
Parallel Evaluation Strategies for Lazy Data
Structures in Haskell

Prabhat Totoo

Thesis submitted for the degree of Doctor of Philosophy in the School of

Mathematical and Computer Sciences

May 2016

Edinburgh

The copyright in this thesis is owned by the author. Any quotation from the thesis

or use of any of the information contained in it must acknowledge this thesis as the

source of the quotation or information.

Parallel Evaluation Strategies for Lazy Data Structures in Haskell

Prabhat Totoo

May 2016

c© Prabhat Totoo 2016

Department of Computer Science

School of Mathematical and Computer Sciences

Heriot-Watt University

Edinburgh

Examination committee

Kevin Hammond, University of St Andrews

Josef Svenningsson, Chalmers University of Technology

Greg Michaelson, Heriot-Watt University

Supervisors

Hans-Wolfgang Loidl, Heriot-Watt University

Phil Trinder, University of Glasgow

Sven-Bodo Scholz, Heriot-Watt University

Murray Cole, University of Edinburgh

Abstract

Conventional parallel programming is complex and error prone. To improve pro-

grammer productivity, we need to raise the level of abstraction with a higher-level

programming model that hides many parallel coordination aspects. Evaluation

strategies use non-strictness to separate the coordination and computation aspects

of a Glasgow parallel Haskell (GpH) program. This allows the specification of high

level parallel programs, eliminating the low-level complexity of synchronisation and

communication associated with parallel programming.

This thesis employs a data-structure-driven approach for parallelism derived through

generic parallel traversal and evaluation of sub-components of data structures. We

focus on evaluation strategies over list, tree and graph data structures, allowing

re-use across applications with minimal changes to the sequential algorithm.

In particular, we develop novel evaluation strategies for tree data structures, using

core functional programming techniques for coordination control, achieving more

flexible parallelism. We use non-strictness to control parallelism more flexibly. We

apply the notion of fuel as a resource that dictates parallelism generation, in partic-

ular, the bi-directional flow of fuel, implemented using a circular program definition,

in a tree structure as a novel way of controlling parallel evaluation. This is the first

use of circular programming in evaluation strategies and is complemented by a lazy

function for bounding the size of sub-trees.

We extend these control mechanisms to graph structures and demonstrate perfor-

mance improvements on several parallel graph traversals. We combine circularity

for control for improved performance of strategies with circularity for computation

using circular data structures. In particular, we develop a hybrid traversal strat-

egy for graphs, exploiting breadth-first order for exposing parallelism initially, and

then proceeding with a depth-first order to minimise overhead associated with a full

parallel breadth-first traversal.

The efficiency of the tree strategies is evaluated on a benchmark program, and

two non-trivial case studies: a Barnes-Hut algorithm for the n-body problem and

sparse matrix multiplication, both using quad-trees. We also evaluate a graph search

algorithm implemented using the various traversal strategies.

We demonstrate improved performance on a server-class multicore machine with

up to 48 cores, with the advanced fuel splitting mechanisms proving to be more

flexible in throttling parallelism. To guide the behaviour of the strategies, we develop

heuristics-based parameter selection to select their specific control parameters.

i

In memory of my dad, and to my mum.

Acknowledgements

The last four and a half years have been a unique journey. It was marked by

moments of excitement when things worked well, and the desire to discover and do

more, and periods of frustration when things did not seem to go quite well. Even

though completing the PhD was always my number one priority, it was easy to lose

focus at times with other priorities and challenges in one’s life. The thought of

whether I would ever finish the PhD was always at the back of my head. Now that

I have completed the dissertation, I am elated. I could not have succeeded without

the invaluable support of many.

The person who deserves the most credit is my primary supervisor, Hans-Wolfgang

Loidl. I am grateful to him for giving me the opportunity to do research under his

supervision. He has spent much time and effort following my experiments closely

from the beginning and was always available when needed. I thank him for his

guidance, advice and, mostly, for his patience with me, especially when I did not

seem to know what I was doing and was painfully trying to explain it to him. In the

tedious writing phase, his meticulous reviews and suggestions were valuable. Thanks

also go to my other supervisors: Phil Trinder, for his critical comments on my

writing, and Sven-Bodo Scholz and Murray Cole, for useful advice and discussions.

I thank members of my examination committee, Kevin Hammond, Josef Svennings-

son and Greg Michaelson, for their constructive comments to improve my thesis.

I thank fellow PhD students, friends and members of the Dependable Systems Group

at the department, in particular, Evgenij Belikov, Konstantina Panagiotopoulou,

Pantazis Deligiannis, and Rob Stewart, for providing a friendly environment to

work and to share ideas on research and in general. I value the inspiring discussions

and lively debates we have had especially over pints at the pub.

I am indebted to the Scottish Informatics and Computer Science Alliance (SICSA)

for sponsoring me through a PhD studentship for 3.5 years, and the EU FP7 ORIGIN

project to offer me support under an 8 months research assistantship.

I am forever grateful to my wonderful family back home whom I could only see

on two occasions during the PhD. They have been my source of inspiration and

encouragement. Finally, words cannot express the gratitude I owe to my wife who

has been by my side all along this journey.

Prabhat Totoo

Edinburgh, May 2016.

iii

ACADEMIC REGISTRY
Research Thesis Submission

Name: PRABHAT TOTOO

School/PGI: MACS

Version: (i.e. First,
Resubmission, Final)

Final Degree Sought
(Award and
Subject area)

PhD in Computer Science

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1) the thesis embodies the results of my own work and has been composed by myself
2) where appropriate, I have made acknowledgement of the work of others and have made reference to

work carried out in collaboration with other persons
3) the thesis is the correct version of the thesis for submission and is the same version as any electronic

versions submitted*.
4) my thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made

available for loan or photocopying and be available via the Institutional Repository, subject to such
conditions as the Librarian may require

5) I understand that as a student of the University I am required to abide by the Regulations of the
University and to conform to its discipline.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis
is submitted.

Signature of
Candidate:

Date: 02.05.2016

Submission

Submitted By (name in capitals):

Signature of Individual Submitting:

Date Submitted:

For Completion in the Student Service Centre (SSC)

Received in the SSC by (name in
capitals):

Method of Submission
(Handed in to SSC; posted through
internal/external mail):

E-thesis Submitted (mandatory for
final theses)

Signature: Date:

Contents

Abstract . i

Contents . v

List of Tables . ix

List of Figures . x

List of Abbreviations and Acronyms . xii

List of Publications . xiv

1 Introduction 1

1.1 Thesis Statement . 2

1.2 Contributions . 5

1.3 Thesis Structure . 6

2 Background 8

2.1 Research Overview . 8

2.2 Parallel Hardware . 10

2.2.1 Shared Memory . 10

2.2.2 Distributed Memory . 11

2.3 Parallel Programming and Patterns 12

2.4 A Survey of Parallel Programming Models 14

2.4.1 Language Properties . 14

Coordination Abstraction . 14

Types of Parallelism . 16

Memory Programming Model 16

Parallel Programs Behaviour 17

Language Embedding . 18

2.4.2 Classes of Programming Models 18

2.5 Higher-Level Approaches to Parallelism 22

2.5.1 Algorithmic Skeletons . 23

2.5.2 Parallel Declarative Programming 24

2.5.3 Parallel Functional Languages 26

2.6 A Brief History of Laziness . 27

2.6.1 Full vs Data Structure Laziness 30

2.6.2 Parallelism and Laziness . 30

v

CONTENTS

2.7 Parallel Haskells . 31

2.7.1 GpH: Glasgow parallel Haskell 34

2.7.2 Par Monad . 35

2.7.3 Eden . 36

2.7.4 Other Parallel Haskells . 38

2.8 Data Structures in Parallel Programming 38

2.8.1 Design Issues and Considerations 40

2.8.2 Parallel Operations vs Representations 41

2.8.3 Imperative vs Functional . 42

2.9 Summary . 43

3 Parallel List and Tree Processing 44

3.1 Evaluation Strategies . 44

3.1.1 Parallel List Strategies . 47

3.2 Application: The N-body Problem 52

3.2.1 Implementation Approach . 52

3.2.2 Problem Description . 53

Method 1: All-Pairs . 53

Method 2: Barnes-Hut Algorithm 54

3.3 Sequential Implementation . 56

3.3.1 S1: All-Pairs . 57

3.3.2 S2: Barnes-Hut . 58

3.3.3 Sequential Tuning . 61

3.4 Parallel Implementation . 65

3.4.1 P1: GpH–Evaluation Strategies 68

3.4.2 P2: Par Monad . 74

3.4.3 P3: Eden . 76

3.5 Performance Evaluation . 78

3.5.1 Tuning . 78

3.5.2 Speedup . 80

3.5.3 Comparison of Models . 83

3.6 Summary . 85

4 Lazy Data-Oriented Evaluation Strategies 86

4.1 Introduction . 86

4.2 Tree-Based Representation . 87

4.3 Tree-Based Strategies Development 89

4.4 Tree Data Type . 91

4.5 T1: Unconstrained parTree Strategy 91

4.6 Parallelism Control Mechanisms . 92

4.7 T2: Depth-Thresholding (parTreeDepth) 96

vi

CONTENTS

4.8 T3: Synthesised Size Info (parTreeSizeAnn) 97

4.9 T4: Lazy Size Check (parTreeLazySize) 97

4.10 T5: Fuel-Based Control (parTreeFuel) 99

4.10.1 Fuel Splitting Methods . 100

4.11 Heuristics . 104

4.11.1 Determining Depth Threshold d 105

4.11.2 Determining Size Threshold s 107

4.11.3 Determining Fuel f . 107

4.12 Performance Evaluation . 108

4.12.1 Experimental Setup . 108

4.12.2 Benchmark Program . 110

4.12.3 Barnes-Hut Algorithm . 113

4.12.4 Sparse Matrix Multiplication 118

4.13 Summary . 122

5 Graph Evaluation Strategies 123

5.1 Graph Definitions . 123

5.1.1 Graph Types . 124

5.2 Graph Representations . 125

5.3 Related Work in Functional Graphs 126

5.3.1 Data.Graph . 126

5.3.2 FGL . 126

5.4 Data Type Implementation . 127

5.4.1 Adapting Tree Data Type . 127

5.4.2 Extended Graph Data Type 128

5.4.3 Administration Data Structures 129

5.5 Graph Traversal Strategies . 130

5.5.1 G1: Depth-First . 130

5.5.2 G2: Breadth-First . 132

5.6 Limiting Parallelism . 138

5.6.1 G3: Implementing a Hybrid Traversal Order 138

5.6.2 G4: Depth Threshold . 140

5.6.3 G5: Fuel Passing . 141

5.7 Traversal Strategies Summary . 141

5.8 Performance Results . 142

5.8.1 Graph Search Algorithm . 142

5.8.2 Input Set . 142

5.8.3 Traversal Performance . 143

Acyclic Graph . 143

Cyclic Graph . 143

5.9 Summary . 146

vii

CONTENTS

6 Conclusion 147

6.1 Summary . 147

6.2 Contributions . 149

6.3 Limitations and Future Work . 150

Bibliography 153

viii

List of Tables

2.1 Parallel Programming Models, Languages and Systems 19

2.2 Summary of Parallel Haskell Programming Models 38

3.1 Sequential and parallel algorithm versions 56

3.2 Sequential tuning . 64

3.3 Effect of compiler optimisation (All-Pairs) 64

3.4 No. of bodies in each chunk (chunk size). 71

3.5 GpH–Evaluation Strategies runtimes and speedups (All-Pairs). 72

3.6 GpH–Evaluation Strategies runtimes and speedups (All-Pairs; differ-

ent chunking strategies) . 73

3.7 GpH–Evaluation Strategies runtimes and speedups (Barnes-Hut) . . . 74

3.8 Par monad runtimes and speedups (All-Pairs). 75

3.9 Par monad statistics: GC and max. residency. 75

3.10 Par monad runtimes and speedups (Barnes-Hut) 76

3.11 Eden skeleton overheads - par. run on 8 cores 77

3.12 Eden runtimes and speedups (All-Pairs) 77

3.13 Eden runtimes and speedups (Barnes-Hut) 78

3.14 GpH and Par monad runtimes and speedups; Multicore Challenge

input specification . 83

4.1 Strategies overview and classification 96

4.2 Heuristic parameters . 104

4.3 Number of nodes at each depth for a complete tree. 106

4.4 Benchmark program – Runtime and Speedup on 48 cores. 112

4.5 Barnes-Hut algorithm – Runtime and Speedup on 48 cores. 115

5.1 Breadth-first numbering (tree) and traversal (graph) 133

5.2 Summary of graph traversal strategies 142

5.3 Graph search – Runtime and Speedup. 144

5.4 Sparks and heap allocation statistics. 145

6.1 Evaluation strategies implementation overview 148

ix

List of Figures

2.1 Main research concepts . 9

2.2 Shared and distributed memory architectures 11

2.3 Foster’s parallel algorithm design methodology. 13

2.4 Memory programming model . 17

2.5 Parallel Programming Models – An Overview 20

2.6 D&C call tree structure . 24

2.7 Strict vs. non-strict evaluation of a function call 28

2.8 Alternative append-tree representations of linked-list. 42

3.1 List parallel processing . 49

3.2 All-pairs force calculation (2D) . 54

3.3 2D Barnes-Hut region . 55

3.4 Desktop-class 8 cores machine topology map. 66

3.5 Threadscope work distribution (Par. run on 8 cores) 80

3.6 EdenTV using different map skeleton (Par. run on 8 PEs) 81

3.7 All-Pairs and Barnes-Hut speedup graph (1-8 cores) 82

4.1 Alternative representation of list using append tree 88

4.2 Tree implicit partitions . 89

4.3 Depth vs (strict) size thresholding . 97

4.4 Lazily de-constructing subtrees and establishing node size (s = 3) . . 98

4.5 Use of annotation-based strategies. 100

4.6 Giveback fuel mechanism. 101

4.7 Fuel flow with different distribution function. 102

4.8 Fuel distribution example on a binary tree (f = 10) 104

4.9 Server-class 48 cores machine topology map. 109

4.10 ghc-vis: visualise partially evaluated tree structure. 110

4.11 Depth distribution for test program input. 111

4.12 Test program speedups on 1-48 cores. 113

4.13 Depth heuristics performance comparison: D1 vs D2 114

4.14 Bodies distribution . 114

4.15 Barnes-Hut speedups on 1–48 cores. 116

4.16 Depth vs Lazy Size sparks creation. 117

x

LIST OF FIGURES

4.17 Quad-tree representation of a sparse matrix. 119

4.18 Sparse matrix multiplication speedups on 1-40 cores. 121

4.19 GC-MUT and allocation for depth and giveback. 122

5.1 Types of Graph . 125

5.2 Depth-first traversal order . 130

5.3 Breadth-first traversal order . 132

5.4 ghc-vis: circular data structure . 136

5.5 Graph structure preserved on traversal. 138

5.6 Depth threshold vs. fuel passing in graphs. 140

5.7 Acyclic graph traversals speedup on 8 cores, 20k nodes. 145

5.8 Cyclic graph traversals speedup on 8 cores, 20k nodes. 146

xi

List of Abbreviations and

Acronyms

CAS Compare-And-Swap atomic instruction.

CPU Central Processing Unit.

CUDA NVIDIA’s Compute Unified Device Architec-

ture API.

DPH Data Parallel Haskell.

EdenSkel Eden Skeleton library.

EdenTV Eden Trace Viewer profiling tool.

GC Garbage Collection.

GHC Glasgow Haskell Compiler.

GHC-Eden Parallel Haskell Eden compiler.

GHC-SMP Glasgow Haskell Compiler for Symmetric

Multi-Processor.

GPGPU General-Purpose Graphics Processing Unit.

GpH Glasgow parallel Haskell.

MIMD Multiple Instruction, Multiple Data architec-

ture.

MPI Message Passing Interface communication li-

brary.

MUT Mutation time.

NUMA Non-Uniform Memory Access.

PE Processing Element.

PGAS Partitioned Global Address Space program-

ming model.

xii

List of Abbreviations and Acronyms

PLINQ Microsoft’s Parallel Language-Integrated

Query.

RT Running time.

RTS Run-Time System.

SIMD Single Instruction, Multiple Data architec-

ture.

SoC System-on-Chip.

SP Speed up.

TBB Intel’s Threading Building Blocks C++ tem-

plate library.

TPL Microsoft .NET Task Parallel Library.

TSO Thread State Object.

UMA Uniform Memory Access.

WHNF Weak Head Normal Form evaluation degree.

xiii

List of Publications

Part of the work presented in this thesis is derived from the author’s contribution

to the following papers. The author’s main contribution in (Belikov et al., 2013)

is the systematic classification of parallel programming models, including the table

and figure, which is presented in the background research in this thesis in Chapter 2.

The background research covers materials from (Totoo et al., 2012) in parallelism

support in modern functional languages. Chapter 3 draws from work published in

(Totoo and Loidl, 2014a) and Chapter 4 is a revised version of materials published

in (Totoo and Loidl, 2014b).

1. Totoo, P., Deligiannis, P., and Loidl, H.-W. (2012). Haskell vs. F# vs. Scala:

A high-level language features and parallelism support comparison. In Proceed-

ings of the 1st ACM SIGPLAN Workshop on Functional High-performance

Computing, FHPC 12, pp. 49-60, New York, NY, USA. ACM.

DOI: 10.1145/2364474.2364483

2. Belikov, E., Deligiannis, P., Totoo, P., Aljabri, M., and Loidl, H.-W. (2013).

A survey of high-level parallel programming models. Technical report, Heriot-

Watt University, Edinburgh.

Tech.Rep. No.: HW-MACS-TR-0103

3. Totoo, P. and Loidl, H.-W. (2014a). Parallel Haskell implementations of the

N-body problem. Concurrency Computation: Practice and Experience, Vol.

26(4), pp. 987-1019.

DOI: 10.1002/cpe.3087

4. Totoo, P. and Loidl, H.-W. (2014b). Lazy data-oriented evaluation strategies.

In Proceedings of the 3rd ACM SIGPLAN Workshop on Functional High-

performance Computing, FHPC 14, pp. 63-74, New York, NY, USA. ACM.

DOI: 10.1145/2636228.2636234

Prabhat Totoo

xiv

http://dx.doi.org/10.1145/2364474.2364483
http://www.macs.hw.ac.uk/cs/techreps/doc0103.html
http://dx.doi.org/10.1002/cpe.3087
http://dx.doi.org/10.1145/2636228.2636234

Chapter 1

Introduction

Hardware is increasingly parallel and efficient. Efficient parallel programming is

needed to exploit its computational power. However, parallel programming has

the deserved reputation of being difficult. Harnessing the enormous computational

power of parallel hardware remains a challenging task. Based on the sequential von

Neumann machine, mainstream parallel programming technologies have inherent is-

sues: they require the programmer to handle many aspects of low-level parallel man-

agement such as thread synchronisation, data access and exchange. Consequently,

it becomes difficult to ensure correct behaviour of parallel programs, performance

scalability and portability.

Writing a parallel program entails specifying the computation, i.e. a correct, efficient

algorithm, and the coordination, i.e. arranging the computations to achieve good

parallel behaviour. Specifying full coordination details is a significant burden on

the programmer. Therefore, choosing the right programming model with the right

level of abstraction and degree of control is a crucial step for productivity and

performance, respectively.

High-level parallel programming models simplify parallel programming by offering

powerful abstractions and by hiding low-level details of parallel coordination (Loidl

et al., 2003). Most aspects of parallel coordination are encoded in the underly-

ing system, and, often, when using a high-level model, the programmer only has

to identify potential parallelism. In particular, functional programming represents

significant advantages for parallel computation (Hammond and Michaelson, 2000).

Functional languages are based on the theoretical and mathematical computation

model of function abstraction and application, lambda calculus, provide referential

transparency, support higher-order functions, and, important to parallel program-

ming, the absence of data races due to side-effect-free functions. The key advantage

1

Chapter 1: Introduction

derived is deterministic parallelism: the parallel program has the same (simple) se-

mantics as the sequential. Functional languages provide a high degree of abstractions

and expressiveness, enabling the parallel programmer to only specify what value the

program should compute instead of how to compute it. Managing parallelism is

all about how and therefore largely hidden from the programmer. Furthermore,

functional programming is gaining widespread adoption with languages such as F#,

Scala and Erlang (Syme et al., 2007; Odersky et al., 2006; Armstrong et al., 1995)

building on the strength of functional programming to facilitate both control and

data parallelism. Haskell (Hudak et al., 1992) is an advanced purely-functional

language that offers a very high-level approach to specifying parallelism.

A large number of parallel programs fall under the data-parallel category where

parallelism is derived from data decomposition. Data, usually represented in arrays

or lists, are distributed and processed simultaneously by different processing units.

Parallel data structures are important components of data-parallel algorithm and

programming. A parallel data structure is specifically designed to take advantage of

parallel evaluation of independent components, often in an implicit way, and scales

with both data size and processing capabilities.

1.1 Thesis Statement

Central to this research are laziness and strategies.

Laziness A rather unusual combination of concepts is that of laziness and parallel

evaluation. Essentially, laziness entails delaying computation, whereas parallel eval-

uation seeks to execute as much as possible to have expressions reduced to values as

soon as possible. Laziness can be useful in the administration of parallelism. And

this is a main component of study in this thesis.

Evaluation Strategies

Algorithm + Strategy = Parallelism (Trinder et al., 1998).

Evaluation strategies (Trinder et al., 1998a) provide a high-level way of specifying

the dynamic behaviour of a Haskell program. Evaluation strategies use laziness to

separate the computation from the coordination aspects of parallelism. As higher-

order functions, strategies can be composed, passed as arguments, and be defined for

most control and data structures. Additionally, its high-level coordination notation

means that different parallelisations require little effort.

2

Chapter 1: Introduction

This thesis investigates the use of laziness in the implementation of evaluation strate-

gies that operate on data structures to improve parallel performance. In particular,

it looks at the high-level specification of data-parallelism over Haskell’s built in list

type, and custom-defined tree and graph types, using functional programming and

lazy evaluation techniques. The suitability of lazy programming techniques for par-

allel computation has not been studied in similar level of detail, and this is a main

focus of the thesis.

The main type of parallelism covered is data-parallelism, enabled through parallel

evaluation strategies that operate on data structures that are carefully represented

for efficient parallel processing. The thesis covers approaches and methods to defin-

ing such strategies. We take advantage of laziness as a language feature, the ability

to define circular programs that derives from it, and other functional programming

techniques for efficient parallelism control in the implementation of strategies for tree

and graph data-structures that can be re-used in a range of different applications.

A key thesis hypothesis is laziness can be exploited to make parallel programs run

faster. Parallel performance can be improved and parallel programming can be

simplified by enabling parallel evaluation of data structures, supported with lazy

evaluation techniques. Using data-structure-driven parallelism through the care-

ful choice of data representation, and parallel operations, programs should benefit

from parallelism for free or with minimal code changes. Parallel data structures

are represented in a way that favours independent evaluation of sub-components,

for example, tree-based representation is preferred over sequence, and with implic-

itly parallel operations. Parallel coordination is expressed at a very high level of

abstraction using Haskell evaluation strategies.

The efficiency of our method is validated through experimental evidence presented in

meticulous evaluation on constructed test program as well as non-trivial applications

(Section 4.12). We are primarily concerned with execution time, but also usage of

space through careful optimisation to limit space.

The thesis advocates the use of high-level parallel programming models in modern

functional languages that abstract most of the complexities of parallel coordination,

thus enabling specifying parallelism in a minimally intrusive way. Experimental

evidence supports our claim that high-level programming techniques are suitable to

gain reasonable performance on medium-scale multi-core machines (desktops 8-16

cores) and larger-scale server-class many-core machines with up to 48 cores.

Following the same design philosophy of algorithmic skeletons, the focus on data

structures will provide easy-to-use parallelism by using the right data structure. The

parallel structure inherently implements advanced parallelism control mechanisms

3

Chapter 1: Introduction

e.g. through automatic or heuristic-assisted granularity control.

In particular, this research seeks to answer the following main research questions:

• Non-strictness and parallel evaluation: What is the conflict between laziness

and parallel evaluation? Can we take advantage of laziness to arrange parallel

computation, in particular, for the parallel manipulation of data structures?

What are the issues of laziness as the default strategy, especially with regard

to parallel data structure implementation?

Laziness and parallel computation seem contradictory. Indeed, any parallel

execution requires a certain degree of strictness to kick-start. What is the right

default of evaluation mechanism? Can we still build on non-strict semantics by

default and benefit from parallelism, in particular for infinite data structures

and circular programs which depend on non-strictness.

• The efficiency of tree-based parallelism: Is the underlying representation of a

data structure important for parallel processing? Does a tree-based represen-

tation enable more efficient and effective parallelisation strategies?

In particular, we seek to substantiate the benefits of using recursive tree-based

representation over a linear representation, in particular, through implemen-

tation of advanced parallelism control mechanisms over recursively defined

tree-based data structures. This representation can be adopted by inherently

sequential data structures e.g. linked-list through an append-tree represen-

tation which lends itself more easily to parallelisation. We seek to minimise

the overhead of representation change, and investigate if it could be recovered

through performance gain from parallelisation.

• Auto-parallelisation and parallelism for free: What aspects and degree of con-

trol should be left to the programmer?

Certain parameters to control parallel execution can be programmer-specified

or fully automated. Is it better to allow the library to determine the right

amount of parallelism generation, for example, by implementing strategies

that can auto-tune through heuristic-based parameter selection?

How much automatic parallelisation can we achieve? The use of data struc-

tures with inherent parallel operations is expected to require minimal change

to the sequential algorithm.

More widely, we seek to answer the following:

• What are the benefits of using functional programming for parallel computa-

tion? Does the high-level of abstraction facilitate the specificaton of parallelism

4

Chapter 1: Introduction

in the language, in particular, whether it is sufficiently powerful for efficient

data-oriented parallelism? What are the limitations of expressiveness?

A higher level of abstraction often comes with decreased level of flexibility

and control, both of which are needed for specific tunings. We seek to an-

swer whether data structures expressed in a strongly typed system can be

parallelised using high-level language constructs, and what are the limitations

presented.

1.2 Contributions

The main research contributions of this thesis are:

• novel evaluation strategies for controlling parallelism;

• implementation of the novel strategies in Haskell;

• experimental evaluation of properties of the strategies on appropriate exem-

plars on large scale many core platforms.

The detailed contributions are presented as follows:

1. Parallel Haskells programmability and performance evaluation based on list and

tree processing (Totoo and Loidl, 2014a) (presented in Chapter 3). We present

a comparative study of high-level parallel programming models in Haskell, cov-

ering parallel extensions (GpH, Eden) and libraries (Par monad), by imple-

menting two highly tuned n-body problem algorithms: a naive allpair version

using list and a realistic Barnes-Hut algorithm using list and tree.

2. Lazy data-oriented evaluation strategies for tree-based data structures (Totoo

and Loidl, 2014b) (presented in Chapter 4). We implement a number of flexi-

ble parallelism control mechanisms defined as data-oriented evaluation strate-

gies for tree-like data structures. In particular, we use the concept of fuel as a

more flexible mechanism to throttle parallelism. To specify the administration

of the parallel execution, we add annotations to the data structure and per-

form lazy size computation using natural numbers to avoid full data structure

traversal. We achieve flexible control through the application of lazy evalua-

tion techniques, including the ability to have circular programs definition, for

parallel coordination, and use heuristic-based methods for auto-tuning strate-

gies.

5

Chapter 1: Introduction

3. Parallel graph traversal strategies (presented in Chapter 5). We implement

graph strategies using similar control mechanisms to those used for tree data

structures. A number of sequential and parallel traversal strategies are de-

veloped, further analysing the interplay between laziness and parallelism to

deal with cyclic graph instances. We develop a hybrid traversal strategy for

graphs, adapting the concept of iterative deepening from artificial intelligence,

to have improved parallelism generation in a breadth-first order initially, and

then proceed depth-first to minimise overhead associated with a full parallel

breadth-first traversal.

1.3 Thesis Structure

The thesis is structured in the following chapters.

Chapter 2 provides a literature review on parallel hardware, programming models

and higher-level approaches to parallelism. It covers a range of parallel programming

models and attempts to classify various models based on language properties and

level of abstraction and coordination provided. The chapter motivates parallel func-

tional programming, and emphasises Haskell as the main implementation language.

The chapter also provides a brief history of laziness.

Chapter 3 covers Haskell evaluation strategies in more detail and highlights meth-

ods for developing parallel list strategies. The chapter evaluates this model against

two other parallel Haskells – Par monad and Eden – both on shared-memory ma-

chines. It provides a detailed performance analysis and evaluation of the three

parallel frameworks in Haskell based on the implementation and parallelisation of

two algorithms for the n-body problem.

Chapter 4 extends the methods for developing data-oriented evaluation strategies

that further exploit lazy evaluation techniques and implement flexible parallelism

control mechanisms for parallel evaluation of tree data structure sub-components.

It covers the use of heuristics for automatic parameter selection and describes three

applications that internally use trees to test and evaluate the strategies.

Chapter 5 carries over techniques used in the previous chapter and applies them to

the more complex graph data structure which uses a tree-based representation. It

covers implementation of a number of sequential and parallel traversals on graphs.

These traversals are tested as graph search algorithms over different types of graph

including cyclic which requires lazy constructs for its representation.

Chapter 6 draws conclusions from our experiments and results, and highlights on-

6

Chapter 1: Introduction

going work to further improve performance without sacrificing key properties such

as separation of concerns, expressiveness, and compositionality.

7

Chapter 2

Background

This chapter provides a literature review on parallel hardware trends and associ-

ated parallel programming models used in both mainstream software industry and

research. It presents a classification of programming models based on language

properties and grouped into different classes of languages. In particular, the chap-

ter highlights the problems with traditional technologies with mainstream parallel

programming, and it emphasises higher-level approaches to parallel programming,

through parallel patterns and parallel functional programming, where both abstract

over the low-level complexities from application programmers. It describes Haskell

as the main language used in this research for its built-in concurrency and paral-

lelism support. Lastly, the chapter provides a brief history of laziness and covers

trends in data structures for parallel programming.

2.1 Research Overview

The research in this thesis is within the broad area of parallel programming, centred

on three specific topics: high-level declarative style parallel programming, specifi-

cally, parallel functional programming; data-parallelism; and non-strict evaluation

in the context of arranging parallel computation. Figure 2.1 identifies key references

from literature of the principle research concepts.

• Parallel Programming. At the centre of this research is parallel programming

which aims at reducing the execution time by arranging computation and

evaluation in parallel to exploit multiple cores. A programming model that

allows us to expand to network of multi-cores with little to no change to an

existing algorithm is highly desired. Our emphasis is on high-level parallel

programming models.

8

Chapter 2: Background

*Parallel processing of lazy data structures in a functional setting.

Figure 2.1: Main research concepts

• Parallel Declarative Programming. Conventional parallel programming is highly

complex and error prone. To improve programmer’s productivity, we need to

raise the level of abstraction with a higher-level programming model that hides

most aspects of managing parallel execution in the system. Our research takes

a high-level approach to parallelism. This is often achieved in a declarative

style of programming, in particular, parallel functional programming.

• Non-Strict Evaluation. Non-strictness represents an interesting language prop-

erty, which can be exploited to make programs, and in particular, data struc-

tures, more efficient if used correctly. Laziness allows us to write elegant code

that would be otherwise impractical in a strict language. However, laziness

may seem incompatible with parallel evaluation. Through careful implemen-

tation, laziness can be exploited in conjunction with parallel evaluation to

improve performance.

• Data-Oriented Parallelism Data structures designed with parallelism in mind

can significantly improve performance with minimal to no code change to the

sequential algorithm. Our data-structure-driven approach encourages a data-

centric approach where parallelism is derived through generic parallel traversal

and evaluation of components of data structures. We seek performance gain

from the use of efficiently designed, represented, and implemented data struc-

tures that favour parallel evaluation.

9

Chapter 2: Background

2.2 Parallel Hardware

Parallel machines are ubiquitous with desktops, laptops and even mobile phones

containing two or more cores. The trend is heading towards tens or hundreds of

processing units in commodity hardware (Asanovic et al., 2006). Performance gain

cannot be expected by upgrading to a newer processor as it was previously possible

by exploiting higher clock frequency, which has now stalled. Instead, application

programs need to be re-written for parallel processing to take advantage of multi-

ple processing units. Parallel programming is the dominant technology to harness

increasingly parallel hardware potential. Computational problems that were previ-

ously unfeasible for serial processing can now be solved using parallel processing. It

is, however, harder than sequential programming, as it requires the programmer to

think in parallel from the offset.

The parallel hardware landscape is changing faster than software technology es-

pecially since around 2000 with GPGPUs (Owens et al., 2007) and 2005 with

multi-cores becoming mainstream. Initiated by the physical limits of the num-

ber of transistors that can be embedded in a single processor, the default is now

to have multiple compute cores in a chip. Soon, the multi-core machines will be

superseded by many-core, for example, the Intel MIC-based architecture Xeon Phi

co-processors (Chrysos, 2012), and the lower cost and open source alternative Paral-

lella platform (Adapteva, 2015), have 60 and 64 cores, respectively. General-purpose

GPUs are now the hardware of choice for many data-intensive and data-parallel ap-

plications. FPGAs (Sadrozinski and Wu, 2010) offer even higher performance, at

higher programming cost, and are used in niche areas.

Flynn’s taxonomy classifies computer architectures based on the number of instruc-

tion and data streams (Flynn, 1972). Data-parallel systems, which includes GPUs

and accelerators, are classified as single instruction, multiple data (SIMD) machines.

Most general-purpose parallel systems fall under the multiple instruction, multiple

data (MIMD) category. In this architecture type, the processing units work on

separate instruction and data streams, thus encompassing a wider range of parallel

applications. MIMD machines are usually classified based on the assumptions they

make about the underlying memory architecture – shared or distributed.

2.2.1 Shared Memory

In shared memory architectures, all processors operate independently but share the

same physical memory. Changes in a memory location effected by one processor are

visible to all other processors. Shared memory architectures are further divided into

10

Chapter 2: Background

(a) shared (b) distributed

Figure 2.2: Shared and distributed memory architectures

two classes based on the memory access time (Tanenbaum and Austin, 2012, ch.8):

Uniform Memory Access (UMA) – which mainly represents Symmetric Multipro-

cessor (SMP) machines with identical processors and equal access times to memory;

and Non-Uniform Memory Access (NUMA) – in which the access time to all mem-

ory locations is not the same for all processors. NUMA is becoming the norm with

increasing core numbers. NUMA machines are usually made up of two or more

SMPs grouped together, and making the memory of each SMP directly accessible

by the others. For both classes, cache coherency can be achieved at hardware level,

by making sure update made by one processor is seen by all others. Again this is

a source of overhead increasing with core numbers and it is unclear whether future

generations of many-cores will support full cache coherence. The main drawback of

shared memory architecture is scalability: increasing the number of processors leads

to high memory contention causing bottleneck.

2.2.2 Distributed Memory

In distributed memory architectures, there is no global view of all memories. Each

processor has its own memory attached to it and is connected via a network to

other processors. A processor has quick access to its local memory but requires ex-

plicit communication, thus high access times, for data residing on another processor.

This hardware model is, however, scalable since memory traffic is not an issue with

increasing number of processors. Irrespective of the physical memory layout, lan-

guages sometimes implement a virtual shared memory view. This helps to abstract

the physical distribution of memory.

Recent architectural trend indicates a move to increasingly heterogeneous hard-

ware (Belikov et al., 2013). It is common for mobile devices to come with system-

on-a-chip (SoC) processors (Furber, 2000; Risset, 2011) integrating general-purpose

CPU with other compute cores e.g. GPU and DSP. Programming these increas-

ingly complex hardware is a difficult task. It requires the programmer to not

11

Chapter 2: Background

only think about the computation but also the coordination aspects of parallelism.

Architecture-independent programming models that abstract over underlying hard-

ware are key.

2.3 Parallel Programming and Patterns

Concurrent and parallel programming are often used to mean the same thing. It is

important to first clarify our use of the term parallel programming, both in general

and in the context of parallel data structures. Concurrency is the property of a

system in which independent computations can run simultaneously. On the other

hand, parallelism is meant to execute computations in parallel for the main purpose

of improving performance through the efficient use of available resources on separate

CPUs.

In a concurrent system, a moderate number of threads or processes cooperate and

communicate with each other to synchronise their actions. This is often through

shared variables or by message passing. In such a system, performance is not key.

Proper synchronisation ensures correctness and consistency by avoiding race condi-

tions and deadlocks. Some parallel systems are built on this model to make programs

run faster: independent threads can execute on different processing elements (PEs),

thus leading to reduced execution time for a particular system. As the hardware

has moved from single core to multicore, and now manycore, this revolution re-

quires parallel programming that can use several processing units at the same time

is becoming increasingly important to exploit the available resources. Traditional

programming models originated from the high-performance computing community

using low-level languages such as C and Fortran with language extensions or li-

braries to enable parallel execution. For example, C+OpenMP (OpenMP, 2012)

and C+MPI (ANL, 2012) are widely used on shared-memory single-node machine

and networks of nodes, respectively. These models offer detailed control of parallel

execution to the programmer and as such leave many opportunities for errors in the

parallel program. Debugging such programs is hard with often non-deterministic

outcome of parallel runs. Other thread-based models are also non-deterministic and

require careful programming to avoid data races. Deterministic models often do not

expose the explicit notion of a thread or task to the programmer and handle most

parallel coordination implicitly in the system.

Designing parallel program from scratch is not easy especially in the absence of a

proper methodology. Unstructured parallel programming not only leads program-

mers to “re-invent the wheel”, but it also does not allow the underlying run-time

system to exploit any pre-defined structure in the computation for optimisation

12

Chapter 2: Background

Figure 2.3: Foster’s parallel algorithm design methodology.

opportunities. To help with the difficulties of parallel programming, a number of

best practices or standards have emerged in the last decades. For example, Fos-

ter’s design methodology (Foster, 1995) emphasises a model which is based on tasks

connected by channels, hence well-suited for distributed memory, and a methodical

four-stage approach to designing parallel algorithms (depicted in Figure 2.3). In

brief, the four stages are:

1. Partitioning. Identify parallel tasks through domain (data) or functional de-

composition. A key issue in this phase is ensuring comparable task sizes so

each processor has equal workload to facilitate load balancing.

2. Communication. Identify channels of communication between tasks. The aim

here is to limit communication to a few neighbours, and local communication

is preferred over global communication.

3. Agglomeration. Combine tasks to improve performance or reduce overheads

by improving locality and granularity.

4. Mapping. Allocate tasks to physical processors using static and dynamic meth-

ods for regular and irregular computation, respectively. This step depends on

architecture details such as number of processors.

Design patterns (Gamma et al., 1995) encourages structured coding and code re-use

by specifying generalised solutions to recurring problems. A pattern language for

parallel programming, inspired by design patterns, is described by (Mattson et al.,

2004). Design patterns have been hugely successful to help programmer to “think

OOP”, and now to “think parallel” for parallel programming. Parallel programs

13

Chapter 2: Background

exhibit common patterns that can be abstracted. Parallel patterns abstract certain

details and delegate them to the system, while offering an easy-to-use interface to

the programmer.

2.4 A Survey of Parallel Programming Models

A parallel programming model abstracts hardware and memory architectures, and

aims to improve productivity and implementation efficiency. Parallel programming

models are diverse (see Asanovic et al. (2006); Silva and Buyya (1999); Skillicorn

(1995); Diaz et al. (2012); Van Roy (2009)) and there is no clear-cut way of classifying

them. We identify the following key language properties of a parallel programming

model, that is, the main classification for the scope of this thesis, and provide

examples from different classes shown in Table 2.1:

2.4.1 Language Properties

The properties (listed across the columns on Table 2.1) highlight key characteristics

of a language (Belikov et al., 2013).

• Coordination What is the level of abstraction provided by the language?

• Parallelism Types Does the language support task or data parallel applications,

or both?

• Memory programming model How do threads communicate with each other?

• Parallel programs behaviour Does parallel execution result in deterministic or

non-deterministic behaviour?

• Embedding techniques How is parallelism introduced into the code?

Coordination Abstraction

Coordination abstraction refers to the degree of explicit control required by the

programmer to manage parallelism and access to shared resources. A high level of

abstraction leads to higher productivity and reduced risk of introducing errors in the

parallel program at the potential cost of decreased performance (Spetka et al., 2008).

This is often the case with implicitly parallel language, without any explicit control of

parallelism. Other, semi-explicit, languages, only expose potential parallelism, while

14

Chapter 2: Background

more explicit and low-level languages have constructs for generation and handling

of explicit threads.

Very Low-Level: Models at a very low-level leave all aspects of parallel coordination

to the programmer. Any model requiring knowledge of underlying hardware and

architecture is essentially very low-level. GPU programming is put at this level,

as the model is often vendor-specific. For instance, CUDA targets only NVIDIA

GPUs (NVIDIA, 2008). Other models for heterogeneous CPU and GPU systems

are OpenCL (Stone et al., 2010) and OpenACC (Wolfe, 2013), and not discussed in

more detail due to their very low level abstraction.

Low-Level: Such models expose most coordination issues such as problem decompo-

sition, communication, and synchronisation to the programmer (Diaz et al., 2012).

These issues are orthogonal to the algorithmic problem, require additional effort,

and thus reduce productivity. Dealing with these is notoriously difficult, which con-

stitutes the challenge of parallel programming. Low-level models offer extensive

tuning opportunities for expert programmers at the cost of significant effort. In

Table 2.1 we classify Java Threads (Lea, 1999) and MPI as low-level languages as

thread management and interaction is fairly explicit.

Mid-Level: Models in this category hide some of the coordination issues from the

programmer, in particular thread and memory management, as well as mapping

of work units to threads. Mid-level models attempt to strike a balance between

the performance benefits through available tuning opportunities and the produc-

tivity advantage through the increased level of abstraction. A mid-level language

example is OpenMP (2012) in which the programmer uses directives to identify

parallel regions and the compiler generates the threaded code. The Task Parallel

Library (Leijen et al., 2009) can also be classified as mid-level. Although it provides

task abstraction and the run-time system automatically maps tasks that represent

distinct units of work to worker threads, the programmer is still responsible for

synchronisation and splitting work into tasks.

High-Level: These models abstract over most of the coordination, often leaving

only advisory identification of parallelism to the programmer. Usually built on

top of basic parallel constructs, these models provide a more structured way of

describing parallelism through the use of abstractions that encapsulate common

patterns of computation and coordination. As we move to a higher-level model,

parallel coordination becomes more implicit. High-level models, e.g. those that

implement algorithmic skeletons (more detail and examples in Section 2.5.1), can

offer an architecture-independent interface while providing multiple parallel back-

ends to retain performance across different architectures. The programmer needs

merely to select suitable skeletons and get parallelism for free. High-level models

15

Chapter 2: Background

offer the most powerful abstractions whilst substantially complicating the efficient

implementation of the underlying language or library.

Types of Parallelism

There two basic types of parallelism, data and task, corresponding to the domain and

functional decomposition techniques, respectively, of a computational problem (Fos-

ter, 1995), i.e., independent data and task processing. Some models are specialised

for either data or task parallel applications, but many support both types.

Data parallel: This involves breaking down a large data set into smaller chunks that

are processed in parallel by applying the same function to each chunk. The outputs

from each processor are aggregated to produce the final result. Many problems,

including embarassingly parallel ones, fit into data parallel category. Data-parallel

specialised hardware such as GPUs are extensively used for these problems. There

are several possible ways of distributing data across processors, including static

(allocated at the start of computation) and dynamic (happens during execution to

improve load balancing). Data-parallel also encapsulates parallel data structures

designed with performance in mind. They have efficient underlying representation

suited for parallel processing and implicitly implements parallel operations on the

structures.

Task parallel: This programming model exploits the fact that a problem can be

structured based on inter-dependencies among separate tasks. Parallel execution is

achieved by running a separate thread for each independent task. The granularity of

tasks can be varied in this model, and more advanced load balancing and dynamic

scheduling is required. Often, data parallelism is implemented on top of a task

parallel framework.

Memory Programming Model

The memory model of programming describes how threads interact and synchronise

with each other in memory. The two main ways are through shared access and

message passing (Shan et al., 2003):

Shared-access: Multiple threads share a single address space. In this model, locks

are used as semaphores to control access to the shared memory. This ensures that

shared data is not manipulated by more than one thread at a time thus ensuring no

race conditions. This coordination is required for synchronisation in thread-based

parallel programs. Some languages provide higher-level constructs e.g. barriers to

16

Chapter 2: Background

(a) shared memory model (b) distributed memory
model

(c) PGAS model

P: process/thread/task
M: memory address space
(blue arrow): direct memory access
(red arrow): message passing

Figure 2.4: Memory programming model

avoid the issues such as deadlocks. These models work well on medium-scale parallel

machines. However, as the number of processors increases, the synchronisation

overheads grow higher with increased contentions.

Message-passing: Disjoint address space over all compute nodes. This programming

model adopts explicit message communication between threads, thus removing many

of the issues associated with sharing variables. Synchronisation is realised through

sending and receiving of messages. There can still be race conditions if message

passing is asynchronous. This model is well-suited for distributed systems. Message-

passing is used in actor-based programming model, e.g. in Scala Actor (Haller and

Odersky, 2009) and Erlang’s process communication (Armstrong et al., 1995), to

achieve high scalability on very high number of processing nodes.

The programming model usually, but not necessarily, reflects the underlying memory

architecture. For instance, on a SMP, shared-memory programming is common, but

it is also common to adopt a message-passing model, possibly with an increased

overhead. Similarly, distributed systems may abstract over distributed memory as

a single virtual memory space, as is the case in the Partitioned Global Address

Space (PGAS) model (PGAS, 2015). PGAS supports a shared namespace, like

shared memory. In this model, tasks can access any visible variable, local or remote.

Local variables are cheaper to access than remote ones. PGAS retains many of the

downsides of shared memory. Programming model using a hybrid approach uses

shared-access on local nodes, and message-passing across nodes over the network.

Hybrid programming model is also suited for heterogeneous computing.

Parallel Programs Behaviour

A deterministic model of parallelism guarantees that the parallel execution yields

the same results as the sequential execution of a program. This is not always the

17

Chapter 2: Background

case with languages that implement parallelism through concurrency. For instance,

programming models such as Java Threads depend on basic concurrency constructs

to implement parallelism and are non-deterministic, requiring the programmer to

explicitly manage the synchronisation among threads to ensure correct program

behaviour.

By contrast, invoking the parallel version of a query on a PLINQ (Campbell et al.,

2010) object and the par combinator in GpH (Trinder et al., 1998b), are both

deterministic. Deterministic models can be achieved by design or implemented by

building on top of non-deterministic constructs and providing a deterministic library,

e.g the parallel Par monad library for Haskell (Marlow et al., 2011). The main

advantage of deterministic programming models are that they abstract over low-level

thread management issues such as synchronisation, hence prevent the appearance

of race conditions and deadlocks.

Language Embedding

There is a range of different technologies to embed support for parallel programming

into a host language. Starting from a fresh language design, first-class primitives for

parallelism are the most obvious choice, maximising the flexibility and allowing to

use standard language concepts. When extending an existing language, new parallel

features can be provided as pre-processor or compiler directives, or built on top

of available low-level concurrency primitives. Often libraries are used to provide

similar features in a less invasive way (Marlow et al., 2011; Maier and Trinder,

2012). However, this approach is restricted to the optimisations available in the host

language. Alternatively, a separate coordination language can be used to specify

parallel execution and communication (Gelernter and Carriero, 1992), separating

the concerns of computation and coordination. Sufficiently high-level languages

enable seamless embedding of the coordination language in the host language, as

exemplified by Evaluation Strategies (Marlow et al., 2010) for GpH.

2.4.2 Classes of Programming Models

Now we group different programming models based on the emerging clusters. Fig-

ure 2.5 depicts models across the dimensions of computation, i.e. the algorithmic

solution, and coordination, i.e. the management of parallelism. Below we discuss

each group drawing specific examples from Table 2.1.

18

Chapter 2: Background

L
an

gu
ag

e/
E

x
te

n
si

on
R

ef
er

en
ce

C
o
o
rd

in
a
ti

o
n

A
b

st
ra

ct
io

n
P

a
ra

ll
el

is
m

T
y
p

e
M

em
o
ry

M
o
d

el
D

et
er

m
in

is
ti

c
E

m
b

ed
d

in
g

Par.Im
pe.

M
P

I/
P

V
M

(A
N

L
,

20
12

;
S

u
n

d
er

am
,

19
9
0
)

lo
w

ta
sk

,
d

a
ta

m
sg

p
a
ss

(e
x
p

l.
)

n
o

li
b

ra
ry

O
p

en
M

P
(O

p
en

M
P

,
20

12
)

m
id

d
a
ta

,
ta

sk
sh

a
re

d
(e

x
p

l.
)

n
o

co
m

p
il

er
d

ir
ec

ti
ve

s
C

il
k

(C
il
k
,

19
98

)
m

id
ta

sk
,

d
a
ta

sh
a
re

d
n

o
C

ex
te

n
si

o
n

T
B

B
(I

n
te

lT
B

B
,

20
12

)
m

id
d

a
ta

,
ta

sk
sh

a
re

d
n

o
C

+
+

li
b

ra
ry

Par.OO

J
av

a
T

h
re

ad
s/

P
th

re
ad

s
(L

ea
,

19
99

;
N

ic
h

ol
s

et
al

.,
1
9
9
6
)

lo
w

ta
sk

,
d

a
ta

sh
a
re

d
n

o
li

b
ra

ry
F

or
k
/J

oi
n

fr
am

ew
or

k
(L

ea
,

20
00

)
m

id
ta

sk
,

d
a
ta

sh
a
re

d
n

o
li

b
ra

ry
T

P
L

(L
ei

je
n

et
al

.,
20

09
)

m
id

ta
sk

,
d

a
ta

sh
a
re

d
n

o
.N

E
T

li
b

ra
ry

C
on

cu
rr

en
t

C
ol

le
ct

io
n

s
(O

ra
le

,
20

15
)

h
ig

h
d

a
ta

sh
a
re

d
ye

s
li

b
ra

ry

DataPar.

A
rB

B
(N

ew
b

u
rn

et
al

.,
20

11
)

m
id

d
a
ta

sh
a
re

d
ye

s
C

+
+

li
b

ra
ry

S
A

C
(S

ch
ol

z,
20

03
)

h
ig

h
d

a
ta

sh
a
re

d
ye

s
n

ew
la

n
g
u

a
g
e

H
P

F
(R

ic
h

ar
d

so
n

,
19

96
)

h
ig

h
d

a
ta

m
sg

p
a
ss

n
o

F
o
rt

ra
n

ex
te

n
si

o
n

D
P

H
(C

h
ak

ra
va

rt
y

et
al

.,
20

07
)

h
ig

h
d

a
ta

sh
a
re

d
ye

s
H

a
sk

el
l
ex

te
n

si
o
n

/
li

b
P

L
IN

Q
(C

am
p

b
el

l
et

al
.,

20
10

)
h

ig
h

d
a
ta

sh
a
re

d
ye

s
.N

E
T

li
b

ra
ry

PGAS

C
A

F
(N

u
m

ri
ch

an
d

R
ei

d
,

20
05

)
m

id
d

a
ta

,
ta

sk
P

G
A

S
n

o
F

o
rt

ra
n

ex
te

n
si

o
n

U
P

C
(U

P
C

C
on

so
rt

iu
m

,
20

05
)

m
id

ta
sk

,
d

a
ta

P
G

A
S

n
o

C
ex

te
n

si
o
n

C
h

ap
el

/F
or

tr
es

s/
X

10
(W

ei
la

n
d

,
20

07
)

h
ig

h
d

a
ta

,
ta

sk
P

G
A

S
n

o
n

ew
la

n
g
u

a
g
e

Par.Decl.

C
n

C
(N

ew
to

n
et

al
.,

20
11

)
m

id
ta

sk
,

d
a
ta

sh
a
re

d
/
m

sg
p

a
ss

ye
s

li
b

ra
ry

P
a
ra
ll
el

H
a
sk
el
ls

(B
er

th
ol

d
et

al
.,

20
09

)
h

ig
h

ta
sk

,
d

a
ta

sh
a
re

d
/
m

sg
p

a
ss

y
es

/
n

o
ex

te
n

si
o
n

s/
li

b
ra

ri
es

E
rl

an
g

(A
rm

st
ro

n
g

et
al

.,
19

95
)

h
ig

h
ta

sk
,

d
a
ta

m
sg

p
a
ss

(e
x
p

l.
)

n
o

n
ew

la
n

g
u

a
g
e

M
an

ti
co

re
(F

lu
et

et
al

.,
20

10
)

h
ig

h
ta

sk
,

d
a
ta

m
sg

p
a
ss

ye
s/

n
o

S
M

L
ex

te
n

si
o
n

GPGPU

O
p

en
C

L
,

C
U

D
A

(S
to

n
e

et
al

.,
20

10
;
N

V
ID

IA
,
2
0
0
8
)

lo
w

d
a
ta

h
ie

ra
r.

m
em

n
o

p
a
r

co
m

p
./

se
q

ke
rn

el
R

en
d

er
sc

ri
p

t
(G

o
og

le
In

c.
,

20
11

)
m

id
d

a
ta

h
ie

ra
r.

m
em

n
o

C
-e

x
te

n
si

o
n

/
li

b
C

+
+

A
M

P
(G

re
go

ry
an

d
M

il
le

r,
20

12
)

m
id

d
a
ta

h
ie

ra
r.

m
em

n
o

C
+

+
ex

te
n

si
o
n

/
li

b
O

ffl
oa

d
(C

o
op

er
et

al
.,

20
10

)
m

id
d

a
ta

,
ta

sk
h
ie

ra
r.

m
em

n
o

C
+

+
ex

te
n

si
o
n

/
li

b
S

ke
P

U
(E

n
m

y
re

n
an

d
K

es
sl

er
,

20
1
0
)

h
ig

h
d

a
ta

,
ta

sk
h

ie
ra

r.
m

em
ye

s
li

b
ra

ry

Skel.

H
ad

o
op

M
ap

R
ed

u
ce

(D
ea

n
an

d
G

h
em

aw
at

,
20

0
8
)

h
ig

h
d

a
ta

m
sg

p
a
ss

,
sh

a
re

d
ye

s
li

b
ra

ry
P

3L
(B

ac
ci

et
al

.,
19

95
)

h
ig

h
ta

sk
,

d
a
ta

im
p

li
ci

t
ye

s
n

ew
la

n
g
u

a
g
e

T
ab

le
2.

1:
P

ar
al

le
l

P
ro

gr
am

m
in

g
M

o
d
el

s,
L

an
gu

ag
es

an
d

S
y
st

em
s

19

Chapter 2: Background

Figure 2.5: Parallel Programming Models – An Overview

Parallel Imperative Imperative languages are based on the concepts of state,

side-effects, variable manipulation, pointers, iteration, and program counter to con-

trol execution and are rather low-level closely matching the uniprocessor architec-

ture (Van Roy, 2009). Although low-level of abstraction and explicit control enable

manual optimisation and may result in high performance on a single architecture,

this approach prevents many automatic optimisations which may result in poor per-

formance across other architectures and reduces portability as well as programmer

productivity. Nevertheless, these languages are heavily used in the industry (TIOBE

Software, 2013) and are likely to remain at the core of system-level software, at least

in the near future.

Parallel Object-Oriented Starting from the lowest level, threads are used in

object-oriented languages like in Java to run jobs in parallel. The programmer is

exposed to the management of threads. Software frameworks such as Fork/Join (Lea,

2000) or, at a higher level, TPL (Leijen et al., 2009) abstract over threads and

represent independent units of work as tasks with less management involved with

manually creating threads. This is left to the RTS which manages a fixed or dynamic

pool of threads and automatically maps tasks to running threads. Even more implicit

are libraries of concurrent collections which have efficient parallel implementations of

operations on common data structures, e.g. arrays and hash tables. These collections

hide concurrent access through implicit synchronisation.

20

Chapter 2: Background

Data Parallel and Array Languages Some languages support only data par-

allelism via constructs such as parallel for loop and parallel arrays. This fits a large

group of applications where parallelism is identified by domain decomposition. Data

parallel languages often provide a sequential model of computation and most coordi-

nation aspects are almost completely implicit. However, this model is restrictive and

unless the application exhibits data-parallelism, it cannot be used. Most languages

in this category efficiently handle regular data-parallelism. DPH (Jones et al., 2008)

is an instance of languages well-suited for irregular data-parallelism using flattening

transformation and distributing equal workload to processing units (Blelloch, 1995).

In Table 2.1, GPGPU is grouped under a separate class, though GPU program-

ming is essentially data-parallel. Data parallel models often exploit GPUs for fine-

grained data-parallel computations. For instance, ArBB (Newburn et al., 2011)

and SAC (Grelck and Scholz, 2006) can generate vector instructions. GPGPUs

and accelerators are increasingly used for massively data parallel computation. The

programming models are very low (as mentioned earlier) and often vendor-specific.

However, there are libraries (see Section 2.5.1) that provide a high level API and sup-

ports different backends for heterogeneous computing by building on top of OpenCL

and CUDA for GPU, and OpenMP for CPU.

PGAS The Partitioned Global Address Space (PGAS) abstraction, akin to a tun-

able virtual-shared memory view, attempts to unify programming by hiding com-

munication and by providing a shared-memory view (Figure 2.4 (c)) on potentially

physically distributed memory and is becoming increasingly popular in HPC (PGAS,

2015). Extensions to established languages include Unified Parallel C (UPC) (UPC

Consortium, 2005) and Co-Array Fortran (CAF) (Numrich and Reid, 1998) and new

developments include X10 (Charles et al., 2005), Chapel (Chamberlain et al., 2007),

and Fortress (Allen et al., 2008). Although the level of abstraction is raised, the

difficulty of arranging shared-memory accesses re-appears. Moreover, the explicit

specification of blocking factors may yield undesirable distributions of shared data

that may lead to performance degradation if data locality is impaired, making per-

formance prediction difficult unless the programmer is intimately familiar with the

architecture of the underlying target platform.

Parallel Declarative Declarative languages are based on the concepts of im-

mutability, single assignment, isolated side-effects, higher-order functions, recursion

and pattern matching, among others. Due to sophisticated compilation techniques

and run-time optimisations available because of their foundation in lambda cal-

culus, declarative programs can deliver competitive performance (Mainland et al.,

2013). An early functional language with performance competitive to Fortran was

21

Chapter 2: Background

SISAL (Skedzielewski, 1991; Cann, 1992). Moreover, the performance losses are of-

ten offset by productivity gains of the declarative approach that encourages writing

portable and high quality code. Most importantly, declarative languages better fit

modern parallel architectures, since they allow more flexible coordination of parallel

execution and avoid over-specifying evaluation order. For example, Manticore (Fluet

et al., 2007) supports multi-level parallelism.

Skeletons Algorithmic skeletons abstract commonly used patterns of parallel com-

putation, communication and interaction (Cole, 1991; González-Vélez and Leyton,

2010). Skeletons hide coordination details in possibly multiple underlying implemen-

tations that map to different target architectures, and provide a common interface

to the application programmers who can focus on the computational solution to a

problem. To the programmer, most parallelism is implicit. Skeletons can be com-

posed for both data and task parallel. e.g. parallel map, task farm, d&c (more

detail in Section 2.5.1).

2.5 Higher-Level Approaches to Parallelism

A parallel program must specify the computation, i.e. algorithm + data structures,

and the coordination, e.g. partition of computation into sub-computations, tasks

placement, communication and synchronisation between them. This makes writing

and debugging parallel programs hard and even harder in an imperative language

with shared state. Imperative languages are based on serial computers which follow

the Von Neumann design. A parallel imperative language requires the programmer

to handle both the computation and coordination aspects of a parallel program.

Imperative programming languages often distract the parallel programmer from the

main computational core of a problem and the coordination aspects of parallel com-

putation becoming the overwhelming part of the program. Issues such as thread

creation, placement, communication and synchronisation are often handled explic-

itly. By dealing with all these aspects manually, it becomes difficult to ensure the

correct parallel behaviour of a parallel program and verification is made difficult.

Moving away from low-level details allow the programmer to be more productive by

concentrating on the computational problem. The trend in languages is to incorpo-

rate higher-level constructs to hide details to some degree.

22

Chapter 2: Background

2.5.1 Algorithmic Skeletons

An increasingly important area of high-level abstractions for parallelism are algo-

rithmic skeletons (Cole, 1991): higher-order functions with pre-defined parallel com-

putation structures. Because they can hide all complexities of the efficient, possibly

hardware-dependent, handling of parallelism in a library, it is being picked up as

technology of choice in mainstream languages without built-in high-level parallelism

support. Prominent examples are Google’s MapReduce (Dean and Ghemawat, 2008)

implementation, on large-scale, distributed architectures, Intels Task Building Block

library (Reinders, 2007), and the Task Parallel Library (Campbell et al., 2010).

Other notable systems for skeleton-based parallelism are: eSkel (Benoit et al., 2005),

built in C and run on top of MPI; Muesli (Ciechanowicz et al., 2010), a C++ tem-

plate library implementing higher order functions, currying, and polymorphic types,

and support both data and task parallel skeletons; Skandium (Leyton and Piquer,

2010), a Java library that supports the use of nested skeletons on shared-memory

architectures; and P3L (Bacci et al., 1995), a skeleton based coordination language.

The SkelCL (Steuwer et al., 2011) skeleton library builds on top of OpenCL and

provides high-level abstractions to facilitate programming heterogeneous CPU/GPU

systems. Similarly, SkePU is a C++ template library that provides multi-backend

skeletons for heterogeneous architectures (Enmyren and Kessler, 2010). The library

provides implementations in CUDA and OpenCL for execution on GPU systems,

and in OpenMP to exploit multicore processors.

An up-to-date survey on algorithmic skeletons is given in (González-Vélez and

Leyton, 2010). It also provides a taxonomy for algorithmic skeleton constructs

based on their functionality and categorise the applications into data-parallel, task-

parallel and resolution skeletons. In the following, we highlight some of the most

common skeletons.

1. Map/Reduce is probably the most popular data-parallel skeleton which has

its origin in functional languages. The skeleton applies the same function

simultaneously to all data elements of a list, optionally, builds up the result by

combining intermediate results from workers in a reduce phase. Map/reduce

is a combination of task farm (map) and D&C (reduce) (see below). The

skeleton has been widely popularised by Google’s MapReduce implementation

on large-scale, distributed architectures.

2. Task Farm is a task-oriented pattern where the master process distributes tasks

to worker processes which in turn can distribute to other workers. The master

splits input once in n chunks in static task farm; whereas continually assigns

23

Chapter 2: Background

Figure 2.6: D&C call tree structure

input to free workers in a dynamic task farm. The master is a bottleneck in

this skeleton.

3. Pipeline. This skeleton enables staged computation where different tasks can

be run simultaneously on different pipe stages. Ideally, a pipeline needs a large

number of input items. A lazy language can overlay stages.

4. Divide and Conquer. D&C is a commonly occurring recursive skeleton that

creates a call tree structure. A problem is divided in n sub-problems each of

which are solved independently as a separate task, and finally, the results are

conquered, i.e. combined (split and join in Figure 2.6).

2.5.2 Parallel Declarative Programming

The proliferation of parallel hardware poses a significant challenge to the way these

machines are programmed. Traditionally, the coordination of the parallel execution

is controlled in every detail to achieve near-optimal performance. The prevalent

programming models are fairly low-level. Issues such as avoiding race conditions,

ensuring good load balance and minimising communication cost, needed to be ad-

dressed by the expert programmer through explicit language or library constructs.

This is only feasible in a setting where a lot of person-effort can be spent on the

parallelisation of a single application. Thus, this traditional view of parallelism,

“supercomputing parallelism”, represents a niche market in the overall domain of

computer science, and often confined to experts in the high-performance computing

community.

With multi-core hardware now dominating the architecture landscape, a new view

of parallelism, “desktop parallelism”, is of increasing importance. Here the goal

is to achieve some speedup from general-purpose, compute-intensive application,

that has been developed and maintained by domain experts, rather than experts in

parallel programming. Programming models that can be picked up by mainstream

application programmers are thus necessary. Rapid development becomes more

24

Chapter 2: Background

important than raw performance. Many programming models seeking to deal with

these difficulties have been developed and the general trend is to move towards

higher-level approaches where system programmers hide much of the complexities in

the implementation and thus requiring less effort from the application programmer’s

side to write parallel programs.

With a declarative style of programming, functional languages (Backus, 1978; Hughes,

1989) offer a high level of abstraction. They allow the programmer to focus on what

instead of how to compute. Coupled with high-order functions and advanced type

systems with polymorphic types, functional languages offer powerful abstraction

mechanisms. One of the main promises of functional programming is seen to be

their use for parallel computation. In a parallel setting, there are several reasons

why functional programming is suitable (Hammond and Michaelson, 2000). Fore-

most, because functional languages are not defined in terms of operations on a hidden

global state, they avoid unnecessary sequentialisation and provide ample latent par-

allelism that can be exploited by the compiler and runtime-system. This property

makes them an attractive platform for exploiting common-place parallel hardware

without imposing new concepts of explicit threads with explicit communication onto

every parallel application.

A key property of functional languages is referential transparency (Sondergaard and

Sestoft, 1989), which ensures that functions always return the same values given

the same parameters. This enables one to replace functions with the values without

changing the behaviour of the program. Pure functions disallow side-effects, i.e.

without changing the state of the world, by performing an action that changes the

global states of the program. Functional languages also discourage mutable states.

Thereby, the computations of expressions cannot interfere, permitting any order of

evaluation, in particular also a parallel one. By avoiding a hidden, mutable state,

it is easier to recognise which operations can be safely parallelised, and which not.

Function evaluation can be naturally done in parallel. The degree of parallelism is

only limited by the data dependencies in the program. This comes in contrast with

expressing parallelism in object-oriented and imperative languages, where specifying

parallelism is not only often intrusive but also very challenging.

Functional language implementations, such as GHC (Marlow and Jones, 2012), of-

fers ample opportunities for program transformation through compile-time optimisa-

tions. Functional features are being increasingly adopted in mainstream languages.

For instance, Java 8, C# 3.0 and C++11 (Goetz, 2013; Hejlsberg et al., 2003; Jarvi

and Freeman, 2010) have support for lambda expressions, making such concept

more accessible to mainstream programmers. Additionally, skeletons are naturally

expressed as higher-order functions in functional languages. For instance, evalua-

tion strategies are analogous to skeletons and cleanly separate computation from

25

Chapter 2: Background

coordination aspects.

2.5.3 Parallel Functional Languages

An influential, early system for parallel functional programming was Mul-T (Kranz

et al., 1989) using Lisp. It introduced the concept of futures as handles for a data-

structure, that might be evaluated in parallel and on which other threads should

synchronise. Importantly for performance, this system introduced lazy task cre-

ation (Mohr et al., 1991) as a technique, where one task can automatically subsume

the computation of another task, thus increasing the granularity of the parallelism.

Both, the language- and the system-level contributions have been picked up in recent

implementations of parallel functional languages.

One prominent example of this approach is the Manticore system (Fluet et al., 2007)

using a parallel variant of ML that includes futures and constructs for data paral-

lelism. It allows to specify parallelism on several levels in a large-scale applications,

typically using explicit synchronisation and coordination on the top level (Reppy

et al., 2009) and combining it with implicit, automatically managed, fine-grained

threads on lower levels (Fluet et al., 2010).

Another earlier ML extension is PolyML (Matthews, 1986; Matthews and Wenzel,

2010), which also supports futures, light-weight threads and implicit scheduling in

its implementation. Reflecting its main usage as an implementation language for

automated theorem provers, such as Isabelle, it has been used to parallelise its

core operations. Parallel SML (Hammond, 1990) is another example from the ML

family. Caliban (Kelly, 1989) is a declarative annotation language for controlling

the partitioning and placement of the evaluation of expressions in a distributed

functional language.

SAC (Scholz, 2003) is a data-parallel functional language. Its syntax is based on

C, but its semantics is based on single assignment, and therefore referentially trans-

parent. It mainly targets numerical applications and achieves excellent speedups on

the NAS benchmark suite.

New generation functional languages

A new generation of programming languages, such as F# and Scala, often take a

multi-paradigm approach, embedding the advantages of functional languages into

a mainstream, object-oriented language. They use existing, highly-optimised VM

technology, .NET and JVM (Lindholm and Yellin, 1999) respectively, to combine

26

Chapter 2: Background

the ease of expressing parallelism with efficient sequential execution.

F# (Syme et al., 2007) combines the features of a strict, higher-order, impurely

functional language of an ML-style, with features of mainstream object-oriented

languages. F# supports parallelism through the Task Parallel Library (TPL) (Leijen

et al., 2009; Campbell et al., 2010). TPL handles many of the low-level details such

as partitioning of work, scheduling of threads on the threadpool and scaling the

degree of concurrency dynamically to exploit all available processors in the most

efficient way.

Another statically typed, strict, and multi-paradigm programming language com-

bining functional and object-oriented features is Scala (Odersky et al., 2006). The

language allows the expression of common programming patterns in a concise, ele-

gant and type-safe manner. A main focus of Scala is to deliver high-level constructs

and abstractions for concurrent programming, emphasising large-scale distribution,

scalability and fault-tolerance. Towards this goal it provides a number of program-

ming frameworks, most notably Scala Actors (Haller and Odersky, 2009) for concur-

rency and Scala Parallel Collections (Prokopec et al., 2011) for implicit parallelism,

built on top of the Java Fork/Join framework (Lea, 2000).

Haskell has strong built-in support for concurrency and parallelism. It offers di-

verse extensions and libraries (Totoo and Loidl, 2014a) to exploit parallelism on

multi-cores (GpH), GPUs (Accelerate) and distributed-memory architectures (Eden,

Cloud Haskell, HdpH). Additionally, Meta-par (Foltzer et al., 2012) aims to unify

parallel heterogeneous programming using these models. An in-depth comparison

of the high-level language features and parallelism support in the modern functional

languages, F#, Scala and Haskell, with further references to other systems, is pro-

vided in (Totoo et al., 2012).

In subsequent sections, we focus on Haskell and three specific parallel programming

models which we use in subsequent chapters.

2.6 A Brief History of Laziness

A programming language definition usually specifies an evaluation strategy which

refers to when arguments to a function get evaluated (Schmidt, 1986). The most

common strategy used in mainstream languages, including C, C++, C# and Java, is

strict evaluation which uses call-by-value and call-by-reference notions of parameter

passing to ensure function application evaluates the argument first and then the

function body.

27

Chapter 2: Background

Strict (left): function body gets evaluated after arguments;
Non-strict (right): arguments evaluated if/when needed.

Figure 2.7: Strict vs. non-strict evaluation of a function call

In non-strict evaluation, the arguments to a function are only evaluated if they

are used inside the function body. For instance, the call-by-name function calling

mechanism does not evaluate arguments before a function call. A similar approach,

call-by-need, also memoizes evaluated arguments which are then used in subsequent

functional calls. Figure 2.7 depicts the two strategies for evaluating function argu-

ments. More generally, non-strictness is often used to refer to the language property

that allows expressions to return a value even if some sub-expressions are left uneval-

uated. However, non-strict evaluation is often referred to as lazy evaluation; though

here the latter is referred to the implementation strategy for call-by-need semantics.

Haskell is the most prominent example of a lazy language, but other languages e.g.

R also uses call-by-need, and many other languages use some form of laziness.

A History of Being Lazy Laziness refers to the operational behaviour, i.e. a

particular implementation of non-strictness, though they are often used interchange-

ably. Lazy evaluation delays evaluation of an expression until its value is needed.

Many functional languages are based on lambda calculus, a model to express com-

putation based on function definition, function application and recursion (Turing,

1937). Lambda-calculus beta-reduction captures function application and encodes

laziness through successive reduction steps applied to reduce complex expression

into simple expression (Wadsworth, 1971). For instance, applying a value (e.g. 1)

to the function

(λx→ x+ y)

will reduce it to its next reducible form

(λx→ x+ y)(1) =⇒ 1 + y

by replacing all occurrence of x with the given value.

28

Chapter 2: Background

In the variable-free theory of functions, combinatory logic (Curry and Feys, 1967),

combinator reduction is used for lazy evaluation in a similar way. Turner developed

efficient methods using combinators for lazy evaluation using graph reduction: he

changed SASL from strict to fully lazy based on combinators, and developed fully

lazy Miranda (Turner, 1979, 1986). These methods are widely adopted in lazy func-

tional languages implementation. A modern and perhaps the best known example of

language implementing laziness as default is Haskell (Hudak et al., 1999). Though

the language specification does not specify a particular evaluation order, the defacto

implementation, GHC (The GHC Team, 2015), uses graph reduction as an efficient

lazy evaluation implementation. A history of functional languages implementation

from strict to lazy is provided in (Turner, 2013).

Other early references to lazy evaluation include (Henderson and Morris, 1976)

for proposing to delay evaluation of parameters and list data structures in Mc-

Carthy’s strict LISP (McCarthy, 1962) without performing more evaluation steps

than needed; and (Friedman and Wise, 1976) for proposing cons should not eval-

uate its arguments. In the latter scheme, the structure building function (cons) is

non-strict so that evaluation of its arguments is suspended until needed by the strict

elementary functions, for example, by a print routine.

Lazy Features in Strict Languages Though most mainstream languages are

strict by default, they support a number of constructs that provides some degree of

laziness. Example of these lazy constructs that do not force unnecessary evaluation

in a generally strict language are:

• if..else.. conditional cases, used to specify a block of code to be executed

only if the condition is true.

• && and || boolean expressions, also known as short-circuit evaluation. For ex-

ample, False && <expr> and True || <expr> do not require the evaluation

of the second expression, as the results (False and True, respectively) depend

on the first only.

• lazy keyword e.g. in SML, to annotate lazy computations. This overrides the

default of strictly evaluating expressions e.g. arguments in a function call.

• lazy data structures, as discussed below.

29

Chapter 2: Background

2.6.1 Full vs Data Structure Laziness

Language strictness or non-strictness through lazy evaluation is a delicate design

choice. Many languages adopt strictness as the default but with strong support

for lazy data structures and other language construct to selectively mark lazy ex-

pressions, for example, Standard ML. Other mainstream languages, e.g. C, C#

and Java, implement laziness constructs through concepts such as closures and dele-

gate. Regardless of the language default, lazy data structures have useful properties.

For instance, they allow the definition of infinite and circular program and data

structures, which we use in our mechanisms to control parallelism. Many scripting

languages support lazy iterators to cope with large data structures.

Circular programming (Allison, 1989) applies transformation techniques to a pro-

gram to avoid multiple traversals of a data structure. These techniques have been

used to improve (sequential) performance by reducing the number of traversals over

linked-lists, trees and queues. A circular program can be more efficient in terms

of space than a traditional program by avoiding the creation of intermediary data

structures. An example of such a program is the Haskell Prelude function nub, which

is used to remove duplicates from a list. Circular programs require the combination

of lazy evaluation and recursion. A related program transformation technique, par-

ticularly applied to programs in non-strict functional languages, is deforestation to

eliminate intermediate tree data structures in an algorithm (Wadler, 1990).

Both evaluation orders have their advantages and disadvantages. Strict evaluation

facilitates reasoning about program behaviour and execution. With lazy evaluation

it is difficult to predict when expressions are evaluated but programs can be more

modular. The language strictness property has implications for the design and

analysis of data structures.

2.6.2 Parallelism and Laziness

The strictness property of a language is crucial as it determines the order of eval-

uation which directly influences parallelism. Strict languages require arguments to

a function to be evaluated before the function call. This strict property allows for

arguments to be evaluated in parallel but enforces sequential evaluation between

arguments and the function body. The challenge is to restrict parallelism to avoid

over-evaluation. In non-strict languages, arguments are evaluated only if and when

needed in the function body. Consequently, analysis is required to determine which

expressions can be evaluated in parallel – to detect parallelism. Non-strictness and

parallel processing often seen incompatible since parallelism requires certain degree

30

Chapter 2: Background

of strictness for evaluation to proceed. However, parallelism has been implemented

successfully in the lazy functional language Haskell.

2.7 Parallel Haskells

Haskell (Hudak et al., 1992) is a statically typed, lazy and purely functional lan-

guage. Haskell is strongly typed but type definitions are rarely needed as it uses

type inference to deduce types automatically. Its advanced type system also sup-

ports algebraic data types and polymorphic functions. Type classes are used as

interfaces with default implementations. Instances of a specific type class group

types together e.g. the Num type groups int, double and other numerical types

which have similar operations e.g. +, -, etc. One of its most distinctive features is

its lazy semantics, which means that expressions are only ever evaluated when they

are demanded. This demand-driven evaluation strategy makes it possible to have

infinite data structures and circular programs in Haskell.

Monads are used to model different computational contexts (Wadler, 1995). Orig-

inally they were introduced in Haskell as a way to perform IO by enforcing an

execution order. A monad defines two basic operators: >>= (bind) and return. The

bind operator is used to combine monadic values, or create a computational flow,

and the return operator inject a normal value into a monad. It provides an efficient

way of separating pure from effectful computation.

1 class Monad m where

2 (>>=) :: m a -> (a -> m b) -> m b

3 return :: a -> m a

For instance, we can now chain computation in the following way:

1 putStrLn "Enter x: " >>= _ ->

2 getLine >>= \x ->

3 putStrLn ("x=" ++ x)

And using the do notation:

1 do

2 putStrLn "Enter x: "

3 x <- getLine

4 putStrLn ("x=" ++ x)

The main feature of Haskell are summarised below:

• Purity. Functions are pure by default and do not alter a state.

• Lazy. Demand-driven evaluation.

31

Chapter 2: Background

• Type system. Static and strongly type with advanced support for algebraic

data types, type classes, polymorphic type.

• HOF. Higher-order functions raise abstraction level – functions that can return

function as result and passed as arguments.

• Monad. Used to structure program and separate pure from impure functions.

• Concurrency and parallelism. Strong built-in support and many extensions.

The key advantage of Haskell for parallel computation is referential transparency (Son-

dergaard and Sestoft, 1989) which guarantees that evaluation can happen in any

order. This implies that the amount of inherent parallelism in a Haskell program is

large such that each sub-computation can happen in parallel. However, this leads

to far too fine-grained parallelism and an approach that allows the programmer to

specify which computation is worthwhile to be evaluated in parallel is desirable.

The lazy semantics of Haskell has implications for the parallel programming models

that can be supported by the language. Unconstrained lazy evaluation is essentially

sequential which contradicts how parallel evaluation should proceed. Some degree

of eager evaluation is essential in order to arrange computations in parallel. The

programmer also needs to specify the evaluation degree of expressions, such that

just enough of an expression is evaluated in order to enable other expressions to

continue evaluation in parallel.

Concurrent Haskell Haskell supports concurrency by providing a set of primi-

tives to spawn explicit IO threads that are executed in an interleaved fashion (Jones

et al., 1996) and to synchronise between threads. The forkIO primitive is used

to spawn a concurrent thread. Haskell threads have very low overheads. Haskell-

level threads are mapped onto the system threads, usually one per processor core.

The MVar type, which can be either empty or hold a value, allows for synchronisa-

tion and communication between threads. Concurrent execution of threads in this

model is non-deterministic and can result in race conditions and deadlocks if proper

synchronisation is not implemented.

Synchronisation Primitives: GHC offers a range of low to high level set of syn-

chronisation primitives for implementing shared-state concurrency abstractions (Sulz-

mann et al., 2009).

IORef+atomicModifyIORef At the lowest level, this synchronisation method uses

a mutable variable IORef with the operations newIORef, readIORef and writeIORef,

32

Chapter 2: Background

and an atomic read-modify-write operation which modifies the contents of an IORef

atomically. atomicModifyIORef is useful for using IORef in a safe way in a multi-

threaded program by preventing race conditions.

1 newIORef :: a -> IO (IORef a)

2 readIORef :: IORef a -> IO a

3 writeIORef :: IORef a -> a -> IO ()

4 atomicModifyIORef :: IORef a -> (a -> (a, b)) -> IO b

MVar At an intermediate level, the MVar primitive, introduced as a synchronis-

ing variable in Concurrent Haskell is used for communication between concurrent

threads. An MVar may be either empty or full. The takeMVar returns the value if

the MVar is full or blocks if it is empty, and putMVar puts a value in the MVar if it

is empty or blocks otherwise. Two important properties of takeMVar and putMVar

are: they are both single-wakeup, that is, if multiple threads block in either oper-

ation, only one thread will be woken up when the MVar becomes full (for take) or

empty (for put); and threads are woken up in FIFO order thus providing fairness

properties.

1 newEmptyMVar :: IO (MVar a)

2 newMVar :: a -> IO (MVar a)

3 takeMVar :: MVar a -> IO a

4 putMVar :: MVar a -> a -> IO ()

STM: Software Transactional Memory STM (Jones, 2007; Harris et al., 2008)

is a modular composable concurrency abstraction and is the highest-level of the three

primitives. The programmer marks a section of code to run atomically, that is, in

isolation with respect to other threads, and the runtime system deals with acquiring

and releasing of locks or other kind of concurrency control system to get atomicity.

The main benefit of STM is that transactions are composable. Using an optimistic

concurrency, consistency check is performed at the end of transactions, retrying a

transaction from the start if a conflict has occurred. STM introduces the TVar

transaction variable. A set of TVars makes a transaction which yields a result, with

each transaction performed atomically.

We are interested in pure parallelism to speed up programs, and will not deal with

concurrency and low-level issues associated with it. However, we will shortly see how

the Par monad builds on top of concurrent primitives to deliver a new deterministic

model for parallel computation. In the following sections, we cover GpH, the Par

monad and Eden in more detail, which are the parallel programming models used

as basis of implementation in the next chapter.

33

Chapter 2: Background

2.7.1 GpH: Glasgow parallel Haskell

GpH extends Haskell with two basic primitives to enable semi-explicit parallelism:

par for parallel composition and pseq for sequential composition (Trinder et al.,

1998a; Marlow et al., 2009, 2010). The par primitive sparks its first argument, i.e.

it records it to potentially be evaluated in parallel. The pseq primitive evaluates

its first argument to WHNF (Weak Head Normal Form) before continuing with

the evaluation of its second argument and thus enforces sequential ordering. Both

primitives return their second argument as the result.

Listing 2.1: GpH basic primitives.

1 -- parallel composition

2 par :: a -> b -> b

3 -- sequential composition

4 pseq :: a -> b -> b

Listing 2.2: GpH Primitives: factorial example.

1 fact m n

2 | m == n = m

3 | otherwise = left ‘par ‘ right ‘pseq ‘ (left * right)

4 where

5 mid = (m + n) ‘div ‘ 2

6 left = fact m mid

7 right = fact (mid + 1) n

GpH’s runtime system uses lazy task creation, by representing potential parallelism

as “sparks” that can move freely and cheaply between processors and work repre-

sented by one spark can be subsumed by a running thread if no additional par-

allelism is required. Another key runtime-system design goal is to support light-

weight threads, thus reducing the overhead for creating parallelism and encouraging

a programming style that generates a massive amount of parallelism, giving the

runtime-system the flexibility to arrange the parallelism in a way most suitable to

the underlying hardware. Haskell/GHC excels at light-weight threads, as shown by

the thread-ring benchmark of the Computer Language Shootout (Fulgham, 2012).

Filaments (Lowenthal et al., 1996) and Cilk (Frigo et al., 1998), now integrated in

Intel’s Cilk Plus compiler, are other examples of runtime-systems for light-weight

threads.

Sparks are added to a spark pool and are taken up for execution by lightweight

Haskell threads which in turn are mapped down to the underlying OS threads.

Creating sparks using par is cheap, amounting to adding a pointer to a spark pool,

and thousands of them can be created. Converted sparks represent parallelism

extracted from the algorithm, incurring the usual thread creation overhead.

The use of the two GpH primitives directly to write parallel programs may often

obscure the code with no clear separation between the algorithm and parallelism.

34

Chapter 2: Background

Introducing Evaluation Strategies Evaluation strategies (Trinder et al., 1998a)

provide further abstraction over this level of programming which allows the sepa-

ration between the computation and coordination. It is the preferred way of in-

troducing parallelism in GpH and the main programming model used in technical

chapters for data-oriented parallelism. Evaluation strategies are built around the

Eval monad, which is used to encapsulate a particular evaluation behaviour. It is

explained in more detail in Section 3.1.

2.7.2 Par Monad

The Par monad is a parallel programming model implemented entirely as a Haskell

library (Marlow et al., 2011). Programming in the Par monad looks a lot like pro-

gramming in Concurrent Haskell but it preserves determinism and is side-effect-free.

Par is a new type declared as a monad. IVars are used for communication, an im-

plementation of the I-Structures, a concept from the pH and Id languages (Nikhil

and Arvind, 2001). The basic operations use an explicit approach to specify parallel

computations. Parallelism is introduced using fork which creates a parallel asyn-

chronous task. Tasks are scheduled using an optimised parallel scheduler among

threads. The computation in the monad is extracted using runPar. The communi-

cation constructs include the following functions:

• new to create a new IVar.

• put to place some value in the IVar. It is executed once per IVar otherwise

an error occurs.

• get to retrieve the value from the IVar. It is a blocking operation and waits

until something is put into the IVar.

The derived spawn function hides the explicit put and get operations and therefore

ensures that each IVar created is only ever put into once. This raises the level of

abstraction provided by this model.

1 runPar :: Par a -> a

2 fork :: Par () -> Par ()

3 spawn :: NFData a => Par a -> Par (IVar a)

4

5 -- communication

6 data IVar a

7 new :: Par (IVar a)

8 put :: NFData a => IVar a -> a -> Par ()

9 get :: IVar a -> Par a

35

Chapter 2: Background

The library currently offers a limited number of higher-level function abstractions;

the most obvious being a parallel map implementation, parMap. More abstractions

can be built on top of the basic constructs.

2.7.3 Eden

Eden extends Haskell by providing constructs for parallel process definition, which

abstracts a function that takes an argument and produces a value into a process with

input and output that correspond to the function argument and result respectively;

and process instantiation, which evaluates the process in parallel (Loogen et al.,

2005).

1 -- process definition

2 process ::(Trans a,Trans b) => (a->b) -> Process a b

3 -- process instantiation

4 (#)::(Trans a,Trans b) => Process a b -> a -> b

Building on these coordination constructs, a parallel function application opera-

tor and eager process creation function are derived. spawn is only denotationally

specified, ignoring demand control.

1 -- parallel function application

2 ($#)::(Trans a,Trans b) => (a->b) -> a -> b

3 f $# x = process f # x

4

5 -- eager process creation

6 spawn ::(Trans a,Trans b) => [Process a b] -> [a] -> [b]

7 spawn = zipWith (#)

The parallel runtime system distributes the processes to the available processors.

Since Eden has been designed for a distributed-memory model, processes communi-

cate messages to each other to provide input and retrieve output. Synchronisation

and coordination are handled implicitly by the runtime system. The programmer

does not need to worry about low-level send and receive between parallel processes,

and only uses process abstraction or skeletons built on top of the basic construct.

Eden processes produce output eagerly with the argument to the process being eval-

uated locally in the parent process before sending. Lists are handled as streams and

are sent element-by-element. This can cause significant overhead and techniques to

avoid element-wise streaming are used.

EdenSkel: Eden provides a rich set of higher-order functions that abstract com-

mon parallel patterns in its skeleton library EdenSkel. For instance, an initial im-

plementation of parallel map uses spawn to eagerly instantiate a list of process

abstractions. The parMap skeleton creates a process for each list element and this

36

Chapter 2: Background

often results in far too many processes in comparison to the number of processing

elements available.

Farm process: The farm process skeleton adapts the number of processes to the

number of available processing elements (given by noPe). The input list is grouped

into noPe sublists and a process is created for each sublist instead of each individ-

ual element. Implementing the farm process, the parMapFarm skeleton provides a

simpler interface and a familiar name to the programmer who specifies unshuffle

as the distribution function and shuffle as the combination function. parMapFarm

creates (noPe+1) processes in total with noPe farm processes and one main process

which means that one machine will be allocated two processes. A slight variation

of this skeleton, implemented as parMapFarmMinus, creates noPe − 1 processes so

that each processor gets exactly one process.

Chunking input stream: The farm process reduces the number of processes

but does not have any effect on the messages exchanged between the processes.

Each element of the list is sent as a separate message by default. To improve

process communication, the number of messages is reduced using a chunking policy.

parMapFarmChunk is defined as a new skeleton which decomposes the input list into

chunks of a specified size e.g. 1000 then creates the farm processes and distributes

the chunks to them. This reduces communication overhead.

1 -- parallel map definition in Eden

2 parMap f = spawn (repeat (process f))

3

4 -- using farm process

5 parMapFarm f = shuffle . (parMap (map f)) . (unshuffle noPe)

6

7 -- and chunking input stream

8 parMapFarmChunk f xs = concat (parMapFarm (map f) (chunk size xs))

Offline processes: Parallel map implemented using offline processes modifies the

communication behaviour where the unevaluated data, when typically smaller than

the evaluated result, is sent to be evaluated lazily by the new process instead of

being evaluated by the parent process. This reduces the combined effort of the main

process having to completely evaluate all input to the farm processes.

1 -- x is strictly reduced and sent to child process

2 f $# x

3

4 -- parameter passing: input serialised and sent to remote PE

5 (\() -> f x) $# ()

By default, the function application is strict in its argument. In the offline version,

tasks are evaluated inside the workers, which reduces the communication overhead

37

Chapter 2: Background

since unevaluated data is often smaller than evaluated data. This is done by passing

the unit type as argument to the function application as shown above.

2.7.4 Other Parallel Haskells

Other models for parallel computation in Haskell include Data Parallel Haskell

(DPH). DPH (Chakravarty et al., 2007) implements the nested data parallelism

programming model into GHC. DPH is influenced by the NESL language (Blelloch,

1995) and targets multicores for irregular parallel computations and irregular data

structures. DPH adds parallel arrays with parallel operations. The syntax is similar

to using lists, however, unlike lists, parallel arrays are strict. Demanding an element

will force the evaluation of all elements in parallel. This model is the most implicit

one among the other models discussed here. Another example is Cloud Haskell (Ep-

stein et al., 2011), which is a distributed programming model building on the same

principle as the highly successful Erlang programming language. A graph-based

programming model for Haskell, Intel Concurrent Collections (CnC) (Newton et al.,

2011) offers pure and deterministic computation as evaluation strategies. The model

allows more control over performance, since the programmer can be explicit about

granularity and the structure of parallel computation.

Model construct type pure deterministic embedding

Conc. Prims forkIO/OS no no explicit ↑
CnC forkStep dataflow yes yes explicit low

Par monad fork yes yes explicit

Eden/EdenSkels process,# yes yes semi-explicit

GPH/EvalStrat par,pseq yes yes semi-explicit high

DPH [:e:] par array data yes yes implicit ↓

Table 2.2: Summary of Parallel Haskell Programming Models

Table 2.2 summarises the parallel programming models in the Haskell ecosystem.

(Loidl et al., 2003) and (Trinder et al., 2002) gives a detailed performance and

programming comparison and classification of parallel and distributed Haskell lan-

guages.

2.8 Data Structures in Parallel Programming

“Decisions about structuring data cannot be made without knowledge of the algo-

rithms applied to the data and that, vice versa, the structure and choice of algorithms

often strongly depend on the structure of the underlying data” (Hoare, 1972).

38

Chapter 2: Background

A data structure organises data in a particular way in memory so that it can be

used efficiently. Data structures are building blocks of a program. The performance

of a program depends on a correct, efficient algorithm and on the right choice of

underlying data structures (Wirth, 1978). It is, therefore, important to take special

consideration for data structures in a parallel environment.

Algorithms + Data Structures = Programs (Wirth, 1978).

A data structure implements an abstract data type (ADT) which only defines the

behaviour of the data type. The ADT hides internal data representation and allows

operations through a well-defined interface. The structure of the underlying data is

abstracted from the user. The programmer then makes a decision to what underlying

representation is best for performance.

A data structure is constructed from basic data objects. Common data structures

used in early and modern languages are arrays and records. Prominent in imperative

languages, arrays support constant access and update times using indexes. Arrays

are usually used in a destructive fashion, i.e. they are mutable, and are homogeneous

structures with all elements having the same type of data. In contrast, records allow

different types in an ordered group of elements. Arrays and records are static data

structures in most languages. Their sizes are determined at initialisation. Recursive

or inductive data structures such as trees or linked lists are composed of individual

data components linked to each other, e.g. using pointers in a low-level language

like C. They can therefore grow to arbitrary size.

In functional languages, data types are abstractions of data structures e.g. a list

type implements a list data structure. In typed functional languages, e.g. Haskell,

there is a separation of type constructor, that is, the definition of a data type;

and data constructor, that is, an instance of the type. Basic algebraic data types

and more advanced type system features, such as, GADTs, type families, dependent

types (Jones et al., 2004; Chakravarty et al., 2005; Barthe and Coquand, 2002), allow

the high-level specification of data structures and their operations in the language.

Most functional languages have strong support for lists and records, also known

as tuples. These are defined using the language primitive data types. Arrays are

unconventional in such languages. Implementations are often pure, that is, they

do not allow direct updates but instead preserves previous versions of the data

structure, making it a persistent object (Kaplan, 2001).

39

Chapter 2: Background

2.8.1 Design Issues and Considerations

An important challenge in ensuring scalable performance in parallel programming is

the design of efficient data structures. Concurrent data structures have been around

since uniprocessor machines to enable multi-threaded execution, ensure program cor-

rectness and responsiveness. They are intended to allow threadsafe access to shared

data structures by multiple threads. They use explicit synchronisation techniques

to restrict data access to only one executing thread at a time to avoid race condi-

tions and data inconsistencies. Major progress has been made in understanding key

issues and developing techniques, both at hardware level (e.g. compare-and-swap

(CAS) instruction) and software level (e.g. higher-level synchronisation constructs),

in both blocking and non-blocking concurrent data structures research (Moir and

Shavit, 2007).

The need for parallel data structures emerges as important in the context of parallel

programming where performance is key.

Parallel data structures are implemented as libraries in a particular programming

language which take advantage of parallel processing. Parallelism may be derived

freely from using inherently parallel data structures. This form of data-structure-

driven parallelism fits the data-parallel category but it deserves more attention due

to the ease of enabling parallelism from its use. The use of parallel data structures

also comes with minimal code changes to the sequential algorithm. All operations

are inherently parallel.

Data structures not designed for parallel execution create bottlenecks by limiting

the upper bound of performance gain, and (Shavit, 2011; Moir and Shavit, 2007)

emphasise on the need for a different approach in the design and use of data struc-

tures in the age of multicore machines. Rather than focusing on data structures

as the main components that drive parallelism in a data-parallel application, they

argue that serial data structures create bottleneck and do not allow programs to

scale (thus limiting speedup) because of unnecessary sequentialisation introduced.

The discussion is mostly in an imperative context and covers data structure design

issues such as ensuring correctness, and techniques such as low-level synchronisa-

tion through locks, semaphores, transactional memory at software level (Silberschatz

et al., 2012, ch.5), CAS instructions (Dice et al., 2013), and hardware support to

facilitate these. From a design perspective, the wider message is to encourage data

structures that are parallel by design. For this, a substantiative “relaxation process”

of the properties of data structures that are used in a parallel environment is needed.

For instance, an efficient queue implementation should help the system scale under

high loads. Therefore, its implementation does not require strict queue semantics:

40

Chapter 2: Background

a k-FIFO queue where elements may be dequeued out-of-order up to k-1 would be

well-suited, providing a high degree of scalability (Kirsch et al., 2013).

2.8.2 Parallel Operations vs Representations

A data structure implementation comprises a concrete representation of data and

a set of operations on the data. The set of operations offered by an abstract type,

and their complexities, is often influenced by the choice of representation. This

representation has a direct impact on performance, as well as parallel scalability.

Motivating tree-based representation for parallel processing. An impor-

tant challenge in keeping pace with the hardware revolution is to design data struc-

tures that are parallel, both in their representations and their operations. Parallel

by design encompasses both these two aspects. However, attempts to parallelise

data structures have been largely targeted towards parallelising their operations

only, leaving the underlying, often sequential, representation unchanged. Starting

with an inherently sequential representation is fundamentally wrong (Steele, 2009).

Get rid of cons! (Steele, 2009).

Data structures that do not force a sequential evaluation mechanism on the algo-

rithms are highly desirable. Effective parallelism uses trees instead of linear rep-

resentations. This encourages the design of high-level data-oriented algorithms,

specifying parallelism in a minimally intrusive way. Enabling data-structure driven

parallelism removes the unnecessary sequentialisation usually imposed by wrong

data structure representation, and thus maximises the benefit of parallelisation.

Figure 4.1 depicts the use of an alternative representation for a linear/sequential

representation using append-trees, representing a list comprised of leaf values found

in a depth-first traversal of the tree. This design moves away from an inherently

sequential representation, but potentially maintains the same interface. Trees are hi-

erarchical structures making it easy to apply divide-and-conquer algorithm and thus

represent a good match for parallelisation. The representation can also be adapted

for various target architectures, for example, one that suits distributed memory

system. Manticore uses ropes (Boehm et al., 1995), a balanced binary-tree repre-

sentation of sequences, as the underlying representation of parallel arrays. In (Totoo,

2011), we cover random-access lists as the internal tree-based representation for list

in Haskell.

41

Chapter 2: Background

(a) Sequential representation (b) Parallel representation

Figure 2.8: Alternative append-tree representations of linked-list.

2.8.3 Imperative vs Functional

In an imperative setting, data structures are mutable, i.e. their components can be

modified by assigning new values. Therefore, in a concurrent or parallel environ-

ment, it becomes crucial to ensure safety, i.e. no unexpected bad behaviour happens;

and liveness, i.e. the correct behaviour, properties when operating on data struc-

tures. This entails using various techniques to synchronise shared access to data

components.

Mainstream languages, such as Java and C#, provide implementations of common

data structures in standard libraries known as collections. The use of the stan-

dard collections with multi-threaded applications makes it difficult to ensure correct

program behaviour. Previously, the programmer needed to implement code with

explicitly synchronised access to data structures manually. Concurrent collections

were introduced to eliminate this issue. The emphasis is on thread-safe access to

solve shared access problems by implementing built-in synchronisation in the data

structures. Additionally, they avoid the bottleneck of sequential data structures by

allowing simultaneous access. Moderate performance gains are possible on a par-

allel machine. However, they are not designed nor intended for scalable parallel

performance.

The Java Concurrent Collections include a number of concurrent counterparts of se-

quential collections such as map, list and queue which are thread-safe and optimised

for concurrent access. The library implements atomic and mutative operations that

implicitly acquire and release locks. The equivalent library for C# and F# imple-

mented on top of .NET, called Coordination Data Structures (Toub, 2010), provides

concurrent collection classes that can be used with multi-threaded application code,

and also in conjunction with other parallel programming infrastructure provided by

the platform, such as TPL and PLINQ.

The benefits of functional programming are widely known (Backus, 1978; Hughes,

1989) and covered earlier in this chapter. Functional languages encourage the design

42

Chapter 2: Background

of pure data structures that do not operate on changed states. Functional program-

ming does not specify a particular evaluation order, consequently only part of the

data structure that is being processed needs to be evaluated at a time. With ad-

vances in compiler technology and optimisations, functional languages are not too

far from their imperative counterparts in terms of performance, for example, GHC

execution time is comparable with Java for some benchmarks from the Computer

Language Benchmarks 1.

Purely Functional Data Structures The main body of work done in the area

of functional data structures is by Okasaki in his PhD thesis (Okasaki, 1996) in

which he described a number of efficient and elegant definitions of purely functional

data structures in Standard ML. Functional data structures have the persistent

property meaning that they are immutable. An update does not destroy the previous

version of the data structure, but rather creates a new version, thus enabling a

kind of automatic versioning of the structure. The absence of destructive updates

has immediate property beneficial to parallel execution. It allows the definition

of parallel operations on data structures, with ease of partitioning and executing

parallel sub-computations, without running into deadlocks. In this thesis, we look

at parallel implementations as a way to further improve application performance

using a set of parallel evaluation strategies over purely functional data structures in

Haskell.

2.9 Summary

This chapter has provided an overview of general hardware trends and a classifica-

tion and critical evaluation of parallel programming models. It highlights the issues

with low-level parallel programming, discusses key abstractions, and systematically

classifies language models based on a number of language properties and differ-

ent classes of languages. It motivates the use of higher-level programming models,

in particular, parallel functional programming. The chapter also provides a brief

history of laziness, and covers the Haskell programming language and parallel pro-

gramming support. Finally, a section on data structures for parallel programming

gives an overview of trends, design issues and considerations.

1The Computer Language Benchmarks: http://benchmarksgame.alioth.debian.org/

43

http://benchmarksgame.alioth.debian.org/

Chapter 3

Parallel List and Tree Processing

The purpose of this chapter is two fold. First it expands on data-oriented program-

ming in GpH using evaluation strategies as the main programming model. Secondly,

it serves as an evaluation of GpH, specifically through the use of the higher-level

evaluation strategies library, against two other parallel Haskell programming models:

Par monad and Eden. In the chapter, we highlight general parallelisation guideline

to write parallel algorithms in Haskell. We implement two versions of the n-body

problem where parallelism is derived from parallel list and tree processing. We

review the steps to implement data-oriented parallel list strategies. The chapter

emphasises the compositionality and high abstraction level of evaluation strategies

among other benefits, and motivates its use in the subsequent chapter for defining

more advanced strategies on trees and graphs.

3.1 Evaluation Strategies

This section expands on the evaluation strategies programming model as introduced

in the background (Section 2.7.1). The evaluation strategies library is an additional

level of abstraction provided on top of the GpH par and pseq primitives. It allows

modular writing of parallel code by separating the algorithm from the parallelism.

A strategy can be substituted by a different one if a different parallel behaviour is

desired without having to rewrite the algorithm.

A strategy is a function that is executed for coordination effects. In the original

formulation, it was defined to return a unit type () since its only purpose was

to specify the dynamic behaviour. The new formulation (Marlow et al., 2010) is

an improvement on the original. It fixes a number of issues, including a space

management issue, and it introduces an evaluation-order monad, Eval, which allows

a set of evaluations to be specified in a compositional way.

44

Chapter 3: Parallel List and Tree Processing

Listing 3.1: Strategy function type

1 -- original formulation

2 type Strategy a = a -> ()

3

4 -- new formulation

5 type Strategy a = a -> Eval a

6 data Eval a = Done a

7

8 runEval :: Eval a -> a

9 runEval (Done x) = x

Listing 3.1 shows the strategy type definition. A strategy is a function in the Eval

monad that takes a value and return the same value within the Eval context which

encapsulates the evaluation behaviour of the value.

Applying Strategies A strategy can be applied in the following way with the

using function.

1 using :: a -> Strategy a -> a

2 x ‘using ‘ strat = runEval (strat x)

Simple Strategies The basic strategies rpar and rseq are defined directly in

terms of their primitives. The using function applies a strategy to an expression.

Since all parallelism, evaluation order and evaluation degree are specified within

the Eval monad, an explicit runEval is used at the point where it is applied to a

concrete expression. Using a monad helps to separate the purely functional aspects

of the execution from the behavioural aspects of the execution. It also allows the

programmer to use rich sets of libraries and abstractions available for monads in

Haskell as we will see in later implementation sections.

The Eval monad is used to specify evaluation order. It is chosen to be a strict

identity monad (more on this in Section 5.5.2 – Defining a lazier version of the Eval

monad) to allow parallel evaluation. The following strategy combinators defined:

1 -- no evaluation

2 r0 :: Strategy a

3 r0 x = return x

4

5 -- spark x

6 rpar :: Strategy a

7 rpar x = x ‘par ‘ return x

8

9 -- evaluate x to WHNF

10 rseq :: Strategy a

11 rseq x = x ‘pseq ‘ return x

12

13 -- fully evaluate x (normal form)

14 rdeepseq :: NFData a => Strategy a

15 rdeepseq x = rnf x ‘pseq ‘ return x

45

Chapter 3: Parallel List and Tree Processing

Both r0 and rseq control the evaluation degree of an expression: no evaluation or

part evaluation (i.e. only up to the top-level constructor). To completely reduce

an expression, that is, to normal form (NF), we use the rdeepseq strategy which is

implemented in terms of the rnf function (reduce to normal form). Any type that

can be fully reduced in Haskell needs to be an instance of the NFData typeclass and

to implement the rnf function. For example, the different evaluation degrees of a

list [1,2,3] can be as follows:

1 -- r0: no evaluation

2 -- (referred to as a thunk in Haskell)

3 xs = <unevaluated value >

4

5 -- part evaluation applying rseq

6 -- (up to top -level construct i.e. spine of the list)

7 xs ‘using ‘ rseq

8 xs = _:_:_:_

9

10 -- full evaluation applying rdeepseq

11 -- (no remaining redex -- reducible expression)

12 xs ‘using ‘ rdeepseq

13 xs = 1:2:3:[]

Apart from rseq, anything between r0 and rdeepseq evaluation degree is possible.

For example, we may define a strategy that evaluates the first N elements of the list,

or every other elements; the possible evaluation degrees depend on the data types.

A simple definition of a strategy to evaluate a tuple in parallel is given in Listing 3.2.

Listing 3.2: Strategy to evaluate elements of a tuple in parallel

1 parTuple :: Strategy (a,b)

2

3 parTuple :: Strategy (a,b)

4 parTuple (a,b) = do

5 a’ <- rpar a

6 b’ <- rseq b

7 return (a’,b’)

8

9 -- apply strategy

10 pair=(x,y)

11 pair ‘using ‘ parTuple

Refer to the direct use of the GpH primitives in Listing 2.2. In contrast, the example

in Listing 3.3 highlights the modularity of evaluation strategies, i.e. the separation

between the parallel specification and the algorithm.

Listing 3.3: Evaluation Strategies: factorial example.

1 fact m n

2 | m == n = m

3 | otherwise = (left * right) ‘using ‘ strategy

4 where

5 mid = (m + n) ‘div ‘ 2

6 left = fact m mid

7 right = fact (mid + 1) n

46

Chapter 3: Parallel List and Tree Processing

8 strategy result = do

9 rpar left

10 rseq right

11 return result

Combining Strategies Strategies can be composed just like functions using the

dot strategy combinator e.g. (rpar ‘dot‘ rdeepseq) sparks parallel evaluation

of its argument (specified by rpar) and completely evaluates it to normal form

(specified by rdeepseq). In this example rdeepseq is used to specify the evaluation

degree. The expressive power of evaluation strategies comes from the ability to

compose them, as above, to separate the specification of parallelism from evaluation

degree and other parallelism optimisations such as clustering, as we will see later,

and the possibility to nest strategies, by providing other strategies as arguments,

exploiting higher-order functions in the language.

Data-oriented Strategies Map is a higher-order function which takes a function

f and a list as parameters and applies f to each element of the list. Implementing a

parallel map is a major source of data-oriented parallelism over list data structures.

1 -- parallel map definition

2 parMap strat f xs = map f xs ‘using ‘ parList strat

3

4 xs = parMap rdeepseq f list

In the version above, parMap is the parallel version of the map function which applies

a computation f to each element of the container e.g. a list in this case. parMap

exposes the maximal parallelism, creating a spark for each item to be evaluated in

parallel. It is implemented in terms of parList, the definition of which is covered

in the next section. In subsequent sections, we also discuss several techniques for

improving parallel performance by generating fewer, more coarse-grained threads.

3.1.1 Parallel List Strategies

A list is defined as a recursive data type which consists of a head as its first node

and a tail representing the rest of the list.

list = head + tail

This can be captured using the following type definition in Haskell:

data List a = Cons a (List a) | Nil

The list 1,2,3,4 is encoded by:

47

Chapter 3: Parallel List and Tree Processing

Cons 1 (Cons 2 (Cons 3 (Cons 4 Nil)))

This algebraic sum data type allows a list to be constructed using the type con-

structor List, thus making list a new type, and the data constructors Cons and Nil

which inhabit the data or value domain. This new type implements a singly-linked

list in Haskell, with each node holding an implicit reference to the next node in the

sequence. This definition also allows circular list where the last element points back

to the head element instead of an empty list, as well as infinite list.

Listing 3.4: Built-in Haskell list definition.

1 data [a] = [] | a : [a]

2

3 -- instances: xs and ys are equivalent

4 xs =1:2:3:4:[]

5 ys=[1,2,3,4]

6

7 -- infinite list

8 zs =[1..]

9

10 -- circular list

11 ws =1:2:3: ws

Definition 3.1 (Linked list). A linked list is a data structure in which the objects
are arranged in a linear order. (Cormen et al., 2009)

In Haskell built-in notation, Cons and Nil are represented using syntactic sugar form

of : and [] (empty list). Using the recursive definition of a list, a new element can

be added to the front of another list, or to an empty one. A list can be built of any

type, including primitive (e.g. list of integers List Int) and custom types. However,

lists are homogeneous, i.e. all elements need to be of the same type for a given list.

With polymorphism, it is possible to define a list of any type (e.g. List a), and write

generic functions, such as length, to operate on it. GHC allows the list element type

to be left unspecified. The type can be inferred, in most cases, by the system. This

inference is usually the most generic one. For instance, in Listing 3.4, the inferred

type will be Integer (unbounded) rather than Int (32-bit).

Parallel list processing using Evaluation Strategies. Strategies can be de-

fined to evaluate list in a number of ways. Below we highlight some useful strategies

defined over a list as depicted in Figure 3.1.

(a) Strategy 1: Element-wise Each list element is evaluated in parallel.

(b) Strategy 2: Chunk The list is recursively split into chunks or blocks of an

appropriate size s and then each chunk is processed in parallel instead of each

individual element. This method uses the list size as input to the split function,

48

Chapter 3: Parallel List and Tree Processing

Figure 3.1: List parallel processing

thus requires parallel evaluation to be strict at the constructor level. Thus, it

will only work on finite list.

(c) Strategy 3: Buffer A lazier variant of the previous method where the list is

processed as a stream, but with every s elements evaluated in parallel. It

preserves the lazy and infinite properties of the list.

Other typical way of list processing, e.g. using cyclic distribution, which is assign-

ing alternative list element to specific thread for processing, is not easily imple-

mented using this model of programming. This method requires explicit control of

computation-to-task in the parallel programming model which we will not consider.

Implementing data-oriented list strategies in GpH The following provides

a step-wise approach to defining strategies over a data type, the built-in list in this

case, in GpH. We define the two list strategies that we apply in the initial and tuned

parallel versions of the two algorithms we cover later.

1. Strategy type

Since we are defining a strategy over a list, the strategy type is

1 parList :: Strategy [a]

i.e. if we replace the type synonym from Listing 3.1, parlist takes a list as argument

and returns a list in the Eval monad.

1 parList :: [a] -> Eval [a]

2. Strategy definition

First, we define a strategy that will evaluate each element in parallel (element-wise).

This involves specifying two pattern match conditions: 1) what to do if list is empty;

2) and, what to do for non-empty list i.e. do something to the head, and to the rest

of the list. The following is a basic parList implementation in which we mark the

49

Chapter 3: Parallel List and Tree Processing

head element x for parallel evaluation, using rpar and recursively do the same with

the remaining elements.

1 parList :: [a] -> Eval [a]

2 parList [] = return []

3 parList (x:xs) = do

4 x’ <- rpar x

5 xs’ <- parList xs

6 return (x’:xs ’)

3. Problem? Specify an evaluation degree as well.

In the previous definition, we are only specifying to spark each element to evaluate

in parallel, but we are not specifying a degree. So, Haskell being lazy, the elements

will not be evaluated until needed – unless we specify a degree of parallel evaluation.

This can be done using rseq.

Hardcode evaluation degree in the strategy definition:

1 parList :: [a] -> Eval [a]

2 parList [] = return []

3 parList (x:xs) = do

4 x’ <- (rpar ‘dot ‘ rseq) x

5 xs’ <- parList xs

6 return (x’:xs ’)

Or, we can parameterise it:

1 parList :: Strategy a -> Strategy [a]

2 parList strat [] = return []

3 parList strat (x:xs) = do

4 x’ <- (rpar ‘dot ‘ strat) x

5 xs’ <- parList xs

6 return (x’:xs ’)

Note we switched back to using the Strategy type synonym again.

Now we can pass other evaluation degrees, e.g. parList rdeepseq. Note that

the element type a must be first made an instance of the NFData typeclass by

implementing the rnf function so we know what it means to completely evaluate

its value. All built-in types in Haskell e.g. integer, char, boolean have a default rnf

implementation. If we are to apply rdeepseq to a list type, we would implement

rnf for list as follows:

1 instance NFData a => NFData [a] where

2 rnf [] = ()

3 rnf (x:xs) = rnf x ‘seq ‘ rnf xs

This is needed if we want parallel evaluation to normal form of nested list, as per-

formed in parListChunk below.

4. Better style, and being concise. Applicative style (McBride and Paterson, 2008)

50

Chapter 3: Parallel List and Tree Processing

is a short hand of doing the above using the monadic do notation, through two

combinators: <$> which is an infix synonym for fmap, and <*> which is used to

sequence computations and combine their results.

Applicative syntax:

1 parList :: Strategy a -> Strategy [a]

2 parList strat [] = pure []

3 parList strat (x:xs) = pure (:) <$> strat x <*> parList xs

4. Generalise: fmap/foldr/traverse

The parList strategy is essentially a map function which applies an evaluation

strategy to each element in the list. So if the type is an instance of the Functor

(class used for types that can be mapped over), Foldable (data structures that

can be folded) and Traversable (data structures that can be traversed from left

to right) Haskell typeclasses by implementing the fmap, foldr and traverse func-

tions1, respectively, we have automatic generalisation, that is, the parList strategy

can be defined in terms of traverse.

1 parList = traverse

These functions are already implemented for the built-in list type in Haskell. In

later chapter, the strategies defined for trees have been generalised in the same way.

5. Tuning. Defining the chunk strategy.

Changing the parallel evaluation behaviour of a list simply requires a different strat-

egy definition. For e.g. parListChunk applies a strategy to sublists of length n

rather than to individual list elements. Note the second argument specifies an eval-

uation degree which applies to a list, i.e. of type [a], not a, thus requiring the

previously rnf implementation if we want to pass rdeepseq to this strategy.

1 parListChunk :: Int -> Strategy [a] -> Strategy [a]

2 parListChunk n strat [] = return []

3 parListChunk n strat xs = do

4 ys’ <- (rpar ‘dot ‘ strat) ys

5 zs’ <- (rpar ‘dot ‘ strat) zs

6 return (ys ’ ++ zs ’)

7 where

8 (ys ,zs) = splitAt n xs

In this chapter, we use parList, parListChunk and parCluster (which we cover

later) strategies in our algorithms. We provide further tuning techniques in the

relevant sub-sections as we cover the implementation.

1 Hackage: fmap – Map a function f to each element of a structure. foldr – Right-associative
fold of a structure. traverse – Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results.

51

Chapter 3: Parallel List and Tree Processing

3.2 Application: The N-body Problem

As an example application, we implement two algorithms for solving the n-body

problem following the general parallelisation methodology highlighted in Section

3.2.1. In the process, we incrementally optimise the parallel solutions in three par-

allel Haskell programming models. Both algorithms use list and tree data structures

in their core implementation. Parallelism is derived through parallel processing of

these structures.

3.2.1 Implementation Approach

A set of guidelines for engineering large parallel functional programs is discussed in

detail in (Loidl and Trinder, 1997).We follow these main steps to write our parallel

Haskell programs in the three programming models. In particular, we expand on two

sub-steps (1.1. and 4.1.) aimed at further improving performance in a lazy language

and on which we elaborate and provide detailed analysis in our implementation:

1. Sequential implementation. Start with a correct initial implementation of the

inherently-parallel algorithm;

1.1. Sequential optimisation. Optimise the sequential algorithm e.g. improve

heap consumption by identifying and fixing any space leaks; use tail re-

cursive functions; and add strictness where needed to avoid unnecessary

delayed computation or indirection;

2. Time profile. Identify “big eaters”, i.e. parts of the program that take up a

large percentage of running time;

3. Top-level parallelisation. Parallelise top-level data independent operations e.g.

map functions representing data-oriented parallelism, and independent tasks

representing task-oriented parallelism, using high-level constructs provided in

the parallel programming model;

4. Parallel execution. Run parallel programs on a multi-core machine or a cluster

to obtain initial results, and debug parallel performance e.g. poor load balance;

4.1. Parallel tuning (and scaling). Advanced and more explicit tuning based

on the programming model to improve parallel performance. This step

also looks at scalability both in terms of increasing problem size and

processing units.

52

Chapter 3: Parallel List and Tree Processing

Starting with a sequential implementation may seem counter-intuitive to the idea of

“think in parallel”. It may be true in an imperative setting, where a major re-write

of sequential code is often necessary for parallel execution. However, in a functional

setting, we can start with an existing sequential implementation of a problem and

use parallel constructs that exploits execution of pure functions in parallel.

3.2.2 Problem Description

The n-body problem (Leimanis and Minorsky, 1958) involves predicting the motion

of a system of N bodies which interact with each other according to the laws of

physics. The problem and several variations are defined in many areas of science.

Depending on the domain, the bodies can refer to elements at the microscopic level,

for example, interactions between molecules in biological systems, or between parti-

cles in particle mechanics. At the macroscopic level, it is traditionally used to model

and simulate the orbit of celestial bodies such as planets, stars and galaxies, which

is affected by gravitational force.

The n-body simulation is a computationally-intensive task which proceeds over sev-

eral time steps. For each body with mass m in the system, the gravitational force F

exerted on it with respect to the other bodies is calculated. This is used to update

the velocity and position of the bodies in each iteration. A number of methods exists

to solve the problem. We look at a direct and an tree-based methods. The direct

approach is a simple naive method, referred to all-pairs or body-to-body (Aarseth,

2003), and is used for simulation consisting of up to a few thousand bodies. The

tree-based method is an approximate but realistic method using the Barnes-Hut

algorithm (Barnes and Hut, 1986; Pfalzner and Gibbon, 1996) and is well suited for

large system of bodies.

Method 1: All-Pairs

The all-pairs algorithm is a direct method in which the forces between each pair of

bodies are calculated in a traditional brute-force technique. Given the number of

bodies in the system is N , all body-to-body comparisons require a time complexity

of O(N2) to complete, making the algorithm suitable for only a small system of

bodies.

The algorithm proceeds over a number of time steps represented by a time change

(∆t = 0.001). For each body, with an initial position (x, y), velocity (vx, vy) and

mass m (in 2D space), the algorithm:

53

Chapter 3: Parallel List and Tree Processing

(xi, yi)

(xj, yj)

d =
√

∆x2 + ∆y2

∆y = yi − yj

∆x = xi − xj
(a)

F = G
mimj

d2

Fy = F ∆y
d

Fx = F ∆x
d

(b)

Figure 3.2: All-pairs force calculation (2D)

1) calculates the force F as depicted in Figure 3.2

The pairwise force F calculation is the gravitational constant G times the product of

masses mi and mj for bodies i and j, respectively, divided by the distance d between

the two bodies.

F = G
mimj

d2
(3.1)

where the distance d is found from the change in x and y (i.e. ∆x and ∆y):

(∆x,∆y) = (xi − xj, yi − yj) (3.2)

d =
√

∆x2 + ∆y2 (3.3)

2) computes the acceleration (ax, ay) due to each body combining the net force

induced by the other bodies

(ax, ay) = (
Fx

m
,
Fy

m
) (3.4)

(Fx, Fy) = (F
∆x

d
, F

∆y

d
) (3.5)

where (Fx, Fy) are the x- and y- components of force.

3) updates the velocity (vx, vy) to

(vx + ∆tax, vy + ∆tay) (3.6)

4) finally, updates the position x and y

Method 2: Barnes-Hut Algorithm

The computational cost of the body-to-body comparison increases quadratically

when the interaction between each pair of bodies need to be computed in a large

system. Tree-based algorithms avoid this problem by grouping bodies that are far

54

Chapter 3: Parallel List and Tree Processing

(a) Physical location of
points in 2D space

(b) Tree representation

Figure 3.3: 2D Barnes-Hut algorithm: The region containing the bodies is divided
recursively into smaller sub-regions (bounding boxes) which can then be represented
in a tree data structure.

away from the current body under consideration into a region (i.e. a whole branch

in the tree rather than the leaf nodes which represent the bodies – see Figure 3.3).

The error arising from combining bodies into one point mass is negligible. The

algorithm builds a tree, a quad-tree for two-dimentional problem, and an octree for

three-dimentional space.

The Barnes-Hut algorithm is a widely used approximation method for the n-body

problem. It is particularly useful for systems consisting of a large number of bodies,

where an approximate but efficient solution is more feasible than the naive approach.

The Barnes-Hut algorithm proceeds in two stages:

1) Tree construction: recursively divide the region containing the bodies into sub-

regions (four for 2D or eight for 3D space) and represent bodies as nodes in a tree.

This division into sub-regions continues until each sub-region contains zero or one

body. The centre of mass and total mass of each region are calculated and stored

in the inner nodes.

The total mass (M) and centre of mass (R) of bodies in a region are given by:

M =
N∑
i=1

mi (3.7)

R =
1

M

N∑
i=1

mi × ri (3.8)

where N is the number of bodies, mi represents the mass and ri the coordinate of

body i.

2) Tree traversal: the tree is traversed and the forces between all bodies are com-

55

Chapter 3: Parallel List and Tree Processing

Version Algorithm Description

S1 AP Sequential All-Pairs algorithm

S2 BH Sequential Barnes-Hut algorithm

P1.1 AP Parallel version in GpH–Evaluation Strategies

P1.2 BH

P2.1 AP Parallel version in Par monad

P2.2 BH

P3.1 AP Parallel version in Eden

P3.2 BH

AP=All-Pairs; BH=Barnes-Hut

Table 3.1: Sequential and parallel algorithm versions

puted, either directly, or by approximating bodies that are too far away using a

region. This is determined by a distance threshold, using the region centre of mass.

Depending on how dispersed the bodies in the system are, the tree construction

phase will usually lead to an imbalanced tree structure, which makes achieving good

parallel performance difficult. The implementation in this chapter uses a random

input generation which distributes the bodies uniformly in space and thus generates

a fairly balanced tree. In Chapter 4, we use different input distributions to test

more advanced strategies that are designed specifically to deal with such irregular

input through more advanced parallelism control mechanisms.

In the implementation sections, we number the sequential and parallel versions as

shown in Table 3.1.

3.3 Sequential Implementation

The n-body problem has been implemented across a wide variety of programming

languages covering many paradigms. Using a functional language like Haskell raises

the level of abstraction as it makes it easier to express the problem, for example,

through the use of higher-order functions. The three parallel Haskell variants cov-

ered in the previous chapter are used for implementing parallel versions of the two

algorithms. The main focus remains on GpH for implementing custom data struc-

ture evaluation strategies, and we then use Par monad and Eden to contrast the

implementation.

This section describes the two sequential algorithms and their step-by-step imple-

mentation:

• Firstly, the simple all-pairs (naive all-to-all) algorithm which uses lists.

56

Chapter 3: Parallel List and Tree Processing

• Secondly, the more realistic Barnes-Hut algorithm to be used on large number

of bodies on quad/oct-trees.

A number of sequential optimisations are applied to the initial implementations

to address memory issues that are inherent in a lazy language such as space leak

arising from holding a reference for too long. As a general rule, we avoid premature

optimisations that could hinder parallelisation. The effect of each optimisation is

reported in terms of runtime and heap usage improvement. The experimental setup

for these results and an overall evaluation of performance across all models are

given in Sections 3.4 and 3.5. The runtimes reported exclude the generation of

input and show the main part of the program that performs the core computation.

We consider the problem in three dimensional space, hence use oct-trees for the

Barnes-Hut implementation.

Body representation A body is represented by its position (x, y, z), velocity

(vx, vy, vz), and mass (m). Our data structure design uses two algebraic data types

defined to represent a body and the acceleration (Listing 3.5), and collects all bodies

in a list container.

Listing 3.5: N-body data types definition

1 data Body -- body type def

2 = Body { x::Double , y::Double , z::Double , -- position

3 vx::Double , vy::Double , vz::Double , -- velocity

4 m:: Double } -- mass

5

6 data Accel -- acceleration type def

7 = Accel { ax::Double , ay::Double , az:: Double }

3.3.1 S1: All-Pairs

The pairwise force calculation for this algorithm is relatively simple to implement

in an imperative language using a double nested loop with inplace update. In pure

Haskell, the absence of destructive update requires an approach that uses functional

recursion to implement iteration in the program to simulate a loop construct. Al-

ternatively, a nested map function can also be employed to get the same compute

structure. In both cases, new data structures are generated. To achieve destructive

updates, a monadic style of programming and the use of updatable data structures

are needed. The use of mutable data structures to solve the problem is presented in

(Totoo et al., 2012) in F#. Here the focus is on a pure solution.

The main function doSteps that encodes the iteration in Listing 3.6 internally uses

two map functions, corresponding to a double nested loop in an imperative lan-

57

Chapter 3: Parallel List and Tree Processing

guage. The top-level map function applies the composite function (updatePos .

updateVel) to each body in the list bs. The main computation happens in the

updateVel function, which has another map function to calculate the accelerations

against all the bodies. The fold function updates the accelerations giving the up-

dated velocity. The code below shows the computation performed in the main

iteration.

Listing 3.6: All-Pairs main iteration

1 dt = 0.001 -- time change for each step

2 eps = 0.01 -- epsilon value

3

4 doSteps ::Int ->[Body]->[Body]

5 doSteps 0 bs = bs

6 doSteps s bs = doSteps (s-1) new_bs

7 where

8 new_bs = map (updatePos . updateVel) bs

9

10 updatePos (Body x y z vx vy vz m) =

11 Body (x+dt*vx) (y+dt*vy) (z+dt*vz) vx vy vz m

12

13 updateVel b = foldl deductChange b accels

14 where

15 accels = map (calcAccel b) bs

16

17 deductChange (Body x y z vx vy vz m) (Accel ax ay az) =

18 Body x y z (vx -ax) (vy -ay) (vz -az) m

19

20 calcAccel b_i b_j =

21 Accel (dx*jm*mag) (dy*jm*mag) (dz*jm*mag)

22 where

23 Body ix iy iz _ _ _ _ = b_i

24 Body jx jy jz _ _ _ jm = b_j

25

26 mag = dt / (d * r)

27 r = sqrt d

28 d = dx*dx + dy*dy + dz*dz + eps

29 dx = ix - jx

30 dy = iy - jy

31 dz = iz - jz

3.3.2 S2: Barnes-Hut

The Barnes-Hut implementation is based on the 2D version of the algorithm de-

scribed in (Chakravarty et al., 2001) and (Jones et al., 2008). The program consists

of two main steps which are broken down into smaller functions. In addition to the

Body and Accel types used in the all-pairs version, three new data types central to

the data design are defined to represent:

1. BHTree the Barnes-Hut tree structure;

2. Bbox the bounding box representing a region in 3D space, and

58

Chapter 3: Parallel List and Tree Processing

3. Centroid the centroid of a region i.e. centre of mass and total mass.

The BHTree data type implements a rose tree where each node can have an arbitrary

number of sub-trees. In our case of modelling a 3D space, this will not be more than

8 children per node, thus an oct-tree. The node of the tree consists of the size

of a region (size), the centre of mass (centerx, centery, centerz), total mass

(totalmass) and sub-trees (subTrees).

Listing 3.7: Additional data types for Barnes-Hut

1 data BHTree

2 = BHT { size::Double , centerx ::Double , centery ::Double ,

3 centerz ::Double , totalmass ::Double , subTrees ::[BHTree] }

4

5 data Bbox

6 = Bbox { minx::Double , miny::Double , minz::Double ,

7 maxx::Double , maxy::Double , maxz:: Double }

8

9 data Centroid

10 = Centroid { cx::Double , cy::Double , cz::Double , cm:: Double }

The algorithm proceeds in two main phases:

a) Tree construction.

This phase constructs an oct-tree from the list of bodies, passed as argument to the

buildTree function in Listing 3.8. The bounding box representing the lower and

upper coordinates of the region containing all the points is determined (findBounds)

and the size of the region is calculated. The centre of mass (cx, cy, cz) and total

mass (cm) are calculated and stored at the root node of the tree to represent the

whole space.

The bounding box is used to subdivide the bodies into 8 smaller regions (splitPoints)

and then the centre of mass and total mass of the bodies contained in each region are

computed in the same way and stored in the children nodes. The process continues

until a region has no body in it — buildTree is essentially a recursive function.

The actual bodies are not stored in the tree structure as in some implementation

since the centre and total mass are calculated in the tree construction phase.

Listing 3.8: Barnes-Hut tree building

1 doSteps 0 bs = bs

2 doSteps s bs = doSteps (s-1) new_bs

3 where

4 bbox = findBounds bs

5 tree = buildTree (bbox ,bs)

6 new_bs = map (updatePos . updateVel) bs

7

8 -- build the Barnes -Hut tree

9 buildTree :: (Bbox ,[Body])->BHTree

10 buildTree (bb,bs) = BHT size cx cy cz cm subTrees

11 where

59

Chapter 3: Parallel List and Tree Processing

12 subTrees = if bs <= 1 then []

13 else map buildTree (splitPoints bb bs)

14 Centroid cx cy cz cm = calcCentroid bs

15 size = calcBoxSize bs

16

17 findBounds ::[Body]->Bbox

18 -- split bodies into subregions

19 splitPoints ::Bbox ->[Body]->[(Bbox ,[Body])]

20 -- calculate the centroid of points

21 calcCentroid ::[Body]->Centroid

22 -- size of the region

23 calcBoxSize ::Bbox ->Double

b) Force calculation.

In this phase, the acceleration due to each body is computed by traversing the tree,

shown in the calcAccel function below.

The traversal along any path is stopped as soon as a node is too far away to make a

significant contribution to the overall force (isFar). This is determined by dividing

the total size s of the region by the distance d between the body and the node centre

of mass coordinates. If the ratio s
d

is less than a certain threshold t, where 0 < t < 1,

then the centroid is used as an approximation. Setting t to zero degenerates to a

brute force version, while increasing the value improves performance at the expense

of losing precision.

The accel function for the Barnes-Hut algorithm differs from the one in the all-pairs

version in that instead of calculating the acceleration between two bodies, it uses

the centroid (geometric centre) of a region and a body. The updateVel function

deducts the net acceleration due to each body.

Listing 3.9: Barnes-Hut acceleration calculation

1 updatePos (Body x y z vx vy vz m) = ... -- same as allpairs

2

3 updateVel b@(Body x y z vx vy vz m) =

4 Body x y z (vx-ax) (vy-ay) (vz -az) m

5 where

6 Accel ax ay az = calcAccel b tree

7

8 calcAccel ::Body ->BHTree ->Accel

9 calcAccel b tree@(BHT _ _ _ _ subtrees)

10 | null subtrees = accel tree b

11 | isFar tree b = accel tree b

12 | otherwise =

13 foldl addAccel (Accel 0 0 0) (map (calcAccel b) subtrees)

14 where

15 addAccel (Accel ax1 ay1 az1) (Accel ax2 ay2 az2) =

16 Accel (ax1+ax2) (ay1+ay2) (az1+az2)

17

18 accel::BHTree ->Body ->Accel

19 isFar::BHTree ->Body ->Bool

60

Chapter 3: Parallel List and Tree Processing

3.3.3 Sequential Tuning

A number of sequential optimisation techniques, targeting stack and heap consump-

tion, are applied to improve the runtime.

Optimisations: The following general optimisations apply to both algorithms:

Reducing stack consumption: The naive implementation of the algorithm suf-

fers from an excessive stack consumption when a large number of bodies and it-

erations are used. Space profiling helps to understand the memory usage of each

algorithm and to find space leaks. To fix such leaks and to improve general perfor-

mance of the sequential algorithm, the following steps are taken:

• Tail recursion:

By making functions tail recursive by using accumulating parameters helps

to reduce space consumption. This is a well known technique with functional

languages2.

• Strictness:

More specifically to a lazily evaluated language such as Haskell, strictness an-

notations can be added, where delaying evaluation is not necessary thus avoid

unnecessary thunking of computations3. This can be achieved in a number of

ways, for instance, by using the seq primitive, the strict function application

($!) or strictness annotation (!) provided by the BangPatterns4 extension.

• Algebraic types with strict fields:

Initially, type synonyms are used to represent position, velocity and mass as

triple tuple, e.g. type Pos = (Double,Double,Double). Through the use of

more advanced data types provided in Haskell e.g. algebraic sum and product

types with strict data fields, space leaks can be avoided and thereby improving

performance considerably with high input sizes as we will see shortly.

Reducing heap consumption: While the GHC compiler performs numerous au-

tomatic optimisations, more opportunities can be exposed by specific code changes,

in particular in fusing function applications where necessary. This removes any

intermediate data structures that could potentially decrease performance.

2Tail recursion: https://wiki.haskell.org/Tail_recursion
3A thunk is a value that is yet to be evaluated in Haskell. https://wiki.haskell.org/Thunk
4Haskell Wiki – BangPatterns extension https://prime.haskell.org/wiki/BangPatterns

61

https://wiki.haskell.org/Tail_recursion
https://wiki.haskell.org/Thunk
https://prime.haskell.org/wiki/BangPatterns

Chapter 3: Parallel List and Tree Processing

1 -- A trivial example

2 map updatePos (map updateVel bs)

3

4 -- rewritten using function composition

5 map (updatePos . updateVel) bs

The composed version using a single map is easier to read, and, additionally, does

not depend on compiler optimisation. The use of foldr in conjunction with list

comprehension (foldr/build) also eliminates the intermediate lists produced by

build and consumed by foldr. This is used in the Barnes-Hut tuning specifically.

Quantifying sequential tuning: Table 3.2 shows the runtimes, maximum resi-

dency and percentage of heap allocation change from previous version of each step

of tuning the sequential all-pairs and Barnes-Hut algorithms.

All-Pairs

• Version 1: the initial version of the all-pairs program uses type synonyms and

tuples to represent position, velocity, mass and acceleration. Type synonyms

are not new data types but are used mainly for code clarity. For example, it

is easy to read that a position consists of 3 doubles, thus representing it using

a tuple.

1 type Pos = (Double ,Double ,Double)

2 type Vel = (Double ,Double ,Double)

3 type Mass = Double

4 type Accel = (Double ,Double ,Double)

• Version 2: change type synonyms to data types. This causes the initial runtime

to go up by 60%. Using type synonym is usually more efficient as it incurs one

less indirection than a data type. However, data types are more powerful and

can be used with further optimisation as we will see in the following versions.

The usage of data types makes it necessary to derive appropriate typeclasses,

not shown here, e.g. Eq if we need to be able to compare them.

1 data Pos = Pos Double Double Double

2 data Vel = Vel Double Double Double

3 data Mass = Mass Double

4 data Accel = Accel Double Double Double

• Version 3: add strictness to avoid unnecessary thunking of computation. For

example, the return type of the accel function below is Accel. By default

the data fields of Accel are evaluated lazily, explaining why Version 2 uses a

lot of heap. These values are needed anyway. By making them strict, they are

computed eagerly. A clearer way to achieve this is by using the bang patterns

62

Chapter 3: Parallel List and Tree Processing

extension strictness annotation (!) instead of the most explicit seq. As the

results show, this step accounts for the main reduction in heap and time by

78% and 96% respectively.

1 -- data fields evaluated lazily

2 accel bodyi bodyj = Accel (dx*jm*mag) (dy*jm*mag) (dz*jm*mag)

3 -- add strictness annotation (!)

4 accel bodyi bodyj = Accel ax ay az

5 where

6 !ax = (dx*jm*mag)

7 !ay = (dy*jm*mag)

8 !az = (dz*jm*mag)

• Version 4: use strict data fields. Making the data fields strict removes the

need for the previous strictness annotation added inside the function. Addi-

tionally, the use of the UNPACK pragma indicates to the compiler to unpack the

contents of the constructor field into the constructor itself, removing a level of

indirection. This is compiler-specific and not a language issue.

1 data Pos = Pos {-# UNPACK #-} !Double {-# UNPACK #-} !Double {-

UNPACK # -} !Double

• Version 5: use appropriate higher order functions from the standard libraries

e.g. use foldl’, which is tail recursive and does not accumulate intermedi-

ate results, instead of foldl. This ensures fixed heap usage and avoids the

accumulation of huge thunk of computations. Though left fold is more space-

and probably time-efficient, foldr is used in conjunction with build (the fol-

dr/build rule) to eliminate intermediate lists produced by build and consumed

by foldr.

• Final version: use single Body data type. This removes the need to deal with

many different data types, makes the program more compact, and as a result,

reduces the runtime by 10%. The maximum residency is reduced similarly.

1 data Body

2 = Body

3 { x :: {-# UNPACK # -} !Double -- pos of x

4 , y :: {-# UNPACK #-} !Double -- pos of y

5 , z :: {-# UNPACK #-} !Double -- pos of z

6 , vx :: {-# UNPACK #-} !Double -- vel of x

7 , vy :: {-# UNPACK #-} !Double -- vel of y

8 , vz :: {-# UNPACK #-} !Double -- vel of z

9 , m :: {-# UNPACK #-} !Double } -- mass

Barnes-Hut In addition to the optimisations applied to all-pairs, the main tuning

for Barnes-Hut sequential performance is the use of foldr/build.

• Version 1: The first Barnes-Hut version includes all all-pairs optimisations

detailed earlier. This gives a good initial runtime.

63

Chapter 3: Parallel List and Tree Processing

Version Runtime (s) Max Resi (KB) Heap Alloc (%)

All-Pairs (5000 bodies)

allpairs1 39.47 1976 –

allpairs2 63.24 3533 +30.9

allpairs3 2.54 1273 -77.9

allpairs4 2.15 726 -28.9

allpairs5 2.14 726 -0.0

allpairs-final 1.94 69 -0.0

Barnes-Hut (80000 bodies)

bh1 41.90 28 –

bh-final 33.37 27 -88.6

Table 3.2: Sequential tuning

• Version 2: Use foldr/build in the calcAccel function which eliminates in-

termediate lists produced by build and consumed by foldr.

1 -- before

2 foldl ’ addAccel (Accel 0 0 0) [calcAccel st b | st <- subtrees]

3 -- after

4 foldr addAccel (Accel 0 0 0) [calcAccel st b | st <- subtrees]

Compiler optimisation: The sequential runtimes up to now are based on fully

optimised code and on an input size of 5000 bodies for the all-pairs program. GHC’s

automatic optimisation already manages to improve time and heap performance sig-

nificantly. Table 3.3 shows that the runtime is very high when compiler optimisation

(-O0) is disabled. We use 2000 bodies here so the base runtime (without optimisa-

tion) is within one minute and show the difference between level 1 and 2 optimisa-

tion. The table shows that GHC’s aggressive optimisation machinery manages to

automatically improve performance of the final version by a factor of 13.0, relative

to the unoptimised version, but does not find many more sources of optimisation

when going to full optimisation. Algorithmic optimisation, represented by all the

sequential tuning steps as discussed in this section, gives a performance gain of a

factor of 12.0 (combined with full optimisations). Both taken together account for

a sequential speedup of 155.7.

allpairs1 allpairs-final

Optimisation RT Max Resi RT Max Resi

(sec) (KB) (sec) (KB)

-O0 (disable optimisations) 48.26 (–) 1667000 18.58 (–) 71

-O1 (standard optimisations) 3.76 (92%↓) 1094 0.31 (98%↓) 69

-O2 (full optimisations) 3.72 (1%↓) 1117 0.31 (–) 69

Input: 2000 bodies; RT=Runtime

Table 3.3: Effect of compiler optimisation (All-Pairs)

64

Chapter 3: Parallel List and Tree Processing

Baseline comparison: We use the n-body benchmark from the Computer Lan-

guage Benchmarks Game website 5 as baseline to compare with our all-pairs imple-

mentations. We are particularly interested in the Haskell and the C versions, both

implementing the same algorithm as our Haskell version. At the time of publica-

tion (Totoo and Loidl, 2014a), the baseline Haskell version, which is run against 50

million iterations and 5 bodies as input, is slower than the C versions by a factor of

1.2.

We adapt the Haskell and C versions from the Benchmarks Game with our input

generation function and run them against a large number of bodies as we use for

our all-pairs program (16000 bodies and 1 iteration). This allows for a head-to-head

comparison between two Haskell versions and a C version. We note that our all-

pairs Haskell program runs at 20.14s compared to 12.55s for baseline Haskell version,

making it slower by a factor of 1.6. Compared to the C version which runs at 5.70s,

our all-pairs Haskell program is 3.5 time slower. However, it is worth pointing out

that the Benchmarks Game version, though implementing the same algorithm, is

highly optimised by expert programmers in Haskell and the GHC compiler, and

makes use of inplace update operations organised through monadic code and unsafe

operations such as unsafePerformIO. The disadvantage of this approach is that it

introduces sequentialisation in the code as part of the optimisation and therefore

loses many potential for parallelism.

As a baseline comparison, we observe a sequential overhead of a factor of 3.5 against

the C version from the Computer Language Benchmarks Game. By remaining faith-

ful to a purely functional programming model, our implementation provides oppor-

tunities for parallelism, that do not exist in the lower-level implementations and

have to be refactored in a time-consuming and error prone parallelisation method-

ology. By exploiting high-level parallelism, we can compensate for the sequential

overhead, using a fairly small number of processors, and achieve high scalability of

our code, through the usage of more massively parallel hardware. In particular, the

final parallel program will not be tied to one particular class of architectures, nor to

a certain number of processors.

3.4 Parallel Implementation

Through the use of high-level constructs and functions implementing common skele-

tons in each programming model, the sequential algorithm is expected to require only

a few changes to obtain an initial parallel version of both algorithms. The GpH im-

5The Computer Language Benchmarks Game (Fulgham, 2012)
http://benchmarksgame.alioth.debian.org/

65

http://benchmarksgame.alioth.debian.org/

Chapter 3: Parallel List and Tree Processing

8 cores machine (lxpara) (8GB RAM)

Socket #0

L2 6MB L2 6MB

L1 64KB L1 64KB L1 64KB L1 64KB

Core #0 Core #1 Core #2 Core #3

Socket #1

L2 6MB L2 6MB

L1 64KB L1 64KB L1 64KB L1 64KB

Core #4 Core #5 Core #6 Core #7

Figure 3.4: Desktop-class 8 cores machine topology map.

plementations use Evaluation Strategies and not the primitives. We present results

from the initial implementation and show, through a set of parallel performance tun-

ing steps, how runtime and speedup are improved. The experimental setup for these

results is given below. A detailed performance evaluation is covered in Section 3.5.

Experimental Setup: The machine used for measurements has the following

hardware specifications: an Intel Xeon CPU E5410 2.33 GHz processor with 8

cores, 8GB RAM and 12MB L2 cache. Figure 3.4 depicts the topology map of

the machine which runs a 64-bit CentOS 5.8 Linux distribution with kernel version

2.6.18-308.11.1.el5. The GHC compiler version 7.0.1 is used with the parallel and

monad-par packages for GpH–Evaluation Strategies and Par monad respectively.

The Eden extension to the GHC compiler version 6.12.3 (GHC-6.12.3-Eden) is used

for Eden. At the time of experiment, both the GHC and GHC-Eden compilers have

newer but not yet stable versions. Any comparison between GpH/Par monad and

Eden is therefore on the basis of speedup.

Input Set: Unless explicitly stated otherwise in relevant sections and tables, the

input size for all-pairs measurements is 16000 bodies; and for the Barnes-Hut mea-

surements is 80000 bodies as it is a more efficient algorithm and able to cope with

high number of bodies. The input ensure the runtimes of one iteration are within a

minute for both algorithms. Larger input sizes are used for scale-up tests in the eval-

uation section and smaller sizes for incremental sequential or parallel optimisation

phases to highlight key statistics. The tables and graphs show absolute speedups.

The runtimes are the mean running times obtained from 3 runs.

66

Chapter 3: Parallel List and Tree Processing

Time profiling: Identifying the main source of parallelism is the first step in

the parallel implementation. Time profiling points out the “big eaters,” that is,

functions that take the largest percentage of the total time. Listing 3.10 shows the

time and allocation profiling for both algorithms.

Listing 3.10: Time and Allocation Profiling Report

i n d i v i d u a l i n h e r i t e d
COST CENTRE MODULE e n t r i e s %time %a l l o c %time %a l l o c

−− All−Pai r s (2000 bodies , 1 i t e r a t i o n)

doSteps Main 1 0 .0 0 .0 100 .0 99 .8
updatePos Main 2000 0 .0 0 .0 0 . 0 0 . 0
updateVel Main 2000 3 .1 1 .9 99 .9 99 .8

a c c e l Main 4000000 23 .5 37 .2 94 .5 93 .3
deductChange Main 4000000 2 .4 4 .5 2 . 4 4 .5

−− Barnes−Hut (8000 bodies , 1 i t e r a t i o n)

doSteps Main 1 0 .0 0 .0 99 .9 99 .8
findBounds Main 1 0 .0 0 .0 0 .0 0 .0
bui ldTree Main 11804 0 .0 0 .0 0 . 2 0 .2

s p l i t P o i n t s Main 3804 0 .0 0 .0 0 . 1 0 . 2
ca l cCent ro id Main 11804 0 .0 0 .0 0 . 0 0 .0

updatePos Main 8000 0 .0 0 .0 0 . 0 0 . 1
updateVel Main 8000 0 .0 0 .0 99 .7 99 .5

ca l cAcce l Main 14893157 4 .8 7 .1 99 .7 99 .5
a c c e l Main 12193706 12 .9 16 .1 65 .1 63 .3
i sFar Main 10247211 7 .1 9 .2 29 .7 29 .1

In both algorithms, the top-level doSteps function performs the iterations and in-

herits the largest percentage of time. The main source of parallelism arises from

the update velocity function updateVel which is used as the function argument of a

map operation in both all-pairs and Barnes-Hut. It accounts for almost 100% of the

inherited overall time from other function calls. As it is used in a map, it presents

data-oriented parallelism.

1 new_bs = map (updatePos . updateVel) bs

While the tree construction phase can naturally be done in parallel, the time profile

indicates that buildTree accounts for less than 1% of the time in the Barnes-Hut

algorithm. Parallelising this part of the program may not cause any significant im-

provement but could, on the other hand, create overheads. However, with the same

number of bodies as used for all-pairs, the time percentage spent in buildTree

reaches approximately 12%. This is explained by less computation involved in the

acceleration calculation phase and thus better distribution of the time between the

two phases. Additionally, depending on the distance threshold which defines when

a body is considered to be too far away, the time spent in updateVel can vary sig-

nificantly. For instance, if the distance threshold is high (closer to 1), the traversal

67

Chapter 3: Parallel List and Tree Processing

is very fast, as a result of little computation involved. This is not very good for

parallelism as the cost of creating parallelism may be higher than the actual com-

putation. A small threshold value, e.g. t=0.1, results in a slower runtime, and t=0

degenerates to pair-wise comparison. Ideally, we use t=0.25 which gives a reasonable

approximation, accuracy and speed.

Both the all-pairs and Barnes-Hut algorithms are structured such that the function

to update the velocity and position of each body can be applied to the list of all

bodies in a map operation, thus exposing data-oriented parallelism. All of the three

models provide at least a basic parallel map for data-parallel operations.

3.4.1 P1: GpH–Evaluation Strategies

P1.1: All-Pairs

Initial parallelism is obtained by replacing map with parMap which is implemented in

terms of parList (see Section 3.1.1) such that the velocity for each body is computed

in parallel.

Listing 3.11: GpH–Evaluation Strategies parallel map

1 new_bs = parMap rdeepseq (updatePos . updateVel) bs

2

3 -- equivalent to

4 new_bs = map (updatePos . updateVel) bs ‘using ‘ parList rdeepseq

The function composition, which is used as the map first argument, can be turned

into a pipeline using the parallel .|| combinator. This arranges the composition

between the two functions to proceed in parallel. The result of updateVel is eval-

uated in parallel with the application of the first function. However, given that

the updatePos function does negligible computation as opposed to updateVel, this

is not a useful source of parallelism and therefore not considered any further. It

demonstrates, however, that this programming model makes it easy to compose dif-

ferent sources of parallelism, and to prototype alternative parallelisations, without

having to restructure the existing code in a fundamental way.

68

Chapter 3: Parallel List and Tree Processing

Listing 3.12: Global statistics of a parallel run on 2 cores

. / a l l p a i r s 16000 1 +RTS −N2 −s
56026.00329381344
54897.906546913
time taken : 16 .76 s

31 ,145 ,652 ,016 bytes a l l o c a t e d none in the heap
27 ,366 ,360 bytes copied during GC

2 ,999 ,520 bytes nonemaximum re s id ency (5 sample (s))
517 ,760 bytes nonemaximum s lop

10 MB t o t a l memory none in use (0 MB l o s t due to
f ragmentat ion)

Generation 0 : 44953 c o l l e c t i o n s , 44952 p a r a l l e l , 2 .70 s , 1 .22 s
e lapsed

Generation 1 : 5 c o l l e c t i o n s , 5 p a r a l l e l , 0 .05 s , 0 .03 s
e lapsed

P a r a l l e l GC work balance : 1 .12 (3256443 / 2904329 , i d e a l 2)

MUT time (e lapsed) GC time (e lapsed)
Task 0 (worker) : 4 .90 s (15 .63 s) 1 .51 s (0 .82 s)
Task 1 (worker) : 6 .21 s (15 .63 s) 0 .52 s (0 .08 s)
Task 2 (bound) : 9 .96 s (15 .63 s) 0 .72 s (0 .36 s)
Task 3 (worker) : 0 .00 s (15 .63 s) 0 .00 s (0 .00 s)

SPARKS: 16000 (8192 converted , 0 pruned)

INIT time 0 .00 s (0 .01 s e lapsed)
MUT time 21 .07 s (15 .63 s e lapsed)
GC time 2 .75 s (1 .25 s e lapsed)
EXIT time 0 .00 s (0 .00 s e l apsed)
Total time 23 .83 s (16 .89 s e lapsed)

%GC time 11.6% (7.4% e lapsed)

Al loc ra t e 1 ,477 ,931 ,568 bytes per MUT second

Product iv i ty 88.4% noneo f t o t a l user , 124.8% noneo f t o t a l e l apsed

The performance results from this naive version are disappointing. In the best

case, we observe a speedup of 1.4 on 4 processors and a slow-down on 8 processors.

The reason for this poor performance is too fine granularity: considerable overhead

associated with generating a thread for every list element, potentially 16000 in total.

While the generation of sparks is cheap – it amounts to adding a pointer to a queue –

the generation of a thread requires the allocation and initialisation of a thread state

object (TSO), which among other data contains the stack used by the thread. In

this case, the computation performed by one thread, namely updating the velocity

and position of one body, is too small in comparison with the overhead for TSO

initialisation and for scheduling the available threads. The statistics in Listing 3.12

summarise the execution on 2 cores. In total, 16000 sparks are created, one for each

list element, and of these 8192 are converted into threads. The remaining sparks

are overflowed (shown in newer GHC report) due to the spark pool size limit which

69

Chapter 3: Parallel List and Tree Processing

is set at 8k by default. New sparks are discarded when the pool is full. Since the

nature of the parallelism is data-parallel, no work can be subsumed by a sibling-

thread, and thus lazy task creation is not effective in automatically increasing thread

granularities.

To tune parallel performance, we control the number of sparks created by grouping

elements into larger units called chunks. Instead of creating a spark for each element

in the list, the list is broken down into chunks and a spark is created for each chunk,

thus significantly reducing the thread creation overhead. The number of chunks

is determined by the number of available processors. Having too few chunks may

result in some processors not getting enough work while too many chunks create

excessive overhead.

As often in data-parallel programs, a careful balance between low thread manage-

ment overhead and massive parallelism is crucial. There is no dynamic parallelism

here, i.e. all parallelism is generated at the beginning. Thus a low, fixed number

of chunks is likely to be the best choice for performance. Each processor does not

necessarily get the same number of chunks. Using more chunks retains more flexi-

bility for the runtime system, because a faster or more lightly loaded processor can

pick-up new work after having finished its initial work allocation.

In the following, we survey three ways to introduce chunking (or clustering) into the

algorithm. The language-level differences between these approaches are discussed in

more detail in (Marlow et al., 2010).

1) Explicit Chunking The most obvious way of performing chunking, is to ex-

plicitly apply functions performing chunking before and de-chunking after the data-

parallel core of the application (see below). Explicit chunking is also used in the

Par monad version, and its performance discussed in Section 3.4.2.

Listing 3.13: Explicit chunking

1 s = 1000 -- chunk size

2 f = (updatePos . updateVel)

3 new_bs = concat (map (map f) (chunk s bs) ‘using ‘ parList rdeepseq)

Used directly in the application code, this technique obfuscates the computational

core of the application, and introduces an intermediate data structure that is only

needed to increase thread granularity.

2) Strategic Chunking Another skeleton-based approach to introduce chunking

is to modify the definition of the strategy and encode chunking in addition to the

specification of parallelism inside this skeleton (as we introduced in Section 3.1.1).

70

Chapter 3: Parallel List and Tree Processing

Thus, we change parList to parListChunk, which takes an additional argument,

specifying the chunk size. The parListChunk strategy applies the given strategy, in

this case rdeepseq, to each chunk. This achieves a clean separation of computation

and coordination, leaving the core code unchanged, and hiding the intermediate data

structure in a custom strategy. However, this strategy is now fixed to one parallel

pattern and one way of chunking.

Listing 3.14: Strategic chunking

1 s = (length bs) ‘quot ‘ (numCapabilities * 4) -- 4 chunks/PE

2 f = (updatePos . updateVel)

3 new_bs = map f bs ‘using ‘ parListChunk s rdeepseq

The chunk size s is determined using a simple calculation:

s =
N

(PE × chunksPerPE)
(3.9)

where s is the chunk size, N is the input list size, PE is the number of cores, and

chunksPerPE is the number of chunks to be allocated to each PE.

While generating exactly one chunk per processor might intuitively seem to be the

best choice, it is also the least flexible one, because it deprives the runtime system

from distributing parallelism in the case where one processor suffers from a high

external load. Therefore, a small number of chunks greater than one is usually a

good choice. In this case, the right balance is to have approximately four chunks

per processor. Table 3.4 shows the number of bodies processed by each processor for

an all-pairs experiment involving 16000 bodies and for possible number of chunks

allocated to each PE equals to 1, 2 and 4.

chunks per PE

no. PE 1 2 4

1 16000 8000 4000

2 8000 4000 2000

4 4000 2000 1000

8 2000 1000 500

Table 3.4: No. of bodies in each chunk (chunk size).

Table 3.5 shows the runtime and speedup results for different number of chunks per

processor and on up to 8 processors using parListChunk strategy, motivating our

choice of a chunk size leading to 4 chunks per PE in the code in Listing 3.14. The

table shows that on 2 cores below performance deteriorates by up to 12% for larger

chunk sizes (highlighted – 8000 vs 2000).

71

Chapter 3: Parallel List and Tree Processing

nochunk 1chunk/PE 2chunks/PE 4chunks/PE

no. PE RT (s) SP RT (s) SP RT (s) SP RT (s) SP

Seq. 20.04 1.00 20.05 1.00 20.03 1.00 20.06 1.00

1 20.64 0.97 27.80 0.72 24.07 0.83 22.10 0.91

2 16.76 1.20 12.73 1.58 11.98 1.67 11.33 1.77

4 13.89 1.44 6.42 3.12 6.15 3.26 5.97 3.36

8 15.64 1.28 3.40 5.90 3.35 5.98 3.29 6.10

Algorithm: All-Pairs; Input: 16k bodies, 1 iteration

Table 3.5: GpH–Evaluation Strategies runtimes and speedups (All-Pairs).

3) Implicit Clustering A more compositional way to introduce chunking is to

delegate the task to an instance of a new Cluster class, with functions for performing

clustering and declustering (or flattening) as introduced in (Loidl et al., 2001). We

can use available abstractions of performing an operation on each element of a cluster

(lift) and of flattening the resulting data structure (decluster). Thus, to define

an instance of this class the programmer only needs to define cluster in such a way

that the specified proof obligation is fulfilled e.g. an instance for lists as given below

requires us only to define cluster.

Listing 3.15: Cluster typeclass definition

1 class (Traversable c, Monoid a) => Cluster a c where

2 cluster :: Int -> a -> c a

3 decluster :: c a -> a

4 lift :: (a -> b) -> c a -> c b

5

6 lift = fmap -- c is a Functor , via Traversable

7 decluster = fold -- c is Foldable , via Traversable

8 -- we require: decluster . cluster n == id

9

10 instance Cluster [a] [] where

11 cluster = chunk

Based on this class definition, we can then separately define an evalCluster strat-

egy, which uses these functions before and after applying its argument strategy to

each cluster, thus separating the definition of parallelism from any form of clustering.

Listing 3.16: Implicit clustering

1 evalCluster :: Cluster c => Int ->Strategy a->Strategy a

2 evalCluster n s x = return (decluster (cluster n x ‘using ‘ cs))

3 where cs = evalTraversable s :: Strategy c

Using this approach, we can add clustering to the basic data-parallel strategy,

without changing the original strategy at all — replace evalList (rpar ‘dot‘

rdeepseq), which is the definition of parList, by evalCluster s (rpar ‘dot‘

rdeepseq). In short, the compositionality of this style of programming allows us to

specify a parallel strategy combined with a clustering strategy. This provides more

flexibility in aggregating collections in ways that cannot be expressed using only

72

Chapter 3: Parallel List and Tree Processing

strategies.

In summary, the code below shows the application of the three clustering techniques:

Listing 3.17: Clustering techniques summary

1 -- explicit clustering

2 concat (map (map f) (chunk s bs) ‘using ‘ parList rdeepseq)

3 -- strategic clustering

4 map f xs ‘using ‘ parListChunk s rdeepseq

5 -- combining parallel and clustering strategies

6 map f xs ‘using ‘ evalCluster s (rpar ‘dot ‘ rdeepseq)

nochunk parListChunk evalCluster

no. PE Runtime (s) Speedup Runtime (s) Speedup Runtime (s) Speedup

Seq. 20.04 1.00 20.06 1.00 20.02 1.00

1 20.64 0.97 22.10 0.91 19.71 1.02

2 16.76 1.20 11.33 1.77 10.93 1.83

4 13.89 1.44 5.97 3.36 5.83 3.43

8 15.64 1.28 3.29 6.10 3.28 6.10

Algorithm: All-Pairs; Input: 16k bodies, 1 iteration

Table 3.6: GpH–Evaluation Strategies runtimes and speedups (All-Pairs; different
chunking strategies)

Table 3.6 summarises runtime and speedup when using no chunk and chunking

through parListChunk and evalCluster, always with four chunks per PE. Most

notably, the implicit evalCluster version achieves the same performance as the

strategic parListChunk. Thus, using this more compositional version, which makes

it easy to introduce and modify clustering strategies separately from specifying par-

allelism over the data structure, does not incur a significant performance penalty.

P1.2: Barnes-Hut

Sequential profiling of the Barnes-Hut algorithm identifies the same updateVel func-

tion as the most compute-intensive. As the call count for this function shows, this

is due to the iterative use in the top level map. Therefore, the Barnes-Hut algo-

rithm is parallelised in the same, data-parallel way as the all-pairs version. Since an

abundance of fine-grained parallelism is also a problem in this version, we use the

same form of chunking to tune the parallel performance.

In this version a natural parallel phase is buildTree, where sub-trees can be con-

structed in parallel. But as the profiling report showed earlier, it does not account

for a significant percentage of the overall time, and therefore the benefits from par-

allelising this stage are limited. However, it is cheap to mark the stage as parallel

computation in GpH, and whether to take the spark for parallel execution is up to

the runtime system.

73

Chapter 3: Parallel List and Tree Processing

Tree-specific optimisation An important generic optimisation that is applied

in the buildTree function is thresholding. By adding an explicit argument to the

function that represents the current level of the tree, the generation of parallelism

can be restricted to just the top levels. This makes sure there are not too many

parallel threads for the tree construction otherwise it would cause overheads with

large number of bodies which would require a big tree structure. This approach is

static and in the next chapter we define and apply more advanced tree traversal

strategies for the same algorithm.

Top-level map only Parallel buildTree

no. PE Runtime (s) Speedup Runtime (s) Speedup

Seq. 33.31 1.00 33.31 1.00

1 35.77 0.93 35.77 0.93

2 21.50 1.55 21.61 1.54

4 11.00 3.03 10.77 3.09

8 6.77 4.92 6.11 5.45

Input: 80k bodies, 1 iteration

Table 3.7: GpH–Evaluation Strategies runtimes and speedups (Barnes-Hut)

Table 3.7 shows that parallel buildTree has no big impact on performance on up

to 4 cores and a slight improvement on 8 cores. More importantly, it does not cause

additional overhead. The main observation though is that the algorithm does not

achieve as good speedup as the all-pairs algorithm. This is expected as all parallel

tasks in the all-pairs algorithm have the same amount of computation to perform, i.e.

the parallelism is regular, whereas the acceleration calculation steps in the Barnes-

Hut algorithm vary for each body depending on its location. Some bodies require

traversing deeper inside the tree to calculate the net acceleration, while for some, it

may not require to do so. Quantifying the irregularity of the computation involved

in Barnes-Hut, random generation of 80000 bodies gives an unbalanced tree with

minimum tree depth 6 and maximum depth 9. In the next chapter, we look at

different input distributions for the same algorithm.

3.4.2 P2: Par Monad

P2.1: All-Pairs

We use the pre-defined parallel map provided in the Par monad library to add paral-

lelism the same way as we did in GpH. In contrast to GpH, the parallel computation

happens in a monad and therefore the result has to be extracted using runPar.

Listing 3.18: Par monad parallel map

1 new_bs = runPar $ parMap (updatePos . updateVel) bs

74

Chapter 3: Parallel List and Tree Processing

The runtime and speedup given in Table 3.8 shows that the Par monad achieves

slightly better performance than GpH. Notably, the results without chunking show

a speedup of 6.17 on 8 cores. The reason for this efficient behaviour is the work-

inlining scheduler, which distributes the potential parallel tasks to a number of

implicitly created threads and then executes the task within the existing thread.

This dramatically reduces the thread creation overhead, at the expense of less flex-

ibility in how to distribute the tasks in the first place. This model is well suited for

homogeneous, multi-core architectures and no explicit chunking is needed to improve

parallel performance. However, as shown in Table 3.9 the use of chunking reduces

the maximum residency by 50% from 4822MB to 2417MB for a parallel run on 8

cores, because fewer tasks will be active at any point, thus reducing the amount of

live data needed by these tasks.

nochunk 1chunk/PE 2chunks/PE 4chunks/PE

no. PE RT (s) SP RT (s) SP RT (s) SP RT (s) SP

Seq. 20.30 1.00 20.06 1.00 20.03 1.00 20.04 1.00

1 20.48 0.99 20.16 1.00 20.08 1.00 20.19 0.99

2 10.96 1.85 10.91 1.84 10.98 1.82 10.94 1.83

4 5.93 3.42 5.85 3.43 5.82 3.44 5.78 3.47

8 3.29 6.17 3.24 6.19 3.22 6.22 3.25 6.17

Algorithm: All-Pairs; Input: 16k bodies, 1 iteration

Table 3.8: Par monad runtimes and speedups (All-Pairs).

Par. run on 8 cores nochunk chunking

copied during GC (MB) 31527 16171

max residency (MB) 4822 2417

Algorithm: All-Pairs; Input: 16k bodies, 1 iteration

Table 3.9: Par monad statistics: GC and max. residency.

Table 3.8 also shows that varying the number of chunks causes negligible change

to the runtime and speedup. However, to maintain low memory residency and to

facilitate scalability beyond the number of cores available for these measurements,

a chunking policy is preferred.

The Par monad, however, does not come with a pre-defined parallel map function

with chunking. So, we use explicit chunking, as described earlier. In the following

code extract, s is the chunk size and is used in the same way as in GpH to produce

an appropriate number of chunks to match the number of cores.

Listing 3.19: Par monad explicit chunking

1 new_bs = parMapChunk (updatePos . updateVel) s bs

2

3 parMapChunk f n xs = concat (runPar $ parMap (map f) (chunk n xs))

75

Chapter 3: Parallel List and Tree Processing

P2.2: Barnes-Hut

For the Barnes-Hut algorithm, we note that chunking causes a noticeable improve-

ment in the speedup from 5.29 to 6.50 on 8 cores, unlike the all-pairs version (see

Table 3.8). A chunking strategy is more important due to the fact that a large

number of bodies are used in this algorithm, thereby making the memory usage

overhead significant.

The large number of bodies used in Barnes-Hut makes the heap usage significantly

higher compared to the all-pairs algorithm. Without chunking, the maximum resi-

dency is 83MB and productivity is at 63%. With chunking, residency is 55MB and

improved productivity by 10%. This reduced percentage of garbage collection time

has an immediate impact on the performance of the parallel program.

Top-level map only Parallel buildTree

no. PE Runtime (s) Speedup Runtime (s) Speedup

Seq. 33.39 1.00 33.65 1.00

1 34.49 0.97 33.96 0.99

2 17.72 1.88 17.79 1.89

4 9.21 3.63 8.97 3.75

8 5.91 5.65 5.18 6.50

Input: 80k bodies, 1 iteration

Table 3.10: Par monad runtimes and speedups (Barnes-Hut)

Executing the buildTree stage in parallel using Par monad shows a noteworthy

improvement on 8 cores from the GpH version (Table 3.7 and 3.10), though this

stage does not represent a large part of the overall computation for this algorithm.

3.4.3 P3: Eden

P3.1: All-Pairs

As with the previous two models, we only need a parallel map implementation to add

data-oriented parallelism to the algorithm. Eden offers several skeletal approaches

and, in particular, has several implementations of parallel map as described earlier.

The default parMap implementation creates a process for each list element causing

far too much overheads in terms of number of processes instantiated and messages

communicated (16001 and 64000, respectively). Table 3.11 shows the number of

processes, threads, conversations and messages overheads of each skeleton. Observ-

ing number of processes and communications is motivation for picking a different

strategy, and with it numbers drop significantly and speedup improves.

76

Chapter 3: Parallel List and Tree Processing

processes threads conversations messages

parMap 16001 32001 64000 64000

parMapFarm 9 17 48 32048

parMapFarm w/ chunking 9 17 48 80

offlineFarm w/ chunking 9 17 40 56

Table 3.11: Eden skeleton overheads - par. run on 8 cores

The parMapFarm farm process skeleton creates the same number of processes as the

number of available processing elements. But the message overheads remain. Each

list element is communicated as a single message which generates 32048 messages.

While this is a high number, performance is considerably improved compared to

the naive parallel map and good speedup is achieved. This confirms that process

creation overheads is far more important than the number of messages.

With further parallel tuning to reduce message overheads, we use chunking to break

the stream into chunks of size 1000 items which are then sent as one message. This

enables the process to do more computation at one time rather than having to

send and receive messages in between. The chunking reduces the total number of

messages communicated in the parMapFarm version from 32048 to just 80 messages.

As a result of this, the runtime and speedup are improved as shown in Table 3.12.

The offline farm process, where process input is evaluated by the child process

instead of the parent process, causes a small performance improvement compared

to the farm process. Sending the process input to child processes to be evaluated is

intended to reduce the combined time the parent process has to spend on reducing

all input. However, in our algorithm, the input to a farm process is a Body type

with strict fields. So there is not much reduction happening after sending it to the

child processes.

parMap parMapFarm parMapFarm offlineFarm

w/ chunking w/ chunking

no. PE Runtime (s) SP Runtime (s) SP Runtime (s) SP Runtime (s) SP

Seq. 22.11 1.00 22.13 1.00 22.13 1.00 22.13 1.00

1 362.38 0.06 23.67 0.93 22.91 0.97 23.02 0.96

2 294.99 0.07 11.91 1.86 11.57 1.91 11.53 1.92

4 259.19 0.09 6.08 3.64 5.82 3.80 5.80 3.82

8 245.72 0.09 3.41 6.49 3.09 7.16 3.04 7.28

Input: 16k bodies, 1 iteration; SP=Speedup

Table 3.12: Eden runtimes and speedups (All-Pairs)

77

Chapter 3: Parallel List and Tree Processing

P3.2: Barnes-Hut

Although the Eden all-pairs implementation has given the best performance so far

compared to the other two models, the performance for the Barnes-Hut algorithm

using Eden is not as good as the other models. The speedup is roughly the same

compared to the other two models on 1 to 4 cores but then there is no further

speedup up to 8 cores. The best speedup is achieved using the offline farm process

with chunking as given in Table 3.13. This is partially due to the high maximum

residency caused by all PEs, in turn caused by the large number of bodies used.

The topology map in Figure 3.4 shows that the machine used is organised in 2

sockets with 4 cores each. The process creation and communication model of Eden

proves to be less efficient on this particular architecture; communication involved is

across sockets not NUMA regions. Furthermore, this indicates that spark-oriented

parallelism, as in GpH, and parallel tasks, as in the Par monad, deal better with

dynamic and irregular parallelism. We further evaluate the performance against the

other implementations in the next section (Sec 3.5).

offlineFarm w/ chunking

Top-level map only Parallel buildTree

no. PE Runtime (s) Speedup Runtime (s) Speedup

Seq. 35.34 1.00 35.32 1.00

1 33.11 1.07 33.89 1.04

2 18.41 1.92 18.73 1.89

4 10.62 3.33 11.24 3.14

8 10.37 3.41 10.71 3.30

Input: 80k bodies, 1 iteration

Table 3.13: Eden runtimes and speedups (Barnes-Hut)

3.5 Performance Evaluation

3.5.1 Tuning

While an initial parallel version was produced with only a one-line program change,

GpH required some parallel performance tuning, in particular by using chunks to

generate a bounded number of threads of suitable granularity. Selecting a good

chunk size required a series of experiments, establishing four threads per processor

to be the best balance between massive parallelism and coarse thread granularity.

The irregular nature of the parallelism in the Barnes-Hut version, compared to the

all-pairs version, diminishes the achieved speedup, but also demonstrates that the

runtime system effectively manages and distributes the available parallelism, without

requiring further application code changes from the programmer.

78

Chapter 3: Parallel List and Tree Processing

We compare these results with the Par monad version which uses a highly tuned,

data-parallel map skeleton, and thus can efficiently handle a large number of parallel

tasks with an initial version, eliminating the need for explicit chunking. However,

chunking does improve the maximum residency and therefore the scalability of the

application.

Eden provides a rich set of skeletons and parallelisation amounts to selecting the

most suitable skeleton for the main worker function. Ample literature on the ad-

vantages and disadvantages of different skeletons helps in making the best decision

for a specific application and architecture. For fine-tuning the parallel performance,

however, an understanding of the process creation and message passing is required

to minimise the amount of communication in this distributed-memory model.

For any high-level language model, good tool support is crucial in order to under-

stand the concrete dynamic behaviour of a particular algorithm and to tune its

performance. Threadscope helps to visualise the work distribution among the avail-

able processors for GpH–Evaluation Strategies and Par monad. Figure 3.5 shows

the work distribution of running the all-pairs program on 8 cores before and after

parallel tuning using strategic chunking. The top horizontal bar on the graph shows

the overall activity, measured in terms of the total number of active processors at

each time in the execution. The other bars shows the activity of each processor

with green, orange and red representing running, garbage collection and idle time,

respectively. The number of sparks is given in the runtime statistics for GpH. For

Par monad, however, the exact number of threads created is not given.

Similarly, the Eden Trace Viewer (EdenTV) gives more detailed information about

processes, their placement, conversations and messages between processes. Fig-

ure 3.6 compares the use of the naive parallel map (parMap) against the farm process

implementation using stream chunking (parMapFarmChunk). It shows the overheads

of too many processes, and consequently messages, being generated in the former.

The overheads are eliminated in the tuned version. Each line represents the activ-

ity on one processor with green and blue representing “running” and “waiting for

data”, respectively. While the first trace shows frequent changes between running

and waiting states, reflecting the element-by-element transfer of the input data from

the master to the workers, the second trace shows much better utilisation as unin-

terrupted activity once the entire block of input data has been received by a worker.

The master remains idle, while the workers produce their results. A related set of

skeletons allows a dual usage of the master process as worker in such a case, and

can be used to improve performance further.

79

Chapter 3: Parallel List and Tree Processing

(a) nochunk

(b) 4chunksPerPE

Figure 3.5: Threadscope work distribution (Par. run on 8 cores)

3.5.2 Speedup

The head-to-head comparison of speedups for the all-pairs versions in Figure 3.7(a)

show that, despite a higher variability, the Eden implementation performs best,

even though it was designed for distributed-memory architectures. This indicates

that message passing can work well on shared-memory architectures. Using a highly

tuned skeleton that avoids synchronisation bottlenecks on high-latency, distributed-

memory systems, is beneficial even on a single multi-core. The support for light-

weight parallelism in all three runtime systems helps to reduce the overhead that

has to be paid for exposing parallelism. The GpH–Evaluation Strategies version

is potentially more flexible and adaptive, through its dynamic, spark-based load

distribution policy. This is beneficial in particular in heterogeneous environments,

with dynamically changing external load. On an otherwise idle machine as used

80

Chapter 3: Parallel List and Tree Processing

(a) parMap

(b) parMapFarmChunk

Figure 3.6: EdenTV using different map skeleton (Par. run on 8 PEs)

for these measurements, however, these benefits cannot be capitalised on, while the

overhead still has to be paid for. The Par monad version performs very well with

an initial, unoptimised version, but does not exceed the performance of the other

systems in its final version. In this case, the overhead of encoding scheduling and

other dynamic machinery in the application, rather than the runtime system, is

higher compared to the other two systems.

The speedup results for the Barnes-Hut algorithm in Figure 3.7(b) show a signifi-

cantly different picture. The dynamic behaviour of the Barnes-Hut algorithm differs

from that of the all-pairs version, in that the parallel threads vary significantly in

their granularities. The amount of work is significantly higher when calculating

the impact of a densely populated cube in the oct-tree representation. In contrast,

the parallelism in the all-pairs version is regular, with parallel tasks taking approx-

imately the same amount of time to execute on different processors. The irregu-

lar parallelism in the Barnes-Hut version is more challenging to manage efficiently.

The underlying runtime system of GpH and the application-level implementation

81

Chapter 3: Parallel List and Tree Processing

(a) All-Pairs

(b) Barnes-Hut

Figure 3.7: All-Pairs and Barnes-Hut speedup graph (1-8 cores)

of scheduling for Par monad, are designed to be very flexible and dynamic in their

management of parallelism, in particular allowing for cheap transfer of potential par-

allelism. Considering the more challenging nature of the parallelism, GpH and Par

monad achieve good speedups. The Eden version, however, suffered most severely

from the irregular parallelism. This case shows the limitations of a purely skeleton-

based approach, that relies on the existence of a wide range of skeletons for many

different architectures. Since Eden is not limited to such a pure skeleton-based

approach, but is a skeleton implementation language in its own right, further opti-

misation should be possible, by fine tuning an existing skeleton for this application.

82

Chapter 3: Parallel List and Tree Processing

Multicore Challenge input specification Finally, Table 3.14 shows the speedup

results for the tuned versions of all-pairs and Barnes-Hut using the SICSA Multi-

core Challenge Phase II6 input specification of 1024 bodies and 20 iterations, so we

can compare with other systems. As expected, the speedups are slightly lower for

the smaller input set and for an execution which requires synchronisation between

the iterations. Still, the speedups of 5.23 for GpH and 5.63 for Par monad for the

Barnes-Hut version are remarkable, for less than a dozen lines of code changes, and

no structural changes to the original Haskell implementation. In particular, we sur-

pass the calculated sequential overhead of a factor 3.5 compared to C on a moderate

multi-core architecture and deliver superior, scalable performance with a high-level

language model.

All-Pairs Barnes-Hut

GpH Par monad GpH Par monad

no. PE RT (s) SP RT (s) SP RT (s) SP RT (s) SP

Seq. 1.67 1.00 1.70 1.00 1.36 1.00 1.35 1.00

1 1.71 0.98 1.66 1.02 1.40 0.97 1.38 0.98

2 0.94 1.78 0.93 1.83 0.78 1.74 0.72 1.88

4 0.51 3.27 0.52 3.27 0.44 3.09 0.42 3.21

8 0.30 5.57 0.30 5.67 0.26 5.23 0.24 5.63

Input: 1024 bodies, 20 iterations; Runtime(RT); Speedup(SP)

Table 3.14: GpH and Par monad runtimes and speedups; Multicore Challenge input
specification

3.5.3 Comparison of Models

All three models build on a sophisticated runtime system that automatically man-

ages the synchronisation, coordination and communication necessary to achieve high

parallel performance. The resulting programming model is one of semi-explicit par-

allel programming for GpH and Eden, where the programmer only has to identify

the useful sources of parallelism, but explicit for Par monad, which allows one to

encode archetypical runtime system functionality as high-level Haskell code. More

commonly, however, pre-defined parallel skeletons are used to simplify the paralleli-

sation and help portability.

The three variants differ in the way they facilitate tuning of the initial parallel

algorithm, though. Being first class objects, evaluation strategies can be modified

to enable different dynamic behaviour. For example, adding chunking to a data

parallel algorithm can be done by composing strategies. This modularity is one of

its main advantages. However, control of data locality is significantly more difficult,

6SICSA Multicore Challenge Phase II -
http://www.macs.hw.ac.uk/sicsawiki/index.php/Challenge_PhaseII

83

http://www.macs.hw.ac.uk/sicsawiki/index.php/Challenge_PhaseII

Chapter 3: Parallel List and Tree Processing

because GpH relies on an implicit, work stealing scheduler to distribute the work.

In contrast, in Eden, thread creation is mandatory on process application, and it

provides finer control of co-location, by using partial applications. These features

provide more opportunities for tuning the parallel program without abandoning

the high level of abstraction. Finally, the Par monad is the most explicit form

of controlling parallelism. Here, threads are explicit entities in the program, that

have to be explicitly synchronised using established mechanisms such as IVars,

which raises all the usual issues about parallel programming. However, by providing

parallel patterns of computation, skeletons, these low-level issues can be hidden from

the programmer. By implementing runtime system functionality on the Haskell

level, an expert parallel Haskell programmer can also tailor the application, e.g. by

implementing a custom scheduling algorithm.

Despite the high level of abstraction, the performance results show good speedups on

8 cores for GpH and Par monad (5.45 and 6.50, respectively), and 3.62 for Eden, all

using the Barnes-Hut algorithm. Most notably, these results were achieved changing

only a few lines of code. Introducing top-level data-parallelism changes only one line

of the original code. Further optimisation code, e.g. for chunking, adds less than a

dozen lines of auxiliary functions.

The main outcome from conducting this model comparison can be summarised as

follows:

• All three parallel Haskell variants are able to achieve competitive multi-core

speedups not only for the simple, regular all-pairs algorithm on lists but also for

the more sophisticated, irregular Barnes Hut algorithm operating on custom

oct-trees.

• The performance of the parallel all-pairs version surpasses the calculated per-

formance of the sequential C version from the Computer Language Benchmarks

Game (Fulgham, 2012) and achieves scalable performance up to the maximum

of 8 cores.

• The ease of parallelisation allowed us to develop 6 versions (see Table 3.1),

using three different variants of parallel Haskell and implementing both an

all-pairs and a Barnes-Hut version.

• Well documented program transformations, in the form of local changes to the

sequential program, reduce both heap and stack space consumption consider-

ably and improve sequential performance by a factor of 12.0.

• Established techniques for tuning parallel performance, in particular chunking,

were important to tune the GpH and Eden implementations of the algorithms.

84

Chapter 3: Parallel List and Tree Processing

• The Par monad version already achieves good parallel performance in its initial

version, due to a highly optimised, work-inlining scheduler. In contrast, both

the GpH and Eden versions require explicit chunking to achieve the same level

of performance, but allow for more flexible tuning of performance.

• Interestingly Eden, which is designed for distributed-memory architectures,

performs very well on a shared-memory setup using message passing, in par-

ticular for the all-pairs version. This strengthens the argument for a shared-

nothing design of parallel runtime-system (Berthold et al., 2015).

3.6 Summary

In this chapter, we have implemented two versions of the n-body problem that use

list and tree data structures, and parallelised them using GpH by implementing

general purpose strategies on custom data structures. The implementation and

results are compared against two other variants of parallel Haskell: Par monad,

which offers an explicit way of controlling threads; and Eden, which provides process

abstractions akin to lambda abstractions to define parallel computations. Compared

to the other parallel Haskell dialects, GpH is minimally intrusive – the specification

of the parallel execution (the coordination) is orthogonal, and separate from the

specification of the computational code. GpH–Evaluation Strategies proved to be a

powerful programming model, which can be exploited for data-oriented strategies.

Most importantly, we began to develop a step-by-step approach to writing data-

oriented strategies, which we will base on and further expand in the next chapter

for tree-based data structures.

85

Chapter 4

Lazy Data-Oriented Evaluation
Strategies

In this chapter, we extend our strategies development method from the previous

chapter and apply it to tree data structures to achieve data-oriented parallelism.

We present a number of flexible parallelism control mechanisms in the form of

evaluation strategies for tree-like data structures implemented in Glasgow paral-

lel Haskell. Additional flexibility is achieved by using laziness and circular programs

in the coordination code. Heuristics-based parameter selection is employed to auto-

tune the strategies for improved performance on a shared-memory machine without

programmer-specified parameters. In particular, we demonstrate improved perfor-

mance for unbalanced trees on a multi-core server.

4.1 Introduction

The previous chapter has covered evaluation strategies for list and the ease of spec-

ifying parallel operations on the flat data structure. Specifically, we looked at the

definition of parList for element-wise parallelism and parListChunk for grouping

computations to improve granularity and performance. Parallel sub-components

are usually homogeneous and work well with a basic implementation. The existing

strategies library also specifies generic strategies for traversable types. However,

these achieve significantly worse performance on irregular input data (further dis-

cussed in Section 4.5), which is notoriously difficult to parallelise.

In the Data Parallel Haskell (DPH) extension (Jones et al., 2008), for example,

flattening transformation techniques are used for nested arrays and other irregular

structures to enable even partitioning and hence even distribution of work across

processors. A similar transformation is used in the Manticore implementation of

Parallel ML (Bergstrom et al., 2013) based on a “rope” representation for lists.

86

Chapter 4: Lazy Data-Oriented Evaluation Strategies

While this is efficient, it necessitates change to the compiler and base libraries,

heavy use of arrays and intermediate data structures, and often employs mutable

operations to achieve the best results. Our design goal is to achieve improved per-

formance through more flexible management of the available parallelism, without

having to modify the structure of the program or relying on compiler-driven source

code transformations.

In our approach to parallelism we take a data-centric view and provide strategies as

traversals over tree-like data structures. This offers the perspective of good re-use

of such strategies for different applications, and a clean separation of computation

from coordination, which was one of the main design goals for the existing evaluation

strategies module.

4.2 Tree-Based Representation

The hierarchical structure of trees make them an ideal fit for parallel processing.

Section 2.8.2 motives tree-based representation and their advantage over linear rep-

resentation. The recursive definition of a tree data structure is analogous to a

divide and conquer structure – each branch can be seen as a separate tree or sub-

computation which can be evaluated independently.

Our motivation to develop advanced parallel tree evaluation strategies is due to their

wide applications in many algorithms, including the Barnes-Hut algorithm seen in

the previous chapter. Additionally, tree can be used as an alternative underlying

representation for linear data structures. Trees offer more flexibility when it comes

to their parallel processing. Below, we present an example of alternative underly-

ing representation for the list data structure to enable intuitive parallel processing

through natural decomposition of sub-computation.

Inherent sequential nature of list.

The representation of lists in Haskell (and in many other functional languages) is

a sequential one. Implemented as a singly-linked list where elements are arranged

in a linear order (as depicted in Figure 4.1(a)), operations on the list proceed in a

sequential fashion. For instance, a fold traverses the list from left to right, and accu-

mulates the result of applying a function to the current element and the accumulated

value. Processing list in parallel always has to start from left to right.

The following code example shows a parallel algorithm using par and pseq directly

and requires explicit divide and combine functions on the list.

Listing 4.1: List explicit split for parallel evaluation.

87

Chapter 4: Lazy Data-Oriented Evaluation Strategies

1 -- explicit split

2 parListmap f [] = []

3 parListmap f [x] = [f x]

4 parListmap f xs =

5 let

6 -- determine a pivot or chunk size

7 midway = length xs ‘div ‘ 2

8 -- split list

9 (xs1 ,xs2) = splitAt midway xs

10

11 res1 = parListmap f xs1 -- in parallel

12 res2 = parListmap f xs2 -- in parallel

13

14 combine = (++)

15

16 in res1 ‘par ‘ res2 ‘pseq ‘ combine res1 res2

Other design considerations – Prefer tree over linear representation.

Sequential data representation is bad in the context of parallel execution. A more

effective policy for parallelism uses a tree. Changing the underlying representation

of lists to trees, while keeping the same interface to the programmer, may lead to

additional cost and overhead but this can be reduced over time, or by exploiting the

new data layout for parallel evaluation.

(a) Sequential list
representation

(b) Append tree representa-
tion

Figure 4.1: Alternative representation of list using append tree

Both program structures (e.g. loops) and data structures (e.g. linked lists) that

generate a sequential computation tree that is detrimental to performance. Our

approach is in a data structure context whereby the inherent sequential nature of

list data structure, is changed to an append tree representation. Trees naturally

exhibit a divide-and-conquer pattern (Cormen et al., 2009) – lending itself easily for

parallelisation. Tree branches correspond to implicit independent components or

partitions (as depicted in Figure 4.2) that can be evaluated in parallel. In addition,

tree representation has the advantage of storing additional administration informa-

tion in the inner nodes e.g. sub-tree sizes, which can be exploited during parallel

evaluation.

1 -- no explicit split and combine required.

2 -- assuming tree is balanced , sub -trees are of equal size.

3 -- traversal results in implicit parallel generation.

88

Chapter 4: Lazy Data-Oriented Evaluation Strategies

Figure 4.2: Tree implicit partitions

4

5 parTreemap f E = E

6 parTreemap f (N x l r) = l’ ‘par ‘ r’ ‘pseq ‘ N (f x) l’ r’

7 where

8 l’ = parTreemap f l

9 r’ = parTreemap f r

Figure 4.1 depicts the use of a (balanced) append tree as an alternative represen-

tation which allows traversal in O(log n) instead of O(n) time. Additionally, a tree

naturally exhibits parallel “components” with no explicit splitting or partitioning

needed. Obviously, this represents an ideal case only if that tree is balanced. To deal

with irregular trees, we propose the use of self-balancing trees, e.g. red-black tree,

in (Totoo, 2011), which also covers performance comparison of standard Haskell

list against random-access list. The latter uses a tree-based representation.

4.3 Tree-Based Strategies Development

In the following sections, we develop a number of strategies for tree data structures:

basic strategy with no parallelism control; and traditional thresholding mechanism

using depth and sub-tree size as thresholds; and advanced strategies depending on

lazy evaluation and fuel-based control.

Before we proceed, we revisit the development steps we put forward in Section 3.1.1

and expand on some steps for tree-based strategies below.

Revisted steps to writing tree-based strategies

1. New data type definition.

Data-oriented strategies operate over data types. Previously we started with

the built-in type [a]. Here we use a custom-defined tree type as example.

1 data Tree a = Node a (Tree a) (Tree a) | Leaf

89

Chapter 4: Lazy Data-Oriented Evaluation Strategies

A strategy defined over the data type describes how evaluation of the type and

its element proceeds when its value is demanded. It defines both order (e.g.

seq or par) and degree of evaluation.

2. Degree of evaluation possible on defined type. Typically, at one end, a strategy

may perform no evaluation at all (r0), and, at the other end, may completely

evaluate (rdeepseq) the type to normal form. Anything in between is called

WHNF. We may define several intermediate evaluation degrees for different

data types. For example, in the case of a tree, we may have evalLeftBranch,

evalRightBranch, and evalUntilNLevel, which evaluates the left branch,

the right branch, and up to depth N of the tree, respectively.

For any new type, we need to implement an instance of the NFData type class

if we want to be able to evaluate the type to normal form.

1 instance NFData (Tree a) where

2 rnf Leaf = ()

3 rnf (Node x l r) = rnf a ‘seq ‘ rnf l ‘seq ‘ rnf r

3. Generalise type definition to accommodate wider application. This allows one

to re-use strategies of a generic type in various scenarios. For example, a tree

definition in Step 1 can be generalised to:

1 data Tree a = Node a (k (Tree a))

2 data Pair a = P a a

3 type BinTree a = Tree Pair a

4. Generalise type operations. Implement type instances of generic type classes,

such as Traversable, Foldable, Functor, in order to define a default opera-

tion for each. That is, a way to traverse the type, perform a fold operation on

it, and map a function over its elements.

5. Exploit strategy composition. Separate different evaluation strategies and

compose appropriately. For e.g. evalList takes a strategy to specify the

order of evaluation, and another for the degree of evaluation. Other example

we will see is parCluster for separating list clustering (decomposition) from

parallel processing.

6. Encode administrative information in type definition. This may be useful for

parallel evaluation. For instance, for trees, size annotations help determine if

it is useful and cost-effective to evaluate sub-tree in parallel.

7. Tune strategy by improving granularity and selecting correct parameters.

90

Chapter 4: Lazy Data-Oriented Evaluation Strategies

4.4 Tree Data Type

One of our main design goals is to develop data-centric parallelism control mech-

anisms that can be applied across a range of commonly used data structures and

that are not tied to a particular application. Our target are quad-trees – used in

two non-trivial problems later – but our formulation is general enough to cover rose

trees, and the strategies should not be limited to just this data type.

Two important decisions in defining the tree data structure are the arity of the

nodes and the value attribution (to nodes or leaves). In order to remain flexible,

we parameterise our definition over both aspects, and arrive at the following generic

definition of a k-ary tree (Cormen et al., 2009):

Definition 4.1 (k-ary tree). A k-ary tree is a rooted tree in which each node has at
most k children.

A tree of the form

1 data Tree k tl tn = E | L tl

2 | N tn (k (Tree k tl tn))

3 data Quad a = Q a a a a

4 type QTree tl tn = Tree Quad tl tn

with data elements of type tl in leaf nodes and data elements of type tn in the

inner nodes is called a k-ary tree.

The number of sub-trees is parameterised by introducing a type variable k to specify

the sub-tree container. Using a 4-tuple, defined as Quad, gives the well-known quad-

tree data structure, which we will use in the Barnes-Hut simulation in Section 4.12.

Other common choices for the container argument are: a 2-tuple, defined as Bin, for

a binary tree; an 8-tuple, defined as Oct, for oct-tree (used for 3-dimensional nbody

simulation); and a list, written as [], for a rose tree with potentially varying arities

in different nodes. We focus on defining strategies on this k-ary tree data structure

in order to enable parallelism over the data structure, without fixing the amount of

parallelism or tying the evaluation to one class of architectures.

4.5 T1: Unconstrained parTree Strategy

The basic parTree strategy creates a spark for every element in the tree. Depending

on whether the tree is node- or leaf-valued, the variants parTreeL and parTreeN

will spark just leaf or node elements, respectively. In our discussion we focus on the

most generic version, parTree.

91

Chapter 4: Lazy Data-Oriented Evaluation Strategies

The implementation of parTree in Listing 4.2, uses the Traversable class to ar-

range the traversal in a way that is not restricted to a tree data structure. Further-

more, the definition of parTree demonstrates that we can compose more complex

strategies from simpler ones: we pass (rpar ‘dot‘ strat) as argument to the se-

quential evalTree strategy, specifying that each element should be evaluated in

parallel (rpar – strategic equivalent of par primitive), using the parameter strat

to specify the evaluation degree. This compositionality is inherited from the design

of evaluation strategies as described in (Marlow et al., 2010).

Listing 4.2: Data element sparking

1 evalTree :: (Traversable k) =>

2 Strategy a -> Strategy (Tree k a a)

3 evalTree = traverse

4

5 -- parallel evaluation of inner node and leaf values

6 parTree :: (Traversable k) =>

7 Strategy a -> Strategy (Tree k a a)

8 parTree strat = evalTree (rpar ‘dot ‘ strat)

Note that parTree does not attempt to control, or throttle, spark creation. Thus, if

the tree is large, this results in an abundance of parallelism, which can be detrimental

to its performance due to the excessive overhead. Additionally, the current definition

applies the same strategy to both inner and leaf nodes. This can be changed by

adding a new parameter to the definition specifying different strategies for the two

types of node, for example, Strategy a -> Strategy b -> Strategy (Tree k a

b), and tweaking the traversal function definition.

4.6 Parallelism Control Mechanisms

Uncontrolled parallelism creates overheads through generation of excessive sparks

in GpH – many of which, if converted, will carry the usual thread management cost,

and many will be overflown and never taken to execution. This negatively affects

parallel performance. In this section, we highlight the techniques and mechanisms

used to throttle the amount of parallelism in the evaluation of tree data structure.

Subsequent sections look at the implementation details and issues.

Node-level sparking: In order to control granularity, we want to spark branches

or sub-trees of appropriate size instead of individual tree elements. This is partic-

ularly useful for very large tree data structures where the overhead of element-wise

sparking exceeds the performance gain expected from parallelisation. The concept

is analogous to chunking in the context of list data structures to ensure sufficient

amount of work for each thread, but identifying which branches are of adequate size

92

Chapter 4: Lazy Data-Oriented Evaluation Strategies

is tricky. Next we address these issues where we use a number of dynamic techniques

to throttle the amount of parallelism that is generated.

Listing 4.3: Node-level or branch sparking

1

2 parTreeBranch :: Strategy (Tree Quad tl tn)

3 -> Strategy (Tree Quad tl tn)

4 parTreeBranch strat (N n (Q nw ne sw se)) =

5 (N n <$> (Q <$> parTreeBranch strat nw

6 <*> parTreeBranch strat ne

7 <*> parTreeBranch strat sw

8 <*> parTreeBranch strat se))

9 >>= (rpar ‘dot ‘ strat)

10 parTreeBranch _ (L x) = pure $ L x

11 parTreeBranch _ E = pure E

In Listing 4.3, sparks are created to evaluate branches in parallel. In this version, no

restriction is placed yet, so all branches (i.e. inner nodes) are sparked. Therefore,

for quad-trees, a branch will compute between 1 and 4 elements in parallel, one for

each non-empty sub-tree. Note that the strategy function type definition is changed

as the first argument is applied to a branch, i.e., of a Tree type. Note also that for

this implementation we need to specify k is a Quad so pattern matching can be done,

unlike the more generic implementation of parTree and variants. In this example,

we write the first component of the first pattern match compactly using applicative

style as previously seen and the explicit bind operator (>>=) at the outer level to

compose the two actions with the specified strategy, for parallel evaluation of the

second action in this case.

Thresholding: A common technique to throttle parallelism is depth-based thresh-

olding. This involves specifying an additional parameter d used to limit sparks cre-

ation to the top d levels of a tree. This is most effective for a regular tree layout

and small d as the number of sparks increases exponentially at each level.

Depth-based thresholding works well under the assumption that the major source

of parallelism occurs within depth d in the tree. Spark creation is controlled, but

still statically determined. The mechanism to control the amount of parallelism is

fairly crude, since the number of sparks is exponential in the depth of the tree.

Alternatively, size-based thresholding checks sub-nodes for a minimum size s before

sparking. Parallelism generation may go deeper inside the tree. However, the size

information needs to be readily encoded in the inner nodes. Depending on the

problem, this information might be already available, otherwise, a first pass to

annotate the tree is required.

93

Chapter 4: Lazy Data-Oriented Evaluation Strategies

Fuel splitting: We use the notion of fuel – a limited, explicit resource – to control

parallelism in a more flexible way. We use a fuel splitting technique to distribute

resources to sub-computations to throttle parallelism. Our implementation of fuel

splitting offers the flexibility of defining custom functions specifying how fuel is

distributed among sub-nodes, thus influencing which path in the tree will benefit

most of the parallel evaluation. This technique is related to the use of engines in

Scheme 84 as a notion of timed preemption for processes (Haynes and Friedman,

1984). An engine is given a quantity of fuel and computation lasts until fuel runs

out. In our context, parallelism generation, rather than evaluation, is based on fuel

being available for a particular sub-tree.

Bi-directional fuel transfer: To enhance flexibility in splitting and transferring

fuel, a bi-directional mechanism of transfer is advantageous. This way, fuel that

is unused in one sub-tree, can be used in another sub-tree. To implement this

behaviour, we need lazier representation of numbers, for example, implementing

Peano number sequence through the use of lists of unit type for fuel instead of an

integer type. This enables us to check sub-node bounds, for example, if it has at

least n elements. This does not force the entire sub-node to normal form, i.e. full

evaluation, before returning true or false.

One instance of strategy definition relies on circular program definition (as men-

tioned in Section 2.6) enabled only in a lazy language (Allison, 1989). Traditionally

used to improve sequential performance by eliminating multiple traversals of a data

structure, here it used for the first time for parallel programming. Specifically, we

use it in a fuel distribution function with a giveback technique, i.e. unused fuel

in any sub-node is pushed back up in the tree to be re-distributed elsewhere. We

discuss this technique in detail in Section 4.10.

Abstraction: By defining splitting functions separate from the strategy definition,

we can parameterise strategy to custom-defined split functions. This employs a

similar concept as used for clustering strategies in the original library.

Annotations: Size (if not readily encoded) and fuel information need to be at-

tached to the tree in an annotation run. Therefore, some strategies are defined over

an annotated tree type (AnnQTree). The type constructor k in the Tree type in Def-

inition 4.1 allows to parameterise over an annotated container, e.g. annotated pair

(AnnPair) or quad (AnnQuad), as opposed to adding another field in its definition.

Listing 4.4: Annotated tree type

1 data Ann a = A a

94

Chapter 4: Lazy Data-Oriented Evaluation Strategies

2 -- an annotated quad type

3 data AnnQuad ta a = AQ (Ann ta) a a a a

4 -- annotated quadtree definitions

5 type AnnQTree ta tl tn = Tree (AnnQuad ta) tl tn

Size annotations are synthesised bottom-up, making sure that the tree is annotated

in a single pass. Fuel annotations depend on the distribution function and are prop-

agated top-down. For this reason, the context for the fuel-based strategies differ.

Some require size information, for example, perfect split, and others require only

local lookup. Depending on how the splitting works, the annotation function will

assign an amount of fuel to each node, until fuel runs out. Generic annotation imple-

mentations, for example, as used for the AST for Hume space analysis (Jost et al.,

2010), or the attribute-grammar (Swierstra et al., 1999) style have been investigated.

At present, we settle for a simple annotation function, with a parameterised split

function for fuel distribution.

Heuristics: The advanced strategies are parameterised by additional variables

to specify the depth d, size s, and fuel f thresholds. These can be programmer-

specified or established through a heuristics-based parameter selection determined

by a number of other parameters, for instance, input size and number of PEs. The

latter ensures that available information are used to tune the strategies.

Table 4.1 gives an overview of the strategies that we develop, classifying them by

some basic properties of their dynamic behaviour. The information flow column

indicates whether administrative information for controlling parallelism is passed

down or up. For example, depth-based thresholding passes a depth counter down the

tree. Fuel-based versions can also pass information up, if resources have been unused.

The context column indicates how much of context information is required in a node

to implement this strategy. For example, depth-based thresholding requires only

information about the length of the path to the current node, whereas a lookahead

strategy examines a fixed number of nodes in the sub-trees to make its decision.

In the extreme, a perfect-split strategy requires complete (global) size information

about the tree, and therefore incurs the highest amount of overhead. The final two

columns specify the parameters that are used in the various strategies to control

their behaviour and whether the parameter can be auto-specified by heuristics in

our implementation. We will elaborate on these aspects in the following sections.

95

Chapter 4: Lazy Data-Oriented Evaluation Strategies

Strategy Type Info flow Context Param Heuristics

T1 parTree element-wise sparks - - - -

T2 parTreeDepth depth threshold down path length d yes

T3 parTreeSizeAnn annotation up global - -

T4 parTreeLazySize lazy size check down (lazy) local s yes

T5 parTreeFuelAnn fuel with annotation f yes

T51 - pure equal fuel distr down local

T52 - lookahead check next n nodes down/limited N N

T53 - giveback circular fuel distr up/down (lazy) local

T54 - perfectsplit perfect fuel distr down global

Table 4.1: Strategies overview and classification

4.7 T2: Depth-Thresholding (parTreeDepth)

The simple parTreeDepth strategy, shown in Listing 4.5, introduces some degree of

control of spark creation by using depth as a threshold for parallelism generation.

Efficient for throttling parallelism on regular trees, this technique limits sparking of

sub-nodes to evaluate in parallel at the top d levels in the tree. The strategy is a

recursively-defined function which stops generating sparks when depth 0 is reached.

It is useful to have sparks as early as possible, which is why sparks are created from

the root node to the specified level d.

Listing 4.5: Depth-based thresholding

1 parTreeDepth ::Int ->Strategy (QTree tl)

2 ->Strategy (QTree tl)

3 parTreeDepth 0 _ t = return t

4 parTreeDepth d strat (N (Q nw ne sw se)) =

5 (N <$> (Q <$> parTreeDepth (d-1) strat nw

6 <*> parTreeDepth (d-1) strat ne

7 <*> parTreeDepth (d-1) strat sw

8 <*> parTreeDepth (d-1) strat se))

9 >>= rparWith strat

10 parTreeDepth _ _ t = return t

The main advantages of this strategy are the simplicity of its implementation, low

overhead, and predictable parallelism. However, it lacks flexibility in particular for

unbalanced trees, where potentially useful parallelism may reside outside of the given

depth threshold. Though we gain improved control over parallelism as opposed to

element-wise sparking, the amount of sparks usually remains flat as an upper bound

for d is specified to avoid excessive sparks. For instance, for a regular tree, dmax can

be set at 6 to generate a maximum of 46 sparks. In Section 4.11, we look at ways

to automatically select the depth threshold d to gain optimal performance.

96

Chapter 4: Lazy Data-Oriented Evaluation Strategies

4.8 T3: Synthesised Size Info (parTreeSizeAnn)

Depth-thresholding imposes a horizontal limit in the depth of the tree, not tak-

ing into account the concentration of elements in specific sub-trees, for parallelism

generation. Using sub-tree size information and a size threshold s, sparks can be

restricted only for sub-trees of at least s elements, that is, sub-trees deemed to

have sufficient work to be sparked in parallel. Smaller sub-trees not meeting the

size threshold are not sparked, thus avoiding unnecessary spark pointers that may

overflow the pool.

Data structures that keep track of “region” size provide useful information for pro-

cessing. If size information is not encoded e.g. in the inner-nodes of a tree, an initial

traversal is needed to annotate the tree. In our implementation, size information is

synthesised from the bottom up, making sure the size annotations are attached in

a single traversal. Figure 4.3 is a visual depiction of the difference between depth

and size-based thresholding for a tree structure. A star denotes a spark.

d0

d1

d2

d3

(a) d < 3

100

40 60

15 25 30 30

5 10 10 15 20 10 15 15

(b) s < 20

Figure 4.3: Depth vs (strict) size thresholding

4.9 T4: Lazy Size Check (parTreeLazySize)

Often we do not need to perform a full top-level deconstruction of a data structure

in order to establish a bound. As a simple example, the standard list length function

is implemented using atomic integer which requires a complete traversal of the spine

of the list to return a value. Listing 4.6 shows an example of how we can reduce the

amount of evaluation by using natural numbers, especially if we require a partial

traversal of a data structure to find out a minimum length. Listing 4.7 shows that

the lazier length function is faster for every large and potentially unbounded data

structure (0.46 sec vs 8.02 sec to return).

Listing 4.6: Defining a lazier list length function using Natural numbers

1 -- standard length

2 len::[a]->Int

3 len (_:xs) = 1+len xs

97

Chapter 4: Lazy Data-Oriented Evaluation Strategies

T T

T

T

T = uneval thunk

Figure 4.4: Lazily de-constructing subtrees and establishing node size (s = 3)

4 len [] = 0

5

6 -- lazier variant

7 lazylen ::[a]->Natural

8 lazylen (_:xs) = succ (lazylen xs)

9 lazylen [] = zero

Listing 4.7: len vs lazylen in GHCi

1 > let xs = [1..10000000] -- large list

2 > :p xs -- print value without forcing its computation

3 xs = (_t::[Int]) -- initially xs is an unevaluated thunk

4

5 -- standard length

6 > len xs > 1000000

7 True

8 (8.02 secs , 1943155832 bytes)

9 > :p xs

10 xs = [(_t::Int),(_t::Int),(_t::Int), ... ,(_t::Int)]

11 -- forces complete top -level cons (:) de -construction

12

13 -- lazy length

14 > let ys = [1..10000000]

15 > lazylen ys > 1000000

16 True

17 (0.46 secs , 200919400 bytes) -- NB: lazier version is faster!

18 > :p ys

19 ys = (_t::Int) : (_t::Int) : (_t::Int) : ... : (_t::[Int])

20 -- only de -construct first (1000000+1) cons to establish True

Applying the lazy size check technique to define a lazy tree strategy. The

size threshold strategy depends on a full initial traversal to attach size information to

inner-nodes. This can be eliminated by implementing a lazier size checking function

to establish size bounds without a full deconstruction of the tree. The basic idea

remains the same – spark sub-trees with at least s elements. However, the size check

function is implemented using an algebraic natural instead of an atomic integer type

to perform lazy size computation without forcing complete evaluation. The function

isBoundedSize in Listing 4.8 returns true when it has established that the sub-tree

contains at least s nodes, without traversing the rest of the tree.

Listing 4.8: Lazy size check using Natural number representation

1 isBoundedSize :: Natural -> QTree tl tn -> Bool

2 isBoundedSize s t = numLeafNodes_lazy t > s

98

Chapter 4: Lazy Data-Oriented Evaluation Strategies

3

4 -- | Lazy leaf node count.

5 numLeafNodes_lazy ::QTree tl tn -> Natural

6 numLeafNodes_lazy (N _ (Q nw ne sw se)) =

7 numLeafNodes_lazy nw + numLeafNodes_lazy ne

8 + numLeafNodes_lazy sw + numLeafNodes_lazy se

9 numLeafNodes_lazy (L _) = succ zero

10 numLeafNodes_lazy _ = zero

4.10 T5: Fuel-Based Control (parTreeFuel)

Fuel-based strategies are defined over an annotated tree type. In terms of imple-

mentation, this is similar to parTreeDepth where instead of a depth threshold, the

strategy stops creating sparks once fuel runs out. This is seen in the pattern match

for the fuel check in Listing 4.9.

Listing 4.9: Fuel strategy function

1 parTreeFuel :: Strategy (AnnQTree Fuel tl)

2 -> Strategy (AnnQTree Fuel tl)

3 parTreeFuel strat t@(N (AQ (A f) nw ne sw se))

4 | f>minfuel = (N <$> (AQ (A f)

5 <$> parTreeFuel strat nw

6 <*> parTreeFuel strat ne

7 <*> parTreeFuel strat sw

8 <*> parTreeFuel strat se))

9 >>= rparWith strat

10 | otherwise = return t

11 parTreeFuel _ t = return t

A variant of this definition (which we append with marked) sparks only when the

condition f>minfuel is met. With this variant the total number of sparks generated

is not cumulative from the root, but only at the specific (or marked) nodes within the

tree that pass the lazy size bound test. Thus, the spark number closely corresponds

to the amount of fuel distributed, assuming we allocate one unit of fuel per eligible

node. This allows to have a better estimation on spark creation for a given amount of

fuel. However, spark creation is delayed, which may not be desirable in cases where

there are not enough computations to execute in parallel. However, our performance

results show that this variant (fuelpuremarked) performs well compared to other

fuel-based strategies in our test applications.

Annotation-based strategies, such as parTreeFuel, require an annotation pass be-

fore, and an unannotation pass after, the strategy application. The annotation step

incurs a small cost which is reported later. Figure 4.5 and Listing 4.10 show the se-

quence of functions composition. Fuel annotation is parameterised by the amount of

fuel, determined through heuristics which takes a number of variables into account,

and a fuel splitting function.

99

Chapter 4: Lazy Data-Oriented Evaluation Strategies

Figure 4.5: Use of annotation-based strategies.

4.10.1 Fuel Splitting Methods

The general usage of the fuel-based function is as follows, with the specification of

the amount of fuel and a distribution function of type SplitFunc:

Listing 4.10: Annotation and strategy application function composition.

1 t’ = (unann

2 . withStrategy strat

3 . fmap f

4 . ann) t

5

6 -- pure fuel annotation example

7 ann = annFuel (annFuel_pure fuel)

A split function can be generalised with the type SplitFunc, then the actual im-

plementation is parameterisable, to switch between different distribution modes.

Listing 4.11: Recursive fuel splitting and distribution among sub-trees.

1 type SplitFunc = Fuel ->[Fuel]

2

3 annFuel ::SplitFunc ->Fuel ->QTree tl

4 ->AnnQTree Fuel tl

5 annFuel splitfunc _ E = E

6 annFuel splitfunc _ (L x) = (L x)

7 annFuel splitfunc fuel (N (Q nw ne sw se)) =

8 let (f1:f2:f3:f4:_) = splitfunc fuel

9 in N $ AQ (A fuel) (annFuel splitfunc f1 nw)

10 (annFuel splitfunc f2 ne)

11 (annFuel splitfunc f3 sw)

12 (annFuel splitfunc f4 se)

13

14 annFuel_pure ::Fuel ->QTree tl ->AnnQTree Fuel tl

15 annFuel_pure = annFuel (fuelsplit_pure _numSubnodes)

The following gives implementation details of four distribution methods: pure, looka-

head, giveback and perfectsplit.

T51: Pure fuel distribution splits fuel evenly among the sub-nodes, ignoring the

node type. Fuel is lost on hitting outer nodes (empty and leaf nodes), and on

division. A version that avoids any such loss has been implemented, but does not

perform significantly better and is therefore not discussed any further.

100

Chapter 4: Lazy Data-Oriented Evaluation Strategies

Listing 4.12: Pure fuel distribution function.

1 type Fuel=Int -- fuel as int

2

3 fuelsplit_pure ::Int ->Fuel ->[Fuel]

4 fuelsplit_pure numnodes fuel =

5 replicate numnodes (fuel ‘div ‘ numnodes)

T52: Lookahead/LookaheadN fuel distribution method, as the name suggests, looks

ahead one level down the tree before distributing unneeded fuel to outer nodes. In

the second variant, lookaheadN (defined in Listing 4.13), we can specify a parameter

N on how far down the tree we can look, thus having a better idea of nodes

distribution in a particular branch, leading to better fuel distribution.

Listing 4.13: Lookahead fuel distribution function.

1 fuelsplit_lookaheadN ::Int ->QTree tl

2 ->Fuel ->[Fuel]

3 fuelsplit_lookaheadN n (N (Q nw ne sw se)) fuel =

4 [f1,f2,f3,f4]

5 where

6 Q nw ’ ne ’ sw ’ se’ = fmap (numInnerNodesUntil n)

7 (Q nw ne sw se)

8 numsubnodes = nw’ + ne’ + sw’ + se’

9 (f1:f2:f3:f4:_) = fuelsplit_perfect fuel

10 numsubnodes [nw’,ne’,sw’,se ’]

11 fuelsplit_lookaheadN _ _ _ = [0,0,0,0]

T53: Giveback fuel distribution is based on the same idea as lookahead distribution

which avoids fuel loss on meeting outer nodes. This is, however, achieved differently.

Instead of looking ahead down N levels of the tree, giveback employs a circular

programming technique to allow passing fuel up the tree, if it is unused in a sub-

tree. Thus, information flow is bi-directional in this implementation as shown in

Figure 4.6. This technique depends on laziness to enable circular reference.

Figure 4.6: Giveback fuel mechanism.

In the implementation, the giveback mechanism uses a list as an administrative

data structure to represent units of fuel instead of an atomic integer type to work

with the circular nature of its definition.

Figure 4.7(c) depicts the bi-directional fuel flow in a giveback strategy. We note

that unused fuel is passed to the next node on the right, and, if it is still unused,

is passed up in the tree to be re-used in another, typically deeper, sub-tree. This

behaviour is achieved by using a circular definition (Bird, 1984). The input to the

101

Chapter 4: Lazy Data-Oriented Evaluation Strategies

f

f/2 f/2

lost! lost!

(a) pure

f0

f1 f2

no fuel no fuel

(b) lookahead

(c) giveback

s0

s1

s3

s5

s9

s6

s2

s4

s7

s10

s11

s8

(d) perfect

fuel down

fuel up

fuel reallocated

Figure 4.7: Fuel flow with different distribution function.

annotation function (ann) takes an initial share of the fuel and any fuel that is

returned from the left. In the code of Listing 4.14, the definition f1 out (Line 14)

depends on f4 out, which, in three steps, depends again on f1 out (Line 15). In

order to guarantee that this definition is productive, fuel must not be represented

as an (atomic) integer, but needs to be a list of values, which is expanded by

this circular definition and requires lazy evaluation. Note that this strategy only

requires a local context to distribute fuel (without wasting fuel in leaves) and thus

should incur less overhead.

Listing 4.14: Fuel with giveback annotation

1 -- | Fuel with giveback annotation

2 annFuel_giveback ::Fuel ->QTree tl

3 ->AnnQTree Fuel tl

4 annFuel_giveback f t = fst $ ann (fuelL f) t

5 where

6 ann::FuelL ->QTree tl ->(AnnQTree Fuel tl ,FuelL)

102

Chapter 4: Lazy Data-Oriented Evaluation Strategies

7 ann f_in E = (E,f_in)

8 ann f_in (L x) = (L x,f_in)

9 ann f_in (N (Q nw ne sw se)) =

10 (N (AQ (A (length f_in)) nw’ ne’ sw’ se ’),emptyFuelL)

11 where

12 (f1_in:f2_in:f3_in:f4_in:_) =

13 fuelsplit_unitlist _numSubnodes f_in

14 (nw ’, f1 out) = ann (f1_in ++ f4 out) nw

15 (ne ’, f2 out) = ann (f2_in ++ f1 out) ne

16 (sw ’, f3 out) = ann (f3_in ++ f2 out) sw

17 (se ’, f4 out) = ann (f4_in ++ f3 out) se

Listing 4.15: Auxiliary functions for giveback fuel distribution.

1 type FuelL =[()] -- fuel as unit list

2

3 emptyFuelL =[] -- empty fuel list

4

5 fuelL::Fuel ->FuelL

6 fuelL x = replicate x ()

7

8 fuelsplit_unitlist ::Int ->FuelL ->[FuelL]

9 fuelsplit_unitlist numnodes fuel =

10 split 0 fuel [emptyFuelL ,emptyFuelL ,

11 emptyFuelL ,emptyFuelL]

12 where

13 split _ [] xs = xs

14 split x (_:fs) xs =

15 split (x+1) fs (addfuelat (x ‘mod ‘ numnodes) xs)

16

17 addfuelat 0 [a,b,c,d] = [():a,b,c,d]

18 addfuelat 1 [a,b,c,d] = [a,():b,c,d]

19 addfuelat 2 [a,b,c,d] = [a,b,():c,d]

20 addfuelat 3 [a,b,c,d] = [a,b,c,():d]

21 addfuelat _ xs = xs

T54: Perfect fuel splitting distributes fuel based on sub-node sizes. It depends on

the size information being available, otherwise an annotation run, requiring a full

traversal of the tree, is needed before any parallel sub-computation (spark) is gen-

erated.

Listing 4.16: Perfect fuel splitting.

1 fuelsplit_perfect ::Fuel -- amount of fuel

2 ->Size -- parent node size

3 ->[Size] -- children node sizes

4 ->[Fuel] -- fuel split among children

5 fuelsplit_perfect fuel s ss =

6 fmap (\x -> (x*fuel) ‘div ‘ s) ss

Figure 4.7 depicts the fuel flow inside the tree shown by the arrow direction. Fig-

ure 4.8 provides an actual distribution example of fuel using the different splitting

methods on a small binary tree. In the simple pure distribution, fuel is lost (shown in

grey) on empty nodes. The lookahead distribution avoids this loss (see Fig. 4.8(b)),

103

Chapter 4: Lazy Data-Oriented Evaluation Strategies

(a) pure (b) lookahead (c) giveback (d) perfect

Figure 4.8: Fuel distribution example on a binary tree (f = 10)

so does the giveback version. Though perfect-splitting seems to be more precise, it

needs a global context.

4.11 Heuristics

The strategies require parameters to specify the depth, size and fuel. Choosing the

right strategy parameter for a given input size, tree layout, and other variables,

is crucial for optimal performance. While this can be programmer-specified, it is

difficult to deduce the right values for best performance given the number of variables

involved. Table 4.2 lists a number of variables that are used in determining an

optimum parameter for the strategies during execution.

Variable name Description

Tin Number of inner nodes in tree T

Tout Number of outer nodes

Tl Number of non-empty (leaf) outer nodes

Te Number of empty outer nodes i.e. Tout − Tl

Hmin Shortest path from root to any outer node

Hmax Longest path from root to any outer node

S Number of sparks generated by a strategy

Smax Maximum number of sparks

P Number of processing elements (PEs)

Table 4.2: Heuristic parameters

The number of sparks S generated during execution roughly corresponds to the

“amount” of parallelism desired. The granularity of these parallel computations will

vary. Smax refers to an upper bound that we may set in order not to have excessive

sparks created by a strategy, which would otherwise cause a higher overhead. In

practice, we set this to about 8000 sparks which is the maximum number of sparks

104

Chapter 4: Lazy Data-Oriented Evaluation Strategies

that can be fitted in the spark pool at one time. However, Smax can be set higher,

given that sparks are created and converted during execution, and the total number

of sparks that may have been created at the end of execution could be greater than

8000, but the spark pool was never overflowed. This depends on the sequence in

which parallel computations are specified and happen in the algorithm.

The programmer-specified parameters are d, s and f , for the depth-threshold, lazy

size and fuel-based strategies, respectively. For good performance it is important

that these parameters fulfill basic properties on the tree structure. For instance, the

selected value of a parameter may be out of range for a given tree. In the following

sub-sections, we lay down these properties — what we expect from each strategy —

and elaborate how the heuristics preserve them.

The heuristics work based on the assumption of how much information about the

tree is available. In some cases, a traversal to extract this information is justifiable

if the computation involved in the nodes is substantial enough. For instance, one

version of the depth heuristics (D2) works well if the number of nodes at each level

is known.

4.11.1 Determining Depth Threshold d

The heuristics should guarantee and satisfy the following properties:

Invariant for d

1. d should be within the range

0 < d < Hmax ∧ d ≤ dmax

d cannot be outside the depth bounds of a tree. dmax is a maximum set by

the programmer (hard-coded) or estimated in the more advanced heuristic

functions.

2. For any selected d, S < Tin

3. For any selected d, S < Smax

The number of sparks generated for a given d should not exceed the maximum

spark limit. Smax is the user defined sparks cutoff point.

Below we define some of the heuristics used to determine d.

105

Chapter 4: Lazy Data-Oriented Evaluation Strategies

Level Nodes at Level Cumu. Nodes (=Sparks)
0 1 1
1 4 5
2 16 21
3 64 85
4 256 341
5 1024 1365
6 4096 5461
7 16384 21845
8 65536 87381

Table 4.3: Number of nodes at each depth for a complete tree.

D0 d = Hmax/2

This assumes that the major sources of parallelism, that is, most compute-

intensive branches, reside within the upper half of the tree. This version does

not take P into account and generates a fixed number of sparks for any P .

D1 d = min (P − 1) dmax

where dmax in this version is hard-coded. The depth parameter is selected

based on the maximal depth of the input tree.

The heuristic is implemented through a counter that starts with d = 0 on 1

PE and increases d by one from 2 PEs onward until dmax is met. This leads

to at most
∑P−1

x=0 4x sparks on P PEs. There is no maximum sparks control

(Property 3) in the version.

D2 d = min (P − 1) dmax, where the number of cumulative nodes at d is less than

Smax

In this version, dmax is computed (not specified) to enforce the “where” con-

dition. dmax is dependent on the input size and is determined by building a

table consisting of number of nodes and cumulative number of nodes at each

level. dmax is the level at which the cumulative number of nodes is just before

Smax. From Table 4.3, dmax = 6 for Smax = 8000. Note that dmax < Hmax.

D2 is based on information obtained from an initial traversal of the tree. However,

where not possible, we work on an estimate. For any tree, there are at most (upper

bound) 4i nodes at level i, and the cumulative nodes at this level is
∑i

x=0 4x. For

instance, the upper bound for the number of nodes at level 5 is 1024, and the number

of cumulative nodes is 1365. The cumulative nodes corresponds to the upper bound

of sparks that is to be created at level. We work within these bounds to determine

a maximum d. Any d greater than this will generate sparks in excess. For instance,

at level 6, at most 5461 sparks are created, and at level 7, 21845 sparks.

106

Chapter 4: Lazy Data-Oriented Evaluation Strategies

4.11.2 Determining Size Threshold s

At present we use the same heuristics to determine s for both parTreeSizeAnn and

parTreeLazySize. The choice of an s can limit or create more parallelism. Small s

will create more sparks, while big s will create less. When P increases, we want to

be able to have more sparks, thus smaller s.

Invariant for s

1. s should be within the range 0 < s < Tin

The number of sparks created for the size annotation and lazy size strategies is

directly related to s. If s is big, fewer sparks are likely to be created. s is seen as the

minimum size threshold for parTreeSizeAnn. Sparks are created until a sub-tree

size is less than s, which translates to the amount of computation in that node is

small given its size.

Used in a slightly different “context” with the parTreeLazySize strategy, s refers

to the minimum number of nodes check, performed lazily by the strategy in order

to decide whether to create a spark or not.

S0

s =

{
Tl

(P×X)
if P > 1

0 otherwise

where X is an approximate number of sparks per PE.

We use an estimate function to classify computation in nodes as S (small), M

(medium), and L (large), and based on this “weight” we determine X. For in-

stance, for a small amount of computation, it is fine to have many sparks per core

(for example, 100–200), but for a large amount of computation, sparks are restricted

to ca 5–10.

4.11.3 Determining Fuel f

As the number of processors (P) increases, we want to provide more fuel such that

more sparks can be created. fmin is the minimum amount of fuel that is needed for

a spark.

107

Chapter 4: Lazy Data-Oriented Evaluation Strategies

Properties for f : In principle, f should be within the range 0 < f < Tin (same

as s) for a particular sub-tree, to effectively control the potential parallelism. If

f > Tin, all nodes have at least one unit of fuel. Thus, the default fuel check of at

least 1, f > 0, changes, for example, to f > 5 in order to ensure the mechanism

works. Otherwise sparks are created at each inner node in the tree, defaulting to

the naive parTreeBranch strategy. Thus, we require these properties:

1. if f < Tin, then fmin < 0

This means that fuel will run out during distribution, and thus nodes with 0

fuel (or negative) will not be sparked.

2. if f > Tin, then fmin > 0

This means that potentially all nodes will have some fuel, and we need to

determine fmin, that is, the new minimum fuel threshold a node needs to have

to be eligible for a spark.

3. f should be less than sparks upper bound (f < Smax)

In giveback fuel distribution, the fuel coming into a node from its parent is the

sum of fuel passed down to children (plus giveback fuel). If the size of a sub-tree

is smaller than the fuel it gets, there will be some giveback fuel. If the size of the

tree is larger than the fuel, there will be as many sparks as prescribed by the fuel,

irrespective of the shape of the tree.

We explore the following heuristic formulae for computing the fuel.

F0 The initial heuristic is designed to be simple:

f =

{
Tl

X
× P if P > 1

0 otherwise

F1 The final heuristics is defined as follows: f = ah(P) where h is a function over

the number of processors and the constant a is the arity of the tree, e.g. 4 for

quad-trees. We use h in the exponent of this formula to reflect the exponential

amount of potential parallelism in the tree structure.

4.12 Performance Evaluation

4.12.1 Experimental Setup

Machines: Two different machines are used for performance evaluation. For the

initial test runs, we use the same desktop-class multi-core machine used in comparing

108

Chapter 4: Lazy Data-Oriented Evaluation Strategies

48 cores machine (512GB RAM)

Socket #0 (128GB)

NUMANode #0 (64GB)

L3 6MB

L2 2MB L2 2MB L2 2MB

L1 64KB L1 64KB L1 64KB L1 64KB L1 64KB L1 64KB

Core #0 Core #1 Core #2 Core #3 Core #4 Core #5

NUMANode #1 (64GB)

L3 6MB

L2 2MB L2 2MB L2 2MB

L1 64KB L1 64KB L1 64KB L1 64KB L1 64KB L1 64KB

Core #6 Core #7 Core #8 Core #9 Core #10 Core #11

...
...

(showing 1 of 4 sockets)

Figure 4.9: Server-class 48 cores machine topology map.

the parallel Haskell models in Chapter 3: an 8-core machine arranged in 2 sockets

(2 X Intel Xeon CPU E5410 processors/4 cores @ 2.33GHz each), with 7870MB

memory and 2 levels of cache hierarchy (detailed machine specification in Figure 3.4).

For performance scalability test, a server-class many-core machine consisting of 48

cores arranged in 4 sockets each with 2 NUMA nodes and each node with 6 AMD

Opteron 6348 CPU cores (1400 MHz). Two cores share a 64kB L1 and a 2MB L2

cache, and the 6MB L3 cache is shared by all cores in one NUMA region (detailed

NUMA structure of machine in Figure 4.9). Each region has 64GB memory, amount-

ing to a total of 512GB RAM. The server machine runs at a lower frequency which

means compute intensive tasks on a core will run slower. However, it exploits six

times more processing units and thus more tasks i.e. sparks can execute in parallel

to improve performance. Both machines run CentOS 6.5 64-bit Linux with kernel

version 2.6.32. With a NUMA architecture, memory latencies vary depending on

the region. Using the numactl1 tool shows that access to a remote region is by a

factor of 2.2 more expensive than access to a local region.

Compiler and libraries The Haskell compiler used is ghc-7.6.1. Among the

main packages installed from Hackage through Cabal is parallel-3.2.0.3 con-

1numactl - Control NUMA policy for processes or shared memory
http://linux.die.net/man/8/numactl

109

http://linux.die.net/man/8/numactl

Chapter 4: Lazy Data-Oriented Evaluation Strategies

Example of using isBoundedSize (Listing 4.8) on a quadtree. Evaluation stops
after establishing size is at least 4. AP=Unevaluated Expression

Figure 4.10: ghc-vis: visualise partially evaluated tree structure.

sisting of the primitives and original strategies. Our implementation is in our

pardata-0.1 package consisting of the new strategies. All programs are compiled

with optimisation flag -O2 on.

Tools We identify two useful visualisation tools to help in the implementation of

the strategies and verify the actual with expected behaviour which is important in

a non-strict language:

GHood (Reinke, 2001) allows one to observe intermediate states in the data struc-

ture as evaluation proceeds. Different colour schemes are used to highlight

unevaluated thunks and evaluated structures.

ghc-vis (Felsing, 2012) is a tool to visualise live Haskell data structures in GHCi

(see Figure 4.10 for an example). Evaluation is not forced and we can interact

with the visualised data structures. This allows seeing Haskell’s lazy evaluation

and sharing in action.

4.12.2 Benchmark Program

The strategies are first tested on a benchmark program taking algorithmic com-

plexity out of the picture and focusing on the strategies’ behaviour. The program

performs a parallel map on irregular trees with different depth distribution — nor-

mal, left-skewed and right-skewed (Fig. 4.11) — and fixed (homogeneous) or variable

(heterogeneous) computations in the node.

110

Chapter 4: Lazy Data-Oriented Evaluation Strategies

(a) normal (b) left-skewed (c) right-skewed

Figure 4.11: Depth distribution for test program input.

The desktop machine run is mainly intended as a check for initial performance for

the advanced strategies. Initial results on the 8-core machine with a small input size

show good speedups for all the strategies on up to 8 cores. However, the advanced

strategies do not outperform the naive element-wise parTree, as this strategy works

well on a small scale.

Moving on to a more realistic setup, Table 4.4 shows the running time and absolute

speedup against the sequential runtime of the strategies on up to 48 cores (on the

many-core server machine). On this machine, we use a larger input size of 100k tree

elements and normal depth distribution across the tree. The benchmark program

speedup is plotted in Figure 4.12. We make the following observations. The depth-

based thresholding strategy works well with a speedup close to 32 on 48 cores.

However, the main problem with this basic thresholding method is that the number

of sparks generated remains flat after 8 cores. This is highlighted by the horizontal

bars for the number of sparks in Figure 4.13(a). This is due to the maximum depth

we encode in our heuristics as an upper bound in order to avoid excessive parallelism

potential due to the exponential growth of nodes at each level. Moving to a more

advanced parameter selection criteria, we see an improvement from using heuristics

D2 over D1 as seen in Figure 4.13 (b). This demonstrates that for irregular trees, we

can have a high depth threshold determined dynamically to go deeper down the tree

in order to generate sufficient parallelism, while avoiding a hard-coded maximum d.

The lazy size strategy performs well on up to 32 cores with a speedup of 28 compared

to 26 on the same core count for the depth-threshold strategy. This is explained by

the fact that spark creation grows with an increasing number of cores. The speedups

range from 28 to 30 on 36 to 48 cores, which is attributed to many more sparks being

created on higher core numbers, which introduces some overhead and motivates the

need for throttling parallelism.

The pure fuel strategy also gives good results compared to depth-based thresholding.

This result is further improved by extending the fuel strategy with a lookahead

mechanism — in this case, the amount of sparks generated is the same as the pure

version, however, the performance gain comes from the improved efficiency in fuel

distribution, marking the most eligible nodes to be sparked based on additional

information from the lookahead mechanism.

111

Chapter 4: Lazy Data-Oriented Evaluation Strategies

d
ep

th
si

ze
an

n
la

zy
si

ze
fu

el
p

u
re

fu
el

p
u

re
m

a
rk

ed
fu

el
lo

o
ka

h
ea

d
fu

el
g
iv

eb
a
ck

fu
el

p
er

fe
ct

sp
li

t
#

p
e

R
T

S
P

R
T

S
P

R
T

S
P

R
T

S
P

R
T

S
P

R
T

S
P

R
T

S
P

R
T

S
P

1
19

6.
42

1.
25

19
4.

92
1.

25
19

6.
52

1
.2

4
1
9
6
.0

3
1
.2

5
1
9
5
.4

6
1
.2

5
1
9
5
.8

2
1
.2

5
1
9
6
.1

1
1
.2

5
1
9
5
.6

1
1
.2

5
2

10
2.

32
2.

39
10

3.
56

2.
36

11
0.

49
2
.2

1
1
0
6
.0

0
2
.3

1
1
0
0
.5

6
2
.4

3
1
0
0
.4

1
2
.4

4
1
0
3
.3

2
2
.3

7
1
0
2
.1

9
2
.3

9
4

51
.8

9
4.

71
50

.7
7

4.
82

52
.6

7
4
.6

4
5
3
.8

9
4
.5

4
5
1
.0

2
4
.7

9
5
3
.6

4
4
.5

6
5
2
.2

0
4
.6

9
5
3
.5

3
4
.5

7
8

26
.9

3
9.

08
26

.5
7

9.
21

27
.4

6
8
.9

1
2
7
.0

6
9
.0

4
2
5
.6

7
9
.5

3
2
6
.7

4
9
.1

5
2
7
.3

6
8
.9

4
3
1
.8

6
7
.6

8
12

18
.3

3
13

.3
4

18
.6

6
13

.1
1

18
.0

9
1
3
.5

2
1
8
.8

7
1
2
.9

6
1
8
.5

1
1
3
.2

1
1
8
.2

0
1
3
.4

4
1
9
.8

6
1
2
.3

2
1
9
.6

8
1
2
.4

3
16

16
.1

2
15

.1
7

14
.8

6
16

.4
6

15
.3

0
1
5
.9

9
1
5
.7

4
1
5
.5

4
1
4
.8

1
1
6
.5

2
1
5
.7

5
1
5
.5

3
1
5
.6

1
1
5
.6

7
1
5
.1

0
1
6
.2

0
20

13
.3

2
18

.3
6

12
.5

0
19

.5
7

12
.7

6
1
9
.1

7
1
3
.0

2
1
8
.7

9
1
1
.9

2
2
0
.5

2
1
3
.3

5
1
8
.3

2
1
3
.0

8
1
8
.7

0
1
3
.4

3
1
8
.2

1
24

11
.7

4
20

.8
3

10
.0

7
24

.2
9

10
.7

4
2
2
.7

7
1
1
.5

4
2
1
.2

0
1
0
.3

9
2
3
.5

4
1
1
.3

7
2
1
.5

1
1
1
.2

1
2
1
.8

2
1
1
.3

4
2
1
.5

7
28

10
.3

2
23

.7
0

9.
33

26
.2

2
9.

61
2
5
.4

5
1
0
.3

1
2
3
.7

2
9
.5

9
2
5
.5

1
1
0
.1

1
2
4
.1

9
1
0
.4

1
2
3
.5

0
1
0
.2

3
2
3
.9

1
32

9.
55

25
.6

1
8.

52
28

.7
1

8.
76

2
7
.9

2
8
.7

7
2
7
.8

9
9
.1

7
2
6
.6

7
8
.4

9
2
8
.8

1
9
.5

1
2
5
.7

2
8
.7

0
2
8
.1

1
36

9.
14

26
.7

6
7.

72
31

.6
8

8.
77

2
7
.8

9
7
.8

6
3
1
.1

2
8
.8

1
2
7
.7

6
8
.0

3
3
0
.4

6
8
.6

4
2
8
.3

1
7
.9

8
3
0
.6

5
40

8.
37

29
.2

2
7.

35
33

.2
8

8.
70

2
8
.1

1
7
.5

4
3
2
.4

4
8
.4

8
2
8
.8

4
7
.2

5
3
3
.7

4
7
.8

8
3
1
.0

4
7
.4

8
3
2
.7

0
44

8.
10

30
.2

0
7.

07
34

.6
0

8.
86

2
7
.6

1
7
.0

5
3
4
.7

0
7
.9

5
3
0
.7

7
6
.9

1
3
5
.4

0
7
.7

0
3
1
.7

7
6
.9

0
3
5
.4

5
48

7.
78

31
.4

4
6.

66
36

.7
3

8.
34

2
9
.3

3
6
.7

3
3
6
.3

4
7
.5

9
3
2
.2

3
6
.5

7
3
7
.2

3
7
.1

8
3
4
.0

7
6
.9

8
3
5
.0

4

T
ab

le
4.

4:
B

en
ch

m
ar

k
p
ro

gr
am

–
R

u
n
ti

m
e

an
d

S
p

ee
d
u
p

on
48

co
re

s.

112

Chapter 4: Lazy Data-Oriented Evaluation Strategies

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 4 8 12 16 20 24 28 32 36 40 44 48

A
b

s
.
S

p
e
e
d

u
p

#cores

depth
sizeann
lazysize
fuelpure

fuelpuremarked
fuellookahead

fuelgiveback
fuelperfectsplit

Input: 100k elements

Figure 4.12: Test program speedups on 1-48 cores.

The giveback fuel strategy has performance close to the depth-based thresholding

strategy, even though we note that the giveback technique generates far more sparks

than the remaining strategies with the same amount of fuel. In analysing the give-

back mechanism, we measure how often fuel was given back to a parent node. With

f = 50, the fuel hit-rate (the number of times an outer node is hit, thus fuel is

passed back upward) is 247. For f = 100, 500 and 1000, the hit-rates are 478, 2357

and 4417, respectively. These numbers demonstrate that the giveback mechanism

is effective in enabling additional parallelism for irregular trees. Due to the circular

distribution of fuel, we expect more fuel to be available for nodes inside the tree —

that is, distribution carries on deeper inside the tree, explaining why higher numbers

of sparks are generated.

4.12.3 Barnes-Hut Algorithm

The Barnes-Hut algorithm for the n-body problem is used as a concrete application

to assess the performance of our new strategies. The step-by-step implementation of

the algorithm is provided in the previous chapter. In short, the algorithm simulates

the movement of objects in space and uses a quad-tree representation for 2D space.

The algorithm involves two phases:

1. Tree construction: a tree containing all the bodies in the given space is con-

structed.

113

Chapter 4: Lazy Data-Oriented Evaluation Strategies

(a) Depth heuristic – D1 (b) Depth heuristic – D2

Figure 4.13: Depth heuristics performance comparison: D1 vs D2

2. Force calculation: iteration-wise force calculation for each body with respect

to the rest, followed by positions change.

The main source of parallelism is in the force calculation step, where the force for

each body is computed independently from the other bodies. We adapt the list-

based algorithm used in Chapter 3 by performing the main map operation in the

second phase over a quad-tree data structure. This enables us to use the newly

developed tree-based strategies, while comparing the performance with an already

well-tuned implementation. Most notably, no restructuring of the sequential code

was necessary to enable parallelism. We also extend our experiments to include

a number of different body distributions — single uniform cluster, single normally

distributed cluster, and multiple clusters of bodies, as depicted in Figure 4.14. This

is aimed at studying the performance of the new strategies with irregular data

distributions.

(a) uniform cluster (b) normal cluster (c) multiple clusters

Figure 4.14: Bodies distribution

Performance Results: We focus our discussion on a particular set of results ob-

tained for one cluster of normally distributed bodies across the space (Figure 4.14

(b)) as input and compare these with results from a multiple clusters input (Fig-

ure 4.14 (c)). The latter is an example of higher irregularity in the data distribution.

114

Chapter 4: Lazy Data-Oriented Evaluation Strategies

d
ep

th
si

ze
an

n
la

zy
si

ze
fu

el
p

u
re

fu
el

p
u
re

m
a
rk

ed
fu

el
lo

o
ka

h
ea

d
fu

el
g
iv

eb
a
ck

fu
el

p
er

fe
ct

sp
li

t
#

p
e

R
T

S
P

R
T

S
P

R
T

S
P

R
T

S
P

R
T

S
P

R
T

S
P

R
T

S
P

R
T

S
P

1
20

5.
92

0.
96

20
3.

61
0.

97
20

0.
58

0
.9

9
2
0
1
.3

9
0
.9

8
2
0
3
.4

9
0
.9

7
2
0
3
.4

6
0
.9

7
2
0
2
.8

0
0
.9

8
2
0
7
.2

6
0
.9

6
2

10
9.

09
1.

82
11

2.
03

1.
77

10
7.

08
1
.8

5
1
0
6
.9

3
1
.8

5
1
0
5
.2

4
1
.8

8
1
0
6
.0

5
1
.8

7
1
0
7
.0

6
1
.8

5
1
1
3
.8

8
1
.7

4
4

62
.4

5
3.

18
63

.5
8

3.
12

51
.1

3
3
.8

8
5
3
.1

4
3
.7

3
5
1
.7

2
3
.8

3
5
3
.8

2
3
.6

9
5
2
.1

3
3
.8

0
6
3
.7

3
3
.1

1
8

39
.4

5
5.

03
38

.8
6

5.
10

30
.4

4
6
.5

2
2
7
.5

2
7
.2

1
2
5
.7

7
7
.7

0
2
7
.2

1
7
.2

9
2
9
.3

5
6
.7

6
4
3
.8

1
4
.5

3
12

36
.0

0
5.

51
33

.4
7

5.
93

24
.6

4
8
.0

5
2
0
.9

8
9
.4

5
1
9
.9

6
9
.9

4
2
1
.7

9
9
.1

0
2
1
.8

8
9
.0

6
3
6
.1

8
5
.4

8
16

28
.3

7
6.

99
33

.9
8

5.
84

19
.5

1
10

.1
7

1
7
.5

9
1
1
.2

8
1
6
.1

8
1
2
.2

6
1
7
.8

9
1
1
.0

9
2
1
.1

2
9
.3

9
3
3
.3

5
5
.9

5
20

28
.6

0
6.

93
32

.1
7

6.
17

19
.1

5
10

.3
6

1
6
.3

2
1
2
.1

5
1
5
.7

7
1
2
.5

8
1
5
.8

3
1
2
.5

3
1
8
.9

2
1
0
.4

8
3
3
.3

1
5
.9

5
24

27
.8

8
7.

11
28

.2
3

7.
03

18
.8

8
10

.5
1

1
5
.3

0
1
2
.9

6
1
4
.5

6
1
3
.6

2
1
5
.3

1
1
2
.9

5
1
8
.5

9
1
0
.6

7
3
0
.6

3
6
.4

8
28

30
.0

6
6.

60
43

.8
0

4.
53

18
.0

9
10

.9
6

1
4
.6

1
1
3
.5

8
1
4
.4

1
1
3
.7

6
1
4
.1

7
1
4
.0

0
1
6
.2

6
1
2
.2

0
3
4
.6

6
5
.7

2
32

28
.3

5
7.

00
62

.2
1

3.
19

21
.9

0
9
.0

6
1
4
.9

6
1
3
.2

6
1
3
.5

0
1
4
.6

9
1
4
.3

8
1
3
.7

9
1
5
.5

5
1
2
.7

5
3
2
.2

9
6
.1

4
36

27
.5

0
7.

21
70

.3
1

2.
82

20
.0

2
9
.9

1
1
4
.6

4
1
3
.5

5
1
4
.6

0
1
3
.5

8
1
6
.3

5
1
2
.1

3
1
8
.0

5
1
0
.9

9
2
9
.8

6
6
.6

4
40

29
.8

5
6.

64
76

.6
6

2.
59

17
.8

4
11

.1
2

1
4
.8

5
1
3
.3

6
1
7
.6

4
1
1
.2

4
1
5
.2

4
1
3
.0

1
1
6
.8

7
1
1
.7

6
3
1
.1

0
6
.3

8
44

26
.3

8
7.

52
81

.7
0

2.
43

21
.6

4
9
.1

7
1
3
.3

9
1
4
.8

1
1
5
.9

0
1
2
.4

7
1
4
.3

9
1
3
.7

8
1
5
.2

6
1
3
.0

0
3
0
.6

5
6
.4

7
48

33
.7

4
5.

88
92

.4
6

2.
15

20
.8

3
9
.5

2
1
3
.3

4
1
4
.8

7
1
4
.1

3
1
4
.0

4
1
4
.2

3
1
3
.9

4
1
6
.7

4
1
1
.8

5
3
7
.8

3
5
.2

4

T
ab

le
4.

5:
B

ar
n
es

-H
u
t

al
go

ri
th

m
–

R
u
n
ti

m
e

an
d

S
p

ee
d
u
p

on
48

co
re

s.

115

Chapter 4: Lazy Data-Oriented Evaluation Strategies

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 4 8 12 16 20 24 28 32 36 40 44 48

A
b

s
.
S

p
e
e
d

u
p

#cores

depth
sizeann
lazysize
fuelpure

fuelpuremarked
fuellookahead

fuelgiveback
fuelperfectsplit

Input: 2 million bodies, 1 iteration

Figure 4.15: Barnes-Hut speedups on 1–48 cores.

Table 4.5 summarises the running time and absolute speedup showing the mean

values of 3 runs and on up to 48 cores. The speedup graph in Figure 4.15 show

that across the range of core numbers, the fuel-based strategies (highlighted in blue)

are consistently more efficient than parTreeDepth or parTreeSizeAnn, for depth-

based and size-based thresholding, respectively. In particular, a pure fuel version,

using just simplistic but cheap fuel splitting, performs best on 48 cores, exhibiting

a speedup of 15, and the marked variant of the fuel strategy performs best for core

numbers up to 36. These results indicate that a fuel-based approach to controlling

parallelism is more flexible than a thresholding approach. The latter performs very

poorly from 16 cores onwards and drops in performance on the high end of the spec-

trum. One inherent problem with depth-based thresholding is that it provides only

a very crude mechanism for controlling the amount of parallelism that is generated,

because the number of sparks is exponential in the depth that is used as threshold.

Furthermore, it misses out on opportunities of re-using potential parallelism late in

the computation, where parallelism typically diminishes, due to having hit the depth

threshold at this point in the computation. This shows up as a step function in the

profile plotting sparks over cores (shown in Figure 4.16(a)). In contrast, the same

profile for the lazysize strategy shows a continuous function, where sparks steadily

increase over the number of cores (Figure 4.16(b)).

Among the fuel-based strategies, the pure variant performs best, but other variants

remain fairly close to it. In particular, the giveback variant is within 20% and the

lookahead variant is within 6% of the best result. The fuel strategies invest more

116

Chapter 4: Lazy Data-Oriented Evaluation Strategies

(a) depth (b) lazysize

Figure 4.16: Depth vs Lazy Size sparks creation.

work into orchestrating the parallelism, by passing fuel through the tree: measuring

this overhead shows that for an input of 2 million bodies, annotating the tree takes

about 11% and unannotating the tree takes about 4% of the time needed to build

the tree. The overall performance is therefore a balance between this overhead and

the more flexible distribution of fuel. For example, using a give-back mechanism to

distribute the fuel both down-wards and up-wards, shows that for a tree with 100

thousand elements, and a fuel of 2000, there are 7682 instances of give-back, due to

the irregular distribution of the input data.

We also observe that a perfect split strategy performs poorly in Figure 4.15. Again

we believe that this is due to the additional overhead incurred by this strategy.

Notably, the three worst performing strategies in this figure, are the ones that need

a global context in order to decide how to arrange the parallelism. This can be seen

in column 5 of Table 4.1.

The limited scalability beyond 28 cores can be attributed to specifics of the algo-

rithm, the runtime system and the hardware. The algorithm itself is a standard

Barnes-Hut algorithm without further optimisations to minimise data exchange and

facilitate scalability. Using an increasing number of cores will naturally generate a

higher number of threads in our programming model, which increases the amount

of live data and thus the garbage collection overhead. Additionally, global synchro-

nisation across all cores is necessary to perform major collections. The underlying

physical shared-memory hardware is a NUMA architecture with higher memory la-

tencies across remote NUMA regions, of 6 cores. Thus, involving several regions

in the computation will result in a significant percentage of expensive memory ac-

cesses. This effect is even more pronounced in Haskell programs, since the underly-

ing graph reduction machinery typically requires frequent memory accesses across a

large, dynamic heap. For a more detailed study of the parallel memory management

performance see (Aljabri et al., 2014a).

117

Chapter 4: Lazy Data-Oriented Evaluation Strategies

4.12.4 Sparse Matrix Multiplication

Matrix multiplication arises in many numerical and scientific applications. For large

matrices, optimised multiplication and other operations that run in parallel are

essential. Sparse matrices have a high ratio of nonzero to zero elements. Therefore,

it is sensible to store only nonzero elements to avoid unnecessary space usage.

Sparse Matrix Representation The standard representation of sparse matrices

is the column-value pairs for each nonzero value for each row. For instance, the

sparse matrix:

A =



row col 0 1 2 · · · 7
0 2 3 0 0 0 0 0 0
1 1 2 3 0 0 0 0 0
2 0 1 2 3 0 0 0 0

0 0 1 2 3 0 0 0
... 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0


is represented in a compact form as follows:

A =

[[(0 , 2), (1 , 3)],

[(0 , 1), (1 , 2), (2 , 3)],

[(1 , 1), (2 , 2), (3 , 3)],

[(2 , 1), (3 , 2), (4 , 3)],

[(3 , 1)],

[],

[],

[]]

The sparse matrix is compacted in a sequence of sequence where each element of the

outer sequence represents a row and inner sequence is the index-value pairs for each

nonzero elements. This representation is usually expanded back to its full form, that

is, including the zeros before doing operations such as multiplication.

Tree-based Matrix Representation Sparse matrices can be represented using

quad-trees. This allows us to use the sparse matrix multiplication as an additional

application to test our tree-based strategies. Figure 4.17 shows sparse matrix A

represented as a quad-tree where whole a region containing non-zero elements is

represented as a single zero node.

Wainwright et al (Wainwright and Sexton, 1992) report good sequential performance

118

Chapter 4: Lazy Data-Oriented Evaluation Strategies

(a) (b)

Figure 4.17: Quad-tree representation of a sparse matrix.

and reduced space overhead for sparse input data, using a quad-tree representation

for sparse matrix multiplication. We adapt the implementation in Haskell and aim

for further performance gains through parallelisation using our new strategies. This

is achieved by demanding the result matrix in parallel. Again, we do not have to

change the sequential algorithm to obtain a parallel version. In Listing 4.17, we de-

fine a matrix as a tree using the type synonym (type Matrix a = QTree a). Two

input matrices are converted to quad representations (quadrep) before the multipli-

cation function is called (qmul), producing a result matrix in tree format. The result

matrix is demanded in parallel by applying a parallel strategy e.g. parTreeFuel as

previously defined.

119

Chapter 4: Lazy Data-Oriented Evaluation Strategies

Listing 4.17: Sparse matrix multiplication code extract.

1 type Matrix a = QTree a

2

3 run m n s v vv = do

4 a <- ... -- read m x n matrix input a and b

5 b <- ...

6 let ma = quadrep a

7 mb = quadrep b

8 res = qmul ma mb ‘using ‘ parTreeStrategy

9 ... -- print result in readable format

10

11 -- build a quadtree from a list

12 quadrep ::(Eq a,Num a) => [a] -> Matrix a

13 quadrep [x] = L x

14 quadrep xs

15 | all (0==) xs = E

16 | otherwise = N $ Q nw ne sw se

17 where

18 nw = quadrep (buildw firsthalf)

19 ne = quadrep (builde firsthalf)

20 sw = quadrep (buildw secondhalf)

21 se = quadrep (builde secondhalf)

22

23 len = length xs

24 y = floor . (/2) . sqrt . fromIntegral $ len

25 y2 = y*2

26

27 (firsthalf ,secondhalf) = splitAt (len ‘div ‘ 2) xs

28

29 -- build a west region

30 buildw [] = []

31 buildw x = (take y x) ++ (buildw (drop y2 x))

32

33 -- build an east region

34 builde [] = []

35 builde x = (take y (drop y x)) ++ (builde (drop y2 x))

36

37 -- main multiplication function

38 qmul ::(Eq a,Num a) => Matrix a -> Matrix a -> Matrix a

39 qmul E _ = E

40 qmul _ E = E

41 qmul (L x) (L y) = L (x*y)

42 qmul n1@(N _) n2@(N _) = let

43 (N (Q nw1 ne1 sw1 se1)) = n1

44 (N (Q nw2 ne2 sw2 se2)) = n2

45 nw = (qmul nw1 nw2) ‘qadd ‘ (qmul ne1 sw2)

46 ne = (qmul nw1 ne2) ‘qadd ‘ (qmul ne1 se2)

47 sw = (qmul sw1 nw2) ‘qadd ‘ (qmul se1 sw2)

48 se = (qmul sw1 ne2) ‘qadd ‘ (qmul se1 se2)

49 in N (Q nw ne sw se)

50

51 qadd ::(Eq a,Num a) => Matrix a -> Matrix a -> Matrix a

52 qadd E x = x

53 qadd x E = x

54 qadd (L x) (L y) = L (x+y)

55 qadd n1@(N _) n2@(N _) = let

56 (N (Q nw1 ne1 sw1 se1)) = n1

57 (N (Q nw2 ne2 sw2 se2)) = n2

58 in N $ Q (qadd nw1 nw2) (qadd ne1 ne2)

59 (qadd sw1 sw2) (qadd se1 se2)

120

Chapter 4: Lazy Data-Oriented Evaluation Strategies

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 4 8 12 16 20 24 28 32 36 40

A
b
s
.
S

p
e
e
d
u
p

#cores

depth
sizeann
lazysize
fuelpure

fuelpuremarked
fuellookahead

fuelgiveback
fuelperfectsplit

Input: 4096x4096 matrices with 5% sparsity

Figure 4.18: Sparse matrix multiplication speedups on 1-40 cores.

Our results for 4096x4096 input matrices with 5% of all elements containing non-

zero values (sparsity), in Figure 4.18, show fairly good performance on core numbers

up to ca. 12 or 20, i.e. typical sizes for current desktop machines. However, there is a

significant drop in performance thereafter and therefore poor scalability. One specific

characteristic for this application is its fairly high memory allocation throughout

the execution: total allocation is 4 times and memory residency is 3 times that of

the Barnes-Hut algorithm. As a result, the garbage collection (GC) overhead is

high and steadily increasing for higher core numbers. We note that at the point

where speedups drop, around 20 to 28 core, the GC% in the execution surpasses the

MUT%, i.e. the mutation time spent doing actual graph reduction. This is shown

for the depth and giveback strategies in Figure 4.19. This is an indication that all

versions suffer from high GC overhead. Thus, it would be profitable to throttle the

parallelism more aggressively, and this is the direction we want to explore in the

future.

Comparing the performance of the different strategies reveals that again the marked

variant of a fuel strategy performs best for core ranges between 12 and 20. The

depth-based thresholding variant performs significantly better in this application,

probably because the result of matrix multiplication is much denser than its input.

Since our lazy strategies typically generate parallelism by traversing, and thus forcing

evaluation of the result data structures, this means that the data is more regularly

distributed compared to the Barnes-Hut program. Because we are not performing

any operation on the elements of the result matrix, it is expected that sizeann and

121

Chapter 4: Lazy Data-Oriented Evaluation Strategies

(a) depth (b) fuelgiveback

Figure 4.19: GC-MUT and allocation for depth and giveback.

fuelperfectsplit do not give good performance as both require a first pass over

the result matrix to attach administrative information.

4.13 Summary

In this chapter, we have presented novel parallelism control mechanisms, building

on laziness to achieve additional flexibility. We have encoded these as evaluation

strategies over tree-like data structures and demonstrated improved parallel per-

formance over established methods for throttling parallelism on a 48-core shared-

memory server using three benchmark programs. Our new strategies are more flex-

ible in controlling the available parallelism, by re-using previously unused potential

parallelism and thus obtaining better performance on structures with irregular data

distribution. Our performance results show that they out-perform classic techniques

that are often used, such as depth-based thresholding. Core techniques that we use

in the implementation to gain this added flexibility are circular programs, requiring

lazy evaluation, and annotating the tree structure with administrative information.

To the best of our knowledge, this is the first use of circular programming techniques

to improve parallel performance. The best-performing strategy is based on the no-

tion of fuel that is passed down the tree and controls whether parallelism should

be generated or not. While our implementation and performance results have been

obtained from an quad-tree data structure, the techniques, such as bi-directional

flow of fuel, are not restricted to trees nor to specific applications.

122

Chapter 5

Graph Evaluation Strategies

In the previous chapter, the focus has been on tree data structures, in particular,

quad-trees, suitable for the Barnes-Hut algorithm and sparse matrix representation.

The techniques that we developed for trees are not limited to this particular struc-

ture. In this chapter, we apply these techniques to graph data structures. We present

a number of sequential and parallel strategies for graph data structures, specifically

the use of recursive tree definition for graph which offers a naturally functional data

representation and depends on laziness. This representation allows us to carry over

the mechanisms for effective parallelism control previously presented for trees.

Graphs are increasingly important for high-performance computing in the context of

big-data applications (Gilbert et al., 2007). Many problems can be modelled using

graphs, for example, social networks (relationship between persons), computer net-

works (node connections) and web content representation (pages and links). Graphs

are at the core of data intensive applications and there is an increased interest for

efficient algorithms with a number of benchmark suites becoming prominent, for ex-

ample, the Graph 500, HPC Graph Analysis and Lonestar (Graph500, 2015; Bader

et al., 2015; Kulkarni et al., 2009).

5.1 Graph Definitions

Below we briefly explain the terminologies used in discussing graphs (Gondran et al.,

1984); including definitions and basic concepts, and the types of graph we look at.

Definition 5.1. A graph G = (V,E) is defined as

i) a set V = {v1, v2, ...vn} whose elements are called vertices (or nodes), and

ii) a set E whose elements e ∈ E are pairs of vertices from V , i.e. V × V , and
called edges (or arcs, or connections).

123

Chapter 5: Graph Evaluation Strategies

The number of vertices in the graph is given by n = |V |. Thus, the graph is said to

be of order n.

A path from a vertex v to a vertex u is a sequence {v0, v1, v2, ...vk} of vertices where

v0 = v, vk = u, and (vi, vi+1) ∈ E for i = 0, 1, ...k − 1.

A graph is a network model, with either directed or undirected connections. The

latter connection can be viewed as bi-directional.

In an undirected graph, the edge e = (vi, vj) represents a connection between vertex

vi and vertex vj, i.e. ∀(vi, vj) · (vi, vj) ∈ E ⇔ (vj, vi) ∈ E.

In a directed graph, the edge e = (vi, vj) represents a connection from vertex vi to

vertex vj, i.e. an arrow vi → vj. vi is the initial endpoint and vj is the terminal

endpoint of e. A direct loop is when both endpoints are the same, i.e. (vi, vi). A

cycle (indirect loop) consists of a sequence of vertices starting and ending at the

same vertex, i.e. (vi, ...vi).

The in-degree of a node nin is the number of terminal endpoints to that node, that

is, the number of arrows pointing to that node. The out-degree of a node nout is the

number of initial endpoints from the node. A node is a shared node when nin > 1.

5.1.1 Graph Types

A tree is a hierarchical model with implicit one-way connections always originating

from parents to children nodes. A tree structure can be viewed as a specialised type

of graph that restricts upward references and sharing.

For translating our tree strategies to graph strategies, we distinguish between three

types of graph:

Definition 5.2. A tree graph contains no cycles and has a distinguished root node
with an in-degree of zero. A node has exactly one parent and can have any number
of children.

All strategies defined in the previous chapter work on tree graphs only. By ex-

tending the properties of a tree graph, we can obtain two other widely used graph

types. They differ in two important properties: node sharing turns a tree into an

acyclic graph, and cycles turn a tree into a cyclic graph. The classification reflects

these properties which affects design decisions and underlying representation and

implementation.

Definition 5.3. An acyclic graph contains no cycles but nodes can share other
nodes. Thus, a node can have more than one parent, i.e. an in-degree of more than
one.

124

Chapter 5: Graph Evaluation Strategies

Definition 5.4. An cyclic graph contains cycles where any node in the graph may
have a path back to it, including through a self-loop, or dual reference.

a

b c

d e

(a) tree

a

b c

d e

(b) acyclic

a

b c

d

a

b c

d

(c) cyclic

Figure 5.1: Types of Graph

5.2 Graph Representations

The representation of a graph has a major effect on the complexity of an algorithm.

The choice of representation is influenced by a number of factors including graph

size and connection intensity.

Given a graph G = (V,E), it can be represented in the following ways (Gondran

et al., 1984).

• List of edges. This representation maintains a list of edges represented as pairs

of initial and terminal endpoints. It is probably the simplest representation.

{ (a,b),

(a,c),

(b,d),

(c,d) }

• Adjacency matrix. This is a square matrix representation where rows and

columns correspond to the vertices of the graph, and a connection between

two vertices is represented by boolean or numeric value. This representation

requires N2 space and is preferred for dense graphs, that is, graphs with a high

degree of connections between nodes.

a b c d

a 1 1

b 1

c 1

d

• Adjacency list. A more space efficient representation which is suited for sparse

graph. Vertices are listed once with their connections.

{ (a, {b,c}),

(b, {d}),

(c, {d}),

(d, {}) }

125

Chapter 5: Graph Evaluation Strategies

• Recursive representation. An unusual but naturally functional representation

of graph using recursive representation. The connections in this representation

are implicit, i.e. there is no list of explicit connections or list of edges. Instead,

each graph node points to children nodes by keeping references to them, anal-

ogous to a linked list or a tree data structure. We use this representation to

implement graph strategies.

5.3 Related Work in Functional Graphs

Functional graphs and graph algorithms have been studied and it has been shown

that while it may be difficult to achieve the same efficiency as imperative imple-

mentations, functional implementation of graphs offer a high level of abstraction as

with other functional data structures (Okasaki, 1999). Many studies have focused

mainly on achieving asymptotic complexity of graph algorithms which is as good

as imperative implementation. Often, the choice of representation encourages an

imperative style of programming in a functional language, for example, through

the use of functional arrays and monad to maintain states during search or other

operations on graphs.

The following briefly describes two graph libraries in Haskell.

5.3.1 Data.Graph

The Data.Graph module from the containers1 package is based on (King and

Launchbury, 1994) and uses an adjacency list representation and arrays (with the

indexes representing nodes and values representing neighbours of each node) as the

underlying data structure. The library is concerned only with depth-first search

using a spanning forest. The approach facilitates formal reasoning of algorithms

based on depth-first search. However, the implementation is close to an imperative

programming style.

5.3.2 FGL

Erwig (2001) presents an inductive view of graphs, similar to lists or trees. Erwig’s

work covers implementations in both ML (using imperatively updatable arrays) and

Haskell in the FGL library2. The Haskell library provides two graph implementa-

tions. The first one is an efficient implementation of graph using Data.IntMap from

1The containers package – https://hackage.haskell.org/package/containers
2The fgl package – https://hackage.haskell.org/package/fgl

126

https://hackage.haskell.org/package/containers
https://hackage.haskell.org/package/fgl

Chapter 5: Graph Evaluation Strategies

the containers package which is based on big-endian patricia trees. The second

one is a tree-based implementation of static and dynamic graphs. Our approach and

choice of representation is closer to this functional and recursive style.

Our focus is on traversal and evaluation in parallel. In the next section, we will

start from the same type definition as a binary tree for graph, and only slightly

extending it to work with acyclic and cyclic graph and different traversal strategies.

Our aim is to gain performance through parallelisation. For this, the underlying

representation of a graph is important. We choose a representation that is a natural

fit for parallelisation.

5.4 Data Type Implementation

5.4.1 Adapting Tree Data Type

We stay with a tree-based representation which is conveniently expressed using an

algebraic data type in Haskell, and where the connections are implicit. This choice

of representation is unusual, especially in an imperative context where the standard

would be an adjacency list or matrix representation, which facilitates a number of

tasks including search operations (King and Launchbury, 1994). In a tree-based

representation, there is no collection of vertices, or explicit connections: a pointer

points to an arbitrary node from the graph, and the vertices and implicit connections

can be collected through a traversal. Using a recursive tree structure allows us to

re-use strategies for trees and carry forward parallelism control mechanisms applied

to trees to graphs.

In principle, the same data type definition of a binary tree can be used to represent

a simple directed graph where each node can connect to at most two other nodes,

and where sharing and cycles are allowed.

Definition 5.5. A binary tree-based graph (type graph G) is either:
i) an empty graph (E), which has no nodes, or
ii) a graph which consists of:
– a root node (type G)
– a left and a right subnodes of the root (type pair of graph G) isomorphic to a
binary tree.

This structure is recursive since a graph node may contain other nodes, each of which

may contain others. Additionally, a node can point to itself, or any other nodes,

including shared nodes. The Haskell implementation in Type Def. 5.1 is close to the

127

Chapter 5: Graph Evaluation Strategies

mathematical notation.

Type Def. 5.1 (Binary tree-based graph representation).

A graph of the form

1 data G v = N v (G v) (G v) | E

with data elements, i.e. vertices, of type v is called a binary graph using recursive

tree structure definition.

In Type Def. 5.1, the outdegree for each node is limited to two, but there is no

structural restriction to define other graph types in addition to tree graphs. For

instance, we can capture acyclic and cyclic graphs as depicted in Figure 5.1(b) and

(c) and instantiated as shown in Listing 5.1 below using a tree-based representation

for graphs in Haskell.

Listing 5.1: Acyclic and cyclic graph instances using tree-based type

1 -- acyclic graph example (Fig 5.1(b))

2 acyclic_g = a

3 where

4 a = N 1 b c

5 b = N 2 E d -- b and c share the same node d

6 c = N 3 d E

7 d = N 4 E E

8

9 -- cyclic graph example (Fig 5.1(c))

10 cyclic_g = a

11 where

12 a = N 1 b c

13 b = N 2 a d

14 c = N 3 a d

15 d = N 4 b c

Type Def. 5.1 presents a simple case of using the same tree data type to imple-

ment a limited graph type. Building on this, we can define a more generic and

advanced graph type which can be used for other forms of graphs. In particular,

many applications require nodes to have arbitrary number of connections. This can

be implemented using a rose-tree definition (see Section 4.4), substituting the pair

of left and right nodes, with a list of nodes.

5.4.2 Extended Graph Data Type

Type Def 5.2 represents a more powerful representation, i.e. it can represent more

forms of graph and better suited for many algorithms.

Type Def. 5.2 (Extended rose-tree-based graph type).

128

Chapter 5: Graph Evaluation Strategies

A graph of the form

1 type NId = Int

2 data Graph v = N NId v [Graph v]

3

4 -- list of connected components

5 type ConnGraph v = [Graph v]

6

7 -- to enforce graph type

8 data Gtype = Tr | Acyc | Cyc

9 data G v = G Gtype (Graph v)

– with data elements (vertices) of type v has an arbitrary number of connections,

– allows one to uniquely identify a node through NId, for instance, to keep track of

visited nodes during a traversal,

– may have a number of connected components, and

– may enforce a specific graph type, through an extension to augment the type with

additional information to distinguish between graph types.

In Type Def. 5.2, we extend the basic definition with a node Id and there is no limit

to the outdegree a graph node may have. The node Id is important to uniquely

identify a node in the graph. This is necessary during traversal to keep track of

already visited nodes. More information at node level can be encoded, for e.g. the

graph type, which could help to switch between different traversals specialised for

specific subgraphs, or independent components. Predicate functions can distinguish

between different graph types by determining nodes sharing or cycles in instances of

this type, and accordingly select an appropriate traversal for a specialised type. We

use laziness on data-type constructors to encode cycles in this data representation.

This would not work in a language with strict data type constructors e.g. ML.

5.4.3 Administration Data Structures

We need to implement a way to check if nodes have been visited before; otherwise

we may re-process them, or even run into an infinite loop. In an imperative language

we can mark a node as visited after it has been encountered the first time. However,

in a (state-less) functional language, this is done in a different way – we maintain

a data structure of visited nodes, which is passed through each recursive call into

the graph. This requires an additional parameter for passing the state around, and

if not done in an efficient way, it may affect parallelism by introducing unnecessary

sequencing.

129

Chapter 5: Graph Evaluation Strategies

A

B C

D E F

G

H

I

1 7

2 6

3 5

4

8

9
10

11

12

Figure 5.2: Depth-first traversal order

5.5 Graph Traversal Strategies

In this section, we describe two graph traversal algorithms, depth-first and breadth-

first, and the implementation of graph evaluation strategies based on each traversal

order. To simplify the explanation, we use binary graph examples in the code listing

(i.e. Type Def. 5.1).

5.5.1 G1: Depth-First

Definition 5.6. A depth-first search or traversal starts at an arbitrary node of a
graph and proceeds as far as possible along the current path before backtracking.

“In this pattern of search, each time an edge to a new vertex is discovered, the search

is continued from the new vertex and is not renewed at the old vertex until all edges

from the new vertex are exhausted.” (Tarjan, 1972)

Figure 5.2 depicts a depth-first traversal where the nodes are visited in the order

ABDGHECFI. Starting from node A, the traversal proceeds as far as possible (until H),

then it backtracks and visits E. The number on the edges indicate the order in which

each path is explored. An edge that leads to an already visited node is coloured

grey. The following is an imperative algorithm for depth-first traversal. All nodes

130

Chapter 5: Graph Evaluation Strategies

are assumed to be marked unvisited initially.

Input : Graph
Output: List of reachable nodes from start node
initialise empty result list;
proc dftrav(n)

if not marked n then
process and add node to result list;
mark node as visited;
for each neighbour n of node do

dftrav(n);
end

end
Algorithm 1: Depth-first traversal

Implementation A simple depth-first graph traversal is obtained by extending

tree traversal with a container used to retain references of already visited nodes.

This ensures that when visited nodes are encountered again, e.g. through shared

pointers, they are not processed again. This implementation is an alternative to

using monadic state which requires more code changes to the naive traversal to

mark visited nodes. In Listing 5.2, we use a map data structure (dictionary) from

Data.Map module to store visited node IDs as keys and their corresponding updated

nodes as values. If a node has already been visited (Line 9-10) (determined by a key

look up query on the map), a reference to the updated node is returned. Otherwise,

each path of that node is traversed recursively, with the output (updated visited

nodes map) of the preceding path used as input to the next one (Line 13-14). This

is another example of use of circular reference in our strategy implementation.

Dealing with non-termination Note that the map stores the traversed nodes

IDs as well as a reference to the updated nodes, so if a path leads back to a visited

node, we just return the reference. This ensures that the reconstructed graph after

traversal is a homomorphism, i.e. no structural changes occurs on traversal and all

connections, even if they lead to an visited node, are retained. This step also solves

an important issue of non-termination when the updated node reference for each

visited node is not kept and referred to when needed.

Line 16-20 executes in the Eval monad and is where the strategy f is applied to

the node value. Note that this is equivalent to using the applicative notation N

idx <$> f x <*> new l <*> new r (see Section 4.6), in this example, to extract

the connected nodes from the Eval context. We use the do notation so we can

rearrange the imposed sequence on f x, new l and new r to avoid a potential loop

when dealing with cyclic graphs. Note that the data structure new n defined in the

main branch is used in its definition.

131

Chapter 5: Graph Evaluation Strategies

A

B C

D E F

G

H

I

1 2

3 4 5

6 7
8

9

10

11

12

Figure 5.3: Breadth-first traversal order

Listing 5.2: Depth-first traversal over binary tree graph.

1 evalGraph_df :: NFData a =>Strategy a -> Strategy (Graph a)

2 evalGraph_df f g = g’

3 where

4 (g’,_) = dftrav g vs

5 vs = Map.empty -- visited node ids

6

7 dftrav E vs = (return E,vs)

8 dftrav (N idx x l r) vs =

9 case Map.lookup idx vs of

10 Just n -> (n,vs)

11 Nothing ->

12 let

13 (new_l ,vs’) = dftrav l (Map.insert idx new n vs)

14 (new_r ,vs ’’) = dftrav r vs’

15

16 new_n = do

17 x’ <- f x

18 ll’ <- new_l

19 rr’ <- new_r

20 return (N idx x’ ll ’ rr ’)

21 in (new n ,vs ’’)

5.5.2 G2: Breadth-First

Definition 5.7. A breadth-first traversal visits the nodes at level i before the nodes
of level i+ 1.

The traversal is depicted in Figure 5.3, where the edges are numbered in the or-

der they are followed. The traversal visits the node in the order ABCDEFGHI. The

algorithm is given below.

132

Chapter 5: Graph Evaluation Strategies

Okasaki’s bfnum Our bftrav

function signature T a -> T Int (a->b) -> T a -> T b

containers used queue implemented using list batched queue or stacka

list or set for visited nodes
works on tree tree, acyclic, and cyclic graphs

Table 5.1: Breadth-first numbering (tree) and traversal (graph)

ato switch between breadth- and depth-first

Input : Graph
Output: List of reachable nodes from start node
initialise empty result list;
initialise empty queue q;
add starting node to q;
bftrav(q);
proc bftrav(q)

while q is not empty do
n← dequeue(q);
if n not visited then

append n to result list;
mark n as visited;
for each neighbour n’ of n do

enqueue(q,n’);
end

end

end
Algorithm 2: Breadth-first traversal

Implementation A strategy must satisfy the identity property by returning the

same data structure initially passed to it. This leads to a challenge in implementing

a breadth-first strategy: the reconstruction of the graph afterwards. Using the

old strategy formulation from the earlier strategies library version (parallel-1.x)

where type Strategy = a -> (), there was no need to rebuild the graph. However,

with the intent on preserving the compositionality benefit of the new formulation

(from parallel-3.x and onwards) where a strategy type is defined as a -> Eval

a, we implement a graph reconstruction solution.

Graph reconstruction after traversal Okasaki (2000) describes an elegant so-

lution for breadth-first numbering of a tree. It is based on a queue-based breadth-

first tree traversal algorithm and on generalising the problem of breadth-first tree

traversal to breadth-first forest traversal. Our implementation of breadth-first graph

traversal strategy is based on Okasaki’s implementation of breadth-first numbering

which preserves the structure after traversal. The definition is extended and is

summarised in Table 5.1.

133

Chapter 5: Graph Evaluation Strategies

Breadth-first traversal order container The breadth-first traversal requires

the use of an intermediate queue data structure to arrange the traversal level-by-

level ensuring a breadth-first order. We generalise the implementation such that the

container is parameterisable. Therefore, passing a stack instead of queue results in

a depth-first traversal (version G1.2 – DF Stack from Table 5.2) which is equivalent

to the container-less depth-first traversal (version G1.1 – DF None). This also helps

to switch between the two orders in a hybrid version, which is important for efficient

parallelism, described later. The typeclass interface for the container is given below.

Three implementing types are queue, batched queue and stack. We implement a

batched queue based on (Okasaki, 1996) which is an improvement compared to using

a single list to implement queue. Batched queue uses a pair of lists, one for enqueue

operation (enq) and one for dequeue (deq). If the deq is empty, it is replaced by

reversing enq and resetting enq.

Listing 5.3: Traversal order container interface

1 class Container c where

2 -- add item to container

3 (+>)::a -> c a -> c a

4 -- remove item from container

5 (-<)::c a->(a,c a)

6 -- check if container is empty

7 isempty ::c a->Bool

8 -- return an empty container

9 emptyc ::c a

Defining a lazier version of the Eval monad to ensure termination for

cyclic graph. Strategic traversals are arranged using the monadic bind operator

(>>=), either explicitly or through syntactic sugar, e.g. through the do or applicative

style programming. The following three arrangements are equivalent.

1 -- Property: 1 == 2 == 3

2 -- 1. explicit bind operator

3 n = f x >>= \x’ ->

4 l >>= \l’ ->

5 r >>= \r’ ->

6 return (N nid x’ l’ r’)

7 -- 2. do notation

8 n = do

9 x’ <- f x

10 l’ <- l

11 r’ <- r

12 return (N nid x’ l’ r’)

13 -- 3. applicative style

14 n = N nid <$> f x <*> l <*> r

The bind operator in the Eval monad imposes a sequential evaluation order in which

the expressions get evaluated. The ability to define circular data structures depends

on laziness. Graph instances with cycles require laziness but the added strictness

introduced by the Eval monad instance definition causes non-termination problem.

134

Chapter 5: Graph Evaluation Strategies

We demonstrate the problem with a simple example.

1. Define a simple data type which can allow circular reference.

1 type NId=Int

2 data N a = N NId a (N a) | E

The above definition is equivalent to that of a list type, except that we encode an

ID to uniquely identify each data constructor to detect any shared references and

cycles.

2. A non-circular instance of the new type.

1 non_circ_ds ::N Char

2 non_circ_ds = N 1 ’a’ (N 2 ’b’ (N 3 ’c’ (N 4 ’d’ E)))

3. A circular instance of the type (depicted in Figure 5.4, where there is a circular

reference from node d to a).

1 circ_ds ::N Char

2 circ_ds = N 1 ’a’ (N 2 ’b’ (N 3 ’c’ (N 4 ’d’ circ_ds)))

In Listing 5.4, a traversal strategy on the simple data type works fine on non circ ds

but will not terminate on a circular instance(i.e. circ ds), since the default bind

definition is strict on the pattern match performed on Done x. In Listing 5.5, we

implement a lazier version of the Eval monad bind operator to work around this

issue.

Listing 5.4: Strict (default) bind non-termination issue.

1 -- default (strict) bind (from Control.Parallel.Strategies)

2 data Eval a = Done a

3 Done x >>= k = lazy (k x) -- pattern ’Done x’ makes >>= strict.

4

5 -- using strict bind through do notation

6 -- works on non_circ_ds , but NOT on circ_eg

7 strat_noncirc :: NFData a => Strategy a -> Strategy (N a)

8 strat_noncirc f E = return E

9 strat_noncirc f (N k x ns) = do

10 x’ <- rparWith f x

11 ns ’ <- strat_noncirc f ns

12 return $ N k x’ ns ’

Listing 5.5: Lazy bind example on a simple circular data structure.

1 -- lazy bind

2 data Eval a = Done { runDone :: a }

3 m >>== k = k (runDone m)

4

5 -- strategy that will work on circular ds due to

6 -- lazier bind

7 strat_circ :: NFData a => Strategy a -> Strategy (N a)

8 strat_circ f ns = evalcirc Map.empty ns

9 where

10 evalcirc vs E = return E

11 evalcirc vs (N k x ns) =

135

Chapter 5: Graph Evaluation Strategies

Figure 5.4: ghc-vis: circular data structure

12 case Map.lookup k vs of

13 Just n -> n

14 Nothing ->

15 let

16 vs’ = Map.insert k new_n vs

17 new_n = rparWith f x >>= \ x’ -> -- strict

18 evalcirc vs’ ns >>== \ ns’ -> -- lazy

19 return $ N k x’ ns’

20 in new_n

The main issue from Listing 5.5 is to determine when a circle exists, in this case,

using a container to keep references (NId), and identifying where too much strictness

does not work for circular definitions and appropriately change the stricter bind to

a lazier one (Line 18).

It is crucial to deal with circular definitions appropriately in lazy languages. For

instance, implementing show, fold or other functions for the data structure depicted

in Figure 5.4 necessitates additional steps to detect loop and accordingly terminate

the program (the derived versions of these functions do not work automatically and

will enter in a loop). The same problem is dealt with in our definitions of graph

strategies that cater for cycles.

Graph breadth-first strategy We have, until now, considered the issues of

graph reconstruction after traversal, the breadth-first traversal order container, and

the use of lazier bind to ensure termination of a simple data type with cycles.

Listing 5.6 provides the main breadth-first strategic traversal function. The main

point to highlight is its more elaborate implementation compared to the previous

container-less depth-first traversal. In the breadth-first implementation, traversal

starts by adding the root node to a new queue container. This step is repeated

recursively, level-by-level for each connected node (Line 4 and 18). This effectively

arranges the order we want to achieve. Building on the queue-based breadth-first

tree traversal idea, evalGraph’ takes the queue of graph nodes and the visited node

map container as arguments, and dequeues one node at a time. The node is checked

136

Chapter 5: Graph Evaluation Strategies

if already visited (Line 12) in which case, a reference to the updated node is returned

(nb). Otherwise, the current node ID is inserted in the visited node container and

each connected node is processed recursively. Note the use of lazy bind at Line 23

and 24. This enforces the application of f x, i.e. a strategy application to the node

value, strictly in order to enable any parallel behaviour specified in f, as parallelism

requires a certain degree of strictness to kickstart. The remaining expressions in the

sequence are delayed using the lazy bind – to allow termination for cyclic graphs.

Note that this implementation is an identity on the input graph, provided f, i.e. the

strategy, is an identity as well.

In comparison to the queue-based breadth-first traversal and numbering of tree,

evalGraph bf works on the three graph types defined earlier, that is, tree, acyclic

and cyclic graphs.

Listing 5.6: Breath-first traversal

1 evalGraph_bf :: NFData a => Strategy a -> Strategy (G a)

2 evalGraph_bf f g = g’

3 where

4 newq = g +> empbq

5 (g’,BQu _ _) = (-<) (evalGraph ’ newq Map.empty)

6

7 evalGraph ’ q vs -- q queue structured container

8 | isempty q = emptyc -- vs accumulated list of nodes

9 | otherwise =

10 case (-<) q of

11 (E ,ts) -> (return E) +> (evalGraph ’ ts vs)

12 (N idx x l r,ts) -> case Map.lookup idx vs of

13 Just nb -> let

14 ts ’= evalGraph ’ ts vs

15 in nb +> ts ’

16 Nothing -> let

17 vs ’ = Map.insert idx new_n vs

18 q’ = evalGraph ’ (r +> (l +> ts)) vs ’

19 (new_r ,q’’) = (-<) q’

20 (new_l ,ts ’) = (-<) q’’

21 -- f x apply strategy on node

22 new_n = f x >>= \x’ -> -- strict

23 new_l >>== \ll’ -> -- lazy

24 new_r >>== \rr’ -> -- lazy

25 return (N idx x’ ll ’ rr ’)

26 in new_n +> ts’

Preserving traversal homomorphic and strategy identity property Under-

standing the behaviour of lazy programs is non-trivial. The correctness of functions

is verified by a number of tests by checking pre- and post-conditions on traversal.

In particular, traces, command-line debugging and graphical visualisation tools help

in confirming expected behaviour. Circularity is best depicted in Figure 5.5. The

result of performing an operation f on each node of the graph using a breadth-first

strategy (travGraph bf f) shows that: 1) the structure is preserved; 2) the strategy

137

Chapter 5: Graph Evaluation Strategies

application terminates with graphs containing cycles.

(a) before (b) after

Figure 5.5: Graph structure preserved on traversal.

5.6 Limiting Parallelism

The depth-first and breadth-first strategies generate unconstrained parallelism, lead-

ing to overhead for large graphs – the same issue we faced for tree strategies. Lim-

iting parallelism entails sparking sub-graphs. Next we describe a number of graph

strategies that efficiently throttle parallelism.

5.6.1 G3: Implementing a Hybrid Traversal Order

Depth-first traversal incurs a lower memory overhead as opposed to breadth-first

since the latter uses an additional intermediate data structure to organise the traver-

sal order. As such, breadth-first requires more space but can be faster if a solution

is not far from the starting node. On the other hand, depth-first may be slower to

find a path to an element in a search operation especially if the graph goes very

deep in one path that does not contain a solution.

A combination of these two traversal strategies may yield the benefits of both.

This technique is used in artificial intelligence, for example, in a technique called

iterative deepening search which combines positive elements of breadth- and depth-

first traversal (Korf, 1985).

138

Chapter 5: Graph Evaluation Strategies

We implement a hybrid version of graph traversal that proceeds breadth-first until

a depth or level l in the graph, from which point, it resumes or continues in a

depth-first order. This combination of breadth-first and depth-first in that order

is particularly useful in exposing parallelism across the graph, before switching to

depth-first, which is generally faster given its simple implementation.

In Listing 5.7, using a tree graph example, nodes 1, 2 and 3 are visited in breadth-

first order, then, at l = 2, traversal proceeds depth-first with the output at Line

11.

Listing 5.7: Example of breadth-depth hybrid traversal output.

1 1 -- 1

2 / \

3 / \

4 2 3 -- 2 <- switch here

5 / \ / \

6 4 5 6 7 -- 3

7 / \ / \ / \ / \

8 8 9 10 11 12 13 14 15 -- 4

9

10 bdf: bf -- 1,2,3

11 df -- 4,8,9, 5,10,11, 6,12,13, 7,14,15

The hybrid traversal in Listing 5.8 requires an additional parameter to activate the

switch from breadth- to depth-first. This is implemented by a conditional check

at Line 12. To maintain the breadth-depth order, the graphs in the queue are held

until the depth-first traversal returns for each node where the switch happens, before

appending the result with the breadth-first part of the traversal.

Listing 5.8: Hybrid traversal (BDF)

1 travGraph_bdf ::Int ->(a->b)->G a->G b

2 travGraph_bdf depth f g = g’

3 where

4 newq = (g,0) +> empbq

5 ((g’,_),BQu _ _) = (-<) (bftrav Map.empty newq)

6

7 bftrav vs q

8 | isempty q = emptyc

9 | otherwise =

10 let ((n,d),qs) = (-<) q

11 in

12 -- condition to switch from breadth - to depth -first --

13 if d== depth then

14 -- continue with df --

15 let (n’,vs ’) = dftrav n vs
16 in (n’,d) +> (bftrav vs ’ qs)

17 else

18 -- proceed with bf --

19 case n of

20 E -> (E,d) +> (bftrav vs qs)

21 N idx x l r ->

22 case Map.lookup idx vs of

23 Just n2 -> (n2 ,d) +> (bftrav vs qs)

24 Nothing ->

139

Chapter 5: Graph Evaluation Strategies

1 1

2

2 2

3

3

3

3

4

4

4
4

4

(a) depth

5

4

3

2
1

0

0

0

0

0

0

–

(b) fuel

Figure 5.6: Depth threshold vs. fuel passing in graphs.

25 let

26 vs’ = Map.insert idx new_n vs

27 d1 = d+1

28 q’ = bftrav vs ’ ((r,d1) +> ((l,d1) +> qs))

29 ((r’,_),q’’) = (-<) q’

30 ((l’,_),q’’’) = (-<) q’’

31 new_n = N idx (f x) l’ r’

32 in (new_n ,d) +> q’’’

33

34 dftrav E vs = (E,vs)

35 dftrav (N idx x l r) vs =

36 case (Map.lookup idx vs) of

37 Just n2 -> (n2 ,vs)

38 Nothing ->

39 let

40 (l’,vs’) = dftrav l (Map.insert idx new_n vs)

41 (r’,vs ’’) = dftrav r vs’

42 new_n = N idx (f x) l’ r’

43 in (new_n ,vs ’’)

5.6.2 G4: Depth Threshold

This technique of limiting parallelism is similar to that described in the previous

chapter only here it is applied to a graph. The base traversal order of this strategy

is breadth-first so it proceeds level-by-level inside the graph. As we proceed at each

level, a counter is incremented. Sparks are created as long as the counter is less

than a specified threshold. Figure 5.6(a) depicts the how depth is determined for

graph (labels on edges represent the current depth). The implementation is more

complicated than depth-thresholding for tree structure. The queue data structure

used to arrange the traversal order keeps a tuple of current node and its depth in

the graph: [(n1, d1), (n2, d2), (n3, d2)...(ni, dX)], where i is number of nodes and dX

the maximum depth or height of the graph.

140

Chapter 5: Graph Evaluation Strategies

5.6.3 G5: Fuel Passing

The fuel concept is efficient in controlling parallelism as shown in the previous

chapter. The implementation approach is slightly different for graphs. We do not

perform an annotation run on the graph structure to attach fuel to the graph nodes,

consequently removing the overhead. We use a fuel passing mechanism instead of

fuel splitting. Fuel is passed from node to node. Starting with an initial amount

of fuel, each unvisited node takes one unit of fuel and passes the remaining to the

next nodes during traversal as illustrated in Figure 5.6(b). Only nodes that have

retained fuel are sparked. Given that the graph traversals are more elaborate, this

choice of a simple port of the fuel concept to graphs is first considered.

The fuel passing implementation (visualised in Fig. 5.6(b)) ensures the following

properties:

1. Starting node n0 is given an amount of fuel 0 < f < n where n is the number

of vertices.

2. The current node keeps one unit of fuel and passes the remaining f − 1 to

the next neighbour. If n1, n2, ... are neighbours of n0, then fuel passed to ni is

fi = f − i.

3. If the traversal proceeds in the order n0, n1, n2, ..., the fuel available at each

node in that order is one less than the previous node f, f − 1, f − 2, ...0, until

fuel is 0; the condition stops any further parallelism generation.

4. Sub-graphs with f > 0 are sparked in parallel.

5.7 Traversal Strategies Summary

Graph traversals require additional administrative data structures to: a) keep track

of visited nodes (the visited nodes container); b) and, optionally, to enforce a partic-

ular order (the traversal order container). We have described two common traversal

strategies, based on depth-first and breadth-first order, for graph data structures

represented using a recursive tree definition. Depth-first can be implemented with-

out an intermediate container to arrange order and using the dynamic call stack

implicitly. By default traversal proceeds in a depth-first order. We have described

three more advanced graph strategies that attempt to reduce overhead by throttling

parallelism. Table 5.2 summarises the different traversal strategies for graphs.

141

Chapter 5: Graph Evaluation Strategies

Trav. func. Trav. order Inter. container Sparking Param

G1.1 DF None Depth-first Container-less Unconstrained

G1.2 DF Stack Depth-first Stack Unconstrained

G2 BF BQu Breadth-first Batched-queue Unconstrained

G3 BDF Hybrid breadth-depth Batched-queuea Throttled l

G4 DepthThres Breadth Batched-queue Throttled d

G5 FuelPassing Breadth Batched-queue Throttled f

Table 5.2: Summary of graph traversal strategies

auntil level l, container-less thereafter

5.8 Performance Results

In this section, we report on the performance results of the different traversal strate-

gies used to implement graph search algorithms. The machine setup for this experi-

ment is the same desktop-class 8 core machine used in Chapter 3 (Section 3.4). We

discuss the results and explain their limitations.

5.8.1 Graph Search Algorithm

Search algorithms on a graph proceed by traversing the data structure in a specific

order. This can be implemented by composing a traversal function taking a predicate

as an argument and an outer fold to return true or false if an element is contained

in the graph.

1 travG ::(a->b)->G a->G b

2 cond::a->Boolean -- predicate condition

3 reduce ::G a->Boolean

4 reduce = foldr (||) False

5

6 searchG = reduce . travG cond

5.8.2 Input Set

We use the following two input sets for performance test. These are generated

through a graph generator function, which takes as parameters: the number of

nodes, a boolean to specify if cycles are permitted, a boolean to specify if self-loop

is permitted, node values (which may reflect computation at node level), and a ratio

of number of connections/edges for a node (i.e. node outdegree ratio).

Graph input 1: Acyclic, 20k nodes, 22231 edges, 2232 shared nodes

Graph input 2: Cyclic, 20k nodes, 31997 edges

142

Chapter 5: Graph Evaluation Strategies

We test on a single connected components, though graphs with multiple connected

components, are easier to arrange such that different component with different char-

acteristics can be traversed using a particular traversal function.

5.8.3 Traversal Performance

Table 5.3 summarises the runtime and speedup of the different traversal strategies

both for acyclic and cyclic graphs. A discussion of performance for both follows.

Acyclic Graph

The first measurements on acyclic graphs show promising results in Figure 5.7. Ta-

ble 5.4 complements the results with additional runtime statistics including spark

numbers and heap allocation. Given the large number of nodes for the input graph,

the first three strategies (DF-None, DF-Stack and BF-BQu), which do not limit par-

allelism in any way, create sparks for every node, and thus do not perform well.

The depth-thresholding (Depth-Thres) strategy shows good performance, due to

its straight-forward throttling mechanism. The hybrid version (BDF), as expected, is

efficient in creating useful parallelism during the breadth traversal. It also incurs less

overhead associated with the breadth-first traversal as it switches to depth-first after

a specified level. This can be seen from Table 5.4 which shows it incurs the lowest

heap allocation after the container-less depth-first (DF-None). Most notably, the fuel

passing method works best among all the strategies, which could be attributed to

the simple fuel distribution model applied in this implementation, without perform-

ing an annotation run as previously done for tree strategies. Overall, the control

mechanisms work very efficiently on acyclic graphs which shows that our techniques

from the previous chapter is applicable to other data structures. In particular, the

best speedup is near 5 on an desktop-class 8-core machine. This indicates that we

can expect further speedup on the server-class machine used in Chapter 4. The

more advanced strategies have potential for further tuning of the parameters, for

e.g., through a heuristic-based method to select appropriate values for l, d and f .

Cyclic Graph

As expected, the cyclic graph traversals take longer to run as depicted in Figure 5.8.

This is due to the number of cycles that may be present in the graph. Interestingly,

we note better performance for DF-None, DF-Stack and BF-BQu compared to acyclic

performance, for e.g., the best speedup is 3 compared to 2 for similar strategy on

acyclic graph. However, the main issue to report at this point is the performance

143

Chapter 5: Graph Evaluation Strategies

A
cy

cl
ic

D
F

-N
on

e
D

F
-S

ta
ck

B
F

-B
q
u

H
y
b

ri
d

-B
D

F
D

ep
th

-T
h

re
s

F
u

el
-P

a
ss

#
p

e
R

T
S

P
R

T
S

P
R

T
S

P
R

T
S

P
R

T
S

P
R

T
S

P
1

11
5.

28
0.

97
11

5.
78

0
.9

6
1
1
5
.3

8
0
.9

7
1
1
5
.2

0
0
.9

7
1
1
5
.1

2
0
.9

7
1
1
5
.5

5
0
.9

7
2

10
9.

76
1.

02
11

1.
62

1
.0

0
7
5
.5

8
1
.4

8
6
8
.2

3
1
.6

4
6
8
.1

9
1
.6

4
7
0
.5

1
1
.5

8
3

84
.8

2
1.

32
88

.4
6

1
.2

6
7
2
.0

0
1
.5

5
5
2
.6

7
2
.1

2
5
2
.6

1
2
.1

2
4
9
.8

6
2
.2

4
4

75
.0

5
1.

49
80

.5
6

1
.3

9
7
0
.5

8
1
.5

8
3
6
.7

5
3
.0

4
4
2
.2

5
2
.6

4
3
9
.4

3
2
.8

3
5

69
.3

4
1.

61
76

.4
1

1
.4

6
6
9
.6

4
1
.6

0
3
4
.8

0
3
.2

1
3
0
.3

2
3
.6

8
3
3
.1

3
3
.3

7
6

64
.7

4
1.

73
73

.8
1

1
.5

1
6
9
.1

0
1
.6

2
3
2
.0

3
3
.4

9
2
7
.6

3
4
.0

4
2
8
.3

5
3
.9

4
7

60
.9

9
1.

83
71

.9
6

1
.5

5
6
8
.7

6
1
.6

2
3
0
.4

9
3
.6

6
2
5
.5

4
4
.3

7
2
5
.4

3
4
.3

9
8

57
.8

2
1.

93
70

.8
2

1
.5

8
6
8
.0

9
1
.6

4
2
5
.9

1
4
.3

1
2
5
.6

0
4
.3

6
2
3
.1

4
4
.8

3

C
y
cl

ic
D

F
-N

on
e

D
F

-S
ta

ck
B

F
-B

q
u

H
y
b

ri
d

-B
D

F
D

ep
th

-T
h

re
s

F
u

el
-P

a
ss

#
p

e
R

T
S

P
R

T
S

P
R

T
S

P
R

T
S

P
R

T
S

P
R

T
S

P
1

14
1.

81
1.

20
14

4.
58

1
.0

7
1
3
0
.8

4
1
.1

9
1
3
3
.3

6
1
.0

8
1
4
0
.9

3
1
.0

0
1
3
6
.9

3
1
.0

5
2

99
.4

0
1.

71
10

0.
34

1
.5

4
7
8
.3

6
1
.9

9
1
5
0
.3

0
0
.9

6
1
4
8
.4

7
0
.9

5
1
4
9
.4

3
0
.9

6
3

65
.1

8
2.

62
82

.3
3

1
.8

8
6
0
.2

1
2
.5

9
1
5
2
.9

1
0
.9

4
1
5
1
.5

0
0
.9

3
1
4
9
.8

0
0
.9

6
4

63
.8

0
2.

67
73

.8
8

2
.0

9
5
1
.9

7
3
.0

0
1
5
8
.4

4
0
.9

1
1
4
9
.1

9
0
.9

5
1
5
1
.4

7
0
.9

5
5

58
.2

3
2.

93
69

.4
8

2
.2

2
4
9
.5

6
3
.1

4
1
5
0
.1

0
0
.9

6
1
5
2
.5

3
0
.9

3
1
5
3
.1

2
0
.9

4
6

59
.9

2
2.

84
67

.6
3

2
.2

8
5
4
.6

1
2
.8

5
1
5
2
.7

6
0
.9

4
1
4
9
.3

2
0
.9

5
1
5
0
.3

9
0
.9

6
7

58
.9

1
2.

89
67

.3
0

2
.3

0
5
3
.6

4
2
.9

0
1
5
0
.6

1
0
.9

6
1
5
1
.1

3
0
.9

4
1
4
6
.9

8
0
.9

8
8

58
.8

5
2.

90
67

.7
5

2
.2

8
5
1
.5

9
3
.0

2
1
5
0
.9

1
0
.9

6
1
4
9
.9

5
0
.9

4
1
4
9
.8

2
0
.9

6

T
ab

le
5.

3:
G

ra
p
h

se
ar

ch
–

R
u
n
ti

m
e

an
d

S
p

ee
d
u
p
.

144

Chapter 5: Graph Evaluation Strategies

Figure 5.7: Acyclic graph traversals speedup on 8 cores, 20k nodes.

created converted overflowed param heap alloc

DF None 20000 10882 9118 103MB

DF Stack 20000 8611 11389 108MB

BF Bqu 20000 8618 11354 112MB

BDF (hybrid) 35 33 0 l=5 104MB

ThresDepth 35 33 0 d=5 117MB

FuelPass 2445 2357 0 f=1000 123MB

Table 5.4: Sparks and heap allocation statistics.

of the three advanced strategies. Given that we use the lazy bind in the imple-

mentation, and due to cycles being present in the graph, sparks are created, but

parallel execution hardly kicks in. The interplay of laziness and parallel evaluation

is a tricky one. While we managed to ensure termination for cyclic instances, this

comes at the cost of delaying and, possibly, enforcing a sequential ordering.

In the implementation, we make two uses of laziness: one to use a tree-based repre-

sentation that enables cyclic graph instances, i.e. circular data structure, which will

not work in a strict language; and one to use laziness in the fuel strategy (laziness

for performance, as in the previous chapter). The latter should still carry over to

graphs, and the results on acyclic graphs show this. The problem is the complexity

from the interplay of both uses of laziness and this has not been fully resolved and

explains the poor results for a fuel strategy for cyclic graphs. A good direction

for improving on these results would be to add explicit strictness annotation in the

cyclic strategy definitions, which when used in combination with the lazier bind,

would provide just the amount of eagerness needed to start parallel evaluation. Al-

ternatively, we can define the cyclic graph strategies using the earlier formulation of

145

Chapter 5: Graph Evaluation Strategies

Figure 5.8: Cyclic graph traversals speedup on 8 cores, 20k nodes.

evaluation strategies, which do not use the Eval monad, thus no implicit sequencing

of actions is encoded, making it easier to implement.

5.9 Summary

In this chapter, we have implemented a number of traversal strategies for graph

data structures which uses a tree-based representation to facilitate adaptation of

previously defined techniques for trees. As noted by (King and Launchbury, 1994),

it is harder to work with recursive tree representation for graph data structures, and

this was illustrated by a number of issues we had to deal with in the implementation,

in particular, a lazier Eval monad instance use case. Most importantly, we were able

to show that the previous parallelism control mechanisms are not restricted to trees

only. The techniques work well with acyclic graphs as shown in the results. The use

of a hybrid traversal order and fuel passing proves to be more efficient in controlling

parallelism. Finally, we need to find a fix for the advanced traversals when used on

cyclic graphs, by using the new formulation of evaluation strategies, thus preserving

its compositionality benefit.

146

Chapter 6

Conclusion

6.1 Summary

To avoid many of the difficulties of traditional parallel programming, this thesis in-

vestigates the benefits of high-level parallel programming models. Through their use

of high level programming models, most of the complexity of parallel programming

is shifted to the system, giving way to a more abstract model to the programmer.

A high level model removes a lot of issues and challenges, such as synchronisation,

communication, task distribution, and load balancing, associated with conventional

low level models. Modern mainstream languages, like C# and Go (Campbell et al.,

2010; Google, 2015), are introducing higher level constructs, for example, one that

only requires a programmer to identify parallelism, and the management of the par-

allel execution is dealt with by the system. It is widely acknowledged (Hammond

and Michaelson, 2000) that functional languages are particularly well-suited for par-

allel programming as they are free from side-effects, offer powerful abstractions and

a semi-explicit model with an adequate balance of control required by application

programmers. As basis for our main studies on high-level parallelism, this thesis

surveys three modern functional languages and their parallelism support in Chap-

ter 2 before focusing on one (GpH) for more detailed study. A detailed empirical

study of their performance and programmability is given in (Totoo et al., 2012).

Good parallel performance can be achieved through the use of inherently parallel

data structures in algorithms. This approach to introduce data-oriented parallelism

requires little change to existing sequential algorithms, and hence can be applied to a

wide variety of applications. The main emphasis of this thesis is the development of

advanced evaluation strategies over commonly used data structures, which provide

a clear separation of coordination from computation aspects of a parallel program.

We study lists in Chapter 3, trees in Chapter 4 and graphs in Chapter 5. The

main strategies are summarised in Table 6.1. These strategies allow top-level par-

147

Chapter 6: Conclusion

allelisation of a number of applications including the Barnes-Hut and graph search

algorithms in a minimally intrusive way, making parallelism more accessible.

Data structure Strategy
General purpose Custom

list parList (Sec. 3.4) chunking/clustering (Sec. 3.4.1)
tree parTree (Sec. 4.5) depthThres (Sec. 4.7)

sizeann, lazysize (Sec. 4.8, 4.9)
fuel-based control (Sec. 4.10)

graph depthFirst (Sec. 5.5.1) hybrid, depthThres (Sec. 5.6.1, 5.6.2)
breadthFirst (Sec. 5.5.2) fuelpassing (Sec. 5.6.3)

Table 6.1: Evaluation strategies implementation overview

Comparison: By systematically implementing a naive and a more realistic applica-

tion in three parallel Haskell variants in Chapter 3, we compare the parallelisation

methodology in GpH using evaluation strategies against two other models in Haskell:

the Par monad, a deterministic model built on top of Concurrent Haskell; and Eden,

which is targeted for distributed memory and offers scaling on clusters. Our compar-

ison highlights the difference in implementing various parallel list map operations in

all models, and, in particular, evaluates the use of evaluation strategies as a model

that offers the highest level of abstraction, enabling the specification of parallel be-

havioural code separate from the algorithmic code. While the Par monad and Eden

offer more explicit control to certain aspects of parallel execution, GpH delegates all

aspects of parallel execution to a sophisticated runtime system. It comes at the cost

of limited control over parallel execution, but it is very well suited for data-structure-

driven parallel evaluation. GpH retains the important property of compositionality,

and this is further exemplified through granularity control of parallel list evaluation

– we consider three ways of introduing chunking: explicit, strategic and an even more

generic implicit clustering. In this comparison, we observe the ease of introducing

and modifying clustering strategies over data structures.

Tree-based parallelism: The first part of Chapter 3 motivates the use of an alter-

native representation for lists, which are inherently sequential data structures. We

stress the advantage of using tree-based representations. In Chapter 4 we demon-

strate that more flexible parallel control mechanisms can be implemented for tree-

based data structures through a number of basic and advanced tree-based evaluation

strategies.

Non-strictness and parallelism: One central issue tackled in this thesis is whether

non-strictness can be beneficial for the parallel manipulation of data structures. We

use laziness to improve parallel performance. Laziness and, for the first time, circular

programming are used in the coordination code to achieve additional flexibility. A

number of flexible parallelism control mechanisms are developed in the form of eval-

uation strategies. The thesis highlights the use of circular programming techniques

148

Chapter 6: Conclusion

in a number of occasions in our implementation: Section 4.10.1 (circular distribu-

tion of fuel using a giveback mechanism), Section 5.5.2 (circular data structure –

cyclic graph), both in instances of data types that allow circular references, and in

expressions depending on each other in function definitions. Finally, we demonstrate

improved performance on a benchmark program and two non-trivial applications,

in particular, with irregular trees.

Graph strategies: Building on the work from Chapter 4, we extend tree strate-

gies for graphs in Chapter 5. We implement a number of traversal strategies for

graphs represented as recursive tree structures. Laziness is further exploited as we

demonstrate that strategies requiring a local context, through being less eager in

evaluating sub-expressions (e.g. lazy size computation in Section 4.9), have same or

better performance (and less overhead) than those requiring a global context, i.e.

more information (see Table 4.1). Cyclic graph instances require non-strictness as a

language property. Several challenges in implementing efficient parallel algorithms

in a purely lazy functional language are addressed. For instance, understanding the

behaviour of lazy programs is difficult. Through a systematic approach, the use of

profiling and tools that help to analyse programs and live data structure evaluation,

we are able to identify issues such as memory leaks, and non-termination. Specifying

parallel behaviour is more subtle but can be achieved by using a relaxed bind op-

erator for the Eval monad. Defining evaluation strategies on graph data structures

requires reconstruction of the graph, which we have implemented by extending a

technique of tree reconstruction after breadth-first traversal by Okasaki (2000), and

making sure the structure is preserved for all graph instances.

6.2 Contributions

This section summarises the main contributions of the thesis.

1. Performance evaluation of three parallel Haskell implementation (Totoo and

Loidl, 2014a).

We have assessed the advantages and disadvantages of high-level parallel pro-

gramming models for multi-core programming by implementing two versions

of the n-body problem. We have compared three different parallel program-

ming models based on parallel Haskell, differing in the ways how potential

parallelism is identified and managed. We have assessed the performance of

each implementation, discuss in detail the sequential and parallel tuning steps

leading to the final versions, and draw general conclusions on the suitability

of high-level parallel programming models for multi-core programming.

149

Chapter 6: Conclusion

2. Lazy data-oriented evaluation strategies (Totoo and Loidl, 2014b).

We have developed a number of flexible parallelism control mechanisms in the

form of evaluation strategies for tree-like data structures implemented in GpH.

We have demonstrated that the use of laziness and circular programs in the

coordination code can achieve additional flexibility and better performance.

We have employed heuristics-based parameter selection to auto-tune these

strategies for improved performance on a shared-memory machine without

the need for programmer-specified parameters.

3. Graph evaluation strategies.

By systematically extending our tree-based techniques to graph structures, and

allowing for shared references and cycles, we have extended our advanced tree

strategies to graphs. We have implemented a number of traversal strategies

that work on acyclic and cyclic graphs. We make use of laziness again in the

core implementation, specifically to allow cyclic graph instances by resolving

to a less eager bind operator for the Eval monad, and to control traversals

defined on them.

6.3 Limitations and Future Work

The source code for the strategies and applications used in this thesis is available

online1, but these need to be consolidated in a single package. To facilitate up-take

of our techniques we will bring our code onto Hackage as a library of parallel data

structures in the form of a pardata package consisting of the advanced strategies

defined for list, tree and graph data structures.

Evaluation strategies have proven to be an effective model to specify high level

parallelism, which works particularly well on data-oriented parallelism, for data-

structure-driven parallelism, in the way we used them in this thesis. The results

of the evaluation strategies that we developed demonstrate a clear improvement in

flexibility and performance. But these can be further improved through a number

of measures.

To further improve the results presented in Chapter 4, the heuristics for parameter

selection can be enhanced. In particular, similar heuristics used to automatically

determine the right parameter to tree strategies can be extended and developed for

graph structures.

The prospect of using an attribute-grammar style (Swierstra et al., 1999) of spec-

1http://www.macs.hw.ac.uk/~pt114/phd-thesis/

150

http://www.macs.hw.ac.uk/~pt114/phd-thesis/

Chapter 6: Conclusion

ifying the propagation of synthesised and inherited parameters through the data

structure as a generalisation of the fuel-based control of parallelism can be explored.

This style could provide a framework for fine-tuning parallelism, while still defining

behaviour and desired properties in a high level.

Additionally, the compositionality of the mechanisms can be further improved. It

would be desirable to provide high-level constructors, to freely combine a general fuel

mechanism, for driving the parallelism, with a lookahead mechanism, for control-

ling the precision of contextual information, and a giveback mechanism, for adding

flexibility in managing the parallelism.

To reduce the annotation pass overhead currently incurred in the tree strategies,

an annotation-free fuel strategy may be investigated. This could be achieved, for

example, by using techniques to combine the separate annotation and parallelism

generation traversals into one.

Scaling to many-cores and clusters: We compared GpH with Eden in Chapter 3.

Eden has the advantage of allowing us to scale in a distributed memory setting. One

crucial advantage of GpH is it minimises code changes to the sequential algorithm.

This fact can be exploited for a large number of applications. More importantly,

as the model is not tied to the underlying system, using GUMSMP (Aljabri et al.,

2014b), a multilevel parallel Haskell implementation for clusters of multi-cores, al-

lows extending the use of strategies on clusters and thus they can be tested on larger

data input. Unlike Eden, GUMSMP would allow us to re-use the same strategies

and not different skeletons.

Another direction of further work, though not covered in this thesis, is to improve our

runtime support for hierarchical, heterogeneous parallel architectures, e.g. clusters of

multi-cores, and to integrate the different Haskell variants into one unified language

that makes use of these variants on different levels in the hierarchy. Eden, based on a

distributed-memory model, is a natural match with clusters, whereas GpH and Par

monad are natural matches for physical shared-memory architectures. GpH also

supports virtual memory, which can be efficiently exploited on closely connected

clusters.

Improved Graph Strategies: The main purpose of Chapter 5 is to demonstrate that

the techniques applied for tree strategies can be adapted to work with graphs. By

implementing the depth threshold and fuel-passing techniques for limiting paral-

lelism, and further relying on lazy evaluation, especially for cyclic graphs, we have

been successful in achieving this primary aim. There are, however, opportunities

for improvement. The graph strategies firstly need to be optimised. Further per-

formance tuning and the application of heuristic-based methods to graph strategies

151

Chapter 6: Conclusion

are envisaged.

The graph results presented in Chapter 5 are based on graph searches implemented

using different traversal strategies. We have developed a naive implementation of

the maximum clique algorithm which is also the basis for the SICSA Multicore

Challenge Phase III2. We try to map the algorithm in such a way that the traversal

strategies can be used out-of-the-box. However, this program re-structuring is not

very efficient. And it also indicates that it is not always possible to use evaluation

strategies directly for problems that do not exhibit top-level parallelism. We plan to

refine the current algorithm, use the DIMACS3 dataset to verify result and report

on performance. This could be used as a basis for performance comparison against

other graph benchmark, for e.g., the Graph5004 benchmark suite.

2SICSA Multicore Challenge Phase III -
http://www.macs.hw.ac.uk/sicsawiki/index.php/Challenge_PhaseIII

3DIMACS - http://dimacs.rutgers.edu/
4The Graph 500 List - http://www.graph500.org/

152

http://www.macs.hw.ac.uk/sicsawiki/index.php/Challenge_PhaseIII
http://dimacs.rutgers.edu/
http://www.graph500.org/

Bibliography

Aarseth, S. J. (2003). Gravitational N-body simulations: tools and algorithms. Cam-

bridge University Press.

Adapteva (2015). The Parallella Computer. http://www.adapteva.com/parallella/.

Aljabri, M., Loidl, H.-W., and Trinder, P. (2014a). Distributed vs. Shared Heap,

Parallel Haskell Implementations on Shared Memory Machines. In Draft Proc.

of Symp. on Trends in Functional Programming, TFP’14, Univ. of Utrecht, The

Netherlands.

Aljabri, M., Loidl, H.-W., and Trinder, P. W. (2014b). The Design and Implemen-

tation of GUMSMP: A Multilevel Parallel Haskell Implementation. In Proc. of

the 25th Symp. on Implementation and Application of Functional Languages, IFL

’13, pages 37:37–37:48, New York, NY, USA. ACM.

Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.-W., Ryu, S., Steele Jr.,

G. L., and Tobin-Hochstadt, S. (2008). The Fortress Language Specification Ver-

sion 1.0. Technical report, Sun Microsystems, Inc.

Allison, L. (1989). Circular programs and self-referential structures. Software: Prac-

tice and Experience, 19(2):99–109.

ANL (2012). The Message Passing Interface Standard.

http://www.mcs.anl.gov/research/projects/mpi/.

Armstrong, J., Virding, R., Wikström, C., and Williams, M. (1995). Concurrent

Programming in Erlang. Prentice Hall, second edition. ISBN 978-0135083017.

Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer,

K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W., and Yelick,

K. A. (2006). The Landscape of Parallel Computing Research: A View from

Berkeley. Technical Report UCB/EECS-2006-183, EECS Department, University

of California, Berkeley.

Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S., and Vanneschi, M. (1995).

P3L: a Structured High-level Programming Language and its Structured Support.

Concurrency and Computation: Practice and Experience, 7(3):225–255.

153

BIBLIOGRAPHY

Backus, J. (1978). Can programming be liberated from the von Neumann style?: a

functional style and its algebra of programs. Commun. ACM, 21(8):613–641.

Bader, D. A., Gilbert, J. R., Kepner, J., and Madduri, K. (2015). HPC Graph

Analysis. http://www.graphanalysis.org/.

Barnes, J. and Hut, P. (1986). A hierarchical O(N log N) force-calculation algorithm.

Nature, 324(6096):446–449.

Barthe, G. and Coquand, T. (2002). An introduction to dependent type theory.

In Applied Semantics, International Summer School, APPSEM 2000, Caminha,

Portugal, September 9-15, 2000, Advanced Lectures, pages 1–41, London, UK,

UK. Springer-Verlag.

Belikov, E., Deligiannis, P., Totoo, P., Aljabri, M., and Loidl, H.-W. (2013). A

Survey of High-Level Parallel Programming Models. Technical report, Heriot-

Watt University.

Benoit, A., Cole, M., Gilmore, S., and Hillston, J. (2005). Flexible Skeletal Pro-

gramming with eSkel. In EuroPar’05, LNCS 3648, pages 761–770. Springer.

Bergstrom, L., Fluet, M., Rainey, M., Reppy, J., Rosen, S., and Shaw, A. (2013).

Data-Only Flattening for Nested Data Parallelism. In Proc. of the ACM SIG-

PLAN Symp. on Princ. Pract. of Par. Program., PPoPP’13, pages 81–92.

Berthold, J., Loidl, H.-W., and Hammond, K. (2015). PAEAN: Portable Runtime

Support for Physically-Shared-Nothing Architectures in Parallel Haskell Dialects.

Journal of Functional Programming.

Berthold, J., Marlow, S., Hammond, K., and Zain, A. A. (2009). Comparing and

Optimising Parallel Haskell Implementations for Multicore Machines. Memory,

pages 386–393.

Bird, R. (1984). Using circular programs to eliminate multiple traversals of data.

Acta Informatica, 21(3):239–250.

Blelloch, G. E. (1995). NESL: A Nested Data-parallel Language (version 3.1). Tech-

nical Report CMU-CS-95-170, Carnegie Mellon University.

Boehm, H.-J., Atkinson, R., and Plass, M. (1995). Ropes: an alternative to strings.

Software: Practice and Experience, 25(12):1315–1330.

Campbell, C., Johnson, R., Miller, A., and Toub, S. (2010). Parallel Programming

with Microsoft .NET – Design Patterns for Decomposition and Coordination on

Multicore Architectures. Microsoft Press.

Cann, D. (1992). Retire fortran?: A debate rekindled. Commun. ACM, 35(8):81–89.

154

BIBLIOGRAPHY

Chakravarty, M. M. T., Keller, G., Jones, S. P., and Marlow, S. (2005). Associated

types with class. In In POPL 05: Proceedings of the 32nd ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 1–13. ACM

Press.

Chakravarty, M. M. T., Keller, G., Leshchinskiy, R., and Pfannenstiel, W. (2001).

Nepalnested data parallelism in Haskell. EuroPar 2001 Parallel Processing, pages

524–534.

Chakravarty, M. M. T., Leshchinskiy, R., Jones, S. P., Keller, G., and Marlow,

S. (2007). Data Parallel Haskell: A Status Report. In Proc. of the Workshop

on Declarative Aspects of Multicore Programming, DAMP ’07, pages 10–18, New

York, NY, USA. ACM.

Chamberlain, B., Callahan, D., and Zima, H. (2007). Parallel Programmability and

the Chapel Language. Int. Journal on High Performance Computing Applications,

21(3):291–312.

Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K.,

von Praun, C., and Sarkar, V. (2005). X10: An Object-Oriented Approach to

Non-uniform Cluster Computing. In Proc. of OOPSLA’05, pages 519–538. ACM

Press.

Chrysos, G. (2012). Intel Xeon Phi Coprocessor - the Architecture. Online.

Ciechanowicz, P., Poldner, M., and Kuchen, H. (2010). The Münster Skeleton Li-

brary: Müsli. Technical Report ERCIS Working Paper No. 7, University Münster.

Cilk (1998). Cilk 5.4.6 Reference Manual. MIT, Supercomputing Technologies

Group MIT Laboratory for Computer Science.

Cole, M. (1991). Algorithmic Skeletons: Structured Management of Parallel Com-

putation. MIT Press, Cambridge, MA, USA.

Cooper, P., Dolinsky, U., Donaldson, A. F., Richards, A., Riley, C., and Russell,

G. (2010). Offload–automating code migration to heterogeneous multicore sys-

tems. In High Performance Embedded Architectures and Compilers, pages 337–

352. Springer.

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2009). Introduction to Algo-

rithms. MIT Press, third edition.

Curry, H. and Feys, R. (1967). Combinatory Logic. Volume I. Journal of Symbolic

Logic, 32:267–268.

Dean, J. and Ghemawat, S. (2008). MapReduce: Simplified Data Processing on

Large Clusters. Commun. ACM, 51(1):107–113.

155

BIBLIOGRAPHY

Diaz, J., Munoz-Caro, C., and Nino, A. (2012). A Survey of Parallel Programming

Models and Tools in the Multi and Many-Core Era. IEEE Transactions on Parallel

and Distributed Systems, 23(8):1369–1386.

Dice, D., Hendler, D., and Mirsky, I. (2013). Lightweight contention management

for efficient compare-and-swap operations. CoRR, abs/1305.5800.

Enmyren, J. and Kessler, C. (2010). SkePU: a multi-backend skeleton programming

library for multi-GPU systems. In Proc. of the 4th Int. Workshop on High-Level

Parallel Programming and Applications, pages 5–14. ACM.

Epstein, J., Black, A. P., and Jones, S. P. (2011). Towards Haskell in the Cloud. In

Proc. of the 4th ACM Symp. on Haskell, Haskell ’11, pages 118–129, New York,

NY, USA. ACM.

Erwig, M. (2001). Inductive Graphs and Functional Graph Algorithms. Journal of

Functional Programming, 11(5):467–492.

Felsing, D. (2012). Visualization of lazy evaluation and sharing. Bachelor’s thesis,

Karlsruhe Institute of Technology, Germany.

Fluet, M., Rainey, M., Reppy, J., and Shaw, A. (2010). Implicitly-threaded paral-

lelism in Manticore. Journal of Functional Programming, 20(5–6):537–576.

Fluet, M., Rainey, M., Reppy, J., Shaw, A., and Xiao, Y. (2007). Manticore: A

Heterogeneous Parallel Language. In DAMP 2007: Workshop on Declarative

Aspects of Multicore Programming, pages 37–44, Nice, France. ACM Press.

Flynn, M. J. (1972). Some Computer Organizations and Their Effectiveness. IEEE

Transactions on Computers, C-21(9):948–960.

Foltzer, A., Kulkarni, A., Swords, R., Sasidharan, S., Jiang, E., and Newton, R.

(2012). A meta-scheduler for the Par-Monad: composable scheduling for the het-

erogeneous cloud. In Proc. of the 17th ACM SIGPLAN Int. Conf. on Functional

programming, ICFP ’12, pages 235–246. ACM.

Foster, I. (1995). Designing and Building Parallel Programs: Concepts and Tools

for Parallel Software Engineering. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA.

Friedman, D. and Wise, D. (1976). CONS Should not Evaluate its Arguments. In

Michaelson, S. and Milner, R., editors, Automata, Languages and Programming,

pages 257–284. Edinburgh University Press, Edinburgh.

156

BIBLIOGRAPHY

Frigo, M., Leiserson, C. E., and Randall, K. H. (1998). The Implementation of

the Cilk-5 Multithreaded Language. In PLDI98: Conf. on Programming Lan-

guage Design and Implementation, pages 212–223, Montreal, Quebec, Canada.

Proceedings published ACM SIGPLAN Notices, Vol. 33, No. 5, May, 1998.

Fulgham, B. (2012). The Computer Language Benchmarks Game.

http://benchmarksgame.alioth.debian.org/.

Furber, S. (2000). ARM System-on-Chip Architecture. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 2nd edition.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Ele-

ments of Reusable Object-oriented Software. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA.

Gelernter, D. and Carriero, N. (1992). Coordination languages and their significance.

Commun. ACM, 35(2):96–107.

Gilbert, J. R., Reinhardt, S., and Shah, V. B. (2007). High-Performance Graph

Algorithms from Parallel Sparse Matrices. In Proc. of the 8th Int. Conf. on Applied

Parallel Computing: State of the Art in Scientific Computing, PARA’06, pages

260–269, Berlin, Heidelberg. Springer-Verlag.

Goetz, B. (2013). Lambda Expressions for the Java Programming Language. Java

Community Process.

Gondran, M., Minoux, M., and Vajda, S. (1984). Graphs and Algorithms. John

Wiley & Sons, Inc., New York, NY, USA.

González-Vélez, H. and Leyton, M. (2010). A Survey of Algorithmic Skeleton Frame-

works: High-level Structured Parallel Programming Enablers. Software: Practice

and Experience, 40(12):1135–1160.

Google (2015). The Go Programming Language . https://golang.org/. Accessed:

2016-02-08.

Google Inc. (2011). Renderscript. http://developer.android. com/guide/topics/ren-

derscript/compute.html.

Graph500 (2015). The Graph 500 List. http://www.graph500.org/.

Gregory, K. and Miller, A. (2012). C++ AMP: Accelerated Massive Parallelism with

Microsoft Visual C++. Microsoft Press.

Grelck, C. and Scholz, S.-B. (2006). SAC: A Functional Array Language for Efficient

Multi-threaded Execution. Int. Journal on Parallel Programming, 34(4):383–427.

157

https://golang.org/

BIBLIOGRAPHY

Haller, P. and Odersky, M. (2009). Scala Actors: Unifying Thread-based and Event-

based Programming. Theoretical Computer Science, 410:202–220.

Hammond, K. (1990). Parallel SML: A Functional Language and Its Implementation

in DACTL (Research Monographs in Parallel & Distributed Computing). Financial

Times Prentice Hall.

Hammond, K. and Michaelson, G., editors (2000). Research Directions in Parallel

Functional Programming. Springer-Verlag, London, UK, UK.

Harris, T., Marlow, S., Jones, S. P., and Herlihy, M. (2008). Composable memory

transactions. Commun. ACM, 51(8):91.

Haynes, C. T. and Friedman, D. P. (1984). Engines Build Process Abstractions. In

Proc. of the ACM Symp. on LISP and Functional Programming, LFP’84, pages

18–24, New York, NY, USA. ACM.

Hejlsberg, A., Wiltamuth, S., and Golde, P. (2003). C# Language Specification.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Henderson, P. and Morris, Jr., J. H. (1976). A lazy evaluator. In Proceedings

of the 3rd ACM SIGACT-SIGPLAN Symposium on Principles on Programming

Languages, POPL ’76, pages 95–103, New York, NY, USA. ACM.

Hoare, C. (1972). Notes on Data Structuring. In Dahl, O.-J., Dijkstra, E., and

Hoare, C., editors, Structured Programming, pages 83–174. Academic Press.

Hudak, P., Peterson, J., and Fasel, J. H. (1999). A gentle introduction to Haskell

98. Online tutorial.

Hudak, P., Peyton Jones, S., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J., Guzman,

M. M., Hammond, K., Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R., Partain,

W., and Peterson, J. (1992). Report on the programming language haskell: a non-

strict, purely functional language version 1.2. SIGPLAN Not., 27(5):1–164.

Hughes, J. (1989). Why Functional Programming Matters. The Computer Journal,

32(2):98–107.

IntelTBB (2012). Intel(R) Threading Building Blocks Reference Manual. Intel.

Jarvi, J. and Freeman, J. (2010). C++ lambda expressions and closures. Science of

Computer Programming, 75(9):762–772.

Jones, S. P. (2007). Beautiful concurrency. Beautiful Code: Leading Programmers

Explain How They Think, pages 385–406.

158

BIBLIOGRAPHY

Jones, S. P., Gordon, A., and Finne, S. (1996). Concurrent Haskell. In Proc. of the

23rd ACM SIGPLAN-SIGACT Symp. on Principles of programming languages,

POPL ’96, pages 295–308, New York, NY, USA. ACM.

Jones, S. P., Leshchinskiy, R., Keller, G., and Chakravarty, M. M. T. (2008). Har-

nessing the multicores: Nested data parallelism in Haskell. Theoretical Computer

Science, pages 1–32.

Jones, S. P., Washburn, G., and Weirich, S. (2004). Wobbly types: type inference for

generalised algebraic data types. Technical Report MS-CIS-05-26, University of

Pennsylvania, Computer and Information Science Department, Levine Hall, 3330

Walnut Street, Philadelphia, Pennsylvania, 19104-6389.

Jost, S., Hammond, K., Loidl, H.-W., and Hofmann, M. (2010). Static Determina-

tion of Quantitative Resource Usage for Higher-order Programs. In Proc. of the

37th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages,

POPL ’10, pages 223–236, New York, NY, USA. ACM.

Kaplan, H. (2001). Persistent data structures. In In Handbook on Data Structures

and Applications. CRC Press.

Kelly, P. (1989). Functional Programming for Loosely-coupled Multiprocessors. Pit-

man/MIT Press.

King, D. and Launchbury, J. (1994). Lazy Depth-First Search and Linear Graph

Algorithms in Haskell. Technical report, Glasgow Workshop on Functional Pro-

gramming.

Kirsch, C., Lippautz, M., and Payer, H. (2013). Fast and Scalable, Lock-Free k-FIFO

Queues. In Malyshkin, V., editor, Parallel Computing Technologies, volume 7979

of Lecture Notes in Computer Science, pages 208–223. Springer Berlin Heidelberg.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree

search . Artificial Intelligence, 27(1):97 – 109.

Kranz, D., Halstead Jr., R., and Mohr, E. (1989). Mul-T: A High-Performance

Parallel Lisp. In PLDI’91 — Programming Languages Design and Implementation,

volume 24(7) of SIGPLAN Notices, pages 81–90, Portland, Oregon, June 21–23.

Kulkarni, M., Burtscher, M., Casçaval, C., and Pingali, K. (2009). Lonestar: A Suite

of Parallel Irregular Programs. In IEEE Int. Symp. on Performance Analysis of

Systems and Software ISPASS ’09.

Lea, D. (1999). Concurrent Programming in Java. Second Edition: Design Principles

and Patterns. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2nd edition.

159

BIBLIOGRAPHY

Lea, D. (2000). A Java fork/join Framework. In Java’00 — ACM Conf. on Java

Grande, pages 36–43. ACM Press.

Leijen, D., Schulte, W., and Burckhardt, S. (2009). The Design of a Task Parallel

Library. In Int. Conf. on Object Oriented Programming Systems Languages and

Applications OOPSLA’09, pages 227–242. ACM Press.

Leimanis, E. and Minorsky, N. (1958). Dynamics and nonlinear mechanics: Some

recent advances in the dynamics of rigid bodies and celestial mechanics. Surveys

in applied mathematics. Wiley.

Leyton, M. and Piquer, J. M. (2010). Skandium: Multi-core Programming with

Algorithmic Skeletons. In IEEE Euro-micro PDP 2010.

Lindholm, T. and Yellin, F. (1999). Java (tm) virtual machine specification, the.

Loidl, H.-W., Rubio, F., Scaife, N., Hammond, K., Horiguchi, S., Klusik, U., Loogen,

R., Michaelson, G., Pea, R., Priebe, S., Rebn, ., and Trinder, P. (2003). Comparing

Parallel Functional Languages: Programming and Performance. Higher-Order and

Symbolic Computation, 16:203–251.

Loidl, H.-W., Trinder, P., and Butz, C. (2001). Tuning Task Granularity and Data

Locality of Data Parallel GpH Programs. Parallel Processing Letters, 11(4).

Loidl, H.-W. and Trinder, P. W. (1997). Engineering Large Parallel Functional

Programs. In Implementation of Functional Languages, 1997, LNCS, St. Andrews,

Scotland. Springer-Verlag.

Loogen, R., Ortega-Mallén, Y., and Peña Maŕı, R. (2005). Parallel functional pro-

gramming in Eden. Journal of Functional Programming, 15(3):431–475.

Lowenthal, D. K., Freeh, V. W., and Andrews, G. R. (1996). Using Fine-grain

Threads and Run-time Decision Making in Parallel Computing. Journal of Par-

allel and Distributed Computing, 37(1). Special issue on multithreading for mul-

tiprocessors.

Maier, P. and Trinder, P. (2012). Implementing a High-Level Distributed-Memory

Parallel Haskell in Haskell. In Proc. of the 23rd Int. Conf. on Implementation and

Application of Functional Languages, IFL’11, pages 35–50, Berlin, Heidelberg.

Springer-Verlag.

Mainland, G., Jones, S. P., Marlow, S., and Leshchinskiy, R. (2013). Haskell beats

C using generalised stream fusion. In ICFP’13. Submitted.

Marlow, S. and Jones, S. P. (2012). The glasgow haskell compiler.

160

BIBLIOGRAPHY

Marlow, S., Jones, S. P., and Singh, S. (2009). Runtime Support for Multicore

Haskell. In Proc. of the 14th ACM SIGPLAN Int. Conf. on Functional Program-

ming, ICFP ’09, pages 65–78, New York, NY, USA. ACM.

Marlow, S., Maier, P., Loidl, H.-W., Aswad, M. K., and Trinder, P. (2010). Seq

No More: Better Strategies for Parallel Haskell. In Proc. of the 3rd ACM Haskell

Symp. on Haskell, Haskell ’10, pages 91–102, New York, NY, USA. ACM.

Marlow, S., Newton, R., and Jones, S. P. (2011). A monad for deterministic paral-

lelism. In Proc. of the 4th ACM Symp. on Haskell, Haskell ’11, pages 71–82, New

York, NY, USA. ACM.

Matthews, D. C. (1986). An overview of the Poly programming language. Technical

Report UCAM-CL-TR-99, University of Cambridge, Computer Laboratory, 15

JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom, phone +44 1223

763500.

Matthews, D. C. J. and Wenzel, M. (2010). Efficient Parallel Programming in

Poly/ML and Isabelle/ML. In DAMP10: Declarative Aspects of Multicore Pro-

gramming, Madrid, Spain.

Mattson, T., Sanders, B., and Massingill, B. (2004). Patterns for Parallel Program-

ming. Addison-Wesley Professional, first edition.

McBride, C. and Paterson, R. (2008). Applicative Programming with Effects. Jour-

nal of Functional Programming, 18(1):1–13.

McCarthy, J. (1962). LISP 1.5 Programmer’s Manual. The MIT Press.

Mohr, E., Kranz, D., and Halstead Jr., R. (1991). Lazy Task Creation: A Tech-

nique for Increasing the Granularity of Parallel Programs. IEEE Transactions on

Parallel and Distributed Systems, 2(3):264–280.

Moir, M. and Shavit, N. (2007). Concurrent Data Structures. In Handbook of Data

Structures and Applications, pages 47–14 – 47–30. Chapman and Hall/CRC Press.

Newburn, C. J., So, B., Liu, Z., McCool, M., Ghuloum, A., Toit, S. D., et al. (2011).

Intel’s Array Building Blocks: A retargetable, dynamic compiler and embedded

language. In 9th Int. Symp. on Code Generation and Optimization, pages 224–235.

IEEE/ACM.

Newton, R., Chen, C.-P., and Marlow, S. (2011). Intel Concurrent Collections for

Haskell. Technical Report MIT-CSAIL-TR-2011-015, MIT.

Nichols, B., Buttlar, D., and Farrell, J. P. (1996). Pthreads Programming. O’Reilly

& Associates, Inc., Sebastopol, CA, USA.

161

BIBLIOGRAPHY

Nikhil, R. and Arvind (2001). Implicit parallel programming in pH. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA.

Numrich, R. and Reid, J. (2005). Co-arrays in the Next Fortran Standard. ACM

SIGPLAN Fortran Forum, 24(2):4–17.

Numrich, R. W. and Reid, J. (1998). Co-Array Fortran for parallel programming.

ACM SIGPLAN Fortran Forum, 17(2):1–31.

NVIDIA (2008). CUDA Programming Guide 2.0.

Odersky et al., M. (2006). An Overview of the Scala Programming Language. Tech-

nical Report LAMP-REPORT-2006-001, EPFL Lausanne, Switzerland. Second

edition.

Okasaki, C. (1996). Functional Data Structures. In Advanced Functional Program-

ming, pages 131–158.

Okasaki, C. (1999). Purely Functional Data Structures. Cambridge University Press.

September.

Okasaki, C. (2000). Breadth-first Numbering: Lessons from a Small Exercise in

Algorithm Design. In Proc. of the 5th ACM SIGPLAN Int. Conf. on Functional

Programming, ICFP ’00, pages 131–136, New York, NY, USA. ACM.

OpenMP (2012). The OpenMP API specification for parallel programming.

http://openmp.org/wp/.

Orale (2015). Java Platform, Standard Edition (Java SE) 8 Documentation.

Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krger, J., Lefohn, A. E.,

and Purcell, T. (2007). A survey of general-purpose computation on graphics

hardware.

Pfalzner, S. and Gibbon, P. (1996). Many-Body Tree Methods in Physics. Cambridge

University Press. ISBN: 9780511529368.

PGAS (2015). Partitioned Global Address Space. http://www.pgas.org/.

Prokopec, A., Bagwell, P., Rompf, T., and Odersky, M. (2011). A Generic Parallel

Collection Framework. In Int. Conf. on Parallel Processing EuroPar’11, pages

136–147. Springer Verlag.

Reinders, J. (2007). Intel Threading Building Blocks: Outfitting C++ for Multi-core

Processor Parallelism. O’Reilly.

162

BIBLIOGRAPHY

Reinke, C. (2001). GHood – Graphical Visualisation and Animation of Haskell

Object Observations. In Hinze, R., editor, ACM SIGPLAN Haskell Workshop,

volume 59 of Electronic Notes in Theoretical Computer Science, pages 182–196.

Elsevier Science.

Reppy, J., Russo, C., and Xiao, Y. (2009). Parallel Concurrent ML. In Int. Conf.

on Functional Programming (ICFP 2009).

Richardson, H. (1996). High performance fortran: history, overview and current

developments. Technical report, 1.4 TMC-261, Thinking Machines Corporation.

Risset, T. (2011). Encyclopedia of Parallel Computing, chapter SoC (System on

Chip), pages 1837–1842. Springer US, Boston, MA.

Sadrozinski, H. and Wu, J. (2010). Applications of Field-Programmable Gate Arrays

in Scientific Research. CRC Press.

Schmidt, D. A. (1986). Denotational Semantics: A Methodology for Language De-

velopment. William C. Brown Publishers, Dubuque, IA, USA.

Scholz, S.-B. (2003). Single Assignment C – Efficient Support for High-level Ar-

ray Operations in a Functional Setting. Journal of Functional Programming,

13(6):1005–1059.

Shan, H., Singh, J. P., Oliker, L., and Biswas, R. (2003). Message passing and shared

address space parallelism on an smp cluster. Parallel Comput., 29(2):167–186.

Shavit, N. (2011). Data structures in the multicore age. Commun. ACM, 54(3):76.

Silberschatz, A., Galvin, P. B., and Gagne, G. (2012). Operating System Concepts,

chapter 5: Process Synchronization. Wiley Publishing, 9th edition.

Silva, L. and Buyya, R. (1999). Parallel Programming Models and Paradigms.

In Buyya, R., editor, High Performance Cluster Computing: Programming and

Applications, chapter 1. Prentice Hall.

Skedzielewski, S. K. (1991). Parallel functional languages and compilers. chapter

Sisal, pages 105–157. ACM, New York, NY, USA.

Skillicorn, D. B. (1995). Towards a higher level of abstraction in parallel program-

ming. In: Proc. of Programming Models for Massively Parallel Computers, pages

78–85.

Sondergaard, H. and Sestoft, P. (1989). Referential transparency, definiteness and

unfoldability. Acta Inform, pages 505–517.

163

BIBLIOGRAPHY

Spetka, S., Hadzimujic, H., Peek, S., and Flynn, C. (2008). High productivity

languages for parallel programming compared to mpi. In DoD HPCMP Users

Group Conference, 2008. DOD HPCMP UGC, pages 413–417.

Steele, G. (2009). Organizing Functional Code for Parallel Execution. Talks and

Posters.

Steuwer, M., Kegel, P., and Gorlatch, S. (2011). SkelCL - A Portable Skeleton

Library for High-Level GPU Programming. In IEEE Int. Symp. on Parallel and

Distributed Processing, pages 1176–1182.

Stone, J. E., Gohara, D., and Shi, G. (2010). Opencl: A parallel programming

standard for heterogeneous computing systems. IEEE Des. Test, 12(3):66–73.

Sulzmann, M., Lam, E. S. L., and Marlow, S. (2009). Comparing the performance of

concurrent linked-list implementations in Haskell. ACM Sigplan Notices, 44(5):11.

Sunderam, V. S. (1990). Pvm: A framework for parallel distributed computing.

Concurrency: Pract. Exper., 2(4):315–339.

Swierstra, S., Azero Alcocer, P., and Saraiva, J. (1999). Designing and Implementing

Combinator Languages. In Ad. Funct. Program., LNCS 1608, pages 150–206.

Springer.

Syme, D., Granicz, A., and Cisternino, A. (2007). Expert F#. Apress Academic.

ISBN 1590598504.

Tanenbaum, A. S. and Austin, T. (2012). Structured Computer Organization. Pren-

tice Hall Press, Upper Saddle River, NJ, USA, 6th edition.

Tarjan, R. (1972). Depth first search and linear graph algorithms. SIAM Journal

on Computing.

The GHC Team (2015). The Glorious Glasgow Haskell Compilation System User’s

Guide, Version 7.10.2.

TIOBE Software (2013). TIOBE Programming Community Index.

www.tiobe.com/index.php/content/paperinfo/tpci/index.html.

Totoo, P. (2011). Inherently Parallel Data Structures. MSc Thesis, Heriot-Watt

University.

Totoo, P., Deligiannis, P., and Loidl, H.-W. (2012). Haskell vs. F# vs. Scala: A

High-level Language Features and Parallelism Support Comparison. In Proc. of

the 1st ACM SIGPLAN Workshop on Functional High-Performance Computing,

FHPC ’12, pages 49–60, New York, NY, USA. ACM.

164

BIBLIOGRAPHY

Totoo, P. and Loidl, H.-W. (2014a). Parallel Haskell Implementations of the N-body

Problem. Concurrency and Computation: Practice and Experience, 26(4):987–

1019.

Totoo, P. and Loidl, H.-W. (2014b). Lazy Data-oriented Evaluation Strategies.

In Proc. of the 3rd ACM SIGPLAN Workshop on Functional High-Performance

Computing, FHPC ’14, pages 63–74, New York, NY, USA. ACM.

Toub, S. (2010). Patterns of Parallel Programming – Understanding and Applying

Parallel Patterns with the .NET Framework 4. Online.

Trinder, P., Hammond, K., Loidl, H.-W., and Jones, S. P. (1998a). Algorithm +

Strategy = Parallelism. Journal of Functional Programming, 8(1):23–60.

Trinder, P., Loidl, H.-W., and Pointon, R. F. (2002). Parallel and Distributed

Haskells. Journal of Functional Programming, 12:469–510.

Trinder, P. W., Barry Jr., E., Davis, M. K., Hammond, K., Junaidu, S. B., Klusik,

U., Loidl, H.-W., and Peyton-Jones, S. L. (1998b). GpH: An architecture-

independent functional language. Unpublished draft.

Turing, A. M. (1937). Computability and -definability. The Journal of Symbolic

Logic, 2:153–163.

Turner, D. (1986). An overview of miranda. SIGPLAN Not., 21(12):158–166.

Turner, D. A. (1979). A new implementation technique for applicative languages.

Software: Practice and Experience, 9(1):31–49.

Turner, D. A. (2013). Trends in Functional Programming: 13th International Sym-

posium, TFP 2012, St. Andrews, UK, June 12-14, 2012, Revised Selected Pa-

pers, chapter Some History of Functional Programming Languages, pages 1–20.

Springer Berlin Heidelberg, Berlin, Heidelberg.

UPC Consortium (2005). Unified Parallel C Language Spec. v1.2 LBNL-59208.

Technical report, Lawrence Berkeley National Lab.

Van Roy, P. (2009). Programming paradigms for dummies: What every programmer

should know. New Computational Paradigms for Computer Music, pages 9–47.

Wadler, P. (1990). Deforestation: transforming programs to eliminate trees. Theo-

retical Computer Science, 73(2):231 – 248.

Wadler, P. (1995). Monads for functional programming. In Advanced Functional Pro-

gramming, First International Spring School on Advanced Functional Program-

ming Techniques-Tutorial Text, pages 24–52, London, UK, UK. Springer-Verlag.

165

BIBLIOGRAPHY

Wadsworth, C. (1971). Semantics and Pragmatics of the Lambda-calculus. University

of Oxford.

Wainwright, R. L. and Sexton, M. E. (1992). A study of sparse matrix representa-

tions for solving linear systems in a functional language. Journal of Functional

Programming, 2(01):61–72.

Weiland, M. (2007). Chapel, Fortress and X10: novel languages for HPC. Technical

report, EPCC, University of Edinburgh.

Wirth, N. (1978). Algorithms + Data Structures = Programs. Prentice Hall PTR,

Upper Saddle River, NJ, USA.

Wolfe, M. (2013). The OpenACC Application Programming Interface. http://

www.openacc.org/.

166

http://www.openacc.org/
http://www.openacc.org/

	Abstract
	Contents
	List of Tables
	List of Figures
	List of Abbreviations and Acronyms
	List of Publications
	Introduction
	Thesis Statement
	Contributions
	Thesis Structure

	Background
	Research Overview
	Parallel Hardware
	Shared Memory
	Distributed Memory

	Parallel Programming and Patterns
	A Survey of Parallel Programming Models
	Language Properties
	Coordination Abstraction
	Types of Parallelism
	Memory Programming Model
	Parallel Programs Behaviour
	Language Embedding

	Classes of Programming Models

	Higher-Level Approaches to Parallelism
	Algorithmic Skeletons
	Parallel Declarative Programming
	Parallel Functional Languages

	A Brief History of Laziness
	Full vs Data Structure Laziness
	Parallelism and Laziness

	Parallel Haskells
	GpH: Glasgow parallel Haskell
	Par Monad
	Eden
	Other Parallel Haskells

	Data Structures in Parallel Programming
	Design Issues and Considerations
	Parallel Operations vs Representations
	Imperative vs Functional

	Summary

	Parallel List and Tree Processing
	Evaluation Strategies
	Parallel List Strategies

	Application: The N-body Problem
	Implementation Approach
	Problem Description
	Method 1: All-Pairs
	Method 2: Barnes-Hut Algorithm

	Sequential Implementation
	S1: All-Pairs
	S2: Barnes-Hut
	Sequential Tuning

	Parallel Implementation
	P1: GpH–Evaluation Strategies
	P2: Par Monad
	P3: Eden

	Performance Evaluation
	Tuning
	Speedup
	Comparison of Models

	Summary

	Lazy Data-Oriented Evaluation Strategies
	Introduction
	Tree-Based Representation
	Tree-Based Strategies Development
	Tree Data Type
	T1: Unconstrained parTree Strategy
	Parallelism Control Mechanisms
	T2: Depth-Thresholding (parTreeDepth)
	T3: Synthesised Size Info (parTreeSizeAnn)
	T4: Lazy Size Check (parTreeLazySize)
	T5: Fuel-Based Control (parTreeFuel)
	Fuel Splitting Methods

	Heuristics
	Determining Depth Threshold d
	Determining Size Threshold s
	Determining Fuel f

	Performance Evaluation
	Experimental Setup
	Benchmark Program
	Barnes-Hut Algorithm
	Sparse Matrix Multiplication

	Summary

	Graph Evaluation Strategies
	Graph Definitions
	Graph Types

	Graph Representations
	Related Work in Functional Graphs
	Data.Graph
	FGL

	Data Type Implementation
	Adapting Tree Data Type
	Extended Graph Data Type
	Administration Data Structures

	Graph Traversal Strategies
	G1: Depth-First
	G2: Breadth-First

	Limiting Parallelism
	G3: Implementing a Hybrid Traversal Order
	G4: Depth Threshold
	G5: Fuel Passing

	Traversal Strategies Summary
	Performance Results
	Graph Search Algorithm
	Input Set
	Traversal Performance
	Acyclic Graph
	Cyclic Graph

	Summary

	Conclusion
	Summary
	Contributions
	Limitations and Future Work

	Bibliography

