chapter 3 describes a novel statistical analysis methodology (Uniform-region

Discovery Algorithm or UDA) for identifying cleanly separable U -regions in uni-

variate frequency histograms. A U -region is defined as a set of contiguous bins

whose histogram values exhibit only a marginal variation. U -regions detected

in univariate projections are signatures of clusters existing in higher dimensional

spaces [5, 7, 72, 74]. UDA combines standard histogram smoothing techniques

(i.e. Kernel Density Estimation) with new heuristics that perform a fine localised

analysis of the data distribution. UDA is exceptionally resistant to noise and

local data artifacts. The U -regions identified by UDA are extensively used for

both data quantisation (Chapter 4) and clustering (Chapter 5).

Chapter 4 describes in detail the two-stage statistical quantisation algorithm

(TSQ) that automatically imposes a multi-dimensional grid structure onto the

data space; the quantised data are subsequently clustered by NOCEA. TSQ
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reduces the search combinations for NOCEA, and addresses well the classical

trade-off between grid resolution that greatly determines the quality of the clus-

tering results, and computational complexity. TSQ computes an appropriate

uniform bin width for each dimension using both gross and detailed statistical

analysis of uni-dimensional density histograms. TSQ is unbiased towards any

resolution; the optimal resolution is dictated by the underlying data distribution.

Chapter 5 - the core part of the thesis, gives a detailed description of the novel

evolutionary algorithm (NOCEA) for DM clustering that has been developed and

implemented in this thesis. The discussion focuses on the rationale and the design

of the novel genetic operators that have been devised to search the enormous data

space in a cost-effective fashion and to deliver high quality knowledge to end-users.

The discussion continues with the description of two post-processing simpli-

fication algorithms that have been developed to facilitate the interpretation of

the discovered knowledge. The first algorithm groups the pieces of knowledge,

i.e. clustering rules, that have been previously found by NOCEA into clusters,

while the second algorithm performs subspace clustering, that is, the detection

of relevant features to the clustering of data.

Chapter 5 concludes with a detailed description of a parallel processing archi-

tecture (pNOCEA) that introduces task parallelism for the most computationally

expensive genetic operations of NOCEA. The discussion focuses on three impor-

tant aspects of parallel computing, namely, architecture, granularity and load

balancing. It is shown, in chapter 7, that for large and high dimensional datasets

with multitudinous clusters, the parallelisation of all genetic operations despite

the increased communication-coordination overhead gives the best speedup, e.g.

13.8 on 16 processors

Part III Evaluation

Chapter 6 reports an experimental evaluation of NOCEA on artificial datasets.

Thorough investigation into NOCEA’s performance on benchmark datasets veri-

fies its exceptional properties for DM clustering as listed in section 1.2.
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Chapter 7 presents a thorough evaluation of NOCEA on a challenging real-

world problem; a detailed cluster analysis of earthquakes that occurred along the

African-Eurasian-Arabian tectonic plate boundary. The experimental results, as

in Chapter 6, suggest that NOCEA is a generic and robust clustering algorithm

that meets the desiderata for realistic DM clustering. Furthermore, new scien-

tific knowledge about the distribution of the seismic activity along that area has

been acquired, and reported in interpretable form aiding seismology to better

understand the phenomenon. Finally, the Chapter concludes with an extensive

efficiency and effectiveness performance evaluation on a combination of massive

synthetic and real-world datasets. The scalability results show a nearly linear

dependency on the database size, data and cluster dimensionality, as well as sub-

stantial potential for high levels of parallelism, reaching a speed up of 13.8 on 16

processors.

Part IV Conclusion

Chapter 8 summarises the original contributions to knowledge that this thesis

has made, and concludes that evolutionary algorithms have substantial potential

as underlying search mechanisms for real-world data mining clustering appli-

cations. Further research directions for improving effectiveness, efficiency and

knowledge interpretability are also identified.
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Chapter 2

Background

Capsule

This chapter discusses several approaches towards clustering for data mining

(DM) applications. It starts with motivating the use of intelligent techniques

to automate the process of knowledge discovery in large databases. Then it

presents specific requirements that emerging DM applications place on clus-

tering techniques. The main part of this chapter focuses on surveying the

state-of-the-art clustering techniques, and identifying their limitations. The

foundations of evolutionary algorithms are also discussed. The chapter con-

cludes with a focused survey of the use of EAs for clustering.

2.1 Introduction

The first stage in the design of a new clustering algorithm is a) to understand the

important requirements for realistic DM clustering, b) to ascertain the advantages

and disadvantages of the state-of-the-art clustering algorithms, and c) to identify

the areas with the greatest potential for addressing the limitations of existing

techniques.

After approximately one year surveying the author had adequate experience

of the working principles of modern DM clustering techniques as well as the foun-

dations of EAs. The impressions gained from this short exposure to DM research

lead the author to believe that, current clustering techniques do not address all

12
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of the important requirements for DM clustering, although considerable work has

been done in addressing each requirement separately. Furthermore, after decades

of claiming that EAs are powerful optimisation techniques well-suited for prob-

lems with large and complex search spaces, no EA-based system has adequately

exploited the advantages (section 2.4.11) of EAs to tackle realistic large-scale

clustering problems.

This Chapter reviews the literature addressing DM clustering, and justifies

the author’s impressions discussed in the preceding paragraphs. The remain-

der of this Chapter is structured as follows. Section 2.2 motivates the use of

intelligent techniques for Knowledge Discovery in large and high dimensional

Databases (KDD), outlines the steps of KDD process, and finally lists common

data mining (DM) functionalities in KDD. Section 2.3 outlines the challenges

and important requirements for real-world DM clustering, and provides a focused

survey of the state-of-the-art clustering algorithms, including partitioning (sec-

tion 2.3.4), hierarchical (section 2.3.5), density-based (section 2.3.6), grid-based

(section 2.3.7), subspace-clustering (section 2.3.8), and some other approaches

(section 2.3.9). Section 2.4 briefly discusses the principles of Evolutionary Algo-

rithms (EAs) (sections 2.4.1-2.4.9), compares EAs with conventional optimisation

techniques (section 2.4.10). The Chapter concludes with section 2.5 that provides

a focused survey of the use of EAs for clustering.

2.2 Knowledge Discovery in Databases

Driven by advances in data collection and storage, increasingly large and com-

plex datasets are being stored in massive and high dimensional databases. Such

enormous volumes of data clearly overwhelm traditional manual methods of data

analysis such as spreadsheets and ad-hoc queries. These methods can create in-

formative reports from data, but can not analyse the contents of these reports to

focus on important knowledge. Knowledge Discovery in Databases or KDD au-

tomates the process of finding relationships and patterns in raw data from large

databases and delivers results that can be either utilised in automated decision
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support systems or assessed by a human analyst [31, 40, 51].

Questions such as the following would probably be answered if information

hidden among terabytes of data can be found explicitly and utilised.

• What is the response probability of a certain customer to a planned promotion?

• Will this customer default on a loan or pay back on schedule?

• What medical diagnosis should be assigned to this patient?

• How large are the peak loads of a telephone or energy network going to be?

Modelling the investigated system, discovering relations that connect variables

in a database are the essence of KDD. Modern computer-based KDD systems

self-learn from the previous history of the investigated system, formulating and

testing hypotheses about the rules that the system obeys. When concise and

valuable knowledge about the system of interest has been discovered, it can be

incorporated into some decision support system that helps the manager to make

wise and informed business decisions. KDD is an interdisciplinary field involving

database systems, statistics, machine learning, visualisation, etc [51].

2.2.1 Steps of KDD

The KDD process is both iterative and interactive involving a number of steps

as shown in figure 2.2 [31]. Often the output of a step is fed back into preced-

ing step(s), and typically multiple iterations are required to extract high-quality

knowledge. The interaction of the system with a domain expert through the

monitoring of the loop is also necessary to ensure the usefulness and accuracy of

the results.

In particular, the KDD process consists of the following steps:

1. Selection and Integration: The data to be mined may reside in different

and heterogeneous data sources. Thus, the first step involves selecting the

data relevant to the analysis task from various databases and integrating

them into a coherent data store.
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Figure 2.2: The KDD Process

2. Preprocessing: Raw data may have erroneous or missing values. Erro-

neous values are corrected or removed while missing values are supplied or

predicted.

3. Transformation: The data are transformed into representations appro-

priate for mining tasks.

4. Data Mining: Data Mining (DM) is the core step of the KDD process

referring to the application of intelligent techniques to extract the hidden

knowledge from the transformed data.

5. Interpretation and Evaluation: A data mining system has the potential

to generate a large number of patterns but only a small fraction of them

may be of interest. Thus, appropriate metrics are required to evaluate

the interestingness of the results. Advanced visualization techniques would

facilitate when interpreting/evaluating the discovered knowledge.

2.2.2 Data Mining Tasks

DM tasks can be broadly classified into two categories: descriptive and predictive

[51]. Descriptive tasks infer a profile that characterise the general properties of

the data, while predictive tasks perform inference in the current data to make

predictions. There are many and diverse data mining tasks including: classi-

fication, regression, association analysis, clustering, time series analysis, outlier

analysis [31, 40, 51].
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Classification: Classification, a well-studied data mining task, is learning a set

of functions that classify a data item into one of several predefined classes [53].

Classification is often referred to as supervised learning because the classes are

determined before examining the data. Each data instance consists of two parts,

a set of predictor attribute values and a goal attribute value where the latter is

drawn from a small discrete domain. During classification the dataset is divided

into two mutually exclusive subsets, the training and testing set. In the training

set the values of both the predictor attributes and goal attribute are available

to the algorithm to learn a relationship between them that is used subsequently

to predict the class label of the data in the test set. The maximisation of the

classification accuracy rate in the test set is the main goal of learning.

Regression: Regression or prediction, a type of classification, is the task of

learning patterns from examples and using the developed model to predict future

values of the target variable. Whereas classification predicts categorical labels,

regression models continuous-valued functions predicting numerical values.

Association Analysis: Association analysis is the discovery of association

rules, which can be viewed as a model that identifies specific types of data as-

sociations [51]. These associations are often used in the retail sales management

to identify items that are frequently purchased together. One also searches for

directed association rules identifying the best product to be offered with a current

selection of purchased products.

Time Series Analysis: A time series is an ordered sequence of values of an

attribute at equally spaced time intervals. There are three basic tasks performed

in time series analysis: a) to obtain an understanding of the underlying forces and

structure, e.g. regularities or trends, that produced the observed data b) to find

similarities or correlations between different time series and c) to fit a model and

proceed to forecasting, monitoring or even feedback and feed-forward control.
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Clustering: Clustering is an unsupervised learning task where one seeks to

identify a finite set of categories termed clusters to describe the data [58, 62,

37, 30]. Unlike classification that analyses class-labelled instances, clustering

has no training stage, and is usually used when the classes are not known in

advance. A similarity metric is defined between items of data, and then similar

items are grouped together to form clusters. Often, the attributes providing the

best clustering should be identified as well. The grouping of data into clusters is

based on the principle of maximising the intraclass similarity and minimising the

interclass similarity. Properties about the clusters can be analysed to determine

cluster profiles, which distinguish one cluster from another. A new data instance

is classified by assignment to the closest matching cluster, and is assumed to have

characteristics similar to the other data in the cluster.

2.2.3 Thesis’s Data Mining Task

The research in the Thesis addresses the challenging unsupervised-learning task of

clustering. When dealing with large and high dimensional databases, clustering

can be viewed as a type of data compression or summarisation; the detailed

data within the database are abstracted and compressed to a smaller set of class

descriptions, one for each class, that summarise the characteristics of the data in

each cluster. Although the idea of approximating a group of similar data points

using its cluster descriptor loses fine details, it is very useful especially for large

and high dimensional datasets as it provides a simplification of the underlying

data distribution, and it also helps to uncover hidden nuggets of knowledge.
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2.3 Cluster Analysis

Cluster analysis is a descriptive data analysis task that aims to find the intrinsic

structure of a collection of data points (or objects) by partitioning them into

homogeneous clusters based on the values of their attributes. Often, a similarity

metric is defined between data objects, and then similar objects are grouped to-

gether to form clusters. Unlike classification, clustering is unsupervised learning

since it does not require assumptions about category labels that tag objects with

prior identifiers. Since there is no universal definition of clustering, there is no uni-

versal measure with which to compare clustering algorithms. Clustering methods

have been extensively studied in a wide variety of disciplines including psychol-

ogy and other social sciences, biology, statistics, pattern recognition, information

retrieval, machine learning, and DM [17, 30, 31, 37, 40, 51, 52, 58, 59, 62].

The Goal of Clustering: To illustrate the goal of clustering consider figures

2.3 and 2.4 showing the distribution of the seismic activity in mainland USA,

projected onto two different subspaces, [Longitude × Latitude] and [Longitude ×

Latitude×Depth], respectively. From figure 2.3 it is evident that earthquakes are

not evenly distributed throughout USA, but rather the vast majority of events are

highly concentrated in the west coast along the infamous Saint Andreas faulting

zone [1, 2]. More informative structures are revealed in figure 2.4 because in

the augmented subspace [Longitude × Latitude × Depth] correlations along the

Depth axis are not flattened as in figure 2.3. However, as discussed in subsequent

sections, not always all dimensions increase the clustering tendency of the data.

The goal of clustering is to summarise the underlying distribution of data

for the purposes of improved understanding. For very low dimensional data,

e.g. up to 4 dimensions, with well-separated clusters, the use of visualisation

techniques aids users to better understand the distribution of data. However,

the old expression, “a picture is worth a thousand words” rapidly vanishes when

examining the structure of data with increasing dimensionality. Thereby, robust

clustering algorithms operating in the full-dimensional space, with the ability to

produce output that can be easily assimilated by end-users, are needed.



CHAPTER 2. BACKGROUND 19

Figure 2.3: Seismic Activity in USA Projected in [Longintude× Latitude]

Figure 2.4: Seismic Activity in USA Projected in [Longintude×Latitude×Depth]
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2.3.1 Definitions and Notation

Let A = {A1, ...,Ad} be a set of attributes with bounded, totally ordered numer-

ical domains and F = A1 × ...×Ad a d-dimensional feature or data space, where

A1,...,Ad are the features, attributes, variables, or dimensions of F , and d de-

notes the dimensionality of F . The input, N × d pattern matrix P = {p1, ..., pN}

consists of a set of d-dimensional records that are also known as patterns, points,

objects, tuples, items, examples or cases, while N denotes the size of P . Each

data point pi, is a vector containing d numerical values pi = [pi1, ..., pid] such that

pij is drawn from the domain [aj, bj] of Aj attribute. In current databases the

diversity of kinds of data is higher than ever before, e.g. continuous, categor-

ical, temporal, multimedia, transactional [51]. The thesis focuses on clustering

databases with real-valued attributes. The most popular method to measure the

proximity d(i, j) between two points pi and pj on F is the Euclidean distance:

d(i, j) =
√
|pi1 − pj1|2 + ... + |pid − pjd|2 [58]. The clustering criterion that is

often expressed via a cost function or some other type of transition rule, as-

sesses the quality of a given partitioning. Fuzzy clustering techniques assign to

each data point a fractional degree of membership in each cluster, while crisp or

hard clustering methods create disjoint partitions where each data point belongs

exclusively to an individual cluster. This thesis addresses crisp clustering only.

2.3.2 Challenges in Data Mining Clustering

Clustering in high dimensional spaces is a very hard problem due to the curse of

dimensionality phenomenon [15], and the presence of irrelevant features [7].

The Curse of Dimensionality: It was Richard Bellman who apparently orig-

inated the phrase “...It is the curse of dimensionality, a malediction that has

plagued the scientist from the earliest days...” [14]-(page 97), to emphasise the

impossibility of optimizing a function of many variables by a brute force search

on a discrete multidimensional grid. This is because the number of grids points

increases exponentially with dimensionality, i.e. the number of problem variables.
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With the passage of time, the curse of dimensionality has come to refer to any

problem in data analysis that results from a large number of variables.

For clustering purposes, the most relevant aspects of the curse of dimensional-

ity are the impact of increasing dimensionality on point proximity and density. In

particular, distance-based clustering techniques depend critically on the measure

of distance, and require that the objects within clusters are, in general, closer to

each other than to objects in other clusters. Density-based clustering algorithms

require that the point density within clusters must be significantly higher than

the surrounding noise regions.

In moderate-to-high dimensional spaces almost all pairs of points are about as

far away as average [4, 18] and the density of points inside a fixed-volume region is

about as the average. Under such circumstances the data are “lost in space” and

the effectiveness of clustering algorithms that depend critically on the measure

of distance or density, degenerate rapidly with increasing dimensionality [55].

Irrelevant Features - Subspace Clustering: Often, it maybe that not all

dimensions are relevant - the data are binded along such dimensions, to a given

cluster. The presence of irrelevant features reduces any clustering tendency in

the data. Intuitively, if all irrelevant features are pruned away, the points in each

cluster come closer to one another, making easier the discrimination of clusters

using a distance or density based criterion. However, feature selection techniques

are susceptible to a substantial loss of information because different types of inter-

attribute correlations may occur in different subsets of dimensions in different

localities of the data [6, 7]. Therefore, it is vital for any clustering algorithm to

operate on the full dimensional space.

Requirements for DM Clustering: Emerging DM applications place specific

requirements on clustering techniques such as [51]:

1. Handling High Dimensionality: Often, complex real-world concepts are

accompanied by a large number of features. As a result of the sparsely filled

space - the number of available points can not grow exponentially with the
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dimensionality, there is often a very poor discrimination between clusters

in the full dimensional space.

2. Irrelevant Features - Subspace Clustering: Often, especially in high di-

mensional spaces, not all dimensions are relevant - the data are binded along

such dimensions, to a given cluster. It is vital for a clustering method to

be able to detect clusters being embedded in subspaces possibly formed by

different combinations of dimensions in different data localities.

3. Scalability: The massive datasets, both in size and dimensionality, asso-

ciated with DM applications require highly scalable clustering algorithms.

Sampling and parallelisation can be potentially used to improve scalability.

4. Clusters of Arbitrary Shape, Size, Density, and Data Coverage: Distance-

based clustering algorithms tend to find spherical clusters with similar size

and density. It is important to develop clustering algorithms that can de-

tect clusters of arbitrary shape, size, density, and data coverage. This would

help us gain a deeper insight into the different correlations between the fea-

tures which, in turn, can greatly facilitate other steps of KDD, e.g. decision

making processes.

5. Interpretability of the Results: Even the most advanced visualisation

techniques do not work well in high dimensional spaces, simply because the

human eye-brain system is able to perform rough clustering only up to three

dimensions. Therefore it is essential to produce cluster descriptors that can

be easily assimilated by an end-user, e.g. IF-THEN rules, decision trees.

6. Insensitivity to Noise: Most real-world databases contain noise and out-

liers that do not fit nicely into any of the clusters. The quality of the

clustering results must not be affected by the presence of noise and outliers.

7. Insensitivity to Initialisation and Order of Input: It is vital to develop

clustering algorithms that produce similar quality results irrespective of the

initialisation phase and the order in which input data are processed.
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8. Minimal Requirements for Domain Knowledge: Clustering algorithms

should have minimal requirements of auxiliary domain knowledge to deter-

mine the input parameters, since the former is rarely complete and consis-

tent. Furthermore, the quality of the results must be relatively insensitive

to the input settings. Finally, the clustering algorithm must not presume

any canonical data distribution for the input data.

9. Handling of Different Types of Features: Given the diversity of kinds

of data being stored in the current databases, e.g. numerical, categorical,

multimedia, real-world applications may require clustering data consisting

of a mixture of data types.

2.3.3 Classification of Clustering Algorithms

Clustering algorithms for metric spaces can be broadly classified into five, possibly

overlapping, types and they are discussed in the following subsections together

with specific algorithms: partitioning (section 2.3.4), hierarchical (section 2.3.5),

density-based (section 2.3.6), grid-based (section 2.3.7), subspace-clustering (sec-

tion 2.3.8), and some other (section 2.3.9) methods [17, 52, 58, 59].

In short, partitioning algorithms attempt to determine k clusters that optimise

a certain, often distance-based, criterion function. Hierarchical algorithms create

a hierarchical decomposition of the database that can be presented as a dendro-

gram. Density-based algorithms search for dense regions in the data space that

are separated from one another by low density noise regions. Grid-based methods

quantise the search space into a finite number of disjoint cells and then operate

on the quantised space. Subspace clustering attempts to identify, in addition to

the clusters, the subspace of dimensions in which each cluster is embedded.
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2.3.4 Partitioning Clustering Algorithms

Partitioning clustering attempts to decompose a set of N objects into k clusters

such that the partitions optimise a certain criterion function. Each cluster is rep-

resented by the centre of gravity (or centroid) of the cluster, e.g. k-means, or by

the closest instance to the gravity centre (or medoid), e.g. k-medoids. Typically,

k seeds are randomly selected and then a relocation scheme iteratively reassigns

points between clusters to optimise the clustering criterion. The minimisation

of the square-error criterion [58] - sum of squared Euclidean distances of points

from their closest cluster representative point, is the most commonly used. A

serious drawback of partitioning algorithms is that they suffer from a combinato-

rial explosion due to the number of possible solutions. In particular, the number

of all possible partitions P (n, k) that can be derived by partitioning n patterns

into k clusters is [42, 60]:

P (n, k) = 1
k!

∑k
i=1(−1)k−i

 k

i

 (i)n (2.1)

An example in [58] shows that having to partition n = 10 patterns into k = 4

clusters the total number of different partitions is P (10, 4) = 34105. However,

for n = 19 and k = 4, P (19, 4) becomes huge, approximately 11,259,666,000.

Some representative examples of partitioning methods are:

K-MEANS

k-means is perhaps the most popular clustering method in metric spaces [54, 58,

68]. Initially k cluster centroids are selected at random. k-means then reassigns

all the points to their nearest centroids and recomputes centroids of the newly

assembled groups. The iterative relocation continues until the criterion function,

e.g. square-error, converges. Despite its wide popularity, k-means is very sensitive

to noise and outliers since a small number of such data can substantially influence

the centroids. Other weaknesses are sensitivity to initialisation, entrapments into

local optima, poor cluster descriptors, inability to deal with clusters of arbitrary

shape, size and density, reliance on user to specify the number of clusters.
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K-MEDOIDS

Unlike k-means, in the k-medoids or Partitioning Around Medoids (PAM) [62]

method a cluster is represented by its medoid that is the most centrally located

object (pattern) in the cluster. Medoids are more resistant to outliers and noise

compared to centroids. PAM begins by selecting randomly an object as medoid

for each of the k clusters. Then, each of the non-selected objects is grouped with

the medoid to which it is the most similar. PAM then iteratively replaces one of

the medoids by one of the non-medoids objects yielding the greatest improvement

in the cost function. Clearly, PAM is an expensive algorithm as regards finding

the medoids, as it compares each medoid with the entire dataset at each iteration

of the algorithm.

Expectation Maximisation - EM

Instead of representing a cluster with a single point, the expectation maximisation

(EM) algorithm [69] represents each cluster using a probability distribution. EM

is an example of fuzzy clustering where each object is assigned a certain degree of

membership to each cluster. Similar to k-means and k-medoids, EM iteratively

modifies the membership of each object until a likelihood-based criterion function

converges. EM is frequently entrapped into local optima.

Clustering Large Applications - CLARA

CLARA [62] is an implementation of PAM in a subset of the dataset. It draws

multiple samples of the dataset, applies PAM on samples, and then outputs the

best clustering out of these samples.

Clustering Large Applications based on Randomised Search - CLARANS

CLARANS [75] combines the sampling techniques with PAM. The clustering pro-

cess can be presented as searching a graph where every node is a potential solu-

tion, that is, a set of k medoids. The clustering obtained after replacing a medoid

is called the neighbour of the current clustering. CLARANS selects a node and

compares it to a user-defined number of neighbours searching for a local mini-

mum. If a better neighbour is found having lower square error, CLARANS moves
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to the neighbour’s node and the process starts again; otherwise the current clus-

tering is a local optimum. If the local optimum is found, CLARANS starts with

a new randomly selected node in search for a new local optimum.

Advantages and Disadvantages of Partitioning Clustering

In short, the advantages and disadvantages of partitioning clustering methods

are:

• Advantages

- Relatively scalable and simple.

- Suitable for datasets with compact spherical clusters that are well-separated

• Disadvantages

- Severe effectiveness degradation in high dimensional spaces as almost all

pairs of points are about as far away as average; the concept of distance

between points in high dimensional spaces is ill-defined

- Poor cluster descriptors

- Reliance on the user to speficy the number of clusters in advance

- High sensitivity to initialisation phase, noise and outliers

- Frequent entrapments into local optima

- Inability to deal with non-convex clusters of varying size and density

2.3.5 Hierarchical Algorithms

Unlike partitioning methods that create a single partition, hierarchical algorithms

produce a nested sequence (or dendrogram) of clusters, with a single all-inclusive

cluster at the top and singleton clusters of individual points at the bottom [17,

52, 58, 59]. The hierarchy can be formed in top-down (divisive) or bottom-up

(agglomerative) fashion and need not necessarily be extended to the extremes.

The merging or splitting stops once the desired number of clusters has been
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formed. Typically, each iteration involves merging or splitting a pair of clusters

based on a certain criterion, often measuring the proximity between clusters.

Hierarchical techniques suffer from the fact that previously taken steps (merge or

split), possibly erroneous, are irreversible. Some representative examples are:

AGNES and DIANA

AGglomerative NESting (AGNES) [62] and Divisive ANAlysis (DIANA) [62] are

two earlier bottom-up and top-down hierarchical clustering methods, respectively.

In both AGNES and DIANA, the similarity or dissimilarity between clusters

is computed using the distance between the cluster representative points, e.g.

centroids or closest points. Both methods are irreversible and use over-simplified

static rules to split or merge clusters which may lead to low quality clustering.

Finally, they do not scale well since the decision to merge or split needs to examine

and evaluate many combinations of clusters.

CURE

Clustering Using REpresentatives (CURE) [48] is an agglomerative method in-

troducing two novelties. First, clusters are represented by a fixed number of

well-scattered points instead of a single centroid. Second, the representatives are

shrunk toward their cluster centres by a constant factor. At each iteration, the

pair of clusters with the closest representatives are merged. The use of multiple

representatives allows CURE to deal with arbitrary-shaped clusters of different

sizes, while the shrinking dampens the effects of outliers and noise. CURE uses

a combination of random sampling and partitioning to improve scalability.

CHAMELEON

CHAMELEON [61] improves the clustering quality by using more elaborate merg-

ing criteria compared to CURE [61]. Initially, a graph containing links between

each point and its k-nearest neighbours [58] is created. Then a graph-partitioning

algorithm recursively splits the graph into many small unconnected sub-graphs.

During the second phase, each sub-graph is treated as an initial sub-cluster and
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an agglomerative hierarchical algorithm repeatedly combines the two most sim-

ilar clusters. Two clusters are eligible for merging only if the resultant cluster

has similar inter-connectivity and closeness to the two individual clusters before

merging. Due to its dynamic merging model CHAMELEON is more effective

than CURE in discovering arbitrary-shaped clusters of varying density. However,

the improved effectiveness comes at the expense of computational cost that is

quadratic in the database size.

BIRCH

Balanced Iterative Reducing and Clustering Using Hierarchies (BIRCH) [99] intro-

duces a novel hierarchical data structure, CF-tree, for compressing the data into

many small sub-clusters and then performing clustering with these summaries

rather than the raw data. Sub-clusters are represented by compact summaries,

called cluster-features (CF) that are stored in the leafs. The non-leaf nodes store

the sums of the CFs of their children. A CF-tree is built dynamically and in-

crementally, requiring a single scan of the dataset. An object is inserted in the

closest leaf entry. Two input parameters control the maximum number of chil-

dren per non-leaf node and the maximum diameter of sub-clusters stored in the

leafs. By varying these parameters, BIRCH can create a structure that fits in

main memory. Once the CF-tree is built, any partitioning or hierarchical algo-

rithms can use it to perform clustering in main memory. BIRCH is reasonably

fast, but has two serious drawbacks: data order sensitivity and inability to deal

with non-spherical clusters of varying size because it uses the concept of diameter

to control the boundary of a cluster.

Advantages and Disadvantages of Hierarchical Clustering

In short, the advantages and disadvantages of hierarchical clustering methods

are:

• Advantages

- Embedded flexibility regarding the level of granularity.
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- Well suited for problems involving point linkages, e.g. taxonomy trees.

• Disadvantages

• Inability to make corrections once the splitting/merging decision is made.

• Lack of interpretability regarding the cluster descriptors.

• Vagueness of termination criterion.

• Prohibitively expensive for high dimensional and massive datasets.

• Severe effectiveness degradation in high dimensional spaces due to the

curse of dimensionality phenomenon (see section 2.3.2) [4, 18].

2.3.6 Density-based Clustering Algorithms

Density-based clustering methods group neighbouring objects into clusters based

on local density conditions rather than proximity between objects [17, 31, 51, 52].

These methods regard clusters as dense regions being separated by low density

noisy regions. Density-based methods have noise tolerance, and can discover non-

convex clusters. Similar to hierarchical and partitioning methods, density-based

techniques encounter difficulties in high dimensional spaces because of the inher-

ent sparsity of the feature space, which in turn, reduces any clustering tendency.

Some representative examples of density-based clustering algorithms are:

DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [32] seeks

for core objects whose ε-neighbourhood (ε:radius) contains at least MinPts points.

A set of core objects with overlapping ε-neighbourhoods define the skeleton of a

cluster. Non-core points lying inside the ε-neighbourhood of core objects represent

the boundaries of the clusters, while the remaining are noise. DBSCAN can

discover arbitrary-shaped clusters, is insensitive to outliers and order of data

input, while its complexity is O(N2). If a spatial index data structure is used the

complexity can be improved up to O(N log N). DBSCAN breaks down in high-

dimensional spaces and is very sensitive to the input parameters ε and MinPts.
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OPTICS

Ordering Points To Identify the Clustering Structure (OPTICS) [8], an extension

of DBSCAN to adapt to local densities, builds an augmented ordering of data

and stores some additional distance information, allowing the extraction of all

density-based clustering for any lower value of the radius ε. OPTICS has the

same complexity as that of DBSCAN.

DENCLUE

DENsity-based CLUStEring (DENCLUE) [56] uses an influence function to de-

scribe the impact of a point about its neighbourhood while the overall density

of the data space is the sum of influence functions from all data. Clusters are

determined using density attractors, local maxima of the overall density function.

To compute the sum of influence functions a grid structure is used. DENCLUE

scales well (O(N)), can find arbitrary-shaped clusters, is noise resistant, is insen-

sitive to the data ordering, but suffers from its sensitivity to the input parameters.

The curse of dimensionality phenomenon (see section 2.3.2) heavily affects DEN-

CLUE’s effectiveness. Moreover, similar to hierarchical and partitioning tech-

niques, the output, e.g. labelled points with cluster identifier, of density-based

methods can not be easily assimilated by humans.

Advantages and Disadvantages of Density-based Clustering

In short, the advantages and disadvantages of density-based clustering are:

• Advantages

- Discovery of arbitrary-shaped shaped clusters with varying size

- Resistance to noise and outliers

• Disadvantages

- High sensitivity to the setting of input parameters

- Poor cluster descriptors
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- Unsuitable for high-dimensional datasets because of the curse of dimen-

sionality phenomenon (see section 2.3.2)

2.3.7 Grid-based Clustering Algorithms

Grid-based clustering techniques quantise the feature space into a multi-dimensional

grid structure on which all operations for clustering are performed. The aggre-

gated statistical information stored in the grid cells is then exploited by the clus-

tering algorithm for fast processing. Due to data aggregation, the running time

is typically independent of the database size, yet dependent on only the number

of cells, which in turn, grows exponentially with the dimensionality. However, as

the dimensionality increases more points map into individuals cells, thus mak-

ing the use of summarised information decreasingly relevant to clustering. Some

representative grid-based clustering techniques are:

WaveCluster

WaveCluster [93], a multi-resolution clustering algorithm, maps the data into a

user-specified multi-dimensional grid, it then applies a wavelet transformation

to the original feature space and, finally, finds connected dense regions in the

transformed space. A wavelet transform is a signal processing technique that

decomposes a signal into different frequency sub-bands. The high-frequency parts

of a signal correspond to cluster boundaries, while low frequency high amplitude

parts correspond to the clusters’ interiors. The wavelet model can be applied

to d-dimensional signals by applying a one-dimensional wavelet transformation d

times. Convolution with an appropriate kernel function results in a transformed

space where the clusters become more distinguishable. WaveCluster conforms

to many requirements of DM clustering, such as detection of clusters at varying

levels of accuracy, discovery of arbitrary-shaped clusters of varying density and

size, insensitivity to noise and data ordering and linear scalability with dataset

size. Both the effectiveness and efficiency of WaveCluster degrade rapidly with

increasing dimensionality.
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STING

STatistical INformation Grid-based method (STING) [98] uses a hierarchical tech-

nique to divide the feature space into rectangular cells. Each cell at level i is

partitioned into a fixed number, k, of cells at the next lower level and so on. The

database is scanned once, and statistical information related to the points inside

each cell, e.g. mean, min, max, variance, distribution type is stored. The cells are

populated in bottom-up fashion. Statistical information of higher level cells can

easily be computed from the parameters of the lower level cell. The aggregated

information stored in the cells is used for efficient query processing. To perform

clustering on such a data structure, the user must first supply the density level.

Then a breadth-first tree traversal is used to find relevant regions with sufficient

density, until the bottom layer is reached. The regions of relevant cells are then

returned as clusters. Once the tree is built, clustering at a certain density level

is fast and query-independent, while the updating of the tree can be made in

an incremental fashion. Balancing grid granularity and accuracy is not a trivial

task. Since STING ignores the spatial relationship between the children and their

neighbouring cells for construction of the parent cell, the resulting clusters are

isothetic - the clusters are either horizontal or vertical.

Advantages and Disadvantages of Grid-based Clustering

In short, the advantages and disadvantages of grid-based clustering methods are:

• Advantages

- Fast processing time that is typically independent of the number of data

points, yet dependent on only the number of cells in the quantised space.

- Resistance to the presence of noise and outliers

- Insensitivity to the order of data input and initialisation

- Discovery of arbitrary-shaped clusters, e.g. WaveCluster

- Relatively comprehensible clustering output

• Disadvantages
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- Computationally expensive for high dimensional datasets

- Aggregation in high dimensional spaces becomes meaningless because

the vast majority of points map into different cells; Hence all grid-based

clustering methods are only suitable for very low dimensional datasets.

2.3.8 Subspace Clustering Algorithms

Often, especially in high dimensional spaces, it maybe that not all dimensions

are relevant - the data along relevant dimensions are bounded, to a given cluster.

Subspace clustering seeks, in addition to the clusters, the subspace of relevant

dimensions in which each cluster is embedded [5, 7, 23, 74]. Examining every

possible subspace for clusters is infeasible as their number grows exponentially

with dimensionality. Relying on the user to specify the subspace(s) is not a good

choice since domain knowledge is rarely complete and consistent. Applying di-

mensionality reduction techniques, e.g. Principal Components Analysis [45], also

has drawbacks. First, the new dimensions - linear combinations of original at-

tributes, are hard to interpret, making it hard to understand clusters in relation

to the original data space. Second, these techniques are not effective in identify-

ing clusters that may exist in different subspaces, possibly overlapping. Recently,

there have been proposed some extensions of existing subspace clustering meth-

ods to tackle scalability and effectiveness, but their analysis is out of the scope of

the thesis. A comprehensive and comparative discussion regarding the recent ad-

vances in subspace clustering can be found in [79]. Some representative subspace

clustering algorithms are:

CLIQUE

CLustering In QUEst - developed by the data mining research at IBM Almaden

- (CLIQUE) [7] is the pioneer bottom-up search method that combines grid and

density based clustering to locate dense clusters in subsets of dimensions. Initially,

a user-specified uniform grid is imposed onto the data space. A k-dimensional

unit defined by the Cartesian product of one interval from each of the k di-

mensions is dense if the number of points inside it exceeds an input threshold.
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Clusters are unions of connected dense units. CLIQUE utilises the downward clo-

sure property of density to reduce search combinations: if a k-dimensional unit

is dense, then so are its projections in (k-1)-dimensional space. Thereby, can-

didate k-D dense units are formed by self-jointing dense units found in (k-1)-D

spaces. The joint condition is that units share the first (k-2) dimensions. Clus-

ters are formed by combining dense units using a greedy growth scheme. The

hyper-rectangular clusters are reported using Disjunctive Normal Form (DNF)

expressions. CLIQUE does not presume any canonical distribution for the data,

is insensitive to noise and data ordering, finds arbitrary-shaped clusters of varying

size and more importantly, produces highly interpretable cluster descriptors. It

scales linearly with the size of input and quadratically with the data and cluster

dimensionality. CLIQUE operates on a regular, static, user-defined grid with very

coarse resolution. The coarse resolution is adopted for two reasons: a) to enable

locating dense units in high dimensional spaces, and b) to reduce computation

that grows exponentially with the number of bins. Hence, CLIQUE places more

emphasis on finding relatively dense clusters than on capturing their shapes with

precision.

MAFIA

Merging of Adaptive Finite Intervals (And is more than a clique) (MAFIA)

[74] extends CLIQUE by introducing adaptive bins that are constructed semi-

automatically based on the data distribution to improve scalability and cluster

quality. Moreover, MAFIA examines more subspaces compared to CLIQUE, since

it combines dense units sharing any (k-2) dimensions rather than the first (k-2)

dimensions as in CLIQUE. The introduction of adaptive bins yields an average

of two orders of magnitude speedup as compared to CLIQUE. Finally, MAFIA

scales linearly with database size and dimensionality, but not surprisingly its

execution time increases quadratically with the dimensionality of the clusters.

ENCLUS

ENtropy-based CLUStering (ENCLUS) [23], another extension of CLIQUE, uses
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static uniform grids and performs subspace clustering based on the concept of

entropy [45] rather than density. In short, subspaces with clusters typically have

lower entropy than subspaces without clusters. Additionally, entropy decreases

as the density of cluster units increases. Pruning is accomplished using the down-

ward closure property of entropy, which is similar to the density downward clo-

sure property. ENCLUS shares much of the flexibility of CLIQUE, but similar to

CLIQUE is very sensitive to the user-specified resolution of the grid.

Advantages and Disadvantages of Subspace Clustering Algorithms

In short, the advantages and disadvantages of subspace clustering methods are:

• Advantages

- Relatively effective treatment of high dimensionality

- Automatic detection of irrelevant features

- Comprehensible cluster descriptors

- Insensitivity to the order of data input, noise/outliers, and initialisation

- Detection of arbitrary-shaped clusters of varying size and density

- Good scalability with database size

- No presumption of any canonical distribution for the input data

• Disadvantages

- Computation increases exponentially with dimensionality.

- To reduce computational complexity while locating adjacent dense cells

in high dimensional spaces, grid-based techniques adopt coarse resolutions

at the expense of the accuracy of the clustering results [7, 23, 74].

2.3.9 Other Clustering Methods

This section discusses briefly two important clustering algorithms that do not fit

directly in any of the well defined clustering methods.
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PROCLUS

PROjected CLUStering (PROCLUS) [5], the first top-down subspace clustering

algorithm, attempts to find the so-called projected clusters. A projected cluster

is a subset C of points together with a subset of dimensions D, such that the

orthogonal projection of C onto D is a tight cluster. Both the number of clusters

k and the average cluster dimensionality l must be specified by the user a priori.

Initially, k well scattered points are chosen to serve as medoids for the clusters

using a greedy algorithm. Then a hill-climbing iterative process relocates the k-

medoids as well as the subset of dimensions associated with each medoid aiming

to minimise the distance between data points and the nearest medoid. Each

cluster is represented as a non-overlapping set of points with its associated medoid

and subspace. Due to the distance-based approach, PROCLUS is biased toward

clusters that are hyper-spherical in shape. Moreover, although the subspaces

where the clusters are embedded may be different, the dimensionality of subspaces

must be similar.

ORCLUS

ORiented projected CLUSter generation (ORCLUS) [6] is an extension of PRO-

CLUS [5] seeking non-axis aligned subspaces. Similar to PROCLUS, ORCLUS

requires the number of clusters k and the average cluster dimensionality l to be

specified by the user beforehand. Each cluster is represented by a set of points,

its centroid, and an l-dimensional orthogonal system with eigenvectors having

the least spread. ORCLUS is suitable for datasets where there are strong inter-

attribute correlations, but is computationally very demanding due mainly to the

computation of the covariance matrices, where the latter are used to decide which

orthogonal system fits better the data of a cluster.

OptiGrid

Optimal Grid Clustering (OptiGrid) [55] seeks dense clusters using a data par-

titioning scheme based on divisive recursion by an irregular multi-dimensional

grid. The grid is constructed using cutting hyperplanes passing through areas of
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low density. This is done to minimise the partitioning of individual clusters and

to discriminate distinct clusters as much as possible. Although non axis-aligned

cutting planes are discussed in [55] the evaluation results are based on orthogonal

projections. OptiGrid uses kernel density estimation to approximate the density

of points [92, 97]. Due to the divisive recursion fashion by which the grid is built,

OptiGrid does not face the problem of combinatorial search such as CLIQUE or

MAFIA. OptiGrid is very sensitive to the setting of the input parameters.

O-Cluster

O-Cluster [72] combines a novel active sampling technique with an axis-parallel

partitioning strategy to identify continuous areas of high density in the datas-

pace. O-Cluster uses a statistical test to validate the quality of orthogonal cut-

ting planes, and operates on a small buffer containing a random sample of the

dataset. Active sampling ensures that partitions are provided with additional

data if more information is required to validate a given cutting plane. Par-

titions without ambiguities are frozen and the data associated with them are

removed from the active buffer. Due to active sampling O-Cluster can handle

efficiently large datasets that do not fit in the main memory. For each partition,

a hyper-rectangular region, O-Cluster analyses orthogonal density histograms for

valid cutting planes using an elaborate statistical test. Valid cutting planes pass

through low density valleys surrounded on both sides by regions of significantly

high density. Unlike, OptiGrid, only a single cutting plane is applied at time.

O-Cluster creates a binary clustering tree where the disjoint leaves are regions

with flat or unimodal density. Despite the appealing efficiency and effectiveness

of O-Cluster, e.g. good scalability, noise tolerance, interpretable cluster descrip-

tors, there is a serious drawback: once a splitting operation has been performed no

corrections are possible. Another limitation of O-Cluster is the fact that it uses

classical density histograms, which are extremely sensitive to the selection of bin

width, especially for partitions with small numbers of points. From a practical

point of view, in relatively sparse partitions the resulting histograms are jagged,

making the discovery of unimodal density regions difficult.
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2.4 Evolutionary Algorithms

2.4.1 Optimisation Problems

Optimisation is the process of finding feasible solution(s), i.e. solution(s) satisfy-

ing the problem constraints (if any), that optimally solve the target problem. Let

f be a fitness function that ranks solutions to a given problem P with respect

to their quality. Further, let S be the search space of all possible solutions to P .

Optimising P involves finding an x ∈ S satisfying:

f(x) ≤ f(y) ∀y ∈ S if f is to be minimised, and

f(x) ≥ f(y) ∀y ∈ S if f is to be maximised
(2.2)

A solution x satisfying condition 2.2 is referred to as the global optimum. If S is a

subset of Rd then P reduces to a numerical optimisation problem, where d is the

dimensionality of the problem. Typically, the search space of large scale real-world

problems is enormous, making enumeration or brute-force traversal impossible.

Thereby, a variety of heuristic techniques have been suggested to surmount these

difficulties. Heuristic techniques seek good, i.e. near-optimal, solutions at a

reasonable computational cost without being able to guarantee either optimality,

or even in many cases to state how close to optimality a particular solution is.

One heuristic approach that has received increasing interest over the last three

decades is evolutionary algorithms.

2.4.2 Biological Basis of Evolutionary Algorithms

Evolutionary Algorithms (EAs) or Evolutionary Computation (EC) - these terms

are used interchangeably throughout the thesis - are stochastic search methods

that mimic the metaphor of natural biological evolution. Over many generations

natural populations evolve according to the principles of natural selection and

survival of the fittest, first clearly stated by Charles Darwin in “The Origin of

Species”. In nature, individuals best suited to competition for scarce resources

survive. Evolving to adapt to a changing environment is essential for the members

of any species. A recently compiled two-volume textbook [11, 12] provides an

excellent introduction to the field of EAs.
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2.4.3 Basic Terminology

The terminology used in EA studies is borrowed from biology. All living organ-

isms or individuals consist of cells containing a set of chromosomes, which serve

as a ”blueprint” for the organism. A chromosome contains a number of genes,

each encoding a particular characteristic, e.g. a decision variable in optimisation

problems. Alleles is the set of different states that a gene can express. Each

gene is located at a certain position in the chromosome, the locus. If the chro-

mosomes are arranged in pairs the organism is called diploid otherwise haploid.

Most EAs use single-chromosome haploid representations. The phenotype is the

expressed physical behaviour and morphology of the organism while the geno-

type is the particular set of genes in the given organism. Although an improving

fitness manifests itself in many ways, e.g. animals run faster and increase their

intelligence, viruses develop ever more effective ways of penetrating their host’s

defences, the ultimate measure of evolutionary fitness is simply the success of an

organism in passing on its genes to viable offspring - or reproducing. In an EA

context, the fitness of an individual depends on the performance of the pheno-

type and is usually determined by a fitness function. The problem parameters

along with their domains constitute the search space, which is the collection of

all possible solutions to the problem.

2.4.4 The Skeleton of an Evolutionary Algorithm

The skeleton of a typical EA is outlined in figure 2.5. EAs are iterative and

stochastic processes that operate on a population of individuals. An individual

encodes a potential solution to the target problem. An initial population of in-

dividuals P(0) is generated at random or heuristically. Each individual is then

evaluated by a fitness function. The fitness scalar value is the quantitative infor-

mation the algorithm uses to guide the search. Then some of these individuals

are selected for reproduction and copied to the mating buffer C(t). Individuals

are usually selected with a probability proportional to their fitness, which en-

sures that fitter individuals have more chances of reproducing. Selection and

reproduction alone can not sample any new point in the search space. Therefore,
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various genetic operators, usually recombination and mutation, are applied to

the individuals in the mating buffer C(t), producing offspring C
′
(t). Next, the

newly formed offspring are evaluated. The two populations of parents P(t-1) and

children C
′
(t) are then merged to form a temporary population. Since most EAs

maintain a fixed-sized population a replacement policy selects the appropriate

number of individuals from the temporary population to create the new popu-

lation P(t). This is normally achieved by replacing the worst individuals in the

population, however, many different choices are available. The whole process is

repeated until some termination criterion is satisfied, e.g. reaching a maximum

number of generations or finding an acceptable solution by some criterion.

BEGIN
t ← 0
P(t) ← initialisation();
evaluation(P(t));
WHILE(termination condition 6= true) DO

BEGIN
t ← t + 1;
C(t) ← selection reproduction(P(t-1));

C
′
(t) ← recombination(C(t));

C
′
(t) ← mutation(C

′
(t));

evaluation(C
′
(t));

P(t) ← selection replacement(C
′
(t), P(t-1));

END
END

Figure 2.5: Skeleton of an Evolutionary Algorithm

2.4.5 Variants of Evolutionary Algorithms

Numerous variants of EAs have been proposed since the early attempts more than

fifty years ago. This section gives a short review of EAs to highlight their sim-

ilarities and differences. EAs can be broadly classified into three mainstreams,

Genetic Algorithms (GAs) [57], Evolution Strategies (ES) [84, 91] and Evolu-

tionary Programming (EP) [41]. Despite some functional differences, all these

paradigms are based on the same biological principle, the survival of the fittest.

Bäck [11] identifies three basic properties shared by all EA paradigms:

• Population-based Search: EAs operate on a population of individuals instead

of a single solution. An individual is an abstraction of a living organism and
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represents a potential solution in some problem space through a suitable cod-

ing. Individuals may also incorporate internal control parameters which are

themselves subject to adaptation during the evolutionary search, e.g. ES.

• Stochastic Search: At each generation a new set of descendants are generated

by stochastic processes intended to model natural mutation and recombination.

• Fitness Selection: Each individual is evaluated by a fitness function that mea-

sures its performance in solving the target problem. The fitness determines the

probability of an individual in surviving and attracting mates. By favouring

fit individuals, the most promising areas of the search space are explored.

Genetic Algorithms

The basic principles of GAs were first laid down rigorously by Holland [57] during

the seventies, and are well described in many texts [11, 12, 25, 47, 71]. Unlike

EP and ES, canonical GAs encode each decision variable in a binary substring

of specific length depending on the required accuracy. However, there has been

a general trend away from binary codings within the GA research community

toward other representations, e.g. floating point [71]. One reason for the wide

popularity of binary coding is because of its universality, which allowed for a

uniform set of operators making GAs a general-purpose optimisation technique.

Stochastic variation is usually introduced through crossover and mutation. Real-

valued GAs use task specific variation operators [11, 12, 27].

In a typical binary-coded GA, during recombination two individuals (strings

of bits) are selected from the mating pool at random and fragments of genetic ma-

terial are exchanged between them to create the offspring. In one-point crossover

operation a cross site along the string is randomly chosen and all bits after that

point are swapped. Another popular form of recombination is the two-point

crossover, which is performed by choosing two cross sites randomly and swap-

ping the corresponding segments from the two parents between the two cross sites.

Unlike one and two-point crossover which are segment-based, Uniform Crossover

(UC) operates in the bit-level by exchanging individual bits between the parents
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with a fixed and position independent probability, often set to 0.5. Mutation is

achieved by flipping bits at random with a very small probability, e.g. 0.001.

A commonly used stochastic selection scheme in GAs is proportional selection,

also known as roulette-wheel selection where the probability of an individual being

selected for the next generation is directly proportional to its fitness. The main

drawback with proportional selection is that a few good, but not necessarily near

global optimum, individuals with a high fitness can quickly take over the popu-

lation because they will be chosen more often than other individuals. Another

popular stochastic selection scheme is the so-called tournament selection. A pool

of ts (often called tournament size) individuals is picked at random from the cur-

rent population and the fittest is copied into the new population. These choices

are independent so individuals may be chosen more than once. Tournaments are

performed to select the individual with the highest fitness among the individuals

in the pool. The winning individual is copied to the new population pool and the

process is repeated until the new population has been filled up. The larger the

value of tournament size, the higher the selection pressure. If ts is set to one the

selection is totally random. A commonly used value for tournament size is two,

which is also referred to as a binary-tournament selection. When using stochastic

selection schemes, such as tournament selection, an elitism strategy is often used.

Elitism (also referred to as an elitist strategy) was introduced by De Jong and the

idea is to keep the k best performing individuals in the population by protecting

them from for example crossover, mutation, and stochastic selection. Without

the elitism scheme the best individuals could accidentally be removed from the

population forcing the EA to rediscover the solutions once more. Typically, only

the best individual is protected from deletion (k = 1).

Evolutionary Programming

EP was introduced by L. Fogel during the early sixties [41]. Generally, EP

bears many similarities to ES although they were developed independently. Both

paradigms apply normally distributed mutations to real-valued solution vectors

to generate offspring. The mutation variances may also be encoded in the chro-

mosome, and self-adapted similar to ES. In strict EP crossover is not utilised.
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In the basic EP model, µ parents generate λ offspring by mutation resulting in

a total of (µ + λ) individuals that are evaluated with regard to the specified fit-

ness function. Afterwards, the individuals in the current (µ + λ) population are

selected to become parents in the next generation. Competition for survival is

achieved in a stochastic manner. Each individual is compared with k randomly

chosen (with replacement) opponents from the population. If the individual has

a higher fitness than the opponent it receives a win, thus each individual can

at most receive k wins. The individuals with the highest number of wins are

selected for the next generation. Finally, the whole process of mutation-selection

is repeated until a termination condition is fulfilled.

Evolution Strategies

ES were introduced by Rechenberg and Schwefel during the sixties [10, 84, 91].

Unlike binary-coded GAs, in ES candidate solutions are represented as real-valued

vectors. In addition to the decision variables, the chromosome includes a set

of strategy parameters specifying the variance of mutation for each variable or

variable combinations. ES employ normally distributed mutation to modify the

real-valued vector of the decision variables. Recent ES use either uniform or some

blending-type, e.g. arithmetic, recombination scheme. In arithmetic crossover

the offspring is generated as a weighted mean of the value of each gene (decision

variables) of the parents, while in uniform crossover each decision variable is

chosen from on the parents at random. There are two deterministic selection

strategies that are commonly termed plus (+) and comma (,). The abbreviation

(µ+λ)ES denotes an ES where µ parents generate λ offspring, and then the µ best

individuals from the intermediate population of (µ+λ) individuals are selected for

survival. The (µ, λ)ES scheme places all the bias in the offspring selection stage:

µ parents produce λ offspring (λ > µ), and the best µ offspring are selected to

replace the parent population. The strategy parameters controlling the variance

of mutation are modified either in a predetermined fashion or are subjected to self-

adaptation through evolutionary optimisation as the decision variables [12, 82].
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2.4.6 Individual Representation

Critical to any EA’s performance is the choice of encoding for the candidate so-

lutions, which is inherent to the nature of the target problem. This is because,

the encoding scheme influences the design of the variation operators, and deter-

mines the size of the search space being sampled by the EA. Various encoding

schemes have been devised to represent the decision variables [11, 12]. In most

GA studies each variable is encoded in a binary string of a specific length de-

pending on the required accuracy [47, 57]. However, it has been shown that for

some real-valued numerical optimisation problems, floating-point representations

outperform binary coding because they are faster, more precise and more con-

sistent [71]. The coding of variables in strings makes the search space discrete,

which implies a certain loss of precision in the accuracy of the solution. Longer

strings can potentially reduce this loss but excessive string lengths would slow

down the GA. A major drawback of conventional binary encoding is the pres-

ence of Hamming cliffs associated with certain strings where the transition to a

neighbouring solution requires the alteration of many bits. To tackle Hamming

cliffs one can possibly use Gray coding where any two consecutive numbers differ

always by one bit only in their binary encoding. However, in both conventional

binary and Gray coding, a bit change in any arbitrary location may cause a large

change in the decoded value. ES and EP methods typically operate directly on

the real-valued vector of the problem variables, which is usually accompanied by

a set of strategy parameters specifying the variance of mutation.

2.4.7 Selection

Selection, a key process in EAs, does not create any new solution, but instead

emphasises highly fit individuals in the population based on fitness criteria [11].

Searching a large and complex space involves a trade-off between exploring all

possible solutions and exploiting knowledge accumulated from previously visited

points of the search space to find the global optimum. If the focus is solely on

exploitation, the population may prematurely converge into a local optimum. In
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contrast, when strong emphasis is placed on exploration, the optimisation behaves

similarly to a random search, which means that the EA might never converge to

a good solution or the convergence will be very slow. Using the population-based

search, EAs combine both exploration and exploitation at the same time through

various selection and variation operators, respectively. Furthermore, EAs allow

explicit control over exploitation to exploration by varying the parameters of the

corresponding operators.

Parent selection allocates reproductive opportunities to each individual and

can be either deterministic or probabilistic [28]. Most of the selection schemes

control either the proportion of the population that reproduces or the distribu-

tion of reproductive opportunities or both. The most popular selection scheme is

tournament selection where tournaments are played between k randomly drawn

solutions and the best is copied in the mating pool. It is recommended to use

stochastic selection to preserve diversity in the population by occasionally choos-

ing not so good solutions [27].

2.4.8 Mutation

Mutation operators act on a single individual at a time by replacing the value of

a gene with another, randomly generated value, leading to deleterious, neutral,

or beneficial changes in the performance of the individual [11, 12, 47, 71]. The

mutation probability is commonly set to a very small value in GAs, although

significantly larger values are often used in EP and ES. From an exploratory

viewpoint, mutation is important because it can introduce into an individual a

gene value that is not even present in the current population, providing thus

escapes from local optima. In binary-coded GAs, mutation flips the value of

a gene with a very small probability. It is treated as a “background” operator,

supporting the recombination operator, by ensuring that all possible combinations

of allele values of the search space are accessible to the GA. Mutation disregards

semantic linkages among genes in the chromosome in the sense that the positions

in the string to undergo mutation and the new values for the mutated genes are
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determined at random regardless of what happens at other positions in the string.

ES and EP methods use normally distributed mutations to modify the real-valued

vector of the decision variables. Usually, the probability of mutating a variable

is inversely proportional to the number of variables. The strategy parameters

that control the variance of the normal distributions may also be subjected to

evolutionary optimisation in a separate search space.

2.4.9 Recombination

The aim of recombination or crossover in EAs is to combine the best charac-

teristics of highly fit individuals in the hope of creating even better solutions

[11, 12, 47, 71]. Offspring are created by selecting randomly parent solutions

from the mating pool, and exchanging or blending fragments of genetic material

between them. Traditional crossover schemes used in binary-coded GAs, e.g. n-

point or uniform crossover that swap chromosome fragments, are conservative in

the sense that every gene carried by an offspring is a copy of a gene inherited

from one of its parents. For non-binary strings, however, it is common to blend

rather than swap parental genes to create new ones that are not carried by either

parent [27]. Two types of bias are attributed to crossover: distributional and

positional bias [11]. Distributional bias implies that the probability distribution

of the number of genes transmitted to offspring is not uniform. Positional bias

refers to the extent that the probability of transmitting a set of genes intact

depends on their relative positions in the chromosome. The latter is important

because it indicates which combinations of genes are more likely to be inherited

by offspring from their parents. It is important to notice that these biases are

characteristics of crossover operators that are independent of the fitness of the

parent individuals.
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2.4.10 Comparing EAs with Classical Search Methods

A number of general-purpose techniques have been proposed for use in connection

with search and optimisation problems. They all assume that the problem is

defined by a fitness function that must be optimised. Some of the traditional

optimisation techniques are described below.

• Enumerative Search: The basis for enumerative techniques is simplicity itself.

To find the optimum value in a problem space (which is finite) look at the

function values at every point in the space. For very large problem spaces, an

exhaustive search is computational infeasible.

• Random Search: Random search techniques simply perform random walks of

the problem space, recording the best optimum values discovered so far. Sim-

ilarly to enumerative search, random searches suffer from efficiency problems.

For large problem spaces, they should perform no better than enumerative

searches. Both enumerative and random search do not exploit any knowledge

gained from previous results.

• Gradient Methods: There exist a number of optimisation techniques, gen-

erally referred to as hill-climbing, which rely on using information about the

local gradient of the function to guide the direction of the search. Usually,

hill-climbing techniques start with a randomly chosen point and then move in

the direction that gives the greatest improvement in the value of the function.

There are several drawbacks to hill climbing methods. Firstly, they assume

that the problem space being searched is continuous in nature. In other words,

derivatives of the function representing the problem space exist. This is not

true of many real world problems where the problem space is noisy and dis-

continuous. Another major disadvantage of using hill climbing is that they

can only find the local optimum in the neighbourhood of the current point.

Hill-climbing methods can perform well on functions with only one peak (uni-

modal) but on functions with many peaks (multimodal), they suffer from the

problem that the first peak found will be climbed and this may not be the
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highest peak. Consequently hill-climbing techniques can easily get trapped

into local optima as they have no way of looking at the global picture. Hy-

brid methods combining random and hill-climbing searches are possible. For

instance, once a peak has been found, the hill-climbing is re-started, but with

another randomly chosen point. This hybrid method performs well if the func-

tion does not have many optima. However, since each hill-climbing is carried

out in isolation, no overall picture of the shape of the search space is obtained.

• Simulated Annealing: Simulated Annealing (SA) is essentially a modified

version of hill-climbing. Starting from a random point in the search space, a

random move is made. If the move leads to an improvement in the function

then it is accepted. Otherwise, the move is accepted only with probability

p(t), where t denotes time. The function p(t) begins returning a value close to

1, but gradually declines towards zero in a way analogous to a metal cooling

and freezing into a minimum energy crystalline structure (annealing process).

Initially therefore, any moves are accepted, but as the ”temperature” p(t) re-

duces, the probability of accepting a negative move that degrades the value of

the function decreases. SA’s major advantage over other methods is an abil-

ity to avoid becoming trapped at local minima by allowing negatives moves.

However, too many negative moves will simply lead away from the global op-

timum. Like the random search, however, SA only deals with a single solution

at a time and so does not build up an overall picture of the search space.

• Evolutionary Algorithms: The working principle of EAs is very different from

most of the traditional optimisation algorithms. A comprehensive discussion

regarding these differences can be found in [27].

One of the fundamental differences is that EAs maintain a population of poten-

tial solutions instead of a single solution. Since many solutions are processed

at the same time, EAs perform a global search in the search space, in contrast

with the local search achieved using traditional optimisation methods.

Another important difference is the kind of transition rules that are used to
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move one solution to another solution. In a typical EA, the genetic mate-

rial of individuals is altered in a stochastic way through the application of

various non-deterministic genetic operators (recombination, mutation etc). In

contrast, traditional optimisation techniques, i.e. hill-climbing methods, use

pre-determined transition rules, which may cause the algorithm to get trapped

into local optima. The probabilistic character of EA search along with the ran-

dom initialisation of individuals allows EAs to avoid local optima.

From an implementation point of view, EAs are highly parallel procedures and

can be easily and conventionally used in a parallel system. For instance, since

EAs are made up from several tasks (selection, reproduction, recombination,

mutation) involving a group of individuals rather than the entire population,

several processing units can work on the same task. Additionally, since in

many real-world applications the evaluation of individuals is the most compu-

tationally expensive part of EAs, various distributed or parallel architectures

can be employed to reduce the running time substantially.

The trade-off between exploration and exploitation is well-known in optimi-

sation problems. In particular, searching a large and complex search space

involves a trade-off between exploring all possible solutions and exploiting

the information obtained up until the current generation. EAs achieve explo-

ration through the recombination and mutation operators, while the selection-

reproduction strategy is responsible for exploiting the obtained information.

An important issue is the balance between the extent of exploitation and explo-

ration. As Deb [27] pointed out “...if the solutions obtained are exploited too

much premature convergence is expected. On the other hand if too much stress

is given on a search, the information obtained thus far has not been used prop-

erly and the search exhibits a similar behaviour to that of random search...”.

The term premature convergence means that the EA converges into some local

optima rather than the global one. EAs allow explicit control over the ratio

of exploitation to exploration by varying the parameters of the correspond-

ing genetic operators. In contrast, traditional optimisation techniques have
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fixed degrees of exploitation and exploration and consequently are unable of

performing a flexible search.

2.4.11 Advantages and Disadvantages of EAs

This section outlines some of the advantages and disadvantages of EAs [11, 12,

27, 47, 71].

Advantages

• Intrinsic search parallelism because of the population-based approach.

• Stochastic transition rules to move within the search space that allow relatively

easy avoidance of local optima, and fast recovery from poor initialisations.

• Potential to generate several alternative solutions to the target problem.

• Fast recovery from poor decisions using the reservoir of knowledge acquired

through the collective learning of a population of individuals.

• No presumptions about the problem space, e.g. gradient information.

• No requirements for auxiliary information, except the fitness function. Prob-

lem specific information can be utilised to speed up the EA.

• Flexibility in balancing exploration and exploitation.

• Straightforward parallel implementation, and flexible hybridisation.

• Low development and application cost in a wide variety of problems.

• Interpretable solutions, unlike for instance neural networks.

Disadvantages

• No guarantee of finding the optimal solution within finite time.

• Computationally expensive due to the population-based search.
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• Fine-tuning several EA-related parameters may not be always trivial.

• Avoiding premature convergence requires a good choice for the selection

pressure. This in turn, may require preliminary experiments to set the

parameters before solving the problem.

• The conventional genetic operators are “blind”, producing variations at ran-

dom without any attempt to optimise the fitness of the new individual(s).



CHAPTER 2. BACKGROUND 52

2.5 Clustering with Evolutionary Algorithms

There have been many attempts to use EAs in clustering applications such as

[34, 38, 46, 49, 66, 88, 87, 90, 95]. Three recently compiled textbooks [22, 38, 43]

provide a brief introduction to EA-based clustering. Since in most clustering

problems some criterion function is to be optimised, EAs can be used to avoid

local optima and poor initialisations. This section surveys in detail the most

prominent methods to apply EAs for clustering problems.

2.5.1 Centroid-Based Representation Schemes

In principle, the centroid-based EAs encode and evolve the coordinates of the

cluster centers. This means that the length of the individuals is proportional to

the dimensionality of the problem and not to the number of records, as opposed

to partitioning-based encoding schemes (see section 2.5.3).

Optimal Centroid-Seed Selection

In an early hybrid approach proposed in [9], a GA encoding the set of centroids

optimised the selection of the initial centroid seeds and then a standard k-means

algorithm was applied to find the final partitions.

Genetically Guided Algorithm - GGA

In GGA [49] the fixed-length individuals represent the coordinates of the centers

of the k desired clusters. Both real-valued and binary representation was used,

but no clear advantage to either approach is observed. The minimisation of the

total within cluster variation (square-error criterion) serves as fitness function

for both Hard K-Means (or HKM) and Fuzzy C-Means (or FCM). The fitness

function includes terms to penalise degenerate solutions - individuals with empty

clusters. The results indicate that GGA provides almost identical data partition

that standard fuzzy or hard k-means algorithms will generate when the latter are

given the best possible initialisation. Additionally, GGA avoids local extrema and

has minimal sensitivity to initialisation. However, the execution time of GGA can

take up to two orders of magnitude more than standard FCM/HKM.
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Genetic C-Means Clustering Algorithm - GCMA

GCMA [90] is a hybrid approach that combines a GA with the classical HKM to

solve colour image quantisation problems. Each individual represents the coor-

dinates of the cluster centers using integer or real-valued coding while the total

within-square-error criterion serves as fitness function. Task specific variation

operators, e.g. mutation and recombination, create offspring as in conventional

EAs. However, before the evaluation stage all individuals are forced into local

optima by applying the standard k-means algorithm in the partition encoded by

each individual for a small number of iterations. To improve scalability the k-

means algorithm runs against a small randomly selected subset of the dataset. As

expected the hybrid EA is less sensitive to random initialisation than the HKM.

HYBRID-GA

HYBRID-GA [34] is one of the most comprehensive studies regarding the hy-

bridisation of GAs with other hill-climbing techniques for clustering. Initially the

author presents in a unifying framework a careful analysis of the time require-

ments of several subtasks of traditional relocation techniques, e.g. HKM, FCM.

HYBRID-GA is a tightly coupled approach rather than a serialisation of iterative

methods with GAs. HYBRID-GA employs a modified version of the GGA algo-

rithm described earlier in this section for a small number of generations, i.e. 50.

Instead of using GGA’s mutation operator, HYBRID-GA applies with probability

1/3 to each new individual two standard iterations of FCM/HKM. Finally, the

best individual is used to initialise a standard FCM/HKM and obtain the final

partition. Experimental results show that HYBRID-GA performs better than

the standard FCM/HKM avoiding easily local optima. Additionally, HYBRID-

GA outperforms GGA in execution time because it is hybridised with iterative

methods which are relatively fast in finding local optima.

Real Coded Genetic Algorithm - RCGA

RCGA [19] represents the cluster centroids as floating-point numbers, thereby

enabling the exploration of large domains without sacrificing precision. RCGA
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attempts to optimise the FCM criterion function using genetic operators that are

appropriate for non-binary strings. The real-valued solution vector is mutated

using Michalewicz’s [71] non-uniform mutation operator, which makes a uniform

search of the space initially, and a very local search at the later stages.

Self-Adaptive Genetic Algorithm - SAGA

Fine tuning the EA-related parameters may be a time consuming task. Since

little in the way of universal settings exist except in well-prescribed sub-domains,

many EA studies incorporate self-adaptation of EA-related parameters. In the

SAGA system [65], in addition to cluster centroids, strategy parameters such

as the crossover method [39] and mutation probability are also encoded. The

evolutionary optimisation is extended to the vector of strategy parameters to

achieve good quality results with minimal effort for parameter tuning.

2.5.2 Medoid-Based Representation Schemes

The search space for the k medoids partitioning problem is significantly smaller

than its counterpart k-means problem because only existing data points are valid

candidates to represent clusters. The use of medoid encoding is more robust

against outliers compared to centroid-based schemes in the same way that medi-

ans are more robust against outliers than the arithmetic mean value [43].

In [35] the set of k medoids is encoded as a string of integer-valued genes,

where each gene is a distinct number in the range 1,...,N, where N denotes the

number of objects in the dataset. To prevent the generation of infeasible solutions

- individuals containing genes with repeated values, the algorithm employs a

special type of recombination that tends to preserve medoids numbers occurring

in both parents in the resultant offspring. Each gene is mutated with a very

small probability into a new randomly generated value drawn from 1,...,N, with

the constraint than no other gene in the same chromosome has the same value.

Several interesting crossover and mutation operators to assure the generation

of non-lethal individuals in the context of the k-medoids problem have been also

proposed in [21]. Finally, successful hybridisations between EAs and hill-climbing

techniques for k-medoids clustering have been reported in the literature, e.g. [36].
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2.5.3 Partitioning-Based Representation Schemes

Partitioning-based variants use the so-called string-of-group-numbers encoding,

where each gene in the string corresponds to a data point while its integer value

represents the cluster to which the data point belongs. This approach suffers

from severe scalability problems because the length of the individuals is equal to

the number of records in the dataset. Some typical examples are [66, 70, 73].

Genetic K-means Algorithm - GKA

GKA [66], a hybrid approach, combines the robust nature of the genetic algorithm

with the high performance of the k-means algorithm. Each gene corresponds to

a data point while its integer value represents the cluster to which the data point

belongs. The minimisation of the total within cluster variation guides the search.

The novelty in this study is to replace the crossover operator used in conventional

EAs with one step of a standard k-means algorithm. Additionally, a task-specific

mutation operator acts as a generator of biased random perturbations by altering

the value of a gene in a way that the probability of changing an allele value to

a cluster number is more if the corresponding cluster center is closer to the data

point. The use of elaborate crossover and mutation operators improves the speed

of convergence significantly, while helping avoid local optima. However, encoding

the set of points instead of the cluster centroids is infeasible for large datasets.

2.5.4 Geometric-Based Representation Schemes

Another approach to clustering with EAs is to search for cluster descriptors,

e.g. hyper- ellipses or boxes rather than representative points. Approximating

data distributions with simple geometric primitives provides undoubtedly more

comprehensible descriptions compared to point-based cluster representations.

Hyper-Ellipses

In an early attempt described in [95], each variable-length chromosome contains

a set of ellipsoid-shaped cluster descriptors that may overlap. An ellipsoid is

completely defined by its geometric parameters, namely, its origin, length of its
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axes, and its orientation with respect to the axes of reference. These parameters

are encoded into a fixed-length binary sub-string that is treated as a complete

sub-solution to the clustering problem. Task-specific operators stochastically ma-

nipulate the genetic material in a way that the resultant solutions contain always

a feasible set of ellipsoids whose number is dynamically determined on the fly.

The latter property eliminates the restriction of specifying the number of clusters

a priori. The fitness function is rather complex reflecting in essence the extent

to which the generated ellipsoids correctly classify the given training samples. A

major limitation of the proposed method is that it requires a training sample

with known cluster labelling to compute the fitness of the individuals.

Hyper-Boxes

In [46] an EP clustering algorithm evolves a variable number of two-dimensional

hyper-boxes in light of a minimum coding criterion. Each hyper-box is represented

by five parameters, (x,y) coordinates of the center, width, height and the rota-

tion angle. Each solution also incorporates five self-adapted strategy parameters

that control the variance of mutation for the hyper-box parameters. Self-adapted

parameters specifying the number of hyper-boxes and how often a box is added

or deleted are also included. Each parent produces a single offspring by adding

a Gaussian random variable to the parent’s hyper-box parameters. The fitness

function uses a minimum description length (MDL) principle such that a min-

imum coding for a given dataset would be obtained. Despite the encouraging

results in two-dimensional datasets this method has not been evaluated on large

scale clustering problems.

2.5.5 Graph-Based Representation Schemes

The authors in [78] proposed an alternative representation scheme where the

clustering problem is cast as a graph-partitioning problem. In particular, each

vertex (or node) in the graph represents a data point, and there exist an edge

between two vertices if the data points corresponding to these vertices belong to

the same cluster. The objective is to use a GA to find connected subgraphs that
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represent clusters. Each candidate solution encodes a set of N (N : number of

data points) integer values where each data point has a corresponding position in

the chromosome. The alleles (possible values of a gene) are not the cluster labels,

but the indices of other data points. If the ith position in the chromosome has

value j, then there is a link in the graph connecting the vertices that correspond

to ith and jth data points. To reduce search combinations, the values for each

position are limited to the k-nearest neighbours of each data point, where k is

an input parameter. An advantage is that the number of clusters does not have

to be specified in advance. The algorithm is not scalable as the length of each

candidate solution is equal to the number of data points in the dataset, while one

must determine the nearest neighbours of all the data points. Computing the

nearest neighbours for massive and high dimensional datasets is a prohibitively

expensive task. Perhaps the most serious drawback of the algorithm is that its

output, i.e. graph, is of very limited usefulness as it is difficult to be interpreted.

2.5.6 Advantages and Disadvantages of EA-Clustering

In short, the advantages and disadvantages of EAs for clustering are:

• Advantages

- Clustering algorithms attempting to optimise a local criterion function

suffer from entrapments into local optima, e.g. k-means. It has been

shown, e.g. [49, 66], that the approach to optimising local criterion func-

tions with EAs offers avoidance of local optima and minimal sensitivity

to the initialisation phase. This is attributed to the global nature of EA

search.

• Disadvantages

- Conventional clustering techniques operating on a single solution at a

time are relatively fast in finding local optima. In contrast, EA-based

approaches to optimising local heuristics for clustering are significantly

slower than their conventional counterparts because of the population
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based search. Existing EA-based clustering approaches have been eval-

uated only on datasets with a limited number of data points of very low

dimensionality. [34, 49].

- Although hybridising EAs with local iterative methods may improve scal-

ability, it is not clear how to allocate the computing time: should we use

many generations of the EA and a few iterations of the local methods, or

run the EAs for a few generations and use the local methods to improve

the solutions considerably?

2.6 Summary

This chapter gave the computational background to the thesis - a detailed survey

of DM clustering techniques, and a brief discussion regarding the foundations of

EAs. In particular, the chapter has motivated the use of intelligent DM techniques

to semi-automate the discovery of hidden nuggets of knowledge in large databases.

The challenges for DM clustering in high dimensional spaces were outlined. This

chapter has surveyed several approaches towards clustering for data mining (DM)

applications. The severe impact of the curse of dimensionality phenomenon on

both the efficiency and effectiveness of clustering techniques was also discussed.

The literature survey led the author to believe that current clustering tech-

niques do not address adequately all requirements for DM clustering, although

considerable work has been done in addressing each requirement separately. It has

also established the aims of the research in this thesis: to develop a generic and

robust EA clustering methodology that meets the key criteria for DM clustering.

The work described in the following chapters aims to address this challenge.
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Chapter 3

Analysing Univariate Histograms

Capsule

In this Chapter a novel statistical methodology, called Uniform-region

Discovery Algorithm (or UDA), is proposed to analyse smooth univariate den-

sity histograms. The goal of UDA is to identify axis-parallel cutting planes

from univariate density histograms that produce cleanly separable regions of

flat quasi-uniform (or U-region) data distribution. A U-region is defined as a

set of contiguous bins whose histogram values exhibit only a marginal varia-

tion. UDA combines standard histogram smoothing techniques (i.e. Kernel

Density Estimation) with new heuristics that perform a fine localised analysis

of the data distribution. UDA is exceptionally resistant to noise and local

data artifacts. The U-regions identified by UDA are extensively used for both

data quantisation (Chapter 4) and clustering (Chapter 5).

3.1 Introduction

Recent DM research suggests that to tackle the curse of dimensionality (sec-

tion 2.3.2), clustering for high dimensional datasets should involve searching for

“hidden” subspaces with lower dimensionalities, in which relatively tight clus-

ter structures can be observed when the data are projected onto the subspaces

[5, 7, 23, 72, 74]. Discovering such inter-attribute correlations and location of

the corresponding clusters is known as the projective clustering problem. Flat

60
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or uni-modal regions along density histograms help to generate cluster “signa-

tures” (U -regions) approximating densely populated regions in some subspaces.

Hence, projected clusters and their corresponding subspaces can be recovered by

analysing univariate density histograms.

This Chapter presents a novel statistical methodology - Uniform-region Discovery

Algorithm (or UDA) - to construct and analyse univariate density histograms for

the purposes of data quantisation (Chapter 4) and projective clustering (Chapter

5). UDA has the ability to identify U -regions of arbitrary density, while it is

exceptionally resistant to noise and local data artifacts.

The remainder of this Chapter is structured as follows: Section 3.2 outlines

the weaknesses of the classical density and frequency histograms as means to

study the density distribution of univariate samples. Section 3.3 motivates the

use of Kernel Density Estimation (KDE) techniques for automatic construction of

reasonably smooth density histograms, which are subsequently analysed by UDA.

An efficient binned KDE technique is also presented in section 3.3. Section 3.4

presents the principles of UDA consisting of three novel statistical tests that are

discussed in sections 3.4.1 - 3.4.3.

3.2 Classical Frequency and Density Histograms

The oldest and most widely used density estimators for a univariate sample are the

classical frequency and density histograms [92, 94, 97]. These are usually formed

by dividing the real line into equally sized intervals (or bins). The frequency

histogram is a step function with height for a bin being the number of points

contained in that bin. The density histogram is also a step function with height

for each bin being the proportion of the sample contained in that bin divided

by the width of the bin. Hence, the density histogram is a normalised frequency

histogram, and thereby integrates to one.
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3.2.1 Limitations of Classical Histograms

While simple, both the classical frequency and density histograms have weak-

nesses. In particular, both histograms are very sensitive to the choice of bin

width and the placement of the bin edges [92, 94, 97]. However, it is the choice

of bin width which, primarily, controls the amount of smoothing being applied to

the data. Depending on the choice of bin width the histogram gives a different

impression of the shape of the density of the data. A small bin width leads to

a relatively jagged histogram that under-smooths the local distribution density.

It is difficult to study the density distribution using a very jagged histogram

due to the presence of many local artifacts. In contrast, large bin widths result

in an over-smoothed histogram that may flatten important multi-modal density

structures.

It is essential to construct histograms that allow both the detection of signif-

icant differences in density and that have smoothed out local data artifacts. The

Kernel Density Estimator (KDE) - a nonparametric technique for density estima-

tion - is insensitive to the placement of the bin edges and automatically creates

a reasonably smoothed approximation of the real density. The thesis makes ex-

tensive use of univariate KDE techniques to construct smoothed histograms for

the purposes of analysing the data distribution in the full-dimensional space.

3.3 Kernel Density Estimation - KDE

This section describes the Kernel Density Estimation (KDE) method that is used

to automatically create a reasonably smooth approximation of the real density.

3.3.1 Kernel Smoothing

Kernel Density Estimation is a nonparametric technique (given a suitable as-

sumption for the data distribution, e.g. normality assumption in page 65) for

density estimation in which a known density function, the kernel, is averaged

across the observed data points to create a smooth approximation of the real
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density. Given n observations X1, ..., Xn the kernel density estimation at a point

x can be thought of as being obtained by ”...spreading a probability mass of size

1/n associated with each data point about its neighbourhood...” [97] by centring a

scaled kernel function, usually termed as “bump”, at each observation and then

summing the n kernel ordinates at that point. Combining contributions from

each data point means that in regions where there are many observations, and it

is expected that the true density has a relatively large value, the kernel estimate

should also assume a relatively large value [97]. The opposite should occur in

regions where there are relatively few observations.

The shape of the bump is determined by a mathematical function called kernel

K, which is usually chosen to be a unimodal probability density function (pdf)

that is symmetric about zero and integrates to one. The spread of the kernel is

determined by a window- or band-width, h, that is analogous to the bin width

of a classical density histogram. A detailed discussion for KDE can be found

elsewhere [92, 94, 97]. The kernel density estimate at point x is given by

f(x, h) = 1
nh

∑n
i=1 K

(
x−Xi

h

)
(3.3)

Various types of kernels have been proposed in the literature [92, 94, 97].

Table 3.1 illustrates some commonly used symmetric kernel functions.

Normal Epanechnikov

K(υ) = 1√
2π

e
−υ2

2 , υ ∈ R K(υ) =
{

3
4(1− υ2), if |υ| < 1
0, otherwise

Triangular Biweight

K(υ) =
{

1− |υ|, if |υ| < 1
0, otherwise

K(υ) =
{

15
16(1− υ2)2, if |υ| < 1
0, otherwise

Rectangular or Uniform Triweight

K(υ) =
{

1
2 , if |υ| < 1
0, otherwise

K(υ) =
{

35
32(1− υ2)3, if |υ| < 1
0, otherwise

Table 3.1: Common Kernel Functions

It has been widely recognised that the shape of the kernel function is not

particularly crucial to the quality of the density estimate. It is the choice of the

bandwidth h that primarily determines its statistical performance since it controls

the amount of smoothness in the estimate of the density function [92, 94, 97].
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Figure 3.6: Epanechnikov KDE for Various Smoothing Parameters

Figure 3.6 shows three kernel density estimates based on a sample of size

n = 1000 from a density that is a mixture of three Gaussian distributions N(0, 1),

N(−3
2
, (1

3
)
2
) and N(3

2
, (1

4
)
2
) with probabilities 1

2
, 1

4
, and 1

4
, respectively. The

Epanechnikov kernel has been used to construct the estimates. If h is chosen too

small (e.g. h=0.08) then spurious fine structures become visible, while if h is

too large (e.g. h=0.95) then the trimodal nature of the distribution is obscured.

Evidently, in this particular example the value h=0.4 provides a good compromise

since both the essential structure of the distribution has been recovered while most

of the local noise has been smoothed away.

3.3.2 Automatic Bandwidth Selection

The problem of choosing an appropriate smoothing level is of great importance

in density estimation. A naive approach would entail considering several density

estimates obtained over a range of bandwidths and selecting subjectively by eye

the most satisfactory estimate. However, when density estimation is to be used

routinely in large-scale problems then an automatic fast procedure is essential.
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The Normal Scale Bandwidth Rule

A popular method for automatic selection of h, is the oversmoothing of the nor-

mal scale bandwidth rule, which computes the optimal bandwidth for a normal

density with the same scale as the underlying density that is to be estimated. In

particular, if σ denotes the standard deviation of the data then h is given by [92]:

h = 1.144 σ n−1/5 (3.4)

Formulae 3.4 suggests a nonparametric way of computing the optimal bandwidth

to be used with the normal kernel (table 3.1), and is expected to produce reason-

able smoothing when the data distribution is close to normal. As Scott noted, if

h1, h2 are optimal bandwidths for kernels K1 and K2, respectively, then one can

switch between different kernels by scaling according to the standard deviations

σK1 and σK2 [92]:

h2 ≈
(

σK1

σK2

)
h1 (3.5)

Therefore, one can easily compute the optimal bandwidth for a family of kernels

e.g. biweight, Epanechnikov, using the normal scale bandwidth rule as starting

point and then rescaling the obtained bandwidth according to equation 3.5. Table

3.2 summarises the factors for equivalent smoothing among a family of popular

kernels.

From - To Normal Uniform Epanc. Triangle Biweight Triweight
Normal 1 1.740 2.214 2.432 2.623 2.978
Uniform 0.575 1 1.272 1.398 1.507 1.711
Epanec. 0.425 0.786 1 1.099 1.185 1.345
Triangle 0.411 0.715 0.910 1 1.078 1.225
Biweight 0.381 0.663 0.844 0.927 1 1.136
Triweight 0.336 0.584 0.743 0.817 0.881 1

Table 3.2: Factors for Equivalent Smoothing Among Kernels [92]

For departures from normality, e.g. multimodal or heavily skewed density dis-

tributions, a global bandwidth approach such as the normal scale bandwidth rule,

may result in undersmoothing in areas with only sparse observations while over-

smoothing in others. To deal with cases where the optimal amount of smoothing
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varies across the domain various extensions of the basic KDE have been pro-

posed in the literature [92, 94, 97]. These methods either use a broader kernel

over observations located in sparse regions (i.e. variable kernel density estima-

tor) or employ a different bandwidth at each point where the density is estimated

(i.e. local kernel density estimator). Both methods adapt the amount of smooth-

ing to the sparseness of the data by varying the bandwidth inversely with the

real density. Despite their increased flexibility, these extensions are prohibitively

expensive for large and high-dimensional datasets, simply because one must pre-

compute multiple bandwidths.

3.3.3 Binned Kernel Density Estimation

Motivation for Binned KDE

For moderate-to-large size samples or procedures involving a substantial number

of density estimations, e.g. massive and high-dimensional datasets, the direct use

of the basic KDE of section 3.3.1 is very inefficient [94, 97]. Consider, for example,

the problem of obtaining a kernel density estimate over a mesh of M grid points,

g1, ..., gM . Indeed, given a set of n observations, computing the KDE over the

mesh of M points would require O(nM) kernel evaluations [97]. This number

can be much reduced if one uses kernels with compact (confined) support so that

some data points fall outside the support of K. The support of a kernel is the

interval where the kernel function is nonzero. But then one also needs to perform

a test to see if this is the case. With binning, however, the computational order is

reduced to only O(M) resulting in an immense saving [97]. This is because there

are only M distinct grid point differences, and therefore by the symmetry of K no

more than M kernel evaluations are required. In practice, the approximations are

usually reasonable for moderate values of M (e.g. 100<M<500), while for larger

values the approximations and the exact estimates are virtually indistinguishable

[97].
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Principles of Binned KDE

Let K be a symmetric kernel with finite support confined on [-t, t] (t>0). Addi-

tionally, let [l, u] denote the real-valued interval of the problem domain that has

been partitioned into m bins of uniform width w.

The goal is to compute a smoothed kernel density estimate for all (m) bins. But

what resolution must one use for the binned KDE? Following the recommendation

that the resolution for binned KDE must be relatively fine [97], the new binning

algorithm proceeds by partitioning each one of the original bins (m) into (p+1)

disjoint sub-intervals using p equi-spaced splitting sites (1≤p). These splitting

sites along with the edges of the original bins define a regular grid consisting of a

mesh of M=(m+1+mp) points, that is, l=g1 < ... < gM=u with spacing
(

w
p+1

)
.

Following the recommendation that M should be set to moderate values [97] (e.g

M=100) so as to obtain a reasonable approximation of the exact density estimate,

p is automatically computed as follows:

p = max (1, d(M −m− 1)/me) (3.6)

where dxe is the smallest integer that is greater than or equal to x.

The basic idea of binning KDE methods relies on rounding each observation

to the nearest point on a regular spaced grid according to a binning rule. In this

thesis we use the so-called, simple binning strategy, where for each observation

the nearest grid point is assigned a unit weight. When binning is completed, each

grid point gi (i=1,...,M) has an associated bin count ci that is the sum total of all

the weights that correspond to sample data points that have been assigned to gi.

The binned kernel density estimator at the jth grid point is now given by [97]:

f(j, h) = 1
nh

∑M
i=1 K

(gj−gi

h

)
ci, j=1,...,M (3.7)

Given that ci is zero outside [1, M ] it follows that equation 3.7 can be rewritten

as:

f(j, h) =
∑M−1

z=1−M cj−zkz, j = 1, ...,M (3.8)

where the kernel weight kz is defined as:

kz = 1
nhK

(( 1
h

) (u−l)z
M−1

)
, z ∈ Z (3.9)
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The advantage of binning stems essentially from the fact that K is symmetric

with finite support that is confined to [-t, t]. Therefore, kz need to be evaluated

only once, and only for those values of z where kz is nonzero, that is z = 0, .., L

where

L = min(bth(M − 1)/(u− l)c, M − 1) (3.10)

where bxc is the largest integer that is smaller than or equal to x.

The final step is to perform the direct convolution of cz and kz in O(M2) time

using:

f(j) =
∑L

z=−L cj−zkz, j = 1, ...,M (3.11)

Finally, the density estimate for each of the original bins (m) can now be

determined by averaging the density estimates of the grid points lying inside that

bin including the bin edges.

3.3.4 Binned KDE for Bounded Domains

Often the domain of definition of a density is an interval of the real line. Since

the KDE has no knowledge of the boundary, when the unknown density does not

vanish in the boundary regions some probability mass associated with data points

belonging to these regions may spill outside the boundaries [97]. Therefore, the

density estimate obtained will no longer integrate to unity. Various modifica-

tions of the basic kernel method have been proposed to ensure that the density

estimator performs well both near the boundaries and in the main part of the

distribution [92, 94, 97].

In this thesis, the boundary problem is tackled by employing special bound-

ary kernels that are a linear multiple of the basic kernel K (formulae 3.3) [97].

Without loss of generality, suppose that the lower (l) and upper (u) bounds of

the interval of interest are located at zero and wm (m, w: the number and width

of bins, respectively). Additionally, let K be a kernel with support confined to

[-1, 1], e.g. biweight, Epanechnikov.

When estimating the density for grid points lying inside the main part of the

distribution (h,wm− h) the ordinary binned kernel of section 3.3.3 can be safely



CHAPTER 3. ANALYSING UNIVARIATE HISTOGRAMS 69

used because, centred on these grid points it does not overspill the boundary.

The problem of “losing” a substantial amount of probability mass arises when

the KDE is trying to estimate the density for grid points that are located within

one bandwidth of the boundaries [0, h) (left) and (wm-h,wm] (right), provided

of course that the real density does not vanish in these regions. Suppose that

our aim is to estimate the density at grid point gj=αh (for a definition of gj see

section 3.3.3) such that (0≤α<1).

The standard technique for preventing KDE from assigning probability mass

outside the kernel support at the left boundary region is to use the following

linear multiple of the kernel K [97]:

KL(υ,α)=


ν2,α(K)−ν1,α(K)υ

ν0,α(K)ν2,α(K)−ν1,α(K)2
K(υ) if (-1<υ<α)

0 otherwise
(3.12)

where, υ =
gj−gi

h
and νr,α(K) =

∫ α

−1
xrK(x)dx.

For instance, one can determine the value of the integral νr,α(K) for the

Epanechnikov kernel as a function of α as follows:

ν0,α(K) ν1,α(K) ν2,α(K)

3
4α + 1

2 −
1
4α

3 − 3
16α

4 − 3
16 + 3

8α
2 − 3

20α
5 + 1

10 + 1
4α

5
(3.13)

After the boundary correction the binned kernel density estimator at gj=αh

(0≤α<1) point is [97]:

f(j, h, α) = 1
nh

∑M
i=1 KL(υ, α)ci, j=1,...,M (3.14)

where, υ =
gj−gi

h
.

The derivation of the kernel density estimate for the right boundary is the

dual of the procedure described above.

3.3.5 KDE for Frequency Histogram Smoothing

The binned KDE with boundary correction described in section 3.3.4 yields a

smoothed density histogram. One can easily obtain a smoothed frequency his-

togram by multiplying the kernel density estimate by the factor (nh), where h

and n denote the smoothing bandwidth and sample size respectively.
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3.4 Uniform-region Discovery Algorithm - UDA

This section presents the Uniform-region Discovery Algorithm (or UDA), a novel

statistical methodology that is used to analyse the density of data points in

smoothed univariate histograms. UDA identifies U -regions in uni-dimensional

frequency histograms. A U -region is defined as a set of contiguous bins with small

histogram value variation. UDA consists of three elaborate statistical tests that

are discussed in detail in sections 3.4.1 - 3.4.3. UDA is extensively used for both

data quantisation (Chapter 4) and clustering (Chapter 5). Henceforth, the terms

density and frequency histogram are used interchangeably to refer to a smoothed

frequency histogram obtained using the KDE method of section 3.3.5, unless

otherwise stated. Additionally, in the remainder of this Chapter a candidate

rule R can be viewed as an axis-parallel hyper-rectangular region being a proper

subset of the feature space F (section 2.3.1).

3.4.1 The First Homogeneity Test - HT1

Motivation Behind HT1

The first homogeneity test (HT1) attempts to discriminate well-separated clus-

ters, and to distinguish clusters from the surrounding noise. Two neighbouring

clusters are well-separated if their densities differ significantly or there is a noise

region between them whose density is considerably lower compared to both clus-

ter regions. In other words, the goal of HT1 is to identify areas inside the feature

space F where the density of points does not change considerably.

HT1 identifies axis-parallel cutting planes, i.e. splitting sites, from univariate

density histograms that produce cleanly separable regions of quasi-uniform data

distribution. Given a smoothed density histogram, a quasi-uniform region, or

U -region, is defined as a set of contiguous bins whose histogram values exhibit

only a marginal variation.

For instance, consider the density histograms of the candidate rule R, as

shown in figure 3.7. Undoubtedly, R is non-homogeneous as it encloses four dis-

tinct clusters, in addition to noise. Examination of the horizontal-axis histogram
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reveals that there are six well-separated U -regions in that dimension. Further-

more, it can be easily observed that high quality cutting planes, plotted in figure

3.7 as bold dashed lines, pass through the boundaries of U -regions.

C2

C3

C4

C1

X

R

Y

DCDL DR

cpL cpR

UCL

LCL

D

cutting planes LCL UCL

D

density histograms

Figure 3.7: Motivation Behind the First Homogeneity Test - HT1

Principles of HT1 Algorithm

As mentioned above, HT1 seeks axis-aligned cutting planes partitioning the orig-

inal histogram into disjoint U -regions. In this thesis, a high quality cutting plane

passes through a bin (valley) whose density is significantly lower compared to the

histogram value of the most densely-populated bin (peak) and the valley bin is

located at the borders of the region containing the highest peak. A valid cutting

plane need not necessarily be surrounded on both sides by bins of significantly-

higher density. This is simply because the goal of HT1 is to identify all U -regions

regardless of their density. Notice that the valley with the lowest histogram value

may not always be the best splitting point since such an approach is prone to
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over-splitting low density U -regions that adjoin U -regions of higher density.

Let us assume that the ith feature-gene (see section 5.3) [lij, uij] of jth rule

covers k bins (uij-lij+1=k). Additionally, let flij , ..., fuij
be the k smoothed his-

togram values, i.e. number of points contained in each bin, that correspond to

the ith dimension of jth rule. The partitioning of the histogram into U -regions

is performed recursively as follows:

Initially, there is a single region D=[lij, uij] comprising all bins. HT1 proceeds

by finding the most densely populated bin inside D, and sets a so-called Upper

Control Limit (UCL) to the histogram value of the highest peak, UCL=max(flij ,...,

fuij
). The baseline Lower Control Limit (LCL), which specifies the splitting den-

sity level is then computed as:

LCL = Th ∗ UCL (3.15)

where the user-specified homogeneity or uniformity threshold Th ∈ (0, 1] controls

the desired degree of uniformity.

If all histogram values exceed LCL then D is temporarily deemed a U -region

and kept intact. For instance, HT1 detects only one U -region along the vertical-

axis histogram in figure 3.7. In general, a U -region detected in a uni-dimensional

histogram may be the result of the joint projection of multiple clusters. Note

that D needs to pass two additional homogeneity tests described in sections 3.4.2

and 3.4.3, to be securely considered as a U -region.

If HT1 found at least one bin whose histogram value falls bellow LCL, then

D is split into three contiguous regions, namely, DL, DC , and DR. This case

can be seen along the density histogram that corresponds to the horizontal-axis

of rule R in figure 3.7. Initially, the central segment DC comprises only one

bin with the highest density. DC is then grown as much as possible in both

directions until finding the closest bin (if any) with density less than LCL. Valid

cutting planes would pass through the boundaries of such bins. If cpL and cpR

denote the left and right cutting planes, respectively, then the newly formed

regions are DL=[lij, cpL], DC=[cpL+1, cpR-1] and DR=[cpR, uij]. Depending on

the data distribution the boundary regions DL and DR may be empty. DC is
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then temporarily deemed a U -region and is not analysed further by HT1. The

above procedure is recursively applied to each newly formed boundary region

independently until no more splitting sites occur. In essence, as HT1 proceeds,

U -regions are gradually detected at decreasingly low levels of density.

To suppress the subsequent formation of sparse rules (section 5.3) and to

reduce computation, HT1 instantly discards all sparse regions including those

that are U -regions. A region is sparse if the number of points inside that region

is less than NTs, where N: total number of points, Ts: sparsity threshold.

3.4.2 The Second Homogeneity Test - HT2

Motivation Behind HT2

Experiments in section 6.5 showed that when the level of noise is relatively low,

HT1 suffices for separating neighbouring clusters of similar density. In particular,

it is highly likely that the histogram values of the noise regions between the actual

clusters, do not exceed the baseline LCL. In contrast, high levels of noise may

significantly hinder the ability of HT1 to effectively discriminate adjacent clusters

of similar density, because the necessary separating valleys between the clusters

could potentially be obscured by the increased amount of noise.

To tackle this problem a second homogeneity test (HT2) is independently ap-

plied to all U -regions obtained earlier by HT1. In short, UT2 consists of a series

of chi-square (χ2) tests at decreasing levels of density to reveal (if any) signifi-

cant multi-modal histogram structures that potentially indicate the existence of

multiple clusters in higher dimensionality spaces.

Principles of HT2 Algorithm

Let l and u denote the lower and upper bound of a U -region ([l, u]), respectively,

covering k bins (u-l+1=k). Additionally, let fl, fl+1, ..., fu−1, fu be the k smoothed

histogram values that correspond to the given U -region, while UCL=max(fl,

fl+1,..., fu−1, fu).

Let Tχ2 ∈ (0, UCL) denote the current level of density where the χ2 test is to

be applied. Starting from the most densely populated bin inside [l, u], HT2 finds
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the left (l′) and right (u′) most bins whose histogram values exceed a baseline

threshold Tχ2 . It then computes the trimmed frequencies fl′ , fl′+1,...,fu′−1, fu′

of the k′= (u′-l′+1) bins inside [l′, u′] ([l′, u′] ⊆ [l, u]). More specifically, if the

histogram value fi of the ith bin, i ∈ [l′, u′], is greater than Tχ2 (Tχ2 < fi) then

fi′ = Tχ2 , otherwise, fi′ = fi. The Goodness of Fit for a uniform distribution

assumes all k′ trimmed bins inside [l′, u′] are expected to have an equal frequency

Ei = 1
k′

∑u′

i=l′ fi′ , i ∈ [l′, u′]. Formally, HT2 assesses the uniformity of the trimmed

data using a standard χ2 test [50]:

Null hypothesis Ho : The trimmed data in [l′, u′] follow uniform distribution

Alternative hypothesis Ha: The trimmed data are not uniformly distributed

Test Statistic value : χ2 =
∑u′

i=l′
(Oi−Ei)

2

Ei

Rejection region : χ2
a,k′−1 ≤ χ2

where Oi = fi′ and Ei are the observed and expected frequency for bin i, respectively

Significance level a = 0.05

Figure 3.8: The Standard χ2 Test for Uniformity

Therefore, the null hypothesis (Ho) that the trimmed data is from a quasi-

uniform distribution is rejected if χ2 ≥ χ2
a,k′−1, where χ2

a,k′−1 is the chi-square

percent point function with k′-1 degrees of freedom and a significance level of a.

Each U -region discovered by HT1 undergoes a series of χ2 tests where Tχ2

gradually decreases from (0.95 ∗ UCL) to (LCL) by a fixed factor (0.05 ∗ UCL).

If the null hypothesis (Ho) is rejected then HT2 splits the original U -region [l, u]

along its lowest density bin, thereby creating two new partitions. The original

U -region is then discarded. Similar to HT1, HT2 instantly discards any newly

formed region that is sparse, to suppress the subsequent formation of spurious

rules and to reduce computation. The χ2 test is then independently reapplied to

each one of the newly formed rules.

If a U -region passes all χ2 tests then it is deemed a U -region for this stage
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and is not further processed by HT2. Notice that if the χ2 test at a given density

level Tχ2 is accepted, and additionally, l′ = l, and u′ = u, then the original region

is automatically deemed a U -region, without performing the remaining (if any)

tests.

An HT2 Example

Figure 3.9 demonstrates why HT2 is vital to discriminate neighbouring clusters of

relatively similar density under noise conditions. In this example, the candidate

rule R encloses two distinct clusters surrounded by highly noisy regions. Notice

that the relative darkness inside R indicates the density of points. Obviously

HT1 fails to detect the two clusters because in both histograms all density values

exceed the corresponding LCL. In contrast, HT2 is able to detect one cutting

plane (bold dashed line) along the horizontal axis.

In particular, when HT2 applies the χ2 test at relatively high density levels,

e.g. Tχ2 = 0.8∗UCL, the corresponding trimmed histogram (grey-shadowed area

in figure 3.9(b)), exhibits only a marginal variation, thereby the null uniformity

hypothesis (Ho) is accepted. However, at a lower density level, i.e. Tχ2 = 0.5 ∗

UCL (figure 3.9(c)), where the trimmed histogram contains bins belonging to

both clusters, the χ2 test rejects the null hypothesis, thereby, HT2 detects the

cutting plane shown as dashed line that eventually splits R into two regions.

3.4.3 The Third Homogeneity Test - HT3

Motivation Behind HT3

The combination of HT1 and HT2 partition the original histogram into regions

of either quasi-uniform or uni-modal distribution. Although the first two tests

effectively discriminate the clusters from one another, they may fail alone to

delineate the boundaries of clusters with accuracy when the level of surrounding

noise is high. This is because noise points located near the boundary of a cluster

may make the density in the tails of the uni-dimensional histograms exceed the

splitting level LCL. As a result, fully repaired rules would be extended far beyond

the cluster edges towards the noisy regions.
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Figure 3.9: The Principles of HT2 Homogeneity Test

In such a case, there are many bins with relatively low density corresponding to

noise, and few higher density bins corresponding to the central part of a cluster. In

other words, the distribution of the histogram values is expected to be positively

skewed. UDA tackles this problem using the third homogeneity test (HT3), an

elaborate statistical test that examines whether the distribution of the histogram

values is significantly skewed in the right tail.
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Principles of HT3 Algorithm

Statistically, right extreme outliers are observations lying 3.0 ∗ IQR above the

third quartile (Q3), where IQR=Q3-Q1 (Q1: first quartile) denote the inter-

quartile range of the sample [50]. Let l and u denote the lower and upper bound

of a U -region ([l, u]), respectively, covering k bins (u-l+1=k). Additionally,

let fl, fl+1, ..., fu−1, fu be the k smoothed histogram values that correspond to

the given U -region. To decide whether the distribution of the histogram values

is significantly skewed in the right tail, HT3 computes the right outlier fence

(Q3+3.0∗IQR) for the observations fl, fl+1, ..., fu−1, fu. If there are no histogram

values above the outlier fence the corresponding region is finally deemed a U -

region. Otherwise, similar to HT1, the histogram is split into three regions as

follows: Initially, the central region contains only the bin with the highest peak.

HT3 grows the central region as much as possible in both directions until finding

a bin whose histogram value falls below the outlier fence. Valid cutting planes

would go through the boundaries of the central region. All the newly formed

regions undergo HT3 independently until no more splitting sites occur. Similar

to HT1 and HT2, HT3 instantly discards all newly formed sparse regions. Finally,

HT3 is not applied to very low density histograms, e.g. a histogram where the

bin with the highest peak contains less than 35 data points [23, 29], because such

low density bins reflect local artifacts rather than a statistically significant trend.

An HT3 Example

Figure 3.10 demonstrates the beneficial effect of HT3 on the quality of the clus-

tering results. In short, the candidate rule R remains non-homogeneous even

after having successfully passed the first two homogeneity tests, HT1 and HT2,

in both dimensions. Obviously, although the density histogram for the horizontal

axis is characterised by a sharp uni-modal structure, the increased amount of

noise makes the density in the surrounding regions exceed the splitting baseline

LCL. HT3, in contrast, is able to separate the tails from the central part of the

distribution by exploiting the presence of a few high density bins lying beyond

the outlier fence. Therefore, the original rule R is split along the cutting planes
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shown as dashed lines in figure 3.10.
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Figure 3.10: The Principles of HT3 Homogeneity Test

3.5 Summary

In this chapter we have described a novel univariate analysis methodology (UDA)

identifying flat density regions (U -regions) in smooth histograms. Neighbouring

U -regions co-existing at different density levels are of great importance as they

indicate the existence of distinct cluster structures in higher dimensional spaces.

Often, univariate U -regions help to generate accurate cluster “signatures”, as their

boundaries coincide with the edges of the actual clusters. We have shown how

UDA detects such regions using three elaborate statistical tests. Advanced kernel

smoothing techniques to construct histograms that allow both the detection of

significant differences in density and that have smoothed out local data artifacts,

were also discussed. It has been demonstrated that UDA can discover U -regions

of arbitrary density even under very noisy conditions.

UDA plays a vital role in both data quantisation and clustering as subse-

quently explained in chapters 4 and 5, respectively.



Chapter 4

Quantisation of the Data Space

Capsule

In this Chapter a new statistical quantisation algorithm, the TSQ (Two Stage

Quantisation), is proposed to support the clustering of large and high dimen-

sional numerical datasets. The quantised data are subsequently analysed by

NOCEA - a novel evolutionary-based clustering algorithm that is described

in detail in Chapter 5. In particular, TSQ imposes a multi-dimensional grid

structure onto the data space to reduce the search combinations for NOCEA.

The classical trade-off is between computational complexity and resolution,

where the latter greatly determines the quality of the clustering results.

TSQ quantises the dataspace using a novel statistical analysis of uni-

dimensional density histograms. It determines an appropriate grid resolution

that enables the discrimination of clusters, while preserving accuracy and ac-

ceptable computational cost. It combines standard statistical techniques like

Kernel Density Estimation, with new heuristics that reflect the local distri-

bution. Unlike other grid-based techniques, TSQ has no specific bias toward

coarse resolutions, because NOCEA can operate on relatively fine grids as it

attempts to produce highly homogeneous rather than highly dense clusters.

4.1 Introduction

In spite of recent advances in the field of unsupervised learning, high dimensional-

ity continues to pose challenges to clustering algorithms because of the inherent

sparsity of the data space and the fact that different types of inter-attribute

79
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correlations may occur in different subsets of dimensions in different localities

(neighbourhoods) of the data. Grid-based clustering techniques, e.g. CLIQUE,

MAFIA, ENCLUS, WaveCluster, include a pre-processing step, hereafter referred

to as quantisation, that imposes a multi-dimensional grid structure onto the data

space on which all the clustering operations are performed. Summarised infor-

mation about the data points in each cell is stored, and subsequently exploited

by the clustering algorithm.

Quantisation reduces the search combinations by aggregating together points

in the same cell, and the classical trade-off is between computational complexity

and resolution, where the latter greatly determines the quality of the clustering

results. Since multi-dimensional analysis is prohibitively expensive due to the ex-

ponential growth in combinatorial optimisation as dimensionality increases, the

dataspace is quantised by analysing each dimension independently. Unfortunately

any type of uni-dimensional analysis can only produce a rough approximation of

the optimal resolution as it disregards all inter-attribute correlations occurring in

higher dimensional spaces. Most grid-based clustering techniques regard clusters

as unions of connected high-density cells. To reduce computational complexity

while locating adjacent dense cells in high dimensional spaces, grid-based tech-

niques adopt coarse resolutions at the expense of the accuracy of the clustering

results [7, 23, 74].

Chapter Contribution

In this Chapter a novel Two StageQuantisation (TSQ) algorithm is proposed and

implemented, to support the clustering of large and high dimensional datasets.

TSQ prepares the raw data for the new evolutionary-based NOCEA cluster-

ing algorithm described in Chapter 5. NOCEA performs a grid rather than

a continuous-space search. Fine grid resolutions lead to enormous amount of

computation, whereas the quality of the clustering results may be substantially

degraded using coarse grids. TSQ strives to compute the maximal required res-

olution that enables NOCEA to produce good quality results with an acceptable

computational cost. To achieve this the data distribution in each dimension is



CHAPTER 4. QUANTISATION OF THE DATA SPACE 81

thoroughly analysed by sophisticated statistical procedures. The basic idea of

TSQ is to locate uni-dimensional histogram regions with only a marginal varia-

tion in density and then apply standard quantisation techniques to these regions

so as to derive a locally optimal resolution. A weighted-sum method is then used

to scalarise these local resolutions into a uniform global bin width.

Unlike other grid-based techniques that operate on coarse grids so as to lo-

cate dense regions, TSQ is unbiased towards coarse resolutions, because in the

quantised space NOCEA seeks homogeneous regions of arbitrary density.

The remainder of this Chapter is structured as follows: Section 4.2 provides an

overview of TSQ. Section 4.3 gives a formal definition of the multi-dimensional

grid. Section 4.4 discusses the challenges of quantising high dimensional datasets,

and recalls the limitations of previously proposed quantisation methods. Section

4.5 describes in detail the two stages of TSQ. In particular, sections 4.5.1 and

4.5.2 present the gross and detailed statistical analysis of TSQ, respectively.

4.2 An Overview of TSQ

Figure 4.11 shows the two stages of the TSQ quantisation algorithm. Initially,

a gross statistical analysis is applied to each dimension independently aiming

to determine an appropriate bin width that allows capturing large-scale differ-

ences in density at different localities of the dimension. The initial bin width

is computed using two important distributional metrics, namely, dispersion and

entropy. Other techniques either ignore the distribution, e.g. CLIQUE, EN-

CLUS, WaveCluster, or use limited statistical information, e.g. MAFIA. The

detailed statistical analysis firstly identifies regions in the histogram where the

distribution of points is approximately uniform. Each quasi-uniform region un-

dergoes then a localised analysis, which determines an optimal width for this

region based on a standard formulae. In contrast, other quantisation techniques,

e.g. MAFIA, create a single bin for each quasi-uniform region, which may yield

poor quality results if multiple clusters with very different characteristics overlap

in this flat-density region.
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based on data dispersion and entropy
Computation of provisional resolution

Cell
A bin of XZ

X
Y

Raw Data

Gross Statistical Analysis

Removal of Outliers

Construction of smoothed density histograms
using Kernel Density Estimation (KDE)

Detection of regions with quasi−uniform
distribution along the density histograms

Quantisation of quasi−uniform regions
based on sample size and standard deviation

using a weighted−sum method

Detailed Statistical Analysis

Input

Output

TSQ

Scalarisation of the locally optimal bin widths

Figure 4.11: Two Stage Quantisation Algorithm (TSQ)

Ideally, each such region would keep its own bin width leading to non-uniform

grids delineating cluster boundaries more accurately. However, a non-uniform

grid adds a substantial amount of extra work when evaluating candidate solutions.

Therefore, a weighted-sum method is used to scalarise the set of different widths

into a single value by pre-multiplying each width with a specific weight that is

proportional to the percentage of points lying inside that region.
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4.3 The Multi-Dimensional Grid

Let F = A1 × ... ×Ad be the d-dimensional feature space as defined formally in

section 2.3.1. A multi-dimensional grid structure is imposed into the continuous

space F by partitioning the domain [ai, bi], i = 1, ..., d of each dimension Ai, i =

1, ..., d into non-overlapping intervals or bins of uniform or variable size [51, 52].

Hence, F is decomposed into a finite set of disjoint rectangular units (or cells) on

which all the clustering operations are performed. An individual cell C is formed

by the direct Cartesian product of one interval from each dimension. Formally,

a cell C is a subset of the space F (C ⊆ F ) and can be geometrically interpreted

as an axis-parallel hyper-rectangle, that is, C = [l1, r1)× ...× [ld, rd), where li and

ri denote the left and right bounds of C in ith dimension. By definition the jth

point pj = [pj1, ..., pjd], j = 1, ..., N , is contained in C if and only if li ≤ pji < ri,

∀ i = 1, ..., d. A cell is dense if the fraction of the total number of data points

contained in the cell exceeds a user-defined sparsity threshold Ts ∈ (0, 1].

4.4 Quantising High-Dimensional Data

During quantisation there are two important problems that must be carefully

addressed, namely scaling and aggregation. Scaling refers to the selection of an

appropriate bin width (w) in each dimension while aggregation is the problem of

summarising the distribution properties of the points contained in each cell.

4.4.1 Aggregation

The amount and kind of aggregated information heavily depends on the type of

clustering algorithm that is used. Usually, each cell is assigned a list of feature-

related statistical parameters, which are used for efficient query processing op-

erations [51]. For instance, in CLIQUE and WaveCluster each cell is assigned

a label (dense or not dense) based on the number of points lying inside this

cell [7, 93]. In STING each cell maintains a list of statistical metrics such as

number of points within it, minimum, maximum, mean, standard deviation and
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type of distribution of points in the cell [98].

Despite the appealing efficiency of grid-based techniques in low dimensional

spaces because of aggregation, moderate-to-high dimensionality outlives its use-

fulness even for coarse resolutions. In particular, due to the sparsely filled space

the vast majority of points map into different cells and there exist many empty

cells [55]; aggregation in moderate-to-high dimensional spaces is meaningless.

Hence, aggregation in the light of summarising and storing properties of data is

not further considered in the thesis.

4.4.2 Scaling

It seems very unlikely that there will ever be either a purely statistical or mathe-

matical solution for the scaling problem [76, 93]. To approximate the optimal grid

resolution (determine bin width in each dimension) application domain knowledge

can be incorporated but this is rarely complete and consistent.

Often, real-world datasets contain different types of inter-attribute correla-

tions occurring in different subsets of dimensions in different data localities [5, 7].

Ideally, one would first identify all different correlations and then assign appro-

priate grid resolutions to each region based on the local characteristics of the dis-

tribution. Unfortunately, this kind of multi-dimensional analysis is prohibitively

expensive due to the exponential growth in computational complexity as dimen-

sionality increases. Consequently, the feature space is quantised by considering

each dimension independently. However, uni-dimensional projections flatten all

local relationships between data points, e.g. inter-attribute correlations, in higher

dimensional spaces. Thus, there is no guarantee for optimality in resolution using

uni-dimensional statistical analysis.

The choice of the width of the bins (w) in each dimension has an enormous

impact on both complexity and quality of the results. For very coarse grids,

more points reside in the same cell and thus the probability of assigning to the

same cell points belonging to different clusters increases. This problem is called

under-quantisation and may cause the merging of distinct clusters, which, in turn,
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decreases the quality of the clustering output. On the other hand, for very fine

resolutions, the data tend to be separated in different cells which may cause the

discovery of many unnecessary and very small clusters. This case is known as

over-quantisation. Over-quantisation decreases the quality of clustering output

because it is likely to split relatively compact clusters into a multitude of small

clusters. Some of these clusters may be very small and thus can be discarded as

noise.

The main goal of uni-dimensional projective analysis is to identify large-scale

variations in the density of points along the uni-dimensional orthogonal density

histograms [5, 7, 23, 74]. When the point concentration (or density) varies signifi-

cantly across the real line, i.e. domain, this may indicate the existence of multiple

clusters in higher dimensional spaces. However, quantitative information regard-

ing the location, density or type of correlation for each cluster can not be inferred

from a univariate histogram because the latter hides inter-attribute correlations.

From a density estimation viewpoint, the choice of the bin width has an enor-

mous effect on the appearance of the resulting histogram. A very fine bin width

results in a jagged histogram where most observations are located in distinct

bins, whereas a very coarse bin width results in a histogram that does not cap-

ture the differences in density in different localities of the dimension. Ideally, the

bin width should be chosen so that the histogram displays the essential structure

of the distribution, but at the same time maintains significant localities of the

distribution. A detailed discussion in bin width selection can be found in [92].

4.4.3 Terrell’s Quantisation Rule

Terrell [96] suggested a practical data-based rule for setting the upper bound on

bin width for univariate density histograms. In particular, the bin width w should

be directly proportional to the standard deviation σ of the univariate sample and

inversely proportional to N1/3, where N is the size of the sample [92, 96]:

w ≤ 3.729σN−1/3 (4.16)
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Hence, a naive solution to the scaling problem would be to directly apply equation

4.16 in each dimension independently to derive an over-smoothed estimator of the

bin width. While simple, this approach has weaknesses. A way of identifying the

limitations of equation 4.16 is to investigate the effect of various factors that are

involved in it.

Although w changes at a rate inversely proportional to N1/3, this rate is much

faster for relatively small datasets, e.g. N<50000. However, for moderate-to-

large datasets the factor N−1/3 exhibits only a marginal variation. Bearing in

mind that massive datasets are common in real world DM applications, and w is

more sensitive to changes in σ compared to N, it becomes clear why the effect of

σ on w deserves careful examination.

A major limitation of Terrell’s quantisation rule is the strong dependency of

w on σ, which in turn is sensitive to extreme values (or outliers). For univariate

samples, outliers are observations lying far from the central part of the distribu-

tion and can greatly influence the standard deviation of the sample. Formally,

the limits (or fences) of outliers lie 1.5IQR below the first (Q1) and above the

third (Q3) quartile, where IQR=Q3-Q1 denotes the inter-quartile range of the

sample [50]. Very coarse resolutions attributed to the harmful effect of outliers

in formulae 4.16, can make it difficult or even impossible to discriminate closely

adjacent clusters or to produce accurate cluster descriptors.

Terrell’s quantisation rule has another serious drawback as it does not take

into consideration the essential shape of the distribution. For instance, significant

multi-modal structures indicating large scale data discontinuities are not utilised

by formulae 4.16. Furthermore, the local density of points is also ignored. In

essence, the more isolated the clusters are, the larger the σ, and thereby, the

coarser the grid resolution. In other words, significant data discontinuities, e.g.

noise regions surrounding clusters, may have a substantial impact on σ, hence,

increasing the probability of under-quantisation.

Intuitively a robust quantisation algorithm must guard against outliers and

at the same time must utilise information regarding the local density of points.

These issues are addressed in the subsequent sections of this Chapter.
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4.5 TSQ: A Two Stage Quantisation Algorithm

In this section we propose a novel Two Stage Quantisation Algorithm (TSQ) to

address the challenges of quantising high dimensional datasets. The main stages

of TSQ are depicted in figure 4.11. The ultimate goal of TSQ is to reduce

the search combinations for clustering, but at the same time to determine an

adequate level of grid resolution that allows both discriminating clusters and

producing accurate cluster descriptors.

Initially, a gross statistical analysis is applied to each dimension indepen-

dently to remove outliers in the tails of the distribution and to detect large-scale

data discontinuities in the main part of the distribution. A provisional fine bin

width is computed using two important distribution metrics, namely, dispersion

and entropy. Other techniques either ignore the distribution, e.g. CLIQUE,

WaveCluster, or use limited statistical information, e.g. MAFIA. The final step

of the gross analysis involves constructing a smooth approximation of the density

distribution using the popular Kernel Density Estimation (KDE), as described

in detail in section 3.3.

Next, a detailed statistical analysis locates the U -regions with only a marginal

variance in point density along the smoothed histograms using the three sophisti-

cated statistical tests (HT1, HT2, and HT3) of the UDA algorithm, as described

in detail in Chapter 3 (see sections 3.4.1-3.4.3). Each U -region is then assigned an

appropriate bin width by applying Terrell’s quantisation rule (equation 4.16) on

the data contained in that region. Other quantisation techniques, e.g. MAFIA,

create a single bin for each quasi-uniform region, which may yield poor quality

results if multiple clusters with very different characteristics, i.e. density or ge-

ometry, overlap in this U -region. Finally, since the clustering algorithm NOCEA

(see Chapter 5) has been designed to operate on uniform grids a weighted-sum

method scalarises the set of different widths into one global value.
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4.5.1 Gross Statistical Analysis

Step 1. Removal of Outliers

To guard against the harmful effects of outliers in highly skewed distributions,

TSQ ignores them. This simply entails limiting the statistical analysis in the

central part of the distribution whose boundaries are delineated by the outliers

fences as described in section 4.4.3. Hence, TSQ focuses on data lying inside the

outlier-free interval E [50] rather than the entire domain [a, b]:

E = [max(a, (Q1 − 1.5IQR)), min(b, (Q3 + 1.5IQR))] (4.17)

where Q1, Q3, and IQR = Q3 −Q1 denote the first quartile, third quartile, and

inter-quartile range of data along the given dimension, respectively.

Step 2. Computation of Provisional Resolution

For departures from normality or uniformity such as multi-modality or heavily

skewed distributions descriptive statistics such as central tendency (e.g. arith-

metic mean) or dispersion (e.g. standard deviation) are not sufficient to describe

the essential structure of the distribution. In other words, it is difficult to detect

and quantify very low density valleys, e.g. noise regions, located in the main part

of the distribution using descriptive statistics. Similar to outliers, significant data

discontinuities easily cause under-quantisation if using equation 4.16 due to the

impact on σ. Hence, it is vital to guard against significant data discontinuities.

TSQ relies on the entropy of the data sample E to implicitly quantify the scale

of such data discontinuities.

Entropy is a widely used concept to quantify information and in principal

measures the amount of uncertainty of a random discrete variable X. Let x1, ..., xk

be the set of all possible outcomes of X and p(x) be the probability mass function

of X. The entropy H(X) is then defined by the following expression [24]:

H(X) = −
∑k

i=1 p(xi) log2 p(xi) (4.18)

Let b1, ..., bk be the set of all bins in a particular dimension and di denotes their

density, i.e. percentage of total points N lying inside each bin. In analogy to the
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entropy of a random discrete variable, the entropy along the given dimension is:

H = −
∑k

i=1 di log2 di (4.19)

When the probability of X is uniformly distributed, we are most uncertain about

the outcome and thus the entropy is the highest. On the other hand, when the

probability mass function is highly concentrated around the modes the result of

a random sampling is likely to fall within a small set of outcomes around these

modes, so the uncertainty and thus entropy are low. Intuitively, when univariate

data points are uniformly distributed we are most uncertain in which bin a data

point would lie and therefore the entropy is the highest. In contrast, the more

densely populated and closely located the univariate clusters are, the smaller the

uncertainty and thus entropy, as a given point is highly likely to fall within bins

belonging to a cluster. This fundamental property of entropy is utilised by TSQ

to quantify significant data discontinuities in univariate samples.

If the data in E from formulae 4.17 is uniformly distributed, then a small

fraction δ (i.e. δ = 0.5% of the total points N) of them is expected to be found

inside an interval whose length (ε) will approximately be:

ε = δ
(

N
NE

)
lE (4.20)

where lE = min(b, (Q3 + 1.5IQR))−max(a, (Q1 − 1.5IQR)) and NE denote the

length and number of points in E, respectively.

Using ε as initial resolution, TSQ constructs two conventional density his-

tograms (as described in section 3.2), one for the target dimension and one for a

uniform distribution both defined in E. It then computes the entropy for both

histograms using equation 4.19. To obtain the entropy ratio rH ∈ (0, 1] the en-

tropy of the actual points in E is divided by the entropy of the corresponding

uniform distribution.

The value of rH is a quantitative measure of the difference between the actual

data distribution in E and a uniform distribution with the same number of points

and range of values. Indeed, densely populated regions separated from one another

by widespread low density regions are implicitly detected through small values of

rH and vice-versa.
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Clearly, any packing of points into tight clusters requires a smaller bin width

than the uniform distribution. Intuitively, TSQ incorporates quantitative infor-

mation related to both data discontinuities and concentration by modifying ε by

a factor rH :

ε′ = rHε (4.21)

where ε′ denotes the modified value of ε.

The provisional bin width ε′ is a particularly robust estimator of the lower

bound of bin width w because a) it is resistant to outliers, b) it is relatively cog-

nisant of the essential shape of the distribution, and c) it provides fine resolution

since it reflects the spreading of a very small percentage (δ) of the total data

points (N).

Step 3. Smoothing via Kernel Density Estimation - KDE

The next step is to construct a smooth frequency histogram for the data falling

inside the interval of interest E using the binned KDE with the boundary cor-

rection as discussed in section 3.3.5.

The practical implementation of the KDE method requires the specification

of the bandwidth h, which controls the smoothness of the frequency histogram.

A simple solution would be to directly use the automatic normal scale bandwidth

selection rule (formulae 3.4) as described in section 3.3.2. However, for non-

normal data distributions, e.g. multi-modal or heavily skewed distributions, the

statistical performance of formulae 3.4 is poor [92, 94, 97].

TSQ reaches a compromise between highlighting important features in the

data and good scalability using a local adaptation of the normal bandwidth rule.

The new methodology relies on dividing the interval of interest E into a finite

set of disjoint intervals containing a relatively small percentage, e.g. 5%, of the

total (N) data points. Then the normal reference rule is applied to each interval

independently.

The division of the domain into intervals isolates local characteristics of the

data distribution and guards against outliers or data discontinuities. To retain

to some extent important features of the distribution at different data localities
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while having a global bandwidth over the entire domain, a weighted sum method

is used.

In particular, let us assume that the interval E of j-th dimension is partitioned

into k sub-intervals of approximately equal data coverage, while hij denotes the

local bandwidth computed by the normal reference rule (see equation 3.4) for

the i-th interval in j-th dimension. The set of locally obtained bandwidths hij is

scalarised into a single bandwidth (hj) by pre-multiplying each local bandwidth

with a specific weight and then forming their sum. The weight of an interval is

simply the percentage of total points of E (NE) lying inside that interval. Hence,

the TSQ bandwidth scalarisation is:

hj =
∑k

i=1

(
Nij

NE

)
hkj (4.22)

where k is the number of intervals in the j-th dimension, while Nij denotes the

number of points in the i-th interval. It can be easily observed that the weights

are normalised, that is,
∑k

i=1

(
Nij

NE

)
= 1.

4.5.2 Detailed Statistical Analysis

Step 1. Detection of Quasi-Uniform Regions

Let us assume that during the gross statistical analysis stage the outlier-free

interval of interest E is partitioned into m uniform bins of size ε′ determined by

equation 4.21. Additionally, let d0, ..., dm−1 be the histogram values of the smooth

frequency histogram as computed by the binned KDE method with boundary

correction (see section 3.3.5). TSQ then employs the UDA (section 3.4) statistical

analysis to obtain all non-sparse U -regions along the smooth frequency histogram.

Step 2. Quantisation of Quasi-Uniform Regions

The rationale of partitioning the original smooth histogram with UDA is to enable

a more detailed analysis within the quasi-uniform regions identified. In particular,

Terrell’s quantisation rule (equation 4.16) can now be safely applied to each U -

region independently, because both outliers and significant data discontinuities

affecting σ have been removed.
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As Scott elaborated “...in principle, there is no lower bound on bin width

(w) because the unknown density can be arbitrarily rough...” [92]. However, an

extremely fine resolution computed by equation 4.16, even if it is valid from a sta-

tistical point of view, incurs high computational costs for clustering, especially for

high dimensional datasets [7, 74]. Therefore, it is necessary to set a lower bound

on w that yields a reasonable compromise between efficiency and effectiveness.

Recall from section 4.5.1 that the provisional bin width ε′ given by equation

4.21 is a particularly robust estimator of the lower bound of w. Hence, TSQ

balances computation and quality of the clustering results by setting the bin

width wij for the ith U -region of jth dimension as follows:

wij = max
(
ε′, (3.729 σijN

−1/3
ij )

)
(4.23)

where Nij and σij denote the number and standard deviation of points in the ith

U -region of the jth dimension, respectively.

In contrast, other quantisation techniques, e.g. MAFIA, create a single bin for

each U -region, which may yield poor quality results if the projection of multiple

clusters with very different densities overlap in that region. Finally, for discrete

or even continuous attributes of finite precision, it is inappropriate to select a bin

width that is smaller than the step of the natural precision of the data.

Step 3. Scalarisation of Local Resolutions

Ideally, each U -region would keep its own bin width leading to a non-uniform

grid, which may delineate cluster boundaries more accurately since it reflects the

local distribution. However, this idea adds a substantial amount of extra work

when evaluating the quality of candidate solutions (see section 5.7).

Therefore, TSQ uses a simple weighted-sum method to scalarise the set of

locally optimal bin widths into a single global value. This can be simply done by

pre-multiplying each width with a specific weight and then forming their sum.

Usually, the weights are chosen in a way so as to make the sum of all weights equal

to one. One of the ways to achieve this is to normalise each weight by dividing

it by the sum of all the weights. Although the idea is simple, it introduces a non
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trivial question: what values of the weights must one use? Of course, there is no

unique answer to this question. The answer strongly depends on the importance

of each U -region in the context of quantisation and clustering. The work in this

thesis solely focuses on the discovery of highly homogeneous rather than highly

dense clusters. Therefore, a U -region irrespective of its density is important as

long as it covers a relatively large portion of the data.

TSQ assigns a specific weight to each U -region that is proportional to the

number of points in that region with respect to the total number of points covered

by all U -regions in the same dimension. Hence, the domain [aj, bj] of jth dimension

is partitioned into disjoint equi-sized intervals of length wj that is determined by

the following weighted-sum expression:

wj =
∑k

i=1

(
Nij

totalNj

)
wkj (4.24)

where k is the number of U -regions in the j-th dimension, while totalNj
= N1j +

... + Nkj denotes the total number of points covered by these regions. It can be

easily observed that the weights are normalised so as
∑k

i=1

(
Nij

totalNj

)
= 1.

4.6 Summary

In this Chapter we have described the TSQ quantisation algorithm imposing a

multi-dimensional grid structure onto the dataspace to reduce the search combi-

nations for clustering large and high dimensional datasets.

Initially the Chapter has identified the limitations of other quantisation algo-

rithms, and it has motivated the analysis of univariate density histograms as the

only computationally feasible means to construct the multi-dimensional grid.

The Chapter has investigated the use of standard quantisation techniques

along with new heuristics (e.g. UDA in Chapter 3) reflecting the local distribu-

tion, to determine an appropriate grid resolution that enables the discrimination

of clusters, while preserving accuracy and acceptable computational cost.

The quantised dataspace is subsequently analysed by the novel evolutionary-

based clustering algorithm NOCEA that is described in the following Chapter.



Chapter 5

Clustering with Evolutionary

Algorithms

Capsule

This Chapter - the core part of the thesis - presents the novel evolutionary

algorithm NOCEA that efficiently and effectively clusters massive and high

dimensional numerical datasets. The discussion details key aspects of the

proposed methodology, including an elaborate integer-valued representation

scheme, a simple data coverage maximisation fitness function, several novel

genetic operators, as well as advanced post-processing algorithms to simplify

the discovered knowledge. Finally, task parallelism to improve scalability when

the data to be mined is massive, is also explored. The salient properties

of NOCEA are discussed and demonstrated on both artificial and real-world

datasets in Chapters 6 and 7, respectively.

5.1 Introduction

There is a great deal of interest in developing robust clustering algorithms to

extract hidden nuggets of knowledge from large databases related to business or

scientific activities, to achieve competitive advantage [31, 40, 51]. The work de-

scribed in this chapter contributes towards exploiting the powerful search mecha-

nism of evolutionary algorithms to mine high quality clustering rules from massive

and high dimensional databases.

Over the years several approaches, both evolutionary-based and conventional,

94
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for clustering have been proposed. Chapter 2 gives a detailed survey of these

approaches. Most of these approaches do not address all of the requirements (see

section 2.3.2) for data mining clustering adequately, although considerable work

has been done in addressing each requirement separately.

The clustering approach advocated in this thesis is to explore the enormous

and sparsely-filled dataspace with a parallel, semi-stochastic evolutionary search.

In particular, the core idea is to evolve a population of individuals, where each

candidate solution comprises a variable number of disjoint and axis-aligned hyper-

rectangular rules with homogeneous data distribution. To conform with all the

important requirements for data mining clustering (see section 2.3.2), task-specific

genetic operators were devised.

The remainder of this Chapter is structured as follows: Section 5.2 provides

an overview of NOCEA. Section 5.3 gives a formal definition of the fundamental

piece of knowledge in NOCEA, the clustering rules. Section 5.4 describes the in-

dividual representation scheme and motivates the use of integer-valued encoding

rather than binary or floating-point. Section 5.5 presents a novel fitness function

for clustering and briefly discusses its salient features. Section 5.6 thoroughly

discusses the inductive bias that NOCEA uses to constrain the search space,

i.e. representational bias, and to favour the selection of particular solutions, i.e.

preference bias. Sections 5.7-5.10 cover the novel genetic operators that were

developed to discover high quality clustering rules. In particular, section 5.7 de-

scribes the homogeneity or repair operator, which ensures that the space enclosed

by candidate rules has quasi-uniform data distribution. Section 5.8 describes

NOCEA’s advanced recombination operator. Section 5.9 describes a novel gener-

alisation operator that strives to minimise the length of individuals and to make

rules as generic as possible. Section 5.10 describes two novel mutation operators

that provide the main exploratory force in NOCEA. Section 5.11 explains how

NOCEA tackles the problem of subspace clustering. Section 5.12 describes a

post-processing algorithm that groups adjacent rules into clusters. Section 5.13

describes a preliminary parallelisation of NOCEA to improve scalability. Finally,

section 5.14 discusses the default parameter settings in NOCEA.
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5.2 NOCEA Overview

NOCEA1 utilises the powerful search mechanism of EAs to efficiently and effec-

tively mine highly-homogeneous clustering rules from large and high dimensional

numerical databases. The abstract architecture of NOCEA is shown in figure

5.12. NOCEA includes several pre- and post-processing stages to prepare the

raw data and simplify the discovered knowledge, respectively.
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Figure 5.12: Architecture of NOCEA

NOCEA evolves individuals of variable length comprising disjoint and axis-

aligned hyper-rectangular rules with homogeneous data distribution. The an-

tecedent part of the rules includes an interval-like condition for each dimen-

sion. Initially, a statistical-based quantisation algorithm imposes a regular multi-

dimensional grid structure onto the data space to reduce the search combinations,

as described in Chapter 4. The boundaries of the intervals are encoded as integer

values reflecting the automatic discretisation of the dataspace. Like most EAs,

NOCEA begins with an initial population of individuals whose chromosomes are

independently initialised with a single randomly generated rule.

1Non-Overlapping Clustering with Evolutionary Algorithms
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Next, a task-specific genetic operator, the repair operator (section 5.7) shrinks

the boundaries of rules or splits candidate rules, if necessary, to ensure the space

enclosed by each feasible rule is uniformly filled with data points.

The evolutionary search is guided by a simple fitness function (maximisation

of total point coverage), unlike the commonly used distance-based functions.

Next, some of the repaired individuals are selected according to the fitness

to form a new generation, e.g. the higher the fitness value, the more chance an

individual has to be selected for reproduction.

Variation in the population is introduced by conducting genetic operations

on the selected individuals including: crossover (section 5.8), generalisation (sec-

tion 5.9), and mutation (section 5.10). Various constraints are imposed during

these semi-stochastic operations to ensure that the resultant individuals always

comprise rules that are syntactically valid, disjoint, and axis aligned. During

crossover, two individuals are selected from the mating pool at random and care-

fully selected part(s) of rules are exchanged between them to create two new

solutions. The individuals of this new population are then subject to a parsi-

mony operator, called generalisation, that attempts to minimise the size of the

rule set, reducing thus computational complexity and improving comprehensibil-

ity. The mutation operator, in turn, grows existing rules at random and creates

new candidate rules, according to a certain small probability.

Next, the newly generated offspring are repaired and evaluated. After the

new offspring have been created via the genetic operators the two populations

of parents and children are merged to create a new population. To maintain a

fixed-sized population only the appropriate number of individuals survive based

on some replacement strategy. The individuals of this new generation are, in

their turn, subjected to the same evolutionary process for a certain number of

generations or until a solution with the desired performance has been found.

After convergence, a post-processing routine performs subspace clustering (sec-

tion 5.11) removing redundant conditions from the antecedent part of the rules.

Finally, adjacent rules with similar densities are grouped together to assemble

(section 5.12) clusters, and report them in Disjunctive Normal Form (DNF).
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5.3 Clustering Rules

IF-THEN clustering rules are intuitively comprehensible for most humans since

they represent knowledge at a high level of abstraction involving logical condi-

tions rather than point-based cluster representations. In this thesis a clustering

rule R defined in the continuous space F (sections 2.3.1 and 4.3) is knowledge

representation in the form:

R : IF cond1 ∧ ... ∧ condd THEN cluster label

The premise or antecedent part of the rule (IF-part) consists of a logical con-

junction of d conditions, one for each feature, whereas the conclusion or con-

sequent (THEN-part) contains the cluster label. The semantics of this kind of

clustering rule is as follows: if all the conditions specified in the antecedent part

are satisfied by the corresponding feature values of a given data point, then

this point is assigned to (or covered by) the cluster, identified by the conse-

quent. Each condition is in the form of a right-open feature-interval pair, e.g.

(10000 ≤ Income < 25000). Formally, a clustering rule R is a subset of the fea-

ture space F (R ⊆ F) and can be geometrically interpreted as an axis-parallel

hyper-box R=[l1, u1) × ... × [ld, ud), i = 1, ..., d, where li ∈ R and ui ∈ R denote

the lower and upper bounds of R in the ith dimension, respectively.

Recall from Chapter 4 that the quantisation of the continuous space F yields

a multi-dimensional grid, thereby reducing the search space for the clustering

algorithm. Therefore, it is necessary to specialise the above definition of clustering

rules to accommodate the fact that rule boundaries are not placed arbitrarily, but

rather they coincide with the grid bin edges.

During quantisation, the domain [ai, bi], i = 1, ..., d, of the ith dimension is

partitioned into mi ∈ Z∗2 disjoint intervals Bi
3=0, ..., (mi − 1) of uniform length

wi. In such a space an axis-aligned hyper-rectangular rule R is: R=[l1, u1] × ...

× [ld, ud], where li, ui ∈ [0...mi − 1] and li ≤ ui, ∀i ∈ [1, d]. The simple decoding

function 5.25 maps the integer-encoded rule boundaries li and ui into the interval

2The ordered set of nonnegative integers, Z∗ = {0}∪Z+, where Z+ are the positive integers.
3The ordered set of the mi disjoint intervals in ith dimension.
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[ai, bi].

dli = ai + liwi, dui = ai + (ui + 1)wi, ∀i ∈ [1, d] (5.25)

where dli and dui denote the decoded values of li and ui, respectively.

By definition the ith point pi = [pi1, ..., pid] (section 4.3) is contained in R if

and only if dlj ≤ pij < duj, ∀ j = 1, ..., d. The coverage cov(R) ∈ [0, 1] of a rule

R is defined to be the fraction of total points covered by R, cov(R) = NR
N

, where

NR is the number of points inside R. R is deemed non-sparse if its coverage

exceeds an input sparsity threshold Ts ∈ (0, 1].

5.4 Individual Representation

The choice of encoding for the candidate solutions is critical for the performance

of any search algorithm. Usually, in EA-based optimisations the individual rep-

resentation is inherent to the nature of the problem. For instance, in the context

of the k-means clustering each individual represents the coordinates of the cluster

centroids. The choice of an efficient representation scheme depends not only on

the target problem itself, but also on the search method used to solve the problem.

As Deb insightfully observed “...the efficiency and complexity of a search algo-

rithm largely depends on how the solutions have been represented and how suitable

the representation is in the context of the underlying search operators...”[11].

5.4.1 What Do Candidate Solutions Represent?

Although there are no well-founded measures of knowledge comprehensibility,

small, coherent and informative structures, e.g. rule-sets, are widely considered

as highly comprehensible within the DM community. Since clustering is all about

summarising data distributions, the thesis adopts clustering rules as a readily in-

terpretable structure to describe the discovered knowledge. NOCEA evolves indi-

viduals of variable-length comprising disjoint and axis-aligned hyper-rectangular

rules. Two d-dimensional rules R1 and R2 are disjoint if there is at least one
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dimension, say c, such that the upper bound of the first rule is less than the

lower bound of the second or the opposite, i.e. (uc2 + 1) ≤ lc1 or (uc1 + 1) ≤ lc2.

A single rule constitutes a completely specified sub-solution to the clustering

problem. Each fixed-length rule, in turn, is composed of d genes, henceforth

termed feature-genes, that encode an interval-like condition in one dimension.

The ith feature-gene (i = 1, ..., d) of the jth rule (j = 1, ..., k) is subdivided into

two discrete fields: the lower (lij) and upper (uij) bounds, where (lij ≤ uij) and

lij, uij∈ Bj (section 5.3).

Two d-dimensional rules R1 and R2 are connected if they have a common

face, or if there exists another rule R3 such that both R1 and R2 are connected

to R3. Rules R1 and R2 have a common face if there is an intersection between

them in (d-1) dimensions, and there is one dimension, say c, such that the rules

are touching, i.e. lc1 = (uc2 + 1) or lc2 = (uc1 + 1).

A set of connected rules with similar densities and homogeneous data distribu-

tions define the skeleton of a cluster. In most real clustering problems, except in

some specific sub-domains, the optimal number of clusters is not known a priori.

Thus, a data driven system, where the number of rules/clusters is automati-

cally self-adapted during the course of evolution, is very desirable. The obvious

advantage of the variable-length genotype is the transfer of control over the op-

timal number of rules/clusters from humans to the genetic search mechanisms of

NOCEA.

Finally, a positive implication of evolving only disjoint partitions is that there

is no need to encode the consequent part of clustering rules in the genotype.

This is because cluster identifiers neither change the spatial distribution of data

nor influence the transition rules used by NOCEA to move from one candidate

solution to another. An advanced post-processing algorithm described in section

5.12, fills the consequent part of rules with the appropriate cluster identifier.
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5.4.2 What is the Search Space for Clustering?

NOCEA performs a semi-stochastic search throughout the space S of all possi-

ble feasible solutions to determine those that maximise the total point coverage.

Specialised operators have been devised in this thesis to enforce the feasibility of

individuals in the population. But what are the properties of a feasible solution?

How does a feasible solution differ from a candidate solution as defined in section

5.4.1?

In the clustering context of this thesis a feasible solution always complies with

all the following requirements:

1. Semantic Correctness: The upper bound of all rules must be at least

equal to its associated lower bound for all dimensions.

2. Axis-Alignment: All hyper-rectangular rules are by definition axis-aligned.

3. Disjointness: No overlapping among rules is allowed in the chromosome.

4. Homogeneity: The d-dimensional region enclosed by a feasible rule must

have a relatively homogeneous distribution of points. For example, rule R2

in figure 5.13(a) is not homogeneous, even though it is semantically valid

and axis-parallel.

5. Sparsity: The point coverage of a feasible rule must be statistically signifi-

cant to minimise the danger of over-fitting (i.e. to cover very few instances)

the data. Sparse rules (section 5.3) are eliminated, because they reflect

spurious relationships that are unlikely to occur in unseen data.

NOCEA employs variation operators, i.e. recombination, mutation and general-

isation, with semi-stochastic constrained functionalities to comply with require-

ments 1-3, and a specialised repair operator to enforce the formation of homoge-

neous rules.
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5.4.3 Knowledge Abstraction in the Chromosome

Concerning interdependencies in the chromosome, one can distinguish four levels

of knowledge abstraction. Starting from the bottom, the elementary level of

bound-gene represents either the lower or the upper bound of a rule in a particular

dimension. The second level, or feature-gene, expresses the constraint that the

upper bound in a particular dimension of a rule must be always greater or equal to

the lower bound in the same dimension. In the third level of abstraction, or rule-

gene, all the feature-genes associated with a particular rule are grouped together

into one entity by forming their Cartesian product. Finally, in the top level, rule-

genes are concatenated together to form the entire chromosome. Notice that in

the top of the hierarchy there are no interdependencies because rule-genes do not

overlap. Clearly, specialised operators are required to preserve these constraints,

since traditional genetic operators disregard semantic linkages among genes in

the chromosome.

5.4.4 How Are Candidate Solutions Encoded?

The chromosome of an individual comprising k rules can be viewed as a one-

dimensional array of 2dk integer-valued slots. Each rule is encoded in a 2d-length

substring that is formed by concatenating together the lower and upper bounds

for each dimension. Unlike typical EAs, the relative position of a rule in the chro-

mosome is unimportant. The reasons for using an integer-valued representation

rather than floating-point or binary are explained in detail in section 5.4.5.

Figure 5.13(a) depicts a hypothetical distribution in a two dimensional space

defined by the continuous features Income and Expenditure that are bounded in

the range [500, 1300] and [0, 340], respectively. Additionally, let wIncome=25 and

wExpend.=20 be the bin width for Income and Expenditure, respectively. Figure

5.13(b) shows the structure of the genotype corresponding to the candidate solu-

tion of figure 5.13(a), that has three rules R1, R2 and R3. Figure 5.13(c) depicts

the conventional binary representation of these rules using five bit precision for

both dimensions.
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Figure 5.13: Integer-Valued Representation of Candidate Solutions

5.4.5 Why Use Integer-Valued Encoding?

It has been shown that for some real-valued numerical optimisation problems

floating-point representations outperform binary encodings in terms of precision

and execution time [11, 71]. As D. Fogel argues “...there is no empirical evi-

dence to indicate that binary coding allows for greater effectiveness or efficiency

in solving real-valued optimisation problems...” [11]. Although a real-valued

representation enables arbitrary-precision solutions to be found, it generates pro-

hibitively large search spaces for problems of high dimensionality. Despite the
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fact that the optimal solutions in the continuous space F (section 4.3) and the

derived discrete space, e.g. multi-dimensional grid, may be marginally different,

the obtained solutions are usually acceptable in most practical search problems.

There are also several reasons to abandon binary encoding in NOCEA:

1. Hamming cliffs: One difficulty with conventional binary encoding is the

presence of Hamming cliffs associated with certain strings, e.g. 01111 and

10000, where the transition to a neighbouring solution in the grid space

requires the alteration of many bits. Hamming cliffs hinder fast local fine-

tuning. For instance, in figure 5.13(a), an evidently simple one-bin extension

of the upper Income bound of R1 requires the simultaneous alteration of

all five bits, while with integer encoding this is achieved in one step.

2. Redundancy: An l-bit substring encoding a particular variable has a total

of 2l different states. If a discrete variable can only take on an exact finite

set of values whose size is different from some power of 2, then there is re-

dundancy in the representation. For instance, given that the Expenditure

domain is partitioned into 17 bins, as shown in figure 5.13(a), NOCEA

needs at least 5 bits to cover this range. However, a 5-bit length binary

encoding yields 32 possible states in total, from which 15 are redundant

- correspond to non-existing bins. Clearly, extra computational effort is

required to prevent the formation of individuals with erroneous bit combi-

nations. In contrast, integer-valued representations do not suffer from such

problems because the possible states that a rule bound can take are from

a minimum length integer-valued sequence 0, ..., (m− 1), where m denotes

the number of bins in each dimension.

3. Excessive String Length: A candidate solution comprising k rules can

be viewed as a 2dk slots vector. A binary representation scheme when

applied to real-world multidimensional problems of high-precision would

produce individuals having considerably longer strings compared to integer

representations. For instance, a binary-coded solution comprising 50 rules

in a 100-dimensional space with 64 bit precision for all dimensions requires
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a ((2 ∗ 100 ∗ 50) ∗ 64)-slot vector, while an integer-representation yields a

(2∗100∗50)-slot vector. Representations with minimal-slot solution vectors

must be adopted to reduce computational complexity.

4. Feasibility: Specialised genetic operators are required to satisfy two im-

portant feasibility constraints, i.e. rule disjointness and syntactical validity,

as defined in section 5.4.2. Usually, the larger the string length the more

expensive the application of the genetic operators. The burden of produc-

ing non-overlapping rules that are syntactically valid is significantly higher

for binary representations because a rule boundary is mapped by a combi-

nation of bits, each of which is treated as an individual entity. In contrast,

with integer encoding there is a one-to-one relationship between a given

position in the chromosome and the corresponding rule boundary. Hence

the manipulation of a given rule bound by the genetic operators can be

completed in one step rather than many as in binary representations.

5.5 Fitness Function

5.5.1 Design of the Fitness Function

In a typical EA, each individual in the population is assigned, by means of a

fitness function, a “figure of merit” that reflects the performance of the given

individual in solving the target problem [47, 71]. This value is the quantitative

information the EA uses to guide the search. The fitness function (f) takes

as argument a single individual (I) and returns a scalar numerical fitness that

indicates the utility or ability of the individual in the context of the underlying

optimisation problem.

f : IS → R (5.26)

where IS denotes the phenotype search space.

The fitness of an individual determines the probability that the given individ-

ual will survive into and be selected for reproduction in succeeding generation(s).

In order for an EA-based system to effectively search for the optimal solution, an
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appropriate fitness function must be carefully devised. In general, the choice of

the fitness function is closely related to the problem at hand. Although the fit-

ness function is very much application dependent, there are a few general design

principles [11, 47, 71]:

• The fitness landscape must be as smooth and regular as possible, so that

chromosomes with reasonable fitness are close (in the phenotype space) to

chromosomes with slightly better fitness.

• The fitness landscape should not have too many local maxima, or a very iso-

lated global maximum.

• The fitness function must reflect the relevant measures to be optimised.

• The fitness function should provide enough information to drive the selective

pressure of the EA.

• The values of the fitness function must be graded in a fine-grained manner

providing enough quality information to drive the selective pressure of the EA.

5.5.2 A Robust Clustering Fitness Function

In this thesis a simple and robust fitness function is proposed to guide the evo-

lutionary search. In our clustering context, the fitness function f : S4→ [0, 1]

simply maps to the data coverage, i.e. the proportion of the dataset covered

by the disjoint rules of the individual. In particular, the fitness of a feasible

individual (I) is the fraction of total points N that are covered by the rules of I:

f(I) =

(
1

N

k∑
i=1

Ni

)
(5.27)

where, k denotes the number of rules in I, and Ni is the number of points covered

by the ith rule.

Clearly, f is greedy with respect to the data coverage of feasible solutions,

and is, by definition, always bounded in [0, 1].

4The set of all possible feasible solutions. For a definition of feasibility see section 5.4.2
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5.5.3 Fitness Function Salient Features

Aiming to maximise data coverage with a set of disjoint feasible rules, is a partic-

ularly robust fitness function, well suited for high dimensional datasets where the

concepts of density and proximity are vague. The salient features of the proposed

fitness function are:

1. Not a Distance-based Clustering Criterion: Unlike distance-based

clustering techniques that relocate points among clusters deterministically

- each instance is assigned to the cluster with the closest representative

point - NOCEA traverses the search space stochastically. Since individuals

are assessed on the basis of point coverage with no distance bias, f nei-

ther favours the formation of hyper-spherical clusters of similar sizes nor is

affected by outliers and noise, as opposed to distance-based techniques.

2. Not a Density-based Clustering Criterion: Density-based clustering

techniques require that the point density of a cluster must exceed some

user-defined threshold. Depending on the choice of the threshold, it is likely

to miss low density clusters. In NOCEA, by contrast, rules can “grow” to

arbitrarily large sizes and in as many dimensions as required. This is simply

because the utility of a rule is not assessed on the basis of density.

3. Resistance to Curse of Dimensionality: The curse of dimensionality

phenomenon (section 2.3.2) has no impact on f because the concepts of

sparsity and point proximity are not encapsulated in the fitness function.

4. Bounded Range: Due to the disjointness of rules in the chromosome, the

range of the fitness function, Range(f) = f(S) = {f(I) : I ∈ S}, is always

bounded in the interval [0, 1]. In contrast, the extreme values for other

clustering criterion functions, e.g. square-error, are not known a priori and

more importantly, are very much data dependent. Knowing the range of

f helps monitor the progress of the evolutionary search and tuning various

clustering related parameters, e.g. rule sparsity threshold Ts.
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5. No Preference Bias with Respect to the Structural Characteristics

of a Clustering Solution: In general, preference or search bias refers to

any criterion that is used to determine how the learning system traverses the

search space [67]. The most relevant aspect of preference bias in the context

of the fitness function is how candidate solutions are evaluated. Clearly,

formulae 5.27 does not incorporate any preference bias being associated with

the structural characteristics of an individual, e.g. number, size, geometry,

and density of rules. This is a deliberate choice mainly due to the difficulty

of balancing such incommensurable concepts. Rather such concepts are

taken into account by the genetic operators. NOCEA’s fitness function

focuses only on maximising the point coverage, allowing thus the exploration

of more search combinations. The maximisation of point coverage with

feasible rule-sets can be considered as a preference bias favouring more

complete clustering solutions, rather than solutions where many data points

belonging to clusters that are not covered by clustering rules.

Additionally, evaluating solutions solely on the basis of data coverage pro-

vides the ground for a fair and straightforward comparison between cluster-

ing solutions with differences in the number, size, density and point coverage

of candidate rules. Other techniques, e.g. k-means, require that each in-

dividual contain the same number of rules. Since the only driving force is

the coverage, individuals may have exactly the same performance with rad-

ically different genetic material, which helps preserve the desired diversity

between the population members. However, this also tends to make the

search space less smoothed and less regular.

In summary, the proposed fitness function is simple, robust, well-suited for high-

dimensional clustering problems, and conforms with most of the requirements

listed in section 5.5.1.
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5.6 Inductive Bias

Learning is a fundamental characteristic of all living organisms (cognitive sys-

tems), which helps them to develop adaptive behaviour to cope with their con-

stantly changing environment. These coping strategies can be viewed as the

ability of organisms to improve their performance on a problem by utilising ac-

quired experience from the past. Inductive learning is the model that allows

learning generalisations from a set of examples [67]. During the learning phase

the cognitive system observes its environment and recognises similarities among

objects and events.

Inductive learning systems are classified as supervised or unsupervised learning.

Supervised learning (or classification) as its name implies, is equivalent to learning

with an external teacher, who supplies the cognitive system with a finite set, called

training set, of predefined classes and examples for each class as well. The task of

the supervised learning is to discover common properties among examples of the

same class and to induce correct concept descriptors for each class. In contrast,

in unsupervised learning (or clustering) the cognitive system is also provided

with examples from the environment but no predefined classes are available. The

system must discover by itself which concepts exist and induce their descriptions.

An important issue for all inductive learning algorithms is the inductive bias,

which refers to any criterion, except consistency with the data, that either ex-

plicitly or implicitly, a cognitive system (or learner) uses to constrain the concept

space or to favour the selection of particular concepts within that space [67]. In

general, inductive learning can be viewed as a search in a hypotheses space. A

hypothesis is a concept descriptor being expressed in some knowledge represen-

tation form, i.e. classification rules, clustering rules, decision trees. In all but the

most trivial domains, a potentially infinite number of such hypotheses may be

formed and the problem of exploring and evaluating all of them is practically im-

possible. Various pruning techniques can be introduced to address this problem

[67]. The factors that either explicitly or implicitly influence the definition and

selection of hypotheses are widely known as inductive bias. There are two main
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ways of introducing inductive bias, namely, representational and preference bias.

5.6.1 Representational Bias

Representational bias refers to syntactical constraints of the knowledge represen-

tation language [67]. Inductive learning systems construct candidate solutions

within the limits of the fixed “vocabulary” supported by the representation lan-

guage. The main purpose of introducing representational bias is to reduce the size

of the solution space, but an excessive use of constraints may leave the learner

incapable of representing the concepts that it is trying to learn. NOCEA has

certain constraints determining its representational biases:

• Discovery of Axis-aligned Hyper-rectangular Rules: Propositional-like

or 0-th order representations use a logic formulae consisting of attribute-value

pair conditions, e.g. (10000≤Income<50000). In contrast, first-order logic

(FOL) conditions are not restricted to attribute-interval pairs, but may contain

arbitrarily complex predicates, involving different features with compatible

domains, e.g. ((5 ∗ Expenditure) < Income). Undoubtedly, FOL conditions

have more expressive power than propositional like conditions because the

former can encapsulate inter-attribute relationships. However, when using

a more expressive formalism, the search combinations increase enormously,

especially for high-dimensional datasets. For instance, there are several ways

of approximating a trapezoid (grey-shadowed) cluster, as depicted in figure

5.14.
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Obviously, the FOL expression R1: (20≤Income <100) ∧(10≤Expenditure

≤(0.25Income+25)), sketched in figure 5.14(a), clearly outperforms propositional-

like expressions such as R2∨R3: ((20≤Income<65) ∧(10≤Expenditure≤35))

∨ ((65≤Income <100)∧(10≤Expenditure≤50)),R4: (20≤Income<100)∧(10≤

Expenditure≤50) that are depicted in figures 5.14(b-c), respectively. This is

because R1 provides the most accurate and homogeneous cluster description

with minimal number of rules, and it is straightforward to induce the trape-

zoid pattern from the geometry of R1. Despite the appealing flexibility of FOL

conditions the thesis adopts propositional rules primarily due to their compre-

hensibility, and secondarily because of the enormous search space associated

with FOL conditions when clustering datasets of high dimensionality.

• Evolution of Disjoint Rules: There are several reasons to restrict the evo-

lutionary search to the space of disjoint rules.

1. The most prominent reason is the tremendous increase in the number of

search combinations when rule overlapping is allowed.

2. The fitness function must be properly modified to accommodate disjoint

rules. But, how should two individuals with overlapping rules be com-

pared? How should individuals with and without overlapping rules be

compared? Addressing these sort of questions is not a trivial task.

3. There is a direct relationship between the degree of overlapping among

rules and the redundancy of knowledge in the chromosome - the same

region in the feature space is likely to be captured by multiple rules.

4. Assessing and possibly enforcing the homogeneity of rules, is a time con-

suming task, especially for massive high dimensional datasets. Bearing

in mind that rules are treated as individual entities, extra computational

overhead is introduced by the fact that the homogeneity of a region that

is covered by multiple rules, is unnecessarily reassessed.

5. Disjoint rules could be more easily interpreted and accepted by users

in some applications. However, in other applications where points may
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belong to different trends users might find overlapping rules natural and

more informative.

However, there are some penalties to be paid for the anticipated gains from

evolving disjoint rule-sets.

1. Computationally expensive genetic operators with semi-stochastic con-

strained functionalities are required to preserve the disjointness of rules

in the chromosome.

2. Arbitrary-shaped clusters may be captured using fewer and more generic

rules when rule overlapping is allowed, as depicted in figure 5.15.
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Figure 5.15: Rule Overlapping may Yield Short and Generic Approximations for
Arbitrary-shaped Clusters

3. Sparse parts (if any) of arbitrary-shaped clusters sticking out from the

backbone of the clusters are lost as a result of eliminating sparse candidate

rules.

The thesis investigates only the discovery of disjoint partitions, but future

research might explore the use of individuals with overlapping rules.

5.6.2 Preference Bias

Preference or search bias refers to any criterion (except consistency with the

data) that is used to determine how the system traverses the search space [67].

Often, this kind of bias takes the form of heuristics for a) assessing the quality of

candidate solutions, b) choosing the best ones, and c) propagating the knowledge
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encapsulated in current solutions into subsequent iterations by generating new

candidate solutions based on the current best solutions.

• Maximisation of Point Coverage: Like typical EAs, the most prominent

kind of preference bias used in NOCEA is based on the fundamental principle

of survival of the fittest as expressed by the fitness function. The performance

of candidate solutions is measured in the context of the underlying fitness func-

tion (section 5.5). The fitness of an individual heavily determines the proba-

bility that the individual will survive into and be selected for reproduction in

succeeding generation(s). In general, the EA search paradigm offers two op-

portunities for biasing selection of candidate solutions: a) selection for mating

(reproduction), and b) selection of individuals from the parent and child popu-

lations to produce the new population (replacement) [11]. Although a number

of different biased selection methods have been proposed in the literature, in

essence, all these heuristics rely on the assumption that the fittest individuals,

i.e. high data coverage, must receive preference as candidate solutions.

• Elimination of Sparse Rules: Sparse rules represent spurious relationships

with minor statistical significance. Additionally the computational burden to

store and manipulate individuals comprising many clustering rules is very high

for high dimensional datasets. Therefore, NOCEA instantly eliminates sparse

rules.

• Enforcement of Rule Homogeneity: Not all axis-aligned non-sparse rules

are necessarily good sub-solutions to the clustering problem. Perhaps the

most important requirement, from a clustering point of view, is to ensure

that the space enclosed by a feasible rule is as uniformly filled with points as

possible. The natural interpretation of a homogeneous rule is the absence of

any strong inter-attribute correlation for the data inside the rule. Under such

circumstances, the boundaries of the rule along with its data coverage and

density can adequately describe the data distribution. NOCEA employs the

task-specific repair operator to form rules with homogeneous data distribution.
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5.7 Homogeneity Operator

This section describes a task-specific genetic operator, the repair or homogene-

ity operator. The repair operator manipulates, when necessary, candidate rules

so that the space enclosed by the resultant variations, i.e. rules, have quasi-

homogeneous data distribution. The terms repair and homogeneity are used

interchangeably throughout the thesis.

The repair operator relies on the UDA algorithm (section 3.4) to identify

U -regions along the orthogonal uni-dimensional projections of candidate rules.

Recall that a U -region is defined as a set of contiguous bins with small histogram

value variation. The repair operator exploits the observation that cleanly separa-

ble univariate U -regions are “signatures” of clusters in higher dimensional spaces

[5, 7, 23, 72, 74].

Finally, the repair operator considers only non-sparse U -regions to suppress

the subsequent formation of spurious rules over-fitting the data and to reduce

computation. A univariate U -region is deemed as non-sparse if its data coverage

(i.e. percentage of total points falling onto that region) exceeds the standard

input sparsity threshold Ts ∈ (0, 1] (see section 5.3).

5.7.1 Motivation for Homogeneity

The fitness function proposed in section 5.5 is totally blind to the quality of the

clustering results, solely seeking to maximise data coverage. In particular, the

fitness function 5.27 lacks any bias that would yield:

• effective discrimination of clusters

• separation of the genuine clusters from the noise regions

• precise approximation of clusters

• homogeneous data distribution in the space enclosed by candidate rules

In essence, since there is no constraint to prevent rules from growing arbitrarily,

NOCEA would easily produce super-solutions, e.g. highly-fit individuals covering
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substantial parts of the feature space F , or in the worst case all of F . Under such

circumstances the meaningfulness of clustering may be easily called into question.

5.7.2 Natural Interpretation of Homogeneous Rules

Unlike other operators, e.g. mutation, recombination and generalisation that are

used to traverse the search space, the repair operator concentrates on yielding

high quality clustering rules with homogeneous data distributions. The natural

interpretation of an homogeneous rule is the absence of any strong inter-attribute

correlation for the points covered by the rule. As a result, the boundaries of such

a rule, along with its data point coverage and density, accurately describe the

data distribution. In contrast, the descriptor of a non-homogeneous rule must

be accompanied with the types and localities of correlations occurring within the

given rule.

From a statistical viewpoint, a d-dimensional rule R is homogeneous if each

cell that is enclosed by R contains approximately the same number of points.

However, creating a histogram that counts the points contained in each cell is

infeasible in high dimensional spaces because the number of cells is exponential

with the dimensionality. As a result of the sparsely filled space it is impossible

to determine the type of distribution with sufficient statistical significance [55].

Notice that the number of available points cannot grow exponentially with the

dimensionality, which, in turn, means that the vast majority of points map into

different cells and there are many empty cells. The only thing that can be easily

verified is that any axis-parallel projection of a set of uniformly generated points

follows a quasi-uniform distribution. This observation, along with the fact that

clusters become separated because of the different extent of point concentration

(density) motivated the design of the repair operator. The repair operator ap-

plies several statistical tests to each candidate rule independently as described in

sections 3.4.1 - 3.4.3.
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5.7.3 Principles of Homogeneity Operator

This section describes in depth how the repair operator combines the three homo-

geneity tests (HT1, HT2, and HT3) of the UDA algorithm (section 3.4) to ensure

that the space enclosed by all feasible rules has a quasi-homogeneous data distri-

bution. In particular, all dimensions of a candidate rule R undergo the following

processing stages with a random order:

1. Construction of Smoothed Frequency Histogram

Initially, NOCEA computes the smoothed frequency histogram along the orthog-

onal univariate projection of the current dimension using the binned KDE (Kernel

Density Estimation) with the boundary correction as described in section 3.3.5.

It is essential to construct histograms that allow both the detection of significant

differences in density and that have smoothed out local data artifacts.

Unlike the classical frequency and density histograms (section 3.2), the KDE

method is insensitive to the placement of the bin edges and creates a reasonably

smooth approximation of the real density. The latter property is essential for low-

to-moderate density rules where the traditional frequency histogram tends to be

very jagged making thus difficult to locate non-sparse U -regions. To improve scal-

ability when constructing the smoothed frequency histograms, NOCEA employs

a binned version of the KDE method as explained in section 3.3.3. Henceforth,

the term density or frequency histogram will refer to a binned KDE histogram

as defined in section 3.3.5, unless otherwise stated.

The practical implementation of the KDE during the repairing stage requires

the specification of the bandwidth h, which controls the smoothness of the fre-

quency histogram. A simple solution would be to directly use the automatic nor-

mal scale bandwidth selection rule (formulae 3.4) as described in section 3.3.2.

However, for non-normal data distributions, e.g. multi-modal or heavily skewed

distributions, the statistical performance of formulae 3.4 is poor [92, 94, 97].

We propose here a modification of the automatic bandwidth selection algo-

rithm of section 3.3.2 to adapt h to the local characteristics of the data distribu-

tion. The algorithm for a dimension is:
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1. Split dimension into k (e.g. k=4) equi data coverage segments.

2. Apply the oversmoothing Normal Reference Rule (formulae 3.4) for each

segment independently to obtain the local bandwidths, h(i) = 1.144 σ(i) N
−1/5
(i) ,

where N(i) and σ(i) denote the number of points and the standard deviation

of data in the ith segment, respectively.

3. Compute a provisional bandwidth h by scalarasing the local bandwidths

using the weighted-sum method h =
∑k

i=1

(
N(i)

N(1)+...+N(k)

)
h(k)

4. Using the bandwidth found in step 3, construct a smooth frequency his-

togram based on the binned KDE with boundary correction as explained

in section 3.3.5.

5. Apply the UDA (section 3.4) to the smooth frequency histogram obtained

in step 4 to locate non-sparse U -regions.

6. If no non-sparse U -regions can be found in step 5, set the bandwidth (h)

to the value found in step 3 and exit. Otherwise, repeat steps 3-4 to the

newly formed U -regions to compute the final bandwidth.

Having determined the smoothing bandwidth (h),NOCEA builds the final smooth

frequency histogram (section 3.3.5) for the current dimension.

2. Detection of Cutting Planes and Histogram Splitting

Then, the repair operator reapplies UDA to the smooth frequency histogram to

detect valid cutting planes. If no splitting points were found the repair operator

proceeds with the next, randomly selected, dimension. Otherwise, the original

rule R is split along the cutting planes of the current dimension, and is discarded.

Each newly formed rule undergoes stages 1-2 recursively in all dimensions. If

there is a dimension with no non-sparse U -regions the original rule R is simply

discarded without creating new ones. Finally, if no splitting sites are detectable

along any dimension the original rule R is finally deemed homogeneous and is not

processed further.
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Repairing Example An example of repairing is shown in figure 5.16, where the

candidate non-homogeneous rule R of figure 5.16(a) is hierarchically decomposed

into a set of disjoint-feasible rules (figure 5.16(b)) using axis-aligned cutting planes

that are denoted by dashed lines. Evidently, as the repair operator progresses

the refined rules become increasingly more homogeneous.
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Figure 5.16: The Repairing of a Non-homogeneous Rule
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5.7.4 Localised Homogeneity Analysis

Motivation Behind Localised Homogeneity Analysis

Often, real-world databases contain subsets of correlated dimensions forming

arbitrary-shaped clusters, e.g. linear or higher order inter-attribute dependencies,

with flat univariate orthogonal projections. Additionally, in the uni-dimensional

projections some clusters may overlap, and thereby not be distinguishable. In

other words, since uni-dimensional orthogonal projections flatten all inter-attribute

correlations existing in higher dimensional spaces, it may not always be feasible to

detect the boundaries of arbitrary-shaped clusters using a non fully-dimensional

axis-parallel partitioning scheme. A representative example is shown in figure

5.17(a) where both projections fail to reveal the strong inter-attribute correla-

tions existing inside the candidate rule R. One possible solution is to use general

contracting, e.g. non-axis aligned projections [55], but this approach is expensive

since the number of potentially interesting projections is very large.

Localised Homogeneity Analysis Algorithm

NOCEA tackles the problem of detecting strongly correlated dimensions using

the same principal of examining uni-dimensional orthogonal projections, but the

analysis is now more localised. In particular, rather than considering the entire

rule R, the ordinary repair operator is applied in appropriately selected sub-

regions of R. The algorithm is as follows:

1. Split Original Rule: Initially, the original rule R is tessellated into

equal data coverage disjoint sub-regions, each containing approximately

TsN (sparsity level) points. More specifically, R is recursively split by

applying a single cutting plane at a time, which passes along the centre of

gravity of the dimension with the longest interval. The rational behind the

splitting of R is to perform a localised homogeneity analysis in the hope of

reducing the harmful effect of the joint projection of multiple clusters that

make the histograms appear quasi-uniform.

2. Repairing of New Rules: All the newly formed rules from the previous

stage undergo repairing, as described in section 5.7.3.
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3. Generalisation of Repaired Rules: Since the splitting of rules in stage

1 may result in cutting homogeneous clusters, the generalisation operator

is applied to the rule-set to recover from any wrongly done splitting.
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Figure 5.17: Localised Homogeneity Analysis to Repair Strong Correlations

The probability that a candidate rule undergoes localised rather than ordinal

repairing is set to a very small value, e.g. 0.05.

Localised Homogeneity Analysis Example

The merit of localised homogeneity analysis is shown in figure 5.17(a), where the

uni-dimensional orthogonal projections of the original rule R reveal no correla-

tion. In contrast, after the balanced splitting of R (figure 5.17(b)) the ordinal

repair operator can easily detect and fix the discontinuities in data distribution

in the resultant rules as shown in figure 5.17(c). Finally, generalisation is used to

recover from wrongly done splitting actions in stage 1, as shown in figure 5.17(d).
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5.8 Recombination Operator

This section presents NOCEA’s novel recombination scheme, the Overlaid Rule

Crossover (or ORC) operator. ORC semi-stochastically recombines the genetic

material of individuals to preserve and propagate intact rules from parents to

offspring, and at the same time to blend them in the hope of creating even better

individuals. The constrained functionality of ORC ensures the generation of

offspring with disjoint rules.

5.8.1 Motivation for Recombination

The aim of recombination or crossover in EAs is to combine the best charac-

teristics of highly fit individuals in the hope of creating even better solutions

[11, 12, 47, 71]. As the EA is unaware of what characteristics account for the

good performance, the best it can do is to recombine characteristics at random.

Stochastic crossover may lead to deleterious, neutral, or beneficial changes in the

behaviour (performance) of individuals. However, due to the selective pressure of

EAs, poorly performing offspring will not survive for long. During recombination,

parent-solutions are selected from the mating pool at random and chromosome

fragments are exchanged between them to create the offspring.

NOCEA’s fitness function (section 5.5) has no bias towards rules of specific

type, e.g. generic or highly-dense, and consequently each rule can be viewed as

an important building block or good schema. This is because each homogeneous

rule contributes to the fitness, regardless of its size, geometry, and data coverage.

Thus, crossover must not simply preserve and propagate intact rules from parents

to offspring, but at the same time must blend them with rules present in other

parents in the hope of producing even fitter solutions. The obvious caveat is that

the manipulation of the genetic material by crossover must always yield non-lethal

individuals. A non-lethal solution comprises non-sparse, semantically valid and

disjoint rules. In analogy to binary EAs where disruption means the breaking up

of critical schemata (bit combinations) conveying high fitness, in ORC disruption

after crossover is the splitting of parental rules to create non-lethal offspring.
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5.8.2 Principles of Recombination

NOCEA employs a specialised ORC recombination scheme whose functionality

is geared toward: a) minimisation of disruption of the genetic material, b) elimi-

nation of positional bias, c) minimisation of distributional bias, and d) generation

of non-lethal offspring.

Instead of stochastically exchanging chromosome fragments, i.e. rules, be-

tween the parents, ORC initially creates a clone of each parent and then overlays

it with the rules from the other parent. Those parts of rules from the second par-

ent that do not intersect with the rules from the first parent are directly copied in

the offspring while the rest are discarded. The principles of ORC are explained

with the help of the example depicted in figure 5.18, where the colour of a rule

indicates its parental origin. ORC operates on two parent solutions at time and

creates two non-lethal offspring in a way that rule disruption is minimised.

The main processing stages in ORC are as follows:

1. Cloning Parents: Initially, each parent transmits intact its rules to one

of the generated offspring. Henceforth, the parent that is initially cloned to

create an offspring is termed as the primary parent of that offspring, while

the other parent is termed secondary parent. By firstly cloning the parents,

ORC achieves propagating each rule present in the parental chromosomes

in at least one offspring. It can easily be observed from figure 5.18(b) that

each offspring inherits, at first glance, all rules from its primary parent.

2. Exchanging Disjoint Rules: In the next stage, the genetic material of

each offspring is enhanced by directly copying all rules from its secondary

parent that do not intersect with the rules of the offspring. For instance,

offspring A, in figure 5.18(c), receives unaltered rule B2 from its secondary

parent B, since such an operation yields a non-lethal solution. ORC pro-

ceeds then by identifying, for each offspring, those rules in its secondary

parent that are fully covered by rule(s) in the chromosome of the offspring,

e.g. rule B1 in respect of offspring A. These rules (if any) are effectively

omitted from further processing because the d-dimensional regions that are
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Figure 5.18: ORC Recombination Principles
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enclosed by them, are entirely known to the target offspring. So far, no dis-

ruptive effect is evident, meaning that the resultant offspring at this stage

are at least fit as their primary parents. Notice that up until now ORC is

a purely deterministic operation.

3. Resolving Rule Overlapping: What follows next is the splitting algo-

rithm of figure 5.19 that stochastically resolves all instances of overlapping

between an offspring and the remaining rules of its secondary parent. Let

V be a vector containing the rules of the secondary parent that partially

intersect with the offspring. In essence, during a single iteration, a ran-

domly selected rule R from V is split along a randomly selected cutting

plane passing through a proper bound of an offspring rule that intersects

with R. A single splitting operation yields a set of new rules where one of

them is disjoint with the offspring rule. After the completion of the split-

ting algorithm all the newly formed non-sparse rules (if any) are copied into

the offspring, enriching its genetic material and consequently improving its

performance.

1. Randomly select the jth rule (Rj) from V

2. Randomly select the ith rule (Ri) of the offspring intersecting
with Rj

3. Randomly select the splitting dimension s such that (lsj<lsi) or
(usi<usj)

4. If (lsj<lsi) ∧ (usi<usj) randomly select whether the cutting plane
passes through the lower or upper bound of Ri. Otherwise, if
(lsj<lsi), choose the lower bound of Ri while if (usi<usj) choose the
upper bound of Ri

5. Split Rj along the selected bound and discard Rj

6. Discard any newly formed sparse rules

7. Copy the new rules having no intersection with the current
offspring rules to the offspring and insert the remaining new rules
into V

8. If V is empty exit, otherwise go to step 1

Figure 5.19: Algorithm for Resolving Rule Overlapping in ORC
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5.8.3 Properties of the Recombination Operator

From an exploratory viewpoint, ORC is of limited power in the sense that the

resultant variations are proper subsets of the union of the parental rules. In other

words, although crossover can introduce new rules that are not present in the cur-

rent population, the new genetic material represents regions in the feature space

F that were previously identified by at least one parent. However, provided that

the union of two parental chromosomes assembles the optimal solution, NOCEA

has the exceptional ability to reach this optimal point of the search space in a

single ORC operation.

In short, the salient features of ORC are:

• Non-lethal Variations: Despite its semi-stochastic functionality, ORC al-

ways guarantees the generation of non-lethal offspring.

• Beneficial Variations: ORC improves the mean performance of the popu-

lation because the offspring are always at least as fit as their primary parents.

• No Positional Bias: ORC has no positional bias (section 2.4.9) because

the transmission of rule-genes to offspring is absolutely independent of their

relative positions on the parental chromosomes.

• Distributional Bias: ORC has a distributional bias (section 2.4.9) in the

sense that the expected number of rules that are transmitted to an offspring

is bounded minimally by the number of rule-genes of its primary parent. Con-

cerning the secondary parent, clearly the variation associated with the number

of transmitted rules is expected to be relatively large during the early stages

of the search, provided of course that individuals were initialised randomly.

However, the variation reduces as the search progresses because the individu-

als become increasingly more similar. No other distributional bias is present.
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5.9 Generalisation Operator

This section presents Generalisation, a novel genetic operator that delivers end-

user comprehensibility and simplification of the clustering results. Generalisation

has a parsimony pressure in the sense that it strives to minimise the length

of individuals and to make rules as generic as possible. This is achieved by

replacing adjacent (section 5.9.3) rules satisfying several conditions with a single

and hopefully more generic rule. Additionally, generalisation improves scalability

because the overall computational complexity of NOCEA heavily depends on the

total number of rules that are processed each generation.

5.9.1 Motivation for Generalisation

There are several incommensurable factors affecting the comprehensibility of the

discovered knowledge, e.g. format of the knowledge representation language,

familiarity with the application domain, syntactical complexity, level of knowledge

abstraction [43, 81]. However, to avoid difficult subjective issues, it is common

in DM literature to assess knowledge comprehensibility by considering just two

objectives: a) the length of rules, that is, the number of conditions involved in the

antecedent part, and b) the size of the rule set, that is, the number of discovered

rules. In general, the smaller the rule-set and the shorter the rules the more

comprehensible the knowledge is [43].

The simplification of the antecedent part of the clustering rules along with the

minimisation of the size of the rule-set are precisely the goals of generalisation.

The generalisation operator strives: a) to replace pairs of adjacent rules with a

single and hopefully more generic rule, and b) to encourage the discovery of generic

rather than specific rules because a relatively generic rule is more likely to detect

irrelevant features (see section 5.11), which permit “dropping” the corresponding

conditions in the antecedent part.

The motivation for generalisation is clearly demonstrated in figure 5.20, where

similar performance, i.e. data coverage, is achieved with radically different ge-

netic material. Undoubtedly, the solution depicted in figure 5.20(b) is the more
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comprehensible since it comprises less rules than the individual shown in figure

5.20(a). Additionally, the capturing of the vertical elongated cluster in figure

5.20(b) with a single-generic rule allows dropping the corresponding condition

from the antecedent part of that rule because it is extended to the entire domain.

a) b)

Individual 1 Individual 2

Figure 5.20: Motivation for Generalisation

5.9.2 Preference Bias of Generalisation

Since minimising the size of the rule set improves both comprehensibility and

efficiency, one might wonder: why not include some parsimony factor to the

fitness function to introduce explicit bias toward small rule-sets? The answer to

this question is straightforward: because it is not clear how to weight the effects of

point coverage and size of the rule set. For instance, should an individual become

fitter when discovering a new rule with relatively small coverage given the increase

in the size of the rule set? Alternatively, should only the discovery of rules with

moderate-to-high point coverage outweigh the effect of increasing their number?

An obvious drawback associated with the latter case is that rules with relatively

small coverage either will be missed completely, or their discovery and inclusion

in the individuals will be postponed until all moderate-to-high coverage rules

have been recovered. This in turn may be a reason for running NOCEA for more

generations, especially in cases where there are isolated clusters. To avoid these

difficulties NOCEA’s fitness function simply measures data coverage, but there is

a stochastic refinement of the discovered knowledge through generalisation, which

eventually delivers the desired minimisation in the number of rules.
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5.9.3 Principles of Generalisation

Generalisation is always applied to a pair of adjacent rules at a time satisfying

some conditions, and produces a single and hopefully more generic rule. Two

d-dimensional rules are adjacent if they have a common face, i.e. there are d-

1 dimensions where there is an intersection between the rules and additionally,

there is one dimension where the rules are contiguous.

Let us assume that the pair of ith and jth rules undergo generalisation along

the gth dimension, which is the dimension where the rules have a common face,

i.e. they are “touching” (see page 100 for a formal definition) . The original rules

are put together in an incomplete generalisation G, that must not overlap with

neighbouring rules. To achieve this, the generalisation operator firstly determines

the backbone of the rule G that will eventually replace the two rules. In particular,

the lower (lk) and upper (uk) bounds of G are:

[lk, uk] =

 [min(lki, lkj), max(uki, ukj)] , if k = g

[max(lki, lkj), min(uki, ukj)] , otherwise
(5.28)

Having determined the incomplete generalisation G, the operator proceeds di-

mension by dimension in a random order. More precisely, G is gradually expanded

along every dimension, apart from g, so that no overlapping with neighbouring

rules occurs. The growing of G to the left and to the right in the kth (k 6= g)

dimension is bounded by min(lki, lkj) and max(uki, ukj), respectively. However,

it is likely that the expansion will be limited if there are rules that may overlap

with a fully expandable G. For instance, the generalisation of adjacent rules R1

and R2 shown in figure 5.21(a) yields initially the incomplete generalisation G

shown as grey-shadowed region in figure 5.21(b). Concerning the vertical axis,

G is clearly expandable up to the left vertical bound of R3 rather than to the

right-vertical bound of R2, because such a growing operation will cause overlap-

ping between G and R3. After generalisation completes the resultant solution in

figure 5.21(c) it comprises fewer and more generic rules compared to the solution

that is depicted in figure 5.21(a).
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Figure 5.21: Generalisation Principle

5.9.4 Constrained Generalisation

Generalisation is subject to some constraints that help to prevent the formation

of rules that are non-homogeneous and/or have significantly lower data coverage

compared to the aggregated coverage of the two original rules. To explain the na-

ture of these constraints consider the generalisation examples that are depicted in

figures 5.22(a-c), where the relative darkness indicates the density of the clusters.

In the first case - figure 5.22(a), the density of rules R1 and R2 differs signifi-

cantly and therefore the resulting generalisation, which inherits this difference, is

non-homogeneous. In the second case - figure 5.22(b), although the rules R3 and

R4 are of similar density and geometry, their centers are not properly aligned, and

consequently the large regions at the top-right and bottom-left corners with un-

known density that are added in the generalisation produce a non-homogeneous

rule. In both cases (figures 5.22(a-b)), the generalisation is an unsuccessful oper-

ation as it generates non-homogeneous rules requiring repairing.

Perhaps the most severe drawback of unconstrained generalisation occurs

when there are large differences between the sizes of rules, e.g. R7, R8 under

generalisation and additionally there exist other rules, e.g. R5, R6 in close prox-

imity, as shown in figure 5.22(c). In such cases, it is likely to lose substantial parts

of the rules under generalisation to avoid overlapping with rules nearby. As a re-

sult, an unconstrained generalisation can substantially degrade the performance

of the individual, which in turn, poses a strong obstacle for NOCEA to converge

into an optimal solution.
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Figure 5.22: Pitfalls of Unconstrained Generalisation

To reduce the severity of the side-effects associated with generalisation,NOCEA

allows the operation to proceed only if the rules under generalisation have similar

densities, sizes, and proper alignment. In particular, the pair of adjacent rules

Ri and Rj, are generalised only if the following conditions are true for every

dimension l = 1, ..., d, excluding g (g: touching dimension for Ri and Rj):

min(Di,Dj)
max(Di,Dj)

≥ Th and
Rli∩Rlj

ulm−llm
≥ Tg, m ∈ {i, j} (5.29)

where, Di, Dj denote the density of ith and jth rule, respectively, while Rli ∩Rlj

is the length of the intersection between the two rules in the lth dimension. llm

and ulm are the decoded values (section 5.3) of the lower and upper bound of

mth rule in the lth dimension, respectively. The homogeneity Th∈(0,1] and gen-

eralisation Tg∈(0,1] thresholds are discussed in section 5.14. The first condition

prevents generalising rules with very different densities, while the second reflects

the requirement of generalising rules with proper alignment and similar sizes.
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5.10 Mutation Operators

This section presents two novel, semi-stochastic mutation operators, namely,

Grow - and Seed -Mutation , that provide the main exploratory force in NOCEA.

The goal of mutation is threefold: a) to perform local fine-tuning by randomly

increasing the size of existing rules, b) to discover previously unknown and poten-

tially promising regions within the enormous feature space F , and c) to ensure

that every uncovered region in F is accessible to NOCEA. Grow - and Seed -

Mutation operate under constraints to ensure the formation of individuals with

semantically valid and disjoint rules.

5.10.1 Motivation for Mutation

Mutation serves to prevent premature loss of population diversity by randomly

sampling new points in the search space. The probability of mutation must be

kept small, otherwise the optimisation process degenerates into a random search

(section 2.4.10). Typically, an EA mutation operator acts on a single individual

at a time and replaces the value of a gene with another, randomly generated

value, leading to deleterious, neutral, or beneficial changes in the performance

of the individual [11, 12, 47, 71]. From an exploration viewpoint, mutation is

particularly useful as it can introduce into an individual a gene value that is not

present in the current population. In most GA studies, mutation is treated as a

background operator, supporting the recombination operator, by ensuring that

all possible combinations of gene values of the search space are accessible to EA.

In ES and EP, in contrast, mutation plays the central role in exploring the search

space.

Traditionally, mutation disregards semantic linkages among genes in the chro-

mosome in the sense that the positions in the string to undergo mutation and the

new values for the mutated genes are determined at random regardless of what

happens at other positions in the string. In our case, however, since rules must

always be semantically valid and disjoint, the mutation of a particular rule-bound

gene is likely to influence or even prevent subsequent mutations in other genes.
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5.10.2 Principles of Grow-Mutation

Functionality of Grow-Mutation

The Grow-Mutation , as implied by its name, is primarily used to grow exist-

ing rules in an attempt to increase their data coverage, and thereby to make

the individuals fitter [87, 88]. Bearing in mind that comprehensibility is a de-

sired property for the discovered knowledge, it seems reasonable to focus on the

discovery of as few and as generic rules as possible. Due to its nature, Grow-

Mutation has a parsimony pressure for small and generic rule-sets, thereby im-

proving comprehensibility and reducing computational complexity. The general

form of Grow-Mutation can be written as:

µ = µ′ + U (5.30)

where µ′ and µ denote the integer value of a gene, i.e. lower or upper bound,

before and after Grow-Mutation , respectively. U is a uniform discrete random

variable in [0, µmax] for the upper bound, and [-µmax, 0] for the lower bound. µmax
5

represents the maximum possible modification for a valid expansion that does not

produce overlapping rules. Figure 5.23 shows the algorithm for determining µmax

if the upper bound uij of the jth rule (Rj) is mutated along the ith dimension.

The derivation of µmax for the lower bound is the dual procedure (see figure 5.24).

1. Find all rules Rl, l = 1, ..., k, l 6= j, where uij < lil

2. Sort rules in ascending order of lil

3. If the sorted list is empty, set µmax = (mi - uij - 1) and exit.
Otherwise proceed to step 4

4. Pick the next rule Rl from the sorted list. If Rl intersects with
Rj in every dimension excluding ith, set µmax = (lil - uij - 1) and
exit. Otherwise, repeat step 4

5. If no rule in the sorted list satisfies the condition in step 4,
set µmax = (mi - uij - 1)

mi:total number of bins in ith dimension, k:number of rules

Figure 5.23: Algorithm for Computing µmax for an Upper Grow-Mutation .

5µmax ∈ {0} ∪ Z+ and µmax < m, where Z+ denotes the positive integers while m is the
total number of bins in the given dimension.
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1. Find all rules Rl, l = 1, ..., k, l 6= j, where uil < lij

2. Sort rules in descending order of uil

3. If the sorted list is empty, set µmax = lij and exit. Otherwise
proceed to step 4

4. Pick the next rule Rl from the sorted list. If Rl intersects with
Rj in every dimension excluding ith, set µmax = (lij - uil - 1) and
exit. Otherwise, repeat step 4

5. If no rule in the sorted list satisfies the condition in step 4,
set µmax = lij

mi:total number of bins in ith dimension, k: number of rules

Figure 5.24: Algorithm for Computing µmax for a Lower Grow-Mutation .

Grow-Mutation is applied with a very small fixed probability, e.g. 0.005, to

a single bound of a rule at a time.

Local Fine-Tuning

Figure 5.25 clearly demonstrates the effectiveness of Grow-Mutation as a mech-

anism to perform local fine-tuning. Let us assume that the upper bound of rule

R1 undergoes Grow-Mutation along the horizontal axis. After having deter-

mined µmax with the algorithm in figure 5.23, R1 is randomly expanded to the

right within the rectangle (abcd) that is demarcated by the dashed lines, as shown

in figure 5.25(b). Notice that, although the rule R5 is located in the same hy-

perplane where the Grow-Mutation is taking place, it does not constrain this

operation because there is no intersection with R1 in the vertical axis. Since

the new values for the rule boundaries are randomly chosen from a window of

predefined size (µmax), Grow-Mutation may create non-homogeneous rules, e.g.

R1 in figure 5.25(b). In such cases, the repair operator (section 5.7) enforces

feasibility on the candidate solutions, as depicted in figure 5.25(c). Clearly the

data coverage of R1 has been increased by the Grow-Mutation .

Exploration

Apart from performing local fine tuning, Grow-Mutation in association with

the repair operator, plays a central role in the exploration of previously unknown



CHAPTER 5. CLUSTERING WITH EVOLUTIONARY ALGORITHMS 134

X

Y

a)  before Grow−Mutation X

Y

b)  after Grow−Mutation

X

Y

c)  after Repairing

µ µ

R5

R2

R3R4

R1

R5

R2

R3R4

R1

R5

R2

R3R4

R1

max = 13 max = 13
c

a b

d c

a b

d

Figure 5.25: Performing Local Fine-Tuning with Grow-Mutation and Repairing

X

Y
X

Y

a)  before Grow−Mutation X

Y

c)  after Repairing

b)  after Grow−Mutation

R1

R2

R3

R1

R2

R3

R1

R2

R3

R4

max = 23µ

a

d c

b

max = 23µ

a

d c

b

Corridor for Grow−Mutation

Figure 5.26: Discovering Unknown Clusters with Grow-Mutation and Repairing



CHAPTER 5. CLUSTERING WITH EVOLUTIONARY ALGORITHMS 135

and potentially promising regions. Unlike other neighbourhood-move mutation

operators, e.g. non-uniform [71] or zero-mean Gaussian [11], every cluster that

intersects with the d-dimensional corridor - e.g. rectangle (abcd) in figure 5.25(a)

- along which a Grow-Mutation is performed, can be potentially recovered,

regardless of its distance from the rule under mutation. For instance, the Grow-

Mutation of the upper bound of R1 along the horizontal axis in figure 5.26(a),

produces an intermediate non-homogeneous rule. However, now the mutated rule

R1 in figure 5.26(b) encloses a significant part of a previously unknown cluster.

The subsequent repairing of R1 in figure 5.26(c) yields two homogeneous rules,

where one (R4) partially covers a newly found cluster.

5.10.3 Grow-Mutation as Source of Variation

What Constitutes a Successful Grow-Mutation?

Before investigating the effects of Grow-Mutation as source of variation in

NOCEA, it is necessary to establish an objective definition of what constitutes

a successful Grow-Mutation . Bearing in mind that the repaired version of an

individual replaces the original before the evaluation stage, it is evident that not

every alteration of the genetic code made by the Grow-Mutation operator is en-

tirely accepted. In fact, given that the repair operator fixes every violation of the

rule-homogeneity constraint, only those parts of the alterations that lead to an

increase in the data coverage of existing rules or the discovery of new non-sparse

rules, are kept, while the rest are discarded. Therefore, a Grow-Mutation is

regarded as successful when it yields feasible expansions of existing rules or in

association with the repair operators, helps discovering new clusters.

Candidates Schemes for Grow-Mutation

Concerning real-valued representations, various types of mutations have been pro-

posed in the literature [11]. The simplest mutation scheme would be to select

the replacement value for a gene randomly from the entire domain [71]. In gen-

eral, this type of mutation is independent of the parent solution and thus it may

cause losing most of inheritance from parent to offspring that is a fundamental
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principle in every EA-based search algorithm. Alternatively, to preserve to some

extent intact the ties between parent and offspring, the new value can be created

in the vicinity of the parent solution (creep mutation), that is, the parent value is

randomly mutated within a small window of predefined size [25]. However, if the

parent solution resides in a local optimum and the distance from other optima

is greater than the step size, creep mutation leads to entrapment [11]. Another

step-size control mechanism for mutating real-valued genes is the non-uniform

mutation [71]. The non-uniform mutation permits large-scale modifications in

the early stages of the evolutionary search, thus acting like a random mutation

operator, while the probability of creating a solution in the vicinity of parent

solution rather than away from it increases over the generations, thus allowing

a more focused search. The most popular mutation scheme for real-valued rep-

resentations is the zero-mean Gaussian mutation, where the value of a gene is

mutated by adding to it a random number that is drawn from the normal distri-

bution N(0, σ). The zero-mean Gaussian mutation operator attempts to create

offspring that are “... on average no different from their parents and increasingly

less likely to be increasingly different from their parents...” [11].

Why Use Random Mutation?

Unlike most EA-based optimisation techniques where a mutation event may have

a deleterious impact on the performance of an individual, Grow-Mutation has

the unusual property of producing only beneficial or in worst case near neutral

changes in the genetic material of individuals. This is because, regardless of

the mutation rate and the amount of modification, the parent solution is always

a proper subset of the offspring solution before of course the repairing stage.

Therefore, large-scale Grow-Mutations not only do not destroy the inheritance

from parent to offspring, but rather allow a fairly robust and fast search, since

they accomplish both local fine-tuning and vigorous exploration of new regions

simultaneously.

There are several reasons to avoid neighbourhood-move mutation operators,

e.g. creep, non-uniform or zero-mean Gaussian, in NOCEA. Firstly, determining
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appropriate step sizes for every dimension poses a significant challenge, even

though various methods have been proposed to tune these strategic parameters

on the fly [11, 12]. These methods are either deterministic where the step sizes are

altered based on some time-varying schedule without incorporating feedback from

the search, adaptive where the direction and magnitude of change are determined

using feedback from the search, or self-adaptive where the strategic parameters

themselves are subject to evolution.

Secondly, using a uniform random variable that is bounded within the max-

imal allowable range rather than within a window of small predefined size, per-

mits capturing large size clusters rapidly. Although the non-uniform mutation

can also support fast approximation of large size clusters, unfortunately it loses

this property as search progresses, which simply means that at the later stages

of the search, a non-uniform mutation scheme may require many iterations to

entirely capture large clusters. A Gaussian-like grow-mutation suffers from the

same problem because although large moves are possible during the entire course

of evolution, yet they are not so common. Finally, neighbourhood-move mutation

operators are of limited exploratory power for regions that are far away from the

rule under mutation. In contrast, Grow-Mutation has the capability of reaching

isolated regions easily, throughout the evolutionary search.

In an alternative implementation of grow mutation, one could incrementally

grow a rule as long as it yields a feasible (i.e. homogeneous) expansion, but this

approach is computationally expensive for high dimensional datasets.

5.10.4 Principles of Seed -Mutation

Despite its appealing exploratory power, Grow-Mutation is incapable of assur-

ing that every uncovered region of the feature space F is accessible to NOCEA.

More specifically, due to the constraint of evolving disjoint rule-sets, it may not

always be feasible to accomplish local fine-tuning or to locate previously unknown

clusters using Grow-Mutation . These limitations are evident in figure 5.27(a)
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Figure 5.27: Seed -Mutation (b-d) overcomes limitations of Grow-Mutation (a)

where NOCEA has reached a deadlock in increasing the coverage of the individ-

ual. Clearly, NOCEA has been entrapped into a local optimum from which it

is impossible to escape using only Grow-Mutation . This is because, no Grow-

Mutation can explore the rectangular region (abcd) that is enclosed by the four

rules, R1, R2, R3, and R4.

This limitation of Grow-Mutation motivated the design of a complementary

type of mutation, called Seed -Mutation . In short, Seed -Mutation is applied

with a very small fixed probability, e.g. 0.005, to a single bound of a rule at a time,

and generates, when it is possible, a new rule within a specific region, hereafter

called bounding box, that is fully determined from the parent rule. Similarly

to Grow -, the Seed -Mutation operator produces variations at random, yet the

resulting offspring contain no overlapping rules.

Assuming that the upper bound uij of the jth rule (Rj) undergoes Seed -

Mutation in the ith dimension the operation proceeds as follows: Initially, the

algorithm determines the lower (lb) and upper (ub) boundaries of the axis-aligned
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hyper-rectangular bounding box that corresponds to uij:

[lbk, ubk] =

 [lkj, ukj] , ∀ k = 1, ..., d, k 6= i

[(uij + 1), (mk − 1)] , if k = i
(5.31)

where, mk is the total number of bins in the kth dimension. The derivation of

the bounding box for the lower bound lij of Rj is the dual procedure:

[lbk, ubk] =

 [lkj, ukj] , ∀ k = 1, ..., d, k 6= i

[(0, (lkj − 1)] , if k = i
(5.32)

If the bounding box contains at least one uncovered cell the algorithm selects

semi-randomly (section 5.10.5) one, and creates a new rule, the seed. In the case

that no empty space exists or the bounding box itself is empty, the operation

is aborted. The next step is to grow the seed in every dimension, both to the

left and to the right, as much as possible without causing overlapping with other

rules. The expansion is performed dimension-by-dimension in a random order.

The boundaries in a specific dimension are also processed in a random order.

The rationale behind the large-scale expansion of the seed is: a) to increase the

probability of producing a non-sparse rule, and b) to accelerate the exploration

of irrelevant features inside the given rule. Figures 5.27(b-d) show how NOCEA

breaks the deadlock by employing Seed -Mutation in the right bound of rule

R1 along the horizontal axis. In this case Seed -Mutation creates a new rule

(light-grey rectangle in figure 5.27(c)) inside a previously unreachable region. The

subsequent repairing of the fully-expanded seed yields two new homogeneous rules

R5 and R6 as shown in figure 5.27(d). This example demonstrates the ability of

Seed -Mutation to perform both local fine-tuning and discovery of new clusters.

The selection of the seed inside the bounding box is unbiased with respect to

the parent rule, yet the size and location of the bounding box itself are depen-

dent on the parent rule. It is important to clarify the difference between random

initialisation and Seed -Mutation . In particular, in the former type of rule gen-

eration any uncovered cell of the feature space F is a candidate seed, while in

Seed -Mutation , only a specific sub-region of F is examined. The location of this
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region is deliberately chosen in a way that enables a localised search in the vicinity

of the parent rule, where neighbouring rules may not allow accomplishing local

fine tuning using Grow-Mutation . Additionally, since both the bounding box

and the seed are maximally constructed in the space that is available, the ability

of Seed -Mutation to discover isolated clusters should not be underestimated.

5.10.5 Seed Discovery Algorithm - SDA

From a computational point of view, sampling randomly for a seed inside the

bounding box during Seed -Mutation , becomes increasingly inefficient as the in-

tersection between the bounding box and rules increases. For instance, if there is

only a single seed within a 50-dimensional bounding box covering just two bins

per dimension, the probability of sampling randomly that cell is only (1/250)→ 0.

NOCEA relies on the novel Seed Discovery Algorithm (or SDA) of figure 5.28

to accelerate the discovery of a proper seed.

B = {B : ’ liji[ ,lbi ub ]

B = {B : ’
i[ ,lbi ub ]

ubi B = {B : ’
i[ ,lbi ub ] iju + 1, iub

ubi B = {B : ’
i[ ,lbi ub ]

,lbi

,lbi

lij iub

iju

return empty seed

return empty seed
no

yes

has B uncovered cells ?

no

yes

is V non−empty ?
return a randomly

from inside B
selected one−cell seed

select randomly one rule from V, say the j−th, where at least one of the

Construct bounding box B

add rules that intersect with B into a new vector V

1. has at least one uncovered cell<lbi lij and the sub−bounding box = [’ ’  − 1]}

<lbi lij and the sub−bounding box = [’ ’

uij < and the sub−bounding box = [’ ’     ]} has at least one uncovered cell

uij < and the sub−bounding box = [’ ’

2. ,
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3.
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conditions 1−4 is satisfied in a randonly selected dimension, say the i−th

’

is B empty ?
yes

no

randomly select a true  condition and replace the bounding box B with the corresponding B

Figure 5.28: Seed Discovery Algorithm - SDA
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SDA is a divide-and-conquer algorithm that recursively splits the bounding

box into two disjoint sub-regions using axis-aligned cutting planes. A valid cutting

plane passes through the borders of a rule that intersects with the bounding

box. Some additional constraints, as described in figure 5.28, are introduced

to ensure that the reduced bounding box will contain available space for seed

generation. In essence, as SDA progresses less valid cutting planes are detectable.

The procedure continues until obtaining a bounding box that does not overlap

with rules. Finally, SDA randomly samples a cell inside the final bounding box

to play the role of the seed.

But how does SDA determine whether a bounding-box has uncovered space?

A naive solution that can replace completely SDA would be to examine ev-

ery single cell enclosed by the bounding box, but such an exhaustive search is

prohibitively expensive for high dimensional datasets because the number of cells

increases exponentially with dimensionality. A simpler and more efficient method

is to compute the difference between the volume of the bounding-box and the ag-

gregated volume of the parts of rules covered by the former. If this difference is

greater than zero then there is available space to generate a new seed.

5.10.6 Scheduling Grow- and Seed -Mutation

During the mutation stage, an individual consisting of k rules can be viewed as

a vector of 2dk integer values, where each element corresponds to a rule bound

in a particular dimension. A mutation event is regarded as a four part entity

MEvent=[Rule, Feature, Bound, Type], where Rule ∈ [1, k], Feature ∈ [1,

d], Bound ∈ [lower, upper], denote the rule, feature and bound, respectively

undergoing mutation whose type is specified in the field Type ∈ [grow, seed].

The list of mutation events is shuffled to assure randomness in the order by which

bounds, features and rules are processed.

In NOCEA, mutations are scheduled and executed in the following manner:

In a typical EA the mutation operator disregards any linkage among genes in

the chromosome, that is, a gene is mutated to a new value independently of what



CHAPTER 5. CLUSTERING WITH EVOLUTIONARY ALGORITHMS 142

1. Determine the positions for mutation using a uniform random choice.
Each bound has the same small probability pm of undergoing mutation.

2. Select either grow or seed mutation with an equal probability for
the selected position.

3. Perform mutations in random order.

Figure 5.29: Scheduling and Executing Mutations in NOCEA

happens at other positions in the string. In our case, in contrast, a scheduled

mutation event may be heavily affected or even cancelled by preceding muta-

tion(s). This is because, any form of mutation must yield non-lethal variations,

i.e. solutions with disjoint and syntactically valid rules.
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5.11 Subspace Clustering

5.11.1 Motivation for Subspace Clustering

High dimensionality continues to pose a significant challenge to clustering algo-

rithms because of the inherent sparsity of the feature space. In fact, recent studies

argued that for moderate-to-high dimensional spaces all pairs of points are almost

equidistant from one another, for a wide variety of data distributions and proxim-

ity functions [4, 18]. Under such circumstances, there is very poor discrimination

between points belonging to different clusters in the full dimensional space.

A possible way of dealing with the sparsity of the feature space F is to identify

and retain only those features that are relevant to the clustering while ignoring the

rest. The term relevant refers to dimensions forming subspaces where the points of

clusters are closely located. Consider the example 3-dimensional dataset of figure

5.30(a), which contains two ellipsoids C1 and C3, and one orthogonal cluster C2.

Clearly, C2, C3 and C1 are bounded in one, two, and three dimensions, respectively.

Considering the pair of points P1(50, 80, 0) and P2(50, 90, 100), it can be easily

observed from figures 5.30(c-d) that, although these points belong to the same

cluster C2, they are far apart from one another in every subspace involving the

dimension Z. However, P1 and P2 are very close in the subspace X×Y as shown

in figure 5.30(b).

Various dimensionality reduction techniques, e.g Principal Components Anal-

ysis (PCA) [45] can be used to detect irrelevant features. However, since different

subsets of points may be correlated in different subspaces, any attempt to reduce

the high dimensionality by heuristically pruning away some dimensions is suscep-

tible to a substantial loss of information.

5.11.2 Principles for Subspace Clustering in NOCEA

NOCEA is absolutely insensitive to the presence of irrelevant features in high

dimensional spaces, as opposed to traditional clustering techniques [55]. This is

because NOCEA attempts to maximise both the homogeneity and data coverage
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of rules rather than to optimise some distance or density based criterion function.

Hence, NOCEA is unusual in operating in the full-dimensional space, thereby

avoiding artifacts produced by the joint projection of clusters in subspaces.
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Figure 5.30: Example Clusters Embedded in Different Subspaces

In practice, NOCEA simply ignores the problem of detecting irrelevant fea-

tures during the evolutionary search, and after convergence simplifies the discov-

ered rules by pruning away irrelevant features. For example, let us assume that

NOCEA discovered the following rule-set for the dataset shown in figure 5.30(a).
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R1: IF (5≤X≤45) ∧ (0≤Y≤60) ∧ (30≤Z≤70) THEN C1

R2: IF (0≤X≤100) ∧ (80≤Y≤90) ∧ (0≤Z≤100) THEN C2

R3: IF (75≤X≤85) ∧ (20≤Y≤30) ∧ (0≤Z≤100) THEN C3

Examination of the rules reveals that the information encapsulated within

some specific conditions, e.g. (0≤X≤100) in R2, is redundant in the sense that

the length of such a feature-gene is approximately equal to the size of the entire

domain for that dimension. Bearing in mind that the rules are always aligned to

the coordinate axes and relatively homogeneous, e.g. features are either indepen-

dent of one another or weakly correlated, reporting a rule in the full-dimensional

space gives us no more knowledge than looking at the subspace formed by the

bounded dimensions.

To decide whether a particular dimension is relevant to the clustering of points

inside a rule, NOCEA compares the length of the rule in that dimension with the

spreading of points along the entire dimension. Recall from Chapter 4 (section

4.5.1) than an outlier-resistant estimator of the spreading of points in the ith di-

mension is the length lE of the interval E = [max(ai, (Q1i−1.5IQRi)), min(bi, (Q3i+

1.5IQRi))], where Q1i, Q3i and IQRi denote the first quartile, third quartile and

the interquartile-range of points in ith dimension, respectively, while its domain

is represented by [ai, bi]. In our clustering context, the ith condition of the jth

rule is redundant if the following condition is true:

Tr ≤
(

uij−lij
lE

)
(5.33)

where here lij and uij denote the decoded values (see linear decoding function

5.25 in section 5.3) for the lower and upper bounds of the jth rule in the ith

dimension. The default setting for the input threshold Tr ∈(0,1] is discussed in

section 5.14.

Although the antecedent part of rules in the genotype has fixed-length (d), ir-

relevant features are interpreted so that the phenotype of individuals, i.e. rule-set

that is reported to end-users, has variable length in the rule-level, since conditions

corresponding to irrelevant features are simply ignored without a substantial loss
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of information. After applying the simplification analysis, the rules in our exam-

ple reduce to a more informative knowledge:

R1: IF (5≤X≤45) ∧ (0≤Y≤60) ∧ (30≤Z≤70) THEN C1

R2: IF (80≤Y≤90) THEN C2

R3: IF (75≤X≤85) ∧ (20≤Y≤30) THEN C3

Retaining only the relevant features helps in developing a better understand-

ing of the inter-attribute correlations that can greatly facilitate KDD phases,

e.g. the decision making process [31, 40, 51]. Examples of irrelevant features in

real-world seismic data along with their interpretation can be found in Chapter

7 (section 7.11.1).

5.11.3 Subspace Clustering Under Noise Conditions

The neighbourhoods of noise in the full dimensional space are generally much

sparser compared to the cluster regions [48]. Due to the high difference in density

the clusters automatically stand out and clear the noise regions around them.

However, there may exist clusters whose point density in some subspaces formed

by irrelevant dimensions is similar to the density of the surrounding noise regions,

especially when the level of background noise is relatively high. This means that

a feasible rule that partially covers a cluster in the subspace of its irrelevant

dimensions would easily be extended far beyond the boundaries of the cluster

along the relevant dimensions. A representative example is illustrated in figure

5.31, where due to the increased background noise the rule R1 thinly cuts the

cluster C1 along the only irrelevant dimension (Z) of the latter.

Although R1 is a perfectly feasible rule, it incorrectly covers both noise and

cluster points. More severely, the excessive fragmentation of the body of clusters

like C1, by rules like R1, may not allow placing non-sparse rules within the back-

bone of these clusters, while subspace clustering might prove problematic or even

impossible. For instance, none of the rules (R1, R4, and R5) that intersect with

C1 has a large enough interval along the Z-axis to detect that irrelevant dimension
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Figure 5.31: Challenges for Subspace Clustering Under Noise Conditions

in C1. Compounding this problem, generalisation, that would potentially solve

this problem, is not feasible because R1 has considerably different density and

geometry than R4 and R5.

NOCEA tackles this problem by eliminating all low density rules that poten-

tially cover noise and cluster points, even if they are feasible, during the early

stages of the search. However, this density bias is gradually relaxed and eventu-

ally discarded to allow discovering homogeneous rules of any density. The main

idea is to bias the evolutionary search to discover first as dense rules as possible,

thereby reducing the probability of accepting a feasible rule that covers both noise

and cluster points.

Formally, the density bias requires the density of all feasible rules to exceed

the global density level (GDL) by a time-variable factor (c). The global density

level is defined as the average density that would have been observed if the data

points were uniformly distributed throughout the feature space F . An outlier-

resistant estimator for the global density level can be obtained by dividing the

number of points lying inside the non-outlier region of the feature space by the
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volume of that region. The non-outlier region of F is a hyperbox whose interval

(E) (see Chapter 4 at section 4.5.1) in the ith dimension is E = [max(ai, (Q1i −

1.5IQRi)), min(bi, (Q3i + 1.5IQRi))], where Q1i, Q3i and IQRi denote the first

quartile, third quartile and the interquartile-range of points in the ith dimension,

respectively, while its domain is represented by [ai, bi].

In this thesis the density factor c ∈ [0, 2] is linearly decreasing with time as:

c(t) =

 2(1− t/150), if t<150 generations

0, otherwise
(5.34)

where t denotes the current generation.

Thorough investigation related to the elimination of very low density rules is

reported in Chapter 6 (section 6.5.4).
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5.12 Assembling Clusters

This section describes a bottom-up post-processing algorithm that assembles the

genuine clusters from the discovered rules.

5.12.1 Motivation

Often real world databases contain correlated subsets of dimensions that lead to

points getting aligned along arbitrary shapes in lower dimensional spaces. Clearly,

clusters with non-convex geometry require multiple rules to obtain an accurate

and homogeneous descriptor.

In this thesis, a cluster is a data pathway defined by a set of adjacent rules

with a marginal variation in point density. This is not to suggest that all rules

constituting a cluster are of similar density in all possible subspaces, but only that

these rules must exhibit only a marginal variation in density in the full dimen-

sional space F . Hence, a cluster descriptor is in the form of a DNF (Disjunctive

Normal Form) expression, where each disjunct represents an axis-parallel rule.

Once NOCEA converges, the chromosome of the best individual undergoes the

bottom-up grouping algorithm of section 5.12.2, to fill the consequent part of the

rules with the appropriate cluster identifier.

5.12.2 Principles of Cluster Formation Algorithm

Initially each rule belongs to a distinct cluster. Each step of the grouping al-

gorithm involves merging two clusters that are the most similar. The similarity

between two clusters is measured by the density ratio between the sparser rule

from the two clusters and the denser rule belonging to the other cluster. Formally,

two clusters C1 and C2 are merged if the following three conditions are satisfied:

1. C1 and C2 are directly connected through at least two adjacent rules RC1

and RC2 belonging to C1 and C2, respectively.

2. The similarity of C1 and C2 exceeds the homogeneity threshold Th.

3. The ratio of the length of intersection between RC1 and RC2 in every di-

mension -excluding of course the dimension where the rules are contiguous
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- to the length of the corresponding feature-gene of at least one rule exceeds

an input threshold Tc ∈ (0, 1]. Tc is discussed in section 5.14.

In short, the first condition reflects the requirement that rules must be ad-

jacent to be considered as members of the same cluster. The second condition

imposes the constraint that an arbitrary-shaped cluster can only be assembled by

rules of similar density. The third condition requires that two adjacent clusters

must have a large enough touch to be members of the same cluster.

5.12.3 An Example of Cluster Formation

Figure 5.32 shows an example dataset containing both convex and arbitrary-

shaped clusters, where the relative darkness indicates the density of the clusters.

Observe that the arbitrary-shaped cluster C4 has been captured using a set of

rules (R4, R5 and R6), while, in contrast, the non-convex orthogonal clusters,

C1, C2 and C3 require a single rule. Although the rule R2 adjoins rule R3, they

are not considered as members of the same cluster, as they have very different

densities. Finally, the rules R1 and R2 despite being adjacent and of similar

density, have a very limited touch, thus they do not belong to the same cluster.

1
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Figure 5.32: Capturing Non-Convex Clusters with Disjoint Rule-Sets

Hence, the discovered knowledge is reported in the following DNF expression:

IF (14≤X≤19) ∧ (12≤Y≤21) THEN cluster C1
IF (20≤X≤33) ∧ (9≤Y≤13) THEN cluster C2
IF (29≤X≤35) ∧ (2≤Y≤8) THEN cluster C3
IF [(9≤X≤23)∧(1≤Y≤5)]∨[(2≤X≤8)∧(3≤Y≤9)]∨[(5≤X≤12)∧(10≤Y≤13)] THEN cluster C4
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5.13 Task Parallelism

This section explores the use of task parallelism to speed up NOCEA when the

data to be mined is large and high dimensional.

The core idea behind pNOCEA, a parallel version of NOCEA, is to maintain a

single population of individuals in a central coordinator machine, and to distribute

the execution of expensive genetic operations to remote machines. Figure 5.33

depicts the abstract architecture of pNOCEA, where several processor-memory-

disk units are attached on a communication network, and coordinated by a central

master machine.

Due to their population-based nature, EAs are generally considered as slow

compared to more conventional optimisation techniques that operate on a sin-

gle solution at a time. Therefore, to establish the practicality of an EA-based

clustering algorithm for large-scale data mining applications, it is necessary to

introduce parallelism. Insightful discussions of both data and task parallel DM

can be found in [43, 44].

INTERCONNECT

MASTER

. . .

Task Parallism

D

M

D

M

D

M

PE PE PE

Figure 5.33: Parallel pNOCEA Architecture
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5.13.1 Why is Task Parallelism Feasible in EAs?

In essence, parallel processing involves the simultaneous execution of tasks by sev-

eral processors. From an implementation point of view, EAs are highly parallel

procedures and can be easily and conventionally used in parallel systems. This is

because EAs are made up from several cleanly separated stages, i.e. selection, re-

production, recombination, mutation, evaluation, and replacement. Furthermore,

each stage consists of a number of individual tasks, e.g. a single recombination

operation, involving a group of solutions rather than the entire population. Since

the execution of an individual task is independent of other tasks, several proces-

sors can work simultaneously on the same stage or even on the same task.

5.13.2 Data Placement

pNOCEA implements a share-nothing architecture where each remote processor

(PE) has direct access only to its local memory (M), as shown in figure 5.33. In

the current implementation each local memory contains a replica of the entire

dataset (D). Under this assumption the need to migrate incomplete tasks be-

tween processors is eliminated because all tasks involving access to the data, i.e.

generalisation, recombination, and repairing, can be completed on a single PE.

The thesis explores only task parallelism assuming that the entire dataset fits in

the main memory of each PE, but data parallelism with data distributed among

different PEs is an interesting topic for future work.

5.13.3 Granularity

In the context of this thesis, a thread is a sequential unit of computation that is

entirely executed in a single processor (PE) without interruption. Granularity, a

key aspect of parallel processing, is defined as the average computation cost of a

thread, or in other words, the average size of tasks assigned to the processors. By

this definition of granularity, a parallel program is called fine-grained, if it consists

of threads with only small pieces of computation compared to the total amount

of computation. The remainder of this section tackles the following question:
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How is computation partitioned for parallel processing in pNOCEA?

In our clustering context, the type of tasks, i.e. genetic operations, during a

generation varies, and more importantly the relative computation cost of tasks

heavily depends on the characteristics of the dataset itself, such as the number and

dimensionality of clusters, and both database size and dimensionality. Therefore,

without adequate prior knowledge it is impossible to determine an appropriate

level of granularity beforehand. Thereby, pNOCEA adopts a relatively coarse-

grained approach by inheriting the natural partitioning of computation generated

by an EA-based system into individual genetic operations. In other words, each

individual genetic operation, e.g. the complete mutation of a candidate solution,

constitutes a sequential thread of computation that is entirely executed in a single

remote processor (PE).

5.13.4 Communication Model

This section answers the following question:

How is information exchanged between processors?

One of the main sources of overhead in a parallel system is communication.

In most fine-grained parallel architectures communication is much more expen-

sive than computation and it is very important to minimise communication. In

contrast, the coarse-grained granularity of pNOCEA results in the average com-

putation cost of threads being significantly higher compared to inter-processor

communication cost. Furthermore, since each thread is entirely executed in one

PE without interruption, the coordinator machine has to forward each thread

only once. After a thread finishes its execution in a remote machine that PE

returns the result to the coordinator machine with one transmission. Finally, no

inter-PE communication occurs because tasks are independent of each other. The
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actual communication is modelled via message passing, i.e. using Remote Method

Invocation (RMI), between different processors, and it has been implemented in

JavaTM2 Standard Edition 1.4.2 05.

Packing: A packing scheme prescribes how much information to encapsulate

into one packet when transferring information between processors. pNOCEA

uses a bulk packing scheme with variable size packets. In particular, one packet

encapsulates all necessary information to conduct one genetic operation, such as

the genomes of all individuals involved in that operation, and various statistics,

e.g. data coverage of rules. Obviously, the size of a packet depends on the type

of genetic operation that is encapsulated.

Latency: The latency is defined as the time required to send one packet of

information between two processors. In practice, latency often varies between

pairs of processors and also depends on the network traffic. Due to the coarse-

grained approach and the fact that no actual data are moved, the impact of

latency on the scalability of pNOCEA is negligible, and is not further addressed.

5.13.5 Load Balancing

This section answers the following question:

How is work distributed and balanced between processors?

The main challenge for the load balancing model is to efficiently and effec-

tively distribute the available work, i.e. threads, to ensure that all processors

are utilised, without imposing additional load on the system. pNOCEA uses a

centralised passive load balancing policy where idle processors have to explicitly

ask for work.

During the various stages of a single generation, the coordinator machine

maintains a pool of instructions, i.e. threads, that are being queued for execution.

In the beginning of each stage, the coordinator generates the entire workload for
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that stage, and adds the corresponding threads into the pool. When a remote

machine becomes idle it asks for work, and then the coordinator selects randomly

a thread from the pool and forwards an appropriate execution message to that

PE, which is immediately marked as busy. Each message encapsulates the group

of individuals being involved in that genetic operation while the response message

includes the result, i.e. group of individuals, yielded by that operation. No load

information is exchanged between processors. This mechanism tries to minimise

the number of messages required for load balancing.

5.13.6 Limitations of pNOCEA

Despite the fact that pNOCEA can achieve a satisfactory speed up, e.g. 13.8 on

16 processors (see section 7.15.5), a number of important limitations remain to

be addressed:

• Coarse-grained Task Parallelism: When the number of available pro-

cessors is relatively large, to achieve high utilisation of all processors, fine-

grained partitioning of the entire workload is required. For instance, an

obvious caveat of the coarse-grained approach used in pNOCEA is the

fact that no speedup improvement is possible when the number of avail-

able processors exceeds the total number of threads in the pool. It will

be interesting to explore finer granularity task parallelism in pNOCEA, by

allowing an individual task, e.g. one recombination operation, to be exe-

cuted simultaneously on several processors. As usual, there is a trade-off

between reducing the task parallelism overhead and maintaining a high level

of task parallelism. Obviously, for a finer-grained task parallelism architec-

ture more sophisticated mechanisms for generating threads, synchronising

threads, communicating data between threads, and terminating threads

have to be established.

• Data Parallelism: Clearly, pNOCEA exploits no data parallelism because

each processor executes instructions, i.e. generalisation, recombination, and

repairing, accessing only the local replica of the dataset. However, when
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the data to be mined is massive, and consequently does not fit in the main

memory of each PE, data distribution among different PEs is strongly rec-

ommended. Figure 5.34 depicts a potential parallel architecture that can

explore both data and task parallelism. In this approach, the data is dis-

tributed across multiple PEs (data parallelism). Similar to pNOCEA there

is an independent group of processors specially designated for conducting

the genetic operations (task parallelism), but no raw data reside in these

PEs. Obviously, a locally executed genetic operation may require access to

multiple data processors. This approach requires an advanced communica-

tion model and load balancing; an interesting topic for future research.
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Figure 5.34: Task and Data Parallelism Architecture
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5.14 Parameter Settings

This section discusses the default parameter settings in NOCEA.

Population Size and Termination: The default population size is 50. NOCEA

terminates if at least one of the following conditions is true: when the number

of generations that have been executed exceeds a prespecified upper limit of 300

generations, or when the difference between the performance of the best indi-

vidual and the average fitness of the population members, reaches a given level

of stability (i.e. 1e-5) for a certain number of consecutive generations (i.e. 10

generation).

Initialisation: Each population member is independently initialised at random

with a single hyper-rectangular rule, which covers the entire domain in (d-1) (d:

data dimensionality) dimensions, while it is extended only in half of the domain

in one, randomly selected dimension. The reason for initialising individuals with

bulky rule-seeds is to increase the probability of locating non-sparse rule(s).

Reproduction: The primary objective of the reproduction operator is to make

duplicates of good solutions and eliminate poorly performing individuals. NOCEA

implements a typical k-fold (k=4) tournament selection scheme. In particular,

each time an individual is requested for reproduction, k (the tournament size) dis-

tinct individuals are randomly drawn without replacement from the population,

and the best one is selected. The selective pressure can be adjusted by changing

the value of k.

Recombination: The recombination rate is the probability that recombination

(instead of reproduction) is used to create new genomes. NOCEA applies the

Overlaid Rule Crossover (ORC) operator (section 5.8) with probability 0.25, to

two parents and creates two feasible offspring genomes. Similar to reproduction,

in order to perform recombination parents are selected using k-fold tournament

selection.
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Generalisation: The generalisation rate indicating the probability that an in-

dividual undergoes generalisation (section 5.9), is set to 1.0. The probability of

generalising a pair of adjacent rules that satisfy the generalisation requirements is

set to 0.05. Recall from section 5.9.4 that the threshold Tg ∈ (0, 1] is introduced

to permit generalising only rules with proper alignment and similar size. Large

values for Tg, e.g. 0.8, guard against the formation of non-homogeneous rules

and degradation of the performance of individuals, but they do not facilitate

effective subspace clustering, nor reduce the overall computational complexity.

Small values for Tg, e.g. 0.2, have exactly the opposite effect. Fine-tuning Tg is

a non-trivial task; as such, NOCEA adopts a middle-ground stochastic approach

with variable Tg whose value for a given generalisation is drawn from a normal

distribution Tg = N(µ, σ) : (0 ≤ Tg ≤ 1), where µ = 0.65 and σ = 0.1. Thereby,

extreme values are not completely avoided such that more search (generalisation)

combinations can be explored, yet they are not so common. The second gen-

eralisation threshold, the density or homogeneity threshold Th, is discussed in a

subsequent paragraph entitled repairing.

Mutation: The mutation rate, that is, the probability that a newly created

genome undergoes mutation, is set to 1.0. Each rule bound has the same small

probability 0.01 of undergoing mutation. The type of mutation for the selected

positions can be either grow (section 5.10.2) or seed (section 5.10.4) with an equal

probability. Mutations are performed in a random order.

Repairing: The repairing rate, that is, the probability that a newly created

genome undergoes repairing, is set to 1.0. Each candidate rule of an individual

is fully repaired with probability 1.0. The homogeneity operator (section 5.7)

requires two input parameters, the sparsity (Ts) and homogeneity (Th) threshold.

Ts controls the minimum percentage of total points that a feasible rule must cover

to be considered as a statistically significant pattern. For very low dimensional

datasets, e.g. d < 5, the default setting for Ts=0.5%, while for moderate-to-

high dimensional datasets Ts=0.01%. The reason for selecting a lower Ts for the
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higher dimensionality datasets is because, clusters tend to be less populated as

dimensionality increases. Perhaps the most important parameter is Th, which

controls the level of homogeneity of the obtained rules. The experimental results

have shown that for low dimensional datasets a value of Th in the range [0.4-

0.5] provides similar results of high quality. For higher dimensionality datasets,

where clusters are expected to be considerably sparser and more isolated from

one another, Th should be set to [0.3-0.4] to reduce the loss of points in the

boundaries of the clusters (section 6.10.3). We selected a higher value of Th for

the low dimensional datasets because as the dimensionality decreases clusters

becomes less isolated, therefore it is necessary to have a higher Th to effectively

discriminate clusters.

Replacement: The replacement strategy prescribes how the current population

and the newly created offspring are combined to create a new population of fixed

size. NOCEA implements a simple elite-preserving replacement strategy, where

the best performing individual of the current population is directly copied to

the new population. NOCEA then finds the best performing offspring to fill the

remaining slots of the new population. Elitism ensures that the statistics of the

population-best solutions do not degrade with generations.

Subspace Clustering: The subspace clustering threshold Tr (section 5.11) de-

termines when the length of a feature-gene is large enough, compared to the

spread of points along the corresponding dimension, to be deemed as irrelevant

to clustering. Notice that the value of Tr has no impact on the evolutionary

search itself, but it does influences the quality of the clustering results returned

to the user. This is because subspace clustering, a post-processing simplification

stage, simply interprets the discovered knowledge without influencing its forma-

tion. The default value of Tr is 0.9.

Cluster Formation: The algorithm that groups adjacent rules into clusters

(section 5.12) requires two input parameters: the standard density threshold Th

(see paragraph entitled “Repairing” above) and Tc. From a cluster formation
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point of view, Th controls the maximum allowable variance in the density of

points along the pathway defined by the rules that constitute the body of an

arbitrary-shaped cluster. Tc specifies when two adjacent rules have enough touch

to be members of the same cluster. In all the experiments reported throughout

the thesis, Tc was set to 0.2. Similar to Tr, Tc does not influence the evolution-

ary search. Finally, determining an appropriate setting for Tc is an application

dependent task.

Table 5.3 summarises the default settings for both EA- and clustering-related

parameters used by NOCEA.

Parameter Name Value
Population Size 50
Generations 300
Termination Condition Maximum Number of Generations
Mutation Rate 1.0
Mutation Probability 0.01
Grow/Seed Mutation Ratio 0.5
Recombination Rate 0.25
Number of Offspring 2
Generalisation Rate 1.0
Generalisation Period 1
Generalisation Probability 0.05
Repairing Rate 1.0
Repairing Period 1
Selection Strategy Tournament Selection (size=4)
Initialisation Randomly Generated Singular-Rule Individuals
Replacement Strategy Elitist (elite size =1)
Sparsity Threshold (Ts) 0.5% for low dimensional datasets, i.e d < 5

0.1% for higher dimensional datasets
Homogeneity Threshold (Th) 0.3
Subspace Clustering Threshold (Tr) 0.9
Generalisation Threshold (Tg) N(0.65, 0.1)
Clustering Threshold (Tc) 0.2

Table 5.3: Default Parameter Settings in NOCEA
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5.15 Summary

This chapter has described in detail the key design aspects of the novel EA-based

clustering algorithm NOCEA. We have motivated the use of disjoint axis-aligned

hyper-rectangular rules with homogeneous data distributions as a good alterna-

tive for representing clustering knowledge; IF-THEN rules are intuitively com-

prehensible for most end-users. The chapter has explained why an integer-valued

representation scheme - reflecting the quantisation of the feature space into a

multi-dimensional grid - is more suitable than binary or floating point encodings

for high dimensionality clustering problems. It has been shown how the task-

specific repair operator discovers homogeneous clusters by identifying flat density

regions in univariate histograms. The chapter has also shown that a simple fit-

ness function (maximisation of the data coverage of clustering rules) supported

by the homogeneity operator, suffices to guide the evolutionary search into high

quality disjoint partitions. The chapter has described novel recombination and

mutation operators to efficiently and effectively traverse the enormous feature

space while evolving disjoint rule-sets. A novel generalisation operator improv-

ing knowledge comprehensibility and reducing computation was also presented.

Advanced post processing algorithms for performing subspace clustering and as-

sembling the clusters were also described. Finally, the chapter has explored task

parallelism to improve scalability when the data to be mined is large and high

dimensional.

A thorough investigation into NOCEA’s performance on both artificial and

real-world datasets is reported in the following two chapters (6-7).
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Chapter 6

Evaluation on Artificial Datasets

Capsule

This Chapter presents an experimental evaluation of NOCEA on a wide range of

benchmark artificial datasets. We show that NOCEA has the following properties:

It yields interpretable output being minimised for ease of comprehension; It discov-

ers highly-homogeneous clusters of arbitrary shape, density, and size; It treats high

dimensionality effectively, i.e. it can easily discriminate clusters in very high di-

mensional spaces; It performs effective subspace clustering, i.e. automatic detection

of clusters being embedded in arbitrary subspaces of high dimensional data; It has

exceptional resistance to the presence of increased background noise; It produces

similar quality results irrespective initialisation and the order of the input data;

It scales linearly with the database size, data, and cluster dimensionality; It has

minimal requirements for domain knowledge, e.g. it automatically determines the

optimal number of clusters and the subspace where each cluster is embedded, on the

fly; Finally, it traverses the search space stochastically avoiding easily local optima.

6.1 Introduction

This Chapter reports a thorough investigation into NOCEA’s performance on ar-

tificial datasets, many of which have been used to evaluate other well-established

clustering algorithms. Real world data mining applications place specific require-

ments on clustering techniques (see section 2.3.2 in Chapter 2). Current clustering

algorithms do not address all these requirements adequately, although consider-

able work has been done in addressing each requirement separately [17, 51, 52].
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This Chapter reports a series of experiments that were conducted to validate all

the salient properties of NOCEA, as listed in section 1.2 (Chapter 1). The experi-

mental results suggest that NOCEA is a remarkably robust and generic clustering

algorithm, addressing well all the important requirements for data mining clus-

tering. Most of the properties illustrated here prove important for the real-world

case study mining of seismic data in Chapter 7.

The remainder of this Chapter is structured as follows. Section 6.2 presents

the experimental environment, i.e. hardware and software apparatus, and bench-

mark datasets, that are used to evaluate NOCEA. Section 6.3 discusses the

end-user comprehensibility of the clustering results produced by NOCEA. Sec-

tion 6.4 shows that NOCEA is able to discover arbitrary-shaped clusters. Section

6.5 demonstrates the insensitivity of NOCEA to background noise. Section 6.6

verifies our intuition that NOCEA can discover clusters of arbitrary density and

geometry. Section 6.7 proves that NOCEA produces similar results irrespective

of the order by which input data are processed. Section 6.8 demonstrates that

the quality of the clustering results of NOCEA is independent of the initialisation

phase. Section 6.9 briefly discusses why NOCEA has minimal requirement for

domain knowledge. Finally, section 6.10 evaluates the effectiveness and efficiency

of NOCEA on massive and high-dimensional datasets containing clusters that are

embedded in different subsets of dimensions.

6.2 Experimental Environment

This section describes the hardware-software apparatus used to evaluate NOCEA

for DM clustering. It consists of hardware platforms, public benchmark datasets,

and software tools that provide an appropriate experimental environment in which

questions about the performance issues of NOCEA can be answered. The default

parameter settings of table 5.3 are used throughout this chapter.

6.2.1 Hardware Apparatus

All experiments reported in this Chapter have been performed on a Linux Fedora

Core 2 workstation with an Intel(R) Xeon(TM) CPU 3.06GHz processor, 512 KB

cache, 2GB of DRAM, and 9GB of IDE disk.
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6.2.2 Software Apparatus

NOCEA has been entirely implemented in JavaTM 2, Sun−Microsystems Plat-

form, Standard Edition (J2SE, 1.4.2 05). The Eos [20] software platform, devel-

oped by BT’s (British Telecommunication) Future Technologies Group (URL:

http://research.btexact.com/islab/FTGpublic/EosPlatform.html), provides the basic

EA functionality to NOCEA.

Eos supports the rapid development and prototyping of evolutionary algo-

rithms, ecosystem simulations and hybrid models. Amongst others the toolkit

supports Genetic Algorithms and Evolutionary Strategies. It defines basic classes

and various implementations for: genomes, recombination operators, mutation

operators, selection strategies, replacement strategies, interactions, and more.

The Eos platform is built using the Object Oriented design paradigm so that it

is customisable and extensible. The flexibility of the Eos platform makes it a

powerful environment for developing new algorithms and architectures. Eos is

entirely implemented in Java and runs on all major operating systems.

6.2.3 Artificial Datasets

We experimented with six different datasets containing points in two dimensions

whose size, i.e. number of points, distribution, and origin are shown in figure

6.35. These datasets have been extensively used as benchmarks in the field of

data mining clustering [48, 61, 93, 99]. Their wide popularity arises from the fact

that they contain clusters with challenging characteristics. In addition to these

datasets, a new data generator was developed to produce datasets for evaluating

NOCEA under highly noisy environments, as well as, in the presence of irrelevant

features (subspace clustering).

Dataset DS1: The first dataset, DS1 [48], has 100000 points forming five con-

vex clusters that are of different size, shape (three spherical and two ellipsoids)

and density, and contains randomly scattered noise as well as special artifacts, i.e.

a chain of outliers connecting the two ellipsoids. The density of points within the
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two small circles is roughly 7.5 and 1.5 times greater compared to the density of

the big circle and the two ellipsoids, respectively. Due to the large differences in

size and densities as well as the presence of outliers, traditional partitioning and

hierarchical clustering algorithms fail in DS1 [48]. For instance, distance based

clustering is prone to splitting large clusters, i.e. large circles, to minimise the

distance criterion function [48].

Dataset DS2: The second dataset, DS2 [61], with 8000 points, contains six

clusters of varying size, shape, and orientation, as well as random noise and

special artifacts such as streaks running across clusters. A particularly challenging

feature of DS2 is that some clusters have arbitrary shapes.

Dataset DS3: The third dataset, DS3 [61], with size 10000 points, is partic-

ularly popular within the DM research community to evaluate clustering algo-

rithms. Its popularity arises from the fact that it contains clusters of varying

shape, size and orientation, some of which are inside the space enclosed by other

clusters. Additionally, DS3 is embedded with random noise and special artifacts,

e.g. vertical streaks, running across clusters. It has been shown elsewhere [61]

that many well established clustering algorithms including CURE and DBSCAN,

fail to discover the genuine clusters. Similar to DS2, all clusters in DS3 have

similar densities.

Dataset DS4: The fourth dataset, DS4 [93], contains 250000 points that are

spread around two closely located parabolic clusters following uniform random

distribution. The merit of including DS4 in our experiments is primarily to inves-

tigate the effectiveness of NOCEA under distributions which are characterised by

strong inter-attribute correlations whose orthogonal univariate projections appear

quasi-uniform. Due to the latter property clusters are not easily distinguishable

in uni-dimensional projections.

Dataset DS5: The fifth dataset, DS5 [99], consists of 100000 instances that

are equi-distributed among 100 closely adjacent clusters with centres arranged in
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a 10 × 10 grid pattern. The data points of each cluster are generated according

to a 2-D independent normal distribution whose mean coincides with the centre

and whose variance in both dimensions is fixed to 1.

Dataset DS6: Finally, the sixth dataset DS6 [93], a moderately sized dataset

with approximately 230000 instances, was generated by spreading points in a

two dimensional space following uniform random distribution in the shapes of

rectangles and an annular region.

a) DS1 (100000 points, source: [48]) b) DS2 (8000 points, source: [61])

c) DS3 (10000 points, source: [61]) d) DS4 (250000 points, source: [93])

e) DS5 (100000 points, source: [99]) f) DS6 (228828 points, source: [93])

Figure 6.35: The Artificial Datasets Used to Evaluate NOCEA



CHAPTER 6. EVALUATION ON ARTIFICIAL DATASETS 168

6.3 Comprehensible Clustering Output

This section provides evidence to support the claim that NOCEA produces highly

comprehensible output that can be readily assimilated by humans.

Research in data mining has not paid enough attention to the factors that

make learned models comprehensible [80, 81]. A comprehensible model would

provide insight to an expert data analysts. This insight could be communicated

to others and could support a variety of decision-making tasks. The intrinsic

comprehensibility of the knowledge representation language in NOCEA (section

5.4) along with the parsimony pressure introduced by the generalisation operator

(section 5.9) for as few and generic rules as possible, yield cluster descriptors of

minimal syntactical complexity at a high level of abstraction.

To assess the comprehensibility of the clustering results in NOCEA, a set

of experiments were conducted using two benchmark datasets, DS1 and DS2

(section 6.2.3). NOCEA was run twenty times against both datasets, varying the

random rule seed used to generate the initial population of individuals. Figures

6.36(b)-6.37(b) and 6.36(a)-6.37(a) depict the clustering rules found by NOCEA

for each one of the datasets with and without generalisation, respectively. Notice

that points that belong to the same cluster have the same colour. As far as DS1 is

concerned, NOCEA always converges to the clustering solution that is depicted

in figure 6.36(b), which covers approximately 95% of the total data points in

DS1. This is because DS1 contains convex clusters that are always captured by

a single rule. The clustering rules discovered by NOCEA for DS2 are not always

identical to those depicted in figure 6.37(b). This is due to the stochastic search

of NOCEA and the fact that DS2 contains arbitrary-shaped clusters that can

be approximated by different rule-sets (see section 6.8). The performance (data

coverage) of the best individuals found over these twenty different random runs

is confined in the interval i.e. 93-95%. The clustering solution of figure 6.37 was

randonly selected. Clearly, in both cases NOCEA finds the genuine clusters.

Single-point cluster representation techniques, e.g. k-means or k-medoids, are

of limited comprehensibility, since they can only describe adequately spherical
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a) Generalisation Disabled b) Generalisation Enabled

Figure 6.36: The Rules and Clusters Discovered by NOCEA for DS1

a) Generalisation Disabled b) Generalisation Enabled

Figure 6.37: The Rules and Clusters Discovered by NOCEA for DS2

shape clusters of similar radius and density [48]. CURE utilises multiple repre-

sentative points for each cluster that are well scattered throughout the body of

each cluster. This enables CURE to adjust relatively well to the geometry of clus-

ters having non-spherical shapes and wide variance in size, e.g. DS1. However, in

both cases the output consists of a set of cluster representative points along with

a data labelling table, where the latter stores information about the assignment

of points to clusters. However, these methods provide no information about the

shape or size of the clusters.

Rule-based cluster representation schemes, in contrast, shift the problem of

clustering from data to space partitioning, providing cluster descriptors of a high

level of abstraction. Data partitioning is induced by points’ membership (in-

clusion) in segments resulting from space partitioning. NOCEA is capable of



CHAPTER 6. EVALUATION ON ARTIFICIAL DATASETS 170

adjusting automatically the size of the hyper-rules according to the data distri-

bution without presuming a specific rule geometry. Thereby, one can easily induce

the shape of both convex and arbitrary-shaped clusters from the geometry of the

rules that jointly define the body of a given cluster.

Similar to the syntactical complexity and the level of abstraction of the knowl-

edge representation language, generalisation heavily influences the comprehensi-

bility of the discovered knowledge for a variety of reasons. First of all, gener-

alising, when possible, many small rules leads to fewer and more generic rules

that do not over-fit the data and consequently capture more general trends. For

instance, the candidate solutions shown in figures 6.36(a) and 6.36(b) are of ap-

proximately the same performance, i.e. data coverage, yet the second rule-set

makes more sense to most people. This is because the second solution is shorter

(due to generalisation) and both the shape and size of the convex clusters can be

easily induced by the geometry of the corresponding rules. In cases of arbitrary-

shaped clusters, e.g. ’u’ shaped cluster in DS2, where inter-attribute correlations

may be quite complex, generalisation improves comprehensibility by yielding as

few and generic rules as possible that capture the essential backbone of the clus-

ter. Finally, generalisation facilitates the detection of irrelevant features-genes

whose removal from the antecedent part of the rules is necessary for the ease of

comprehension (see real-world examples in section 7.11.1).

Data mining applications typically require descriptions that can be easily

assimilated by humans as insight and explanations are of critical importance.

It is particularly important to have simple representations, e.g. clustering rules,

with minimal length (number of rules and number of conditions per rule) because

most visualisation techniques do not work well in high dimensional spaces.

In the remainder of this seciton we study the performance of other clustering

algorithms on DS1. Most of the analysis is based on previous work described in

[48, 61]. Figure 6.38 shows the clusters found by BIRCH, MST, and CURE for

the dataset DS1. As expected, since BIRCH uses a centroid-based hierarchical

clustering algorithm for clustering the preclustered points, it cannot distinguish

between the big and small clusters. BIRCH splits the larger cluster while merging
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Figure 6.38: The clusters Discovered by BIRCH, MST, and CURE for DS1

the two smaller clusters that are adjacent to it. In contrast, the MST algorithm

merges the two ellipsoids because it can not handle the chain of outliers connecting

them. CURE successfully discovers the genuine clusters in DS1 with the default

shrinking factor a = 0.3. The moderate shrinking towards the mean by a factor

of 0.3 enables CURE to be less sensitive to outliers without splitting the large

and elongated clusters.

Figure 6.39 shows the clusters found by CURE when the shrinking factor a

is varied from 0.1 to 0.9. Evidently, 0.2-0.7 is a good range of values for the

shrinking factor to identify non-spherical clusters while dampening the effects of

outliers.

Figure 6.39: Sensitivity of CURE to the Shrinking Parameter

The DBSCAN clustering algorithm has been designed to find clusters of

arbitrary-shapes. DBSCAN defines a cluster to be a maximum set of density-

connected points. Every core point in a cluster must have at least a minimum
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number of points (MinPts) within a given radius (Eps). DBSCAN can find ar-

bitrary shapes of clusters if the right density of the clusters can be determined

a priori and the density of clusters is uniform. Figure 6.40 shows the clusters

found by DBSCAN for DS1 and DS2 for different values of the Eps parameter.

Following the recommendation of [33], the MinPts was fixed to 4 and Eps was

changed in these experiments. The clusters produced for DS1 illustrate that DB-

SCAN cannot effectively find clusters of different density. In the first clustering

solution (Figure 6.40(a)), when Eps = 0.5, DBSCAN puts the two ellipses into

the same cluster, because the outlier points connecting them satisfy the density

requirements as dictated by the Eps and MinPts parameters. These clusters can

be separated by decreasing the value of Eps as in the clustering solution shown in

Figure 6.40(b), for which Eps=0.4. Here, DBSCAN keeps the ellipses together,

but now it has fragmented the lower density cluster into a large number of small

sub-clusters.

Figure 6.40: The Clusters Discovered by DBSCAN for the Dataset DS1

Figure 6.41: The Clusters Discovered by DBSCAN for the Dataset DS3

CHAMELEON is very effective in finding clusters of arbitrary shape, density
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Figure 6.42: The Clusters Discovered by CHAMELEON for the Dataset DS1

Figure 6.43: The Clusters Discovered by CHAMELEON for the Dataset DS2

and orientation, and is tolerant to outlier points, as well as artifacts. Figure 6.42

shows that CHAMELEON is able to correctly identify the genuine clusters in

DS1.

Looking at Figure 6.43, we can see that CHAMELEON is able to correctly

identify the genuine clusters in DS2. In particular, in the case of DS2, CHAMELEON

finds eleven clusters, out of which six of them correspond to the genuine clusters

in the data set, and the rest contain outliers. As these experiment illustrate

CHAMELEON is very effective at finding clusters of arbitrary shape, density,

and orientation, and is tolerant to outlier points, as well as artifacts such as

streaks running across clusters.

CURE failed to find the correct clusters on the dataset DS2,as shown in fig-

ure 6.44 (see [48, 61] for more details). Since CURE is a hierarchical clustering

algorithm, it also produces a dendrogram of possible clustering solutions at dif-

ferent levels of granularity. For each one of the data sets, Figure 6.44 shows two
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different clustering solutions containing a different number of clusters. The first

clustering solution (first column of Figure 6.44) corresponds to the earliest point

in the agglomerative process in which CURE merges together sub-clusters that

belong to two different genuine clusters. As we can see from figure 6.44, in the

case of DS2, CURE selects the wrong pair of clusters to merge together when

going from 18 down to 17 clusters, resulting in the red-colored sub-cluster which

contains portions of the two π-shaped clusters. Similarly, in the case of DS3 (fig-

ure 6.45), CURE makes a mistake when going from 26 down to 25 clusters, as it

chooses to merge together one of the circles inside the ellipse with a portion of

the ellipse. The second clustering solution corresponds to solutions that contain

as many clusters as those discovered by CHAMELEON. These solutions are con-

siderably worse than the first set of solutions indicating that the merging scheme

used by CURE performs multiple mistakes.

Figure 6.44: The Clusters Discovered by CURE for the Dataset DS2 (Varying
Number of Clusters)

The above experiments have shown that although some clustering algorithm

may be able to find the genuine clusters IN DS1, they cannot outperform NOCEA

for two reasons: a) NOCEA produces more comprehensible, easy to assimilate,

cluster descriptors, and b) NOCEA does not label outlier and noisy points as

members of nearby clusters, as opposed to other clustering techniques.
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Figure 6.45: The Clusters Discovered by CURE for the Dataset DS3 (Varying
Number of Clusters)

6.4 Discovery of Arbitrary-Shaped Clusters

This section evaluates NOCEA on publicly available benchmark datasets con-

taining clusters with linear and higher order dependencies between subsets of

dimensions.

Most real world datasets have subsets of correlated dimensions that lead to

points getting aligned along arbitrary-shaped clusters in lower dimensional spaces

[6]. Furthermore, these subsets of correlated dimensions may be different in dif-

ferent localities (neighbourhoods) of the data. Recall from section 5.4.2 that a

feasible rule is characterised by the absence of strong inter-attribute correlations.

Thereby, arbitrary-shaped clusters are decomposed into disjoint regions of homo-

geneous data distribution. To improve understanding of the complex correlations

that may occur within an arbitrary-shaped cluster, one must consider jointly all

the rules constituting the given cluster. There is a clear trade-off between the

number of rules required to approximate an arbitrary-shape cluster and their ho-

mogeneity. NOCEA is strongly biased towards producing highly homogeneous

rules rather than minimising the size of the rule-set.

NOCEA was tested twenty times against two challenging datasets containing

arbitrary geometry clusters, DS3 and DS4. In both cases, as expected, different

runs yielded different descriptors for arbitrary-shaped clusters, but convex clus-

ters were always captured by a single rule. The arithmetic average of the results
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(fitness of the best performing individual) for DS3 and DS4 over these twenty

different random seeds was 96% and 93%, respectively. The solutions depicted

in figures 6.46 and 6.47 were randomly selected from among the solutions of the

twenty different runs.

Figure 6.46 shows both the rules and clusters found by NOCEA for DS3. It

can be easily observed that NOCEA successfully recovers the genuine clusters in

the dataset. Convex clusters, e.g. spherical or rectangular are approximated by

one rule while arbitrary-shaped clusters require multiple rules. Obviously, the

more complex the geometry of a cluster the more rules are required to obtain an

accurate and homogeneous approximation of the cluster.

Figure 6.46: The Rules and Clusters Discovered by NOCEA for DS3

Axis-parallel uni-dimensional projections may not always suffice for detecting

the separating valleys between the clusters [6, 55]. In particular, when there are

linear or higher order inter-attribute dependencies, orthogonal univariate pro-

jections may appear quasi-uniform since they do not preserve this information,

which, in turn, is necessary for clustering. The same problem of poor cluster

discrimination may also be encountered with multiple clusters overlap along a

uni-dimensional orthogonal projection. For instance, in DS4 the joint 2-D distri-

bution is clearly non-uniform, but both uni-dimensional orthogonal projections

are quasi-uniform.

Figure 6.47(a) depicts a typical output of NOCEA on DS4 without employing

the localised homogeneity procedure, as described in section 5.7.4. Clearly, the
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ordinal repair operator fails to detect the genuine clusters. Additionally many

rules do not satisfy the homogeneity requirement. These problems arise from

the limitation of uni-dimensional projections to preserve information about inter-

attribute correlations that is necessary for clustering. Notice that quasi-uniform

projections may be the result of a single cluster with linear or higher order de-

pendencies between features, multiple clusters that overlap or both.

Figure 6.47(b) clearly demonstrates the beneficial effect of finer localised re-

pairing in the quality of the clustering results. NOCEA detects now two parabolic

clusters that are approximated with accuracy using highly homogeneous rules.

Obviously, all instances of inter-attribute correlations have been successfully re-

solved.

a) Localised Repairing Disabled b) Localised Repairing Enabled

Figure 6.47: The Rules and Clusters Discovered by NOCEA for DS4

More complex examples of arbitrary-shaped clusters discovered by NOCEA in

a real-world seismic dataset can be found in Chapter 7 (sections 7.7.4 and 7.12).
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6.5 Insensitivity to Noise

This section evaluates the effectiveness of NOCEA on artificial datasets with

varying levels of background noise. The experimental results clearly show that

NOCEA is exceptionally resistant to uniform noise.

6.5.1 Apparatus

To study the sensitivity of NOCEA to varying levels of noise a new data generator

was developed using some salient features of a very popular generator [5]. Let k

be the number of clusters, while N and d denote the size and dimensionality of

the dataset, respectively. The points have coordinates in the range [0, 100] and

are either cluster points or noise. The percentage of noise is controlled by an

input parameter Fnoise ∈ (0, 1]. Noisy points are distributed uniformly at ran-

dom throughout the entire feature space F . The number of bounded dimensions

associated with a cluster is given by a realisation of a Poisson random variable

with mean µ, with the additional constraint that this number must be at least 2

and at most d. Similar to [5, 83], when generating cluster i+1, about 50% of its

bounded dimensions are randomly chosen from among the bounded dimensions

of cluster i. This is intended to model the fact that different clusters often share

subsets of bounded dimensions. Assuming that the ith cluster is to be embedded

in l dimensions the generator selects l variance values independently of each other.

In particular, given a spread parameter r and a scale factor sij that is uniformly

distributed in [1, s] the variance of points along the jth bounded dimension of the

ith cluster is then computed as (r · sij)
2, where r=s=2 [5].

In the original generator the cluster centres or anchor points for the bounded

dimensions are obtained by generating k uniformly distributed points in the re-

spective subspaces. However, since the anchor points are chosen completely inde-

pendently of each other and, additionally, clusters may be embedded in different

subspaces, cluster overlapping is possible. To avoid overlapping, which, in turn,

eases the validation of the results, all clusters are embedded in the first two

dimensions while the anchor points are determined inductively as follows: The
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coordinates of the anchor point for the first cluster are chosen at random. The

coordinates of the anchor point for the ith (i=1,...,k) cluster are then chosen at

random with the additional constraint that the ith cluster does not intersect with

previously generated clusters. Let ci
m and cj

m be the m-coordinates of centres ci

and cj that correspond to the ith and jth clusters, respectively. Two clusters, e.g.

ith and jth, are disjoint if they share at least one bounded dimension e.g. mth,

and the distance of the anchor points in that dimension is at least 3σi
m + 3σj

m,

where σi
m and σj

m is the standard deviation of the points in the ith and jth clus-

ter along the mth dimension, respectively. The cluster points are equi-distributed

among the k clusters. Finally, the points for a given cluster i are generated as

follows: The coordinates of the cluster points on the non-relevant dimensions are

generated independently at random from a uniform distribution over the range

[0, 100]. For the mth bounded dimension of the jth cluster, the coordinates of the

points projected onto dimension m follow either a uniform distribution defined

in the interval [cj
m − 3σj

m, cj
m + 3σj

m], or a normal distribution with mean at the

respective coordinate of the anchor point and variance determined as explained

earlier. The type of distribution for a given cluster is selected at random.

6.5.2 The Recall and Precision

In general, there are three potential sources of clustering imprecision: a) NOCEA

may fail to create partitions for all the original clusters, and/or b) NOCEA may

create spurious partitions that do not correspond to any of the original clusters.

These effects are often measured separately using two metrics borrowed from the

information retrieval domain: recall, precision, and coverage ratio [31, 72].

• Recall is defined as the percentage of the original clusters that were found

and assigned to partitions. In essence, recall answers the question: Have all

the input clusters been correctly retrieved?

• Precision is defined as the percentage of the found partitions that contain at

least one original cluster. Precision answers: Are all output clusters correspond

to genuine input clusters or spurious clusters have been also identified?
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6.5.3 Noise Experiment Results

Figures 6.48, 6.49 and 6.50 illustrate NOCEA’s performance, i.e. Recall and

Precision, under noisy conditions for varying database size, data and cluster

dimensionality, respectively. The precision and recall that are reported below are

based on an arithmetic average of the results over twenty different runs.

Often, especially in cases of low dimensional and highly noisy datasets, extra

spurious clusters were detected, typically comprising connected rules of extremely

low density compared to rules that correspond to the actual clusters. In essence,

this artifact is a by-product of the data generation algorithm that introduces

uniform noise and the fact that the decision of accepting a candidate rule as

a feasible sub-solution to the clustering problem is taken on the basis of data

homogeneity rather than density. As a result, some neighbourhoods of the feature

space had enough noise points to become non-sparse with quasi-uniform data

distribution. The curves clearly show that NOCEA has an exceptionally stable

behaviour for a wide range of noise level, i.e. 10%, 25%, 50%, 75%, and 90%.

In particular, NOCEA correctly recovers all the original clusters in the datasets,

even for very large noise levels of up to 90%. When the level of noise exceeds 90%

then the overall data distribution throughout the entire feature space F becomes

practically uniform, thereby NOCEA discovers a single super rule covering all of

F .

The Effect of Noise and Database Size

Figures 6.48(a-b) suggest that NOCEA has a relatively stable behaviour with

respect to the database size even under highly noisy conditions. NOCEA is tested

in moderately sized feature spaces comprising 50 dimensions where 10 clusters

are embedded in some 10 dimensional subspace. Although an increasing number

of records makes a fixed-volume feature space overall less sparse, the density

ratio between the actual clusters and the noise regions remains constant. Hence

NOCEA’s homogeneity operator can effectively discriminate the genuine clusters

from the noise, yielding thus a 100% recall in all cases. The curves also show

that the precision slightly decreases as the number of records increases because
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Figure 6.48: The Recall (a) and Precision (b) Curves for Varying Database Size
and Level of Noise.

more neighbourhoods of the feature space F corresponding to noise are considered

homogeneous. As a result of increasing database size, some neighbourhoods of the

feature space had enough noise points to become non-sparse with quasi-uniform

data distribution. Notice that due to the increasing database size the density

histograms become increasingly more accurate since more points are used in the

Kernel Density Estimator (section 3.3). In all experiments if one filters out all

the very low density rules describing background noise the precision reaches the

value of 100%.

The Effect of Noise and Data Dimensionality

Figures 6.49(a) and 6.49(b) show the Recall and Precision curves, respectively, as

the background noise increases from 10% to 90% for varying data dimensionality

ranging from 10 to 100 dimensions. Each dataset has 100000 points in total and

there are 10 clusters embedded in some 10 dimensional subspaces on average.

Clearly, data dimensionality and uniform noise have no effect on the recall

performance of NOCEA. In fact, as the dimensionality increases noisy points

become increasingly more isolated from one another making increasingly more

difficult the formation of non-sparse and homogeneous rules from a collection

of noisy points. Therefore, by definition higher dimensionality provides a slight

advantage when handling noise, in the sense that it is easier to discriminate/prune
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the genuine clusters from the spurious ones because the latter are extremely sparse

in high dimensional spaces. This is obvious from the precision curve of figure

6.49(b). Filtering out low density rules describing noise brings the precision in

all experiments to the value of 100%.
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Figure 6.49: The Recall (a) and Precision (b) Curves for Varying Data Dimen-
sionality and Level of Noise.

The Effect of Noise and Cluster Dimensionality

Similar to the other two important characteristics of a database, i.e. size and data

dimensionality, the compactness of clusters associated with their dimensionality

does not affect the recall effectiveness of NOCEA even under very noisy con-

ditions. Figures 6.50(a-b) illustrate the Recall and Precision as the percentage

of the background noise increases from 10% to 90%. Each dataset has 100000

records in a 50-dimensional feature space while there exist 10 clusters with aver-

age dimensionality ranging from 5 to 50. The slight degradation of precision with

increasing dimensionality is due to the fact that as the dimensionality of clusters

increases more uncovered space within F becomes available (uncovered) for the

evolutionary search to create spurious rules covering large sized noise regions.

However, if one discards the low density noisy rules then the precision becomes

100%.



CHAPTER 6. EVALUATION ON ARTIFICIAL DATASETS 183

 0

 20

 40

 60

 80

 100

10090755025100

R
ec

al
l

Percentage of Noise

Recall for Varying Noise and Cluster Dimensionality 
 10 clusters, 100000 points, 50 dimensions

Avg. Cluster Dim. 5
Avg. Cluster Dim. 10
Avg. Cluster Dim. 20
Avg. Cluster Dim. 40
Avg. Cluster Dim. 50

 0

 20

 40

 60

 80

 100

10090755025100

P
re

ci
si

o
n

Percentage of Noise

Precision for Varying Noise and Cluster Dimensionality 
 10 clusters, 100000 points, 50 dimensions

Avg. Cluster Dim. 5
Avg. Cluster Dim. 10
Avg. Cluster Dim. 20
Avg. Cluster Dim. 40
Avg. Cluster Dim. 50

a) b)

Figure 6.50: The Recall (a) and Precision (b) Curves for Varying Cluster Dimen-
sionality and Level of Noise.

6.5.4 Clustering Challenges Under Noise Conditions

Every clustering algorithm needs mechanisms to discount the background noise.

Before explaining NOCEA’s resistance to the presence of noise it is necessary to

highlight the challenges that clustering algorithms face due to noise.

Given a candidate rule, the first homogeneity HT1, as described in section

3.4.1, attempts to discriminate well-separated clusters and to distinguish the

clusters from the surrounding noise regions. To achieve these aims HT1 seeks

relatively deep valleys along the uni-dimensional density histograms. When the

level of noise is relatively low, HT1 suffices for separating the genuine clusters

from the surrounding noise regions. In particular, due to the high difference in

density along the orthogonal projections the clusters automatically stand out and

clear the regions around them. From a uni-dimensional histogram analysis point

of view, high levels of noise may significantly hinder the ability of HT1 to discrim-

inate adjacent clusters of similar density, because the necessary separating valleys

between the clusters could potentially be obscured by the increased amount of

noise. NOCEA deals with this challenge by performing the second homogeneity

test, HT2, as described in section 3.4.2. In short, HT2 consists of a series of

chi-square tests at decreasing levels of density to reveal (if any) significant multi-

modal structures that potentially indicate the existence of multiple clusters in
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higher dimensionality spaces.

HT1 and HT2 yield a segmentation of the original histogram into regions of

either quasi-uniform or in the worst case unimodal distribution. Although the

first two tests can effectively discriminate the clusters from one another, they

may fail alone to delineate the boundaries of clusters with accuracy when the

level of noise is very high. This is because noise points located near the boundary

of a cluster make the density in the tails of the histogram exceed the uniformity

threshold Th. As a result, fully repaired rules would be extended beyond the

cluster edges towards the noise regions. NOCEA deals with this challenge by

employing the third homogeneity test HT3 (section 3.4.3), an elaborate statistical

test that examines the distribution of density histogram values for right outliers,

i.e. bins corresponding to peaks in unimodal distributions.

For instance, figure 6.51 illustrates NOCEA’s Recall curve under varying noise

conditions having both enabled and disabled HT2 and HT3. Each dataset has

100000 points in 20 dimensions with 10 clusters embedded in 10 dimensions on av-

erage. In all the experiments, NOCEA was run twenty times, varying the random

rule seed used to generate the initial population of individuals. The results re-

ported below are based on an arithmetic average of the results over these twenty

different random seeds. It can be easily observed that Recall degrades rapidly

when the percentage of background noise exceeds 20-25%. Typically, when HT2

and HT3 are disabled for moderate-to-large levels of noise e.g. 50-70%< Fnoise,

NOCEA produces a single super-rule covering the entire feature space. Therefore,

without these elaborate tests the meaningfulness of the obtained partitions may

be easily called into question in highly noisy datasets.

The problem of poor cluster discrimination under noisy conditions is rapidly

worsening as the dimensionality of the subspaces in which the clusters are em-

bedded decreases. Recall from section 5.11 that the points of a given cluster are

spread out along the non-relevant dimensions. In essence, for very large amounts

of uniform noise the density of points in the subspace formed by the relevant

dimensions of a given cluster and in the surrounding regions of noise is very
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Figure 6.51: Recall degrades rapidly for Increasing Noise Without HT2 and HT3

similar. Therefore, a relatively thin slice within the subspace of relevant dimen-

sions of a given cluster would easily be extended far beyond the boundaries of

the cluster along the bounded dimensions. This could have grave consequences

because some regions of the genuine clusters may be either incorrectly assigned

to noise rules and/or more severely the fragmentation of the body of a cluster

by noise rules may not allow placing non-sparse rules within the backbone of the

cluster. Another side-effect is that when a cluster is fragmented by noise rules

along its non-relevant dimensions subspace clustering becomes less effective. The

Precision curves without pruning away the very low density rules, as described in

section 5.11.3, during the early stages of the evolutionary search are quite similar

to those illustrated in figure 6.51.
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6.6 Discovery of Varying Density Clusters

This section verifies our intuition that NOCEA conforms with an essential re-

quirement for data mining clustering applications, that is, the discovery of varying

density clusters.

Since the survival of candidate rules depends on only two non-density or

geometry-related criteria, i.e. data homogeneity and coverage, one would ex-

pect that NOCEA is by definition able to detect clusters of any density, provided

of course that the survival conditions are satisfied. This section may be read

in conjunction with section 7.8 (Chapter 7) where the latter gives examples of

real-world clusters with large variances in point density.

6.6.1 Apparatus

To investigate the ability of NOCEA to discover clusters of varying density the

particularly popular dataset DS5, shown in figure 6.35(e), is augmented in a

higher dimensional space to artificially introduce large differences in the density

among the clusters. Recall from section 6.2.3 that DS5 [99] consists of 100000

instances that are equi-distributed among 100 clusters with centres arranged in

a 10× 10 grid pattern.

To introduce large-scale differences in the density of clusters, DS5 is initially

augmented from 2 to 102 dimensions and then each of the original 2-D clusters

is embedded in a randomly selected subspace with specific dimensionality. The

range of values is set to [0, 100] for all the new dimensions, i.e. 3 to 102. For all the

newly added attributes that define the subspace in which the cluster is embedded,

the cluster points are uniformly distributed within a small hyper-cube with fixed

side length equal to 10. The centre of the hyper-cube is selected at random. For

the remaining non-relevant dimensions, the coordinates for the cluster points are

drawn independently at random from the uniform distribution defined over the

entire range of the attribute. The dimensionality of the first cluster is set to 1,

excluding of course the two original dimensions where all clusters are embedded.

The difference between the number of bounded dimensions associated with any
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two consecutive clusters, e.g. i and i+1 is always 1. As a result, the dimensionality

of the first and last cluster is 3 and 103, respectively. To assure randomness in the

data generation process the original clusters are processed with a random order

that is irrespective of their position in the 2-D grid. Due to the varying cluster

dimensionality the point density of the generated clusters spans an extremely wide

range. For instance, the density ratio between the denser and sparser cluster is

approximately
(

1000
6∗6∗10100

)
/
(

1000
6∗6∗10∗10099

)
= ... = 1099. Note that each cluster has

roughly 1000 points while the spreading of points in the first two dimensions is

approximately equal to six standard deviations (σ = 1).

6.6.2 Varying Density Experiment Results

NOCEA was run twenty times, varying the random rule seed used to generate the

initial population of individuals. Due to the properties of the dataset (it contains

only convex clusters)NOCEA always converges to the partitioning shown in figure

6.52 consisting of 100 single-rule clusters. NOCEA always identifies all the input

clusters in the correct subspaces. In all experiments the value of both recall and

precision metrics were 100%. These findings validate our intuition that NOCEA

is a generic data mining clustering algorithm well suited even for cases where the

density of clusters varies significantly.

Figure 6.52: A Two-dimensional Projection of the 100 Single-rule Clusters Found
by NOCEA for the Dataset (section 6.6.1) with Varying Density Clusters

Notice that due to discarding all the very low density rules during the early

stages of the evolutionary search (section 5.11.3), clusters are recovered at a de-

scending order of point density. However, this elimination procedure is eventually

disabled during the evolutionary search, and thereby it does not hinder the dis-

covery of low density clusters.
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6.7 Insensitivity to the Order of Data Input

This section demonstrates that the quality of the clustering results by NOCEA

is independent of the order in which the input data are presented. Some tech-

niques, e.g. BIRCH [99], may produce dramatically different clusterings when

the input data are processed with different order. In NOCEA, data partitioning

is induced by points’ membership (inclusion) in clustering rules resulting from

space partitioning, where the latter is based on stochastic evolutionary search.

In short, NOCEA is, by definition, a non data ordering sensitive clustering

algorithm because:

• The clustering rules are manipulated by stochastic genetic operators. In

other words, the transition rules to move from one solution to another

solution is independent of data ordering.

• The fitness function that measures the overall goodness of a candidate so-

lution encompasses no factor that is affected by the data ordering.

• The quality of candidate rules is assessed by analysing density histograms

whose construction, in turn, is a non data ordering dependent task.

6.7.1 Apparatus

Two artificial datasets are used in this set of experiments to study NOCEA’s

sensitivity to the order of data input, DS1 [48] and DS5 [99], shown in figures

6.35(a) and 6.35(e), respectively. These datasets share a special characteristic

that is well-suited for the purposes of this experiment: they both contain clusters

that can be approximated by a single clustering rule, which, in turn, means that

it is easy and straightforward to compare the results of different runs.

The original data generators [48, 99] were slightly modified to allow controls

over the order of the input data. In the simplest version, the set of data points of

all clusters and noise is permuted at random. In a less randomised version, the

placement of data points in the dataset is controlled by an input chunk parameter

specifying the percentage of data points belonging to a given cluster that will be
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placed together in consecutive slots of the data table. NOCEA was tested with

10%, 25%, 50%, 75%, 90%, and 100% chunk size. Additionally, NOCEA was

tested with both fixed and variable chunk size for each cluster. Finally, when the

chunk size is less than 100%, there is also an option to process clusters with a

random or sequential order.

6.7.2 Data Order Insensitivity Experiment Results

NOCEA detects the genuine clusters for both datasets approximating each cluster

with a single rule. As expected, NOCEA produces nearly identical results for all

possible configurations of data ordering. These results validate the intuition that

NOCEA’s output is independent of the order of data input.

6.8 Insensitivity to Initialisation

Some clustering algorithms, e.g. k-means, may generate completely different

partitioning, possibly erroneous, with different initialisations. In NOCEA, the

stochastic nature of the evolutionary search along with the non distance-based

fitness function ensure that the quality of the clustering results does not vary

significantly over different initialisations. This is not to suggest that NOCEA

always produces identical rule-sets from different initialisations, but only that the

subset of feature space defined by the union of clustering rules, or in other words

the clusters themselves, remain roughly the same irrespective of initialisation.

6.8.1 Apparatus

To study the effect of different initialisations to the quality of the clustering

results three artificial datasets are used, DS1, DS2 and DS6, whose distributions

are shown in figures 6.35(a), 6.35(b), and 6.35(f), respectively.



CHAPTER 6. EVALUATION ON ARTIFICIAL DATASETS 190

6.8.2 Insensitivity to Initialisation Experiment Results

Recall from section 5.14 that each individual in the population is initialised with

a single hyper-box that is located and sized by a random process. Figures 6.53(a-

j) show rule-sets that are typically found by NOCEA for the three datasets,

over different initialisations. Connected rules belonging to the same cluster are

assigned the same colour. Looking at these figures, one can easily observe that

NOCEA is always able to correctly identify the genuine clusters irrespective of the

selection of the initial rule-seed. Clearly, convex clusters, e.g. spherical, ellipsoid,

or rectangular are always captured using a single rule, provided of course that

generalisation is enabled. As far as arbitrary-shaped clusters that require multiple

rules is concerned, e.g. ’π’-shaped, upside-down ’π’-shaped, or annular, there is

no guarantee that NOCEA will always converge to identical rule-sets, simply

because the evolutionary search itself is stochastic. However, the union of the set

of disjoint rules that collectively define the body of an arbitrary-shaped cluster,

yield an almost identical approximation of the shape of the given cluster.

6.9 Minimal Requirements for Domain Knowl-

edge

NOCEA is a generic data mining clustering algorithm and has minimal require-

ments for domain knowledge. For instance, unlike other clustering techniques, e.g.

k-means or PROCLUS, it does not require any auxiliary information regarding

the number of clusters. In fact, in all the experiments reported throughout the

thesis, the optimal number of rules and clusters was automatically determined on

the fly by NOCEA based on the data distribution. This property is very impor-

tant because domain knowledge is rarely complete and consistent. Additionally,

NOCEA does not presume any canonical type of distribution for the input data.

Unlike other clustering techniques, e.g. PROCLUS [5], ORCLUS [6], NOCEA

does not require all clusters to be embedded in the same number of dimensions,

neither does it rely on the user to specify the average cluster dimensionality.
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a) b)

c) d)

e) f)

g) h)

i) j)

Figure 6.53: NOCEA Yields Similar Cluster Approximations over Different Ini-
tialisations
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6.10 Subspace Clustering
This section evaluates the effectiveness and efficiency of NOCEA on massive

and high dimensional datasets containing clusters that are embedded in different

subsets of dimensions. In particular, the goals of the experiments are to assess:

• Efficiency: Determine how the execution time scales with:

– Size of the database.

– Dimensionality of the feature space.

– Dimensionality of the clusters.

• Accuracy: Investigate whether NOCEA is able to determine the correct

subspaces for each cluster, as well as to produce accurate cluster descriptors

for the bounded dimensions of all clusters.

NOCEA’s performance for subspace clustering is further demonstrated on seismic

data with a multitude of clusters in section 7.15. Experimental results reported

in sections 6.10.2, 6.10.3, and 7.15 suggest that NOCEA scales near linearly with

database size and both data and cluster dimensionality, while it always identifies

the hidden clusters in the correct subspaces.

6.10.1 Apparatus
The datasets are generated using the generator described in section 6.5.1 which

provides control over the number of instances, the dimensionality of the data,

and the dimensions for each of the input clusters. Unless otherwise specified, the

cluster points are equally distributed among 5 clusters of varying dimensionality

and density. Additionally, in all the experiments the level of uniform noise Fnoise is

fixed at 10% of the total number of points. Although NOCEA is set to run for 300

generations, in most experiments the evolutionary search converged after only 40-

50 generations. Therefore the execution times reported in this section correspond

to the convergence time rather than the time of completion of the maximum

number of generations. In all the experiments reported in sections 6.10.2-6.10.3

twenty independent and randomly initialised runs were performed for all datasets.

The reported measurements of execution time and recall-accuracy are based on

an arithmetic average of the clustering results over the twenty different random

runs.
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6.10.2 Subspace Efficiency Results

Scalability With Database Size

Figure 6.54 shows the scalability curve of NOCEA as the number of records

increases from 0.5 to 30 million. In this set of experiments each dataset has

20 dimensions while each one of the 5 hidden clusters is embedded, on aver-

age, in some 5-dimensional subspace. As expected, NOCEA scales near linearly

with the number of instances. The linear behaviour is explained as: Given the

relatively low dimensionality of the feature space F and the small number of

clusters, the execution time is dominated by the construction of the frequency

histograms, which, in turn, is a task of linear complexity with the database size.

In other words, for low dimensional datasets containing a small number of clusters,

NOCEA spends far more time repairing candidate rules rather than performing

other genetic operations such as recombination, generalisation, and mutation.

For low-dimensionality datasets, e.g. d<25, scalability could be further improved

by replacing the linear data-scanning mechanism that is currently employed by

NOCEA with a faster hyper-rectangular query mechanism, e.g. range or k-d

tree [26].
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Scalability With Dimensionality of the Data Space

Figure 6.55 shows the scalability of NOCEA as the dimensionality of the data

space increases from 20 to 200. In this series of experiments, each dataset has

100000 records and there are 5 clusters being embedded in some 5-dimensional

subspace. The percentage of noise was set to 10% of the total number of points.

The curve exhibits a small super-linear trend, as for a given rule-set, NOCEA

must build at least one density histogram for each rule in every dimension. Addi-

tionally, as the data dimensionality increases the application of the genetic oper-

ators becomes increasingly more expensive mainly due to the increasing number

of constraint-checking computations required to yield individuals without over-

lapping rules. Note that both tasks (construction of density histograms and

constraint checking) are of linear complexity with data dimensionality.
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Scalability With Average Cluster Dimensionality

Figure 6.56 shows the dependency of the execution time on the average cluster

dimensionality where the latter increases from 5 to 50 in a 100-dimensional data

space. In each case, the dataset has 100000 records distributed over 5 hidden

clusters with a fixed 10% level of background noise. The super-linear scale up
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in the execution time with the dimensionality of the hidden clusters is explained

as follows: the higher the average cluster dimensionality the more likely it is for

the evolutionary search operators to produce non-homogeneous candidate rules

along the bounded dimensions of the clusters. Hence, extra repairing operations

are required to obtain a feasible, i.e. homogeneous, rule-set. The computational

overhead introduced by the additional repairing operations for a given cluster is

generally proportional to the dimensionality of that cluster. Additionally, as the

dimensionality of hidden clusters increases, more space becomes available, i.e.

uncovered, for the mutation operator to grow existing rules or to produce new

ones. Despite the fact that no access to the database is required when mutating a

genome, the cost of applying the mutation operator may be substantial, especially

for high dimensional spaces or datasets with a multitude of clusters (see section

7.15.4). Note that mutation in NOCEA is a linear complexity task with regard

to the dimensionality of the dataset.
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6.10.3 Subspace Detection and Accuracy Results

This section investigates how accurately NOCEA is able to approximate the clus-

ters and detect the corresponding subspaces.

Apparatus

To assess the quality of the results of NOCEA for subspace clustering, a syn-

thetic dataset was generated using the generator of section 6.5.1. The results are

presented as a mapping matrix that lists the relevant dimensions and the corre-

sponding ranges of the input clusters as well as those output by NOCEA. Table

6.4 depicts a typical case input and output cluster mapping on a 20-dimensional

dataset of 100000 instances with Fnoise=10%, where 10 equal data coverage clus-

ters are embedded in some 5-dimensional subspaces on average. The type of a

cluster can be either normal or uniform with an equal-probability. For each input

and output cluster the mapping table lists: 1) #points: number of points, 2)

#Dim: cluster dimensionality, 3) Dim: relevant dimensions, 4) Range: range of

relevant dimensions. For the jth normal-type cluster the effective range of the

distribution along the mth dimension is the interval [cj
m− 3σj

m, cj
m + 3σj

m], where

σj
m and cj

m denote the standard deviation and centre of the points of the jth clus-

ter along the mth bounded dimension, respectively. Additionally, each bounded

dimension for the input clusters is accompanied by a column (Std) specifying

the standard deviation of points along that dimension. Finally, the last column

(Missing) shows the percentage of peripheral points in each input cluster that

are missed by the corresponding output cluster.

Subspace Detection and Accuracy Experimental Results

Table 6.4 shows the substantially accurate mapping from the input data to sub-

space clusters identified. These results are an average of twenty independent

runs which were randomly initialised. Remarkably, there is a perfect matching

between the sets of relevant dimensions of the output clusters and their corre-

sponding input clusters. This is important for applications that require not only

a good partitioning of the data, but also additional information as to what di-

mensions are relevant for each partition. NOCEA always recovers all of the 10

input clusters in the correct subspaces using only one rule for each cluster.
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For uniform-type clusters, the boundaries reported by NOCEA are a fairly

accurate approximation of the input clusters. The marginal difference between

the input and output cluster boundaries along the bounded dimensions is due to

the discretisation error introduced by the quantisation of the feature space F that

makes the values of the rule boundaries being drawn from discrete rather than

continuous domains. The fact that for some uniform-type clusters, i.e. C0, C1, and

C2, the corresponding output cluster has been assigned more points (indicated by

the negative numbers in column Missing of the mapping table 6.4) is because the

noise points were randomly distributed throughout the entire feature space, and

therefore some of them have actually been placed inside the regions of clusters.

For normal-type clusters, although NOCEA produces less accurate descrip-

tors compared to uniform-type clusters, it nevertheless detects all clusters in the

correct subspaces. The less than perfect matching between the input and output

cluster boundaries is because the repair operator has been designed to separate

the central body of a normal distribution from its low density tails. This is not

necessarily an error, because NOCEA seeks, by definition, regions with quasi-

uniform data distribution. Not surprisingly, the number of points that are missed

in the boundaries of a normal-type cluster is proportional to the dimensionality

of that cluster. A small percentage of the total point loss is due to the properties

of the normal distribution, where the maximum distance between a point in the

cluster and the corresponding centre is unbounded. In other words, a data point

may be arbitrarily far from its owning cluster. So a very limited percentage of

points that are initially assigned to an input cluster, are placed far away from the

corresponding centre, thereby they do not belong anymore to the given cluster.

Finally, the greater the standard deviation of points, the smaller the kurtosis, i.e.

concentration of data points around the centre, of the distribution, and conse-

quently the fewer points are lost in the tails. NOCEA consistently delivers very

similar qualitative results (i.e. correct detection of cluster subspaces and rela-

tively accurate cluster boundaries) for all the experiments related to subspace

clustering that are reported throughout this thesis. Further research is required

to address the problem of missing peripheral cluster points.
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Database Size=100000, Data Dimensionality=20, Fnoise=10%
Number of Clusters = 5, Average Cluster Dimensionality = 5

Input Output Missing
Cluster #Points#Dim.Dim. Range Std #Points#Dim.Dim. Range (%)

C0 0 73.106 - 96.213 3.851 0 72.946 - 96.469
Type: Uniform 9000 2 1 64.982 - 85.133 3.359 9512 2 1 64.656 - 85.300 -5.68%

0 46.888 - 69.094 3.701 0 46.483 - 69.418
C1 1 51.805 - 70.558 3.125 1 51.618 - 71.175

Type: Uniform 9000 3 13 11.188 - 23.495 2.051 9050 3 13 11.116 - 23.620 -0.5%
0 25.503 - 42.929 2.904 0 25.312 - 42.954

C2 1 5.203 - 22.168 2.827 1 4.896 - 22.281
Type: Uniform 9000 4 13 39.483 - 62.581 3.85 9014 4 13 38.902 - 63.215 -0.1%

18 55.356 - 76.222 3.478 18 55.000 - 76.999
0 75.035 - 96.521 3.581 0 74.710 - 97.057
1 28.413 - 46.607 3.032 1 28.257 - 46.728
8 60.534 - 83.662 3.855 8 60.000 - 83.999

C3 10 34.682 - 53.629 3.158 10 34.000 - 54.000
Type: Uniform 9000 8 11 10.275 - 22.941 2.111 9000 8 11 10.001- 24.000 0%

12 77.158 - 96.654 3.249 12 76.235 - 97.026
13 37.469 - 56.874 3.234 13 36.818 - 56.963
19 53.763 - 72.894 3.189 19 53.000 - 73.000
0 73.053 - 86.327 2.212 0 72.946 - 86.472
1 33.74 - 48.859 2.52 1 33.69 - 49.444
4 6.515 - 24.593 3.013 4 6.001 - 25.000

C4 5 69.213 - 88.092 3.146 5 68.749 - 88.391
Type: Uniform 9000 9 7 84.252 - 97.811 2.26 9000 9 7 83.917 - 97.902 0%

11 67.374 - 86.116 3.124 11 66.998 - 86.997
14 42.806 - 64.033 3.538 14 42.000 - 64.999
16 68.736 - 84.38 2.607 16 67.998 - 84.997
19 46.83 - 61.815 2.497 19 46.000 - 62.000

C5 0 30.019 - 52.527 3.751 0 35.309 - 47.071
Type: Normal 9000 3 1 73.078 - 85.827 2.125 6579 3 1 76.065 - 83.127 26.9%

5 34.01 - 55.378 3.561 5 38.393 - 50.893
0 52.393 - 71.809 3.236 0 57.068 - 67.653

C6 1 18.531 - 41.005 3.746 1 23.911 - 35.863
Type: Normal 9000 4 8 6.883 - 30.404 3.92 6024 4 8 12.000 - 26.000 33%

15 32.05 - 47.456 2.568 15 35.002 - 44.001
0 14.962 - 28.102 2.19 0 17.667 - 25.312
1 61.683 - 84.105 3.737 1 66.829 - 78.781

C7 9 76.182 - 90.424 2.374 9 79.000 - 88.000
Type: Normal 9000 6 11 28.783 - 46.442 2.943 5412 6 11 32.000 - 42.999 39.8%

12 35.329 - 48.417 2.181 12 37.623 - 45.543
13 79.771 - 99.838 3.344 13 84.749 - 95.169
0 27.999 - 44.196 2.699 0 31.781 - 40.602
1 25.02 - 43.531 3.085 1 29.344 - 39.122
5 17.25 - 38.322 3.512 5 21.429 - 33.929

C8 6 51.893 - 72.346 3.409 6 56.000 - 68.000
Type: Normal 9000 7 7 47.66 - 71.095 3.906 4656 7 7 53.148 - 65.735 48.2%

10 8.47 - 29.026 3.426 10 13.000 - 25.000
15 27.617 - 40.719 2.184 15 30.002 - 38.001
0 28.397 - 44.605 2.701 0 31.781 - 40.602
1 64.017 - 78.337 2.387 1 67.372 - 74.978
4 13.67 - 33.742 3.345 4 18.000 - 28.999

C9 5 20.017 - 33.046 2.171 5 22.322 - 30.358
Type: Normal 9000 9 7 11.153 - 28.259 2.851 3759 9 7 15.387 - 24.478 58.2%

12 65.085 - 80.606 2.587 12 68.315 - 77.225
14 13.965 - 36.688 3.787 14 19.000 - 31.000
15 13.004 - 32.978 3.329 15 17.002 - 29.002
18 52.192 - 66.024 2.305 18 55.000 - 62.999

Table 6.4: Typical Case Accuracy Results for Subspace Clustering by NOCEA
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6.11 Summary

This chapter has presented an experimental evaluation of NOCEA on a wide

range of benchmark artificial datasets. The experimental results demonstrated

that NOCEA meets the key DM clustering criteria. In particular we showed that:

NOCEA produces interpretable output in the form of disjoint and axis-aligned

hyper-rectangular clustering rules with homogeneous data distribution; the out-

put is minimised for ease of comprehension. NOCEA has the ability to discover

homogeneous clusters of arbitrary density, geometry, and data coverage. NOCEA

effectively treats high dimensional data and it effectively identifies subspace clus-

ters being embedded in arbitrary subsets of dimensions. NOCEA has near linear

scalability with respect to the database size, and both data and cluster dimen-

sionality. NOCEA produces similar quality results irrespective of initialisation

and order of input data. NOCEA is exceptionally resistant to background noise.

Finally, NOCEA has minimal requirements for a priori knowledge, and does not

presume any canonical distribution of the input data.



Chapter 7

Earthquake Analysis Case Study

Capsule

This Chapter presents a real-world application of NOCEA in the earthquake domain.

The analysis primarily focuses on clustering earthquakes associated with the highly-

active crustal deformation along the African-Eurasian-Arabian collision boundary.

Initially, a brief introduction regarding the geo-tectonics and seismicity associated

with this region, is provided. The chapter continues with a detailed description of the

dataset itself along with a preliminary human-eye clustering. Next, the discovered

knowledge, e.g. rules and clusters, is listed, and accompanied by various statistics.

The following sections verify the theoretical properties of NOCEA e.g. discovery of

clusters with arbitrary data coverage, density, geometry, orientation, effective sub-

space clustering, in a challenging real-world case study, using representative pieces of

knowledge discovered from the earthquake dataset. Next, the chapter explains how

the discovered knowledge can be exploited to compile improved seismic hazard maps.

A detailed study of evolution of high-magnitude seismicity whose social impact is

severe, is also presented. Finally, the chapter concludes with an extensive efficiency

and effectiveness performance evaluation on a combination of massive synthetic and

real-world datasets. The scalability results show an impressive near-linear depen-

dency on the database size, data and cluster dimensionality, as well as potential for

high levels of task parallelism, reaching a speed up of 13.8 on 16 processors.

200
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7.1 Introduction

The goal of earthquake prediction is to develop relatively reliable probabilistic

estimates of potentially damaging earthquakes early enough to minimise loss of

life and property. Scientists estimate earthquake probabilities in two ways: by

studying the history of past earthquakes in a specific area and the rate at which

strain accumulates in the rocks [1, 2]. Our goal is to mine a dataset containing

seismic related parameters for possible correlations between earthquakes which

occurred along the highly-active African-Eurasian-Arabian collision zone. In par-

ticular, NOCEA seeks clusters that represent regions with relatively homogeneous

behaviour as far as the seismic activity is concerned. Our intention is not to in-

terpret the seismicity of a region deeply, but rather to provide a comprehensive

summary and visualisation of earthquake activity to aid seismologists in gaining

a deeper insight into the phenomenon, and allow them to improve the reliability

of their estimates.

The remainder of this Chapter is structured as follows: Section 7.2 briefly

explains how are earthquakes generated. Section 7.3 recalls the well-known

Gutenberg-Richter (G-R) power-law relation for the frequency of occurrence of

earthquakes with a given magnitude. Section 7.4 gives a classification of earth-

quakes based on the Richter magnitude scale. Section 7.5 summarises the main

seismogenic zones along the African-Eurasian-Arabian plate boundary. Section

7.6 provides a detailed description of the earthquake dataset used in this Chapter

along with a preliminary human-eye clustering. Section 7.7 presents the knowl-

edge discovered by NOCEA (i.e. rules, clusters, and various statistics) for the

seismic dataset, the configuration settings for both EA- and clustering-related

parameters, and a classification of clustering rules to facilitate the analysis of

the results. Section 7.8 demonstrates NOCEA’s ability to discover clusters of

arbitrary density. Section 7.9 verifies NOCEA’s ability to self-adjust well to the

geometry and size of non-convex clusters. Section 7.10 proves that NOCEA can

discover rules of arbitrary data coverage dictated by the underlying data distri-

bution. Section 7.11 gives examples of subspace clustering in the seismic dataset,
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explains the natural interpretation of irrelevant features from an earthquake pre-

diction point of view, and finally highlights the vital role of generalisation and

KDE histogram smoothing for effective subspace clustering. Section 7.12 val-

idates the ability of NOCEA to discover arbitrary-shaped clusters of varying

numbers of rules, point coverage, density, and geometry. Section 7.13 describes

how the seismicity knowledge discovered by NOCEA can be exploited to com-

pile improved seismic hazard maps. Section 7.14 discusses the historic evolution

of moderate-to-high-magnitude seismicity. Section 7.15 evaluates the efficiency

and effectiveness of NOCEA for subspace clustering by conducting a variety of

experiments using a mixture of synthetic and real-world datasets. Section 7.15.5

reports experiments related to task parallelism.

7.2 How Are Earthquakes Generated?

One of the most frightening and destructive phenomena of nature is a severe

earthquake and its terrible after-effects. The earth is formed of several layers that

have very different physical and chemical properties [1, 2]. The outer layer, which

averages about 70km in thickness, consists of about a dozen large, irregularly

shaped tectonic plates that slide over, under and past each other on top of the

partly molten inner layer. Most of the earth’s seismic activity, e.g. volcanoes

and earthquakes, occurs at the boundaries where the plates collide. The plates

are made of rock and drift all over the globe, they move both horizontally and

vertically. A fault is a fracture or zone of fractures in the earth’s crust along which

two blocks of the crust have slipped with respect to each other. Faults allow the

blocks to move relative to each other. This movement may occur rapidly, in the

form of an earthquake - or may occur slowly, in the form of creep. An earthquake

is caused by the sudden slip of a fault. Stresses in the earth’s outer layer push the

sides of the fault together. Stress builds up and the rock slips suddenly, releasing

energy in waves that travel through the earth’s crust and cause the shaking that

we feel during an earthquake.
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7.3 Gutenberg-Richter (G-R) Power Law

The Gutenberg-Richter (G-R) power law relation for the frequency of occurrence

of earthquakes is a well-known trait of the dynamics of seismicity, suggesting that

most seismically active regions exhibit populations of small-to-moderate earth-

quakes that obey the G-R logarithmic relationship:

log(n) = a− bM (7.35)

where n is the number of earthquakes with seismic energy radiated greater than

M (magnitude), while a and b are constants.

7.4 The Richter Magnitude Scale

The severity of an earthquake is usually expressed in the Richter magnitude scale

that was developed in 1935 by Charles F. Richter of the California Institute of

Technology as a mathematical device to compare the size of earthquakes. In short,

magnitude is related to the amount of seismic energy released at the hypocenter of

the earthquake. It is based on the amplitude of the earthquake waves recorded on

instruments which have a common calibration. The magnitude of an earthquake

is thus represented by a single, instrumentally determined value. To facilitate

our analysis earthquakes are classified in six categories based on their magnitude

(U.S. Geological Survey, http://www.usgs.gov/):

Descriptor Magnitude
Great 8 and higher
Major 7 - 7.9
Strong 6 - 6.9

Moderate 5 - 5.9
Light 4 - 4.9
Minor 3 - 3.9

Table 7.5: Classification of Earthquakes Based on the Richter Magnitude Scale
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7.5 African-Eurasian-Arabian Plate Boundary

The Aegean sea and the surrounding area, which extends from the Italian penin-

sula, in the west (7oW), to the Karviola junction of the North (NAF) and East

(EAF) Anatolian Faults in east Turkey (41oE), experience a rapid and intense

crustal deformation [64, 77]. Briefly, the deformation and the seismic excitation

along this region is mainly attributed to the northward motion of the African

and Arabian tectonic plates relative to the Eurasian. The solid bold line in figure

7.57 delineates the Africa-Eurasia, Eurasia-Arabia plate collision zone.

Figure 7.57: The Africa-Eurasia, Eurasia-Arabia Plate Boundary [64]

7.5.1 Seismogenic Zones in Italian Peninsula

The Africa-Eurasia plate boundary along the Italian peninsula is characterised

by four seismogenic zones [77], as shown in figure 7.58: a) N. Italy, including the

Alps and part of the northern Apennines, b) the area of central Italy, south of

43oN along the central Apennines, c) the region of the southern Apennines and

the Calabrian Arc, and d) Sicily. Further east, in the Adriatic Sea the collision

boundary is not well defined.
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Figure 7.58: The Main Seismogenic Zones Along the Italian Peninsula [64]

7.5.2 Seismogenic Zones in Mainland Greece - Aegean Sea

The Aegean sea and the surrounding area including mainland Greece, Albania,

FYROM, S. Bulgaria, W. Turkey and part of the Northern Eastern Mediter-

ranean, lie on the most active part of the Africa-Eurasia collision zone. This

region is mainly characterised by the westward motion of Turkey and the south-

westward motion of the southern Aegean, relative to Eurasia. This motion causes

the subduction of the African plate beneath the Eurasian plate along the Hellenic

Arc. The arrows plotted in figure 7.59 provide a sense of how the crust in the

southern Aegean is overriding the African plate from north to south.

The most prominent morphological features in the Aegean and surrounding

area from south to north are: the Mediterranean Ridge, the Hellenic Trench, the

Hellenic Arc and the Northern Aegean Trough [64]. Figures 7.59-7.60 illustrate

the main seismogenic zones in the Aegean sea and surrounding lands based on

two studies [64, 77]. The Mediterranean ridge is a submarine crustal swell that

extends from the Ionian Sea to Cyprus and parallels the Hellenic Trench. The

Hellenic Trench consists of a series of depressions with depth to about 5km. It
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Figure 7.59: The Motion of Tectonic Plates in the Aegean Sea

parallels the Hellenic Arc and includes some linear trenches, such as the Pliny and

Strabo southeast of Crete and the Ionian Trench. The Hellenic Arc is formed by

the outer sedimentary arc, a link between the Dinaric Alps and the Turkish Tau-

rides, and the inner volcanic arc, which parallels the sedimentary arc at a mean

distance of about 120km. The Volcanic Arc consists of several volcanic islands and

includes andesitic active volcanoes (Methana, Santorini, Nisyros) and solfatara

fields. Between the sedimentary and the volcanic arc is the Cretan Trough with

depth to about 2km. The most interesting feature of the Northern Aegean is the

Northern Aegean Trough with depth to about 1.5km. Its extension to northeast

is probably the small depressions of the Marmara Sea. The distribution of the

epicenters of the large shallow shocks (depth<60km) form several seismic zones.

The external seismic zones form a continuous large seismic belt along the external

(convex) side of the Hellenic Arc, and its extension along the western coast of

central Greece, Albania and former Yugoslavia. All other zones constitute the

internal seismic zones, which have an almost east-west direction. The spatial

distribution of the foci of the intermediate focal depth (60km<depth<180km)

earthquakes is of much interest because it defines basic properties of the deep

tectonics in this area and because the strongest earthquakes (with M≈8.0) in

this region are of intermediate focal depth.
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Figure 7.60: The Main Seismogenic Zones in Aegean Sea and Surrounding Lands

7.5.3 Seismogenic Zones in Turkey

Further east, as shown in figure 7.61, the motion of the Arabian plate towards the

north, causes the westward movement of the Anatolian plate (Turkey) relative to

Eurasia along the North Anatolian Fault (NAF) in the north and East Anatolian

Fault (EAF) in the southeast.

7.5.4 Seismogenic Zones in Romania

Finally, the Vrancea region, as shown in figure 7.62, in south-eastern Roma-

nia, localised in the rectangle 45-46oN and 26-27oE, consists of both shallow

(Depth<60km) and intermediate-depth (60km<Depth<300km) events with the

largest magnitudes above 7.0. The Vrancea region is characterised by intense

seismic activity in a remarkably confined volume and in a direction that is nearly

perpendicular to the earth’s surface.
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Figure 7.61: The Main Seismogenic Zones in Turkey [64]

Figure 7.62: The Vrancea Region in Romania and the Hellenic Arc in Greece
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7.6 The ANSS Earthquake Catalogue

7.6.1 ANSS Dataset Description

The American Advanced National Seismic System (ANSS) (http://www.anss.org/)

donated the earthquake dataset that is used in the thesis. It contains 34593 seis-

mic events recorded from 07/01/1961 to 19/04/2004. The origin of an earthquake

is specified by three spatial dimensions, that is, focal Depth, Longitude-Latitude

epicentre coordinates, one temporal dimension (Time), and finally by the amount

of energy (Magnitude) that was released. Table 7.6 summarises the characteristics

of the dataset. NOCEA operates on a [Time×Longitude×Latitude×Depth×Magnitude]

axis-aligned rectangular grid with resolution [125days×0.1o×0.1o×1.0km×0.1Ric.].

The third column represents the bin width computed by the TSQ quantisation

algorithm (Chapter 4) while the last column shows the precision of the recorded

measurements.

Size=34593 Domain #Bins Bin Width Precision
Time (Days) 07/01/1961 - 19/04/2004 126 125 1
Longitude (Degrees E) 7 - 45 381 0.1 0.1
Latitude (Degrees N) 32 - 47 150 0.1 0.1
Depth (km) 0 - 500 488 1.0 1.0
Magnitude (Richter) 3.0 - 7.7 47 0.1 0.1

Table 7.6: Various Characteristics of the ANSS Earthquake Dataset

7.6.2 Visual Clustering of the ANSS Dataset

This section provides a preliminary human-eye clustering of the ANSS dataset.

The ANSS earthquake dataset has distinct spatio-temporal-magnitude cluster

structures mainly due to the geological heterogeneity of the spatial dataspace

and the discontinuous nature of the faulting zones [64]. However, as shown in

section 7.7, not all complex structures in a multi-dimensional space can be always

extracted by a non fully-dimensional projective clustering method.

Figure 7.63 displays the spatial [Longitude×Latitude×Depth] distribution of

earthquakes. Figures 7.64(a-e) depict the uni-dimensional frequency histograms
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for all dimensions, while figures 7.65-7.66 illustrate some pairwise scatter dia-

grams. The visual inspection of these figures reveals some distinct trends of

seismic activity.

• As expected, most earthquakes occur along the collision boundaries between

the tectonic plates (figure 7.66(c)), particularly in the Aegean Sea, forming

variable-length slices along the depth axis as clearly shown in figures 7.63

and 7.66(a-b). These events are located mainly close to the surface 0-

50km. Another interesting observation that can be easily discerned from

figures 7.64(e) and 7.66(a-b) is that the vast majority of seismic activity

is confined along three shallow, remarkably thin (1km), horizontal slices

located at focal depths 2-3km, 9-10km and 32-33km that are highlighted

with purple, dark-blue and cyan colour in figure 7.63, respectively. These

highly-active regions are separated from one another by significantly less

active slices of varying thickness.

• As expected, the overall seismic activity is not evenly distributed along the

magnitude axis (figure 7.64(d)). This finding obeys the G-R power-law (see

section 7.3), stating that stresses built up in the earth’s outer layer are

usually relaxed via a few large-scale earthquakes that are accompanied by

multitudinous low-to-moderate fore- and after-shock events.

• The highly-negative skew in the Time frequency histogram (figure 7.64(a))

is attributed to the incompleteness of the instrument measurements in the

past, and does not reflect a chronologically increasing seismic excitation.
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Figure 7.63: The Spatial [Longitude×Latitude×Depth] Distribution of Earthquakes
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Figure 7.64: Uni-dimensional Frequency Histograms for the Earthquake Dataset
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a) Time×Longitude b) Time×Latitude

c) Time×Magnitude d) Time×Depth

e) Longitude×Magnitude f) Latitude×Magnitude

Figure 7.65: Pairwise Projections of Seismic Events (A)
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a) Longitude×Depth

b) Latitude×Depth

c) Longitude×Latitude

Figure 7.66: Pairwise Projections of Seismic Events (B)
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7.7 Evolutionary-based Clustering of ANSS Dataset

This section presents the knowledge discovered by NOCEA for the ANSS dataset,

as well as the configuration settings for both EA- and clustering-related parame-

ters. It also gives a classification of the rules to facilitate analysis of the results.

7.7.1 Analysing the ANSS Dataset

NOCEA discovered 237 highly-homogeneous hyper-rectangular rules forming

121 distinct clusters over the course of 300 generations. Some clusters have quite

complex spatio-temporal structure probably due to the geological properties of

the region and the dynamics of earthquakes. The rules of the fittest individual

cover approximately 77% of the total points (Ntotal=34593), while the remaining

points (23%) were considered non-uniform background noise by NOCEA.

Figure 7.67 depicts the performance of the best and worst individuals, as

well as the mean fitness of the population members over the generations. Most

rules were detected early in the evolutionary search, while in the rest of the time

NOCEA was performing local fine-tuning. The complete set of cluster descriptors

is given in section 7.7.4, while section 7.7.5 provides various statistics for the

discovered clusters.

Not surprisingly, most of the discovered clusters, especially those with arbi-

trary shapes, are not distinguishable in most non fully-dimensional projections

(see section 7.6.2), mainly due to the large degree of overlapping among the

points of these clusters in lower dimensional projections. NOCEA is able to ex-

tract these complex structures as it always operates on the full-dimensional space,

which guards against artifacts formed by the joint projection of multiple clusters

in lower dimensional spaces.

7.7.2 Parameter Settings

Table 7.7 summarises the configuration settings for both the EA- and clustering-

related parameters used by NOCEA to mine the ANSS dataset. All experiments
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Figure 7.67: Fitness Diagram for the Best, Mean, and Worst Individual

reported in this Chapter have been performed on a Linux Fedora Core 2 worksta-

tion with an Intel(R) Xeon(TM) CPU 3.06GHz processor, 512 KB cache, 2GB of

DRAM, and 9GB of IDE disk.

NOCEA uses typical EA parameter settings. In particular, the rates at which

mutation and recombination are applied were set to 1.0 and 0.25, respectively.

Each boundary of every rule undergoes either grow or seed mutation at random in

every dimension with a small probability of 0.01. The size of tournament in the

tournament selection procedure controlling how quickly the population is taken

over by the dominant individuals, is set to 4. To ensure that the performance

statistics of the population never degrades over generations, NOCEA adopts an

elitist replacement strategy where the best individual of the current generation is

directly copied into the next generation without undergoing any genetic operation.

The population size was set to 50 individuals. NOCEA terminates after a pre-

specified number of 300 generations. Each population member is initialised with

a single d-dimensional rule, which covers fully the domains in d-1 dimensions

while extending to half of the domain in one, randomly chosen dimension. This

is done to increase the possibility of generating non-sparse rules.
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Parameter Name Value
Population Size 50
Generations 300
Termination Condition Maximum Number of Generations
Mutation Rate 1.0
Mutation Probability 0.01
Grow/Seed Mutation Ratio 0.5
Recombination Rate 0.25
Number of Offspring 2
Generalisation Rate 1.0
Generalisation Period 1
Generalisation Probability 0.05
Repairing Rate 1.0
Repairing Period 1
Selection Strategy Tournament Selection (size=4)
Initialisation Randomly Generated Singular-Rule Individuals
Replacement Strategy Elitist (elite size =1)
Sparsity Threshold (Ts) 0.1% (0.025% for high-magnitude rules)
Homogeneity Threshold (Th) 0.3
Subspace Clustering Threshold (Tr) 0.9
Generalisation Threshold (Tg) N(0.65, 0.1)
Clustering Threshold (Tc) 0.2

Table 7.7: Parameter Settings for the ANSS Earthquake Dataset

As far as the clustering-related parameters of NOCEA are concerned, the fol-

lowing standard configuration was used in our experiments: Ts =0.1%, Th =0.3,

Tg =N(0.65, 0.1), Tc =0.2 and Tr =0.9. In the case of the earthquake database

and its extensions (see section 7.15.1) the sparse threshold Ts was deliberately

set to a lower value 0.025% for high-magnitude rules, i.e. rules with magni-

tude exceeding 5.0 on the Richter scale, utilising a priori knowledge from the

Gutenberg-Richter (G-R) power-law relation (section 7.3). In short, it is widely

believed that populations of small-to-moderate earthquakes obey the G-R law

defined as: log (n) = a − bM , where n is the number of events with magnitude

greater than M , while a and b are constants. Therefore, given the sparsity of the

feature space in the high-magnitude neighbourhoods it is reasonable to introduce

an adaptive sparsity threshold.
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7.7.3 A Classification of the Clustering Rules

To facilitate analysis of the results we introduce the following classification for

the discovered rules:

• AS-Rule:An aftershock rule represents a confined spatio-temporal region,

which is characterised by a highly concentrated patch of low magnitude

events, following a closely adjacent, in both time and space, strong earth-

quake.

• R-rule: An R-rule corresponds to a regular trend of seismic activity occur-

ring within a specific space-magnitude interval. An R-rule can be viewed

as a quasi-homogeneous cloud of narrow range magnitude events with wide

spreading in time. Depending on the spatial window, the density of an

R-rule varies considerably.

• HP-Rule: Similarly to an AS-Rule, a historically precursory rule HP-Rule, is

a highly compact patch of low-magnitude events preceding a closely located

strong earthquake.

• P-rule: Often, prior to a strong earthquake, the seismic activity in a

medium magnitude range intensifies and becomes more clustered in space

and time [63]. Although the generation of an earthquake is not always

localised around its source, intense seismic activity that has not been asso-

ciated with a strong earthquake may be potentially a precursory signal for

future strong events, especially in regions where such patterns of behaviour

have been historically observed.

• U-rule: A rule with unknown type represents a homogeneous cloud of

events not fitting any of the the previous types.
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7.7.4 ANSS Earthquake Clustering Rules

Tables 7.8-7.11 contain the complete set of cluster descriptors for the ANSS

earthquake dataset discovered by NOCEA. For illustrative purposes, clusters

are separated by horizontal lines and are sorted on decreasing order of point cov-

erage. Each rule is accompanied by ten fields, namely, Rule, Cluster, Coverage(

number of points - %), Density, Time, Longitude, Latitude, Depth, and

Magnitude. Empty fields, appearing only for the Time-gene (see section 7.11

for an explanation), indicate irrelevant dimensions.

Rule Cluster Coverage Density Time Longitude Latitude Depth Magnit.
R2 C2 993-2.87 7.4×10−3 30/06/88-26/05/96 19.2-30.7 39.3-41.0 9-10 3.0-3.3

R11 C2 358-1.03 1.1×10−2 30/06/88-26/05/96 20.1-21.8 37.3-39.3 9-10 3.0-3.4

R13 C2 233-0.67 1×10−2 29/11/79-05/02/86 21.6-23.6 38.0-39.6 9-10 3.0-3.4

R18 C2 404-1.16 6.3×10−3 17/11/78-27/09/96 19.9-24.0 37.8-39.3 9-10 3.4-3.6

R30 C2 228-0.65 7.2×10−3 09/01/95-26/05/96 26.3-30.7 36.3-39.3 9-10 3.0-3.6

R50 C2 133-0.38 9.6×10−3 08/03/89-07/12/91 26.3-28.0 37.6-39.3 9-10 3.0-3.6

R67 C2 115-0.33 6.8×10−3 06/05/83-27/09/96 20.0-20.8 37.9-38.8 9-10 3.6-4.2

R85 C2 130-0.37 7.3×10−3 15/08/92-09/01/95 29.2-30.9 36.8-39.3 9-10 3.0-3.6

R124 C2 51-0.14 8.9×10−3 14/11/89-15/05/95 22.7-24.5 41.0-43.0 9-10 3.0-3.1

R154 C2 38-0.10 9×10−3 30/06/88-27/09/96 19.8-21.4 41.0-42.1 9-10 3.2-3.3

R161 C2 41-0.11 1.1×10−2 03/11/88-29/12/93 20.5-21.8 36.9-37.3 9-10 3.1-3.6

R191 C2 86-0.24 6.6×10−3 23/07/90-26/05/96 21.8-24.2 38.5-39.3 9-10 3.0-3.4

R199 C2 49-0.14 1.4×10−2 30/06/88-20/03/90 22.3-23.9 38.1-39.2 9-10 3.0-3.4

R215 C2 37-0.10 6.7×10−3 23/07/90-07/12/91 28.0-30.7 37.6-39.3 9-10 3.0-3.3

R22 C17 565-1.63 9.4×10−4 26/07/79-01/02/97 12.4-19.8 41.5-46.8 9-10 3.0-3.3

R26 C17 237-0.68 6.7×10−4 13/03/78-01/02/97 9.40-14.0 42.3-45.1 9-10 3.3-3.8

R39 C17 151-0.43 4.4×10−4 16/10/75-19/04/04 15.7-21.6 43.1-43.6 9-10 3.3-4.7

R44 C17 215-0.62 6.5×10−4 17/06/98-22/11/01 12.4-23.3 36.9-47.0 9-10 3.0-3.3

R80 C17 103-0.29 6.5×10−4 11/02/98-20/07/01 18.7-32.0 39.0-41.0 3-9 3.2-3.3

R125 C17 168-0.48 4.8×10−4 30/06/88-05/03/00 16.9-22.1 40.9-43.1 9-10 3.3-4.2

R127 C17 83-0.23 6.1×10−4 26/07/79-19/04/04 8.90-11.9 44.9-47.0 9-10 3.0-3.3

R157 C17 43-0.12 7.6×10−4 30/06/88-26/05/96 22.1-24.7 41.0-42.9 9-10 3.1-3.6

R174 C17 47-0.13 4.7×10−4 13/03/78-05/06/97 10.4-14.0 45.6-46.6 9-10 3.3-3.8

R178 C17 44-0.12 5.2×10−4 17/06/98-05/03/00 9.90-14.0 42.4-47.0 9-10 3.3-4.2

R195 C17 36-0.10 6.9×10−4 26/07/79-23/10/87 17.4-19.8 41.8-43.1 9-10 3.3-4.0

R236 C17 39-0.11 1×10−3 22/11/01-19/04/04 13.1-18.4 43.5-47.0 9-10 3.0-3.3

R14 C12 642-1.85 1.5×10−4 19.3-31.0 33.8-39.9 32-33 4.2-4.7

R21 C12 540-1.56 1.1×10−4 29/03/02-19/04/04 20.3-28.0 34.3-37.7 5-33 3.0-4.1

R60 C12 83-0.23 1.2×10−4 06/05/83-19/04/04 21.8-28.3 33.6-36.5 9-10 4.1-4.7

R62 C12 79-0.22 7.6×10−5 29/03/02-19/04/04 19.2-28.2 37.7-39.1 10-33 3.6-4.2

R64 C12 80-0.23 7.4×10−5 09/10/97-29/03/02 19.7-32.0 36.0-38.4 5-9 3.0-3.7

R75 C12 137-0.39 1.7×10−4 30/06/88-17/06/98 22.7-33.1 34.0-39.5 32-33 3.0-3.5

R192 C12 36-0.10 1.7×10−4 25/08/93-16/12/03 29.3-31.3 34.1-39.2 32-33 3.5-4.2

R210 C12 36-0.10 1.8×10−4 05/09/71-06/08/80 22.8-30.2 37.9-39.6 32-33 3.6-4.2

R217 C12 37-0.10 1.8×10−4 17/06/98-31/07/02 31.3-35.3 33.9-37.4 32-33 3.5-4.7

R15 C13 516-1.49 1×10−5 19.2-30.4 37.5-39.7 16-32 3.5-4.7

R34 C13 208-0.60 8.6×10−6 12/01/84-17/09/95 8.50-21.7 40.9-45.2 10-24 3.3-4.2

R41 C13 190-0.54 4.9×10−6 17.6-31.6 39.9-40.9 16-36 3.6-4.7

R96 C13 59-0.17 1×10−5 08/10/63-29/11/79 18.9-31.6 37.3-39.6 10-16 4.0-4.7

R102 C13 69-0.19 7.9×10−6 19.9-21.0 37.2-40.0 10-41 4.7-5.5

R129 C13 53-0.15 5.9×10−6 07/12/91-26/05/96 20.2-30.9 33.8-37.5 10-32 3.9-4.7

R142 C13 45-0.13 4.3×10−6 05/09/71-11/02/98 18.4-27.7 39.5-40.9 16-37 3.0-3.5

R166 C13 36-0.10 7×10−6 07/10/74-04/03/77 18.1-31.4 37.2-40.9 1-16 3.0-4.0

R184 C13 45-0.13 7.4×10−6 12/01/84-19/04/04 7.00-16.6 45.2-46.7 10-16 3.0-4.2

R226 C13 10-0.02 4.3×10−6 20.4-21.0 36.3-40.0 0-32 5.5-5.7

Table 7.8: Clustering Rules for the ANSS Earthquake Dataset (A)
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Rule Cluster Coverage Density Time Longitude Latitude Depth Magnit.
R4 C4 567-1.63 1.7×10−3 15/07/78-08/04/03 20.8-28.0 37.9-39.5 9-10 3.7-4.1

R35 C4 199-0.57 3.2×10−3 09/12/80-17/09/95 19.7-21.6 37.2-37.9 9-10 3.6-4.7

R63 C4 87-0.25 2.9×10−3 26/02/88-26/05/96 26.3-28.1 34.8-35.8 9-10 3.4-4.1

R131 C4 45-0.13 2.2×10−3 26/02/88-22/04/93 26.3-28.0 36.3-37.9 9-10 3.6-4.1

R149 C4 37-0.10 2.4×10−3 29/11/79-09/07/00 20.1-20.8 38.8-39.7 9-10 3.6-4.0

R173 C4 61-0.17 2.4×10−3 26/02/88-09/01/95 27.3-28.8 35.8-37.5 9-10 3.1-3.6

R176 C4 49-0.14 1.6×10−3 23/03/79-27/09/96 20.2-20.6 37.9-39.8 9-10 4.3-5.1

R12 C11 372-1.07 7.9×10−4 05/02/86-29/03/02 21.8-28.3 33.7-35.9 32-33 3.5-4.2

R20 C11 401-1.15 6.4×10−4 01/06/74-29/03/02 20.0-22.7 35.9-39.5 32-33 3.2-4.0

R61 C11 82-0.23 4.3×10−4 10/01/72-05/02/86 21.1-28.4 33.8-35.9 32-33 3.9-4.2

R133 C11 86-0.24 4.2×10−4 16/01/73-16/03/01 22.7-29.3 35.9-39.7 32-33 3.5-3.6

R189 C11 38-0.10 1.1×10−3 29/08/82-26/05/96 26.8-28.1 35.9-37.0 32-33 3.6-4.2

R29 C22 229-0.66 1.2×10−3 04/03/77-21/10/98 19.7-25.9 39.7-40.9 9-10 3.6-4.0

R31 C22 287-0.82 6×10−4 03/11/88-19/04/04 28.0-31.7 35.8-41.5 9-10 3.6-4.1

R49 C22 119-0.34 1.1×10−3 09/12/80-30/06/88 19.0-25.7 39.6-41.5 9-10 3.0-3.4

R55 C22 73-0.21 9.6×10−4 07/10/74-19/04/04 22.1-28.0 39.5-41.0 9-10 4.0-4.1

R104 C22 72-0.20 1.2×10−3 26/07/79-14/02/87 18.0-21.7 39.5-43.1 9-10 4.0-4.2

R147 C22 38-0.10 7.6×10−4 13/03/78-29/11/79 22.3-31.2 38.4-41.2 9-10 3.0-3.4

R156 C22 103-0.29 1.4×10−3 04/03/77-23/10/87 19.5-24.1 39.3-41.8 9-10 3.4-3.6

R10 C10 447-1.29 9.3×10−6 23.6-28.4 34.1-35.7 33-79 3.5-4.7

R25 C10 228-0.65 1.4×10−5 14/06/64-01/02/97 19.8-23.6 34.8-39.8 38-60 4.3-4.7

R54 C10 127-0.36 7.9×10−6 09/05/72-19/04/04 26.4-31.8 35.7-36.4 33-79 3.7-4.7

R143 C10 51-0.14 1.2×10−5 12/09/72-19/04/04 22.3-23.6 34.8-36.1 33-79 3.6-4.2

R43 C30 400-1.15 2.4×10−6 21.0-31.2 33.8-41.1 4-39 4.7-5.2

R59 C30 79-0.22 3.1×10−6 04/06/63-06/05/83 21.9-29.0 33.8-36.5 3-32 3.9-4.7

R99 C30 75-0.21 3.2×10−6 21.4-41.7 41.1-46.6 32-33 3.0-4.9

R139 C30 105-0.30 4.5×10−6 18.3-31.9 36.5-41.2 3-9 4.2-4.7

R169 C30 47-0.13 5.5×10−6 15/02/63-06/08/80 39.6-45.1 37.9-39.9 33-52 4.4-5.2

R203 C30 49-0.14 6.7×10−6 31.2-45.1 34-41.1 32-33 4.7-5.2

R205 C30 41-0.11 4.5×10−6 24.9-30.9 36.4-37.4 33-43 3.5-4.7

R6 C6 787-2.27 1.8×10−2 17/06/98-19/04/04 20.2-22.3 37.0-39.0 4-5 3.0-3.6

R36 C25 263-0.76 1.6×10−3 16/03/01-16/12/03 23.3-24.7 38.4-39.0 0-41 3.0-3.6

R51 C25 115-0.33 1.5×10−3 27/09/96-09/07/00 24.7-32.3 36.5-41.2 9-10 3.4-3.6

R103 C25 95-0.27 1.2×10−3 11/02/98-16/03/01 22.3-30.7 37.2-39.0 4-5 3.0-3.6

R138 C25 44-0.12 1.8×10−3 09/07/00-22/11/01 24.7-28.4 38.1-40.8 9-10 3.0-3.6

R180 C25 43-0.12 2.9×10−3 09/10/97-01/11/99 27.0-30.1 39.0-41.0 3-7 3.0-3.1

R16 C14 461-1.33 6.2×10−5 09/09/83-19/04/04 32.3-45.1 35.8-43.3 9-10 3.4-4.7

R155 C14 40-0.11 1×10−4 20/03/90-09/01/95 28.3-37.5 33.2-35.8 9-10 3.0-4.2

R206 C14 37-0.10 9.6×10−5 09/01/95-19/04/04 33.5-39.9 36.1-41.7 9-10 3.0-3.4

R17 C15 386-1.11 1.8×10−4 08/07/77-19/04/04 22.4-32.3 36.5-41.2 9-10 4.1-4.7

R87 C15 68-0.19 2.9×10−4 27/09/96-29/03/02 19.9-28.0 33.4-37.9 9-10 3.7-4.1

R128 C15 38-0.10 2×10−4 09/07/00-29/03/02 23.4-27.6 34.7-36.1 10-32 3.5-3.8

R201 C15 44-0.12 1.9×10−4 06/05/83-26/02/88 18.1-29.5 34.8-37.2 9-10 3.5-4.1

R32 C23 407-1.17 2.6×10−4 22/11/01-19/04/04 19.2-26.8 39.0-40.6 0-31 3.0-3.6

R66 C23 75-0.21 1.9×10−4 29/03/02-19/04/04 25.2-27.6 37.8-39.0 0-38 3.0-3.6

R163 C23 38-0.10 3.5×10−4 11/02/98-19/04/04 20.1-22.7 37.7-39.8 31-42 3.0-3.1

R3 C3 302-0.87 3.6×10−3 23/10/87-27/09/96 19.2-29.3 39.3-40.9 9-10 3.4-3.6

R65 C3 98-0.28 4.7×10−3 20/06/87-15/08/92 24.2-26.3 38.2-39.3 9-10 3.0-3.6

R86 C3 62-0.17 3.6×10−3 05/02/86-30/06/88 20.8-24.2 37.8-39.6 9-10 3.0-3.4

R141 C3 37-0.10 3.7×10−3 09/12/80-05/02/86 23.6-24.8 38.2-39.6 9-10 3.0-3.4

R9 C9 396-1.14 3.7×10−5 29/11/79-20/01/96 19.6-28.3 37.8-40.5 10-16 3.0-4.6

R148 C9 50-0.14 1.8×10−5 19/09/84-17/09/95 20.2-26.8 37.9-39.5 16-32 3.0-3.5

R197 C9 44-0.12 2.2×10−5 05/02/86-25/08/93 11.5-23.6 40.5-44.7 10-16 3.0-3.3

R37 C26 230-0.66 2.4×10−5 17/06/98-16/03/01 22.7-34.1 33.5-41.4 10-37 3.0-3.5

R78 C26 90-0.26 1.3×10−5 23/03/79-08/04/03 8.70-21.4 40.9-45.6 32-33 3.0-4.7

R193 C26 46-0.13 2.1×10−5 17/06/98-22/11/01 19.4-22.7 35.4-42.9 10-32 3.1-3.5

R213 C26 50-0.14 2.1×10−5 22/11/01-19/04/04 7.00-24.1 40.6-45.2 10-21 3.0-3.4

R5 C5 313-0.90 6.3×10−3 25/04/82-08/04/03 9.40-12.4 44.0-44.9 9-10 3.0-3.3

R105 C5 54-0.15 5.2×10−3 25/04/82-19/04/04 11.8-12.4 43.1-44.0 9-10 3.0-3.3

R1 C1 361-1.04 1.3×10−3 29/03/02-19/04/04 20.1-22.4 37.7-39.0 5-31 3.0-3.6

R19 C16 316-0.91 1.5×10−3 05/03/00-19/04/04 21.0-27.9 34.5-37.0 4-5 3.0-4.0

R159 C16 45-0.13 8.5×10−4 21/10/98-05/03/00 20.5-28.4 34.6-37.0 4-5 3.2-3.9

R134 C79 294-0.84 2.2×10−1 01/02/97-17/06/98 12.5-13.1 42.7-43.2 9-10 3.0-4.1

R136 C79 55-0.15 1.1×10−1 01/02/97-17/06/98 12.6-13.1 42.8-43.2 9-10 4.1-4.7

R0 C0 348-1.00 3.9×10−2 15/08/92-09/01/95 26.1-28.2 37.8-39.3 9-10 3.0-3.4

Table 7.9: Clustering Rules for the ANSS Earthquake Dataset (B)
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Rule Cluster Coverage Density Time Longitude Latitude Depth Magnit.
R27 C20 229-0.66 2.7×10−4 13/03/78-19/04/04 14.0-18.2 43.6-46.5 9-10 3.3-4.2

R53 C20 104-0.30 1.9×10−4 12/06/75-01/02/97 9.90-14.0 41.6-47.0 9-10 3.8-4.2

R33 C24 258-0.74 1.8×10−5 05/09/71-19/04/04 20.7-22.3 35.8-38.9 33-71 3.4-4.2

R113 C24 44-0.12 2×10−5 16/03/01-19/04/04 20.3-27.7 35.1-39.6 42-60 3.0-3.4

R42 C29 169-0.48 3.4×10−3 14/11/89-06/09/94 19.7-22.5 37.5-41.7 4-5 3.0-3.3

R111 C29 86-0.24 2.5×10−3 25/08/93-20/01/96 19.7-22.2 37.3-41.2 4-5 3.3-3.8

R188 C29 39-0.11 6.3×10−3 06/09/94-20/01/96 19.5-21.4 38.9-41.6 4-5 3.0-3.3

R46 C32 181-0.52 1.1×10−5 06/05/83-19/04/04 7.00-22.8 41.2-47.0 3-9 3.3-3.8

R93 C32 55-0.15 4.2×10−6 26/07/79-19/04/04 10.3-22.4 41.3-44.1 3-9 3.8-4.7

R200 C32 48-0.13 1.1×10−5 23/02/99-16/03/01 7.0-35.6 37.1-46.3 0-3 3.1-3.8

R8 C8 270-0.78 3.9×10−3 01/02/97-01/11/99 25.6-30.7 36.8-41.0 9-10 3.0-3.4

R24 C19 267-0.77 5.4×10−4 26/02/88-27/09/96 21.8-26.3 33.8-37.8 9-10 3.0-4.1

R7 C7 254-0.73 1.3×10−2 09/12/80-20/06/87 24.8-25.9 38.2-39.5 9-10 3.0-3.7

R77 C47 81-0.23 5.8×10−4 09/01/95-27/09/96 25.1-30.4 34.7-40.0 4-5 3.0-4.0

R82 C47 71-0.20 3.6×10−4 25/08/93-19/04/04 18.4-29.1 34.2-40.1 4-5 4.0-4.1

R151 C47 50-0.14 5.2×10−4 17/06/98-04/12/02 21.2-29.2 37.2-39.5 4-5 3.6-4.0

R202 C47 47-0.13 4.6×10−4 29/03/02-19/04/04 22.4-23.3 37.8-39.0 0-25 3.0-3.6

R83 C50 155-0.44 1.4×10−4 15/07/78-31/07/02 14.0-16.9 36.9-43.1 9-10 3.3-4.2

R84 C50 84-0.24 7.5×10−5 26/10/76-01/02/97 9.50-15.7 40.9-47.0 9-10 4.2-4.7

R68 C39 108-0.31 9.1×10−7 14/06/64-12/01/84 7.00-23.8 40.9-47.0 10-27 3.5-4.7

R100 C39 71-0.20 1.6×10−6 12/01/84-20/01/96 7.00-23.1 41.1-45.8 24-32 3.0-5.1

R144 C39 39-0.11 8.6×10−7 29/06/65-01/11/99 10.7-19.9 35.2-47.1 10-24 4.8-5.1

R229 C39 19-0.05 7.1×10−7 11.8-19.9 36.5-41.1 26-46 4.8-5.1

R40 C28 153-0.44 2.1×10−6 25/09/73-19/04/04 21.5-29.0 34.3-37.7 79-108 3.5-4.6

R114 C28 42-0.12 3×10−6 21.1-23.6 34.0-39.6 60-76 4.2-4.7

R212 C28 36-0.10 3.7×10−6 16/12/69-19/04/04 22.3-23.6 36.1-38.4 33-79 3.5-4.2

R74 C45 158-0.45 3.5×10−7 31.6-45.1 34.8-42.2 10-32 3.5-5.2

R218 C45 52-0.15 1.2×10−7 34.2-45.1 35.9-43.5 4-37 5.2-6.2

R38 C27 197-0.56 2.6×10−1 31/07/02-16/12/03 15.1-15.7 43.0-43.4 9-10 3.0-3.8

R45 C31 188-0.54 3×10−5 17/08/81-09/01/95 19.5-29.5 37.9-41.2 5-9 3.0-4.2

R23 C18 185-0.53 9.8×10−5 26.2-26.8 45.4-45.8 124-169 3.2-4.8

R52 C35 118-0.34 5.3×10−7 21.0-32.9 34.1-41.7 2-41 5.2-5.7

R219 C35 21-0.06 2.7×10−7 22.0-32.7 34.0-36.8 41-88 5.2-5.7

R228 C35 27-0.07 4.3×10−7 10.2-21.0 37.0-46.5 4-9 4.8-5.5

R233 C35 11-0.03 4.2×10−7 20.6-28.8 34.7-38.0 75-94 4.8-5.2

R47 C33 143-0.41 1.1×10−1 23/03/79-26/07/79 18.5-19.5 41.7-42.4 9-10 3.0-4.9

R132 C78 50-0.14 6.9×10−5 11/02/98-19/04/04 7.00-24.3 41.0-44.9 7-9 3.0-3.3

R137 C78 49-0.14 1.1×10−4 30/06/88-20/07/01 10.8-19.1 42.1-47.0 4-5 3.0-3.3

R165 C78 35-0.10 1.7×10−4 20/07/01-19/04/04 9.00-23.5 40.6-45.1 3-7 3.2-3.3

R106 C61 85-0.24 7.4×10−3 15/08/92-09/01/95 26.6-29.2 37.7-39.8 4-5 3.0-3.3

R187 C61 36-0.10 5.5×10−3 22/04/93-09/01/95 29.2-30.6 38.1-41.2 4-5 3.0-3.3

R69 C40 111-0.32 6.8×10−5 20/02/65-23/03/79 9.20-21.4 40.9-45.0 32-33 3.9-4.7

R79 C48 107-0.30 4.1×10−2 20/07/01-22/11/01 24.0-24.5 39.0-39.2 0-42 3.0-3.6

R119 C71 64-0.18 1.3×10−3 25/04/82-29/03/02 7.50-8.90 43.2-45.2 9-10 3.0-3.3

R214 C71 36-0.10 6.6×10−4 23/10/87-20/07/01 7.00-8.60 43.6-45.3 9-10 3.3-3.8

R48 C34 98-0.28 1.6×10−5 14/02/87-07/12/91 22.5-30.0 33.8-37.5 12-32 3.9-4.7

R70 C41 97-0.28 4×10−1 01/01/83-06/05/83 19.6-20.2 37.9-38.4 9-10 3.9-4.7

R179 C98 41-0.11 2.4×10−6 08/07/77-19/04/04 15.9-17.3 37.1-40.3 10-39 3.0-4.7

R207 C98 45-0.13 5.1×10−6 12.1-15.9 37.4-38.5 0-42 4.3-4.7

R152 C85 38-0.10 1.2×10−3 06/08/80-04/12/02 10.0-11.8 43.1-44.0 9-10 3.0-3.3

R186 C85 44-0.12 1.5×10−3 05/06/97-17/06/98 9.80-14.0 43.2-47.0 9-10 3.3-3.9

R88 C51 77-0.22 1.1 01/10/85-09/06/86 19.8-20.1 42.1-42.5 9-10 3.0-3.3

R71 C42 76-0.21 2.1×10−2 06/09/94-26/05/96 20.1-22.5 37.9-38.9 4-5 3.0-3.3

R177 C97 45-0.13 1.6×10−7 19.9-33.9 37.4-41.5 2-33 5.7-6.6

R222 C97 17-0.04 1.1×10−7 12.5-21.4 41.5-47.0 4-33 5.7-6.2

R223 C97 11-0.03 1.9×10−7 20.8-29.2 33.8-37.4 24-32 5.7-6.2

R91 C54 71-0.20 2.5×10−5 26/07/79-19/04/04 8.60-22.3 41.1-46.8 9-10 4.7-5.2

R92 C55 71-0.20 5.9×10−1 14/11/89-20/03/90 27.0-27.3 35.9-36.3 9-10 3.1-4.1

R122 C74 71-0.20 1.7×10−1 30/06/88-03/05/94 21.8-22.3 38.0-38.5 9-10 3.0-3.1

R76 C46 70-0.20 2.7×10−4 09/01/95-19/04/04 30.7-33.5 33.5-42.0 9-10 3.0-3.4

R58 C38 69-0.19 4.1×10−6 14.6-15.7 38.5-40.0 258-326 3.5-4.8

R90 C53 69-0.19 2.9×10−4 08/03/89-19/04/04 7.00-10.8 43.4-47.0 3-7 3.0-3.1

R95 C57 68-0.19 1.5×10−5 17/05/84-19/04/04 7.00-15.9 32.8-36.9 9-10 3.0-5.2

R81 C49 67-0.19 1.8×10−4 17/06/98-20/07/01 18.4-34.0 39.0-41.2 3-9 3.4-3.6

Table 7.10: Clustering Rules for the ANSS Earthquake Dataset (C)
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Rule Cluster Coverage Density Time Longitude Latitude Depth Magnit.
R107 C62 63-0.18 1.2×10−6 07/01/61-15/08/92 19.9-30.9 34.3-37.9 41-71 4.7-5.2

R108 C63 63-0.18 5.8×10−3 31/07/02-19/04/04 20.2-21.3 37.5-38.9 2-4 3.0-3.7

R98 C59 62-0.17 1.6×10−1 23/07/90-07/12/91 29.3-29.7 36.8-37.2 9-10 3.0-3.6

R101 C60 62-0.17 3.4×10−2 26/02/88-06/09/94 20.4-21.6 37.4-37.8 9-10 3.4-3.6

R118 C70 62-0.17 1.8×10−2 30/06/88-20/01/96 19.8-21.1 41.0-42.2 9-10 3.0-3.1

R89 C52 61-0.17 8.5×10−4 22/11/01-19/04/04 10.8-16.4 40.3-44.9 3-7 3.0-3.1

R120 C72 61-0.17 2.3×10−5 26/11/67-27/09/96 31.3-37.1 33.6-39.0 32-33 3.7-4.7

R112 C66 59-0.17 3×10−1 27/09/96-01/02/97 32.0-32.5 34.2-34.7 32-33 3.9-4.7

R194 C104 57-0.16 1.9×10−3 01/06/74-09/09/83 19.4-22.8 37.2-38.8 32-33 4.0-4.2

R135 C80 56-0.16 1.2×10−1 03/11/88-01/02/97 21.8-22.3 38.1-38.5 9-10 3.2-3.3

R56 C36 54-0.15 2.2×10−1 15/05/95-20/01/96 21.4-22.0 39.8-40.3 9-10 4.0-4.2

R94 C56 54-0.15 1.1 06/09/94-09/01/95 28.8-29.0 36.7-37.1 9-10 3.0-3.6

R97 C58 54-0.15 2.2 15/05/95-17/09/95 21.4-21.9 39.8-40.3 4-5 3.0-3.1

R115 C67 54-0.15 3×10−5 07/01/61-07/12/91 19.4-23.7 37.3-39.6 33-38 4.3-4.7

R57 C37 53-0.15 1.3×10−1 06/09/94-20/01/96 21.4-21.9 39.8-40.3 9-10 4.3-4.7

R146 C83 53-0.15 2.5×10−2 16/03/01-22/11/01 25.5-25.8 38.3-38.7 25-40 3.2-3.8

R109 C64 52-0.15 3.4×10−2 18/02/76-26/10/76 12.8-13.4 46.0-46.6 32-33 3.0-5.1

R126 C76 51-0.14 1.4×10−2 17/06/98-19/04/04 20.2-21.2 37.0-39.2 4-5 3.7-3.8

R170 C93 51-0.14 1.5×10−4 25/04/82-22/11/01 7.00-11.5 43.9-45.0 10-14 3.0-3.3

R150 C84 48-0.13 7.6×10−7 21.5-26.6 35.1-38.4 108-137 3.4-4.6

R168 C92 48-0.13 2.2×10−3 22/11/01-12/08/03 19.2-22.2 40.6-43.0 9-10 3.0-3.6

R209 C109 47-0.13 2.7×10−4 16/10/75-19/04/04 19.5-21.0 39.8-42.6 9-10 4.2-4.7

R130 C77 46-0.13 5.7×10−5 06/05/83-19/04/04 26.4-27.1 36.2-36.7 137-164 3.4-4.8

R140 C81 45-0.13 1.2×10−4 08/03/89-09/01/95 22.2-30.8 34.7-38.4 4-5 3.3-4.0

R162 C89 45-0.13 1.9×10−6 14/04/81-19/04/04 28.4-34.5 34.1-35.7 33-74 3.7-4.6

R164 C90 45-0.13 1.6×10−5 06/11/77-19/04/04 31.2-45.1 36.9-42.0 9-10 4.7-5.2

R204 C107 36-0.10 1.4×10−6 28/12/70-19/04/04 15.3-16.0 38.2-39.3 82-258 3.0-5.0

R227 C107 9-0.02 7.9×10−7 14.6-15.8 38.2-40.2 233-295 5.0-5.7

R73 C44 44-0.12 4.4×10−5 30/06/88-19/04/04 41.9-45.1 34.7-44.4 32-33 3.5-4.2

R121 C73 44-0.12 2.8 15/05/95-17/09/95 21.9-22.3 38.1-38.5 9-10 3.0-3.1

R196 C105 44-0.12 1.1×10−1 05/06/97-21/10/98 20.5-21.3 37.0-37.6 32-33 4.0-4.2

R198 C106 44-0.12 2.5×10−3 26/01/74-25/04/82 21.1-25.6 37.9-39.5 32-33 3.0-3.1

R123 C75 42-0.12 4.2 08/03/89-14/11/89 23.3-23.8 39.2-39.3 9-10 3.0-3.1

R167 C91 42-0.12 3.3×10−1 05/03/00-09/07/00 11.7-12.1 44.1-44.5 9-10 3.3-4.1

R183 C101 42-0.12 6×10−5 17/06/98-19/04/04 7.00-24.1 40.6-46.6 0-3 3.0-3.1

R117 C69 40-0.11 1 06/05/83-09/09/83 24.6-25.1 39.9-40.3 9-10 3.4-3.6

R145 C82 40-0.11 4×10−7 06/07/62-26/11/90 11.0-21.0 40.0-47.0 11-33 5.1-5.7

R158 C87 40-0.11 3.8×10−5 01/01/83-19/04/04 26.4-26.9 45.4-45.9 79-122 3.2-4.8

R116 C68 39-0.11 3.2×10−1 26/05/96-27/09/96 27.0-27.5 35.9-36.3 32-33 3.6-4.2

R160 C88 39-0.11 1.1×10−3 22/04/93-09/01/95 22.5-26.6 37.7-43.6 4-5 3.0-3.3

R175 C96 39-0.11 3.8×10−6 19.3-24.9 38.9-39.8 33-60 3.7-4.3

R171 C94 38-0.10 1.6 31/07/02-04/12/02 13.5-13.9 38.3-38.5 4-5 3.0-3.3

R172 C95 38-0.10 1.2×10−3 29/03/02-19/04/04 21.3-22.4 36.4-39.0 1-4 3.0-3.6

R185 C102 38-0.10 9.7×10−4 12/07/89-25/08/93 19.9-21.2 37.0-41.2 4-5 3.3-3.9

R153 C86 37-0.10 9.2×10−7 23/02/64-06/08/80 9.70-22.0 40.9-47.0 33-49 4.0-4.7

R181 C99 37-0.10 2.2×10−1 09/12/80-14/04/81 22.8-23.5 37.9-38.3 32-33 3.6-4.2

R28 C21 36-0.10 1.9×10−4 20/06/87-19/04/04 19.9-21.7 43.6-46.0 9-10 3.3-4.2

R182 C100 36-0.10 1.1×10−6 18.5-27.3 39.8-40.5 37-64 3.0-4.7

R190 C103 36-0.10 1×10−7 14/04/81-19/04/04 7.9-32.4 41.4-46.6 33-53 3.0-5.1

R208 C108 36-0.10 1×10−2 17/06/98-22/11/01 19.6-23.6 39.8-40.7 4-5 3.0-3.1

R110 C65 35-0.10 3.3×10−2 01/01/83-09/10/97 7.00-7.50 44.2-44.7 9-10 3.0-3.1

R211 C110 35-0.10 7.6×10−4 27/09/96-19/04/04 20.0-21.4 36.8-39.3 9-10 4.1-4.7

R216 C111 35-0.10 3.1×10−3 17/09/95-29/03/02 21.3-22.4 35.9-38.6 32-33 4.0-4.2

R224 C114 35-0.10 2×10−5 15/02/63-14/04/81 8.00-21.4 42.4-45.2 31-34 4.8-5.1

R220 C112 24-0.06 1.2×10−5 26.1-26.8 45.4-45.9 105-172 4.8-5.5

R232 C118 15-0.04 1.9×10−7 07/01/61-25/08/93 30.9-45.1 33.3-37.9 39-70 4.8-5.2

R234 C119 13-0.03 8.3×10−5 18/02/76-26/07/79 9.30-22.5 41.1-47.0 9-10 4.9-5.1

R235 C120 13-0.03 5.4×10−2 29/08/82-12/01/84 19.9-20.2 37.9-38.4 9-10 4.8-5.2

R225 C115 12-0.03 2×10−9 21.5-45.0 36.8-47.0 48-146 5.5-7.1

R221 C113 11-0.03 1.9×10−5 26.5-27.2 36.3-36.9 144-171 4.8-5.2

R230 C116 10-0.02 2.4×10−7 20.8-28.0 32.0-33.8 5-33 4.8-5.2

R231 C117 9-0.02 4.1×10−7 08/02/75-19/04/04 12.6-16.1 38.5-40.1 258-487 4.8-5.0

Table 7.11: Clustering Rules for the ANSS Earthquake Dataset (D)
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7.7.5 ANSS Earthquake Cluster Statistics

Table 7.12 provides statistics for the discovered clusters including: Number of

Rules, Number of Points, Coverage and mean Density of the rules belonging

to the cluster. Clusters are sorted on decreasing order of point coverage.

Cluster #Rules #Points Coverage(%) Density Cluster #Rules #Points Coverage(%) Density

C2 14 2896 8.372 7.8×10−3 C17 12 1731 5.004 6.6×10−4

C12 9 1670 4.828 1.2×10−4 C13 10 1231 3.559 7.7×10−6

C4 7 1045 3.021 2×10−3 C11 5 979 2.83 6.4×10−4

C22 7 921 2.662 8.9×10−4 C10 4 853 2.466 1×10−5

C30 7 796 2.301 3×10−6 C6 1 787 2.275 1.8×10−2

C25 5 560 1.619 1.5×10−3 C14 3 538 1.555 6.5×10−5

C15 4 536 1.549 1.9×10−4 C23 3 520 1.503 2.5×10−4

C3 4 499 1.442 3.8×10−3 C9 3 490 1.416 3.2×10−5

C26 4 416 1.203 1.9×10−5 C5 2 367 1.061 6.1×10−3

C1 1 361 1.044 1.3×10−3 C16 2 361 1.044 1.4×10−3

C79 2 349 1.009 1.9×10−1 C0 1 348 1.006 3.9×10−2

C20 2 333 0.963 2.4×10−4 C24 2 302 0.873 1.8×10−5

C29 3 294 0.85 3.3×10−3 C32 3 284 0.821 8.3×10−6

C8 1 270 0.781 3.9×10−3 C19 1 267 0.772 5.4×10−4

C7 1 254 0.734 1.3×10−2 C47 4 249 0.72 4.7×10−4

C50 2 239 0.691 1.1×10−4 C39 4 237 0.685 1×10−6

C28 3 231 0.668 2.4×10−6 C45 2 210 0.607 2.4×10−7

C27 1 197 0.569 2.6×10−1 C31 1 188 0.543 3×10−5

C18 1 185 0.535 9.8×10−5 C35 4 177 0.512 4.6×10−7

C33 1 143 0.413 1.1×10−1 C78 3 134 0.387 9.6×10−5

C61 2 121 0.35 6.7×10−3 C40 1 111 0.321 6.8×10−5

C48 1 107 0.309 4.1×10−2 C71 2 100 0.289 9.7×10−4

C34 1 98 0.283 1.6×10−5 C41 1 97 0.28 4×10−1

C98 2 86 0.249 3.3×10−6 C85 2 82 0.237 1.4×10−3

C43 1 81 0.234 8.2×10−5 C51 1 77 0.223 1.

C42 1 76 0.22 2.1×10−2 C97 3 73 0.211 1.5×10−7

C54 1 71 0.205 2.5×10−5 C55 1 71 0.205 5.9×10−1

C74 1 71 0.205 1.7×10−1 C46 1 70 0.202 2.7×10−4

C38 1 69 0.199 4.1×10−6 C53 1 69 0.199 2.9×10−4

C57 1 68 0.197 1.5×10−5 C49 1 67 0.194 1.8×10−4

C62 1 63 0.182 1.2×10−6 C63 1 63 0.182 5.8×10−3

C59 1 62 0.179 1.6×10−1 C60 1 62 0.179 3.4×10−2

C70 1 62 0.179 1.8×10−2 C52 1 61 0.176 8.5×10−4

C72 1 61 0.176 2.3×10−5 C66 1 59 0.171 3×10−1

C104 1 57 0.165 1.9×10−3 C80 1 56 0.162 1.2×10−1

C36 1 54 0.156 2.2×10−1 C56 1 54 0.156 1.1

C58 1 54 0.156 2.2 C67 1 54 0.156 3×10−5

C37 1 53 0.153 1.3×10−1 C83 1 53 0.153 2.5×10−2

C64 1 52 0.15 3.4×10−2 C76 1 51 0.147 1.4×10−2

C93 1 51 0.147 1.5×10−4 C84 1 48 0.139 7.6×10−7

C92 1 48 0.139 2.2×10−3 C109 1 47 0.136 2.7×10−4

C77 1 46 0.133 5.7×10−5 C81 1 45 0.13 1.2×10−4

C89 1 45 0.13 1.9×10−6 C90 1 45 0.13 1.6×10−5

C107 2 45 0.13 1.2×10−6 C44 1 44 0.127 4.4×10−5

C73 1 44 0.127 2.8 C105 1 44 0.127 1.1×10−1

C106 1 44 0.127 2.5×10−3 C75 1 42 0.121 4.2

C91 1 42 0.121 3.3×10−1 C101 1 42 0.121 6×10−5

C69 1 40 0.116 1 C82 1 40 0.116 4×10−7

C87 1 40 0.116 3.8×10−5 C68 1 39 0.113 3.2×10−1

C88 1 39 0.113 1.1×10−3 C96 1 39 0.113 3.8×10−6

C94 1 38 0.11 1.6 C95 1 38 0.11 1.2×10−3

C102 1 38 0.11 9.7×10−4 C86 1 37 0.107 9.2×10−7

C99 1 37 0.107 2.2×10−1 C21 1 36 0.104 1.9×10−4

C100 1 36 0.104 1.1×10−6 C103 1 36 0.104 1×10−7

C108 1 36 0.104 1×10−2 C65 1 35 0.101 3.3×10−2

C110 1 35 0.101 7.6×10−4 C111 1 35 0.101 3.1×10−3

C114 1 35 0.101 2×10−5 C112 1 24 0.069 1.2×10−5

C118 1 15 0.043 1.9×10−7 C119 1 13 0.038 8.3×10−5

C120 1 13 0.038 5.4×10−2 C115 1 12 0.035 2×10−9

C113 1 11 0.032 1.9×10−5 C116 1 10 0.029 2.4×10−7

Table 7.12: ANSS Earthquake Cluster Statistics
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7.8 Arbitrary Density Rules

NOCEA has the remarkable property of being able to discover rules at any density

level, provided of course that each feasible rule contains a minimum number of

points, i.e. the sparsity level NTs (section 5.3). This ability of NOCEA becomes

evident in table 7.13 where the discovered rules are sorted in the descending order

of their point density.

Typically, AS-rules accompanying strong earthquakes are by definition the

most dense, since they are very narrowly bounded in both space and time. Some

representative examples of relatively dense rules are R97 and R56 with density

2.16 and 0.225, respectively. The density of rules is measured in units of num-

ber of points per grid cell. R97 (3.0≤Mag.≤3.1) and R56 (4.0≤Mag.≤4.2) each

cover 54 shallow aftershocks that occurred at focal depths 5km and 10km respec-

tively, following the 13/05/1995 destructive earthquake in Kozani-Greece with

magnitude 6.6 [86]. R218, on the other hand, is one of the sparser rules with

density 1.51x10−7, that is nearly six orders of magnitude smaller than R97. R218,

an R-rule type, covers a major part of the regular large-magnitude seismicity

(5.2≤Mag.≤6.2) in the EAF-Karviola junction, generated within a specific depth

interval (4-37km) from the beginning of the catalogue. The 3-D projections of

R97, R56 and R218 shown in figures 7.68-7.70, provide a clear sense of how large

is the compactness between AS- and R-rules with large spatial window. For il-

lustrative purposes, both the borders and the data points covered by a given rule

are visualised with the same colour, which is different from other rules. Examples

of varying density rules on artificial datasets can also be found in section 6.6.

7.9 Arbitrary Geometry and Size Rules

The ability to self-adjust well to the geometry and size of non-spherical clusters, is

one of NOCEA’s most appealing properties for real-world clustering. As a matter

of fact, the number and combination of dimensions where clustering rules may

exhibit large variances in size and geometry is arbitrary, and more importantly

is directly inherited from the underlying data distribution.
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ID Rule Density
0 R123 4.2

1 R121 2.75

2 R97 2.16

3 R171 1.58

4 R94 1.12

5 R88 1.07

6 R117 1

7 R92 5.92×10−1

8 R70 4.04×10−1

9 R167 3.28×10−1

10 R116 3.25×10−1

11 R112 2.95×10−1

12 R38 2.57×10−1

13 R56 2.25×10−1

14 R134 2.23×10−1

15 R181 2.2×10−1

16 R122 1.67×10−1

17 R98 1.61×10−1

18 R57 1.32×10−1

19 R135 1.17×10−1

20 R196 1.15×10−1

21 R136 1.15×10−1

22 R47 1.08×10−1

23 R235 5.42×10−2

24 R79 4.15×10−2

25 R0 3.95×10−2

26 R109 3.44×10−2

27 R101 3.4×10−2

28 R110 3.26×10−2

29 R146 2.45×10−2

30 R71 2.11×10−2

31 R6 1.84×10−2

32 R118 1.81×10−2

33 R199 1.39×10−2

34 R126 1.36×10−2

35 R7 1.34×10−2

36 R11 1.14×10−2

37 R161 1.05×10−2

38 R13 1.01×10−2

39 R208 1×10−2

40 R50 9.59×10−3

41 R154 9×10−3

42 R124 8.85×10−3

43 R106 7.41×10−3

44 R2 7.36×10−3

45 R85 7.28×10−3

46 R30 7.2×10−3

47 R67 6.83×10−3

48 R215 6.72×10−3

49 R191 6.59×10−3

50 R188 6.34×10−3

51 R5 6.33×10−3

52 R18 6.32×10−3

53 R108 5.84×10−3

54 R187 5.53×10−3

55 R105 5.21×10−3

56 R65 4.71×10−3

57 R8 3.94×10−3

58 R141 3.67×10−3

59 R86 3.62×10−3

ID Rule Density
60 R3 3.59×10−3

61 R42 3.42×10−3

62 R35 3.16×10−3

63 R216 3.1×10−3

64 R180 2.89×10−3

65 R63 2.88×10−3

66 R198 2.55×10−3

67 R111 2.52×10−3

68 R149 2.45×10−3

69 R173 2.39×10−3

70 R168 2.22×10−3

71 R131 2.21×10−3

72 R194 1.94×10−3

73 R138 1.84×10−3

74 R4 1.71×10−3

75 R176 1.58×10−3

76 R36 1.55×10−3

77 R186 1.53×10−3

78 R19 1.53×10−3

79 R51 1.46×10−3

80 R156 1.44×10−3

81 R119 1.31×10−3

82 R1 1.29×10−3

83 R172 1.23×10−3

84 R104 1.23×10−3

85 R29 1.22×10−3

86 R152 1.2×10−3

87 R103 1.16×10−3

88 R189 1.11×10−3

89 R160 1.07×10−3

90 R49 1.06×10−3

91 R236 1×10−3

92 R185 9.67×10−4

93 R55 9.59×10−4

94 R22 9.42×10−4

95 R159 8.48×10−4

96 R89 8.46×10−4

97 R12 7.91×10−4

98 R147 7.62×10−4

99 R211 7.58×10−4

100 R157 7.57×10−4

101 R195 6.87×10−4

102 R26 6.69×10−4

103 R214 6.62×10−4

104 R44 6.51×10−4

105 R80 6.45×10−4

106 R20 6.37×10−4

107 R127 6.1×10−4

108 R31 6.05×10−4

109 R77 5.77×10−4

110 R24 5.39×10−4

111 R151 5.23×10−4

112 R178 5.18×10−4

113 R125 4.8×10−4

114 R174 4.66×10−4

115 R202 4.65×10−4

116 R39 4.41×10−4

117 R61 4.35×10−4

118 R133 4.18×10−4

119 R82 3.63×10−4

ID Rule Density
120 R163 3.52×10−4

121 R87 2.91×10−4

122 R90 2.87×10−4

123 R27 2.75×10−4

124 R76 2.72×10−4

125 R209 2.7×10−4

126 R32 2.57×10−4

127 R128 1.96×10−4

128 R201 1.91×10−4

129 R28 1.89×10−4

130 R53 1.86×10−4

131 R66 1.85×10−4

132 R217 1.84×10−4

133 R210 1.83×10−4

134 R81 1.81×10−4

135 R17 1.77×10−4

136 R192 1.68×10−4

137 R165 1.68×10−4

138 R75 1.65×10−4

139 R170 1.51×10−4

140 R14 1.5×10−4

141 R83 1.37×10−4

142 R60 1.2×10−4

143 R140 1.19×10−4

144 R21 1.12×10−4

145 R137 1.06×10−4

146 R155 9.95×10−5

147 R23 9.82×10−5

148 R206 9.56×10−5

149 R234 8.35×10−5

150 R72 8.23×10−5

151 R62 7.57×10−5

152 R84 7.53×10−5

153 R64 7.45×10−5

154 R132 6.86×10−5

155 R69 6.77×10−5

156 R16 6.16×10−5

157 R183 6.02×10−5

158 R130 5.7×10−5

159 R73 4.4×10−5

160 R158 3.75×10−5

161 R9 3.74×10−5

162 R45 3.04×10−5

163 R115 3.03×10−5

164 R91 2.53×10−5

165 R37 2.36×10−5

166 R120 2.32×10−5

167 R197 2.19×10−5

168 R193 2.11×10−5

169 R213 2.06×10−5

170 R113 2.04×10−5

171 R224 1.96×10−5

172 R221 1.92×10−5

173 R148 1.85×10−5

174 R33 1.8×10−5

175 R164 1.65×10−5

176 R48 1.58×10−5

177 R95 1.46×10−5

178 R25 1.44×10−5

179 R78 1.27×10−5

ID Rule Density
180 R143 1.19×10−5

181 R220 1.16×10−5

182 R200 1.09×10−5

183 R46 1.08×10−5

184 R15 1.05×10−5

185 R96 1.02×10−5

186 R10 9.33×10−6

187 R34 8.55×10−6

188 R102 7.92×10−6

189 R203 7.88×10−6

190 R54 7.85×10−6

191 R184 7.36×10−6

192 R166 6.97×10−6

193 R129 5.85×10−6

194 R169 5.51×10−6

195 R226 5.26×10−6

196 R207 5.09×10−6

197 R41 4.9×10−6

198 R205 4.52×10−6

199 R139 4.45×10−6

200 R142 4.27×10−6

201 R93 4.18×10−6

202 R58 4.15×10−6

203 R175 3.79×10−6

204 R212 3.74×10−6

205 R99 3.24×10−6

206 R59 3.06×10−6

207 R114 2.98×10−6

208 R43 2.44×10−6

209 R179 2.38×10−6

210 R40 2.11×10−6

211 R162 1.86×10−6

212 R100 1.6×10−6

213 R204 1.37×10−6

214 R107 1.15×10−6

215 R182 1.06×10−6

216 R153 9.17×10−7

217 R68 9.06×10−7

218 R144 8.55×10−7

219 R227 7.93×10−7

220 R150 7.59×10−7

221 R229 7.14×10−7

222 R223 5.77×10−7

223 R230 5.5×10−7

224 R52 5.31×10−7

225 R145 4.78×10−7

226 R228 4.32×10−7

227 R233 4.25×10−7

228 R231 4.13×10−7

229 R74 3.49×10−7

230 R219 2.71×10−7

231 R177 2.16×10−7

232 R232 1.95×10−7

233 R222 1.9×10−7

234 R218 1.51×10−7

235 R190 1×10−7

236 R225 2.4×10−9

Table 7.13: Varying Density Rules Discovered by NOCEA in the ANSS Dataset
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To elaborate on this issue consider some highly-dense AS-rules such as R97,

R56, and R79, as well as some moderate-to-low density rules, e.g, R218, R95, and

R230. A brief discussion regarding R97, R56, and R218 can be found in section

7.8. R79 captures an uncommon pattern of aftershock activity that is not confined

around the hypocenter of the mainshock. In short, R79 covers 107 events of the

intense aftershock activity associated with the 26/06/2001 strong earthquake in

Skyros Island, N. Aegean Sea, Greece, with magnitude 6.5 [85]. Unlike typical

AS-rules, e.g. R97 and R56, R79 is remarkably elongated along the depth axis

with a span of over 42km (0-42km), as shown in figure 7.68.

As mentioned earlier, significant differences in size and geometry are not lim-

ited only to a single dimension. For instance, consider R218, R95, and R230. R230

delineates a time consistent (R-rule) seismogenic source of moderate magni-

tude (4.8≤Mag.≤5.2) extending to shallow depths (5km≤Depth≤33km) through

coastal northeastern Libya and the Mediterranean Sea south of Crete and can be

viewed as an extension of the Hellenic Arc to the south. R95 covers mainland

Tunisia as well as the sea between Tunisia and Sicily. This region is seismically

active since directly beneath it lies the Africa-Eurasia plate boundary [77]. The

geometry of R95 is characterised by a) thin concentration (9km≤Depth≤ 10km)

along the depth axis, b) widespread magnitude interval (3.0≤Mag.≤5.2), and c)

shorter time span of approximately twenty years, compared to R230 and R218.

R230 is geometrically a) very confined along two dimensions, i.e. latitude and

magnitude, b) widespread in time and depth, and c) average range spreading

along longitude. Finally, R218, is a “bulky” rule, i.e. it has a relatively large

volume, though its magnitude interval is not extremely widespread.

Figures 7.68-7.70 show 3-D projections of these rules in spatial [Longitude×

Latitude×Depth], spatial-temporal [Longitude×Latitude×Time] and spatial-magnitude

[Longitude×Latitude×Magnitude] subspaces, illustrating NOCEA’s ability to dis-

cover rules with wide diversity in size and geometry.
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Figure 7.68: Arbitrary Density, Size and Geometry Rules in [Long.×Lat.×Depth]
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7.10 Arbitrary Data Coverage Rules

Figure 7.71 plots a classical frequency histogram (section 3.2) for the data cov-

erage of rules, where the dissection, i.e. allocation, of observations (the data

coverage values of the discovered rules) into bins is based on a uniform step of

0.02%.
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Figure 7.71: Frequency Histogram for the Data Coverage of Rules
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The frequency histogram illustrates a number of interesting issues:

• The highly concentrated structure observed around the mode value (approx-

imately at 0.2%) is certainly not due to any preference bias, but it rather

reflects NOCEA’s intrinsic ability to directly inherit the size-geometry of

rules, and consequently their point coverage, from the underlying data dis-

tribution. In the ANSS earthquake case study it is the complex nature of

earthquake dynamics along with the discontinuity of the faulting zones that

result in the formation of a multitude of earthquake patches with tiny point

size.

• Clearly, the histogram exhibits a highly positive skew, verifying our intu-

ition that NOCEA can discover rules with arbitrarily wide variances in data

coverage.

• Finally, as is often the case, especially in real-world high-dimensional clus-

tering problems, some clusters may comprise a very small fraction, e.g.

0.2%, of the total points. The analysis of the histogram suggests that

NOCEA has the ability to reveal such tiny structures, regardless of their

geometry and density.

7.11 Subspace Clustering

The main goal of subspace clustering is to identify and retain only relevant fea-

tures (dimensions) of the clustering while pruning away those where the points

are very widespread. NOCEA performed effective subspace clustering for the

ANSS earthquake dataset. More specifically, in tables 7.8-7.11, empty fields in

the antecedent part of the rules correspond to irrelevant feature-genes (see section

5.4.1) that are detected by NOCEA’s post-processing simplification algorithm of

section 5.11. It can be easily discerned that the vast majority of rules are embed-

ded in the full 5-D dimensional space, with few exceptions involving solely the

temporal dimension. This finding is not surprising for two reasons:
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• Due to the discontinuous nature of the faulting zones in our study [77],

strain - the main source of earthquakes - accumulates at different rates at

different spatial neighbourhoods. Thereby, there are no rules with ade-

quately large spatial window, which, in turn, does not permit dropping any

spatial condition in the antecedent part of the rules.

• Due to the logarithmic nature of the G-R power law, clustering rules are

always bounded in relatively small intervals along the magnitude axis.

7.11.1 Interpretation of Subspace Clustering

This section discusses the interpretation of the presence of irrelevant features in

the ANSS dataset.

Figure 7.72 depicts the projection of six rules, namely, R218, R97, R220, R221,

R95, and R169, in the 3-D [Longitude×Latitude×Time] subspace. These rules are

mainly characterised by their varying time window (interval), and are being delib-

erately chosen to explain the meaning of subspace clustering from an earthquake

analysis perspective.

Clearly, an R-rule such as R218, R220 (Vrancea-Romania) or R221 (Kos

Island, Greece), delineates a consistent trait of seismic activity with specific

spatio-magnitude behaviour over time. Obviously, the more confined the spatio-

magnitude window of an R-rule, the more precise the prediction about future

earthquakes due to the given rule is. From an earthquake prediction point of

view, the average value of the time frequency histogram of a rule comprising an

irrelevant time-gene can be used to determine the recurrence period of earth-

quakes with specific magnitude occurring within the spatial region that is fully

specified by the antecedent part of that rule. For instance, given that R218 covers

52 events from 1961 to 2004, and its land surface is approximately 1022084km2,

the repetition time of relatively shallow depth (4-37km) earthquakes in this re-

gion having magnitude in the range [5.2-6.2] is at least
(

2004−1961
52

) (
1022084
100×100

)
≈84.5

years per 100×100km2 of land surface. In contrast, AS-rules, e.g. R97 are of

limited usefulness for long-term earthquake prediction purposes because of their
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localised nature and short lifetime.

Between the two extremes, AS- and R-rules, lie intermediate-duration U-rules.

Depending on the period(s) of quiescence of U-rules one can extract different

types of seismic patterns. For instance, consider R95 and R169, two U-rules

with similar time span, but very different period of activity. R95 is a currently

active (17/05/84≤Time≤19/04/04) seismogenic zone in mainland Tunisia as well

as the sea between Tunisia and Sicily. Regardless of the reasons for R95’s qui-

escence from 1961 to 1984, e.g. catalogue incompleteness, it has the potential

to become an R-rule with a dropped time-gene in the near future, provided

of course that the seismic activity in that region continues with the same rate.

In contrast, R169’s activity located in Karviola-Turkey ended in the early eight-

ies (15/02/63≤Time≤06/08/80), and therefore the seismic hazard due to R169

should be viewed only as a part of the generalised seismic excitation that was

observed in that region during the sixties and seventies, e.g. Varto (1966), Bingol

(1971), Lice (1975), Caldiran-Muradiye (1977) [1].
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Figure 7.72: Example Rules With and Without Irrelevant Time-Dimension Pro-
jected in [Long.×Lat.×Time]
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7.11.2 Generalisation and Histogram Smoothing as Pre-

requisites for Subspace Clustering

This section elaborates the vital role of generalisation (section 5.9) and histogram

smoothing via KDE (section 3.3) in subspace clustering.

Following the discussion in the previous section, 7.11.1, it is not difficult to

understand the merit of introducing smoothness to the frequency histograms.

More specifically, without smoothing, the jagged histograms that correspond to

non-relevant dimensions of very low density rules, e.g. time-dimension in R218,

R220, or R221, will be split into multiple smaller segments by the homogeneity

operator, as described in section 5.7. Excessive fragmentation of low density rules

along irrelevant dimensions has two serious drawbacks:

• Formation of spurious (sparse) rules that are subsequently discarded.

• Severe distortion of the elongated shape, which is a prerequisite for declaring

a dimension as irrelevant during subspace clustering (section 5.11).

Finally, generalisation also contributes to subspace clustering by building up

as generic rules as possible, thus enabling the formation of widespread genes when

possible. For instance, without generalisation, NOCEA would fail to detect the

regular seismic pattern demarcated by R218, if the stochastic evolutionary search

creates multiple rules inside that region.
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7.12 Arbitrary-Shaped Clusters

The complex nature of the intra-continental collision process along with the ge-

ological heterogeneity of the earth’s crustal outer layer results in the formation

of complex spatio-temporal-magnitude cluster structures in the ANSS dataset

[64]. It is essential to reveal these structures to gain a deeper insight into these

intrinsically complex phenomena. In NOCEA, the body of an arbitrary-shaped

cluster is approximated using a set of axis-parallel and disjoint rules forming a

relatively homogeneous spatio-temporal-magnitude pathway (see section 5.12).

The density of points along the neighbourhoods that collectively define such a

pathway exhibits only a marginal variation.

It is evident from the cluster-descriptor tables 7.8-7.11 that the ANSS earth-

quake dataset, as expected, comprises many arbitrary-shaped clusters of varying

numbers of rules, point coverage, density, and geometry. Figures 7.73, 7.74,

and 7.75 depict seven arbitrary-shaped clusters, namely, C2, C10, C11, C12, C14,

C16, and C17, in the 3-D projections [Longitude× Latitude×Depth], [Longitude×

Latitude×Time], and [Longitude× Latitude×Magnitude], respectively. Points be-

longing to the same cluster are plotted with the same colour. One can easily

observe the wide diversity in the size and geometry of the non-convex clusters.

Notice that NOCEA found many other clusters with far more complex shapes

but they are harder to visualise. Another interesting observation is that non-

convex clusters may diffuse (spread) inside the feature space F in arbitrary di-

rections. Finally, there are different degrees of overlapping among clusters in

different subsets of dimensions at different data localities (neighbourhoods). Al-

though there are subspaces, e.g. [Longitude×Latitude×Time], and [Longitude×

Latitude×Magnitude], where clusters are becoming blurred, NOCEA can eas-

ily distinguish these clusters as it always operates in the full-dimensional space,

which, in turn, guards against artifacts formed in lower dimensional projections

as in [7, 74].
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Figure 7.73: Arbitrary-Shaped Clusters Projected in [Long.×Lat.×Depth]
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Figure 7.74: Arbitrary-Shaped Clusters Projected in [Long.×Lat.×Time]
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Figure 7.75: Arbitrary-Shaped Clusters Projected in [Long.×Lat.×Mag.]

7.12.1 Interpreting an Arbitrary-shaped Cluster

The backbone of a non-convex cluster may be arbitrarily complex as discussed

in section 7.12. Likewise, the subset of dimensions and the data localities where

the geometry of a non-convex cluster fluctuates considerably, are also arbitrary.

It is worth noting that rules belonging to the same cluster may also overlap

and/or have very different densities in some subspaces of the feature space F .

In our earthquake clustering context, the data pathway defined by the rules of

an arbitrary-shaped cluster reflects the spatio-temporal-magnitude evolution of

seismic activity associated with the given cluster. For instance, consider the

cluster C4 whose body is made up of seven rules, i.e. R4, R35, R63, R131, R149,

R173, and R176 (see table 7.9).

The epicentres of the earthquakes in C4 are widely distributed along an arc

extending from the Ionian Sea, in the west, to the Taurides mountains -Turkey,

in the east, through the central Aegean, as shown in figure 7.76. Notably, C4’s

geometry exhibits no fluctuations along the third spatial dimension, i.e. depth,

since all the above rules are characterised by the same focal depth (9-10km).
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Figure 7.76: The backbone of an Arbitrary-Shaped Cluster (C4) Projected in
[Long.×Lat.]

Figure 7.78 clearly shows that the seismic activity due to C4 does not belong

to a distinct class of events, but instead the range of magnitudes of the rules

constituting C4 differs considerably. Finally, significant temporal fluctuations are

only evident (see figure 7.77) in the south-eastern part of the cluster near Rhodes

and the Taurides mountains on the south-western coast of Turkey.

Isolating complex patterns of seismic activity, and presenting them as compre-

hensible summaries in the form of DNF (Disjunctive Normal Form) expressions,

helps seismologists to better understand the phenomenon. Finally, the extrac-

tion and interpretation of potential causal relationship(s) between the seismicity

associated with the rules of C4 go beyond the scope of the thesis.
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[Long.×Lat.×Time]

 20
 22

 24
 26

 28
 30 34

 35
 36

 37
 38

 39
 40

 41
 42

 3

 3.5

 4

 4.5

 5

 5.5

R4-C4

R35

R63

R131

R149

R173

R176

Longitude (E)

Latitude (N)

Magnitude (Richter)
Rule Color 

R176 
R149 
R131 
R63 
R173 

R4 
R35 

Figure 7.78: The backbone of an Arbitrary-Shaped Cluster (C4) Projected in
[Long.×Lat.×Mag.]



CHAPTER 7. EARTHQUAKE ANALYSIS CASE STUDY 238

7.13 Seismic Hazard Estimation

This section describes how the seismicity knowledge discovered by NOCEA can

be exploited to compile improved seismic hazard maps.

7.13.1 Seismic Hazard Objectives

Hazard assessment is to evaluate, for a certain place, how frequent and how

strong earthquakes will be felt, in order to take measures minimising as much

as possible the severity of aftershock damage [1, 3]. In general, a seismic-hazard

analysis attempts to address four important questions:

• Delineation of the seismic sources (where?)

• Rate of earthquake recurrence (how often?)

• Magnitudes-frequency distribution (how strong?)

• Derivation of an attenuation relationship (e.g. what ground motion should

be expected at a given distance from an earthquake’s origin?)

Usually, the main objective of a seismic-hazard analysis is to evaluate the proba-

bility of exceeding a particular level of ground motion at a site during a specific

time interval, e.g. 50 years. In contrast, the goal of hazard-assessment in this the-

sis is to evaluate, for a particular site of interest, the repetition time of a shaking

with magnitude exceeding a specified level.

7.13.2 Characterisation of Seismic Sources

The first stage of seismic hazard assessment, the characterisation of seismic

sources, involves obtaining robust answers to three important questions: where,

how often and how strong earthquakes are likely to be [1, 3]. The clustering

rules constituting NOCEA’s discovered knowledge quantify with great accuracy

all these aspects of a potential seismic source. In particular, the spatial-shape of

rule(s) directly determines the geometry of the seismic source. The boundaries

of the time-gene delineate the period of activity, while the average value of the
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corresponding frequency histogram determines the recurrence time. Finally, the

magnitude-gene specifies the upper and lower magnitude of the source, as well as

the average expected magnitude.

7.13.3 Characterisation of Attenuation Relationship

Estimates of expected ground motion or magnitude at a given distance from an

earthquake of specific magnitude are the second element of earthquake hazard

assessment [1, 3]. These estimates are usually complex equations, called atten-

uation relationships, which express ground motion or magnitude as a function

of magnitude and distance from the earthquake’s origin. In general, the rate

at which the strength of shaking decreases with distance from an earthquake’s

hypocenter and magnitude varies regionally.

Obtaining robust attenuation laws requires a deep understanding of regional

geo-tectonics, which is beyond the scope of the thesis. Consequently, the following

over-simplified attenuation model is adopted to ease our analysis:

• By definition (recall from section 5.4 that feasible rules have quasi-homogeneous

data distribution) earthquakes associated with a given rule have an equal

probability of occurring at any Longitude×Latitude cell of the rectangular

area demarcated by that rule.

• Any event is independent of the occurrence of all other events.

• To obtain a time resistant hazard estimate short lifetime rules, i.e. period

of activity ≤15 years, are neglected.

• Seismic waves are propagated such that any focal depth earthquake with

magnitude ME occurring at the epicentral location E(xE,yE) (x: longitude

and y: latitude) generates a shaking in a surface site A(xA,yA) of magni-

tude MA that is given by a static distance-decreasing attenuation law:

MA = ME ∗ e−a∗d(E,A) (7.36)

where d(E, A) is the surface Euclidean distance between the sites E and A,

while a is a constant, i.e. a=0.002.
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7.13.4 Computation of Repetition Time

The last element of hazard assessment is the actual computation for a particular

site of interest, of the repetition time for a shaking exceeding a specified level of

magnitude [1, 3]. This task involves summing up the incremental contributions

of vibrations from all seismic sources.

In practice the hazard mass, i.e. number of earthquakes, of each rule is initially

distributed over equi-width hazard categories, that is [3.0-3.5), [3.5-4.0),...

depending on the intersection of each interval with the magnitude gene of the

rule. The hazard mass within each category is then rounded to the center of the

corresponding interval, and finally is equally assigned to the Longitude×Latitude

cells covered by the rule.

Next, for each cell of the surface grid we compute, using the attenuation

law, the number of events in its neighbourhood that could generate at least Mmin

magnitude shaking at that cell. Finally, the repetition time at a given cell is

derived by dividing the mean lifetime of all rules affecting that cell by the total

number of events causing at least Mmin magnitude shaking at that cell. Recall

that in order to obtain a hazard estimation that is relatively resistant to large

variations over time, rules with short lifetime, i.e. period of activity<15 years,

such as time-confined AS-rules are neglected.

Figures 7.79-7.80 depict the hazard for various levels of magnitudes. Briefly,

concerning high magnitude shaking, (i.e. 5.0<Mag.) the northern Aegean Sea

and the surrounding lands (north-central Greece, west-central Turkey) appear to

be by far the most frequently vibrated regions in our study. As the magnitude

threshold Mmin decreases finer structures are revealed because more rules are taken

into consideration when compiling the hazard map. As expected, the hazard maps

in figures 7.80(a-c) show that the Ionian Islands, the Corinthian Gulf, the Hellenic

Arc and the Vrancea region in Romania are the most frequently affected regions

from low-to-moderate (Mag.<4.5) earthquakes. Similar hazard maps have been

compiled using complex seismological methods, e.g. [13].
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Figure 7.79: Hazard Maps for Vibrations with Magnitute Exceeding 5.0 on the
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Figure 7.80: Hazard Maps for Vibrations with Magnitute Exceeding 3.5 on the
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7.14 Evolution of High-Magnitude Seismicity

In this section we study the historic evolution of moderate-to-high-magnitude

seismicity. The basis for such an analysis is the spatio-temporal distribution of

events covered by hazardous rules, that is, rules whose upper bound of magnitude-

gene exceeds an input threshold (i.e. 5.0≤Mag.). Reliable models describing the

evolution of high-magnitude seismicity are essential tools in construction design

for earthquake resistance [1]. Table 7.14 summarises the hazardous rules found

by NOCEA for the ANSS catalogue. For illustrative purposes, rules threatening

the same area are grouped together, although a rule may affect several areas, e.g.

R177 extends from the Ionian Sea (west) to central Turkey (east).

Rule Type Coverage Density Time Longitude Latitude Depth Magnit.

Ionian Sea
R102 R-rule 69-0.19 7.9×10−6 19.9-21.0 37.2-40.0 10-41 4.7-5.5

R226 R-rule 10-0.02 4.3×10−6 20.4-21.0 36.3-40.0 0-32 5.5-5.7

R235 AS-rule 13-0.03 5.4×10−2 29/08/82-12/01/84 19.9-20.2 37.9-38.4 9-10 4.8-5.2

R176 U-rule 49-0.14 1.6×10−3 23/03/79-27/09/96 20.2-20.6 37.9-39.8 9-10 4.3-5.1

Coastal Northeastern Africa
R230 R-rule 10-0.02 2.4×10−7 20.8-28.0 32.0-33.8 5-33 4.8-5.2

R95 P-rule? 68-0.19 1.5×10−5 17/05/84-19/04/04 7.00-15.9 32.8-36.9 9-10 3.0-5.2

Romania-Vrancea
R220 R-rule 24-0.06 1.2×10−5 26.1-26.8 45.4-45.9 105-172 4.8-5.5

R190 U-rule 36-0.10 1×10−7 14/04/81-19/04/04 7.9-32.4 41.4-46.6 33-53 3.0-5.1

Northern and Southeastern Turkey
R74 R-rule 158-0.45 3.5×10−7 31.6-45.1 34.8-42.2 10-32 3.5-5.2

R164 U-rule 45-0.13 1.6×10−5 06/11/77-19/04/04 31.2-45.1 36.9-42.0 9-10 4.7-5.2

R169 AS-rule 47-0.13 5.5×10−6 15/02/63-06/08/80 39.6-45.1 37.9-39.9 33-52 4.4-5.2

R203 R-rule 49-0.14 6.7×10−6 31.2-45.1 34-41.1 32-33 4.7-5.2

R218 R-rule 52-0.15 1.2×10−7 34.2-45.1 35.9-43.5 4-37 5.2-6.2

R232 U-rule 15-0.04 1.9×10−7 07/01/61-25/08/93 30.9-45.1 33.3-37.9 39-70 4.8-5.2

Greece, Aegean Sea, West Coastal Turkey
R43 R-rule 400-1.15 2.4×10−6 21.0-31.2 33.8-41.1 4-39 4.7-5.2

R52 R-rule 118-0.34 5.3×10−7 21.0-32.9 34.1-41.7 2-41 5.2-5.7

R107 U-rule 63-0.18 1.2×10−6 07/01/61-15/08/92 19.9-30.9 34.3-37.9 41-71 4.7-5.2

R177 R-rule 45-0.13 1.6×10−7 19.9-33.9 37.4-41.5 2-33 5.7-6.6

R219 R-rule 21-0.06 2.7×10−7 22.0-32.7 34.0-36.8 41-88 5.2-5.7

R221 R-rule 11-0.03 1.9×10−5 26.5-27.2 36.3-36.9 144-171 4.8-5.2

R223 R-rule 11-0.03 1.9×10−7 20.8-29.2 33.8-37.4 24-32 5.7-6.2

R233 R-rule 11-0.03 4.2×10−7 20.6-28.8 34.7-38.0 75-94 4.8-5.2

Italy, Adriatic Sea, Dalmatian Coast and Albania
R91 U-rule 71-0.20 2.5×10−5 26/07/79-19/04/04 8.60-22.3 41.1-46.8 9-10 4.7-5.2

R100 U-rule 71-0.20 1.6×10−6 12/01/84-20/01/96 7.00-23.1 41.1-45.8 24-32 3.0-5.1

R109 AS-rule 52-0.15 3.4×10−2 18/02/76-26/10/76 12.8-13.4 46.0-46.6 32-33 3.0-5.1

R144 U-rule 39-0.11 8.6×10−7 29/06/65-01/11/99 10.7-19.9 35.2-47.1 10-24 4.8-5.1

R145 U-rule 40-0.11 4×10−7 06/07/62-26/11/90 11.0-21.0 40.0-47.0 11-33 5.1-5.7

R190 U-rule 36-0.10 1×10−7 14/04/81-19/04/04 7.9-32.4 41.4-46.6 33-53 3.0-5.1

R222 R-rule 17-0.04 1.1×10−7 12.5-21.4 41.5-47.0 4-33 5.7-6.2

R224 U-rule 35-0.10 2×10−5 15/02/63-14/04/81 8.00-21.4 42.4-45.2 31-34 4.8-5.1

R227 R-rule 9-0.02 7.9×10−7 14.6-15.8 38.2-40.2 233-295 5.0-5.7

R228 R-rule 27-0.07 4.3×10−7 10.2-21.0 37.0-46.5 4-9 4.8-5.5

R229 R-rule 19-0.05 7.1×10−7 11.8-19.9 36.5-41.1 26-46 4.8-5.1

R234 AS-rule 13-0.03 8.3×10−5 18/02/76-26/07/79 9.30-22.5 41.1-47.0 9-10 4.9-5.1

Table 7.14: Hazardous Rules in the ANSS Earthquake Dataset
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Although the area studied is very broad, most of the moderate-to-high mag-

nitude seismicity related to the collision boundaries of the tectonic plates appears

to be relatively stable, with an evident exception occurring in the mid-eighties in

a region that extends from north central Italy, in the west, to the Adriatic Sea,

Dalmatian Coast, Bulgaria and Romania to the east. Note that hazardous rules

corresponding to high-magnitude aftershock activity are neglected from further

analysis due to their extremely confined time window, e.g. R109 (6.5M, 06/05/76,

Friuli, NE Italy), R235 (7.0M, 17/01/83, Kephalonia Island, Ionian Sea, Greece).

7.14.1 Ionian Sea

In the Ionian Sea, NOCEA discovered three R-rules (R102, R177 and R226), one

AS-Rule (R235) and one U-Rule (R176) (see figures 7.81(a-b)). Both the spatio-

temporal location and short lifetime of R235 indicate that this rule was part

of the aftershock activity following the 17/01/83 destructive earthquake (7.0M)

which occurred near Kephalonia Island, Ionian Sea. The type of R176 is ambigu-

ous because a) it is spatially located in the vicinity of the 17/01/83 mainshock

hypocenter b) it covers low-to-moderate magnitude events that happened for a

limited time window (23/03/79 - 27/09/96), and c) it was activated prior to the

17/01/83 mainshock. Whether R176 was a precursory signal (HP-rule) or part of

the aftershock activity or both is unknown to us. Notably the events covered by

bothR176 andR235 are concentrated in a thin (1km) slice at depth 9-10km, which

is exactly at the same depth as the fault whose rupture caused the 17/01/83 main-

shock. R226 is an extremely hazardous rule due to its high magnitude (5.5-5.7M)

and relatively shallow depth (0-32km). R226 poses a continuous hazard with the

recurrence interval of a strong earthquake (5.5<Mag.) being approximately 4.4

years. R102 is slightly deeper (10-41km) than R226 and can be viewed as the

extension of the latter towards lower magnitudes (4.7-5.5M). Remarkably, the

repetition time for an event with magnitude greater than 5.0 due to R102 is only

0.989 years. Finally, the source of the strongest events (5.7-6.6M) in the area is

located by the southwestern part of rule R177 that is discussed in section 7.14.6.
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Figure 7.81: Hazardous Rules in the Ionian Sea
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7.14.2 Coastal Northeastern Africa

The coastal area of northeastern Africa is considerably less active compared to

the other regions studied in our analysis. This region is mainly characterised by

two hazardous rules with different properties (figure 7.82). The first seismogenic

zone, an R-rule (R230), includes coastal Libya and the Mediterranean Sea south

of Crete and can be viewed as an extension of the Hellenic Arc to the south.

R230 describes shallow depth earthquakes (5-33km) of moderate magnitudes (4.8-

5.2M) with the time interval between two events with magnitude greater than 5.0

being approximately 21.5 years per 250×250km2. The second rule (R95) covers

mainland Tunisia as well as the sea between Tunisia and Sicily. This region is

relatively active since directly beneath it lies the Africa-Eurasia plate boundary

[77]. R95 is characterised by its relatively recent activation 17/05/84 along a

thin slice (9-10km) with uniformly distributed magnitudes in the range 3.0-5.2.

Perhaps the most interesting observation, to the best of our knowledge, is that

based on the recorded events in our catalogue, no major (5.5<Mag.) earthquake

has been observed close to R95 up until the end of the catalogue (19/04/2004).

The recent low-magnitude seismic excitation along this region naturally raises

the question whether R95 can be interpreted as a precursory signal (P-rule) for

a future major earthquake. Another possible explanation for the relatively recent

seismic excitation of R95 could be the incompleteness of the catalogue itself.

7.14.3 Romania

The highest seismic hazard in the North Balkans is attributed to a complex

intra-continental collision process that is remarkably confined in the region of

Vrancea, Romania. NOCEA located the source (R220) of regularly occurring

strong earthquakes (4.8-5.5) deep under the surface at focal depths 105-172km

(figure 7.82). This finding is in accordance with studies presented in [16]. Closer

to the surface (33-53km) there is another layer (R190) (section 7.14.5) of lower

seismicity (3.0-5.1) appearing consistently active only after 1981. In fact, R190 is

not localised around Vrancea, but extends to the west up to the Italian peninsula.
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Figure 7.82: Hazardous Rules in Romania and Coastal-Northeastern Africa
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7.14.4 Northern-Southeastern Turkey

The most prominent tectonic features in Turkey are the North Anatolian Fault

(NAF) in the north, and East Anatolian Fault (EAF) in the southeast [77]. NAF

runs from about 30oE up to its junction with EAF near Karliova at 41oE.NOCEA

discovered six hazardous rules (R74, R164, R169, R203, R218, and R232) affecting

this region (see figure 7.83). R169 is located exactly along the junction of EAF and

NAF near Karliova. It was active only from 15/02/63 to 06/08/80. During that

period of time the area enclosed by R169 was experiencing a sequence of severe

earthquakes, e.g. Varto (1966), Bingol (1971), Lice (1975), Caldiran-Muradiye

(1977) [1]. In two occasions, Varto (1966) and Caldiran-Muradiye (1977)), the

hypocenters of the mainshocks were located in the upper-depth bound of R169.

Hence, R169 can be classified as an extended AS-rule that was generated by

multiple mainshocks. R203, an R-rule, is in essence the regular activity generated

by the EAF at the focal depth of (32-33km) and is perpendicular to R169 along

the depth axis. At least three severe earthquakes at Varto (1966), Dinar (1995)

and Adana (1998) had their hypocenters inside R203. R74, another R-rule, lies

exactly above R203 along the depth axis and covers low-to-moderate magnitude

events 3.5-5.2M generated from both NAF and EAF within focal depths 10-

32km. R218 is an R-rule covering the moderate-to-high seismicity (5.2-6.2M) of

EAF and Karviola junction faults. The hypocenter of events of R218 are more

widespread compared to R203 (1-41km). The focal mechanisms enclosed by R218

generate an event with magnitude greater than 5.0, 5.5 and 6.0, on average,

every 0.846, 1.209 and 4.231 years, respectively. R232 covers events that were

generated from 07/01/61 to 25/08/93 by the extension of the EAF zone to the

Mediterranean Sea in the Gulf of Iskenderun near Cyprus and Syria. Noticeably,

nowadays the focal mechanisms of both R232 and R169 experience a period of

quiescence. Perhaps the most evident change in the seismicity of this region

occurred between 1977 and 1980 where relatively moderate magnitude (4.7-5.2M)

earthquakes appeared to migrate gradually from Karviola junction (R169) to the

west along a spatial pathway delineated by rule R164. R164 extends along NAF

and EAF and is closer to the surface (9-10km) than R169 (33-52km).
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Figure 7.83: Hazardous Rules in Northern and Southeastern Turkey
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7.14.5 Italy, Adriatic Sea, Dalmatian Coast and Albania

The active tectonics of the Adriatic Sea and the surrounding lands, including the

Italian Peninsula, Dalmatian Coast and Albania, are mainly attributed to the

continental collision between the Adriatic block and Eurasia, running along the

Dalmatian Coast, in the east, and the Italian peninsula in the west [77]. Our

results indicate that this region experiences a period of great instability regard-

ing the focal mechanisms that rupture relatively strong earthquakes. NOCEA

revealed twelve spatio-temporal zones (R91, R100, R109, R144, R145, R190, R222,

R224, R227, R228, R229, and R234) of relatively homogeneous moderate-to-high

seismicity, as shown in figures 7.84(a-c). The high magnitude seismicity (5.7-

6.2M) in the north-central part of this region is captured by a relatively shallow

(4-33km) R-rule (R222), which is apparently the extension of R177 (the most

hazardous rule in the Aegean Sea and surrounding lands) to northwest along

the collision zone between Eurasia and Africa. The focal mechanisms of R222

trigger an earthquake with magnitude greater than 5.7 on average every 2.588

years. Further down the magnitude scale (4.8-5.5) appears a very shallow (4-9km)

R-rule, namely R228, which extends along the entire window (including the Io-

nian Sea as well) as opposed to R222 that covers the north-central part of the

window. The area of the Calabrian Arc, Southern Apennines and southeastern

Tyrrhenian Sea is regularly affected by a deep (233-295km) R-rule, namely R227,

which covers events with magnitudes reaching up to 5.7 (5.0-5.7M). This region

is further threatened by two recently (≈1975) activated rules, R204 (3.0-5.0M),

R231 (4.8-5.0M) adhering spatially to R227. Noticeably, these rules are located

along a deep fault with an almost diagonal southeast-northwest direction, run-

ning approximately from 15oE, 38oN 82km (R204) to 12oE, 40oN 487km (R231).

R229, another R-rule, covers low-to-moderate events (4.8-5.1) whose hypocen-

ters are scattered within a crustal layer of length 20km (26-46km) from Sicily

and the South Apennines in the west to the southwestern Albanian Coast in the

East. Clearly, R109 and R234 are AS-rules due to their short lifetime. For the re-

maining hazardous rules there is a rather complex sequence of events at different

depths, whose interpretation is beyond the scope of this thesis.
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Figure 7.84: Hazardous Rules in Italy, Adriatic Sea, Dalmatian Coast and Albania
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7.14.6 Greece, Aegean Sea, and West Coastal Turkey

The Aegean Sea and the surrounding lands, including mainland Greece and West

Coastal Turkey, appear to be seismically the most stable among all regions in-

cluded in our study. This region is characterised by both shallow and intermediate

depth strong earthquakes whose spatio-temporal distribution has changed little

over the last 43 years (1961-2004) (see figures 7.85(a-c)). In particular, among

the eight hazardous rules (R43, R52, R107, R177, R219, R221, R223, and R233) only

R107 appears inactive after 15/08/92, while the others exhibit a typical R-rule

behaviour. In fact, even though R219 is classified as a R-rule, its focal mecha-

nisms have recently shown signs of seismic recession since R219 does not extend

beyond 21/10/1998. Note that R107 and R219, both covering faults of the Hel-

lenic Arc, have a large overlap in the spatio-temporal subspace while touching

along the magnitude dimension. Therefore, this indicates a decreasing trend in

the moderate (4.7-5.5M) seismicity of the Hellenic Arc generated at intermediate

depths 41-88km.

From figures 7.85(a-b) it is evident that shallow-to-intermediate depth strong

earthquakes have epicentres that are located mostly in the southern Aegean Sea

along the Hellenic Arc. R177 is formed by a patch of extremely hazardous and

very shallow (2-33Km) earthquakes with magnitudes reaching up to 6.6 degrees on

the Richter scale (5.7-6.6). R177 “affects” the Ionian Isles, north-central Greece,

Northern Aegean Trough and the northwestern coast of Turkey. It is worth men-

tioning that some of the most destructive earthquakes which occurred in this

region (Greece: Thessaloniki-1978, Korinthos-1981, Aigion-1995, Kozani-1995,

Athens-1999, Turkey: Gediz-1970, Dinar-1995, Marmara Sea-1999) [1, 2] were

originated either from inside R177 or had their hypocenters located in close vicin-

ity to R177. On average, the faults enclosed by R177 generate an earthquake with

magnitude greater than 5.5 and 6.0 every 0.978 and 1.464 years, respectively. In

the southern Aegean, the source of high-magnitude seismicity (5.7-6.2), are faults

that are mainly located along the Hellenic Arc, south of Crete, at focal depths of
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24-32km, which is exactly the region enclosed by R223. Further down in the mag-

nitude dimension (5.2-5.7) the spatial distribution of events is slightly different.

More specifically, events with magnitudes 5.2-5.7 form clearly two seismogenic

zones. The first zone, that is R52, extends throughout the entire Aegean Sea,

mainland Greece and west Turkey at focal depths of 2-41km, while the second

zone, that is R219, is an orthogonal dipping of R52 towards depths of 41-88km

along the Hellenic Arc. The less hazardous rules in terms of magnitude (4.7-5.2M)

are R43, R107 and R233, forming a similar trend as far as the spatial distribution

is concerned. In particular, R43, one of the most highly populated rules, has its

400 events scattered throughout the entire Aegean Sea and the surrounding lands

at focal depths ranging from 4 to 39km. R107 and R233 are deeper extensions of

R43 occurring only along the Hellenic Arc at depths of 41-71km and 75-94km, re-

spectively. Finally, R221 is an extremely confined rule in every spatial dimension.

R221 covers events whose epicentres are located in the southeastern part of the

Volcanic Arc near Kos, while their hypocenters are concentrated in a confined

spatial volume deep (144-171km) in the crustal layer.
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Figure 7.85: Hazardous Rules in Greece, Aegean Sea, and West Coastal Turkey
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7.15 Effectiveness and Efficiency Evaluation of

NOCEA on Artificial and Real-World Datasets

In this section we evaluate the efficiency and effectiveness of NOCEA by conduct-

ing a variety of experiments using a mixture of synthetic and real-world datasets.

Experiments with similar purposes are also reported in section 6.10 (chapter 6),

but here the datasets are far more complex, being based on real-world data. It is

worth noting that in both sets of experiments, NOCEA behaves similarly as far

as the scalability and accuracy are concerned.

In particular, the goals of the experiments are to assess:

• Efficiency: Determine scalability with respect to:

– Size of the database (i.e. number of records)

– Dimensionality of the data

– Average dimensionality of the clusters

– Number of processors in a parallel architecture

• Effectiveness: Test if NOCEA recovers correctly and accurately clusters

that are embedded in some subspaces of a high dimensional space.

7.15.1 Synthetic-Real-World Data Generator

Various data generators have been recently proposed to produce clusters embed-

ded in subspaces of high dimensional spaces for evaluation purposes [5, 7, 74, 83].

The main disadvantage of these approaches is that the structure of the resulting

clusters is both artificial and far less complex than real world cases. Addition-

ally, despite these techniques being parameterised in the number of the desired

clusters, the evaluation studies in [5, 7, 74, 83] were based on a limited number

of clusters, i.e. 5. To address these limitations the generator described in [5] was

modified to enforce the creation of complex, real-world type structures consisting

of numerous, i.e. 237, clusters based on the discovered knowledge from the ANSS

earthquake catalogue.
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Recall from section 7.7 that NOCEA partitioned the 34593 points of the

five-dimensional ANSS seismic catalogue into 237 homogeneous rules, while the

level of background noise is approximately 23% (7911 points). The main idea

of the proposed generator is to create clusters that can be approximated by one

rule by embedding each ANSS rule into higher dimensional spaces. The first

five dimensions of a cluster in the augmented spaces are directly inherited from

the coordinates of the corresponding rule. By doing this we generate synthetic

datasets with realistic characteristics such as a) real-world structural complexity

b) numerous clusters c) clusters with diversity in size, density, geometry, and data

coverage, and d) real-world non-uniformly distributed noise.

Dimensionality of Clusters

Let d denote the desired number of dimensions without considering the five fea-

tures of the earthquake dataset. Hereafter the latter will be referred to as e-

features. The range of values was set to [0, 100] for all artificially generated

attributes. Similar to generators that are described in [5, 83] and in section 6.5,

the number of relevant dimensions associated with a given rule is determined

by a realisation of a Poisson random variable with mean µ with the additional

constraint that this number must be at most d.

Determination of the Bounded Dimensions

The next step is to determine the bounded dimensions associated with each rule.

Following the recommendation of [5, 83], when generating the (i+1)th rule, ap-

proximately half of its bounded dimensions are chosen from among the bounded

dimensions of the ith rule, while the remaining are generated at random. This

technique was introduced to model the fact that often different clusters share sub-

sets of correlated dimensions. To ensure no dependency on the order by which

rules are processed during this stage, the list of rules is randomly permutated.

Variance of the Bounded Dimensions

If a rule is to be embedded in k dimensions the algorithm selects k variance values

independently on each other. Given a spread parameter r and a scale factor s’

uniformly distributed in [1, s] the variance is then (r∗s’)2, where r=s=2 [5].
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Centers of the Bounded Dimensions

The coordinate of the central or anchor point along each bounded dimension of

a rule is randomly drawn from [0, 100].

Number of Points

In [5] the number of points (Ni) assigned to the ith cluster is proportional to a

realisation of an exponential random variable. However, this technique results in

all clusters having reasonably similar size [83]. To force imbalance in the cluster

sizes, the authors in [83] proposed computing initially (Ni) in a similar man-

ner, but then setting for each i≤k/2, Ni=δNi and Ni+k/2= Ni+k/2+(1-δ)Ni, for

δ ∈{0.2, 0.33, 0.5}. However, to the best of our knowledge, the most comprehen-

sive studies [5, 7, 74, 83] evaluating the performance of clustering algorithms in

high dimensional space were based on a limited number of clusters, i.e. 5, which

is often not a realistic choice to simulate real-world examples. In contrast, our

generator creates a fairly large number of clusters, i.e. 237, with a rich diversity

in size, geometry, and data coverage. Consequently, the resultant clusters are

significantly sparser in high dimensional spaces compared with other approaches.

This introduces an additional challenge: to distinguish between clusters and pro-

duce correct cluster descriptors. In fact, the number of points assigned to a given

rule in the augmented space is proportional to the coverage of its parental rule

in the original space. Since we are interested in transmitting the original struc-

tures in the augmented space, the number of points of each original rule is simply

multiplied by an integer replication factor to obtain the size of the corresponding

rule in the full dimensional space.

Types of Data Distribution

One of the main goals of this section is to investigate NOCEA’s performance

under different distributions of the points in the subspace of bounded dimensions.

Currently our generator supports the following types of data distributions:

• Uniform: For those attributes that define the subspace where the rule is

embedded, the value is drawn independently at random from the uniform

distribution within the range [x-3σ, x+3σ], where x and σ are the mean
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value and standard deviation in each dimension, respectively.

• Normal: For the ith bounded dimension of a rule, the coordinates of the

points projected onto dimension i follow a normal distribution with mean

x at the respective coordinate of the center point and variance determined

as explained earlier.

• Uniform Ellipse: Similar to Uniform distribution, the algorithm samples

independently at random k values, one for each bounded dimension in the

respective range, with the additional constraint that this point must be

enclosed by the kth dimensional hyper-ellipse, centred on the anchor point

of that rule and with a 3σ-length axis in each bounded dimension.

• Normal Ellipse: The only difference from a Uniform Ellipse is that the

points in each dimension are drawn independently from a normal distribu-

tion as described earlier.

Generating Data

Having completed the previous stages the algorithm generates the points associ-

ated with a given rule as follows: Recall that in total there will be (d+5) dimen-

sions in the full-dimensional space. Let (x1, x2, x3, x4, x5) be the coordinates of a

given point P in the subspace defined by the e-features of the rule R that covers

that point. For each point P of R the algorithm creates randomly an appropriate

number of new points P ′ in the close vicinity of P such that the coordinates of the

new points in the subspace defined by the e-features are (N(x1, w1), N(x2, w2),

N(x3, w3), N(x4, w4), N(x5, w5)), where wi is the bin width in the ith dimension

(i ∈ [1, 5]), while N(a, b) is a normal distribution centred on a with standard

deviation b. The coordinates of points in the non-bounded dimensions are then

generated independently at random within [0, 100]. Finally, for all the remaining

attributes the algorithm randomly selects one type of distribution and then it ap-

propriately creates the coordinates of points depending on the data distribution

as described earlier. As far as the noise is concerned, the procedure is identical.

Note that, unlike other generators, our approach does not create a perfectly uni-

form noise, since in the subspace defined by the e-features, the distribution of
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noisy points is directly inherited from the earthquake catalogue.

In all the experiments reported in sections 7.15.2-7.15.6 twenty independent

and randomly initialised runs were performed for all datasets. The reported

measurements of execution time and recall-accuracy are based on an arithmetic

average of the clustering results over the twenty different random runs.

7.15.2 Scalability With Database Size

Figure 7.86 depicts the scalability of NOCEA as the size of the database in-

creases from 0.5 to 25 million records. Each dataset has 20 dimensions including

the five e-features and 237 single-rule clusters embedded on average in some 10-

dimensional subspace as described in section 7.15.1. Note that most of the original

rules were already embedded in the first five dimensions (e-features). Addition-

ally, recall from section 7.15.1 that the level of noise is approximately 23% of

the database size. For this set of experiments, the distribution of points for the

bounded dimensions of all clusters follow a uniform distribution. NOCEA suc-

cessfully locates all input clusters within the course of 50 generations, on average.
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Figure 7.86 shows that the execution time scales almost linearly with the
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database size. This is because, given the relatively low dimensionality of the

datasets, the execution time is dominated by the construction of the density his-

tograms which, in turn, is a task with linear complexity in the database size. Simi-

lar scalability behaviour was reported in other studies [7, 74]. However these stud-

ies were based on small numbers of clusters, usually five. Performance could be

improved by replacing the current linear data-search mechanism that is employed

by our system with a faster hyper-rectangular query mechanism (kd-trees) [26].

7.15.3 Scalability With Dimensionality of Data

Figure 7.87 shows the scalability of NOCEA as the dimensionality of the feature

space increases from 20 to 200. In this series of experiments, each dataset has

3*34593=103779 records distributed over 273 clusters being embedded in some

10-dimensional subspace.
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Figure 7.87: Execution Time vs. Number of Dimensions

Clearly, the curve exhibits a super-linear trend. This behaviour is mainly due

to the fact that for a given rule-set, NOCEA must build at least one density

histogram for each rule in every dimension. Additionally, as the dimensionality

increases the application of the genetic operators becomes increasingly more ex-

pensive due to the constraint of producing individuals without overlapping rules.
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Note that both tasks (construction of density histograms and constraint checking)

are of linear complexity with data dimensionality.

7.15.4 Scalability With Cluster Dimensionality

Figure 7.88 shows NOCEA’s scalability as the average dimensionality of hidden

clusters increases from 10 to 50 in a 100-dimensional space. In each case, the

dataset has 3*34593=103779 records containing as before 273 clusters, and 23%

noise.
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Figure 7.88: Execution Time vs. Avg. Cluster Dimensionality

The super-linear speed-up in the execution time with the dimensionality of the

hidden clusters is explained as follows: the higher the dimensionality of the hid-

den clusters the more likely it is for the evolutionary search operators to produce

non-homogeneous candidate rules along the bounded dimensions. Hence, extra

repairing operations are required to obtain a feasible (homogeneous) rule-set.

The computational overhead introduced by the additional repairing operations

for a given cluster is generally proportional to the dimensionality of that clus-

ter. Additionally, as the dimensionality of hidden clusters increases, more space

becomes available (uncovered) for the mutation operator to grow existing rules
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or to produce new ones. Despite the fact that no access to the database is re-

quired when mutating a genome, the cost of applying the mutation operator may

be substantial, especially for high dimensional spaces or numerous clusters. In

fact, not surprisingly, given the relatively large number of clusters (237) and the

moderate size of the datasets used in this section, when the dimensionality of

hidden clusters exceeds the value of 30, mutating a single genome becomes more

expensive than evaluating a genome by a factor of 0.6.

7.15.5 Scalability With Task Parallelism

In this section we study the scalability of pNOCEA (section 5.13) under various

task parallelisation schemes.

pNOCEA supports task parallelism for the most expensive genetic operations

such as, repairing-evaluation (E), mutation (M), recombination (R) and gener-

alisation (G). Figure 7.89 compares the speedups achieved for various paralleli-

sations of pNOCEA using a synthetic dataset that was generated as described in

section 7.15.1. The 100-dimensional dataset contains 242151 points (23% noise)

forming 237 uniform-clusters being embedded on average in some 30-dimensional

space.

Each parallelisation scheme is characterised by a combination of capital letters

denoting the genetic operations that were parallelised under that scheme. Let p

be the number of processors in pNOCEA. The speedup of pNOCEA with p

processors over the sequential NOCEA with one processor is defined as t1/tp,

where t1 is the execution time of the sequential single-processor NOCEA while tp

is the execution time of pNOCEA with p processors [43].

All measurements have been performed on a network of homogeneous PEs

(Processing Elements) (Intel(R) Xeon(TM) CPU 3.06GHz, 512 KB cache, 2GB

of RAM) running Fedora Core 2.0. The remote PEs were connected with the

coordinator machine through a 100Mb/s Ethernet cable while the communication

protocol was RMI (Remote Method Invocation) being implemented in JavaTM2

Standard Edition 1.4.2 05.



CHAPTER 7. EARTHQUAKE ANALYSIS CASE STUDY 263

 0

 2

 4

 6

 8

 10

 12

 14

 16

1614121086421

S
p

ee
d

u
p

Processors (PEs)

Speedups with Number of Processors (PEs)
0.25 Million Rec., 100 Dim., 237 Clusters in 30 Dim (Avg.)

Ideal
E

E_M
E_R

E_R_M
E_R_M_G

Figure 7.89: Speedups for Various Parallelisations of pNOCEA

Not surprisingly, the fully-parallelised version of pNOCEA, that is E R M G,

gives the best results, with a speedup of 13.789 on 16 PEs. Regarding the other

schemes, it is unsafe to draw any general conclusion since the relative cost between

the genetic operations is heavily dependent on the dataset itself. Hence, despite

the coordination-communication overhead introduced due to task parallelism, a

fully-parallelised pNOCEA is strongly recommended.
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7.15.6 Effectiveness Evaluation

The goal of this section is twofold:

• to assess the accuracy ofNOCEA in recovering the boundaries and subspace

in which each cluster has been embedded

• to investigate the quality of the clustering results under various data distri-

butions

In all the above experiments, regardless of the data distribution, each discov-

ered cluster was correctly located in its original subspace using a single hyper-

rectangular rule. Experiments on artificial datasets with similar results are also

reported in section 6.10.3. Since by definition NOCEA seeks relatively homoge-

neous clusters, the very low density tails (if any) of a uni-dimensional histogram

must be separated from the main part of the distribution. This is exactly the

case of non-uniform clusters, such as normal and ellipsoid. Bearing in mind that

in our experiments the data were distributed among a multitude (237) of clusters,

the data coverage of the homogeneous hyper-rectangular “core” of a non-uniform

cluster may not always exceeds the fixed sparse threshold Ts. Consequently, even

though NOCEA has the ability to locate such clusters, the pruning of non-sparse

regions eliminates those candidate rules capturing the core of very small clus-

ters. This problem is proportionately exaggerated with the dimensionality of the

clusters because the number of points being missed out in the tails of a bounded

dimension is added to the total loss.

As a result of separating the very low density boundaries of a cluster from

its denser core, NOCEA missed some (on average 5 clusters over twenty different

and randomly initialised runs) non-uniform clusters of very small coverage, e.g.

0.02%, especially when the dimensionality of the hidden clusters was relatively

high, e.g. greater than 10. Clearly, more research in the future is required to

tackle this problem.
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7.16 Summary

This chapter has presented a thorough evaluation of NOCEA on a challenging

real-world problem, that is a detailed study of the seismicity along the African-

Eurasian-Arabian tectonic plate boundary.

The experimental results suggest that NOCEA meets the important DM clus-

tering criteria as follows. NOCEA discovered highly homogeneous and complex

geometry clusters that were reported in the interpretable form of disjoint and

axis-aligned rectangular rules; the output has minimised for ease of comprehen-

sion.

NOCEA discovered rules/clusters of arbitrary density, geometry, and data

coverage. It has been shown that NOCEA is able to perform effective subspace

clustering on a particularly sparse dataspace. Representative examples of clusters

with irrelevant features were reported and interpreted. The experiments showed

that NOCEA self-adjusted well to the characteristics of the dataset, and did

not require auxiliary information regarding the number and dimensionality of

clusters.

This Chapter has also investigated the efficiency and effectiveness of NOCEA

under varying database size, data dimensionality, cluster dimensionality and data

distribution, on synthetic datasets being based on the ANSS earthquake dataset.

Additionally, it has been shown that task parallelism of the most expensive genetic

operators has the potential to reach a speed up of 13.8 on 16 processors.

From an earthquake analysis point of view, NOCEA revealed complex seis-

micity patterns that can aid seismologists to better understand the phenomenon.

Finally, it has been shown that it is possible to exploit the discovered knowledge

to compile precise hazard maps, and to interpret the evolution of high magnitude

seismicity whose social impact is the most severe.



Part IV

Conclusion

266



Chapter 8

Conclusions

Capsule

This Chapter summarises the thesis results, and concludes that evolution-

ary algorithms have great potential as search mechanisms to effectively and

efficiently mine high quality clustering knowledge from massive and high di-

mensional databases. The limitations of the work are discussed, and a number

of further research directions are identified.

8.1 Summary

8.1.1 Research Challenges

Driven by advances in data collection and storage, increasingly large and complex

datasets are being stored. Parkinson’s law of data, a corollary of Parkinson’s law

states that “...data expands to fill the space available for storage...”. In fact, data

doubles about every year, but useful information seems to be decreasing [31]. The

area of KDD has arisen over the last decade to address this problem, and it has

become not only an important research area, but also one with large potential in

the real world. Intelligent DM techniques are being developed to semi-automate

the process of mining nuggets of hidden knowledge, and extract them in forms

that can be readily utilised in areas such as decision support and forecasting.

Clustering - perhaps the most challenging descriptive DM task - seeks to identify

homogeneous clusters of data points based on the values of their attributes.

267
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Based on a substantial literature survey (Chapter 2) we argue that current

clustering techniques do not address all of the key criteria (section 2.3.2) for DM

clustering adequately, although considerable work has been done in addressing

each requirement separately. Furthermore, after decades of claiming that EAs are

powerful optimisation techniques well-suited for problems with large and complex

search spaces, no EA-based system has adequately exploited the advantages (sec-

tion 2.4.11) of EAs to tackle realistic large-scale clustering problems. The survey

also shows that most clustering techniques suffer from the infamous curse of di-

mensionality phenomenon (section 2.3.2): due to the sparsely filled feature space

the data are “lost in space” and the effectiveness of clustering algorithms that de-

pend critically on distance or density measures degenerate rapidly with increasing

dimensionality [55].

8.1.2 A Novel Clustering Methodology

The fundamental question addressed by this thesis is: can a stochastic search

cluster large high-dimensional datasets, and extract knowledge that conforms to

the important requirements for DM clustering? Experimental results on both arti-

ficial datasets (chapter 6) and real-world (chapter 7) datasets lead us to conclude

that it can.

The thesis has developed a novel three-phase clustering methodology (chap-

ters 3 - 5) that utilises the intrinsic search parallelism and stochastic nature of

EAs to efficiently mine disjoint and axis-aligned hyper-rectangular clustering rules

with homogeneous data distribution from massive and high dimensional numerical

databases.

Quantisation: Firstly, a sophisticated quantisation algorithm (TSQ) (Chap-

ter 4) imposes a uniform multi-dimensional grid onto the dataspace to reduce the

search combinations. TSQ quantises the dataspace using a novel statistical anal-

ysis that reflects the local data distribution. It determines an appropriate grid

resolution that enables the discrimination of clusters, while preserving accuracy

and acceptable computational cost.
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Clustering: Secondly, a novel EA (NOCEA) (Chapter 5) discovers high quality

clustering rules using several novel semi-stochastic genetic operators, an integer-

valued encoding scheme reflecting the quantised dataspace, and a simple data cov-

erage maximisation fitness function. The evolutionary optimisation in NOCEA

has a simple well-defined goal, which, however, provides enough quality informa-

tion to drive the selective pressure of the EA: maximise the total point cover-

age with an arbitrary-length feasible rule-set. A feasible solution (section 5.4.1)

comprises rules that are disjoint, syntactically valid, non-sparse, and have ho-

mogeneous data distribution. Specialised genetic operators, i.e. recombination

(section 5.8), mutation (section 5.10), and homogeneity (section 5.7) maintain

feasibility of individuals in the population, while generalisation (section 5.9) im-

proves knowledge comprehensibility and reduces computation by making rule-sets

as short and generic as possible.

Both TSQ and NOCEA rely on a novel statistical analysis (UDA) (Chapter

3) identifying flat density regions (U -regions) in univariate smooth histograms.

Neighbouring U -regions co-existing at different density levels are of great im-

portance as they indicate the existence of distinct cluster structures in higher

dimensional spaces; U -regions help to generate accurate cluster “signatures”, as

often their boundaries coincide with the edges of the actual clusters.

Knowledge Simplification and Cluster Formation: Thirdly, a post pro-

cessing simplification phase performs subspace clustering (section 5.11), and as-

sembles the clusters (section 5.12).

Task Parallelism: The thesis has also explored task parallelism for several

genetic operations to improve scalability when the data to be mined is massive

(section 5.13).
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8.1.3 Thesis Achievements

The thesis has demonstrated that it is possible to deliver the following desiderata

for DM clustering using the proposed methodology:

• Effective treatment of high dimensionality and exceptional resistance to the

curse of dimensionality; precise discrimination of clusters even in very sparse

high-dimensional spaces (e.g. 200 dimensions) (sections 6.10.3 and 7.15).

• End-user comprehensibility/interpretability of the clustering results (sections

6.3, 7.7.4, 7.11.1, and 7.12).

• Ability to discover clusters embedded in arbitrary subspaces of high dimen-

sional data (sections 6.10, 7.11, and 7.15.6).

• Linear scalability with database size (sections 6.10.2 and 7.15.2), and both

data (sections 6.10.2 and 7.15.3) and cluster (sections 6.10.2 and 7.15.4) di-

mensionality.

• Substantial potential for task parallelism (section 5.13) achieving a speed up

of 13.8 on 16 processors (section 7.15.5).

• Ability to discover highly-homogeneous clusters of arbitrary density (sections

6.6, 7.7.5 and 7.8), geometry (sections 6.4, 7.7.4, 7.9, and 7.12), and data

coverage (section 7.10).

• Insensitivity to order of data input (section 6.7) and initialisation (section 6.8).

• Substantial resistance to uniform background noise (section 6.5).

• Minimal requirements for a priori knowledge (e.g. automatic determination

of the optimal number of clusters and the subspace where each cluster is em-

bedded, on the fly) and no presumptions of any canonical distribution for the

input data (section 6.9).
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8.2 Limitations

The current work has the following limitations, although most could be addressed

in further work.

• Like any EA, NOCEA is slower and requires more space compared to conven-

tional single-solution clustering techniques, as it evolves multiple solutions.

• The current implementation of NOCEA stores the entire dataset in the main

memory. Compounding this limitation, the entire dataset must be replicated in

the local memory of every PE. However, future work could include investigating

data distribution among different processors or secondary storage to handle

arbitrarily large and high dimensional datasets.

• The thesis has explored coarse-grained task parallelism with minimal commu-

nication coordination overhead where a single genetic operation constitutes a

thread (a sequential unit of computation that is entirely executed in a single

processor) (section 5.13). However, with the current coarse-grained parallel

architecture no speedup improvement is possible when the number of available

processors exceeds the total number of threads.

• To enable the discovery of homogeneous clusters the repair operator has been

designed to separate the central densely-populated body (uniform core) of a

cluster from its low density boundaries. This means that some peripheral

cluster points are naturally “lost” (sections 6.10.2 and 7.15.6). The total loss

is proportional to the dimensionality of the cluster and inversely proportional

to the kurtosis (i.e. point concentration around the center) of the cluster points

along the bounded dimensions. Hence, non-uniform clusters with small data

coverage may be missed by NOCEA as the data coverage of the uniform core

of such clusters may not always exceed the sparsity level (section 5.3).

• Sparse parts of arbitrary-shaped clusters sticking out from the backbone of

such clusters are lost due to the elimination of sparse rules (section 5.6.1).

• Finally, NOCEA can not cope with categorical (nominal) attributes.
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8.3 Future Research Directions

There are several avenues to extend this research and address the limitations

identified in the previous section.

Arbitrary-Oriented Rules: The first avenue is to enhance the knowledge

representation language (section 5.3) by including the capability to rotate the

hyper-rules. Evolving arbitrary-oriented rules allows the approximation of non-

convex clusters with fewer rules, but there is a price to be paid, i.e. an increase

in the size of the search space as more search combinations are possible.

Alternative Geometric Rules: Another possible avenue is to introduce more

complex geometric shapes, such as hyper- spheres, ellipses, trapezoids, or poly-

hedra. Again, one must carefully balance the trade-off between the expressive

power of the representation language and the size of the search space (section

5.6.1. Additionally, more advanced and thus expensive, genetic operators are

required to manipulate such complex structures.

Adaptive Grids: The third avenue to be explored is the construction of non-

uniform grids where the bin width in each dimension varies depending on the

local data distribution. Adaptive grids will allow NOCEA to delineate cluster

boundaries more accurately.

Data Parallelism: Many real-world clustering problems are intrinsically multi-

dimensional and massive in size. Hence it may not always be feasible to fit the

entire dataset in the main memory of a single machine. To handle large amounts

of data it is vital to explore data parallelism with data distributed among different

processors [43, 44], and the use of secondary storage/in-memory DBMS.

Fine Grain Task Parallelism: Advanced genetic operators may produce sub-

stantial computations, especially for high dimensional datasets with a multitude

of clusters (section 7.15.5). This thesis has explored coarse grain task paral-

lelism, i.e. at a high level of abstraction where individual tasks like mutation,

recombination, generalisation, and repairing, are assigned to different processors,
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but each task is entirely executed in a single processor. Further investigation

might explore finer grain parallelism by enabling several processing units to work

simultaneously on the same individual task.

Advanced Data Structures: It may be possible to improve scalability by

replacing the current, linear-scan data mechanism with a more sophisticated and

faster data structure, e.g. kd-trees [26].

Island Model EA: A very promising avenue for future research would be

to convert the single-population NOCEA to an island-model parallel EA [12].

This can be simply done by geometrically decomposing the feature space F into

non-overlapping neighbourhoods (islands), and instantiating an ordinal NOCEA

within each island. Local NOCEAs will run independently of each other against

the portion of the dataset assigned to each island. The complete solution to the

clustering problem is assembled by combining the best solution from each island.

The anticipated gains from an island-modelNOCEA are twofold: a) more flex-

ible search that can be easily adapted to the local characteristics of the data, e.g.

adaptive grid resolution, and b) low-communication data and task parallelism.

Evolution of Overlapping Partitions: Future research might explore the

evolution of individuals where rule overlapping is permitted (see section 5.6.1).

This idea reduces the complexity of the genetic operators, enables approximating

arbitrary-shaped clusters with fewer and more generic rules, and eliminates the

loss of the sparse parts of non-convex clusters (see section 8.2). However, there

are several drawbacks that are discussed in detail in section 5.6.1.

Minimisation of the Loss of Peripheral Points: Finally, future research

must tackle the problem of missing peripheral cluster points (see section 8.2).

One possible solution might be to allow lower density tails to be included in the

main part of the distribution if there are not other clusters in close proximity.

However, the formation of clusters (section 5.12) becomes more complicated as

two adjacent rules of similar density with large touch do not necessarily indicate

the existence of an arbitrary-shaped cluster.
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