
Cost-Driven Autonomous Mobility

by

Xiao Yan Deng

Submitted for the Degree of

Doctor of Philosophy

at Heriot-Watt University

on Completion of Research in the

School of Mathematical and Computer Sciences

June 2007

This copy of the thesis has been supplied on the condition that anyone who consults it is

understood to recognise that the copyright rests with its author and that no quotation

from the thesis and no information derived from it may be published without the prior

written consent of the author or the university (as may be appropriate).

I hereby declare that the work presented in this the-

sis was carried out by myself at Heriot-Watt University,

Edinburgh, except where due acknowledgement is made,

and has not been submitted for any other degree.

Xiao Yan Deng (Candidate)

Greg Michaelson and Phil Trinder (Supervisor)

Date

To My Parents

Deng Jin Shan and Yu Yi

Abstract

Developments in distributed system technology facilitate the sharing of resources,

even at a global level. This thesis explores sharing computational resources using

mobile computations, agents, and autonomic techniques. We propose autonomous

mobile programs (AMPs) which are aware of their resource needs and sensitive

to the environment in which they execute. AMPs periodically use a cost model

to decide where to execute in a network. Unusually this form of autonomous

mobility affects only where the program executes and not what it does. We

present a generic AMP cost model, together with a validated instantiation and

comparative performance results for four AMPs. We demonstrate that AMPs

are able to dynamically relocate themselves to minimise execution time in the

presence of varying network resources.

Collections of AMPs effectively perform decentralised dynamic load balancing.

Experiments on small LANs show that collections of AMPs quickly obtain and

maintain optimal or near-optimal balance. The advantages of our decentralised

approach are that it has the potential to scale to very large and dynamic networks,

and to achieve improved balance, and offers guarantees to limit overheads under

reasonable assumptions.

In an autonomous mobile program, the program must contain explicit con-

trol of self-aware mobile coordination. To encapsulate this for common patterns

of computation over collections, autonomous mobility skeletons (AMSs) are pro-

posed. These are akin to algorithmic skeletons in being polymorphic higher order

functions, but where algorithmic skeletons abstract over parallel coordination,

AMSs abstract over autonomous mobile coordination. AMS cost models have

been built over collection iterations. The automap, autofold and AutoIterator

AMSs are presented, together with performance measurements for Jocaml, Java

Voyager, and JavaGo implementations on LANs.

An AMS considers only the cost of the current collective computation, but it

is more useful to know the cost of the entire program. We have extended our AMS

cost models to be parameterised on the cost of the remainder of the program. A

cost calculus to estimate the costs for the remainder of a computation at arbitrary

points has been built. An automatic Jocaml cost analyser based on the calculus

produces cost equations parameterised on program variables in context, and may

be used to find both cost in higher-order functions and the cost for the remainder

of the program. Costed autonomous mobility skeletons (CAMSs) have been built,

which not only encapsulate common patterns of autonomous mobility but take

additional cost parameters to provide costs for the remainder of the program.

Potential performance improvements are assessed by comparing CAMS to AMS

programs. The results show that CAMS programs perform more effectively than

AMS programs, because they have more accurate cost information. Hence a

CAMS program may move to a faster location when the corresponding AMS

program does not.

Acknowledgement

First and foremost I would like to thank my family for supporting me whenever

I need help and for trusting me alway even when I want to give up.

I am indebted to Greg Michaelson and Phil Trinder, not only as my super-

visors, for guiding my research over the course of my PhD and for helping me

in avoiding the pitfalls on the way to obtaining a PhD degree, but also as my

friends, for providing invaluable encouragement and sound advice.

I would like to thank all my friends and colleagues in Heriot-Watt University

for their help. Finally, I am grateful to Heriot-Watt University and School of

Mathematical and Computer Sciences for offering me an opportunity of doing

research and for the scholarships that made this degree possible.

Contents

1 Introduction 1

1.1 Context . 1

1.2 Thesis Contributions . 2

1.3 Thesis Outline . 4

1.4 Publications . 5

2 Background 7

2.1 Mobility & Mobile Languages . 7

2.1.1 Mobility Taxonomy . 7

2.1.2 Calculi with Mobility . 8

2.1.3 Properties of Mobile Languages 11

2.1.4 Java Voyager . 13

2.1.5 JavaGo . 14

2.1.6 Other Imperative Languages 17

2.1.7 MobileML . 18

2.1.8 Nomadic Pict . 19

2.1.9 Mobile Haskell . 21

2.1.10 Jocaml . 23

2.1.11 Mobile Language Summary 27

2.2 Agents & Autonomous Systems 28

2.2.1 Agents . 28

2.2.2 Autonomous Systems . 30

2.2.3 Discussion . 32

i

CONTENTS ii

2.3 Load Management Systems . 33

2.3.1 Static/Dynamic Load Management 33

2.3.2 Centralised & Decentralised Load Management 36

2.3.3 Push & Pull Policies . 37

2.3.4 Preemptive & Non-Preemptive Load Management 37

2.3.5 Dynamic Load Management Systems 38

2.4 Cost Models . 40

2.4.1 Computation Cost Models 40

2.4.2 Parallel Coordination Models 42

2.4.3 Cost Models for Algorithmic Skeletons 43

2.4.4 Cost Model Summary . 47

2.5 Summary . 47

3 Autonomous Mobile Programs 49

3.1 Introduction . 49

3.2 Related Work . 51

3.3 Cost Models . 52

3.3.1 Traditional Systems Costs 52

3.3.2 AMPs Costs . 53

3.4 AMP Implementation . 55

3.4.1 Mobile Programming Languages Choice 55

3.4.2 Matrix Multiplication Cost Model 56

3.4.3 Validating Matrix Multiplication Cost Model 58

3.4.4 Matrix Multiplication AMP Speed Up Measurement 61

3.5 AMP Movement Measurement . 62

3.6 Summary . 63

4 Autonomous Mobility Skeletons 65

4.1 Introduction . 65

4.2 Autonomous Mobility Map (automap) 68

4.2.1 Collection Iteration Cost Model 68

4.2.2 Auxiliary Functions for AMS in Jocaml 70

CONTENTS iii

4.2.3 Jocaml automap Design and Implementation 72

4.2.4 Jocaml automap Cost Model Validation 72

4.2.5 Jocaml automap AMPs Speed Up Measurement 76

4.2.6 Java Voyager automap Design and Implementation 77

4.2.7 Java Voyager automap Cost Model Validation 78

4.2.8 Java Voyager automap AMPs Speed Up Measurements . . 81

4.3 Autonomous Mobility Fold (autofold) 82

4.3.1 Jocaml autofold Design and Implementation 83

4.3.2 Jocaml autofold Cost Model Validation 83

4.3.3 Jocaml autofold AMPs Speed Up Measurements 86

4.3.4 Java Voyager autofold Design and Implementation 87

4.3.5 Java Voyager autofold Cost Model Validation 87

4.3.6 Java Voyager autofold AMPs Speed Up Measurements . . 89

4.4 An Autonomous Mobile Iterator 89

4.4.1 AutoIterator & JavaGo 89

4.4.2 AutoIterator Implementation 91

4.4.3 AutoIterator AMPs Speed Up Measurements 92

4.5 AMP with AMS Movement Measurement 92

4.6 Jocaml and Java Voyager Comparison 95

4.6.1 Mobility Behaviour Comparison 95

4.6.2 Computation Time Comparison 97

4.6.3 Communication Time Comparison 98

4.6.4 Coordination Time Comparison 99

4.7 Other Skeletons . 99

4.7.1 PIPE Skeleton . 99

4.7.2 FARM Skeleton . 100

4.7.3 DC Skeleton . 100

4.7.4 RaMP Skeleton . 101

4.7.5 Discussion . 101

4.8 Summary . 101

CONTENTS iv

5 Autonomous Load Management 103

5.1 Introduction . 104

5.1.1 Autonomous Load Management 104

5.1.2 Autonomous Load Management Activities 104

5.1.3 Autonomous Load Management Policies 105

5.2 Load Server Architecture . 106

5.2.1 Load Server and Non-Load Server System Structure 107

5.2.2 Information Renewal Time 108

5.2.3 AMP Coordination Time 110

5.3 Collections of AMPs Measurements 111

5.3.1 Collections of AMPs on Homogeneous Networks 111

5.3.2 Collections of AMP on Heterogeneous Network 115

5.4 Summary . 119

6 Automatic Continuation Cost Analysis 121

6.1 Introduction . 122

6.2 Syntax of Language J ′ . 123

6.3 Cost Calculus for J ′ . 124

6.3.1 Index Semantics for J ′ . 125

6.3.2 Cost Semantics for J ′ . 127

6.3.3 Costafter Semantics for J ′ 130

6.4 Costed Autonomous Mobility Skeletons 136

6.4.1 Cost Model for Costed Autonomous Mobility Skeletons . . 136

6.4.2 An Implementation of Costed Autonomous Mobility Skele-

tons . 138

6.5 Evaluating Costed Autonomous Mobility Skeletons 139

6.5.1 Single Higher Order Function Examples 139

6.5.2 Sequential Composed Higher Order Function Examples . . 141

6.5.3 Performance Comparison with Changing Load 146

6.5.4 Conclusion . 147

6.6 Automatic Continuation Cost Analyser 148

CONTENTS v

6.6.1 Structure of the Automatic Continuation Cost Analyser . . 148

6.6.2 An Implementation of the Cost Calculus 149

6.6.3 Generator: Generating Autonomous Mobility Skeletons . . 151

6.6.4 Matrix Multiplication Example 152

6.6.5 Comparing Automatic and Hand Analysis 153

6.7 Summary . 154

7 Conclusion and Future Work 157

7.1 Summary . 157

7.2 Contributions and Further Work 159

7.2.1 AMPs on Large Scale Networks 160

7.2.2 Autonomous Mobility for Irregular Computation 163

7.2.3 Resource Driven Mobility 164

7.2.4 Automatic Continuation Cost Analysis for Java 165

A Cost Calculus for J 167

A.1 Syntax of J . 167

A.2 Cost Calculus for J . 167

A.2.1 Index Semantics . 167

A.2.2 Cost Semantics . 170

A.2.3 Costafter Semantics . 175

B Autonomous Mobility Skeletons Code 184

B.1 Jocaml Autonomous Mobility Skeletons 184

B.2 Voyager Autonomous Mobility Skeletons 192

B.2.1 Auto Class Implementation 192

B.2.2 Load Server Implementation 201

B.3 JavaGo Autonomous Mobile Iterator 209

C Balance Status of Collections of AMPs 214

D Automatic Cost Analyser Validation 217

CONTENTS vi

Bibliography 217

List of Tables

2.1 Summary of Calculi . 11

2.2 Summary of Languages . 27

3.3 Jocaml AMP Matrix Multiplication Computation Time Validation 59

3.4 Jocaml AMP Matrix Multiplication Communication Time Calcu-

lation . 60

3.5 Jocaml Coordination Time Calculation 61

4.6 Matrix Multiplication Computation Time Validation (Jocaml) . . 73

4.7 Ray Tracing Computation Time Validation (Jocaml) 74

4.8 Jocaml AMS Matrix Multiplication Communication Time Validation 75

4.9 Jocaml AMS Ray Tracing Communication Time Validation 75

4.10 Jocaml Coordination Time Validation 76

4.11 Matrix Multiplication Computation Time Validation (Voyager) . . 80

4.12 Ray Tracing Computation Time Validation (Voyager) 80

4.13 Voyager AMS Matrix Multiplication Communication Time Vali-

dation . 81

4.14 Voyager AMS Ray Tracing Communication Time Validation . . . 81

4.15 Voyager Coordination Time Validation 82

4.16 Coin Counting Computation Time Validation (Jocaml) 85

4.17 Jocaml AMS Coin Counting Communication Time Validation . . 85

4.18 Coin Counting Computation Time Validation (Voyager) 88

4.19 Voyager AMS Coin Counting Communication Time Validation . . 89

vii

LIST OF TABLES viii

4.20 Jocaml and Voyager Matrix Multiplication Execution time Com-

parison . 97

4.21 Jocaml and Voyager Ray Tracing Execution time Comparison . . 97

4.22 Jocaml and Voyager Coin Counting Execution time Comparison . 98

5.23 Load Server Information Collection Time 109

5.24 Test AMPs Coordination Time in load Server Structure 110

5.25 Verified Optimal Balance . 111

5.26 Prediction CPU Speed for Each AMPs (25 AMPs on 15 Locations) 117

5.27 Prediction CPU Speed for Each AMPs (24 AMPs on 15 Locations) 117

5.28 Prediction CPU Speed for Each AMPs (23 AMPs on 15 Locations) 117

C.29 Prediction CPU Speed each AMPs Get(20 AMPs on 15 Locations) 215

C.30 Prediction CPU Speed each AMPs Get(19 AMPs on 15 Locations) 215

C.31 Prediction CPU Speed each AMPs Get(18 AMPs on 15 Locations) 215

D.32 camap and automap Matrix Mutiplication Movement Comparison 217

D.33 camap and automap Ray Tracing Movement Comparison 218

D.34 camap and automap Double Matrix Multiplication Movement Com-

parison . 218

D.35 camap and automap Invertible Matrix Movement Comparison . . . 219

D.36 camap and automap Double Ray Tracing Movement Comparison . 220

D.37 camap and automap Five Matrix Multiplications Movement Com-

parison . 221

D.38 camap and automap Invertible Matrix Movement Comparison with

Changing Loads . 222

D.39 camap and automap Five Matrix Multiplications Movement Com-

parison with Changing Loads . 223

D.40 Automatic and Byhand Cost Double Matrix Multiplications Move-

ment Comparison . 224

D.41 Automatic and Byhand Cost Invertible Matrix Movement Com-

parison . 225

LIST OF TABLES ix

D.42 Automatic and Byhand Costs Double Ray Tracing Movement Com-

parison . 226

List of Figures

2.1 Mobility Example in Voyager . 15

2.2 Mobility Example in JavaGo . 16

2.3 Mobile Channels in mHaskell . 22

2.4 Mobility Example in mHaskell (Client Side) 23

2.5 Mobility Example in mHaskell (Server Side) 23

3.6 Agents, Autonomous Systems, and AMPs 51

3.7 Generic Cost Model for Autonomous Mobile Programs 54

3.8 Jocaml Three for loop Matrix Multiplication 56

3.9 Cost Model for AMP Matrix Multiplication 57

3.10 Static and AMP Matrix Multiplication Execution Time 62

3.11 AMP Matrix Multiplication Movement Validation 63

4.12 Skeleton Taxonomy . 66

4.13 Cost Model for Collection Iteration 69

4.14 Jocaml getGran: Calculating Coordination Granularity 70

4.15 Jocaml check move: Deciding to Move in Jocaml 71

4.16 Jocaml getInfo . 71

4.17 Jocaml automap . 72

4.18 Jocaml automap Matrix Multiplication 72

4.19 Jocaml automap Ray Tracing . 73

4.20 Static and AMS Matrix Multiplication Execution Time Compari-

son (Jocaml) . 77

4.21 Static and AMS Ray Tracing Execution Comparison Times (Jocaml) 77

x

LIST OF FIGURES xi

4.22 Java Voyager automap . 78

4.23 Java Voyager automap Mobile Matrix Multiplication 79

4.24 Java Voyager automap Ray Tracing 79

4.25 Static and AMS Matrix Multiplication Execution Times Compar-

ison (Voyager) . 82

4.26 Static and AMS Ray Tracing Execution Times Comparison (Voyager) 82

4.27 Jocaml autofold Definition . 83

4.28 Jocaml autofold Coin Counting 84

4.29 Static and AMS Coin Counting Execution Time (Jocaml) 86

4.30 Java Voyager autofold . 87

4.31 Voyager autofold Coin Counting 88

4.32 Static and AMS Coin Counting Execution Times (Voyager) 90

4.33 Mobility Structure of automap . 91

4.34 Mobility Structure of AutoIterator 91

4.35 JavaGo autoNext Method in AutoIterator Class 92

4.36 JavaGo AutoIterator Matrix Multiplications 93

4.37 Static and AutoIterator Matrix Multiplications Execution Times 93

4.38 AMS Matrix Multiplication Movement Validation 94

4.39 AMS Ray Tracing Movement Validation 94

4.40 AMS Coin Counting Movement Validation 94

4.41 Mobility Behaviour of Jocaml autonomous mobility skeletons . . . 96

4.42 Mobility Behaviour of Java Voyager autonomous mobility skeletons 96

4.43 Matrix Multiplication Communication Time Comparison 99

4.44 Ray tracing Multiplication Communication Time Comparison . . 99

5.45 System with Load Server Architecture (LS) 107

5.46 System without Load Server Architecture (NLS) 107

5.47 Load Server and Non-Load Server Information Collecting Time . . 109

5.48 Load Server and Non-Load Server Coordination Time Comparison 110

5.49 Distribution of 7 AMPs on 3 Locations 112

5.50 Distribution of 5 AMPs on 3 Locations 113

LIST OF FIGURES xii

5.51 Distribution of 9 AMPs on 3 Locations 113

5.52 Distribution of 7 AMPs on 4 Locations 113

5.53 Distribution of 10 AMPs on 4 Locations 113

5.54 Distribution of 13 AMPs on 4 Locations 113

5.55 Distribution of 9 AMPs on 5 Location 113

5.56 Distribution of 6 AMPs on 3 Locations 114

5.57 Distribution of 5 AMPs on 2 Locations 114

5.58 Rebalancing: 7 AMPs Adding 3 More AMPs on 4 Locations . . . 114

5.59 Rebalancing: 5 AMPs Adding 4 More AMPs on 3 Locations . . . 114

5.60 Rebalancing: 10 AMPs Removing 5 AMPs on 3 Locations 115

5.61 Distribution of 25 AMPs on Heterogeneous Network (15 Locations) 116

5.62 Actual CPU Speed for Each AMP (25 AMPs on 15 Locations) . . 118

5.63 Actual CPU Speed for Each AMP (24 AMPs on 15 Locations) . . 118

5.64 Actual CPU Speed for Each AMP (23 AMPs on 15 Locations) . . 118

5.65 Distribution of 20 AMPs on Heterogeneous Network (10 Locations) 119

6.66 Syntax of J ′ . 124

6.67 Semantic Functions . 125

6.68 Index Semantics for J ′ . 126

6.69 An Example of Index in J ′ . 127

6.70 Cost Semantics for J ′ . 128

6.71 An Example of Costing in J ′ . 129

6.72 Definition of Syntactic Expression Equality in J ′ 131

6.73 Definition of Contains in J ′ . 132

6.74 An Example of Contains in J ′ . 133

6.75 Costafter Semantics for J ′ . 134

6.76 An Example of Costafter in J ′ 136

6.77 Cost Model for CAMS . 137

6.78 Implementation of camap in Jocaml 138

6.79 CAMS and AMS Matrix Multiplication Execution Time Comparison140

6.80 CAMS and AMS Ray Tracing Execution Time Comparison 140

LIST OF FIGURES xiii

6.81 CAMS and AMS Double Matrix Multiplication Execution Time

Comparison . 141

6.82 CAMS and AMS Invertible Matrix Execution Time Comparison . 143

6.83 CAMS and AMS Double Ray Tracing Execution Time Comparison 143

6.84 CAMS and AMS Five Matrix Multiplications Execution Time Com-

parison . 144

6.85 CAMS and AMS Invertible Matrix Execution Time Comparison

with Changing Loads . 146

6.86 CAMS and AMS Five Matrix Multiplications Execution Time Com-

parison with Changing Loads . 146

6.87 Structure of Automatic Continuation Cost Analyser 149

6.88 Implementation of Index Function 149

6.89 Implementation of Cost Function 150

6.90 Implementation of Costafter Function in Jocaml 150

6.91 The Source Code of Matrix Multiplication for Automatic Cost

Analyser . 153

6.92 The Target Code of Automatic Cost Analyser 154

6.93 Automatic and Byhand Cost Double Matrix Multiplications Exe-

cution Time Comparison . 155

6.94 Automatic and Byhand Cost Invertible Matrix Execution Time

Comparison . 155

6.95 Automatic and Byhand Costs Double Ray Tracing Execution Time

Comparison . 155

7.96 System with Super Load Server on Large Scale Network 161

A.97 Syntax of J . 168

A.98 Index Semantics of J . 169

A.99 Pattern Cost Semantics of J . 171

A.100Cost Semantics of J . 173

A.101Definition of Expression Equality in J 176

A.102Definition of Contains in J . 178

LIST OF FIGURES xiv

A.103Definition of Contains in J Cont. 179

A.104Costafter Semantics of J . 180

A.105Costafter Semantics of J Cont. 181

C.106Actual CPU Speed for Each AMP (20 AMPs on 10 Locations) . . 216

C.107Actual CPU Speed for Each AMP (19 AMPs on 10 Locations) . . 216

C.108Actual CPU Speed for Each AMP (18 AMPs on 10 Locations) . . 216

Chapter 1

Introduction

1.1 Context

Developments in networks have made it possible to exploit the computational

power and resources available in global networks [42, 22]. Load management

systems have been built for resources sharing using mobile computation, agents,

and autonomic techniques [42].

One way of using the resources on both local and global networks is through

mobile computations especially using mobile languages e.g. Jocaml [66] and Java

Voyager [127] where executing computations can move in the network in order

to better use the resources available. Mobile computation with mobile languages

gives programmers control over the placement of code or active computations

across a network for sharing computational resources [71]. Basically a mobile

program can transport its state and code to another location in the network,

where it resumes execution [75].

The agents community has focused on autonomous problem solving e.g. build-

ing self-managing, or autonomous, systems which can act flexibly in uncertain and

dynamic environments. Mobile languages potentially allow agents to move more

flexibly in a large scale network. That is, a mobile agent can migrate across a

network to locate the resources it requires.

1

CHAPTER 1. INTRODUCTION 2

In distributed resource sharing systems, the task of placing work on loca-

tion is termed load management, and is a branch of global scheduling techniques

[24]. In load management systems, programs are transported from heavily loaded

locations to lightly loaded locations to use the computational power efficiently.

Using mobile computation, more flexible and efficient applications can be devel-

oped where a program can move between locations to better utilise computational

resources.

One of the most important issues in load management systems, is to identify

effective techniques for the distribution of the work over the locations, to achieve

performance goals such as balancing the load of each location, or minimising

execution time. One technique is to use cost models to estimate the execution

time of a program [101], and the accuracy of the cost model is crucial.

This thesis investigates load management in collections of autonomous mobile

computations. Programs using this kind of load management can in principle

control when and where to move by consulting cost models, e.g. if a program

determines that the current location is busy it will find a faster processor and

migrate there.

1.2 Thesis Contributions

The research contributions together with the publications representing them are

as follows.

• Autonomous Mobile Programs [35]: To manage load on large and dy-

namic networks we propose autonomous mobile programs (AMPs) that pe-

riodically use a cost model to decide where to execute in the network. Un-

usually this form of autonomous mobility affects only where the program

executes and not what it does. Experiments comparing the execution time

of static and AMP programs suggest that AMPs are able to dynamically

relocate themselves to minimise execution time in the presence of varying

external loads on shared locations.

CHAPTER 1. INTRODUCTION 3

• The Design, Implementation and Evaluation of Autonomous Mo-

bility Skeletons [34]: In an autonomous mobile program, the program-

mer must explicitly control when the program moves. Autonomous mobility

skeletons (AMSs) encapsulate self-aware mobile coordination for common

patterns of computation over collections. AMSs are akin to algorithmic

skeletons in being polymorphic higher order functions, but where algo-

rithmic skeletons abstract over parallel coordination, AMSs abstract over

autonomous mobile coordination. We have developed automap, autofold

AMSs in the mobile languages Jocaml and Java Voyager, and AutoIterator,

an unusual skeleton that abstracts over the Iterator interface commonly

used with Java collections. While the other skeletons can be implemented

using weak mobility, AutoIterator requires strong mobility and hence is

implemented in JavaGo.

• Cost Models for Autonomous Mobile Programs [33, 35]: To build

autonomous mobile programs, a generic cost model is developed. The cost

model considers the relative CPU speeds of local and remote locations in

the network, the total work the program carries out, the time elapsed at

the current location, etc. to predict how long the program will take if it is

running on the current location and how long will it take if it moves to a re-

mote location. Problem specific cost models for matrix multiplication using

three for loops (Chapter 3) and for AMSs e.g. automap and autofold in

Jocaml and Java Voyager (Chapter 4) have been instantiated and validated.

• Automatic Continuation Cost Analysis: A limitation of the AMS

is that they assume that a single higher-order function is the dominating

computation for the program. In general, to deploy autonomous mobility

effectively, it is necessary to know the cost of the remainder of the program,

not just of a single iteration. Thus, a cost calculus to estimate the costs

for the remainder of a computation at arbitrary points has been built. We

have extended our AMS cost model to be parameterised on the cost of the

remainder of the program. Costed autonomous mobility skeletons (CAMSs)

CHAPTER 1. INTRODUCTION 4

have been built based on the extended cost model. The CAMSs not only en-

capsulate the common patten of autonomous mobility but take additional

cost parameters representing the costs of the remainder of the program.

We have constructed an automatic cost analyser which implements the cost

calculus for a Jocaml subset, produces cost equations parameterised on pro-

gram variables in context, and may be used to find both cost in higher-order

functions and the cost for the remainder of the program. Potential perfor-

mance improvements are assessed by comparing CAMS to AMS programs

and show that CAMS programs often execute faster than AMS programs,

because they have more accurate cost information i.e. including the cost

of the remainder of the program. Hence a CAMS program may move to a

faster location when the corresponding AMS program does not.

1.3 Thesis Outline

The structure of this thesis is as follows.

Chapter 2 introduces related work, and covers concepts of mobility, mobile

languages, agents, autonomous systems, load management, and cost models.

Chapter 3 explores autonomous mobile programs(AMPs) which are aware

of their computational resource needs and sensitive to the environment in which

they execute. To build autonomous mobile programs, a generic cost model is

developed. Problem specific cost models are then developed and validated. Ex-

periments show that AMPs react appropriately to changes in their environment.

Chapter 4 introduces autonomous mobility skeletons (AMSs) which encapsu-

late self-aware mobile coordination for common patterns of computation namely

automap, autofold, and AutoIterator. A instantiated cost model for these

AMSs has been built and validated. The experiments in this chapter suggest

that AMPs with autonomous mobility skeletons are able to dynamically relo-

cate themselves to minimise execution time. This chapter also shows that other

skeletons e.g. PIPE, FARM, and RaMP can be presented as autonomous mobility

skeletons using automap or autofold.

CHAPTER 1. INTRODUCTION 5

Chapter 5 presents the behaviour of collections of AMPs in both homoge-

neous and heterogeneous LANs. This chapter introduces a load server architec-

ture to reduce the time to collect network load information, and then presents

collections of AMPs which performs decentralised dynamic load balancing. Ex-

periments show that collections of AMPs quickly obtain and maintain optimal or

near-optimal balance. Furthermore, the system maintains balance as AMPs are

added or removed.

Chapter 6 introduces a cost calculus to provide a cost for the reminder

of a program at arbitrary points for a language J ′, a subset of Jocaml. We

extend the AMS cost model to be parameterised on the cost of the remainder of

the program and introduce costed autonomous mobility skeletons (CAMSs) e.g.

camap and cafold, which use additional cost parameters to calculate the cost

of completing the program execution. We have implemented an automatic cost

analyser for J ′ based on the calculus which inspects programs and replaces higher-

order functions with CAMSs. AMPs with sequences of higher-order functions are

tested to evaluate the performance of CAMSs against AMSs.

Chapter 7 summaries the thesis and describes future work.

1.4 Publications

Unless otherwise stated, the work presented throughout this thesis including the

following research publications is carried out by the author with contributions

from her supervisors Prof. G. J. Michaelson and Dr. P. W. Trinder.

• Xiao Yan Deng, Greg Michaelson and Phil Trinder. Towards High Level

Autonomous Mobility, in Draft proceedings of Trends in Functional Pro-

gramming, pages 97-112, Munich, Germany, November 2004.

CHAPTER 1. INTRODUCTION 6

• Xiao Yan Deng, Phil Trinder and Greg Michaelson. Autonomous Mobile

Programs. In Proceedings of the IEEE/WIC/ACM International Confer-

ence on Intelligent Agent Technology (IAT 2006 Main Conference Proceed-

ings) (IAT’06), pages 177–186, December 2006. Hong Kong, IEEE Com-

puter Society.

• Xiao Yan Deng, Greg Michaelson and Phil Trinder. Autonomous Mobility

Skeletons, in Journal of Parallel Computing, Volume 32, Issues 7-8, Pages

463-478, September 2006.

Chapter 2

Background

Developments in distributed system technology have made it possible to build

global computing platforms e.g. load management systems for sharing compu-

tational power and other resources using mobile computation, agents, and auto-

nomic techniques [42]. In load management systems, cost models could be used

to predict the behaviours of the system and decide the following behaviours of

the system. Different cost models lead to different efficiency of the system. So

suitable cost models are important issues in the self-managing systems.

This chapter introduces concepts of mobility, agents, autonomous systems,

load management systems, and cost models.

2.1 Mobility & Mobile Languages

2.1.1 Mobility Taxonomy

The idea of mobility is not really new, and in recent years many different kinds

of mobility have been explored in computer systems. These include hardware

mobility and software mobility; process migration and mobile languages; weak

mobility and strong mobility.

Generally speaking, mobility can be classified as hardware mobility or software

mobility. Hardware mobility, which means the mobility of physical devices such

as laptops, palm computers, and PDAs, deals with mobile computing. In contrast

7

CHAPTER 2. BACKGROUND 8

software mobility, which means computation can move form location to location,

deals with mobile computations [17].

Software mobility can be classified as process migration, or mobile languages.

The main difference is which entity decides what is going to migrate. Mobile

languages give the programmer the ability to control when and where to move,

whereas in process migration the system decides when the process should move,

so the migration is transparent to the programmer. Much research was done in

the area of distributed operating system determined migration e.g. MOSIX [12],

Sprite [36] and V Kernal [118].

Strong mobility and weak mobility is a classification for mobility given in[48].

Weak mobility e.g. moveTo in Java Voyager [100] is the ability to move only

code from one location to another, while strong mobility is the ability of moving

code together with the execution state of the program. Strong mobility is also

called transparent migration, which is a migrated program resumes its execution

at a destination site with exactly the same execution state as before migration

began[51], e.g. go operation in Jocaml [44].

2.1.2 Calculi with Mobility

Process algebras are valuable mathematical tools for reasoning about the be-

haviour of concurrent and communication system. In the last ten years, re-

searchers have produced semantics that allow communication channels or even

processes to be communicated. Some process calculi feature the ability to dy-

namically create and exchange channel names which is referred to as mobility.

In[30], Dal Zilio classified calculi which support mobility into two kinds. The

first involves mobility of Names (Channels[86]), which captures the notion of the

capability for a process to exchange names as values. The second involves mo-

bility of processes, which means the migration of code or agents instead of the

migration of references.

Other features of calculi include the ability to model:

• Location: For mobile computation, location is a very important notion,

CHAPTER 2. BACKGROUND 9

where processes can migrate, so it is very important for calculi which present

mobility of processes to model locations.

• Security: A major motivation for mobile computation is to share resources

among mobile computational entities. In order to bring about the advan-

tages of mobile computation, safety and security must be taken into consid-

eration. Safety aims at the prevention of unintended behaviour of programs

and is a precondition for security. Security is concerned with secrecy and

integrity of the information and the prevention of malicious attacks. Type

systems can identify what is harmful behaviour for programs and restrict

the execution of programs which are potentially harmful. Well-typed pro-

cesses cannot leak secret information to the environment.

• Failure Handling: The crash of a physical site causes the permanent failure

of all its locations. More generally, any location can halt. The failure of a

location should be detected at other running locations [46].

Early formalisations of concurrency and communication are CSP [61] and CCS

[85]. They provide static connectivity between processes and offer an abstract

model of computation where the basic resources are communication channels and

the basic computation is carried out by matching input or output actions on

these channels [71]. The π-Calculus [87] refines CCS by allowing fresh channel

names to be dynamically created and exchanged in communication. It is a process

calculus of communicating systems. It was designed to provide an abstract model

of concurrent computation but not distributed computation. The π-Calculus has

a clear treatment of concurrency and communication, but it does not model the

notion of location or site, another very important feature of distributed system. It

has been seen as the basic model of distributed system. The π-Calculus provides

a simple mobility called Name (Link) Mobility, where links move in a virtual

space of linked process[86]. The π-Calculus does not express a type system or

failure handling.

Distributed π-Calculus (Dπ) [102] is a distributed extension of the π-Calculus

with the notions of remote execution, migration, and site failure. As Riley and

CHAPTER 2. BACKGROUND 10

Hennessy described in [102], novel features of Dπ include:

- Communication channels are explicitly located: the use of a channel requires

knowledge of both the channel and its location.

- Names are endowed with permissions: the holder of a name may only use

that name in the manner allowed by these permissions.

The Dπ calculus is a robust and useful semantic theory for a process language

in which computation is distributed over different locations, in which processes

may migrate from one site to another, and in which sites may fail. Dπ provides

a well-defined type system to guarantee security.

The join-Calculus[45] tries to bridge the gap between concurrency theory and

distributed programming. It is a small calculus, which retains the style of process

calculi, and it provides built-in locality[43]. The Distributed join-Calculus[46]

extends the join-Calculus with locations and primitives for mobility. The novelty

of distributed join-Calculus[45] is the introduction of locations, which resides on

a physical site and contain a group of processes and definitions. The Distributed

join-Calculus provides a simple model of failure. The failure of a location can

be detected at any other running location. Also the distributed join-Calculus

provides a type system but it is not for security.

Ambient calculus[40], another calculus which derives its process primitives

from the π-Calculus, introduces the notion of a bounded environment(ambients).

An ambient,which is similar to location in the distributed join-Calculus, is a

bounded place where computation happens. An ambient can be nested in other

ambients and can be moved as a whole. In general, an ambient exhibits a tree

structure, which is like locations in the distributed join-calculus. Ambient calcu-

lus does not provide any mechanisms for security and failure handling but some

extensions[77, 117, 53] have met those aims.

The Nomadic π-Calculi are extensions of the asynchronous π-Calculus with

the notions of sites and agents, allowing distributed and mobile computation to

be precisely described[132]. The calculi are designed to express agent mobility,

so there is no way to describe remote communication between entities. The main

CHAPTER 2. BACKGROUND 11

entities of Nomadic π-Calculi are sites, agents and channels. Sites should be

thought of as physical or virtual machines; each site has a unique name. Agents

are units of executing code; an agent has a unique name and a body consisting

of some processes; at any moment it is located at a particular site. Channels

support communication within agents, and also provide targets for inter-agent

communication. If an agent a must communicate with another agent b, it must

migrate to the same location where agent b is located. Nomadic π-Calculi do not

explicitly address network failure and reconfiguration, or security.

The Table 2.1 summarises the main properties of the calculi. The next section

Item Location Mobility Security Failure handling
π-Calculus No Names No No
Dπ Yes Processes Yes Yes
Join/DJoin Yes Processes No Yes
Ambient Yes Processes Yes(ext) Yes(ext)
Nomadic π Yes Processes No No

Table 2.1: Summary of Calculi

will introduce mobile languages, some of which are based on these calculi.

2.1.3 Properties of Mobile Languages

With the growth of global computer networks, programming languages are ex-

pected to have mechanisms to support effective use of network resources. Many

languages which are suited for distributed and mobile program have been devel-

oped e.g. Telescript [128], Java Aglets [74], MobileML [60] and Jocaml [44]. A

mobile language may have the following properties [17, 48]:

• Mobility is under programmer control: The language should provide mech-

anisms and abstractions that enable the programmer to express mobility.

• Strong or weak mobility: Strong mobility is the ability to allow migration

of both the code and execution state. In weak mobility only the code can

migrate. Mobile languages should support at least one of these two kinds

of mobility.

CHAPTER 2. BACKGROUND 12

• Implicit or explicit mobility: [17] Implicit mobility is to automatically move

an executing computation/process/thread from one location in the network

to another. Implicit mobility is typically exploited in small systems e.g. a

single cluster or LAN [88]. Explicit mobile languages give the programmer

control over the placement of active computations, and executes on open

systems. These mobile languages operate in large-scale settings where net-

works are composed of heterogeneous locations [17]. This thesis focus on

explicit mobile languages.

• Programming is location aware: In a mobile language, the mobility of code

will usually happen when the program needs to access resources that are not

in the same location as that in which the program started running. Thus,

the programmer must be able to explicitly say where the computation must

be moved to. This notion of location does not need to be restricted to the

name of machines in a network; it can be related to the names of resources

that the programmer wants to access [23]. Applications should be location-

aware and may take actions based on such knowledge.

There are some other desirable features of mobile languages:

• Formal models: In mobile systems, external code may be executed at a

user’s machine and user’s private code may be executed elsewhere in the

network. Therefore security and safety are important. Solid formal models

like the calculi discussed above are the key to formal reasoning about such

properties of programs [60].

• Architecture Independent: Mobile languages designed to work on global

distributed systems, must be able to communicate code between machines

of different architectures and operating systems. The usual approach for

communicating computation on heterogeneous networks is by compiling

programs into architecture-independent byte-code [132].

• Other desirable features are the same as those which we have discussed for

calculi such as security and failure handling.

CHAPTER 2. BACKGROUND 13

Mobile language can be imperative such as JavaGo [109] and Java Voyager

[100], or functional such as Mobile Haskell [38], Nomadic Pict [132], Facile [49,

120], MobileML [60], and Jocaml [44]. These languages will be introduced in the

following sections.

2.1.4 Java Voyager

Voyager [100] supports weak mobility, and a range of mobility functions that

enable communication between Voyager, SOAP, CORBA, Remote Method In-

vocation (RMI) and Distributed Component Object Model (DCOM) objects.

Voyager also includes an activation framework for mobile agent technology. Its

dynamic proxy generation removes the need for manual stub generation. Remote

class-loading simplifies deployment and management of application classes.

Voyager[100] provides a set of basic and advanced services and features for

distributed and mobile application development. The moveTo primitives indicates

program migration in Voyager, and causes the following sequence of events to

occur.

1. Any messages that the object is currently processing are allowed to complete

and any new messages that arrive at the object are suspended. Mobility

can only detect method calls that are made through Voyager Proxy objects,

so no attempt may be made to move an object that might be executing

methods that were invoked directly.

2. The object and all of its non-transient parts are copied to the new location

using Java serialization, ignoring pass-by-reference tags. An exception is

thrown when any part of the object is not serializable or when a network

error occurs. To avoid copying a particular part as an object, a proxy to

the part is stored instead.

3. The new addresses of the object and all of its non-transient parts are cached

at the old location.

4. The old object is destroyed.

CHAPTER 2. BACKGROUND 14

5. Suspended messages sent to the old object are resumed.

6. When a message sent via a proxy arrives at the old address of a moved

object, a special exception containing the object’s new address is thrown

back to the stale proxy. The proxy traps this exception, rebinds to the

new address, and then resends the message to the updated address. If

the program at the old location crashes before a stale proxy is updated,

the stale proxy is unable to successfully rebind and a message sent via the

proxy generates an exception.

7. moveTo returns after the object is successfully moved or when a mobility

exception occurs. If an exception occurs, the old object is restored to its

original condition, suspended messages are resumed, the exception occurs,

the old object is restored to its original condition, suspended messages are

resumed, and the exception is rethrown wrapped in a MobilityException.

An example of mobility in Voyager is shown in Figure 2.1. This program is started

in location “surya.macs.hw.ac.uk” at port “7000”, and is sent to another location

“jove” at port “8000”, where it prints out “hello world”.

2.1.5 JavaGo

JavaGo[108] is an extension of Java which support strong mobility. It is a toolkit

that enables a Java program to migrate across computers, preserving execution

state. JavaGo allows program execution including the call stack to be suspended

at arbitrary program points, to be transmitted to another remote computers, and

to be resumed there. In other words, JavaGo enables transparent migration for

Java programs. The programmer can control the code to be transmitted. One

of the advantages of JavaGo is that migration can be performed with any Java

virtual machine .

The migration concept in JavaGo is simple, because it is implemented com-

pletely on JavaRMI and thus does not require complicated infrastructures. It also

guarantees that the execution state is completely preserved on migration [109].

CHAPTER 2. BACKGROUND 15

public class Mobility{

public static void main(String[] args){

try{

Voyager.startup("7000");

// create a local drone

IDrone drone = (IDrone) Factory.create("Drone");

// get/add mobility facet

IMobility mobility = Mobility.of(drone);

// move the drone to and from the remote program

mobility.moveTo("//jove.macs.hw.ac.uk:8000");

drone.print("hello world");

}

catch(Exception exception){

System.err.println(exception);

}

Voyager.shutdown();

}

}

Figure 2.1: Mobility Example in Voyager

In JavaGo the programmer can describe flexible migration using three lan-

guage primitives (go, undock and migratory).

Starting Migration by Using go

Migration takes place by executing a go statement. The mobile “Hello” example

in JavaGo is as follows.

go ("//jove:2001/JavaGoExecutor");

System.out.println ("Hello!");

The argument of a go statement is the name of a migration server registered in

the JavaRMI registry. The migration server is an object that manages migration.

When the go statement is executed, the execution state and object are transmit-

ted to the destination host, where the object continues executing just after the

go migration.

JavaGo allows the transmission of recursive function invocations. For exam-

ple, in Figure 2.2 the migratory method fib computes a Fibonacci number by

CHAPTER 2. BACKGROUND 16

boolean Moved = false;

public migratory int fib (int n) {

if (n == 0) {

if (!Moved) {

go ("//jove:2001/JavaGoExecutor");

Moved = true;

}

return 1;

}

else if (n == 1)

return 1 ;

else

return fib (n-1) + fib (n-2);

}

Figure 2.2: Mobility Example in JavaGo

recursively invoking itself. During the computation, fib migrates only once, that

is, at the point where the execution stack is the deepest.

Controlling Transparency by Using undock

An undock statement serves as a marker that specifies the range of the area to

be migrated in the execution stack. It makes it possible to control migration

transparently. When the go statement in the undock statement is executed, the

code after the go resumes executing at the destination host, while the statements

after the undock statement are currently executed on the departure host.

undock {

go ("//jove:2001/JavaGoExecutor");

system.out.println ("Hello!"); \\ on the destination host

}

system.out.println ("bye!"); \\on the departure host

Declaring Method by Using migratory

When migration takes place in the context of a method, the method itself must

be declared as such using the migratory primitive. That is, the go statement and

CHAPTER 2. BACKGROUND 17

the invocation of a migratory method must be written in a migratory method. If

they are put in a non-migratory method, they must be enclosed within an undock

statement.

2.1.6 Other Imperative Languages

Telescript[128], developed by General Magic, is a pioneer mobile language. It is

an object-oriented language conceived for the development of large distributed

applications. Security has been one of the most important factors in this language,

together with a focus on strong mobility. In Telescript a programmer can describe

migration by writing “go destination”.

Obliq[21], developed at DEC, is an untyped, object-based, lexically scoped,

interpreted language. Obliq allows for remote execution of procedures by means

of execution engines. A thread in Obliq can request the execution of a procedure

on a remote execution engine. Obliq supports weak mobility. Migration in Obliq

is accomplished in two steps: first the object is cloned in the remote engine and

then the calls to the remote object are redirected to the original object using

redirect. The clone operation creates a new object with the same field names

and values as the argument object. Obliq is a language designed to work in local

area networks and not for wide area networks, such as the Internet[22].

Java Aglets [74] and Sumatra [7] are Java based languages. The Java Aglets

API extends Java with support for weak mobility[48]. Aglets are threads in a

Java interpreter. The API provides the notion of context which provides a set

of basic services, e.g., retrieval of the list of aglets currently contained in that

context or creation of new aglets within the context. Java Aglets provides two

migration primitives: dispatch which make the aglet to go to the destination and

retract which forces an aglet to come to the context where retract is executed.

Sumatra, developed at the University of Maryland, is a Java extension. In this

language programs are able to adapt to resource changes by exploiting mobility.

Sumatra provides support for strong mobility of Java threads.

CHAPTER 2. BACKGROUND 18

These six languages are imperative. Functional languages which support mo-

bility are described in the next few sections.

2.1.7 MobileML

MobileML[60] is a programming language based on SML[58] which has a well-

founded theoretical basis. The main features of MobileML include transparent

migration and dynamic linking with distributed resources by means of contexts.

The notion of contexts can describe various forms of interactions between mobile

code and environments at the destination nodes. In MobileML, if a program is

moved to somewhere else, say destination l, the go expression is as:

go l;

A context is a program expression with holes in it. The basic operation for a

context is to fill its hole with an expression. For example, consider the following

context:

let x = 3 in 1 + Hole

If its hole is filled with (x*2), the expression “let x = 3 in 1 + (x*2)” can be ob-

tained. In this expression, x in (x*2) is bound by the let-construct. In MobileML,

mobile code travels on a network, interacting with (being provided in the holes

of) contexts local to nodes. A destination is designated by the name of a context

and its hole. When a variable in a piece of mobile code is dynamically bound with

some value by a context, we say the value is assimilated through the variable

by the mobile code. Such a variable is called an assimilation variable denoted

by x’. Assimilation is the term for dynamic binding. For example, evaluating an

expression

let f = λx.x + 1 in (go l; (f a’))

causes the code of (f a’) to migrate to the context designated by l. If the

context l is

let a = 3 in Hole

CHAPTER 2. BACKGROUND 19

then,

let a = 3 in ((λx.x + 1)a)

will be evaluated, and the value 3 will be assimilated through a into (f a’).

An example of the mobile Hello program in MobileML is as follows. In this

example, a server is started at location “//jove.macs.hw”. The client program

looks for the server, moves to it, and then print out “Hello!” at the server side.

On the server side:

context ser with HELLO = () end;

register ser as "Ser" with "//jove.macs.hw";

On the client side:

fun print_hello () =

let val locs = ["//jove.macs.hw/Ser:HELLO"]

in

(go locs; print_string "Hello!")

end;

2.1.8 Nomadic Pict

Nomadic Pict is a strongly-typed programming language based on the nomadic

Pi-calculus. The language allows the construction of distributed programs struc-

tured in terms of mobile agents – units of executing computation that can migrate

between machines. Communication in Nomadic Pict is location independent, so

agents can communicate after migrating [132].

The language has a two-level architecture. The low level consists of well-

understood, location-dependent primitives for agent creation, the migration of

agents between sites, and the communication of location-dependent asynchronous

messages between agents[131]. The high-level language adds location-independent

(location − transparency) communication, so migrating processes can request

identical kernel services wherever they reside and distributed objects can be in-

voked without knowing their physical location[132].

CHAPTER 2. BACKGROUND 20

The main entities of the language are sites, agents and channels. Those have

the same meaning as in Nomadic π-Calculi, see section 2.1.2.

The language inherits a rich type system from Pict[93], including higher-order

polymorphism, simple recursive types and sub-typing. It adds new types site,

agent of site and agent name [131].

Below is an example of a mobile agent which say “Hello” to a server in No-

madic Pict. The application is implemented with three classes of agent: the

CLs(clients), which migrate from site to site; Server agent, which are static and

are used to call clients; and a single name server agent names, which maintains a

lookup table from the textual keys of clients to their internal agent names. They

interact using location-independent communication on channel names.

registCL : ^ [String Agent]

serverCL : ^ [String Agent Site]

moveOn : ^ Site

mid : ^ String

On the client side, the CL has four parallel components: a registration message,

a message sent to another CL, a replicated input that receives data from other

CLs and prints it, and a replicated input that receives migration commands and

executes them.

agent CL1 =

(registCL@NameServer!["myCL" CL1]

| mid@CL2!"Outgoing data stream"

| mid?*d = print ! (+$ "Incoming:" d)

| moveOn ?* s =

(migrate to s (print !"Hello!")))

The name server maintains a map from strings to agent names and receives

new mapping on registCL. The map is stored as an output on the internal

channel names.

new names : ^ (Map String Agent)

CHAPTER 2. BACKGROUND 21

(names ! (Map.make ==)

| registCL?*[descr CL] = names?m = (names ! (map.add m descr CL))

| serverCL?*[descr Se S] = names? m =

(switch (map.lookup m descr) of

{Found>CL:Agent} -> moveOn@CL!s

end | names!m))

On the server side, the Server at site s gets strings from the local console,

sending them as requests to the name server.

agent Server =

val CLname = (sys.read_line [])

(severlCL@NameSever![CLname Server s])

The whole example is based on the PA application in [131].

2.1.9 Mobile Haskell

Mobile Haskell (mHaskell) [37] is an extension of Haskell [1, 119], a purely func-

tional lazy language, and was designed to facilitate the construction of distributed

mobile software. Mobile Haskell extends Concurrent Haskell [92] with higher or-

der communication channels called Mobile Channels (MChannels), that allow the

communication of arbitrary Haskell values including functions, IO actions and

channels. The main features are:

• mHaskell supports the construction of open systems, enabling programs

to connect and communicate with other programs and to discover new re-

sources in the network.

• mHaskell is designed to run on heterogeneous networks.

• mHaskell takes a hybrid approach, combining byte-code and machine code.

This gives the advantage of having much faster code than using only byte-

code.

CHAPTER 2. BACKGROUND 22

data MChannel a -- abstract

type HostName = String

type ChanName = String

newMChannel :: IO (MChannel a)

writeMChannel :: MChannel a -> a -> IO ()

readMChannel :: MChannel a -> IO a

registerMChannel :: MChannel a -> ChanName -> IO ()

unregisterMChannel :: MChannel a -> IO()

lookupMChannel :: HostName -> ChanName -> IO (Maybe (MChannel a))

Figure 2.3: Mobile Channels in mHaskell

The communication primitives in Mobile Haskell are MChannel primitives, shown

in Figure 2.3.

• The newMChannel function is used to create a mobile channel and the

functions writeMChannel and readMChannel are used to write/read data

from/to a channel. MChannels are synchronous: when a value is written to

a channel the current thread blocks until the value is received in the remote

host. In the same way when a readMChannel is performed in an empty

MChannel it will block until a value is received on that MChannel.

• The functions registerMChannel and unregisterMChannel register/unregister

channels in a name server. Once registered, a channel can be found by other

programs using lookupMChannel which retrieves a mobile channel from the

name server.

• The Maybe type in Haskell has two values: Nothing and Just a, so if

the lookup finds a MChannel registered with ChanName, it returns Just

mchannel, or it returns Nothing otherwise.

• A name server is always running on every machine of the system and a chan-

nel is always registered in the local name server with the registerMChannel

function. MChannels are single-reader channels, so only the program that

created the MChannel can read values from it. Values are evaluated to

normal form before being communicated.

CHAPTER 2. BACKGROUND 23

Figures 2.4 and 2.5 show a simple communication example of Mobile Haskell.

In this example the client sent a message, which print “Hello”, to a server. The

first program starts by creating a new MChannel for the result. Figure 2.4 shows

the client side code, and Figure 2.5 shows the server side code.

main = do

mch <- newMChannel

registerMChannel mch "mainmch"

sendMobile mobile mch "ushas.macs.hw.uk"

where

mobile = do

print ("Hello ")

sendMobile:: IO() -> MChannel Int -> HostName -> IO Int

sendMobile comp mch host = do

mc <- lookupMChannel host "servermch"

case mc of

Just nmc -> writeMChannel nmc comp

result <- readMchannel mch

return result

Figure 2.4: Mobility Example in mHaskell (Client Side)

main = do

smch <- newMChannel

registerMChannel smch "servermch"

readMchannel smch

Figure 2.5: Mobility Example in mHaskell (Server Side)

2.1.10 Jocaml

Jocaml is an extension of Objective Caml 1.07 [76], a typed programming lan-

guage in the ML family with a mix of functional, imperative, and object-oriented

features. It extends OCaml with support for concurrency and synchronisation,the

distributed execution of programs, and the dynamic relocation of active program

fragments during execution.

CHAPTER 2. BACKGROUND 24

OCaml has several features that are strongly relevant for mobile computation

[44]:

• Programs are statically typed. This is important in distributed systems,

where there are many opportunities to assemble inconsistent pieces of soft-

ware, and where debugging runtime type errors is problematic.

• As a programming environment, OCaml provides both native-code and

byte-code compilers, with separate compilation and flexible linking.

• The OCaml runtime has good support for system programming, such as

the ability to marshal and unmarshal any data types, even between hetero-

geneous platforms.

The programming model of Jocaml is based on the join calculus[25], and uses ML’s

function bindings and pattern-matching on messages to express local synchronisa-

tions. Local synchronisation means that messages always travel to a set destina-

tion, and can interact only after they reach that destination[44]. The expressions

and examples in this section are from Fourent’s Jocaml user’s manual[66].

Jocaml Programming

Jocaml programs are made of processes and expressions. Roughly, processes are

executed asynchronously and produce no result, whereas expressions are evalu-

ated synchronously and produce values. Processes communicate by sending mes-

sages on channels (port names). Messages carried by channels are made of zero

or more values, and channels are values themselves. In contrast with other pro-

cess calculi (such as π-calculus), channels and the processes that listen on them

are defined in a single language construct. This allows consideration of channels

as functions when they have the same usage.

Channels are first-class values in Jocaml, with a communication type, which

can be used to form expressions and send messages. There are two important cat-

egories of channels: asynchronous and synchronous. Synchronous channels return

CHAPTER 2. BACKGROUND 25

values, whereas asynchronous channels do not. The definition of an asynchronous

channel echo is

let def echo! x = print_int x

In this definition, the presence of ! in the channel name indicates that this

channel is asynchronous and it is not possible to know when the actual printing

takes place. The definition of a synchronous channel print is

let def print x = print_int x;reply

Since there is no ! at the end of the defined name, print is synchronous, thus it

must return a value. It uses a reply construct whose semantics is to send back

some values (here zero) as result.

Processes are one of the important syntactic classes of Jocaml. The most ba-

sic process sends a message on an asynchronous channel. Since only declarations

and expressions are allowed at the top-level, processes are turned into expressions

by “spawning” them, so the keyword spawn is introduced followed by a process

in “{}”, e.g.

spawn {echo 1}

In this example echo 1 is a processes, and spawn {echo 1} is an expression.

Expressions are another important syntactic class of Jocaml. In contrast

with processes, expressions evaluate to some results. Expression can occur at the

top-level. Apart from OCaml expressions[76], the most basic expression sends

some value on a synchronous channel, which behaves like a function.

let x = 1 ;; (* an OCaml expression *)

print x ;; (* sends value x on synchronous channel print *)

spawn { print 1; print 2; echo 3} ;; (* spawn expression *)

Distributed and Mobile Programming

Jocaml programs can be distributed amongst numerous machines, possibly run-

ning different systems; new machines may join or quit the computation. At any

CHAPTER 2. BACKGROUND 26

time, every process or expression is running on a given machine. However, they

may migrate from one machine to another, under the control of the language. In

Jocaml, the execution of a process (or an expression) does not usually depend

on its localisation i.e. the scope for defined names and values is independent of

their localisation. So whenever a port name appears in a process, it can be used

to form messages without knowing whether this port name is locally or remotely

defined. So far, locality is transparent. When a function is sent to a remote

machine, its code and the values for its local variables are also sent there, and

any invocation will be executed locally on the remote machine (Strong mobility).

When a synchronous port name is sent to a remote machine, only the name is

sent. Invocations on this name will forward the invocation to the machine where

the name is defined, much as in a remote procedure call (Weak mobility). Jocaml

offers a go primitive to indicate program migrations.

In Jocaml locations are units of locality. A location contains a collection of

definitions and running processes “at the same place”. Every location is given a

name, and these location names are first-class values. They can be registered to

the name server.

Locations and functions should register in Name− sever, so that the local or

remote programs can use them. The interface of the name server consists of two

functions to register and look up arbitrary values in a “global table” indexed by

plain strings. A shell command jocns can launch the name server.

The following is an agent-based mobile program in Jocaml. On the server

side, a server here is created, and registered in the name server.

let loc here do {} ;; (* create a new empty location "here" *)

Ns.register "here" here vartype; (* register in name server *)

Join.server () (* running as server *)

On the client side, mobile looks for the sever here, moves to it, and prints out

“Hello!” at the server.

let loc mobile

do {

CHAPTER 2. BACKGROUND 27

let here = Ns.lookup "here" vartype in /* look up the server */

go here; /* migrate to server "here" */

print_string ("Hello!");

}

When the migration happens there are only three messages exchanged between

the machines: one for looking up the server, one for the answer, and one for the

migration.

There are several other functional mobile languages, for example Facile [49],

which extends Standard ML [83] with primitives for distribution, concurrency,

and communication.

2.1.11 Mobile Language Summary

Table 2.2 summarises the properties of the mobile languages described above.

Languages Mobility Internet- Location Primitive(s) Calculi failure Security
Scale Aware handling

JavaGo Strong Yes Yes go - Yes Yes
MobileML Strong Yes Yes go λ Yes Yes
Nomadic Pict Strong Yes Yes migrate Nomadic π No Yes

Weak channels
mHaskell Strong Yes Yes moveto - No Yes
Jocaml Strong Yes Yes go Join Yes No
Voyager Weak Yes Yes moveTo - Yes Yes

Table 2.2: Summary of Languages

Java Voyager support weak mobility for Java programs. The programmer can

use the moveTo function to send the program code to a remote location and the

program will start at that location automatically.

JavaGO supports strong mobility (transparent migration) for Java programs.

The programmer can control the area to be transmitted. JavaGo guarantees that

the execution state is completely preserved on migration[109].

MobileML is based on SML[58], and has a well-founded theoretical basis. The

main features of MobileML include transparent migration (strong mobility).

Nomadic Pict is based on the nomadic Pi-calculus. The language allows one

to build distributed programs structured in terms of mobile agents which support

CHAPTER 2. BACKGROUND 28

strong mobility [131].

mHaskell supports both weak and strong mobility. For weak mobility, it has

the MChannel communication primitives. For strong mobility, it provides the

moveTo primitive.

Jocaml supports concurrency and synchronisation, the distributed execution

of programs (weak mobility), and the dynamic relocation of active program frag-

ments during execution (strong mobility). The programming model of Jocaml

is based on the join calculus[25]. Programs may migrate from one machine to

another, under the control of the go primitives.

Java Voyager, JavaGo, and Jocaml are selected as the implementation lan-

guages in this thesis, for reasons covered in Sections 3.4.1, 4.2.6, and 4.4.1.

2.2 Agents & Autonomous Systems

2.2.1 Agents

An agent is “an encapsulated computer system that is situated in some envi-

ronment, and that is capable of flexible, autonomous action in that environment

in order to meet its design objectives” [122]. In more detail[67], agents are:

(i) clearly identifiable problem solving entities with well-defined boundaries and

interfaces; (ii) situated (embedded) in a particular environment– they receive in-

puts related to the state of their environment through sensors and they act on the

environment through effectors; (iii) designed to fulfil a specific role– they have

particular objectives to achieve and have particular problem solving capabilities

(services) that they can bring to bear to this end; (iv) autonomous– they have

control both over their internal state and over their own behaviour; and (v) ca-

pable of exhibiting flexible problem solving behaviour in pursuit of their design

objectives– they need to be both reactive (able to respond in a timely fashion to

changes that occur in their environment) and proactive (able to opportunistically

adopt goals and take the initiative).

From this definition four characteristics of agents can be identified, which are

CHAPTER 2. BACKGROUND 29

situatedness, autonomy, adaptivity, and sociability[116].

• Situatedness means that the agent receives some form of sensory input from

its environment, and it performs some action that changes its environment

in some way. The physical world and the Internet are examples of environ-

ments in which an agent can be situated.

• Autonomy means that the agent can act without direct intervention by

humans or other agents and that it has control over its own actions and

internal state.

• Adaptivity means that an agent is capable of reacting flexibly to changes

in its environment, taking goal-directed initiative when appropriate, and

learning from its own experience, its environment, and interactions with

others.

• Sociability means that an agent is capable of interacting in a peer-to-peer

manner with other agents or environments.

The four properties uniquely characterise an agent. Because of the property of

autonomy, agents are also called autonomous agents, or intelligent agents in some

research e.g. [104, 134, 5, 133].

Another property which should be emphasised is mobility. Mobility is the

ability of an agent to transport itself from one machine to another and retain

its current state. Agents with mobility are called mobile agents. Mobility is an

orthogonal property of agents, that is, not all agents are mobile. Agents that

do not or cannot move are stationary agents. A stationary agent executes only

on the system on which it begins execution. If it needs information not on that

system or needs to interact with an agent on another system, it typically uses

a communication mechanism, such as remote procedure calling. In contrast, a

mobile agent is not bound to the system on which it begins execution. It is free

to travel among the hosts in the network. Created in one execution environment,

it can transport its state and code with it to another execution environment in

the network, where it resumes execution. The term state typically means the

CHAPTER 2. BACKGROUND 30

attribute values of the agent that help it determine what to do when it resumes

execution at its destination. Code in an object-oriented context means the class

code necessary for an agent to execute[75].

A mobile agent has the ability to transport itself from one system in a network

to another in the same network. This ability allows it to move to a system

containing an object with which it wants to interact and then to take advantage

of being in the same host or network as the object. The interest in mobile agents

is not motivated by the technology but rather by the benefits agents provide for

creating distributed systems[75].

When adopting an agent-oriented view of the world, it soon becomes ap-

parent that most problems require or involve multiple agents: to represent the

decentralised nature of the problem, multiple loci of control, multiple perspec-

tives, or competing interests [41]. The agent paradigm offers a new promise for

building complex software because of the abstraction and flexibility it provides.

These systems are conceived as organizations of coordinating agents for example

multi-agent systems. “A multi-agent system (MAS) is a system composed of a

population of autonomous agents, which cooperate with each other to reach com-

mon objectives, while simultaneously each agent pursues individual objectives”

[134]. In order for a MAS to solve common problems coherently, the agents must

communicate amongst themselves to coordinate their activities. Coordination

and communication are central to MAS, for without them any benefits of inter-

action vanish and the group of agents quickly degenerates into a collection of

individuals with chaotic behaviour. MAS is applied as a technology for solving

problems in an increasingly wide range of complex applications and is inspired

by models from biology e.g. Swarm [62]. Some of the MASs are autonomous

systems e.g ant algorithms [82].

2.2.2 Autonomous Systems

Autonomous systems are also called autonomic computing systems, and a defi-

nition has been given by IBM [70]: “autonomic computing system can manage

CHAPTER 2. BACKGROUND 31

themselves given high-level objectives from administrators” [70]. The essence of

autonomic computing systems is self-management, the intent of which is to free

system administrators from the details of system operation and maintenance.

Autonomic systems will maintain and adjust their operation in the face of chang-

ing components, workloads, demands, and external conditions and in the face of

hardware or software failures. Four aspects of self-managing are: [70, 90]

• Self-configuration: Automated configuration of components and systems

follows high-level policies. An autonomous computing system must be able

to install and set up software automatically. Self-configuration will use

adaptive algorithms to determine the optimum configurations.

• Self-optimization: Components and systems continually seek opportunities

to improve their own performance and efficiency. An autonomous system

will never settle for the status quo. It will be constantly monitoring pre-

defined system goals or performance levels to ensure that all systems are

running at optimum levels. Self-optimization will be the key to allocating

resources determining when an increase in processing cycles is needed, how

much in needed, where they are needed, and for how long.

• Self-healing: The system automatically detects, diagnoses, and repairs lo-

calized software and hardware problems. Autonomous computing systems

will have the ability to discover and repair potential problems to ensure

that the systems run smoothly.

• Self-protection: The system automatically defends against malicious at-

tacks or cascading failures. It uses early warning to anticipate and pre-

vent system-wide failures. Autonomous systems must identify, detect, and

protect valuable assets from threats. They must maintain integrity and

accuracy and be responsible for overall system security.

Different autonomic systems may have some or all these four aspects. For exam-

ple, the Autonomic Job Scheduling Policy(ASP)[6] for Grid Computing is capa-

ble of dynamically scheduling resources while at the same time being self-healing

CHAPTER 2. BACKGROUND 32

and self-protecting to various types of failures. ASP is a scheduling infrastructure

which adapt to changes in application or resource failures and is capable of proac-

tively detecting and rectifying potential faults as applications are executing[6].

ASP is demand-driven where nodes in the system look for work when their load

is below a given threshold.

An example of self-configuration has been presented in [79], where a component-

based programming framework has been presented to support the development

of autonomic applications in Grid environments. The framework builds on the

separation of composition (organization, interaction and coordination) aspects

from computation behaviours. It underlies the component-based paradigm, and

extends it to enable the computational behaviours of components as well as their

organizations, interactions and coordinations to be managed at runtime using

high-level rules.

This thesis focuses on Self-optimization. Autonomic systems will continu-

ally seek ways to improve their operation and to make themselves more efficient

in performance or cost. For example load management systems, which will be

described in Section 2.3, are self-optimization systems. The goal of load man-

agement systems are to assign to each node a number of tasks to improve the

performance of the application[91].

Autonomous mobile programs (AMPs), which will be introduced in Chapter 3,

are also self-optimization system. AMPs are aware of their processing resource

needs and sensitive to the environment in which they execute, and are able to

dynamically relocate themselves to minimise processing time in the presence of

varying external loads on shared processing elements.

2.2.3 Discussion

The concepts of agents and autonomous systems come together many times. The

property of autonomy of agents makes it easy to develop autonomous systems.

Many autonomous systems are agent-based i.e. the key abstraction used is that

of an agent[133]. Some agents in these autonomous systems are mobile, and can

CHAPTER 2. BACKGROUND 33

migrate from one location to another. A figure of the relation between agents,

autonomous systems and our work will be given in Section 3.2.

Many autonomous systems are using mobile agent technology, for example

ethological models e.g. ant algorithms which are distributed computations. In

ant algorithms[82], agents (ants) are looking for “food”. An ant algorithm is tries

to find the fastest path to get to the food, and uses the feedback of each mobile

agent to decide which path is better. As most autonomous mobile agent systems,

ant algorithms adapt the computation automatically.

2.3 Load Management Systems

As Casavant and Kuhl argue in[24], advances in hardware and software technolo-

gies have led to increased interest in the use of large-scale parallel and distributed

systems for large-scale applications. One of the biggest issues in such systems is

effective techniques for the distribution of processes on multiple locations. The

problem is how to distribute, or schedule, the processes amongst processing ele-

ments to achieve some performance goals such as minimising execution time.

Load Management is one branch of a family of global scheduling techniques

[24], where an attempt is made to truly balance the load of all locations in mul-

ticomputer, so load management is also called load balancing [24]. The goal of

load management is to assign to each location a number of tasks to improve the

performance of the application[91]. This thesis is concerned with load balanc-

ing in a large-scale network. In the this thesis load management refers to load

balancing. There are a number of ways to classify load management techniques.

The primary categories are static and dynamic [24].

2.3.1 Static/Dynamic Load Management

Static algorithms make scheduling decisions based on predictions of run-time

behaviours of programs at compile-time, so static techniques do not depend on

the state of the processors. Dynamic techniques rely on present and past states of

the processors, and distribute load among the hosts based on these states. As a

CHAPTER 2. BACKGROUND 34

result, dynamic techniques perform relatively better but have additional burdens

of communication and processing[89, 110].

Static Load Management

Typically, the goal of static load management is to minimise the overall execution

time of a program. Static load managements attempts to [110]:

• predict the program execution behaviour at compile time (that is, estimate

the process or task, execution times, and communication delays);

• allocate processes to processors.

The major advantage of static load management is that all the overhead of the

scheduling process is incurred at compile time, resulting in a more efficient ex-

ecution time environment compared to dynamic scheduling methods. But due

to possible conditions or network contention delays, predictions of run-time be-

haviours made at compile-time might deviate significantly from the real values

at run-time. Therefore static load management might make inappropriate de-

cisions and cause unpredictable performances degradation. Also, the time for

computation may depend on inputs not available at compile time.

Dynamic Load Management

Dynamic load management redistributes the tasks from heavily loaded proces-

sors to lightly loaded ones based on information collected at run-time. Dynamic

load management is particularly useful in a system consisting of a network of

workstations in which the primary performance goal is to maximise utilisation of

processing power instead of minimising execution time of the applications[10].

The advantage of dynamic load management over static load management is

that the system need not be aware of the run-time behaviour of the applications

before execution. The flexibility inherent in dynamic load management allows

for adaptation to the unforeseen application requirements at run-time [97]. But

due to the communication cost of load information collection and distribution,

CHAPTER 2. BACKGROUND 35

processing cost of schedule decision making and the communication cost for task

transfer, dynamic load management definitely incurs a non-zero run-time over-

head. But good dynamic load management algorithms always make these costs

minimized and would not invoke further load management process if the total

profit obtainable from load management does not significantly exceed the total

cost that may incur.

Activities in Dynamic Load Management

The activities which may happen during the execution of programs with dynamic

load management are as follows[78]:

a. measure the workload of individual processors;

b. exchange load information between processors;

c. check certain conditions for load imbalance and decide whether to perform

load balancing operations or not;

d. make a load management decision on how many tasks migrate from which

processors to which processors;

e. choose appropriate tasks and transfer them to the corresponding destination

processors.

The actual activities happening for different algorithms on differently designed

systems may be different. There are many issues involved in dynamic load man-

agement such as how to measure the load of a processor, how much load infor-

mation should be collected and where the processes should reside. These issues

are usually grouped into several policies. A typical dynamic load management

algorithm is defined by four inherent policies[39]:

• information policy: specifies the amount of load information made available

to job placement decision-markers.

• transfer policy: determines the conditions under which a job should be

transferred.

CHAPTER 2. BACKGROUND 36

• selection policy: decides which program(s) should be selected to move.

• placement policy: identifies the processing element to which a job should

be transferred.

These load management operations may be centralised in a single processor or

distributed amongst all the processing elements that participate in the load man-

agement process. Many combined policies may also exist[10], but for all those

policies some special process (load balancer) must make the decision when and

where to move rather than the applications deciding. So the programmer cannot

control the programs’ migrations.

2.3.2 Centralised & Decentralised Load Management

Dynamic load management can be classified into centralised and decentralised

management algorithms. The difference lies in where load information is stored.

In centralised networks all the data is kept in a single processor called the central

scheduler; in decentralised networks each processor maintains the load informa-

tion locally and sends out updated information to the other processors whenever

the data changes[137].

Centralised: A central node collects state information and constructs an es-

timate of the system state. The central node may be a globally shared file that

is accessed and updated by all nodes. This organisation has an advantage that it

incurs low overhead during estimation. The disadvantages are poor responsive-

ness of a central resource in a large-scale system resulting in poor scalability and

the failure-proneness [97].

Decentralised: In a decentralised organisation each node of a distributed

system is responsible for collecting state information and obtaining an estimate

of the system state. This type of organisation has higher availability in the

presence of failures, but it can potentially incur large overheads to maintain

accurate state information and therefore is not easily scalable to a large-scale

distributed computing system[97].

CHAPTER 2. BACKGROUND 37

Hybrid: A hybrid organisation combines both centralised and decentralised

organisations, inherits their properties, and attempts to extract advantages of

both. A hybrid organisation can be implemented in the case that nodes are

divided into clusters and state information is exchanged within and between

clusters[136].

2.3.3 Push & Pull Policies

Generally the selection and placement policies in a dynamic load management

system are combined together to decide “how is work distributed and balanced

between processors (where a job should be transferred)” [80]. There are two kinds

of selection and placement policy [80].

• In a Passive load distribution policy (Pull policy), idle locations have to

explicitly ask for work.

• In an active load distribution policy (Push policy), new activity are sent to

remote locations.

Pull policy , which is sometimes called work stealing, tries to minimise the over-

head during periods in which all processors are busy anyway. However, this may

yield an uneven load distribution. In contrast, push policy sends, by default, a

new thread to a remote processor for execution. Although this gives a more even

distribution it may yield a deterioration in the data locality of the system. In

both cases, however, it is desirable to have load information about other proces-

sors available. Obtaining such information may require significant communication

and therefore all machines have to find a compromise between the competing goals

of an even load distribution and a minimal amount of communication.

2.3.4 Preemptive & Non-Preemptive Load Management

Load management systems distribute the system workload among the locations

through transfer policies, which can be performed either non-preemptive or pre-

emptive [73, 107]. Non-preemptive transfer entails selecting a suitable location

CHAPTER 2. BACKGROUND 38

as the execution site for a process and initiating the process at that location. In

preemptive transfer, if another location should become a better execution site,

the process is transferred to that location, where it continues executing. So the

non-preemptive transfer only locates processes to a suitable location once before

the process is executing, however the preemptive transfer can relocate processes

during the run-time when a better location is available.

Preemptive transfer is more costly than non-preemptive but more flexible, as

it can migrate running processes from one location host to another. Research

to date indicates that preemptive transfer yields significant performance benefits

through the process migration facilities [73].

2.3.5 Dynamic Load Management Systems

Numerous dynamic load management systems e.g. [8], [94], and [52] have been

proposed. This section introduces two of the most popular systems.

Load Sharing Facility (LSF)

LSF[94] is a general purpose distributed queueing system that unites a cluster of

computers into a single virtual system to make better use of the resources on the

network. Locations from various vendors can be integrated into a system, which

can find the best location to run serial and parallel programs.

LSF can automatically select locations in a heterogeneous environment based

on the current load conditions and the resources requirements of the applications.

With LSF, remotely run jobs behave just like jobs run on the local location.

LSF consists of LSF Base and LSF Batch. LSF Batch is a distributed batch

system built on top of LSF Base to provide batch job scheduling services to users.

It accepts user jobs and holds them in queues until suitable locations are available.

Location selection is a function of up-to-date load information stored in the load

information manager(LIM) [52].

The LSF Base must have LSF Batch to provide job scheduling and resource

allocation necessary for grids. LSF Base provides load sharing and distributed

CHAPTER 2. BACKGROUND 39

processing service such as location selection, resource information, and transpar-

ent remote execution.

The LIM daemon monitors the locations’ load and send this information to

the other LIM daemons on the cluster. One of the LIMs will assume the role of

master and coordinate the behaviour of the cluster. If the machine it lives on

dies then one of the other LIMs will take over the coordinating role. This will

continue to happen until only one location is left on the cluster thus providing

a fault tolerance mechanism. The RES daemon allows jobs to be started on the

machine and also provides a mechanism for running interactive jobs[11]. So LSF

is using pull policy to allocate jobs.

Sun Grid Engine (SGE)

Sun Grid Engine[52] is distributed management software that optimises utilisation

of resources in heterogeneous networked environments. It distributes computa-

tional workload to those available systems. So Sun Grid Engine is using a push

policy to allocate jobs.

The functionality of a SGE system is performed by four daemons[52].

• The master daemon(information policy) maintains tables about locations,

jobs, system load, and any other informations.

• The scheduler daemon(transfer and placement policy) maintains an up-to-

date view of a grid’s status. It determines which jobs are dispatched to

which queues and then forwards its decisions to the master daemon, which

initiates the required actions.

• The execution daemon(information policy) is responsible for the queues as-

sociated with the location on which it runs, and it periodically forwards the

status of jobs and the load on its location to the master daemon.

• The communication daemon communicates over a TCP (Transmission Con-

trol Protocol) port [3]. It is used for all communication among SGE com-

ponents.

CHAPTER 2. BACKGROUND 40

2.4 Cost Models

A performance model is commonly referred as a cost model [81]. Usually, cost

models are used to estimate the cost of a program in terms of desired metrics such

as time[101], and space (memory)[63, 64]. There are two levels of cost models

in general: computation cost models, which estimate the sequential computation

time for programs; and coordination cost models, which predict the coordina-

tion and communication behaviours of parallel, distributed and mobile programs.

Usually, coordination cost models take costs from the computation cost models

into account to make better coordination decisions.

2.4.1 Computation Cost Models

According to [27, 26] there are two basic approaches by which one can estimate the

execution time of a program with a given data, running on a particular computer.

• Dynamic analysis or profiling entitles measuring the execution time of the

program on some data set on some machine. This approach uses an in-

ternal clock of the machine and benchmarks the execution of the program.

Experimental approaches are used in measuring execution time of the pro-

gram. So in this thesis the cost models for experimental approaches are

called dynamic cost models. In this approach the benchmark is machine-

specific. When the same program is run on another machine, a new set of

benchmarks is needed.

• Static analysis determines the time to execute the given program by using

mathematical reasoning on the source code. So this approach consists of

carefully examining the program source and the data to establish a machine-

independent analytical formula representing the program’s performance.

The analytical formula which are built in this approach are called static

cost models.

CHAPTER 2. BACKGROUND 41

In [16, 15] a hybrid technology to obtain execution times has been introduced

using a probabilistic approach to combine both measurement and analytical ap-

proaches into a model for estimating the execution time of code. A probabilistic

approach builds on experimental measurements by measuring costs for repeated

executions over a suite of test cases. Under the assumption that the test suite

provides representative data, it is then possible to construct statistical profiles

that can be used to determine execution time to some stated probability [19].

This section introduces some static cost models which are based on perfor-

mance evaluation using computer-assisted analytical techniques. In Chapter 6

we will propose a cost calculus which is related to the static cost models here.

The analytical approach can be subdivided into two categories: macroanalyses

and microanalyses. In performing a macroanalysis, a dominant operation of the

algorithm is chosen to express the times. The O notation [72] is often used for

this purpose. Aho et al. in [9] describe many macroanalyses of algorithms. In a

microanalysis, program execution times are expressed as functions of the times

to perform elementary operations that exist in most computers, e.g., addition,

assignment, subscripting, and so on.

Many cost models have been built using microanalysis. For example, in [26, 27]

Cohen et al. built time-formula to express execution times as functions of vari-

ables representing the time needed to perform common, elementary operations,

e.g., addition, assignment, subscripting, loop overhead.

The basic way to build a static cost model in a microanalysis system is by

using the abstract syntax tree. In the models which were built in [26, 27], the

cost of an expression is the sum of the cost of the subexpressions, which are all

derived from the nodes in the abstract syntax tree. Other cost models have been

built by adding different properties to the abstract syntax tree. By adding size

information into the cost model to get latent cost, in [101] Reistad and Gifford

used static cost for data-dependent expressions, which describes the execution

time of a procedure in terms of its inputs. In particular, a procedure’s static

dependent cost may depend on the size of input data structures and the cost of

input to first-class procedures. This system produces symbolic cost expressions

CHAPTER 2. BACKGROUND 42

that contain free variables describing the size and cost of the procedure’s inputs.

In [80], Loidl has built a sized time cost model for language L also using size

information. In this model, the size information is attached to its type.

Different static cost models have been built for different systems. Early work

on these problems includes that of Cohen and Zuckerman, who consider cost anal-

ysis of Algol-60 programs [28]; Wegbreit, whose pioneering work on cost analysis

of Lisp programs addressed the treatment of recursion [125]; and Ramshaw [98]

and Wegbreit [126], who discuss the formal verification of cost specifications.

Many of the cost analysis use semantics-based methods e.g Rosendahl [103] uses

abstract interpretation for cost analysis, and Wadler [124] uses projection analy-

sis. In [101] Reistad and Gifford built static cost for data-dependent expressions.

Computation time cost models can be used for different application predica-

tions, e.g. worst case execution times[95], parallel algorithms, and so on. For

example in [19], a cost model is used to predict worst case execution times for

Hume [56, 57] programs. In [15], worst case execution time has been analysed for

Java Byte Code.

2.4.2 Parallel Coordination Models

Section 2.4.1 has discussed cost models for sequential computation. The coordi-

nation cost models take costs from the computation cost models into account to

make better coordination decision for parallel, distributed, and mobile programs.

This section uses parallel programming models as examples to explain the

coordination cost models for parallel algorithms, as these cost models are more

developed than these for distributed and mobile programming.

Parallel programming involves mapping a program to a multiprocessor ma-

chine. It is a complex activity involving many decisions about task allocation,

scheduling, and communication. There are three approaches which can produce

parallel algorithms[99, 112].

CHAPTER 2. BACKGROUND 43

• parallelising compilers for sequential languages: In this approach, the com-

pilers create parallel code from existing sequential programs, so the pro-

grammer has no or little involvement in the parallelisation process. The

big problems of this approach are that not all the available parallelism can

be detected because the compilers must adopt a conservative approach in

generating parallel code, in order to ensure its correctness, and the code

obtained by parallelising the sequential program may not be the most effi-

cient.

• explicit parallel programming languages: These languages include constructs

that allows the programmers to explicitly create processes that can be exe-

cuted in parallel, and to manage the interactions between them. Languages

such as Ada[68] and Concurrent Pascal[59] have parallel constructs inte-

grated into them. Portable message passing libraries such as MPI[96] and

PVM[13] make it possible to write portable parallel programs using sequen-

tial languages like C.

• implicit parallelism, in particular in functional languages: Programs in these

languages are inherently parallel and there is no need for explicit parallel

constructs. Higher order functions in functional languages provide a pow-

erful control abstraction mechanism. Therefore, Cole [29] has proposed the

use of algorithmic skeletons as a technique to parallelise functional lan-

guages and to program parallel machines. The idea is to capture common

patterns of parallel computation in higher order functions. The major ad-

vantage of algorithmic skeletons is the portability of parallel programs writ-

ten using this approach[54]. For building algorithmic skeletons, cost models

are important for the efficiency of the parallelism. So the next section in-

troduces cost models for different skeletons.

2.4.3 Cost Models for Algorithmic Skeletons

Algorithmic skeletons encapsulate the expression of parallelism, communication,

synchronisation and embedding, and have an associated cost complexity [115].

CHAPTER 2. BACKGROUND 44

The skeleton’s cost complexity is calculated according to a particular cost model.

A skeleton can be costed so that the communication costs for the appropriate em-

bedding and the general cost formula under the particular cost model are provided

as a cost skeleton. Then the computation costs can be supplied as parameters

[115]. This provides a separation of the computation and communication costs

for skeletons. Most of the cost models for algorithmic skeletons have these two

parts.

Cost Models for map and fold

In [99] Rangaswami develops a parallel programming model called HOPP for

skeleton oriented programming. A HOPP program could comprise one or more

phase(s) where parallelism is exploited only within each phase. The parallelism in

each phase depends on the number of recognised functions in the phase itself. The

cost models for the recognised functions were used to statically analyse a given

HOPP program to determine the most cost effective parallel implementation for

a given architecture. In general, the cost of a program comprising of n phases is

given by:

Cost =

i=1∑

n

Cpi +

n−1∑

i=0

Ci,i+1 (2.1)

where Cpi is the cost of phase i and Ci,i+1 is the communication cost in case there

is a need for rearranging the output of phase i to suit the implementation of phase

i + 1. According to this general model, Rangaswami has developed cost models

for different algorithm skeletons e.g map, fold, scan, filter etc. on different

topologies such as linear array, 2-D Torus, and so on. The cost of map and fold

on linear array are given as an example.

The cost expression for the parallel implementation of map on any p-processor

topology is

Cmap =
n

p
Cf (2.2)

There are two parallel implementations of fold, s fold and g fold. s fold

is static fold, where the data size remains the same. g fold is growing fold,

where the size of the data changes as the fold is applied[106]. The costs for

CHAPTER 2. BACKGROUND 45

the two versions are different, because in the case of g fold, the size of the

data communicated increases at each step and must be accounted for in the

computation of the time for communication[99].

The cost expression for the parallel implementation of s fold on the linear

array is:

Cs fold = Cf(
n

p
− 1 + log p) + T 1

com(p − 1) (2.3)

and the cost expression for g fold is:

Cg fold = Cf(
n

p
− 1 + log p) +

log p−1∑

i=0

2iT
2i n

p
m

com (2.4)

In Equation 2.2, 2.3, and 2.4,

• n is the list size.

• p is the number of processors.

• Cf is the cost of the processing function

• Tm
com is the cost of communicating m elements of the list to a neighbour. It is

evaluated by Tm
com = K0+

1
k1

ms, where s is the size in bytes of each element

of the list, K0 and K1 are the startup cost to initiate the communication

and the cost to transfer data.

There are other cost models for parallel map and fold. Skillicorn and Cai have

developed a cost calculus for the Bird Meertens Formalism (BMF)[111]. In this

calculus the cost of implementing the map function in parallel has been built[113].

H. W. To has looked into optimising the combinations of algorithmic skeletons,

where combining skeletons have been proposed to capture the common pattern of

control flow. A set of primitive skeletons has been chosen e.g. map, and fold based

on the observation that many highly parallel applications exploit parallelism from

a large data structure, e.g. parallel abstract data types (PADTs) restricted (rlists)

and arrays. And performance models for map and fold have been built for these

in [121].

CHAPTER 2. BACKGROUND 46

Cost Models for Other Algorithmic Skeletons

There are also cost models for other parallel implementations of skeletons e.g.

divide and conquer (DC), FARM , and PIPE.

1. DC skeleton: Darlington et al.[31] have implemented the DC skeleton. The

performance/cost model for DC assumes the processors are organised into

a balanced binary tree and all processors will eventually be used as leaves.

The execution time for DC can be predicted using the formula:

tsolx =

log(p)−1∑

i=0

(tdivx/2i
+ tsetupx/2i

+ tcombx/2i
+ tcommx/2i

) + tseq
x/2log p

(2.5)

where tsolx is the time to solve a problem of size x, tdivx is the time to divide

a problem of size x, tcombx is the time to combine the two results, tsetupx and

tcommx is the time to solve a problem of size x sequentially.

Cole has described the time complexity of the H-tree, a well know layout

of a complete binary tree on a grid of processors, for an implementation of

the binary fixed divided and conquer (FDDC) skeleton in [29]. Campbell

has developed a model for parallel computation called CLUMPS in [115].

The modelling of DC under CLUMPS has also been presented in [29].

2. FARM skeleton: Darlington et al. have implemented FARM in a similar way

to their DC skeleton. The FARM consists of two major parts: one is a master

processor and the other is a worker processor(s). The model for a process

farm is:

tfarm = ts + R(te + 2tc) (2.6)

where Tsetup is the setup time taken to allocate processors to a skeleton. R

is the number of steps required to process the work pool. (ts is the skeleton

startup overhead. te) is the required time to solve a work packet. tc is the

communication time required to receive a result or send the data. Different

cost models for FARM have been described in [20] and [114].

3. PIPE skeleton: Darlington et al[31] have developed a performance model for

CHAPTER 2. BACKGROUND 47

pipeline (PIPE) skeleton which is:

tPIPE = ts + (tev + tc)(p + n − 1) (2.7)

Equation 2.7 resembles a general model for PIPE which predicts the total

execution time of a particular instance, where ts is the startup time, te is the

execution time for a stage for a single element, tc is the communication time

between stages, p is the number of stages and n is the number of elements

in the list.

2.4.4 Cost Model Summary

Cost estimation can be performed dynamically or statically. In the general case

it can not be performed entirely as a compile time analysis because costs might

depend on input data, and compile time analysis do not take the real time system

information into account. On the other hand, dynamic analysis risks increasing

a very large run time overhead[123] and is only accurate for a specific machine

and a specific set of input data.

The cost models in this thesis have two parts: compile time and run time

phases. Generic and problem specific coordination cost models for autonomous

mobile programs and autonomous mobility skeletons which are called at run time.

Static computation cost models are also built for a subset of Jocaml. The result

of this cost model is used as parameters in the coordination cost models.

2.5 Summary

How to share the resource in distributed systems is one of the most important

issues in computer science. This chapter has reviewed the concepts which relate

to the distributed resource sharing.

Mobile computation especially mobile languages give programmers control

over the placement of code or active computations across the network[71]. Using

mobile languages, programmer can write more flexible and efficient applications

in distributed systems. Section 2.1 has surveyed mobile languages. Jocaml, Java

CHAPTER 2. BACKGROUND 48

Voyager, and JavaGo are going to be used in Chapter 3, and 4 to built autonomous

mobile programs and autonomous mobility skeletons.

Autonomous mobile programs are both agents and autonomous systems, and

the properties of agents and autonomous systems have also been introduced in

Section 2.2 with some examples. The agents community has focused on au-

tonomous problem solving, which can act flexibly in uncertain and dynamic envi-

ronments. Mobile languages provides efficient tools to make the agent move more

flexibly in large scale networks, which make it possible to build self-managing sys-

tems (autonomous systems) for resource sharing using agent technology.

Another big issues in distributed systems is finding effective techniques for

the distribution of the processes on multiple locations. The problem is how to

distribute, or schedule, the processes amongst processing elements to achieve

some performance goals such as balancing the load of each location, or min-

imising execution time. Load management systems have been built for meeting

these requirement. Collections of autonomous mobile programs perform dynamic

decentralises load management, which will be demonstrated in Chapter 5, and

different load management policies have been introduced in Section 2.3.

In resource sharing systems e.g. load management systems, cost models could

be used to predict the behaviours of the system and decide the following be-

haviours of the system. Suitable cost models are an import issue in self-managing

systems. Different cost models have been reviewed in Section 2.4, as they play

an important role for decision making in different systems. Coordination cost

models for autonomous mobile programs and autonomous mobility skeletons will

be built in Chapter 3, and 4 to predict the execution time of the programs at run

time. A static computation cost model will be built in Chapter 6 to calculate the

cost and remaining cost of the program, which can be used in the coordination

cost model.

Chapter 3

Autonomous Mobile Programs

To manage load on large and dynamic networks we propose autonomous mobile

programs (AMPs) that periodically use a cost model to decide where to execute

in the network. Unusually this form of autonomous mobility affects only where

the program executes and not what it does. We present a generic AMP cost

model, together with a validated instantiation performance results for matrix

multiplication AMPs. The motivation for AMPs is to minimise processing time

by seeking the most favourable resources, without any requirement to visit specific

processors. Thus different concrete realisations of a program may carry out the

same computation in a shortest time period with given resources, but the patterns

of coordination may be very different. We will explore this further below.

3.1 Introduction

Agent technology is a high-level, implementation independent approach to devel-

oping software as collections of distinct but interacting entities which cooperate

to achieve some common goal. With the continuing decline in price and increase

in speed of both processors and networks, it has become feasible to apply agent

technology to problems involving cooperation in distributed environments, in par-

ticular, where agents may change location, typically to manipulate resources in

varying locations.

Most distributed environments are shared by multiple users. In particular,

49

CHAPTER 3. AUTONOMOUS MOBILE PROGRAMS 50

distributed agent-based systems must also contend with external competition

for resources, not least for the processing elements they share. However, agent

mobility in such distributed systems tends to be driven by concerns relating to

the collective goal of the agent system, independent of the actual environment

in which the system is running. Thus, such systems tend not to be aware of, or

respond to, environmental changes which impact on the effectiveness with which

they may contribute to the collective goal.

For example, if the external load on a shared processing element increases,

and the agent’s activity does not require its presence on that specific processing

element, then it may advantageously move to a more lightly loaded processing

element without otherwise affecting its behaviour. In the absence of self- and envi-

ronmental awareness, however, such systems may suffer widely varying processing

and response times as the local environment changes, and accurate prediction of

their behaviours becomes problematic.

We have been exploring what we term autonomous mobile programs (AMPs)

which are aware of their processing resource needs and sensitive to the environ-

ment in which they execute. Our experiments suggest that AMPs are able to

dynamically relocate themselves to minimise processing time in the presence of

varying external loads on shared processing elements. This work is novel in that:

• mobility is truly autonomous as the AMPs themselves use local and external

load information to determine when and where to move rather than relying

on a central scheduler;

• AMPs combine analytic cost models with empirical observation of their own

behaviours to determine their current progress;

• The cost of movement may be kept to a very small proportion of the overall

execution time.

The structure of this chapter is as follows. Section 3.2 introduces related work.

Section 3.3 presents the generic cost model for autonomous mobile programs.

Section 3.4 implements the cost model for matrix multiplication and validates it.

CHAPTER 3. AUTONOMOUS MOBILE PROGRAMS 51

Section 3.5 presents experimental results for single AMP reaction to the change

of environment. Finally, Section 3.6 summarises.

3.2 Related Work

AMPs have strong connections with both agents and autonomous systems, see

Figure 3.6.

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

Agents Mobile Autonomous
SystemsAMPsAgents

Figure 3.6: Agents, Autonomous Systems, and AMPs

AMPs differ from previous mobile agents. They have cost models and are

autonomous, making decision themselves when and where to move.

AMPs are different from autonomous systems. Some autonomous systems are

demand-driven e.g. Autonomic Job Scheduling Policy (ASP)[6] where nodes in

the system look for work when their load is below a given threshold, but AMPs

ask to move. There are schedulers in the ASP system to decide whether to move

or not. In AMPs there is no scheduler at all.

Some autonomous systems are agent-based i.e. the key abstraction used is

that of an agent[133]. Most autonomous mobile agents system adapt the compu-

tation, but AMPs adapt their coordination. According to the condition given by

the programmer, AMPs make the decision when and where to move by check-

ing the environment where they are executing. AMPs are not simply a kind of

autonomous agent but a mobile agent with cost models.

AMPs are also similar to ethological models like Ant Algorithms. Both sys-

tems are searching for resources, in Ant algorithms [82] for “food”. AMPs and

ants algorithms are different: firstly, an Ant algorithm is going to find the fastest

path to get to the “food”, but AMPs are going to find resources and decide

CHAPTER 3. AUTONOMOUS MOBILE PROGRAMS 52

which one is better. Secondly, ant algorithms use the feedback of each mobile

agent(ant) to decide which path is better, but in AMP systems, the AMP does

not give feedback. Instead the AMP detects the network’s current information

and make a decision itself.

3.3 Cost Models

Cost models are used to decide the execution times of AMPs in advance. The

general cost of the total execution time of a program, Ttotal, has three components,

Tcomp is the computation time for finishing the task, Tcomm is the communication

time for migrating to another location, and Tcoord is the coordination time for

collecting or exchanging information with other programs or systems.

The computation time is necessary for every program; the other two are not

necessary for all programs but they are important properties for some kinds of

programs, for example parallel or mobile programs. Hence the cost model for

programs is:

Ttotal = Tcomp [+ Tcomm] [+ Tcoord]

Ttotal : The total time the programs takes

Tcomp : The computation time

Tcomm : The communication time

Tcoord : The coordination time

3.3.1 Traditional Systems Costs

In traditional load management techniques, programs do not need to know how

to measure the workload of locations, and how to exchange load information

between locations, or to decide when and where to migrate. Thus the total time

for executing a program is:

Ttotal = Tcomp + Tcomm

CHAPTER 3. AUTONOMOUS MOBILE PROGRAMS 53

3.3.2 AMPs Costs

In AMP system the AMPs collect load information from the system or other

locations, and each AMP is involved in deciding where and when to move, and

also sends itself to remote locations i.e. the AMPs know all the activities which

happen during the execution of the program. Thus the total time for execution

is:

Ttotal = Tcomp + Tcomm + Tcoord

For AMPs a cost model is used to inform the decision whether to move to a

new location. Cost models are typically parametrised on: system architecture

including location speed and interconnect speed; cost of processing data; cost of

communicating data; data size; and number of locations[84]. Figure 3.7 shows the

generic cost model for AMPs.

• Equation (3.9) gives the condition under which the program will move, i.e.

if the time to complete in the current location is more than the time to

complete in the remote location.

• Equation (3.10) states that if there are m communications in a program’s

lifetime and it will take Tcomm time for each communication then the total

time for communication is Tcomm by m.

• Equation (3.11) states that if there are p processors the status of the pro-

cessors is checked n times in a program’s lifetime and it will take Tcoord

time for checking one processor once then the total time for coordination is

Tcoord by p by n.

• Equation (3.12) gives the condition under which the program will do the

coordination work. This seeks to guarantee that the autonomous mobile

program will never be worse than 100 + O percent of the static version.

This guarantee is only valid providing that the loads on the current and

target location do not change dramatically immediately after the move.

For example it is easy to construct a pernicious example where each time

an AMP moves to a location the load on that location becomes very high.

CHAPTER 3. AUTONOMOUS MOBILE PROGRAMS 54

Ttotal = TComp + TComm + TCoord (3.8)

Th > Tcomm + Tn (3.9)

TComm = mTcomm (3.10)

TCoord = npTcoord (3.11)

TCoord < OTstatic (3.12)

n <
OTstatic

pTcoord

(3.13)

Te = Wd/Sh (3.14)

Th = Wl/Sh (3.15)

Tn = Wl/Sn (3.16)

Wa =
∑

Wd (3.17)

Wd = Wa(thistime) − Wa(lasttime) (3.18)

Wl = Wall − Wa (3.19)

O : Overhead e.g. 5%
Ttotal : total time
Tstatic : time for static program running on

the current location
TComm : total time for communication
Tcomm : time for a single communication
TCoord : total time for coordination
Tcoord : time for coordination with a

single processor(location)
TComp : time for computation
Te : time has elapsed at current location
Th : time will take here
Tn : time will take in the next location
Wall : all work
Wa : the total work which has been done
Wd : the work has been done at current location
Wl : the work left
Sh : the current CPU speed
Sn : the next location CPU speed
m : number of communication
n : number of coordination
p : number of processor

Figure 3.7: Generic Cost Model for Autonomous Mobile Programs

CHAPTER 3. AUTONOMOUS MOBILE PROGRAMS 55

• Substituting Equation (3.11) in (3.12) gives Equation (3.13), where n spec-

ifies how many times the AMP will consider moving.

• Equations (3.14), (3.15) and (3.16) relate time, work and CPU speed. The

time equals the work measured by CPU speed.

• In Equation (3.17), Wd is the work that has been done at one location, so

the total work is the sum of all the Wd. In other words, (3.18) shows that

the work done at the current location equals all the work that has been

done (Wa(thistime)) minus the total work done before the program moved to

the current location (Wd(lasttime)).

• Equation (3.19) gives the remaining work, that is the total work minus all

the work that has been done.

3.4 AMP Implementation

3.4.1 Mobile Programming Languages Choice

Jocaml[44] has been selected as the initial implementation language for AMPs

for the following reasons.

• Jocaml is an extension of Objective Caml 1.07[76]. It has all OCaml’s

functional, imperative, and object-oriented features, and can build not only

functional but also imperative programs.

• Jocaml supports concurrency and synchronisation, the distributed execu-

tion of programs, and the dynamic relocation of active program fragments

during execution.

• Jocaml Language has strong computation mobility, with explicit primitives

for migration. It works on large scale networks and is programming location-

aware [17].

• Jocaml is a strict language[55], and hence has simple cost models, compared

to mHaskell[38] a lazy language[119].

CHAPTER 3. AUTONOMOUS MOBILE PROGRAMS 56

• The programming model of Jocaml is based on the join calculus[25] which

uses ML’s function bindings and pattern-matching on messages to express

local synchronisations[44]. Jocaml implements join-calculus’ mobility which

provides transparent migration.

• It is freely available from the web site[4].

Jocaml also proved to be very expressive. Many applications have been developed

using it[4].

Java Voyager[127, 100] and JavaGo[108] are used for object oriented imple-

mentation in Chapters 4 and 5.

3.4.2 Matrix Multiplication Cost Model

An AMP matrix multiplication has been developed, which can migrate from one

location to another according to local and remote load information. Figure 3.8

shows the static program, which is based on the simple three for loops of matrix

multiplication.

for i = 0 to n-1 do (*first level*)

for j = 0 to n-1 do (*second level*)

for k = 0 to n-1 do (*third level*)

m3.(i).(j) <- m3.(i).(j)+ m1.(i).(k) * m2.(k).(j);

done

done;

done ;;

Figure 3.8: Jocaml Three for loop Matrix Multiplication

In the first level loop, code is inserted to check whether completing at the cur-

rent location will take longer than completing at the fastest location(Equation (3.9))

and if so to move.

The cubic cost model for naive matrix multiplication is well known and is

used to instantiate the generic AMP cost model from section 3.3.2 to give the

problem specific cost model in Figure 3.9. In Equations (3.24), and (3.25) Sec is

CHAPTER 3. AUTONOMOUS MOBILE PROGRAMS 57

Wall = n3 (3.20)

Wa = f(i, j, k) = (i − 1)n2 + (j − 1)n + k (3.21)

Wl = Wall − Wa = n3 − f(i, j, k) = n3 − (i − 1)n2 + (j − 1)n + k (3.22)

Wd = Wa(thistime) − Wa(lasttime) = f(i, j, k)thistime − f(i, j, k)lasttime (3.23)

Te =
Wd

Sh

=
[f(i, j, k)thistime − f(i, j, k)lasttime] Sec

Sh

(3.24)

Th =
Wl

Sh

=
[n3 − f(i, j, k)] Sec

Sh

(3.25)

Th =
[n3 − f(i, j, k)] Te

f(i, j, k)thistime − f(i, j, k)lasttime

(3.26)

Tn =
Wl

Sn

=
[n3 − f(i, j, k)] Sec

Sn

=
ShTh

Sn

(3.27)

Figure 3.9: Cost Model for AMP Matrix Multiplication

a constant which converts abstract time unit into concrete time (seconds).

• Equation (3.20) shows that the total work to multiply square matrices of

dimension n is n3.

• Equation (3.21) shows that the work that has been done is a function of i,

j, k.

• Substituting Equations (3.20) and (3.21) in (3.19) gives Equation (3.22).

The remaining time for finishing the program is a function of i, j, k.

• The work that has been done at the current location is the total work done

so far minus the total work done previously, giving Equation (3.23).

• Substituting Equation (3.23) in (3.14) the time that has elapsed at current

location can be calculated, giving Equation (3.24).

• Substituting Equation (3.22) in (3.15) the time it will take at the current

location can be calculated. See Equation (3.25).

• Substituting Equation (3.24) in (3.25) we get Equation (3.26). Hence the

time it will take at the current location is a function of i, j, k and Te.

CHAPTER 3. AUTONOMOUS MOBILE PROGRAMS 58

• Substituting Equation (3.25) in (3.15) the time that will be taken in the

next location can be predicted as Equation (3.27).

When this cost model is used in an AMP, the program can determine how

much time has elapsed (Te), and the CPU speed can be found. So it can predict

how much time the program will take if it stays in the current location (Th), and

how much time it will take if it moves to a remote location (Tn). According to

this information the program can make a decision about whether to move or not.

3.4.3 Validating Matrix Multiplication Cost Model

This section introduces experiments to validate the cost model for matrix multipli-

cation. In these experiments the computation time, communication time, and co-

ordination time are validated. The test environment is based on our local area net-

work with locations e.g. ncc1710(534MHZ), jove(933MHZ), lxtrinder(1894MHZ)

etc.

Computation Time Validation

The first experiments are to show if the cost models of elapsed time and remaining

time are accurate, and are based on the static version of matrix multiplication on

ncc1710 with CPU speed 534MHZ. In the experiments, the time at every row has

been recorded, so the elapsed time can be calculated. Using Equation (3.26) the

remaining time can be predicted. The total computation time for the program

can also be predicted. The actual execution time can be calculated at the end

of the program. Comparing the predicted time and the actual time, if they are

similar then the cost models are accurate.

Table 3.3 shows that the predicted time is very close to the actual time, so

the cost model is suitable for this program.

Communication Time Validation

The communication time is the time to send the program to the remote location.

In the simple cost models we suppose the time for communication is a function

CHAPTER 3. AUTONOMOUS MOBILE PROGRAMS 59

100 * 100 matrix
Row Elapsed Time Remaining Time Total Time

1 0.009315 0.922186 0.931501
2 0.018520 0.907486 0.926006
3 0.027551 0.890814 0.918365
35 0.312410 0.580190 0.892600
36 0.321268 0.571143 0.892411
37 0.330097 0.562057 0.892154
38 0.338940 0.553008 0.891948
39 0.347855 0.544081 0.891936
97 0.863379 0.026702 0.890081
98 0.872246 0.017801 0.890047
99 0.881123 0.008900 0.890023
100 0.890144 0.000000 0.890144

actual time=0.890227

Table 3.3: Jocaml AMP Matrix Multiplication Computation Time Validation

of the size of the matrix (n*n). Hence the time for communication is calculated

as:

Tcomm = Tcomm1 − Tcomm2 ∗ n2 (3.28)

Tcomm1 is the time for building a connection from the local location to a remote

location, which is called the lookup time. Tcomm2 is the time for sending one

unit of data to the remote location. Experiments have been done to test the

communication time and Table 3.4 presents the results. The table shows that

the time for sending the program to the remote location changes according to

the size of matrix. If the size of matrix is smaller than 100*100, the time for

sending is almost the same. If the matrix is bigger than 100*100, the time for

sending is variable; the bigger the size the more time it takes. If the sending time

(size > 100 ∗ 100) is divided by n2 (n is the size of matrix) a constant is found,

so the communication time is:

Tcomm=0.082 + (if n > 100 then 1.87*10−6*n2 else 0) seconds

In a large-scale network, the communication time is not only related to the

size of data to be send, but also the network latency. In Section 7.2.1, a super

C
H

A
P

T
E

R
3
.

A
U

T
O

N
O

M
O

U
S

M
O

B
IL

E
P

R
O

G
R

A
M

S
60

Size 3*3 20*20 50*50 100*100 200*200 500*500 800*800 1000*1000 Mean
1 0.13 0.08 0.07 0.09 0.17 0.53 1.27 1.75
2 0.10 0.05 0.08 0.10 0.21 0.54 1.19 1.87
3 0.02 0.09 0.08 0.06 0.13 0.58 1.39 2.01
4 0.08 0.10 0.10 0.09 0.18 0.52 1.56 1.83
5 0.02 0.07 0.08 0.12 0.18 0.66 1.28 2.20
6 0.14 0.10 0.09 0.09 0.19 0.56 1.45 1.78
7 0.08 0.07 0.08 0.08 0.19 0.62 1.36 2.31
8 0.08 0.11 0.12 0.11 0.21 0.51 1.18 1.96
9 0.11 0.09 0.08 0.08 0.22 0.49 1.19 1.76
10 0.08 0.07 0.09 0.07 0.20 0.51 1.43 1.87

Mean 0.07 0.08 0.08 0.08 0.17 0.50 1.21 1.76
Tcomm1 0.082

Tcomm2=(Mean-Tcomm1)/(n*n) 2.35E-06 1.69E-06 1.77E-06 1.68E-06 1.87E-06
Tcomm=0.08 + (if n > 100 then 1.87*10−6*n2 else 0)

T
ab

le
3.4:

J
o
cam

l
A

M
P

M
atrix

M
u
ltip

lication
C

om
m

u
n
ication

T
im

e
C

alcu
lation

CHAPTER 3. AUTONOMOUS MOBILE PROGRAMS 61

Number of Host Number of Host Number of Host
6 20 40

Total Single Total Single Total Single
Time Time Time Time Time Time

1 2.51 0.42 1 8.84 0.44 1 17.85 0.45

2 2.63 0.44 2 8.73 0.44 2 17.60 0.44

3 2.53 0.42 3 8.97 0.45 3 17.59 0.44

Mean 2.56 0.43 Mean 8.85 0.44 Mean 17.68 0.44

Tcoord=0.44

Table 3.5: Jocaml Coordination Time Calculation

load server architecture for AMPs on large scale network is proposed, where the

latency of the network is considered.

Coordination Time Validation

The coordination time is the time to discover locations, determine their loads,

and make a decision about migration. In the simple cost models (Section 3.3)

the total coordination time is TCoord = n ∗ p ∗ Tcoord, where Tcoord is a single

coordination time for one location, p is the number of processors, and n is the

time to check the status of the locations. In AMPs it is assumed that Tcoord is

a constant, and that a program should not spend much time on this work, so

the smaller the coordination time the better the efficiency. Table 3.5 shows that

the coordination time for checking a single location single time is: Tcoord = 0.44

seconds. So the total coordination time is: TCoord = 0.44 ∗ p ∗ n seconds.

3.4.4 Matrix Multiplication AMP Speed Up Measurement

This experiment compares the execution time of the static and AMP matrix mul-

tiplication. The test environment is based on three locations: ncc1710(534MHZ),

jove(933MHZ), lxtrinder(1894MHZ). The loads on these three computers are

almost zero. Both the static and AMP matrix multiplication are started on

ncc1710.

Figure 3.10 shows that the larger the size of the matrix the faster the AMP

version is compared with the static version. If the matrix is smaller than a certain

CHAPTER 3. AUTONOMOUS MOBILE PROGRAMS 62

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000

Size of Matrix(n*n)

"mobile"
"static"

Figure 3.10: Static and AMP Matrix Multiplication Execution Time

size (here 330*330), the AMP version stays on the current location, because it will

take more than O% (overhead) of the time for completion at the current location

if the program does coordination and moves. So at this size, the program does

not check information and move at all, and the AMP takes almost the same time

as the static program. If the size of matrix is bigger than 330*330 then the AMP

moves to the fastest location lxtrinder, and then stays there, so the AMP takes

much less time than the static program.

3.5 AMP Movement Measurement

This section discusses experimental results for single AMP reaction to a change of

environment. Figure 3.11 shows the movement of the matrix multiplication AMP

during successive execution time periods with CPU speeds normalised by the local

loads. The test environment is based on five locations with CPU speeds (Loc1

534MHZ, Loc2 933MHZ, Loc3 1894MHZ, Loc4 2000MHZ, Loc5 1100MHZ). The

AMP has been started in time period 0 on Loc1. In time period 1 it moves to

the fastest processor Loc4 (Move (1)). This move shows that if there is a faster

location then the AMP moves to it. When Loc4 becomes more heavily loaded

the program moves to Loc3, the fastest processor in period 2 (Move (2)). This

move shows that AMPs can respond to changes in current location. In time

CHAPTER 3. AUTONOMOUS MOBILE PROGRAMS 63

 0

 500

 1000

 1500

 2000

 0 1 2 3 4 5

R
E

LA
T

IV
E

 C
P

U
(M

Z
H

)

TIME PERIOD

(1)

(2)

(3)
(4)

"program"
Loc1
Loc2
Loc3
Loc4
Loc5

Figure 3.11: AMP Matrix Multiplication Movement Validation

period 3, even though the speed differential of Loc3 and Loc4 is small, the AMP

moves to the faster one (Move (4)). In time period 4, when Loc4 becomes less

heavily loaded, the AMP moves to it (Move (3)). This move shows that AMPs

can respond to changes in other locations. So this test shows that the AMP may

move repeatedly to adapt to changing loads and always find the fastest location

at one moment. Similar results have been achieved for AMPs using autonomous

mobility skeletons (AMSs) in Section 4.5.

3.6 Summary

This chapter has presented the general design of an AMP and implemented it

with matrix multiplication. According to the design each AMP has a cost model

giving accurate information about the time to complete and communicate for the

program. Moreover it is possible to parameterise the AMP cost model with a

maximum overhead, e.g. 5%, and guarantee under a reasonable assumption the

autonomous mobility overheads will not exceed this. We have built the generic

cost model for AMPs and instantiated it for naive matrix multiplication and eval-

uated it. With the problem specific cost model, the AMP matrix multiplication

can make the decision when and where to move during the execution time. Ex-

periments have been done to check that the AMP matrix multiplication programs

CHAPTER 3. AUTONOMOUS MOBILE PROGRAMS 64

are faster than the static programs and the movements of the AMP are the same

as we expected. Experiments in this chapter also show that a single AMP can

move from location to location when the loads are changed in each location.

The advantages of an AMP architecture are as follows. It potentially scales

to very large networks, with AMPs making decentralised decisions about where

to execute. Indeed on very large networks only nearby locations need be con-

sidered as potential targets. The AMP architecture manages dynamic networks

very easily with each AMP selecting where to execute from the current set of

locations.The AMP architecture can obtain a better balance than a classical dis-

tributed load balancer as, unlike the latter, each AMP has a cost model giving

accurate information about the time to complete and communicate for the pro-

gram.

However the AMP architecture may introduce higher coordination costs as

every AMP must obtain load information about locations, and the programmer

must explicitly control when the program moves. Autonomous Mobility skeletons

will be developed to encapsulate the mobility control for common patterns of

computation in Chapter 4. A load server structure will be introduce to reduce the

coordination costs, and the performances of collection of AMPs will be evaluated

in Chapter 5.

Chapter 4

Autonomous Mobility Skeletons

Autonomous mobile programs (AMPs) were introduced in Chapter 3. However,

a disadvantage of directly programmed AMPs is that the cost model, mobil-

ity decision function, and network interrogation are all explicit in the program.

This chapter presents autonomous mobility skeletons (AMSs), which encapsu-

late all the self-aware mobile coordination for common patterns of computation

over collections. AMSs are akin to algorithmic skeletons in being polymorphic

higher order functions, but where algorithmic skeletons abstract over parallel co-

ordination, AMSs abstract over autonomous mobile coordination. We build the

AMS cost model for collection iteration and present the automap, autofold and

AutoIterator AMSs, together with performance measurements of Jocaml, Java

Voyager, and JavaGo implementations on modest LANs. AutoIterator is an

unusual skeleton, abstracting over the Iterator interface commonly used with

Java collections.

4.1 Introduction

Abstract skeletons are higher order constructs that abstract over common pat-

terns of coordination and must be parameterised with specific computations.

Concrete skeletons are executable, and the user must link computation-specific

code into the appropriate skeleton. Figure 4.12 shows the relationship amongst

65

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 66

different species of skeletons. The notion of algorithmic skeletons was charac-

terised by Cole[29] to capture common patterns of parallel coordination in a

closed, or static, set of locations. Mobility skeletons [18] are high-level abstrac-

tions capturing common patterns of mobile coordination in an open network i.e. a

dynamic set of locations. Autonomous mobility skeletons (AMSs) encapsulate au-

tonomous coordination for common computations over collections, like map, fold

or iteration. With AMSs, the mobile coordination is explicitly specified by the

programmer, and the program does not include additional code for autonomous

decisions about where to execute, as AMSs are self-aware. Using AMSs, AMPs

can make the decision about when and where to move.

Figure 4.12 distinguishes between the abstract conception of skeletons and

their concrete realisations. As we shall see, AMSs may have different realisations

in languages with different mobile constructs. Specifically the realisation in a lan-

guage with weak mobility will differ from that in a language with strong mobility.

Skeletons

mmap mfold mzipper map dnc

Concrete
Skeletons

Abstract
Skeletons

automap autofold AutoIterator

platform dependent Skeletons

Jocaml Voyager JavaGo

Algorithmic Skeletons Mobility Skeletons Autonomous Mobility Skeletons

Figure 4.12: Skeleton Taxonomy

Map and Fold (Reduce) are programming models and associated implemen-

tations for processing and generating large data sets. Map and Fold have been

used across a wide range of domains, including[32]:

• large-scale machine learning problems,

• clustering problems for the Google News and Froogle products,

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 67

• extraction of data used to produce reports of popular queries (e.g. Google

Zeitgeist),

• extraction of properties of web pages for new experiments and products

(e.g. extraction of geographical locations from a large corpus of web pages

for localized search), and

• large-scale graph computations.

The Iterator interface is commonly used with Java collections. The following

sections of this chapter introduce the design, implementation and evaluation of

three AMSs (automap, autofold, and AutoIterator) in Jocaml, Java Voyager,

and JavaGo.

We argue in [34] that the autonomous mobility skeletons in this chapter have

limitations because the skeletons dynamically parameterise the cost model with

measurements of performance on the preceding collection segment. If the program

is reasonably regular, i.e. computing each segment of the collection represents a

similar amount of work, then the cost model will be valid, and hence the move-

ment decisions reasonable. However, as the computations become increasingly

irregular, the cost model will be less valid, and hence the movement decisions

may not optimise performance. We are proposing how to solve this problem in

Chapter 7.

The autonomous mobility skeletons do not incorporate the costs of computa-

tions following the processing of the current collection. This restricts autonomous

mobility skeletons to programs that expose useful loci of mobility at the top-levels

that dominate the computation. Chapter 6 considers how to calculate the cost

of the entire program instead of a single collection.

The structure of this chapter is as follows. Section 4.2 implements automap

in Jocaml and in Voyager, and validates the AMPs with automap. Section 4.3

implements autofold in Jocaml and in Voyager, and validates the AMPs with

autofold. Section 4.4 introduces AutoIterator in JavaGo. Section 4.5 presents

single AMS program behaviour on dynamic load changing networks. Section 4.6

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 68

compares the AMS performance in Jocaml and in Voyager. Section 4.7 describes

other skeletons. Finally, Section 4.8 summaries.

4.2 Autonomous Mobility Map (automap)

The higher-order function map applies a given function to a sequence of elements

and returns a sequence of results i.e. map f [a1; ...;an] applies function f

to each list element a1, ...,an, building the list [f a1; ...; f an]. The

automap AMS performs the same computation as the map higher-order function,

but may cause the program to migrate to a faster location.

4.2.1 Collection Iteration Cost Model

The problem specific cost model for AMSs which apply computation over col-

lections e.g. automap and autofold, are all the same. Using automap as an

example, this section introduces the cost model for collection iteration. The cost

model for autofold is the same.

The generic AMP cost model in Section 3.3.2 is used to inform the automap

decision about moving to a new location [35]. The problem specific cost model

determines how much time has elapsed (Te), and the relative speed (CPU speed *

(100-load)%) in order to predict the time to complete in the current location (Th).

The network is interrogated to discover the relative speeds of available locations

and the time to complete at the fastest remote location (Tn) is calculated. The

AMP moves if the predicted time to complete at the current location exceeds the

time to move to the best available location (Tcomm) plus complete there (Tn), i.e.

Th > Tcomm + Tn. We have instantiated the generic AMP cost model for AMSs

and validated the cost model. The cost models for AMSs is similar to that for

matrix multiplication in Section 3.4.2 and is given in Figure 4.13.

• Equation (4.29) shows that the total work is the length of list l in automap

f l.

• Equation (4.30) gives the work that has been done is r.

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 69

Wall = length of list l = a (4.29)

Wa = r (4.30)

Wl = a − r (4.31)

Wd = 1 (4.32)

Te =
Sec

Sh

(4.33)

Th =
(a − r)Sec

Sh

(4.34)

Th = (a − r)Te (4.35)

Tn =
ShTh

Sn

(4.36)

Figure 4.13: Cost Model for Collection Iteration

• Substituting Equations (4.29) and (4.30) in Equation 3.19 (See Section 3.3.2)

gives (4.31), which shows that the remaining work is the total work minus

the work that has been done.

• Equation (4.32) shows that the unit work that has been done at the current

location is 1, which is one element in the list.

• Substituting Equation (4.32) in (3.14) and converting to concrete time in

seconds, the time that has elapsed at the current location is calculated

giving Equation (4.33). The concrete time can be obtained by timing the

program.

• Substituting Equation (4.31) in (3.15) and converting to concrete time, the

time that the AMP will take at the current location is calculated giving

Equation (4.34).

• Substituting Equation (4.33) in (4.34) and converting to concrete time gives

Equation (4.35) for the time, which the AMP will take at the current loca-

tion as a function of Te.

• Substituting Equation (4.34) in (3.15) and converting to concrete time,

the time that the AMP will take in the next location can be predicted as

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 70

Equation (4.36).

With this cost model, AMSs can determine how much time has elapsed (Te), and

the CPU speed can be found. So they can predict how much time the program

will take if it stays in the local location (Th), and how much time it will take if it

moves to a remote location (Tn). According to this information AMSs can make

a decision about whether to move or not. This cost model will be validated in

Section 4.2.4.

4.2.2 Auxiliary Functions for AMS in Jocaml

Potentially AMSs could investigate moving after processing every element of the

list, but this induces enormous coordination overheads. Such overheads are lim-

ited by specifying that the total coordination overhead of the program (TCoord)

must be less than some small percentage (O, say 5%) of the execution time of

the static i.e. immobile program (Tstatic):

TCoord < OTstatic (equation (3.12) in Section 3.3.2)

This overhead will be guaranteed under a reasonable assumption of load unifor-

mity, see Section 3.3.2.

let getGran work f h =

let (fh,fhtime) = timedapply f h

in let t_static = fhtime * work

let t_coord = tcoord numofhost

in let times = ov * t_static / t_coord

in let gran = if times > 0

then work/times

else work

in (gran,fh,fhtime)

Figure 4.14: Jocaml getGran: Calculating Coordination Granularity

This section introduces the auxiliary functions which will be used to imple-

ment AMSs in Jocaml: the automap (Figure 4.17) and autofold (Figure 4.27).

AMSs investigate moving after processing gran elements. Under the assumption

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 71

that the automap or autofold is the dominating computation for the program,

gran is calculated from the time to compute a single element of the map or fold

result (h), the length of the list (work), and the overhead percentage O (ov) by

function getGran::int->(a->b)->a->(int*b*float) in Figure 4.14.

let check_move work workleft fhtime=

let t_comm = tc work

let t_h = fhtime * (float (workleft))

in map (check_relspeed cur) hostlist

let host_next = check_next cur hostlist

in let t_n = cur.relspeed / host_next.relspeed * t_h

in

if (t_h > (t_n + t_comm))

then (

go host_next;

cur := host_next

)

else cur := cur

Figure 4.15: Jocaml check move: Deciding to Move in Jocaml

The movement check is encoded in check move::int->int->float->unit

function shown in Figure 4.15. Note that the sixth to last line encodes Equa-

tion (3.9). In check move, globule variable cur is recording current location

information, e.g. CPU speed and load, tc calculates the communication time,

and check next finds out the fastest location in the network, where the AMP

will move.

let getInfo work workleft gran fhtime f h=

check_move work workleft fhtime;

getGran work f h

Figure 4.16: Jocaml getInfo

Function getInfo::int->int->int->float->(a->b)->a->(int*b*float) eval-

uates the benefits of a move and recalculates gran on the new location shown in

Figure 4.16.

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 72

4.2.3 Jocaml automap Design and Implementation

let automap f l =

let work = List.length l

in let (fh,fhtime,gran) = getGran work f (hd l)

in fh::automap’ work (work-1) gran fhtime f t

let rec automap’ work workleft gran fhtime f l =

let xs = List.map f (take (gran-1) l)

let (h::t) = drop (gran-1) l

in let (gran’, fhtime’,fh’) =

getInfo work workleft gran fhtime f h

in xs@(fh’::automap’ work (workleft-gran) gran’ fhtime’ f t)

Figure 4.17: Jocaml automap

The definition of automap is given in Figure 4.17. It first calls getGran to

calculate an initial granularity, before calling automap’. automap’ applies the

standard map to gran-1 elements before calling getInfo to evaluate the benefits

of a move and to recalculate a gran.

4.2.4 Jocaml automap Cost Model Validation

let rec dotprod mat1 mat2 =

match (mat1,mat2) with

((h1::t1),(h2::t2)) -> h1*h2+dotprod t1 t2

| (_,_) -> 0;;

let inner row col = (dotprod row) col;;

let rowmult row cols = map (dotprod row) cols;;

let outer cols x = rowmult x cols;;

let rowsmult rows cols = automap (outer cols) rows;; (* automap *)

let mmultMat m1 m2 = rowsmult m1 (transpose m2);;

Figure 4.18: Jocaml automap Matrix Multiplication

automap is validated using two AMPs: matrix multiplication and ray tracing.

Figure 4.18 shows how a Jocaml matrix multiplication may be reformulated using

automap. At first sight, this looks like a conventional program using map, but

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 73

let findImpacts rays objects =

automap (firstImpact objects) rays;; (* automap *)

let top detail viewX viewY viewZ scene =

let rays = generateRays detail viewX viewY viewZ

in let imps = findImpacts rays scene

in show_imps detail detail imps;;

Figure 4.19: Jocaml automap Ray Tracing

automap includes calls to generic and problem specific cost functions to determine

whether or not the program should move. Figure 4.19 shows part of the ray

tracing program with automap.

According to the cost model in Section 4.2.1, the computation times, commu-

nication times, and coordination times for these two AMPs have been validated.

Note that the test environment in this chapter is the same as in Section 3.4.3,

which is based on our local area network with locations e.g. ncc1710(534MHZ),

jove(933MHZ), lxtrinder(1894MHZ) etc.

Jocaml automap Computation Time Validation

Mean Mean Mean Absolute Percentage Error
Size Predict Actual MAPE(%)

300*300 19.61 20.10 2.45

400*400 47.10 47.90 1.68

500*500 93.27 93.91 0.68

600*600 164.55 166.11 0.94

700*700 259.42 266.23 2.56

800*800 401.84 401.31 0.13

900*900 570.71 573.57 0.50

1000*1000 796.34 796.41 0.01

Table 4.6: Matrix Multiplication Computation Time Validation (Jocaml)

To show that the cost model of elapsed time and remaining time are accurate

the automap matrix multiplication in Jocaml has been evaluated based on the

static version. The predicted and actual computation times for a range of matrix

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 74

Mean Mean Mean Absolute Percentage Error
Size Predict Actual MAPE(%)

50*50 117.46 116.94 1.30

60*60 191.42 185.03 3.98

70*70 271.22 271.96 1.14

80*80 391.66 388.07 0.93

90*90 530.04 530.92 0.37

100*100 725.10 707.09 3.84

Table 4.7: Ray Tracing Computation Time Validation (Jocaml)

sizes have been tested using the same techniques as in Section 3.4.3. At every ele-

ment of the list, Equation (4.35) is used to predict the remaining time and the to-

tal time for the program. At the end of the program the actual execution time can

be obtained. We summarise the results in Table 4.6, which show that predicted

time is very close to the real time, so accurate predictions of execution time can

be achieved i.e. cost models are suitable for this program. In the tables, MAPE is

the mean absolute percentage error [129], MAPE = Mean Predict−Mean Actual
Mean Actual

. Ta-

ble 4.7 shows a similar result for the ray tracing program. Note that ray tracing

is generally irregular but regular instances are evaluated in this thesis.

Jocaml automap Communication Time Validation

The communication time for matrix multiplication as formulated in Section 3.4.3

is:

Tcomm=0.082 + (if n > 100 then 1.87*10−6*n2 else 0) seconds

Table 4.8 shows validation of the AMS matrix multiplication communication time.

The predicted time is close to the actual time. The worst prediction is 10.9% from

the actual time, and the best is 4.7%. From experiments, the communication time

for ray tracing is:

Tcomm=0.020 + (if n > 20 then 2.00*10−5*n2 else 0) seconds

Table 4.9 shows comparable validation of ray tracing and similar results to matrix

multiplication have been obtained.

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 75

Mean Mean Mean Absolute Percentage Error
Data Size Predict Actual MAPE(%)

3*3 0.082 0.075 8.8

20*20 0.082 0.076 7.1

50*50 0.082 0.078 4.7

100*100 0.082 0.081 1.2

200*200 0.155 0.172 10.9

300*300 0.248 0.222 10.6

400*400 0.379 0.345 9.1

500*500 0.548 0.515 5.9

Table 4.8: Jocaml AMS Matrix Multiplication Communication Time Validation

Mean Mean Mean Absolute Percentage Error
Data Size Actual Predict MAPE(%)

3*3 0.0173 0.020 13.6

20*20 0.0239 0.020 19.6

50*50 0.0632 0.070 10.0

100*100 0.2196 0.220 0.2

200*200 0.8926 0.819 8.9

300*300 1.9471 1.818 7.1

400*400 3.1513 3.217 2.0

Table 4.9: Jocaml AMS Ray Tracing Communication Time Validation

The communication time, Tcomm, will be used in Equation (3.9) to make the

moving decision in the cost model from Section 3.3.1.

Jocaml Coordination Time Validation

From the experiments on the LAN specified in Section 3.4.3, the coordination time

for checking a single location once has been estimated as: Tcoord = 0.44seconds.

So the total coordination time is: TCoord = 0.44 ∗ p ∗ n seconds, where p is the

number of processors and n is the times to check the status of the processors,

see Equation 3.11 in Section 3.3.1. TCoord will be used in Equation 3.12 to decide

when the AMPs check.

Table 4.10 shows validation of the coordination time model for matrix multi-

plication. The predicted time is very close to the actual time: the worst predic-

tion is 2.06% of the actual time and the best is 0.09%. The coordination time

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 76

Mean Mean Mean Absolute Percentage Error
Locations Predict Actual MAPE(%)

2 0.88 0.86 2.06

3 1.32 1.30 1.23

4 1.76 1.75 0.64

5 2.20 2.16 1.82

15 6.60 6.61 0.09

25 11.00 11.02 0.21

Table 4.10: Jocaml Coordination Time Validation

is independent to the computation, so all the AMPs in Jocaml have the same

coordination time.

Improving the Prediction of Communication Time

Table 4.8 shows the prediction of the communication time for matrix multiplica-

tion and ray tracing. The worst prediction of is 10.9%, which is not as good as the

prediction of the computation time (2.56% in Table 4.6) and coordination time

(2.06% in Table 4.10). Similar results have also been noticed in the experiments

for ray tracing and coin counting [69] (Section 4.3.2) programs in both Jocaml

and Voyager in this and following sections.

The reason is that the current prediction of communication time is parame-

terised on the size of data to be sent but not the latency between locations, which

may also affect the communication time. So in future work in Section 7.2, we

suggest that the communication time should be parameterised on both the data

size and network latency, which may provide better prediction of communication

time.

4.2.5 Jocaml automap AMPs Speed Up Measurement

Figure 4.20 shows the execution times of the automap matrix multiplication pro-

grams against the static programs. The test environment is based on three lo-

cations with CPU speeds 534MHZ, 933MHZ and 1894MHZ. The loads on these

three locations are almost zero. Both the static and the AMS programs are

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 77

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000

T
im

e(
S

ec
)

Size(n)

"mobile"
"static"

Figure 4.20: Static and AMS Matrix
Multiplication Execution Time

Comparison (Jocaml)

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100

S
ec

on
ds

Size of Grid(n*n)

"mobile"
"static"

Figure 4.21: Static and AMS Ray
Tracing Execution Comparison Times

(Jocaml)

started on the first location. The result is similar to the for loop matrix mul-

tiplication programs in Section 3.4.4. Similar results have been achieved for ray

tracing programs as shown in Figure 4.21.

4.2.6 Java Voyager automap Design and Implementation

It is appealing to implement Java AMSs, as Java is a very widely used language

and there are numerous mobile Java variants. Voyager[127] is a popular Java with

weak mobility, providing a set of basic and advanced services and features for

distributed application development. Voyager ORB includes distributed naming

service and mobile agent technology [127]. Two AMSs have been developed in

Voyager. This section introduces automap. Section 4.3.4 will introduce autofold.

The Voyager automap performs the same computation as, and similar coor-

dination to, the Jocaml automap. Figure 4.22 gives the definition of automap in

Voyager, where the Java check move and getGran auxiliary functions have the

same functionality as those in Jocaml in Section 4.2.2. The Voyager auxiliary

functions are shown in Appendix B.2. As Java 1.4 has no parametric polymor-

phism, the Voyager automap operates on a list of Object and returns a list of

Object.

An AMS matrix multiplication is readily written in Java Voyager using automap,

shown in Figure 4.23. The new class Auto has an object auton, which includes

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 78

public Object[] automap (Superclass obj, Object[] l){

... ...

for(int i=0;i<work;i++){ // map

if((i-checkPos) == 0){

timestart = System.currentTimeMillis();

resultl[i] = proxy.mapf (l[i]);

timeend = System.currentTimeMillis();

fhtime = timeend-timestart;

gran = getGran (work,fhtime);

checkPos = checkPos + gran;

check_move (work,(work-i-1),fhtime,mobility);

}

else {

resultl[i] = proxy.mapf (l[i]);

}

}

return resultl;

}

Figure 4.22: Java Voyager automap

automap. Class RowMult has a function mapf, which is the function the map will

apply to the collection. When auton.automap (rowM, mat1) is called, automap

will apply rowM.mapf on array mat1, and at the same time automap makes the

decision of when and where to move. An AMS ray tracer is also written in Java

Voyager as shown in Figure 4.24.

4.2.7 Java Voyager automap Cost Model Validation

The execution times, communication time, and coordination time have been val-

idated for matrix multiplication and ray tracing in Voyager, as for the programs

in Section 4.2.4 in Jocaml.

Java Voyager automap Computation Time Validation

Table 4.11 shows the predicted and actual execution times of a range sizes of

matrix multiplication in Voyager. We conclude that the predicted time is very

close to the actual time i.e. cost models are suitable for this program. Table 4.12

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 79

public static void main (String[] args){

int[][] mat1 = makeMatrix(size);

int[][] mat2 = makeMatrix(size);

int[][] matT = transpose(mat2);

RowMult rowM = new RowMult(matT);

Auto auton = new Auto();

int[][] res = auton.automap (rowM, mat1); /* automap */

}

Figure 4.23: Java Voyager automap Mobile Matrix Multiplication

public static void top(int detail,double viewX,double viewY,

double viewZ,Poly[] scene,String port)

{

Ray[] rays;

Impact[] imps;

RayFunctions rf = new RayFunctions();

rays=rf.generateRays(detail,viewX,viewY,viewZ);

FirstImpact fi = new FirstImpact(scene);

Auto auton = new Auto(port);

imps = auton.automap(fi,rays); /* automap */

return;

}

Figure 4.24: Java Voyager automap Ray Tracing

shows a similar result for ray tracing.

Java Voyager Communication Time Validation

From experiments , the communication time for matrix multiplication in Voyager

is:

Tcomm=0.029 + (if n > 50 then 5.07*10−6*n2 else 0) seconds

and the communication time for ray tracing is:

Tcomm=0.035 + (if n > 20 then 3.97*10−5*n2 else 0) seconds

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 80

Mean Mean Mean Absolute Percentage Error
Size Predict Actual MAPE(%)

300*300 1.29 1.27 1.55

400*400 3.11 3.00 3.51

500*500 5.63 6.03 6.72

600*600 9.75 10.20 4.41

700*700 15.75 16.00 1.56

800*800 23.00 23.80 3.36

900*900 32.40 33.40 2.99

1000*1000 45.25 46.20 2.06

Table 4.11: Matrix Multiplication Computation Time Validation (Voyager)

Mean Mean Mean Absolute Percentage Error
Size Predict Actual MAPE(%)

50*50 31.88 32.37 2.13

60*60 45.00 45.50 3.96

70*70 58.80 61.05 3.68

80*80 78.40 79.36 3.63

90*90 97.20 100.12 2.91

100*100 122.50 123.98 3.62

Table 4.12: Ray Tracing Computation Time Validation (Voyager)

Table 4.13 shows validation of our Voyager automap matrix multiplication com-

munication time. The predicted time is close to the actual time: the worst pre-

diction is 12.5% from the actual time and the best is 2.0%. Table 4.14 validates

the communication time for ray tracing. The communication time, Tcomm, is used

in Equation 3.9 to make the moving decision in the cost model in Section 3.3.1.

Java Voyager Coordination Time Validation

From the experiments, the coordination time in Voyager for checking a single

location once has been estimated as: Tcoord = 0.25seconds. So the total coordi-

nation time is: TCoord = 0.25 ∗ p ∗n seconds, where p is the number of processors

and n is the times to check the status of the processors, see Equation 3.11 in

Section 3.3.1. TCoord will be used in Equation 3.12 to decide when the AMP shall

take checking.

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 81

Mean Mean Mean Absolute Percentage Error
Data Size Predict Actual MAPE(%)

3*3 0.029 0.028 5.0

20*20 0.029 0.028 5.0

50*50 0.042 0.047 12.5

100*100 0.081 0.079 2.3

200*200 0.236 0.259 9.9

300*300 0.495 0.510 3.0

400*400 0.857 0.840 2.0

500*500 1.323 1.276 3.5

Table 4.13: Voyager AMS Matrix Multiplication Communication Time
Validation

Mean Mean Mean Absolute Percentage Error
Data Size Predict Actual MAPE(%)

3*3 0.035 0.0328 7.2

20*20 0.035 0.0387 9.4

50*50 0.135 0.1539 14.3

100*100 0.433 0.4325 0.1

200*200 1.624 1.7047 4.9

300*300 3.611 3.6811 1.9

400*400 6.392 6.6080 3.4

Table 4.14: Voyager AMS Ray Tracing Communication Time Validation

Table 4.15 shows validation of the coordination time model for matrix mul-

tiplication in Voyager. The predicted time is very close to the actual time: the

worst prediction is 11.6% from the actual time and the best is 1.0%. The coordi-

nation time is independent of the computation, so all the AMPs in Voyager have

the same coordination time.

4.2.8 Java Voyager automap AMPs Speed Up Measure-

ments

Figure 4.25 compares the execution times of static and AMS versions of Voyager

matrix multiplications, using the apparatus from section 4.2.5. Figure 4.26 shows

a similar result for ray tracing.

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 82

Mean Mean Mean Absolute Percentage Error
Locations Predict Actual MAPE(%)

3 0.76 0.75 1.0

4 1.01 0.89 11.6

5 1.26 1.15 9.0

15 3.78 3.92 3.9

25 6.30 6.55 4.0

Table 4.15: Voyager Coordination Time Validation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200

T
im

e(
S

ec
)

Size(n)

"mobile"
"static"

Figure 4.25: Static and AMS Matrix
Multiplication Execution Times

Comparison (Voyager)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

T
im

e(
S

ec
)

Size(n*n)

"mobile"
"static"

Figure 4.26: Static and AMS Ray
Tracing Execution Times Comparison

(Voyager)

4.3 Autonomous Mobility Fold (autofold)

The higher-order function fold processes a data structure in some order and

builds a return value. Typically, fold deals with two things: a combining func-

tion, and a data structure, e.g. a list of elements. The fold proceeds to combine

elements of the data structure using the function in some systematic way. The

standard fold, fold f a [b1; ...; bn], computes f (... (f (f a b1) b2)

...) bn. autofold f a [b1;...;bn] computes the same value but may mi-

grate to a faster location.

The cost model for autofold is the same as that for automap which is given in

Figure 4.13 in Section 4.2.1. This cost model will be used in the implementations

of autofold in Jocaml and Voyager in Section 4.3.1 and 4.3.4

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 83

4.3.1 Jocaml autofold Design and Implementation

The definition of autofold in Jocaml is given in Figure 4.27. It uses the same aux-

let autofold f accu l =

let work = length l

in let (fh,fhtime,gran) = getGran work (f accu) h

in autofoldl’ work (work-1) gran fhtime f fh t

let rec autofold’ work workleft gran fhtime f accu l =

let xs = fold f accu (take (gran-1) l)

let (h::t) = drop (gran-1) l

in let (gran’, fhtime’,fh’) =

getInfo work workleft gran fhtime (f xs) h

in autofoldl’ work (workleft-gran) gran’ fhtime’ f fh’ t

Figure 4.27: Jocaml autofold Definition

iliary functions getGran, check move, and getInfo in Section 4.2.2 as automap

in Jocaml. autofold first calls getGran to calculate an initial granularity before

calling autofold’. autofold’ applies standard fold to gran-1 elements before

calling getInfo to evaluate the benefits of a move and to recalculate a gran.

4.3.2 Jocaml autofold Cost Model Validation

autofold has been used to construct a coin counting problem that uses a genetic

algorithm [69] to find a minimal and maximal set of coins that sum to a target

figure [135]. The coin counting problem is to find suitable numbers of each kind

of coin, if there are n kinds of coin presenting different values, e.g. 100, 50, 20,

10, 5, 2 and 1, and a target sum of money is given. The sum of coins’ values must

be the same as the given money and the total number of coins must be between

minimum and maximum numbers. Therefore, the problem could be expressed as

p min max, where p represents target money, min represents minimum number

of coins and max represents maximum number of coins [135]. Figure 4.28 shows

the coin counting program using autofold.

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 84

let repeat n f p =

let intf p n = f p in

let l = makelist n in

autofold intf p l (* autofold *)

let next (gsPop,gsCache) =

let gParentA = selectRawTournament gsPop false 2 rawtournrate true

and gParentB = selectRawTournament gsPop false 2 rawtournrate true in

let gChild = crossNpt gParentA gParentB (glength-1) crossoverrate

in (gsPop, push gChild gsCache)

let loop p min max gsPop =

let (_,Gstack(pgwH,nE)) = ntimes nPopsize next (gsPop,empty()) in

let pgwH’ = List.map (Decimal.mutate maxdec mutationrate) pgwH in

let gsPop’ = Gstack((List.map (coins p min max) pgwH’) , nE) in

let gsPop’’ = rankRaw gsPop’ false in

gsPop’’

let rec test p min max =

let (Gstack(pgwH,nE)) = makeinit nPopsize [] nPopsize in

let gsPop = Gstack(List.map (coins p min max) pgwH,nE) in

let gsPop’ = rankRaw gsPop false in

let gsPop’’ = repeat 100 (loop p min max) gsPop’ in

gsPop’’

Figure 4.28: Jocaml autofold Coin Counting

Jocaml autofold Computation Time Validation

The coin counting program has been evaluated, to show that the cost model of

elapsed time and remaining time are accurate for autofold, as has been done in

Section 4.2.4 for matrix multiplication. Table 4.16 shows that the predicted time

is very close to the real time. So an accurate predictions of processing time can

be achieved, i.e. cost models are also effective for this program.

Jocaml autofold Communication Time Validation

The communication time for the coin counting program is different from matrix

multiplication. In the matrix multiplication, when the program moves to the

remote location, it brings the matrix with it, so the communication time is a

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 85

Mean Mean Mean Absolute Percentage Error
Size Predict Actual MAPE(%)

10 4.48 4.63 3.22

20 9.25 9.16 1.08

30 13.38 13.65 1.94

40 17.84 18.14 1.64

50 22.81 22.69 0.52

60 26.89 27.12 0.84

70 31.54 31.68 0.42

80 35.95 36.17 0.60

90 40.39 40.79 0.99

100 45.25 45.62 0.80

Table 4.16: Coin Counting Computation Time Validation (Jocaml)

function of the matrix size. In the coin counting problem, there is no heavy data

like a matrix and the program only brings the code, so the communication time

should be a constant. Using the same techniques as in Section 3.4.3, the commu-

nication time for coin counting has been calculated as Tcomm = 0.012 seconds.

Tcomm will be used in Equation 3.9 to make the moving decision in the cost model

in Section 3.3.1. Table 4.17 shows validation of the coin counting communication

Mean Mean Mean Absolute Percentage Error
Data Size Actual Predict MAPE(%)

20 0.0119 0.012 0.6

50 0.0117 0.012 2.7

100 0.0135 0.012 12.2

200 0.0114 0.012 5.1

300 0.0123 0.012 2.2

400 0.0122 0.012 1.3

500 0.0129 0.012 7.2

600 0.0136 0.012 13.3

700 0.0120 0.012 0.2

800 0.0121 0.012 1.2

900 0.0137 0.012 14.5

1000 0.0121 0.012 0.9

Table 4.17: Jocaml AMS Coin Counting Communication Time Validation

time model. The predicted time is close to the actual time: the worst prediction

is 14.5% from the actual time and the best is 0.2%.

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 86

Coordination Time Validation

The coordination time for coin counting program in Jocaml is the same as the co-

ordination time for the matrix multiplication in Jocaml which has been validated

in Section 4.2.4.

4.3.3 Jocaml autofold AMPs Speed Up Measurements

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

T
im

e

Size

"mobile"
"static"

Figure 4.29: Static and AMS Coin Counting Execution Time (Jocaml)

Figure 4.29 shows the execution times of static and autofold coin counting

programs. As before, once the program has a sufficiently large execution time,

it benefits from moving to a faster location. In this figure, there are three clear

irregularities in the mobile version plot. That is because as the size of the program

increases, gran (see Figure 4.14) may decrease. So at some points, even if the size

of the program is increased, it may move earlier to the faster location than the

smaller program, so the bigger program finishes faster than the smaller program.

For example, the program with size 50 matrix does not move, but the one with

size 60 matrix moves. Similarly, the gran of size 100 is 51, but the gran of size

110 is 37, so the size 110 program moves to a faster location earlier than size 100

program. So there is an irregularity at point 110 in the plot. These irregularities

also arise in Figure 4.20, and Figure 4.21, but they are too small to be noticed.

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 87

4.3.4 Java Voyager autofold Design and Implementation

public Object[] autofold (Superclass obj,Object b,Object[] l){

.......

for(int i=0;i<work;i++){ // fold

if((i-checkPos) == 0){

timestart = System.currentTimeMillis();

result = proxy.foldf (result, l[i]);

timeend = System.currentTimeMillis();

fhtime = timeend-timestart;

gran = getGran (work,fhtime);

checkPos = checkPos + gran;

check_move (work,(work-i-1),fhtime,mobility);

}

else{

result = proxy.foldf (result, l[i]);

}

}

return resultl;

}

Figure 4.30: Java Voyager autofold

autofold is also readily constructed in Java Voyager. Figure 4.30 shows

the definition of autofold. The check move and getGran auxiliary functions in

voyager have the same functionality as in Jocaml which has been presented in

Section 4.2.2. The auxiliary functions in Voyager are presented in Appendix B.2.1.

4.3.5 Java Voyager autofold Cost Model Validation

Figure 4.31 shows the coin counting program in Voyager. Using the same tech-

niques as in Section 4.2.7, the execution times, communication time, and coordi-

nation time for coin counting have been evaluated.

Java Voyager autofold Computation Time Validation

Table 4.18 shows the predicted and actual execution time of coin counting pro-

grams with a range sizes of maximum counts. We conclude that the predicted

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 88

public static void main (String[] args) {

int gs = Integer.parseInt(args[0]);

int size = Integer.parseInt(args[1]);

int[] l = mkArray(gs);

Coins c = new Coins(size);

Auto auton = new Auto();

int sum = auton.autofold(c,0,l); /* autofold */

}

Figure 4.31: Voyager autofold Coin Counting

Mean Mean Mean Absolute Percentage Error
Size Predict Actual MAPE(%)

1000 2.53 2.46 3.01

2000 4.43 4.20 5.45

3000 6.09 5.93 2.68

4000 7.81 7.58 3.08

5000 9.51 9.33 1.92

6000 10.40 10.97 5.20

7000 12.72 12.62 0.76

8000 13.80 14.25 3.18

9000 15.41 16.02 3.85

10000 16.74 17.66 5.24

Table 4.18: Coin Counting Computation Time Validation (Voyager)

time is very close to the actual time, i.e. the cost model in Section 4.2.1 is also

effective for this program.

Java Voyager autofold Communication Time Validation

Section 4.3.1 shows the communication time for the coin counting program is

a constant. From experiments, the communication time for coin counting in

Voyager is: Tcomm = 0.074 seconds. Tcomm will be used in Equation 3.9 to

make the moving decision in the cost model in Section 3.3.1. Table 4.19 shows

validation of the coin counting communication time. The predicted time is close

to the actual time: the worst prediction is 11.1% from the actual time and the

best is 1.6%.

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 89

Mean Mean Mean Absolute Percentage Error
Data Size Actual Predict MAPE(%)

20 0.0673 0.074 9.0

50 0.0678 0.074 8.4

100 0.0799 0.074 8.0

200 0.0669 0.074 9.7

300 0.0658 0.074 11.1

400 0.0704 0.074 4.9

500 0.0795 0.074 7.4

600 0.0752 0.074 1.6

700 0.0756 0.074 2.2

800 0.0796 0.074 7.5

900 0.0784 0.074 6.0

1000 0.0787 0.074 6.4

Table 4.19: Voyager AMS Coin Counting Communication Time Validation

Java Voyager Coordination Time Validation

The coordination time for coin counting program is the same as the coordination

time for the matrix multiplication which has been validated in Section 4.2.7.

4.3.6 Java Voyager autofold AMPs Speed Up Measure-

ments

Figure 4.32 compares the execution times of static and AMS versions of a Java

Voyager coin counting program. These results are again similar to those for the

Jocaml results.

4.4 An Autonomous Mobile Iterator

4.4.1 AutoIterator & JavaGo

AutoIterator is a class that implements the Java Iterator interface, which

specifies a generic mechanism to enumerate the elements of a collection. The

methods in the Iterator interface are hasNext, next and remove. The method

hasNext is a boolean valued method that returns true if one or more elements

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 90

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2000 4000 6000 8000 10000

T
im

e(
S

ec
)

Size

"mobile"
"static"

Figure 4.32: Static and AMS Coin Counting Execution Times (Voyager)

remain to be examined. The method next returns an unexamined element of

the object. The method remove deletes the last element that was returned by

next [105]. The AutoIterator class implements all three methods, and extends

Iterator with autonext, which has the same functionality as next but can make

autonomous mobility decisions.

Figure 4.33 and 4.34 show the mobility structure of programs using automap

and AutoIterator. automap and autofold can use weak mobility as the com-

putation to be moved is encapsulated in the function mapped or folded. In

AutoIterator, however, there is no encapsulated computation to be weakly

moved and strong mobility is required to move the entire collection. Hence Voy-

ager, with only weak mobility, cannot be used. JavaGo [108] supports strong

mobility.

In the program using automap, we can just send Object A with the data in

the object to another location. This is weak mobility. So for building automap

weak mobility is required. automap can also be built using strong mobility such

as Jocaml. In the program using AutoIterator, autoNext() implements the

autonomous mobility in the entire program. autoNext() does nothing but get

the next data from the list, and the computation is the rest of the program

after autoNext() function. So AutoIterator must send the whole computation

to another location. So strong mobility is necessary. The mobility structure of

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 91

........

Object A Object A

Data

MoveTo

reference

Location 1 Location 2

Process M

Figure 4.33: Mobility Structure of automap
Location 1 Location 2

.........

Data Data

..................

Process I Process I

go
iterator.autoNext();
restcomputation;

iterator.autoNext();
restcomputation;

Figure 4.34: Mobility Structure of AutoIterator

autofold is the same as automap.

4.4.2 AutoIterator Implementation

Figure 4.35 shows an autoNext implementation again using the analogous check move

and getGran functions. The entire AutoIterator class is given in Appendix B.3.

AutoIterator is very similar to automap and autofold. It counts the time of

computation on the first element of the list, and calculates gran. Then it makes

the decision autonomously of whether to move or not and where to move after

every gran elements.

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 92

public migratory Object autoNext() {

if (nextIndex < work){

if(nextIndex == 0){

timestart = System.currentTimeMillis();

timeend = timestart;

}

else

if((nextIndex-checkPos) == 0){

timestart = timeend;

timeend = System.currentTimeMillis();

fhtime = timeend-timestart;

check_move (size,(work-nextIndex-1),fhtime);

gran = getGran (work,fhtime);

checkPos = checkPos + gran;

}

return list.get(nextIndex++);

}

else

throw new NoSuchElementException("No next element");

}

Figure 4.35: JavaGo autoNext Method in AutoIterator Class

4.4.3 AutoIterator AMPs Speed Up Measurements

Figure 4.36 shows how AutoIterator can be used to implement matrix mul-

tiplications. Each element of the list is a MatrixMul object and includes two

matrices and a function Multiplication, which multiplies the two matrices.

AutoIterator enumerates each object using autoNext and performs the multi-

plication. The entire program is in Appendix B.3

Figure 4.37 shows the execution times of static and AutoIterator versions of

a JavaGo matrix multiplications program. Once again, the AMS version is faster.

4.5 AMP with AMS Movement Measurement

This section discusses experimental results for a single AMP with an AMS react-

ing on the change of environment. Experiments have been conducted to test if

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 93

undock {

AutoIterator ai = new AutoIterator(al); /* AutoIterator */

while (ai.hasNext()){

MatrixMul iu = (MatrixMul)ai.autoNext();

int[][] mat = iu.Multiplication();

}

}

Figure 4.36: JavaGo AutoIterator Matrix Multiplications

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100

T
im

e(
S

ec
)

List Length(n)

"mobile"
"static"

Figure 4.37: Static and AutoIterator Matrix Multiplications Execution Times

the program moves as we expect using the the same techniques as in Section 3.5.

Figure 4.38 shows the movement of the matrix multiplication with AMS during

successive execution time periods with CPU speeds normalised by the local loads.

The test environment is based on five locations with CPU speeds (Loc1 534MHZ,

Loc2 933MHZ, Loc3 1894MHZ, Loc4 2000MHZ, Loc5 1100MHZ). The AMP has

been started in time period 0 on Loc1. In time period 1 it moved to the fastest

processor Loc3. When Loc3 became more heavily loaded the program moved

to Loc5, the fastest processor in period 2. In time period 3, Loc4 became less

loaded, and was the fastest location at that moment, so the program moved to

it. In time period 7 Loc5 was a little faster than Loc2. So the program moved

to Loc5 rather than staying on Loc2. Many AMPs have reproducible behaviour.

Figures 4.39 and 4.40 show similar results for the AMS ray tracing and the AMS

coin counting.

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 94

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8

R
E

LA
T

IV
E

 C
P

U
(M

Z
H

)

TIME PERIOD

(1)

(2) (3)

(4)

"program"
Loc1
Loc2
Loc3
Loc4
Loc5

Figure 4.38: AMS Matrix Multiplication Movement Validation

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8

R
E

LA
T

IV
E

 C
P

U
(M

Z
H

)

TIME PERIOD

(1)

(2)

(3)

(4)

"program"
Loc1
Loc2
Loc3
Loc4
Loc5

Figure 4.39: AMS Ray Tracing
Movement Validation

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8 9

R
E

LA
T

IV
E

 C
P

U
(M

Z
H

)

TIME PERIOD

(1) (2)

(3)(4)

"program"
Loc1
Loc2
Loc3
Loc4
Loc5

Figure 4.40: AMS Coin Counting
Movement Validation

The following conclusions can be drawn from the figures:

• The program may move repeatedly to adapt to changing loads and always

find the fastest location in one step.

• Move (1) shows that if there is a faster location then the AMP moves to it.

• Move (2) shows that AMPs can respond to changes in current location.

• Move (3) shows that AMPs can respond to changes in other locations.

• Move (4) shows that even if the speed differential is small, the AMP moves.

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 95

4.6 Jocaml and Java Voyager Comparison

As automap and autofold are developed both in Jocaml and in Java Voyager,

this chapter compares these two languages in their mobility behaviour, the com-

putation time, communication time, and coordination time of the AMSs.

4.6.1 Mobility Behaviour Comparison

The Mobility Behaviour of Jocaml AMSs

In Figure 4.41 automap is used as an example to explain the coordination be-

haviour of the Jocaml AMSs. autofold has the same behaviour as automap.

As Jocaml supports strong mobility, the program moves along with its execution

state. In the figure, a Jocaml program with automap is started, which applies f

to list l in location 1 (1). automap will automatically decide whether and where

the program moves automatically. So the whole program moves to location 2

with its data and context (2). In location 2, the automap consumes the input list

(3), and produces a result list (4).

The Mobility Behaviour of Voyager AMSs

As Voyager supports only weak mobility, when the program moves it communi-

cates only the code, and not the execution state. Figure 4.42 shows the coordina-

tion behaviour of the Voyager automap. Here, a Voyager program with automap

is started, which applies f in Object A to list l in location 1. The program sends

the code of Object A to location 2 (1). The system built a reference from loca-

tion 2 to the data in location 1 (2). In location 2, f fetches data from location 1,

produces a result and returns it to location 1 (3). After the program has finished,

the code of Object A stays in location 2 and waits for another migration but the

data in location 1 will never move (4).

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 96

Process M

Location 1 Location 2

Location 1 Location 2

........

result

Process M

Location 1 Location 2

........

result

Location 1 Location 2

MoveTo

Data

......

result

Process M

Data

........

result

Process M

produce
result

automap f l;
automap f l;

automap f l; automap f l;

Data

get
data

Data

 2: Before Move

 3: After Move

 1: Initial state

 4: Final State

Figure 4.41: Mobility Behaviour of Jocaml autonomous mobility skeletons

Object A MoveTo

Process M

f

Location 1 Location 2

......

Process M

Location 1 Location 2

Data

........

result

Process M

Location 1 Location 2

Object A

f

result

........

........

result

result

Process M

Object A

f

Location 1 Location 2

Data

Data
Data

reference

fetch

f

Object A

return

1: Prepare to Move 2: Build Reference

 3: Return Result 4: Final State

Figure 4.42: Mobility Behaviour of Java Voyager autonomous mobility skeletons

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 97

4.6.2 Computation Time Comparison

Substantial differences in the execution times obtained with Jocaml and with

Java Voyager can be seen in Figures 4.20 and 4.25. Table 4.20 summarises and

compares the execution times of static versions of the Jocaml and Java Voyager

matrix multiplication programs. The time complexity of matrix multiplication is

O(n3), so in the third and sixth columns of the table, “time/size3” is used as a

measurement of the time taken for a single matrix element multiplication. From

this table, Jocaml matrix multiplications take on average 16.4 times longer than

Java Voyager.

Jocaml Voyager

size time time/size3 size time time/size3

300 20.10 7.4e−7 300 1.27 4.7e−8

400 47.90 7.5e−7 400 3.00 4.6e−8

500 93.91 7.5e−7 500 6.03 4.8e−8

600 166.11 7.7e−7 600 10.20 4.7e−8

700 266.23 7.7e−7 700 16.00 4.7e−8

800 401.31 7.8e−7 800 23.80 4.6e−8

900 573.57 7.9e−7 900 33.40 4.6e−8

1000 796.41 7.9e−7 1000 46.20 4.6e−8

Average 7.7e−7 Average 4.7e−8

Jocaml/Voyager = 16.4

Table 4.20: Jocaml and Voyager Matrix Multiplication Execution time
Comparison

Jocaml Voyager

size time time/size2 size time time/size2

50 116.94 0.05 50 32.37 0.01

60 191.42 0.05 60 45.50 0.01

70 271.22 0.06 70 61.05 0.01

80 391.66 0.06 80 79.36 0.01

90 530.04 0.07 90 100.12 0.01

100 725.10 0.07 100 123.98 0.01

Average 0.06 Average 0.01

Jocaml/Voyager = 6

Table 4.21: Jocaml and Voyager Ray Tracing Execution time Comparison

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 98

Jocaml Voyager

size time time/size size time time/size

30 13.65 0.45 3000 5.93 0.0019

40 18.14 0.45 4000 7.58 0.0019

50 22.69 0.45 5000 9.33 0.0019

60 27.12 0.45 6000 10.97 0.0018

70 31.68 0.45 7000 12.62 0.0018

80 36.17 0.45 8000 14.25 0.0018

90 40.79 0.45 9000 16.02 0.0018

100 45.62 0.46 10000 17.66 0.0018

Average 0.45 Average 0.0018

Jocaml/Voyager = 250

Table 4.22: Jocaml and Voyager Coin Counting Execution time Comparison

Similar results have been obtained for ray tracing and coin counting, where

Voyager programs are faster than the correspond programs in Jocaml. Table 4.21

shows that the Jocaml ray tracing program is on average six times slower than

Java Voyager. For the coin counting program on average Jocaml is 250 times

slower than Java Voyager and Table 4.22 summaries the results.

4.6.3 Communication Time Comparison

The communication time for matrix multiplication in Jocaml and Voyager are

shown in Tables 4.8 and 4.13. Figure 4.43 summaries the two tables. The figure

shows that the communication time in Jocaml and Voyager increase as the size

of the matrix increase. If the size of matrix is smaller than 100*100 the Jocaml

communication time is bigger than for Voyager, but if the size of the matrix is

larger than 100*100 the Jocaml communication time is smaller than for Voyager.

Figure 4.44 shows the communication time for ray tracing in Jocaml and Voyager.

The communication time for coin counting is constant both in Jocaml and

in Voyager, there is no heavy data like matrix, and the program only brings the

code of the program. The communication time for coin counting programs is

0.074 seconds in Voyager and 0.012 seconds in Jocaml. So the communication

time in Jocaml is smaller than that in Voyager.

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 99

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 100*100 200*200 300*300 400*400 500*500

T
im

e(
S

ec
)

Size

"Voyager"
"Jocaml"

Figure 4.43: Matrix Multiplication
Communication Time Comparison

 0

 1

 2

 3

 4

 5

 6

 7

0 20*20 50*50 100*100 200*200 300*300 400*400

T
im

e(
S

ec
)

Grid Size

"Voyager"
"Jocaml"

Figure 4.44: Ray tracing Multiplication
Communication Time Comparison

4.6.4 Coordination Time Comparison

According to equation 3.11 in Section 3.3.1, the total coordination time is:

TCoord = n ∗ p ∗ Tcoord

where Tcoord is the coordination time with a single processor. In one programming

environment the Tcoord should be the same for different programs, but it should be

different in different environments e.g. Voyager and Jocaml. Sections 4.2.4 and

4.2.7 show Tcoord is 0.44 seconds in Jocaml and 0.25 seconds in Voyager. So the

coordination time in Voyager is smaller than in Jocaml. Hence the coordination

overhead in Voyager is smaller than in Jocaml. We expect that the smaller the

overhead the better the coordination information the programs will obtain. As

a result a Load Server Architecture is introduced in Section 5.2 to reduce the

coordination overhead in Voyager.

4.7 Other Skeletons

4.7.1 PIPE Skeleton

The PIPE skeleton composes a list of functions together so that elements can be

streamed through them[31]. The type of PIPE is:

PIPE :: [α → α] → (α → α)

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 100

and the definition is:

PIPE = foldr (.)

4.7.2 FARM Skeleton

The FARM skeleton applies a function to each of a list of j́obś. The function

also takes an environment, which represents data which is common to all of the

jobs[31]. The type of FARM is:

FARM :: (α → β → γ) → α → ([β] → [γ])

and the definition is:

FARM = map . (f env)

4.7.3 DC Skeleton

Many algorithms work by splitting a large task into several sub-tasks, solving the

sub-tasks independently, and combining the results. This approach is known as

divide-and-conquer and it is captured by the DC skeleton.

In DC, t presents trivial tasks, s presents tasks which have been solved. Larger

tasks are divided by function d into sub-tasks, and the sub-tasks are passed to be

solved recursively. The sub-results are then combined by function c to produce

the main result[31]. The type of DC is:

DC :: (α → Bool) → (α → β) → (α → [α]) → ([β] → β) → α → β

One of the implementation of DC is:

DC t s d c x | t x = s x

| not (t x) = (c . map (DC t s d c) . d) x

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 101

4.7.4 RaMP Skeleton

Another common class of algorithms describes systems where each object in the

system can potentially interact with any other object. Each individual interaction

is calculated and the results are combined to produce a result for each object. This

is described by the RaMP skeleton (’Reduce-and-Map-over-Paris’). This skeleton

is typically used for initial specification and implemented by transformation to

an alternative form, for example by farming out the calculations for each object

or by pipelining over the functions f and g[31]. The type of FARM is:

RaMP :: (α → α → β) → (β → β → β) → [α] → [β]

The definition of RaMP is:

RaMP f g xs = map h xs

where h x = foldr g (map (f x) xs)

4.7.5 Discussion

The definition of PIPE, FARM, RaMP show that these three skeletons can be im-

plemented using map or fold. So it would be easy to build autonomous versions

of these three skeletons by using automap or autofold. The DC skeleton can be

implemented using map, but DC performs irregular problems naturally. The au-

tonomous mobility DC can not be implemented just using automap or autofold.

It is difficult to predict the execution time for DC. So it is difficult to build cost

models for DC.

4.8 Summary

AMSs have been proposed to encapsulate common patterns of self-aware mobile

coordination aiming to minimise execution time in networks with dynamically

changing loads. By analogy with other skeleton species, they hide low level mobile

coordination details from users and provide higher level loci for designing load-

aware mobile systems.

CHAPTER 4. AUTONOMOUS MOBILITY SKELETONS 102

Abstract AMSs with concrete realisations for the common higher-order func-

tions e.g. map and fold have been demonstrated. The realisations are pro-

vided both in the functional language context shared with other skeleton species,

using Jocaml, and in an object-oriented context using mobile Javas. A novel

AutoIterator skeleton has also been demonstrated for the widely used object-

oriented Iterator interface.

AMS cost models are dynamic and substantially implicit. During the traversal

of a collection, the skeleton implementation periodically measures the time to

compute a single collection element, and uses the value to parameterise an implicit

cost for the remainder of the traversal. The validations for the computation time,

communication time, and coordination time of AMSs suggest that the problem

specific cost model is suitable for the AMSs.

The experiments in this chapter also suggest that, for our set of test pro-

grams, AMSs can offer considerable savings in execution times, which scale well

as overall execution times increase i.e. the AMS programs are faster than the

static programs when there are faster locations in the network. Experiments in

this chapter also show that single AMP can move from location to locations when

the loads are changed in each location.

The mobility behaviour, the computation time, the communication time, and

the coordination time of the AMSs in Jocaml and in Java Voyager are compared,

as automap and autofold are developed in both languages. The mobility be-

haviour of Jocaml and Java Voyager are different, as Jocaml supports strong

mobility, but Java Voyager supports weak mobility. The computation time in

Jocaml is slower than that in Java Voyager, but the communication time in Jo-

caml is generally faster than in Java Voyager. The coordination time in Voyager

is faster, which is an advantage, as we expect that the smaller the overhead the

better the coordination information the programs will get. Chapter 5 will intro-

duce a Load Servers Architecture to reduce the coordination overhead in Voyager

and investigate load management using collections of AMPs on homogeneous and

heterogeneous networks.

Chapter 5

Autonomous Load Management

Emergent phenomena occur when a collection of individuals interact without

central control to produce results which are not explicitly programmed [2]. In

AMPs, an emergent collective behaviour is that a collection of AMPs performs

decentralised [137] dynamic load balancing. This chapter investigates autonomous

load management using collections of AMPs on homogeneous and heterogeneous

networks. The idea behind autonomous load management is that in dynamic

networks an individual AMP determines when and where to move according to

the status of the locations such as the CPU speed and load.

As the AMP architecture introduces a coordination overhead for collecting

system information, and we expect that the smaller the overhead the better the

coordination information the programs will obtain, this chapter introduces a Load

Server Architecture to reduce the time of exchanging information between AMPs

in the collections. The performance of collections of AMPs on homogeneous and

heterogeneous networks are also presented, which shows that collections of AMPs

quickly obtain and maintain a balance.

103

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 104

5.1 Introduction

5.1.1 Autonomous Load Management

The idea behind autonomous load management is that in dynamic networks in-

dividual AMPs determine when and where to move according to the status of

their locations such as the CPU speed and load. Autonomous load management

is dynamic load management. However it is different from traditional static and

dynamic load management in the following ways.

• The application itself rather than a special process (load balancer) decides

when and where to move.

• There is no central process to collect load information or make the decision

to move.

• It may operate on a dynamic network i.e. both locations and AMPs can

join or leave the network.

The aim of autonomous load management is different to traditional dynamic

load management. Both dynamic and autonomous load management redistribute

the processes from heavily loaded locations to lightly loaded ones based on the

information collected at run-time. The goal of dynamic load management is

maximising utilisation of the processing power[10]. Autonomous load manage-

ment aims to minimise execution time of AMPs, which is similar to static load

management. So, we can say this autonomous load management uses the dynamic

method to solve a problem which dynamic load management cannot solve.

5.1.2 Autonomous Load Management Activities

The activities, which may happen during autonomous load management, are

different from dynamic load management systems and are as follows.

• measure the currently workload;

• exchange load information between the currently available locations;

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 105

• check certain conditions e.g. relative CPU speed of locations for load im-

balance, and decide whether to perform load management operation or not;

• make a load management decision about the location to which the current

program should move;

The first three activities are the same as for dynamic load management [78]

(Section 2.3), but the last activities are different. In dynamic load management

the load balancer makes the decision of which task to move, but in autonomous

load management the program decides itself whether to move or not and to which

location.

5.1.3 Autonomous Load Management Policies

As autonomous load management is dynamic load management, we can also use

the same dynamic load management policies e.g. push policy and the decen-

tralized policy (Section 2.3) to control the activities during the execution of a

program. Let us classify autonomous load management using the information,

transfer, and placement load management policies from Section 2.3.1.

• information policy: specifies the amount of load information made available

to job placement decision-makers. The information policy can be centralised

or decentralised[97]. Because of the inherent feature of our AMPs that every

program is the decision-maker we choose a decentralised information policy,

in which every location keeps a copy of the system state. In this kind of

policy the program can get information from local node, which take less

time for coordination than from remote node.

• transfer policy: determines the conditions under which an AMP should be

transferred. In the transfer policy AMPs perform a preemptive policy set

by the cost models. According to the condition (Th > Tcomm + Tn) in the

cost models in Section 3.3, AMPs can determine whether to move or not.

• placement policy: identifies the location to which a program should be trans-

ferred. As for the information policy, autonomous load management uses

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 106

a decentralised placement policy. The placement policy can either be a

pull or push policy (Section 2.3.3). A push policy has been chosen in our

autonomous mobile program, because the program sends itself to another

location, rather than the idle location asking for jobs. The push policy

makes the program simpler than the pull policy.

To achieve effective autonomous load management performance, the following

three issues are important:

• to develop cost models for autonomous mobile computations that identify

the costs of completing the computation at different location and of moving

to a new location.

• to construct an effective implementation that minimizes the costs of coor-

dination.

• to evaluate the load balancing performance on homogeneous and heteroge-

neous networks.

The generic and problem specific cost models for AMPs have been developed

in Chapters 3 and 4. This chapter focuses on the second and third issues. The

structure of this chapter is as follows. Section 5.2 introduces the load server archi-

tecture to reduce the coordination time in AMPs. Section 5.3 presents behaviour

of collections of AMPs on homogeneous and heterogeneous networks. Finally,

Section 5.4 summarises. Note in this chapter load management refers to load

balancing in Chapter 2.

5.2 Load Server Architecture

In initial experiments, each AMP obtained load information from all other lo-

cations, but to reduce the coordination overhead we quickly introduced the load

server architecture in Voyager. In the load server architecture, each location has a

load server that maintains information about location loads. Specifically, the load

server records CPU speed, the number of AMPs and the load of each location.

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 107

The advantages of the load server architecture are that it reduces the coordination

time for AMPs, the time to discover load information, and also reduces network

traffic.

5.2.1 Load Server and Non-Load Server System Structure

Figure 5.45 shows the system with load severs (LS), and Figure 5.46 shows the

system without load servers (NLS). Without a load server an AMP must talk

LS

OS

amp amp...... amp amp

LS

1

.............

 11

OS
1

RMI

RMI RMI RMIRMI

syscall syscall

 k

 k1 kn 1m

k

Figure 5.45: System with Load Server Architecture (LS)

OS

.............

OS
1

Location 1

 11
amp amp......

amp amp

rsh
rsh rsh

rsh

......

rsh rsh rsh rsh

 1m

Location k

 k1 kn

k

Figure 5.46: System without Load Server Architecture (NLS)

to each location by remote shell command “rsh”, which is very expensive. Using

load servers, each load server just needs to detect the local information by talking

to the operating system (OS) and acquire the information of other locations by

Java RMI, which spends much less time than talking to a remote OS by “rsh”.

AMPs are not in charge of collecting system information any more, and they can

collect information from local load server, which saves much time compared to

obtaining information by talking to each location. This architecture also reduces

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 108

the network traffic. For example, if there are two locations, Loc1 and Loc2, and

each location has two AMPs: amp11 and amp12 on Loc1; amp21 and amp22 on

Loc2. In the non-load server architecture, there are four communications between

two locations (amp11 and amp12 talk to the OS on Loc2, and amp21 and amp22

talk to the OS on Loc1). In the load server architecture there is only two remote

communications, which are the load servers on Loc1 and Loc2 talk to each other

by Java RMI. So the load server architecture reduces the network traffic.

5.2.2 Information Renewal Time

It is important that AMPs obtain recent information such as relative CPU speed

((CPU speed) *(100-loads)%) of locations in the network. So the shorter the time

to collect new information the fresher information AMPs will obtain. In the non-

load server architecture the time for collecting new information is the coordination

time, as each AMP obtains system information individually via remote system

calls. According to the equation, TCoord = 0.25∗n∗p seconds (see Section 4.2.7),

where 0.25 is the time for a single check of one location, p is the number of

processors, and n is the time to check the status of the processors, the time for

checking information once of p locations is TCoord = 0.25 ∗ p seconds.

In the load server architecture, AMPs are separated for the information check-

ing; load severs do this job instead. The time for load servers to collect the infor-

mation of locations has two parts: One is the time for collecting local information

via a system call to talk to the local OS, and the other is collecting remote in-

formation. For this the local load server does not need to talk with remote OSs,

as it can exchange the information to remote load servers by Java RMI, which is

much faster than remote system call.

Table 5.23 tests the time for a load server collecting information from different

numbers of locations. The test is based on the LAN specified in Section 3.4.3.

The table shows that if there is only one location in the network, the time for

checking information is the time of the system call to get the local information.

From the experiments the average system call time is 0.094 seconds. If there are

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 109

locations 1 (local) 2 3 4 5 10 15 20 25

Min 0.081 0.090 0.099 0.102 0.106 0.131 0.158 0.187 0.215

Max 0.125 0.124 0.175 0.189 0.172 0.179 0.192 0.241 0.277

Mean 0.094 0.010 0.121 0.127 0.137 0.161 0.167 0.203 0.248

Total RMI 0.000 0.005 0.027 0.033 0.043 0.067 0.073 0.109 0.154

Single RMI – 0.005 0.014 0.011 0.011 0.007 0.005 0.006 0.006

Mean RMI 0.008

Tcoord 0.094+0.008*(p-1)

Table 5.23: Load Server Information Collection Time

p (p >1) locations, the checking information time includes the time for checking

local location information (a single system call time) and the time for checking

the information of remote locations, which is the time of exchanging information

time with other load servers by Java RMI. From experiments the single RMI

time is 0.008 seconds. So in the p locations load server architecture, the time for

checking information once is 0.094+0.008*(p-1) seconds.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 20 40 60 80 100 120 140 160 180 200

In
fo

rm
at

io
n

C
ol

le
ct

in
g

T
im

e(
S

ec
)

Number of Locations(p)

none load server
load server

Figure 5.47: Load Server and Non-Load Server Information Collecting Time

Figure 5.47 compares the information collecting time in the load server and

non-load server architectures, and shows the following.

• The information collecting time in the load server architecture is faster than

in the non-load server architecture: 0.094+0.008 * (p-1) seconds in load

server architecture and 0.25 * p seconds in the non-load server architecture.

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 110

• As the number of local server increases, LS is even faster than the NLS.

5.2.3 AMP Coordination Time

Locations 1 2 3 4 5 10 15 20 25

Min 0.008 0.009 0.007 0.008 0.009 0.009 0.009 0.009 0.008

Max 0.012 0.018 0.012 0.015 0.014 0.016 0.015 0.019 0.013

Mean 0.010 0.014 0.009 0.013 0.011 0.010 0.012 0.011 0.010

Tcoord 0.011

Table 5.24: Test AMPs Coordination Time in load Server Structure

Table 5.24 shows the AMP coordination time in the load server architecture.

AMPs are separated from information collecting. So the coordination time is not

the time for detecting information for the whole network as in non-load server

architecture, which has been passed to load servers. The coordination time is the

time for AMP to talk to the local load server. So TCoord should be a constant

rather than a variable like TCoord = 0.25 ∗ n ∗ p seconds, in non-load server

architecture (see Section 4.2.7).

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
oo

rd
in

at
io

n
T

im
e(

S
ec

)

Number of Locations(p)

"load server"
none load server

Figure 5.48: Load Server and Non-Load Server Coordination Time Comparison

Figure 5.48 compares the coordination in the load server and non-load server

architectures. As we shall see, the coordination time in the load server architec-

ture is a very small constant, here 0.011 seconds, but it increases as the number

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 111

of location increases in the non-load server architecture. So using load servers

can reduce the AMP coordination time.

5.3 Collections of AMPs Measurements

Experiments for collections of AMPs on both homogeneous and heterogeneous

networks are conducted.

5.3.1 Collections of AMPs on Homogeneous Networks

For homogeneous systems, we measured AMP behaviour on a dedicated network,

where all locations have the same CPU speed (3193MHz) and communications

latency i.e locations (linux01-linux28) in our local network.

Optimal Balances

We initially hypothesised that every location would have an equal number of

AMPs, but experiments have shown that the initiating location, where the AMPs

are started is more heavily loaded than the others, because of the communication

with the remote process shipping from it, and hence has fewer AMPs. We define

optimal balance as each location having the same number of AMPs, except the

initiating location which may have fewer. For small numbers of AMPs the initi-

ating location has just one AMP and other locations have a−1
p−1

AMPs, where a is

the total number of AMPs, and p is the total number of locations.

AMPs 5 AMPs 7 AMPs 9 AMPs 10 AMPs 13 AMPs

3 Locs 1/2/2 1/3/3 1/4/4 - -

4 Locs - 1/2/2/2 - 1/3/3/3 1/4/4/4

5 Locs - - 22221 - -

Table 5.25: Verified Optimal Balance

Our experiments show that collections of AMPs achieve optimal balance as

predicted. In Table 5.25, the first row is the number of AMPs started, the first

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 112

column is the number of locations used, and the remaining columns summarise

the distribution of AMPs on the locations with the initiating location listed first.

For example, if we run seven AMPs on three locations and we start all seven

AMPs on Loc1, then we expect that there will be three AMPs on both Loc2 and

Loc3, but just one AMPs on Loc1.

For illustration, the movement of 7 AMPs between 3 locations is shown in

Figure 5.49. The AMPs are started on Loc1 in time period 0. Four AMPs

move to Loc2 and two move to Loc3 in time period 1, which is not an optimal

balance, so one AMP in Loc2 moves to Loc3 in time period 2. After this move the

system achieves an optimal balance and the AMPs do not move again. We have

Loc1

Loc2

Loc3

0 1 2 3 4 5 6 7 8 9 10 n

LO
C

A
T

IO
N

S

TIME PERIOD

............

P1
P2
P3
P4
P5
P6
P7

Figure 5.49: Distribution of 7 AMPs on 3 Locations

also made experiments with five AMPs on three location, nine AMPs on three

locations, seven AMPs on four locations, ten AMPs on four locations, thirteen

AMPs on four locations, nine AMPs on five locations and achieve similar results.

Figures 5.50, 5.51, 5.52, 5.53, 5.54 and 5.55 show our test results.

Near Optimal Balances

Near-optimal balance is when each location except the initiating location may not

have the same number of AMPs, but the number of AMPs on each location differs

by no more than one. In Figure 5.56, six AMPs are started on Loc1. Three of

them move to Loc3, two of them move to Loc2, one stays on Loc1, and the AMPs

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 113

Loc1

Loc2

Loc3

0 1 2 3 4 5 6 7 8 9 n

LO
C

A
T

IO
N

S

TIME PERIOD

............

P1
P2
P3
P4
P5

Figure 5.50: Distribution of 5 AMPs on
3 Locations

Loc1

Loc2

Loc3

0 1 2 3 4 5 6 7 8 9 10 n

LO
C

A
T

IO
N

S

TIME PERIOD

............

P1
P2
P3
P4
P5
P6
P7
P8
P9

Figure 5.51: Distribution of 9 AMPs on
3 Locations

Loc1

Loc2

Loc3

Loc4

0 1 2 3 4 5 6 7 8 9 10 n

LO
C

A
T

IO
N

S

TIME PERIOD

............

P1
P2
P3
P4
P5
P6
P7

Figure 5.52: Distribution of 7 AMPs on
4 Locations

Loc1

Loc2

Loc3

Loc4

0 1 2 3 4 5 6 7 8 9 10 n

LO
C

A
T

IO
N

S

TIME PERIOD

............

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

Figure 5.53: Distribution of 10 AMPs
on 4 Locations

Loc1

Loc2

Loc3

Loc4

0 1 2 3 4 5 6 7 n

LO
C

A
T

IO
N

S

TIME PERIOD

............

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10
P11
P12

Figure 5.54: Distribution of 13 AMPs
on 4 Locations

Loc1

Loc2

Loc3

Loc4

Loc5

0 1 2 3 4 5 6 7 8 9 10 n

LO
C

A
T

IO
N

S

TIME PERIOD

............

P1
P2
P3
P4
P5
P6
P7
P8
P9

Figure 5.55: Distribution of 9 AMPs on
5 Location

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 114

Loc1

Loc2

Loc3

0 1 2 3 4 5 6 7 8 9 n

LO
C

A
T

IO
N

S

TIME PERIOD

............

P1
P2
P3
P4
P5
P6

Figure 5.56: Distribution of 6 AMPs on
3 Locations

Loc1

Loc2

0 1 2 3 4 5 6 7 8 9 n

LO
C

A
T

IO
N

S

TIME PERIOD

............

P1
P2
P3
P4
P5

Figure 5.57: Distribution of 5 AMPs on
2 Locations

do not move again after the best distribution. We have also made experiments

with five AMPs on two locations and get similar results, shown in Figure 5.57.

Adding More AMPs

Loc1

Loc2

Loc3

Loc4

0 1 2 3 4 5 6 7 8 9 10 11 n

LO
C

A
T

IO
N

S

TIME PERIOD

..........

B A A A B

A:Adding more AMP

B:Optimal Balancing

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

Figure 5.58: Rebalancing: 7 AMPs
Adding 3 More AMPs on 4 Locations

Loc1

Loc2

Loc3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 n

LO
C

A
T

IO
N

S

TIME PERIOD

........

B A A B A A B

A:Adding more AMP(s)

B:Balancing

P1
P2
P3
P4
P5
P6
P7
P8
P9

Figure 5.59: Rebalancing: 5 AMPs
Adding 4 More AMPs on 3 Locations

Figure 5.58 shows that if we add AMPs to a balanced AMPs system, the AMPs

can rebalance themselves. Seven AMPs are initially started on Loc1. Once the

system is balanced, one AMP is started in each time period of 4, 6 and 8, and

the system achieves balance in time period 9. Figure 5.59 shows that we start

five AMPs on Loc1, after the system is balanced, we start four more AMPs, then

the system achieves a new balance in time period 12.

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 115

Removing some AMPs

Loc1

Loc2

Loc3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 n

LO
C

A
T

IO
N

S

TIME PERIOD

........

B R R R B

- -

- -

-

R:Removing AMP(s)

B:Optimal Balancing

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

Figure 5.60: Rebalancing: 10 AMPs Removing 5 AMPs on 3 Locations

The rebalancing as AMPs are removed follows a similar patten to adding

AMPs. In Figure 5.60, firstly we start five big AMPs and five small AMPs on

Loc1, and they become balanced. Then the five small AMPs finish one by one, so

the balance is broken, but after a few moves the system achieves a new balance

again in time period 11.

5.3.2 Collections of AMP on Heterogeneous Network

For testing the behaviour of multiple AMPs on a heterogeneous network we have

made two experiments. One is the behaviour of 25 AMPs on a heterogeneous net-

work of 15 locations, with CPU speeds 3193MHz (Loc1-Loc5), 2168MHZ (Loc6-

Loc10), and 1793MHz (Loc11-Loc15). The other is the behaviour of 20 AMPs on

10 locations with CPU speeds 3139MHz (Loc1-Loc5), 2167MHZ (Loc6), 1793MHz

(Loc7-Loc10).

For illustration, the movement of 25 AMPs between the 15 locations is shown

in Figure 5.61, where “B” is the balanced state. In the balanced state if any AMP

move to any other location it cannot get as much average relative CPU speed

((CPU speed) *(100-loads)% / (Number of AMP)) as at the current location. In

this state, AMPs will stay in the current locations and not move any more until

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 116

Loc1

Loc2

Loc3

Loc4

Loc5

Loc6

Loc7

Loc8

Loc9

Loc10

Loc11

Loc12

Loc13

Loc14

Loc15

0 1 k k+1 k+x k+x+1 l l+1 l+y l+y+1 m m+1 n

LO
C

A
T

IO
N

S

TIME PERIOD

B :Balancing
R:Removing AMP(s)

25 1

3

2

2

2

2

2

2

2

2

1

1

1

1

1
B

..... 1

3

2

2-1

2

2

2

2

2

2

1

1

1

1

1
R

..... 1

3

2

2

2

2

2

2

2

1

1

1

1

1

1
B

..... 1

3

2

2

2

2

2

2

2

1

1

1-1

1

1

1
R

..... 1

3

2

2

2

1

1

2

2

2

1

1

1

1

1
B

.....

Figure 5.61: Distribution of 25 AMPs on Heterogeneous Network (15 Locations)

the balance is broken. We start 25 AMPs on Loc1 in time period “0”. After

some movements of each AMP, the system achieves a balance in time period “k”

and the AMPs maintain the balance and do not move any more until time period

“k+x”, when one of the AMPs is finished and the balance is broken. So the 24

AMPs move again and reach a new balance in time period “l”, and once again

23 AMPs reach balanced state in time period “m”.

Table 5.26 shows the states of the 15 locations, when 25 AMPs reach balance.

In the balanced state, every AMP has the maximum average relative CPU speed

in the network, and the initiating location (Loc1) has fewer AMPs, as where the

AMPs are started is more heavily loaded than the others, because of the commu-

nication with the remote process shipping from it. When the 25 AMPs achieve

the balanced state, 50% CPU of Loc1 has been used for communication rather

than for AMP execution, and there is 1 AMP on Loc1 (3193MHz), so the AMP

on this location can get 1597MHz CPU speed (CPU * (100%-load%)/number of

AMP). There are 3 AMPs on Loc2 (3193MHz), so each AMP on this location

can get 1064MHz CPU, and there is 1 on Loc11 (1793MHz) with no other loads

so the AMP gets 1793MHz CPU. If one of the AMPs on Loc2 is going to move to

Loc11, there will be 2 AMPs on Loc7, and each AMP will get less than 897MHz

(1793MHz/2) CPU, which is less than the current CPU(1064MHz). The other

AMPs are in the same state.

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 117

Total Number of AMPs Other Loads Relative Speed
AMPs Location CPU speed at each location (CPU%) Each AMP had

s n l r=s*(100-l)%/n
Loc1 3193MHz 1 50 1597MHz
Loc2 3193MHz 3 0 1064MHz

25 AMPs Loc3-Loc5 3193MHz 2 0 1597MHz
Loc6-Loc10 3193MHz 2 0 1597MHz
Loc11-Loc15 1793MHz 1 0 1793MHz

Table 5.26: Prediction CPU Speed for Each AMPs (25 AMPs on 15 Locations)
Total Number of AMPs Other Loads Relative Speed
AMPs Location CPU speed at each location (CPU%) Each AMP had

s n l r=s*(100-l)%/n
Loc1 3193MHz 1 49 1628MHz
Loc2 3193MHz 3 0 1064MHz

24 AMPs Loc3-Loc5 3193MHz 2 0 1597MHz
Loc6-Loc9 3193MHz 2 0 1597MHz

Loc10 2167MHz 1 0 2167MHz
Loc11-Loc15 1793MHz 1 0 1793MHz

Table 5.27: Prediction CPU Speed for Each AMPs (24 AMPs on 15 Locations)
Total Number of AMPs Other Loads Relative Speed
AMPs Location CPU speed at each location (CPU%) Each AMP had

s n l r=s*(100-l)%/n
Loc1 3193MHz 1 48 1660MHz
Loc2 3193MHz 3 0 1064MHz

23 AMPs Loc3-Loc5 3193MHz 2 0 1597MHz
Loc6-Loc7 2167MHz 1 0 2167MHz
Loc8-Loc10 2167MHz 2 0 1084MHz
Loc11-Loc15 1793MHz 1 0 1793MHz

Table 5.28: Prediction CPU Speed for Each AMPs (23 AMPs on 15 Locations)

The last column in Tables 5.26 shows the maximum relative CPU speed each

AMP obtains, but the AMPs may not use all these CPU speeds. Figures 5.62

shows the actual relative CPU speed ((CPU speed) * loads% / (Number of AMP))

each AMP uses at balance state. The figure shows that when 25 AMPs on

15 locations achieve balanced states every AMP has effective resource between

150MHZ and 400MHZ with only three exceptions. So every AMP has similar

average relative CPU speed at the balance state. Similar results were found when

some AMPs are finished and the system achieves new balance states. Tables 5.27

and 5.28 show the states of the locations at the new balance states of 24 and 23

AMPs, and Figures 5.63 and 5.64 show the actual relative CPU speed for 24 and

23 AMPs.

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 118

 0

 1

 2

 3

 4

 5

 6

 7

 8

50 100 150 200 250 300 350 400 450 >500

N
um

be
r

of
 A

M
P

CPU speed AMP had

Figure 5.62: Actual CPU Speed for Each AMP (25 AMPs on 15 Locations)

 0

 1

 2

 3

 4

 5

 6

 7

 8

50 100 150 200 250 300 350 400 450 500 550 >600

N
um

be
r

of
 A

M
P

CPU speed AMP had

Figure 5.63: Actual CPU Speed for
Each AMP (24 AMPs on 15 Locations)

 0

 1

 2

 3

 4

 5

 6

 7

 8

50 100 150 200 250 300 350 400 450 500 550 600 650 >700

N
um

be
r

of
 A

M
P

CPU speed AMP had

Figure 5.64: Actual CPU Speed for
Each AMP (23 AMPs on 15 Locations)

The behaviours of 20 AMP programs on 10 locations with CPU speeds 3139MHz

(Loc1-Loc5), 2167MHZ (Loc6), 1793MHz (Loc7-Loc10) are also measured, and

get the similar results to the first experiment. Figure 5.65 shows the balanced

state for 20 AMPs and the rebalanced states for 19 and 18 AMPs on 10 locations.

Tables C.29, C.30, and C.31 in Appendix C show the location information at

the balance state when there are 20, 19, or 18 AMPs on the 10 locations. Figures

C.106, C.107, and C.108 show the actual relative CPU speed available to 20, 19

and 18 AMPs.

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 119

Loc1

Loc2

Loc3

Loc4

Loc5

Loc6

Loc7

Loc8

Loc9

Loc10

0 1 k k+1 k+x k+x+1 l l+1 l+y l+y+1 m m+1 n

LO
C

A
T

IO
N

S

TIME PERIOD

B:Balancing status
R:Removing AMP(s)

20
.....

0

3

3

3

3

2

1

1

2

2

B

.....
0

3

3

3

3

2-1

1

1

2

2

R

.....
1

3

3

3

3

2

1

1

1

1

B

.....
1

3

3

3

3

2-1

1

1

1

1

R

.....
1

3

3

2

3

2

1

1

1

1

B

.....

Figure 5.65: Distribution of 20 AMPs on Heterogeneous Network (10 Locations)

5.4 Summary

The experiments in this chapter compare the coordination times of AMPs with

the load server architecture to that with the non-load server architecture. The

results suggest that by introducing the load server architecture, the coordination

time for AMPs are reduced, so the AMPs can obtain fresher information than in

the non-load server architecture. The load server also reduces network traffic.

Experiments on a homogeneous and heterogeneous network show that collec-

tions of AMPs quickly obtain and maintain optimal or near-optimal balance. The

results also show that if the optimal or near-optimal balance is broken by adding

in or removing AMPs, collections of independent AMPs rebalance quickly with a

small number of moves.

In a homogeneous system, if the ratio of AMPs to locations is ideal, an optimal

balance is relatively quickly obtained with every location, except the initiating

location, hosting the same number of AMPs. Similarly, in a homogeneous system,

even if the ratio of AMPs to locations is not ideal, an near-optimal distribution

can be obtained. Furthermore, the system maintains balance as AMPs are added

or removed. In a heterogeneous system, AMPs can achieve balance with similar

average relative CPU speeds.

The last three chapters introduced the concepts of AMPs which make decen-

tralised decisions about where to execute, and AMSs which encapsulate common

CHAPTER 5. AUTONOMOUS LOAD MANAGEMENT 120

patterns of self-aware mobile coordination. However problem specific cost models

need to be developed by hand and the cost model assumes that only one higher-

order function is the dominating computation for the program. To solve this

problem a cost calculus will be introduced in Chapter 6, which can produce the

cost of the entire program.

Chapter 6

Automatic Continuation Cost

Analysis

Autonomous mobility skeletons and associated cost models are proposed and con-

structed in Chapter 4. These make the assumption that a single higher-order func-

tion is the dominating computation for the program, because the model in Chap-

ter 4 only considers the cost of the higher-order function and not the remaining

cost of the the program. For example, if there are multiple higher-order functions

in the program, e.g. in program (automap f1 l1); (automap f2 l2), automap

f2 l2 is the remainder of automap f1 l1 in the program. When automap f1 l1

make the decision to move or not, it might not move if it only considers the cost

of itself, but it might move if it also considers the cost of automap f2 l1. So the

main question is how to calculate the costs of the reminder of the higher-order

functions in the program.

This chapter explores a calculus to manipulate, and ultimately automatically

statically extract the cost of the remainder (costafter) of a program, at arbitrary

points. The remainder is the continuation [50] in a program, which is a rep-

resentation of the execution state of a program e.g. the call stack or values of

variables at a certain point[130]. The advantage of the cost calculus is that it is

not necessary to provide a closed form solution as environmental information for

a computation is always available implicitly at run-time.

121

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 122

An automatic continuation cost analyser, which implements the cost calculus,

is built to produce cost equations parametrised on program variables in context,

and may be used to find both costs in higher order functions and the costafter of

the higher order functions i.e. the cost of the continuation.

We extend our AMS cost model to be parametrised on the costafter of the

skeletons, and improved AMSs i.e. costed autonomous mobility skeletons (CAMSs)

have been built based on the extended cost model. CAMSs e.g. camap and

cafold, not only encapsulate the common pattern of autonomous mobility like

AMSs in Chapter 4, but take two additional cost parameters: the cost of the

remainder and the cost in the higher-order function. The possible performance

improvements are assessed by comparing CAMS to AMS programs. The results

show that, CAMS programs perform more effectively than AMS programs, be-

cause they have more accurate cost information. Hence a CAMS program may

move to a faster location when the corresponding AMS program does not.

6.1 Introduction

To calculate the costafter of an arbitrary point in a program, the cost of every

expression must be calculated. To illustrate the concept this section gives a small

language, e ::= n | e+e, where n is integer. Using expression 2+3 as an example,

the costafter of 2 can be calculated as E⊢c 3 $ c3 E⊢c +$ c+

E⊢a 2 � (2+3) £ c3+c+
, where c3 is the cost of

3, c+ is the cost of “+” and the judgement is that the costafter of 2 is c3+c+. So to

calculate the costafter of 2 the cost of 3 and the cost of “+” need to be calculated.

The semantic functions ⊢c and ⊢a produce the cost and costafter of expression

respectively in the environment E, which will be introduced in Section 6.3.

The problem with this calculation is if there are two similar expressions or

one expression in two or more different place in the program, it is difficult to

identify the expression whose costafter needs to be calculated. For example, in

expression 10+10, there are two 10s. The question is to calculate the costafter of

10 in 10+10, but it is difficult to decide which 10 is required, and the costafters of

these two 10s are different. To solve this problem, every expression in a program

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 123

is given a unique number, which is called its index. The process of giving these

indices is called indexing. After indexing, the expression 10+10 becomes < 3, <

1, 10 > + < 2, 10 >>. The two 10s become < 1, 10 > and < 2, 10 >, which are

different to each other. The general three stages to calculate the costafter are:

• To index the program.

• To calculate the cost of expressions in a program.

• To calculate the costafter of the point required.

To calculate the cost of an expression is standard and uses techniques similar to

cost models in [80, 103, 124]. The third stage, to calculate the costafter, is novel,

which is to predict a continuation cost in a program.

The structure of this chapter is as follows. Section 6.2 defines a small strict

higher-order language J ′. Section 6.3 builds the cost calculus for language J ′,

which includes indexing the program (Subsection 6.3.1), calculating the costs of

every expressions (Subsection 6.3.2), calculating the costafter of the given ex-

pression (Subsection 6.3.3). Section 6.4 builds the cost model for CAMSs, and

implements CAMSs. Section 6.5 compares the performance of the programs us-

ing CAMSs with the programs AMSs. Section 6.6 describes the implementation

of an automatic continuation cost analyser which implements the cost calculus.

This section also compares the performances of analyser produced CAMSs to the

hand analysed CAMSs in Section 6.5. Section 6.7 summaries. Note that in this

chapter higher-order functions are AMSs e.g. automap, and autofold or CAMSs

e.g. camap or cafold, according to the context.

6.2 Syntax of Language J ′

A cost semantics has been built for language J , which is a subset of Jocaml. J

is a core functional language and readily able to describe non-trivial programs

like matrix multiplication and ray tracing. The full syntax and cost calculus of

J is presented in Appendix A. To explain the principles, this section introduces

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 124

a simple language J ′, a subset of J , and Section 6.3 uses J ′ to introduce the

cost calculus. Figure 6.66 shows the abstract syntax of J ′. To simplify the

e ::= expression
| k constant
| v variable
| fun v → e lambda (abstract)
| e e application
| e op e operation
| map e e map (higher order function)
| e (* e *) user cost
| < n, e > index i.e. expression e has index n

op ::= + | - | * | / |
> | < | >= | <= | = | ! = |
:: (cons) |
; (sequence)

Figure 6.66: Syntax of J ′

presentation it is assumed that variable (v) names in the program are unique.

Note that J also contains fold higher-order function.

J ′ is a core lambda calculus with two unusual expression, the index expression

and user cost expression. The index expression is presented because the whole

program has been indexed, so every expression in a program has a unique integer

as an index to avoid repetitive costafter of one expression in different locations.

The semantics of index are explained in Section 6.3.1. Costing recursive functions

is undecidable. Thus to deal with the cost of recursive functions, user costs are

introduced into language J ′, which will be explained in Section 6.3.2.

6.3 Cost Calculus for J ′

The cost calculus includes three parts. The first part indexes the abstract syntax

tree (AST) to produce indexed abstract syntax tree (IAST), i.e. gives every expres-

sion a unique integer as an index (Section 6.3.1). The second part calculates the

cost of each expression (Section 6.3.2). The third part calculates the costafter of

each expression (Section 6.3.3). Figure 6.67 shows the semantic functions which

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 125

⊢i : n → e → e * n index
⊢c : env → e → e * cost expression cost
≡ : e → e → boolean expression equality
∈ : e → e → boolean expression contains
⊢a : env → e → e → cost costafter

Figure 6.67: Semantic Functions

will be used in the calculus to present semantics of index, cost, costafter, etc.

The meaning of these functions will be given in the sections where the functions

are used. In these semantic functions, env is a semantic domain, which is the

environment used in the calculus, and is presented as E. The type of env is, env

: (v ∗ cost)∗, and cost is an integer.

6.3.1 Index Semantics for J ′

In the cost calculus, every expression in a program has a unique integer as an

index to avoid repeatedly calculating the costafter of same expression in a pro-

gram. For example, in expression ((a+b)+(a+c)) expression a occurs twice in

the expression, so it is difficult to identify the costafter of which a should be cal-

culated. To do so, the original abstract syntax trees for programs are decorated

to make every expressions are unique in the program.

Figure 6.68 shows the semantics of index, where ⊢i is a semantic function,

which takes two parameters, the expression and an integer(i), which is the current

index of the expression, and returns a tuple of index expression and another

integer which is i increased by 1. The type of this function is: ⊢i : n → e → e *

n, where n is integer, e is expression.

• Equation (6.37) shows if the current index is i the expression is a constant k,

after indexing the new expression is < i, k > and the current index becomes

i + 1.

• Equation (6.38) is similar to Equation (6.37), just the expression is a vari-

able (v) instead of constant.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 126

i ⊢i k ⇒i (< i, k >, i + 1)
(6.37)

i ⊢i v ⇒i (< i, x >, i + 1)
(6.38)

i ⊢i e ⇒i (e′, i′)

i ⊢i fun x → e ⇒i (< i′, fun x → e′ >, i′ + 1)
(6.39)

i ⊢i e1 ⇒i (e′1, i
′) i′ ⊢i e2 ⇒i (e′2, i

′′)

i ⊢i (e1 e2) ⇒i (< i′′, (e′1 e′2) >, i′′ + 1)
(6.40)

i ⊢i e1 ⇒i (e′1, i
′) i′ ⊢i e2 ⇒i (e′2, i

′′)

i ⊢i e1 op e2 ⇒i (< i′′, e′1 op e′2 >, i′′ + 1)
(6.41)

i ⊢i e ⇒i (e′, i′)

i ⊢i e (∗ c ∗) ⇒i (< i′, e′ (∗ c ∗) >, i′ + 1)
(6.42)

i ⊢i e1 ⇒i (e′1, i
′) i′ ⊢i e2 ⇒i (e′2, i

′′)

i ⊢i map e1 e2 ⇒i (< i′′, map e′1 e′2 >, i′′ + 1)
(6.43)

i ⊢i < i′, e >⇒i (< i′, e >, i)
(6.44)

Figure 6.68: Index Semantics for J ′

• Equation (6.39) decorates lambda expressions. In this equation the dummy

does not need to be decorated, only the body of the lambda expression

does. For indexing fun x → e, if the current index is i, and after indexing

e the current index is i′, and e becomes e′, the indexed lambda expression

is < i′, fun x → e′ > and the current index is i′ + 1.

• Equation (6.40) decorates application expressions (e1 e2). If the current

index is i after indexing e1, the current index becomes i′ and e1 becomes e′1,

and then after indexing e2, the current index is i′′ and e2 becomes e′2, then

the index for the application expression is i′′ and the current index becomes

i′′ + 1.

• Equation (6.41) decorates operation expressions using the same rules as in

Equation (6.40).

• In Equation (6.42), user cost expressions e (∗ c ∗) are indexed. In this

expression only e, the expression part, has been indexed but not the cost

part (∗ c ∗).

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 127

• In Equation (6.43), map expressions are indexed, which is similar to Equa-

tion (6.40).

• If the expression is an index expression, it should not be indexed again. So

in Equation (6.44), the return expression is the index expression, and the

current index number is still i.

+

B: (IAST)

+ +

 a b c d
A: (AST)

index

<<7,+>>

<<3,+>> <<6,+>>

<<1,a>> <<2,b>> <<4,c>> <<5,d>>

Figure 6.69: An Example of Index in J ′

Figure 6.69 shows an example of indexing an AST. In the figure, tree A is the

original abstract syntax tree for expression e, ((a+b)+(c+d)), and tree B is the

indexed abstract syntax tree. In tree B, the index of node a is 1, the index of

node b is 2, the index of node (a+b) is 3, and the index of the entire expression

((a+b)+(c+d)) is 7. The indexed expression for e is ei: <7,(<3,(<1,a>+<2,b>)>

+<6,(<4,c>+<5,d>)>)>. The result from the function in Section 6.6.2, which

implements the index semantics, is the same.

6.3.2 Cost Semantics for J ′

Two kinds of cost model have been introduced in Section 2.4.1. Computation cost

models estimate the sequential computation time for programs. Coordination cost

models predict the coordination and communication behaviours of parallel, dis-

tributed and/or mobile programs. Usually, coordination cost models take costs

which have been calculated from the computation cost models into account to

make more efficient coordination decisions. The coordination cost models for

AMPs and AMSs have been built in Sections 3.4.2 and 4.2.1. This section intro-

duces static computation cost models.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 128

Many cost models use semantics-based methods e.g [80, 101]. We build a

static computation cost model i.e. cost semantics for language J ′ to calculate

the cost of each expression in the program. The cost semantics is based on the

cost semantics in [80] and simplifies this work. The cost semantics for J ′ does

not consider the type or size system of the language.

Figure 6.70 shows the cost semantics of Language J ′. Semantic function ⊢c

takes the environment (env) and an expression (e), and returns a tuple of the

expression and the cost (cost) of the expression under the environment. The type

of this function is: ⊢c : env → e → e * cost.

E ⊢c k $ 0
(6.45)

{v, c} + E ⊢c v $ c + 1
(6.46)

E ⊢c e1 $ c1 E ⊢c e2 $ c2

E ⊢c e1 op e2 $ 1 + c1 + c2
(6.47)

E ⊢c e $ c

E ⊢c fun x → e $ c
(6.48)

E ⊢c e1 $ c1 E ⊢c e2 $ c2

E ⊢c (e1 e2) $ c1 + c2
(6.49)

E ⊢c e (∗ c ∗) $ c
(6.50)

E ⊢c e1 $ c1 E ⊢c e2 $ c2

E ⊢c map e1 e2 $ c1 ∗ (length e2) + c2
(6.51)

E ⊢c e $ c

E ⊢c < i, e > $ c
(6.52)

Figure 6.70: Cost Semantics for J ′

• Equation (6.45) infers the cost of an constant is 0 in environment E.

• Equation (6.46) shows that the cost of the value of variable , here c, has

been stored in the environment. If we try to calculate the cost of a variable,

we need to look up the environment {v, c}+E, and the total cost of variable

is the cost to access the variable and the cost of the value of the variable,

so the total cost is c + 1.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 129

cost of < 7, (< 3, (< 1, a > + < 2, b >) > + < 6, (< 4, c > + < 5, d >) >) >
⇒ cost of (< 3, (< 1, a > + < 2, b >) > + < 6, (< 4, c > + < 5, d >) >) (6.52)
⇒ 1+cost of < 3, (< 1, a > + < 2, b >) >+cost of < 6, (< 4, c > + < 5, d >) > (6.47)
⇒ 1+cost of (< 1, a > + < 2, b >)+cost of < 6, (< 4, c > + < 5, d >) > (6.52)
⇒ 1+(1+cost of < 1, a >+cost of < 2, b >)+cost of < 6, (< 4, c > + < 5, d >) > (6.47)
⇒ 1+(1+cost of a+cost of < 2, b >)+cost of< 6, (< 4, c > + < 5, d >) > (6.52)
⇒ 1+(1+(1+ca)+cost of < 2, b >)+cost of < 6, (< 4, c > + < 5, d >) > (6.46)
⇒ 1+(1+(1+ca)+cost of b)+cost of < 6, (< 4, c > + < 5, d >) > (6.52)
⇒ 1+(1+(1+ca)+(1+cb))+cost of < 6, (< 4, c > + < 5, d >) > (6.46)
⇒ 1+(1+(1+ca)+(1+cb))+cost of (< 4, c > + < 5, d >) (6.52)
⇒ 1+(1+(1+ca)+(1+cb))+(1+cost of < 4, c >+cost of < 5, d >) (6.47)
⇒ 1+(1+(1+ca)+(1+cb))+(1+cost of c+cost of < 5, d >) (6.52)
⇒ 1+(1+(1+ca)+(1+cb))+(1+(1+cc)+cost of < 5, d >) (6.46)
⇒ 1+(1+(1+ca)+(1+cb))+(1+(1+cc)+cost of d) (6.52)
⇒ 1+(1+(1+ca)+(1+cb))+(1+(1+cc)+(1+cd)) (6.46)

Figure 6.71: An Example of Costing in J ′

• Equation (6.47) performs the cost of operation expressions (e1 op e2). If the

cost of e1 is c1, and the cost of e2 is c2 then the cost of e1 op e2 is 1 + c1 + c2,

where 1 is the cost for getting the operator.

• Equation (6.48) performs the cost of lambda expressions fun x → e, which

is the the cost of the body e.

• Equation (6.49) shows that the cost of application expression (e1 e2) is the

cost of e1 (c1) plus the cost of e2 (c2).

• Equation (6.50) enables the user cost to provide in particular for a recursive

functions. It is difficult to calculate the static cost of recursive functions.

So in e (∗ c ∗), the cost of e is c which is calculated by hand rather by the

cost analyser automatically. The cost is passed to the cost analyser. The

cost analyser will take c as the cost of e in the costing process.

• Equation (6.51) infers the cost of map expression under environment E.

Here only the regular cases of map are considered. So under this condition

function e1 applying on every elements of list e2 has the same cost. So the

total cost of map expression is c1 ∗ (length e2) + c2, where c1 is the cost of

function e1 applying on the first element of list e2.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 130

• Equation (6.52) shows that under environment E the cost of index expres-

sion < i, e > is the cost of expression e (c).

Figure 6.71 shows how the indexed AST from Figure 6.69 is costed. The

cost of expression ((a+b)+(c+d)) from the program, which implements the cost

semantics of J ′, is (1+((1+((1+0)+(1+0)))+(1+((1+0)+(1+0))))), where the

four (1+0)s are the cost of a, b, c, and d, because in the program a, b, c, and

d are integers and the cost of integer is 0. So the result is the same as that

calculated by hand in Figure 6.71. The program is in Section 6.6.2.

6.3.3 Costafter Semantics for J ′

Section 6.3.2 explains the cost semantics of J ′, but calculating the costs of ex-

pression is not the object of this work; the object is to calculate the costafter of

the expressions in program. The costafter is the cost of the remainder i.e. the

continuation of the program.

There are two approaches to calculate the cost of the continuations in a pro-

gram. One is translating the direct program into continuation passing style (CPS)

[47] to obtain the continuation of the current expression, then calculating the cost

of the continuation. Another is the approach which is presented in this section.

This approach passes the cost of the remainder of the program directly rather

than passing the continuation back to the current expression. There are two ad-

vantages of this approach. First, we do not need to translate the program into

CPS. Second, it is easier to pass an integer (cost) back to the current expression

than the execution state of the program e.g. the call stack or values of variables.

This section introduces the costafter semantics of J ′. In the costafter two def-

initions will be used: syntactic expression equality, and expression containment.

Syntactic Equality of Expression

Figure 6.72 shows the definition of syntactic expression equality, which compares

if two expressions are structurally the same, presented as: ≡ : e → e → boolean.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 131

e = k

e ≡ k
(6.53)

e = v

e ≡ v
(6.54)

e1 ≡ e3 e2 ≡ e4

(e1 op e2) ≡ (e3 op e4)
(6.55)

x1 ≡ x2 e1 ≡ e2

(fun x1 → e1) ≡ (fun x2 → e2)
(6.56)

e1 ≡ e3 e2 ≡ e4

(e1 e2) ≡ (e3 e4)
(6.57)

e1 ≡ e3 e2 ≡ e4

(map e1 e2) ≡ (map e3 e4)
(6.58)

e1 ≡ e2 c1 ≡ c2

(e1 (∗ c1 ∗)) ≡ (e2 (∗ c2 ∗))
(6.59)

< i, e1 > ≡ < i, e2 >
(6.60)

Figure 6.72: Definition of Syntactic Expression Equality in J ′

• Equation (6.53) defines constant expression equality. If expression e is an

constant and its value is equal to k, so expression e is equal to expression

k.

• Equation (6.54) performs variable equality. In J ′, it is assumed that vari-

ables (v) names in the program are unique, so if two variables expressions

have the same name, the two expressions are equal.

• Equation (6.55) performs the equality of two operation expressions. Ex-

pression (e1 op e2) equals to expression (e3 op e4), if e1 equals to e3 and e2

equals to e4.

• Equation (6.56) performs the equality of two lambda expression. Expression

fun (x1 → e1) equals to expression fun (x2 → e2), if variable x1 equals to

variable x2 and expression e1 equals to e2.

• Equations (6.57) and (6.58) define application expression and map expres-

sion equality, which are all similar to Equation (6.56).

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 132

• Equation (6.59) shows that two user cost expression are equal if both the

expression parts and cost parts are equal.

• Equation (6.60) defines the index expression equality. In the calculus, the

whole program has been indexed, so every expression in a program has a

unique integer as an index, so in J ′, two index expressions are equal to each

other only if their indices are equal.

Expression Contains

e1 ≡ e2

e1 ∈ e2
(6.61)

e1 ∈ e2

e1 ∈ fun x → e2
(6.62)

e1 ∈ e2

e1 ∈ (e2 e3)
(6.63a)

e1 ∈ e3

e1 ∈ (e2 e3)
(6.63b)

e1 ∈ e2

e1 ∈ e2 op e3
(6.64a)

e1 ∈ e3

e1 ∈ e2 op e3
(6.64b)

e1 ∈ e2

e1 ∈ e2 (∗ c ∗)
(6.65)

e1 ∈ e2

e1 ∈ map e2 e3
(6.66a)

e1 ∈ e3

e1 ∈ map e2 e3
(6.66b)

e1 ∈ e2

e1 ∈< i, e2 >
(6.67)

Figure 6.73: Definition of Contains in J ′

Figure 6.73 gives the definition of contains. Semantic function ∈ takes two

expressions, if the second expression contains the first expression it returns true

or else returns false.

• Equation (6.61) identifies that if expression e1 is equal to expression e2 then

the two expressions contain each other.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 133

• Equation (6.62) shows that if e1 is contained in e2, then e1 is contained in

fun x → e2.

• Equation (6.63a) to (6.67) gives the definition of contains for different ex-

pressions, which are all similar to Equation (6.62).

b = b
b ≡ b (6.54)

⇒ b ∈ b (6.61)
⇒ b ∈ < 2, b > (6.67)
⇒ b ∈ (< 1, a > + < 2, b >) (6.64b)
⇒ b ∈ < 3, (< 1, a > + < 2, b >) > (6.67)
⇒ b ∈ < 3, (< 1, a > + < 2, b >) > + < 6, (< 4, c > + < 5, d >) > (6.64a)
⇒ b ∈ < 7, (< 3, (< 1, a > + < 2, b >) > + < 6, (< 4, c > + < 5, d >) >) > (6.67)

Figure 6.74: An Example of Contains in J ′

An example to deduce if expression (a+,b)+(c+d) contains expression b is

given in Figure 6.74, where expression <7,(<3,(<1,a>+<2,b>)>+<6,(<4,c>+<5,d>)>)>

is indexed expression (a+b)+(c+d).

Costafter Semantics for J ′

Figure 6.75 shows the semantics of costafter of an expression e in different ex-

pressions. Semantic function ⊢a takes the environment (env) and two expressions.

The return value of ⊢a is a cost, which is the costafter of the first expression in

the second expression. The type of this function is: ⊢a : env → e → e → cost.

• Equation (6.68) states that if expression e is equal to e′ then the costafter

of e in e′ is 0.

• Equation (6.69a) and (6.69b) define the costafter of e in lambda expressions.

If the costafter of e in e1 is c, then the costafter of e in lambda expression

fun x → e1 is c too. If e1 does not contains e then the costafter of e in

fun x → e1 is 0.

• Equation (6.70a), (6.70b), and (6.70c) define the costafter of e in application

expressions (e1 e2). If e1 contains e, then the costafter of e in (e1 e2) is the

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 134

e ≡ e′

E ⊢a e � e′ £ 0
(6.68)

E ⊢a e � e1 £ c

E ⊢a e � fun x → e1 £ c
(6.69a)

E ⊢a e � fun x → e1 £ 0
(6.69b)

e ∈ e1 E ⊢a e � e1 £ c1 E ⊢c e2 $ c2

E ⊢a e � (e1 e2)£ c1 + c2
(6.70a)

e ∈ e2 E ⊢a e � e2 £ c2

E ⊢a e � (e1 e2)£ c2
(6.70b)

E ⊢a e � (e1 e2)£ 0
(6.70c)

e ∈ e1 E ⊢a e � e1 £ c1 E ⊢c e2 $ c2

E ⊢a e � (e1 op e2)£ 1 + c1 + c2
(6.71a)

e ∈ e2 E ⊢a e � e2 £ c2

E ⊢a e � (e1 op e2)£ c2 + 1
(6.71b)

E ⊢a e � (e1 op e2)£ 0
(6.71c)

E ⊢a e � e1 (∗ c ∗)£ 0
(6.72)

e ∈ e1 E ⊢c map e1 e2 $ c E ⊢a e � e1 £ c1 E ⊢c e2 $ c2

E ⊢a e � map e1 e2 £ c + c1 + c2
(6.73a)

e ∈ e2 E ⊢c map e1 e2 $ c E ⊢a e � e2 £ c2

E ⊢a e � map e1 e2 £ c + c2
(6.73b)

E ⊢a e � map e1 e2 £ 0
(6.73c)

E ⊢a e � e1 £ c

E ⊢a e� < i, e1 > £ c
(6.74)

Figure 6.75: Costafter Semantics for J ′

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 135

costafter of e in e1, here c1, plus the cost of e2, here c2. If e2 contains e then

the costafter of e in (e1 e2) is the cost after e in e2. If e is not contained in

e1 or e2, then the costafter of e in (e1 e2) 0.

• Equation (6.71a), (6.71b), and (6.71c) define the costafter of e in operation

expressions e.g. (e1 op e2). If e1 contains e, then the costafter of e in (e1 e2)

is the costafter of e in e1 (c1), plus the cost of e2 (c2) plus 1, which is the

cost for getting the operator.

• In language J ′ the cost of recursive function can not be calculated auto-

matically, so the costafters in recursive functions are not considered. The

user cost expression gives the cost of a recursive function, so the costafter

of any expression in a user cost expressions is 0, see Equation (6.72).

• Equation (6.73a), (6.73b), and (6.73c) define the costafter of e in map ex-

pression map e1 e2. Equation (6.73a) shows that if e1 contains e, then the

costafter of e in map e1 e2 is the costafter of e in e1, plus the cost of e2,

and plus the cost of map expression, because after e1 and e2 map expression

will be executed. A similar situation of e2 containing e is handled in Equa-

tion (6.73b). Equation (6.73c) shows that if e is not contained in e1 or e2

then the costafter of e in map e1 e2 is 0.

• Equation (6.74) shows that the costafter of e in index expression < i, e1 >

is the same as the costafter of e in expression e1.

Figure 6.76 gives an example to show how to calculate the costafter of a sub-

expression in a expression. From the deduction in Figure 6.74, expression b is

contained in the indexed expression of ((a+b)+(c+d)), ei (Section 6.3.1). The

costafter of expression b in expression ei is calculated in Figure 6.76.

The result from the program, which implements the costafter semantics, is

((0+1)+((1+((1+0)+(1+0)))+1)), where the first 0 is the costafter of b in b

and the second and the third 0s are the cost of c, and d, because in the program

a, b, c, and d are integers and the cost of integer is 0. So the result is the same

as that calculated by hand in Figure 6.76.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 136

costafter of b in
< 7, (< 3, (< 1, a > + < 2, b >) > + < 6, (< 4, c > + < 5, d >) >) >

⇒ costafter of b in
(< 3, (< 1, a > + < 2, b >) > + < 6, (< 4, c > + < 5, d >) >) (6.74)

⇒ 1+costafter of b in
< 3, (< 1, a > + < 2, b >) >+cost of < 6, (< 4, c > + < 5, d >) > (6.71a)

⇒ 1+costafter of b in
(< 1, a > + < 2, b >)+cost of < 6, (< 4, c > + < 5, d >) > (6.74)

⇒ 1+(1+costafter of b in
< 2, b >)+cost of < 6, (< 4, c > + < 5, d >) > (6.71b)

⇒ 1+(1+costafter of b in b)+cost of < 6, (< 4, c > + < 5, d >) > (6.74)
⇒ 1+(1+0)+cost of < 6, (< 4, c > + < 5, d >) > (6.68)
⇒ 1+(1+0)+(1+ (1+cc) + (1+cd)) (From Figure 6.71)

Figure 6.76: An Example of Costafter in J ′

6.4 Costed Autonomous Mobility Skeletons

A cost calculus to manipulate and ultimately automatically statically extract

costafter at arbitrary points has been built in Section 6.3. This section extends

the AMS cost model to be parameterised on the costafter of the higher-order func-

tions, and improved AMSs have been built based on the extended cost model.

The improved AMSs are called costed autonomous mobility skeletons (CAMSs).

CAMSs e.g. camap and cafold not only encapsulate the common pattern of

autonomous mobility like AMSs in Chapter 4, but take two additional cost pa-

rameters: the cost of the remainder and the cost in the higher-order function.

6.4.1 Cost Model for Costed Autonomous Mobility Skele-

tons

The cost model for CAMSs is similar to that for AMSs in Section 4.2.1 and is

given in Figure 6.77. In this cost model:

• In Equation (6.75) the total work is the cost in the CAMS and the costafter

of the CAMS, rather than just the total work in Equation (4.29) in the cost

model for AMS.

• Equation (6.76) gives the work that has been done, r.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 137

Wall = costf ∗ (length of the list) + costafter = a (6.75)

Wa = r (6.76)

Wl = Wall − Wa = a − r (6.77)

Wd = costf (6.78)

Te =
Wd

Sh

Sec =
costf

Sh

Sec (6.79)

Th =
Wl

Sh

Sec =
(a − r)Sec

Sh

(6.80)

Th =
((a − r)Sec)Te

Sec
=

(a − r)

costf
Te (6.81)

Tn =
Wl

Sn

=
(a − r)Sec

Sn

=
ShTh

Sn

(6.82)

Figure 6.77: Cost Model for CAMS

• Equation (6.77) shows that the remaining work is the total work minus the

work that has been done.

• Equation (6.78) shows that the work that has been done at the current

location is the cost of f, which is the cost for processing one element in the

list.

• Substituting Equation (6.78) in (3.14), the time that has elapsed at current

location can be calculated giving Equation (6.79).

• Substituting Equation (6.77) in (3.15) the time it will take at the current

location can be calculated giving Equation (6.80).

• Substituting Equation (6.79) in (6.80) Equation (6.81) can be got, which

shows the time it will take at the current location is a function of Te.

• Substituting Equation (6.80) in (3.15) the time that will be taken in the

next location can be predicted as Equation (6.82).

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 138

6.4.2 An Implementation of Costed Autonomous Mobil-

ity Skeletons

camap and cafold CAMSs are implemented in Jocaml. An implementation of

camap is shown in Figure 6.78. The implementation cafold is very similar to

camap. The check move function is the same as in Section 4.2.2. The checkInfo

function is similar to the getInfo function in Section 4.2.2, which is to evaluate

the benefits of a move and to recalculate when should check again rather to

calculate a gran in function getInfo.

let rec camap’ f l costf costaftermap fhtime workleft=

let (h::t) = l in

if (((!t_current)-.(!t_last)) >= (!whencheck))

then

(check_move costf workleft fhtime;

let (fh,fhtime’) = timedapply f h in

t_current := Unix.gettimeofday();

checkInfo costf fhtime’;

fh::camap’ f t costf costaftermap fhtime’ (workleft-costf)

)

else

(let fh = f h in

t_current := Unix.gettimeofday();

fh::camap’ f t costf costaftermap fhtime (workleft-costf)

)

let camap f l costf costaftermap =

let (h::t) = l in

(let localwork = costf * (length l) in

let work = localwork + costaftermap in

let (fh,fhtime) = timedapply f h in

t_current := Unix.gettimeofday();

checkInfo costf fhtime;

fh::camap’ f t costf costaftermap fhtime (work-costf)

)

Figure 6.78: Implementation of camap in Jocaml

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 139

6.5 Evaluating Costed Autonomous Mobility Skele-

tons

This section is using camap and automap as examples to evaluate the perfor-

mance of CAMSs against AMSs. Six AMPs have been built, which use different

numbers of higher-order functions to demonstrate the behaviours of CAMSs and

AMSs. To construct the AMPs using camap f l costf costafter, the costf

and costafter are calculated by hand according to the cost calculus for J ′.

Section 6.6 will introduce an automatic continuation cost analyser which can

automatically transform higher-order functions into CAMSs.

In this chapter, CAMS programs refer to AMPs with CAMSs, and the same

as AMS programs.

6.5.1 Single Higher Order Function Examples

The initial hypothesis is if there is only one higher-order functions in the AMP, the

performances of the CAMS programs should be the the same as the corresponding

AMS programs. That is the AMPs should exhibit the same movement behaviour

at the same moment and hence have the same execution times. Two single higher-

order function AMPs have been tested: matrix multiplication and ray tracing.

Matrix Multiplication Comparison

Different size matrix multiplication have been executed to see if the CAMS

programs have the same execution time as the corresponding AMS programs.

The test environment has three locations with CPU speeds 534MHZ(ncc1710),

933MHZ(jove) and 1894MHZ(lxtrinder). The loads on these three locations are

almost zero, and both the CAMS and AMS programs are started on the first

location.

Figure 6.79 shows that the CAMS programs behave the same as the corre-

sponding AMS programs. Both the CAMS and AMS programs start to move

when the matrix size increased to 330*330 (See Table D.32 in Appendix D), and

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 140

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 6.79: CAMS and AMS Matrix Multiplication Execution Time
Comparison

hence the execution time of the CAMS and AMS programs are almost identical.

Ray Tracing Comparison

Figure 6.80 shows similar results for ray tracing AMPs. The exact execution time

are shown in Table D.33 in Appendix D.

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 6.80: CAMS and AMS Ray Tracing Execution Time Comparison

From the results of matrix multiplication and ray tracing, it can be concluded

that when there is only one higher-order functions in the AMPs, the performances

of the CAMS programs are as good as the AMS programs.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 141

6.5.2 Sequential Composed Higher Order Function Ex-

amples

This section investigates the performance of the skeletons when an AMP contains

the sequential composition of several higher-order functions. Four experiments

have been performed with sequential CAMSs or AMSs. The AMPs are double

matrix multiplication, invertible matrix, double ray tracing, and five matrix mul-

tiplications. The test environments in this section are the same as in Section 6.5.1.

Double Matrix Multiplication Comparison

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350 400 450 500

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 6.81: CAMS and AMS Double Matrix Multiplication Execution Time
Comparison

Figure 6.81 compares the CAMS and AMS double matrix multiplication pro-

grams, where two matrix multiplication are performed sequentially. The CAMS

program starts moving at matrix size of 230*230, but the AMS program starts

moving still at 330*330 (see Table D.34 in Appendix D), because the CAMSs

consider the total remaining costs of the entire program but AMSs only consider

the remaining costs in the function.

Figure 6.81 shows that in some cases the CAMS programs are slower than the

corresponding AMS programs, for the following reasons.

• When the matrix is large enough for both the CAMS and AMS programs to

move to faster location with the same size of matrix e.g. 330*330, the AMS

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 142

program move at an earlier element (not size) than the CAMS program.

For example in the AMP of size 330*330 double matrix multiplication, the

first automap in the program only calculate the 330 elements in itself, and

decides to move once, so the program moves at the 165th element. However,

the first camap in the CAMS program, calculates 330*2=660 elements, and

considers moving twice, so the program moves at the 220th element. Hence,

the CAMS program moves to a faster location later than the AMS program

and it is a little slower.

• Another reason is that the CAMS programs may perform more checks than

the corresponding AMS programs. Still using the program with matrix

size of 330*330 double matrix multiplication as the example, after the AMS

program moves to a faster location the first automap considers the remaining

165 elements only, so it might not check information again. However the

first camap in the CAMS program considers 110+330=440 elements, so it

might check the locations information again.

In these two cases the CAMS programs may be a little slower than the corre-

sponding AMS programs, but are both faster than the static programs.

Invertible Matrix Comparison

The invertible matrix program takes two matrix and checks if they are invertible

to each other. The essence of the program is as follows:

let m12 = mmult m1 m2;;

let isId12 = checkEqual m12 idMat;;

let m21 = mmult m2 m1;;

let isId21 = checkEqual m21 idMat;;

In this program there are two matrix multiplications, so there are two higher-order

functions as in double matrix multiplications. The checkEqual function checks

if two matrices are identical, which takes little execution time, so the invertible

matrix program is very similar to double matrix multiplication.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 143

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 6.82: CAMS and AMS Invertible Matrix Execution Time Comparison

Figure 6.82 compares the execution time of a range of sizes of CAMS invert-

ible matrix programs with AMS programs. The results are similar to double

matrix multiplication. The exact execution times are shown in Table D.35 in

Appendix D.

Double Ray Tracing Comparison

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45 50

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 6.83: CAMS and AMS Double Ray Tracing Execution Time Comparison

Figure 6.83 compares the execution time of CAMS and AMS double ray trac-

ing AMPs, where ray tracing is done twice. The results are similar to the results

for double matrix multiplication. The exact execution times are shown in Ta-

ble D.36 in Appendix D.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 144

Five Matrix Multiplication Comparison

Figure 6.84 compares movements of CAMS and AMS five matrix multiplication

AMPs, where matrix multiplication are done five times. Hence, there are five

higher-order functions in the program. The results are similar to the results for

double matrix multiplication. The exact execution times are shown in Table D.37

in Appendix D.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 6.84: CAMS and AMS Five Matrix Multiplications Execution Time
Comparison

Comparing Figure 6.84 with Figure 6.81 shows that the CAMS five matrix

multiplication program starts to move at size 170*170, which is smaller than the

CAMS double matrix multiplication program at size 230*230. However, the AMS

five matrix multiplication program still starts to move at size of 330*330 matrix,

which is the same as the AMS double matrix multiplication program. The reason

is that in CAMS five matrix multiplication, the first camap considers the costs of 5

higher-order functions, but the first automap in the corresponding AMS program

still only considers the cost of the current collection computation.

Discussion

From the results for AMPs with different number of higher-order functions, the

following properties of CAMS and AMS can be noted:

• In some cases the CAMS programs are faster than the corresponding AMS

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 145

programs because CAMS programs move to a faster location with smaller

size data than the corresponding AMS programs, and the more higher-order

functions in a AMP, the earlier the CAMS program moves compared with

the corresponding AMS program.

• The CAMS programs may do more checks than the corresponding AMS

programs. This is a disadvantage for execution time i.e. in this case the

CAMS programs may be slower than the corresponding AMS programs,

but is an advantage for reacting to the change of environment, which will

be considered in Section 6.5.3.

• For the same size of matrix, if both the CAMS and corresponding AMS

programs move to a faster location, then the AMS programs move at an

earlier element (not size) than the corresponding CAMS programs. In this

case, the AMS programs are faster than the corresponding CAMS programs.

• Even if the AMS programs may move at an earlier element than the cor-

responding CAMS programs, the ratio of CAMS program execution com-

pared to the corresponding AMS program becomes smaller when the data

becomes bigger, as the number of the element at which the CAMS program

starts moving compared to the AMS program becomes smaller when the

data becomes bigger. For example, in an AMP l is the length of list in the

higher-order functions, n is number of higher-order function, and m is the

checks for one higher-order function. The gran, at which the AMP moves,

for automap is granautomap = l
m+1

, and for camap is grancamap = l∗n
m∗n+1

.

grancamap/granautomap = l∗n
m∗n+1

/ l
m+1

can be simplified as 1 + n−1
m∗n+1

. So

when n is a constant, the bigger the m the smaller the ratio. As bigger

AMPs can do more checks, which is the bigger m, the bigger the AMP, the

smaller the ratio. The assumption here is that the n higher-order functions

are working on the same function and the same list.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 146

6.5.3 Performance Comparison with Changing Load

When there is more than one higher-order function in the AMP, CAMS programs

may do more checks than the corresponding AMS programs (see Section 6.5.2).

This is an advantage for reacting to the change of environment. The experiments

in this section test the behaviour of CAMS and AMS programs when the loads

of locations in the network are changed. Tests for two AMPs have been done:

invertible matrix and five matrix multiplications. The tests are based on four

locations, (1)ncc1710, (2)jove, (3)lxtrinder, and (4)linux81, with CPU speed of

534MHz, 933MHz, 1894MHz, and 2800MHz. At the beginning, the first three

location are idle and the fourth location is heavily loaded with relative CPU

speed of 56MHz.

Figure 6.85 compares the execution time of CAMS to AMS invertible matrix

AMPs. Both CAMS and AMS invertible matrix AMPs are tested one by one.

The AMPs are started on ncc1710 and move to lxtrinder as expected. At the

same time linux81 finishes the work and becomes idle.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 100 200 300 400 500 600

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 6.85: CAMS and AMS Invertible
Matrix Execution Time Comparison

with Changing Loads

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200 250 300 350 400 450 500

T
im

e(
S

ec
)

Size(n*n)

using camap
using automap

"static"

Figure 6.86: CAMS and AMS Five
Matrix Multiplications Execution Time

Comparison with Changing Loads

When the sizes of matrices are larger than 450*450, the CAMS programs

move to the faster location linux81 again, but the corresponding AMS programs

do not, as the camap in the CAMS programs do more checks than automap in the

corresponding AMS programs. In this case, the CAMS programs may finish faster

than the corresponding AMS programs. When the size of the matrix is larger

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 147

than 450*450 but smaller than 500*500, the CAMS programs is slower than the

corresponding AMS programs, as the additional coordination time is bigger than

the reduced execution time in a faster location. When the size of the matrix is

larger than 500*500, the CAMS programs is faster than the corresponding AMS

programs.

When the size of matrix is smaller than 450*450, the CAMS programs do not

move, because the cost of moving (Tcomm) to another location is too big compared

to the reduced execution time in a faster location. In this case, the results are

similar to the result in Figure 6.82.

The exact execution times are showed in Table D.38 in Appendix D. Similar

results are obtained for five matrix multiplication AMPs, shown in Figure 6.86.

Also see Table D.39 in Appendix D for details.

Note that the more higher-order functions in AMPs, the smaller size data

with which the CAMS programs start to move again. In invertible matrix, there

are two higher-order functions and the CAMP programs move again when the

size of the matrix is larger than 450*450. In five matrix multiplication, there are

five higher-order functions and the CAMS programs move again when the size of

the matrix is larger than 330*330.

6.5.4 Conclusion

From the results in Sections 6.5.1, 6.5.2, and 6.5.3, the following conclusion can

be drawn:

• If there is only one high-order function dominating the computation, CAMS

programs reproduce the movement of the corresponding AMS programs

(Section 6.5.1).

• If there is more than one higher-order functions in AMPs, CAMS programs

move with smaller size data e.g. matrix than the corresponding AMS pro-

grams, and the more higher-order functions in AMPs, with the smaller

data the CAMS programs move than the corresponding AMS programs

and hence the greater the potential for gains (Section 6.5.2).

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 148

• When both the CAMS and AMS programs move, the CAMS programs

may be slower than the corresponding AMS programs, but the larger the

data in the AMPs the earlier the CAMS programs move relative to the

corresponding AMS programs (Section 6.5.2).

• The CAMS programs react to the change of environment more sensitively

than the corresponding AMS programs (Section 6.5.3).

6.6 Automatic Continuation Cost Analyser

6.6.1 Structure of the Automatic Continuation Cost Anal-

yser

The cost calculus has been implemented as an automatic cost analyser in Jocaml.

The analyser produces cost equations parameterised on program variables in con-

text, and is used to find both cost in higher order functions and the costafter of

the higher order functions. As costafter is the cost of the continuations, the anal-

yser is also called an automatic continuation cost analyser. The analyser takes

programs in a subset of Jocaml with higher-order functions as input and outputs

Jocaml AMPs with CAMSs. Figure 6.87 shows the structure of the automatic

continuation cost analyser. The analyser has four parts.

1. The parser takes Jocaml programs with higher-order functions e.g. map and

fold and outputs the abstract syntax tree (AST).

2. The indexer is an implementation of the index semantics in Section 6.3.1.

The indexer takes the AST and decorates every nodes in the AST which

gives every expression a unique integer as an index, so the output of indexer

is an indexed abstract syntax tree (IAST).

3. The coster takes the IAST and outputs the cost after each node (costafter)

in IAST. The coster first calculates the cost of each expression, which

implements the cost semantics in Section 6.3.2, and then calculates the

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 149

Indexer

Abstract Syntax Tree

Indexed Abstract Syntax Tree

Indexed Abstract Syntax Tree

Generator

Coster (get costafter)

output

Input

output

output

Input

Input

Jocaml + HOFs

+Costafter

Input

output Jocaml+CAMSs

Parser

Calculus
Cost

Figure 6.87: Structure of Automatic Continuation Cost Analyser

costafter of each expression, which implements the costafter semantics in

Section 6.3.3.

4. The Generator generates a Jocaml program from the IAST, which has the

same functionality as the Jocaml program but using CAMSs e.g. camap or

cafold instead of higher-order functions map and fold.

6.6.2 An Implementation of the Cost Calculus

In the automatic continuation cost analyser, index, cost, and costafter func-

tions have been implemented, with the semantics given in Section 6.3.1, 6.3.2,

and 6.3.3.

let rec index i e =

match e with

(VAR s) -> (INDEX (i,VAR s),i+1) |

(INT i1) -> (INDEX (i,INT i1),i+1) |

.......

Figure 6.88: Implementation of Index Function

Figure 6.88 shows part of the implementation of the index. In the code, index

takes the current index number i and the expression to be indexed e and returns

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 150

the indexed expression and the next index number i+1. The type of index is:

int -> expression -> (expression * int).

let rec cost env e =

match e with

(VAR i) -> (*cost env*) (lookup env i) |

(INT _) -> INT 0 |

(OP(_,e1,e2)) -> OP(LADD,INT 1,OP(LADD,cost env e1,cost env e2)) |

.......

Figure 6.89: Implementation of Cost Function

Figure 6.89 shows part of the code of the cost function. The cost function

implements the cost semantics introduced in Section 6.3.2. The type of cost is:

env -> expression -> int.

let rec costafter env e1 e2 =

if e1=e2

then INT 0

else costafter’ env e1 e2

and costafter’ env e e’ =

match e’ with

(VAR i) -> INT 0 |

(INT i) -> INT 0 |

(OP(_,e1,e2)) ->

if contains e e1

then OP(LADD,costafter env e e1,OP(LADD,cost env e2,INT 1))

else

if contains e e2

then OP(LADD,costafter env e e2,INT 1)

else INT 0 |

.......

Figure 6.90: Implementation of Costafter Function in Jocaml

Figure 6.90 is the implementation of costafter. The costafter implements

the costafter semantics introduced in Section 6.3.3. The type of costafter is:

env -> expression -> expression -> int.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 151

6.6.3 Generator: Generating Autonomous Mobility Skele-

tons

Section 6.6.2 shows the programs to calculate the costafter of an arbitrary node

in abstract syntax trees, but this thesis is interested in the nodes of higher-order

functions e.g map and fold, which can be converted into CAMSs.

The functionality of the generator is to find the higher-order functions in a

program and translate them to CAMSs with the costafters. For example, if the

original program is map f l, the object program after the generator is camap f

l costf costafter, where costf is the cost of f applied to the first element of

l, which can be calculated using the cost semantics, and costafter is the cost

after the map expression in the program, which can be calculated using costafter

semantics.

This section uses expression e, (map (fun x -> x+1) [1;2]);(map (fun y

-> y-1) [3;4]), as an example to explain how to convert higher-order func-

tions to CAMS. Expression e has two sub-expressions e1, (map (fun x -> x+1)

[1;2]), and e2, (map (fun y -> y-1) [3;4]), so e can be presented as e1; e2.

To construct CAMSs, four issues should be considered:

(1) the cost of (fun x -> x+1),

(2) the costafter of e1 in e,

(3) the cost of (fun y -> y-1),

(4) and the costafter of e2 in e.

From the cost equations in Section 6.3.2, the cost of (fun x -> x+1) (hd

[1;2]) can be calculated, which is (fun x -> (1+((1+0)+0))) (hd [1;2])

(Equations (6.49), (6.48), (6.46)). The simplified result is 2.

The costafter of e1 in e is the costafter of e1 in e1, which is 0 (Equation (6.68)),

plus the cost of e2, plus 1 (Equation (6.71a)). The cost of e2 is ((fun y ->

(1+((1+0)+0))) (hd [3;4]))*(length [3;4]), which is simplified as 4, so the

total costafter of e1 in e is 5. The generator converts e1 to (camap (fun x

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 152

-> (x+1)) [1;2] (2) (5)). Similarly, e2 is converted to (camap (fun y ->

(y-1)) [3;4] (2) (1)).

The result from the program is the same as that which is calculated by hand.

The generator takes the original program,

(map (fun x -> x+1) [1;2]);

(map (fun y -> y-1) [3;4])

and generates an AMP with CAMSs. The AMP is:

(camap (fun x -> (x+1)) [1;2]

(((fun x -> (1+((1+0)+0))) (hd [1;2]))) (* cost of (fun x -> x+1) *)

((0+(((fun y -> (1+((1+0)+0))) (hd [3;4]))*(length [3;4])))+1)

(* costafter of first map *)

);

(camap (fun y -> (y-1)) [3;4]

(((fun y -> (1+((1+0)+0))) (hd [3;4]))) (* cost of (fun x -> x+1) *)

(0) (* costafter of second map *)

)

The AMP can be simplified to:

(camap (fun x -> (x+1)) [1;2] (2) (5));

(camap (fun y -> (y-1)) [3;4] (2) (1))

6.6.4 Matrix Multiplication Example

Figure 6.91 gives the source code of matrix multiplication in Jocaml for the

analyser. Note the user costs for dist, tranpose, dotprod, and rowmult.

The analyser takes the source code as input and outputs the target code of

matrix multiplication AMP, where top level map has been converted to camap.

Figure 6.92 shows the target code of the CAMSs matrix multiplication. Note this

example is in J , which is an extension of J ′. The cost calculus for J is been

presented in Appendix A.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 153

let rec dist = (fun vec1 -> fun vec2 ->

match (vec1,vec2) with

([],vec) -> [] |

((h1::t1),(h2::t2)) -> (h1::h2)::(dist t1 t2) |

((h1::t1), []) -> [h1]::(dist t1 []))

(* fun mv11-> fun mv22 -> 3*(length mv11)*(length mv22) *)

in let rec transpose = (fun e -> fold_right dist e [])

(* fun le -> 2*(length le)*(length le) *)

in let rec dotprod = (fun mat1 -> fun mat2 ->

match (mat1,mat2) with

((h1::t1),(h2::t2)) -> h1*h2+(dotprod t1 t2) |

(m1,m2) -> 0)

(* fun l1 -> fun l2 -> (4*(length l2)) *)

in let rec rowmult = (fun cls -> fun row -> map (dotprod row) cls)

(* fun rowc -> fun lsc -> 4*(length rowc)*(length rowc) *)

in let rec rowsmult = (fun rows -> fun cols ->

map (rowmult cols) rows)

in let tm2 = transpose mat2

in rowsmult mat1 tm2

Figure 6.91: The Source Code of Matrix Multiplication for Automatic Cost
Analyser

6.6.5 Comparing Automatic and Hand Analysis

This section compares the performances CAMSs generated by the analyser with

the CAMSs which have been produced by hand in Section 6.5. Comparison of

double matrix multiplication, invertible matrix, and double ray tracing AMPs

have been made.

Figure 6.93 compares the execution times of different sizes of double matrix

multiplication, and shows that the execution time of analyser produced CAMS

programs are very similar to the hand analysed CAMS programs. See Table D.40

in Appendix D for the details of execution time.

Similar results are found for invertible matrix AMPs and double ray tracing

AMPs, which are shown in Figures 6.94 and 6.95. See Tables D.41 and D.42 in

Appendix D for the details of execution time.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 154

let rec dist =

((fun vec1 -> (fun vec2 -> match (vec1,vec2) with

([],vec) -> [] |

((h1::t1),(h2::t2)) -> ((h1::h2)::((dist t1) t2)) |

((h1::t1),[]) -> ([h1]::((dist t1) [])))));;

let rec transpose =

((fun e -> (fold_right dist e [])));;

let rec dotprod =

((fun mat1 -> (fun mat2 -> match (mat1,mat2) with

((h1::t1),(h2::t2)) -> ((h1*h2)+((dotprod t1) t2)) |

(m1,m2) -> 0)));;

let rec rowmult =

((fun cls -> (fun row -> (map (dotprod row) cls))));;

let rec rowsmult =

(fun rows -> (fun cols -> (map (rowmult cols) rows)));;

let tm2 = (transpose mat2)

in

(camap (rowmult tm2) (mat1) (((4*(length tm2))*(length tm2))) (0))

Figure 6.92: The Target Code of Automatic Cost Analyser

6.7 Summary

This chapter introduces a core functional language J ′, a subset of Jocaml, in

Section 6.2. To provide the costafter i.e. the cost for the reminder of a computa-

tion at arbitrary points, a cost calculus for J ′ has been built. The cost calculus

calculates the costafter by three steps: to index the AST into IAST, which is to

distinguish duplicate expressions; to calculate the cost of expression in a program;

to calculate the costafter of each higher-order function. Section 6.3 introduces

the semantics for index, cost, and costafter, the three parts of the cost calculus.

To validate the cost calculus, costed autonomous mobility skeletons (CAMSs)

e.g. camap and cafold have been built by hand in Section 6.4 with the cost

model for them. The CAMSs take additional cost parameters e.g. costafter.

To evaluates the performance of CAMSs against AMSs, six AMPs have been

built with single or with sequential composed higher-order functions in Sec-

tion 6.5. If there is only one high-order function dominating the computation,

CAMS programs reproduce the movement of the corresponding AMS programs.

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 155

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350 400 450 500

T
im

e(
S

ec
)

Size(n*n)

"automatic"
"byHand"

"static"

Figure 6.93: Automatic and Byhand Cost Double Matrix Multiplications
Execution Time Comparison

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350 400 450 500

T
im

e(
S

ec
)

Size(n*n)

"automatic"
"byHand"

"static"

Figure 6.94: Automatic and Byhand
Cost Invertible Matrix Execution Time

Comparison

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45 50

T
im

e(
S

ec
)

Size(n*n)

"automatic"
"byHand"

"static"

Figure 6.95: Automatic and Byhand
Costs Double Ray Tracing Execution

Time Comparison

If there is more than one higher-order functions in the AMPs, CAMS programs

move with smaller size data than the corresponding AMS programs, and the more

higher-order functions in the AMPs, with the smaller data the CAMS programs

move than the corresponding AMS programs and hence the greater the potential

for gains. When both the CAMS and AMS programs move, the CAMS programs

may be slower than the corresponding AMS programs, but the larger the data

in the AMPs the earlier the CAMS programs move relative to the corresponding

AMS programs. The CAMS programs react to the change of environment more

sensitively than the corresponding AMS programs.

The automatic continuation cost analyser implements the cost calculus. The

CHAPTER 6. AUTOMATIC CONTINUATION COST ANALYSIS 156

analyser converts higher-order functions into CAMSs automatically. Experiments

in Section 6.6 show that the performance of CAMS programs which are con-

structed automatically for the analyser are very similar to the CAMS programs

which have been produced by hand.

Chapter 7

Conclusion and Future Work

7.1 Summary

One of the biggest issues for distributed systems is how to share resources,

computational or data. This thesis demonstrated autonomous mobility for self-

optimization of computational resource.

Chapter 2 introduces the concepts related to distributed systems such as mo-

bility, agents , autonomous systems, Load management systems, and cost models.

Chapter 3 proposes autonomous mobile programs (AMPs), which can peri-

odically use a cost model to decide mobility effects. The advantages of an AMP

model are as follows. AMPs making decentralised decisions about where to ex-

ecute. Indeed on large networks only nearby locations need be considered as

potential targets. The model manages dynamic networks very easily with each

AMP selecting where to execute from the current set of locations. The AMP

model can obtain a better balance than a classical distributed load balancer as,

unlike the latter, each AMP has a cost model giving accurate information about

the time to complete and to communicate the program. Moreover it is possible

to parameterise the AMP cost model with a maximum overhead, e.g. 5%, and

guarantee, under reasonable assumptions that autonomous mobility overheads

will not exceed it.

157

CHAPTER 7. CONCLUSION AND FUTURE WORK 158

Chapter 4 introduces autonomous mobility skeletons. The disadvantages of

AMPs are that the programmer must explicitly control when the program moves

in the AMPs, and AMPs also require an accurate model of computation. To

encapsulate self-aware mobile coordination for common patterns of computation

over collections, autonomous mobility skeletons (AMSs) have been developed.

AMSs are akin to algorithmic skeletons in being polymorphic higher order func-

tions, but where algorithmic skeletons abstract over parallel coordination, AMSs

abstract over autonomous mobile coordination. By analogy with other skeleton

species, they hide low level mobile coordination details from users and provide

higher level loci for designing load-aware mobile systems.

This chapter also demonstrates abstract AMSs with concrete realisations for

the common higher-order functions map and fold. The realisations are provided

both in the functional language context shared with other skeleton species, using

Jocaml, and in an Object-Oriented context using mobile Javas e.g. Java Voyager

and JavaGo. We have also demonstrated a novel AutoIterator skeleton for the

widely used Object-Oriented Iterator interface. Our experiments suggest that,

for our set of test programs, AMSs can offer considerable savings in execution

times, which scale well as overall execution times increase.

Cost models for AMSs are dynamic and substantially implicit. During the

traversal of a collection, the skeleton implementation periodically measures the

time to compute a single collection element, and uses the value to parameterise

an implicit cost for the remainder of the traversal.

Chapter 5 considers collections of AMPs, and a load server architecture to

reduce the cost of coordination, which is the time for AMPs to get information.

The AMP architecture introduces coordination costs as every AMPs must obtain

load information about locations. The coordination cost is the additional cost of

AMPs against the sequential program, so the smaller the coordination cost the

better the performance of AMPs. Minimising the effect of the coordination cost

must be take into account when building AMPs. In the load server architecture,

every location has a load server, which collects local information and get infor-

mation from other load server. The AMPs get information about locations from

CHAPTER 7. CONCLUSION AND FUTURE WORK 159

the local load server rather than collecting themselves.

Collections of AMPs behave like a decentralised load balancing system. The

behaviours of collection of AMPs have been explored under the load server struc-

ture on both homogeneous and heterogeneous networks. Collections of AMPs

quickly obtain and maintain optimal or near-optimal balance until the balance is

broken.

Chapter 6 presents cost calculus that can statically predict the costs of the

remainder i.e. costafter of a program at arbitrary points. The cost models for

AMSs in Chapter 4 assume that a single higher-order functions is the dominating

computation for the program. To relax this constraint, more sophisticated cost

models are parameterised on the costafter of the higher-order functions. Costed

autonomous mobility skeletons (CAMSs) have been implemented with additional

cost parameters for the cost of the remainder of the program based on the new cost

model. An automatic cost analyser which implements the cost calculus has been

implemented for language J , a subset of Jocaml in Jocaml. The cost analyser

inspects programs in J and replaces higher-order functions with CAMSs.

Experiments have been made to compare CAMSs with AMSs in different

programs, where a single higher-order function or multiple higher-order functions

are in the programs. If there is only one high-order function dominating the

computation, CAMS program reproduce the movement of the corresponding AMS

programs If there is more than one higher-order functions in AMPs, the CAMS

programs react to changes of environment more sensitively than the corresponding

AMS programs, because they have more accurate cost information i.e. including

the cost of the remainder of the program. Hence a CAMS program may move to

a faster location when the corresponding AMS program does not.

7.2 Contributions and Further Work

Section 1.2 discussed four research contributions in this thesis. This section dis-

cuses further work for these contributions.

CHAPTER 7. CONCLUSION AND FUTURE WORK 160

7.2.1 AMPs on Large Scale Networks

The first contribution of this thesis is Autonomous Mobile Programs [35].

The current experiments have been done on small local area networks. We

would like to generalise the AMPs architecture to large scale network e.g. WAN,

Grid, etc., where the communication time and system architecture are different

from our current system. To generalise AMPs on large scale networks, three

activities should be considered.

• To propose a new architecture with super load servers.

• To improve the cost model.

• To evaluate the result.

To generalise AMPs on large scale networks, a new architecture with super

load servers has been proposed in Figure 7.96. In this architecture, the large scale

network has been divided into clusters according to the network latency. In the

same cluster the latencies between any two locations are similar. The architecture

for the cluster is the same as the architecture which has been shown in Figure 5.45

in Sections 5.2. The communication time is parameterised on the size of data to

be send. Every load server collects local information such as relative CPU speed

and exchanges information with other servers.

The super load servers are in charge of collecting the information of the cluster

and exchanging information with other clusters. The information includes the

relative CPU speed of each location and the AMP number in each location in the

cluster. The super load server also keep a record of network latencies between the

cluster and remote clusters. The super load server passes the information about

remote clusters to the load servers in the local cluster. AMPs in the cluster can

collect this information from the local load servers, where AMPs are running on

them.

The generic cost model for AMPs has been built in Section 3.3.2. This cost

model should be extended to consider the information from remote clusters. The

CHAPTER 7. CONCLUSION AND FUTURE WORK 161

LS LS

RMI
RMI RMI

ampamp

syscall

OS

......

RMI RMI

amp amp
......

syscall

OS

.............

SuperLS
1

11 1k

amp amp

OS

syscall
......

LS
10

RMI RMI

RMI

RMI RMI

Cluster 1

SuperLS

LS

amp amp

OS

RMI

RMIRMI

......
syscall

RMIRMI

OS
OS

ampampampamp
syscall syscall

......

LS LS

RMI

RMI
RMI

RMI
...

...

Cluster m

m1 ml

m

m0

Figure 7.96: System with Super Load Server on Large Scale Network

CHAPTER 7. CONCLUSION AND FUTURE WORK 162

cost model in Section 3.3.2 compares the execution time for completing the com-

putation at the current location (Th) with the that at the fastest location in the

network (LAN) (Tn). In the new architecture, the cost model should compare

the execution time at the current location with the times at the fastest locations

in each cluster. Th is the same as Equation (3.15) in Section 3.3.2, but Tn can be

calculated using Equation (7.83).

Tn = min (Tni
+ Tcommi

) i=1...m (7.83)

Tni
is the time to finish at the fastest location in cluster i, which can be got using

Equation (3.16) in Section 3.3.2. Tcommi
is communication time from current

cluster to cluster i. The communication time is parameterised on both the data

size and network latency between these two clusters, which can be obtained from

the local super load server. The AMP will compare these kinds of time, and

choose the fastest location to move to. Tn is the execution time to finish at the

fastest location plus the communication time from current cluster to the next

cluster. Equation (7.84) gives the condition under which the program will move,

i.e. if the time to complete in the current location is more than the time to

complete in the remote location.

Th > Tn (7.84)

To evaluate the AMP performance in the new architecture, three experiments

should be conducted.

• To validate the AMPs speedup against the static programs. See Sec-

tion 3.4.3.

• To validate single AMP movement. See Section 3.5.

• To validate the load balancing performance for collections of AMPs (Sec-

tion 5.3). This validation involves much more AMPs and locations than

that in Section 5.3, so simulation test may be used.

One advantage of the super load server architecture is that the super load

servers in the system are like super-peer in a p2p network[14], which makes it

CHAPTER 7. CONCLUSION AND FUTURE WORK 163

possible for a super load server to reach every other location in the system, thus

realising the concept of a integrated schema formed from all possible information

sources. This is achieved by classifying locations into clusters[14]. The other

advantage is that the super load server architecture is arranged in different layers,

which make it to extend the architecture easily by introducing super-super load

server etc..

7.2.2 Autonomous Mobility for Irregular Computation

The second contribution is the Design, Implementation and Evaluation of Au-

tonomous mobility skeletons [34].

Autonomous mobility skeletons have a limitation because the skeletons dy-

namically parameterise the cost model with measurements of performance on the

preceding collection element. If the program is reasonably regular, i.e. computing

each element of the collection represents a similar amount of work, then the cost

model will be valid, and hence the movement decisions reasonable. However, as

the computations become increasingly irregular, the cost model will be less valid,

and hence the movement decisions may not optimise performance. We would

like to generalise autonomous mobility skeletons to irregular problems with cost

models and strategies to adapt to their behaviour.

New autonomous mobility skeletons should be built to predict the remain-

ing computation time for irregular computation over collections. Two possible

approaches can be used when building the new autonomous mobility skeletons.

• The first approach is to take the total computation time for processing n

elements instead of one element, then calculate the average time for pro-

cessing one elements, which is the total for processing n elements divided

by n. The average time can be used to predict the computation time for

processing the remaining elements.

• Another approach is to take the separate computation times for processing

n elements, then compare these times and find their regularity, e.g. the

difference between two nearby elements. The difference can be used to

CHAPTER 7. CONCLUSION AND FUTURE WORK 164

predict the computation time for processing the remaining elements. For

example, if the times for processing the first five elements are 1, 2, 3, 4, and

5 seconds, then the time for processing the sixth element can be assumed

as 6 seconds.

For validating the new approaches, programs for irregular computation should

be developed, and the performance using new approaches should be compared to

the performance using the autonomous mobility skeletons in Chapter 4.

7.2.3 Resource Driven Mobility

The third contribution is the Cost Model autonomous mobile programs [35, 33].

For further development of AMPs, we would like to build automatic resource

driven mobility. We propose to investigate the application of a generic cost-based

ethology to autonomous mobile multi-agent system. Specifically, we will use

evolved biological foraging strategies to better engineer scalable self-organising

resource-location systems in large-scale dynamic networks. The cost model de-

termines whether parametric foraging behaviours can effectively solve the problem

of locating ‘nearby’ resources in a large dynamic environment e.g.

• load management, i.e. foraging for computational resources,

• storage management, i.e. foraging for repository space, and

• distributed information retrieval, i.e. foraging for distributed information.

The actives for building biological foraging strategies are:

1. To develop a cost-model for generic behaviours of collections of mobile

agents on large-scale networks. By investigating the properties of groups of

agents that interact with one another in specific ways, we will extend sig-

nificantly our cost model in this thesis, which is based on individual mobile

agents, e.g. consider how animals make decisions about moving between

patches of their environments differing in resources, when competing with

other animals [65].

CHAPTER 7. CONCLUSION AND FUTURE WORK 165

2. To describe the foraging behaviours as design patterns with an initial real-

isation as a library of classes in a mobile Java, e.g. Voyager.

3. To evaluate the foraging behaviours in comparison with conventional tech-

niques e.g. load management, storage management, and distributed infor-

mation retrieval.

7.2.4 Automatic Continuation Cost Analysis for Java

Last but not least the Automatic Continuation Cost Analysis is another contri-

bution in this thesis.

We have developed an experimental automatic cost analyser, from a structural

operational semantic execution time model, for a substantial Jocaml subset. Java

is more mainstream and widely used than Jocaml, and is imperative/Object-

Oriented. We would like to build an automatic cost analyser for Java to convert

static Java programs into Java AMPs automatically. Three steps should be taken

to build the analyser.

• to built a cost calculus for Java,

• to implement the cost calculus in Java, and

• to evaluate.

The cost calculus for Java predicts the costafter of Java program at arbitrary

points. For building a cost calculus for Java, there is significant challenge in mak-

ing models, and hence analyses, of patterns and of Object-Oriented constructs, in

particular in the presence of arbitrary inheritance. For making models, the costs

of Objects should be taken into account, and the calculation of the costafter

might not been exactly determined at compile time, because the cost of some

Objects might be known at run time. To solve these problems, we are exploring

rewriting the cost calculus in continuation passing style [47], to provide costs for

the reminder of a computation at arbitrary points during its execution. Thus the

cost of Objects can be calculated at run time rather than at compile time. A

CHAPTER 7. CONCLUSION AND FUTURE WORK 166

limitation of the proposed approach is that the analysis can provide the cost of

the Objects if the source code is available, but not otherwise.

The implementation and the evaluation of the cost analyser will using the

similar techniques as in Sections 6.5 and 6.6.

Appendix A

Cost Calculus for J

In Chapter 6 a cost semantics has been built for a very small language J ′ which

is a subset of Jocaml. Language J extends J ′ with null, boolean, list, tuple,

pattern, compose, if, match, and fold, and facilitates the construction of non-

trival programs like matrix multiplication, and ray tracing in Section 6.5. In this

appendix the cost sematics of J is given.

A.1 Syntax of J

Figure A.97 shows the abstract syntax of J . To simplify the presentation it is

assumed that variables (id) names in the program are unique. In let, fun, and

match expressions, p is pattern, which is also expression.

A.2 Cost Calculus for J

A.2.1 Index Semantics

Figure A.98 shows the semantics of index for J , where ⊢i is a function, which

takes two parameters, an expression and an integer(i), and returns a tuple of

index expression and another integer which is i increased by 1. The type of this

function is: ⊢i : n → e → e * n, where n is integer, e is expression.

• Equation (A.85) shows that if the current index is i the expression is a

167

APPENDIX A. COST CALCULUS FOR J 168

e ::= expression
| null null expression
| c constant
| id variable
| (e...e) tuple
| [] empty list
| [e...e] list
| fun p → e lambda (abstract)
| e e application
| e op e operation
| let p = e in e let

| if e then e else e condition
| match e with p → e ‖...‖ p → e match

| map e e map (higher order function)
| fold e e e fold (higher order function)
| e (* e *) user cost
| <n,e> index i.e. expression e has index n,

where n is an integer

p (pattern) ::= id | (p...p) | [p...p] | p::p

op ::= + | - | * | / |
> | < | >= | <= | = | ! = |
:: (cons) |
; (sequence)

Figure A.97: Syntax of J

constant c, after indexing the new expression is < i, c > and the current

index becomes i + 1.

• Equation (A.86) is similar to Equation (A.85), but the expression is a vari-

able (id) instead of integer.

• Equation (A.87) decorates lambda expressions. In this equation the pattern

does not be decorated, only the body of the lambda expression does. For

indexing fun p → e, if the current index is i, and after indexing e the

current index is i′, and e becomes e′, the index lambda expression is <

i′, fun p → e′ > and the current index is i′ + 1.

• Equation (A.88) decorates application expressions (e1 e2). If the current

index is i, after indexing e1 the current index becomes i′ and e1 becomes e′1,

APPENDIX A. COST CALCULUS FOR J 169

i ⊢i c ⇒i (< i, c >, i + 1)
(A.85)

i ⊢i id ⇒i (< i, id >, i + 1)
(A.86)

i ⊢i e ⇒i (e′, i′)

i ⊢i fun p → e ⇒i (< i′, fun p → e′ >, i′ + 1)
(A.87)

i ⊢i e1 ⇒i (e′1, i
′) i′ ⊢i e2 ⇒i (e′2, i

′′)

i ⊢i (e1 e2) ⇒i (< i′′, (e′1 e′2) >, i′′ + 1)
(A.88)

i ⊢i e1 ⇒i (e′1, i
′) i′ ⊢i e2 ⇒i (e′2, i

′′)

i ⊢i let p = e1 in e2 ⇒i (< i′′, let p = e′1 in e′2 >, i′′ + 1)
(A.89)

i ⊢i e1 ⇒i (e′1, i
′) i′ ⊢i e2 ⇒i (e′2, i

′′)

i ⊢i e1 op e2 ⇒i (< i′′, e′1 op e′2 >, i′′ + 1)
(A.90)

i ⊢i e1 ⇒i (e′1, i
′) i′ ⊢i en ⇒i (e′n, i′′)

i ⊢i [e1 ... en] ⇒i (< i′′, [e′1 ... e′n] >, i′′ + 1)
(A.91)

i ⊢i [] ⇒i (< i, [] >, i + 1)
(A.92)

i ⊢i e ⇒i (e′, i′)

i ⊢i e (∗ c ∗) ⇒i (< i′, e′ (∗ c ∗) >, i′ + 1)
(A.93)

i ⊢i e1 ⇒i (e′1, i
′) i′ ⊢i e2 ⇒i (e′2, i

′′)

i ⊢i map e1 e2 ⇒i (< i′′, map e′1 e′2 >, i′′ + 1)
(A.94)

i ⊢i e1 ⇒i (e′1, i
′) i′ ⊢i en ⇒i (e′n, i′′)

i ⊢i (e1 ... en) ⇒i (< i′′, (e′1 ... e′n) >, i′′ + 1)
(A.95)

i ⊢i e1 ⇒i (e′1, i
′) i′ ⊢i e2 ⇒i (e′2, i

′′) i′′ ⊢i e3 ⇒i (e′3, i
′′′)

i ⊢i fold e1 e2 e3 ⇒i (< i′′′, fold e′1 e′2 e′3 >, i′′′ + 1)
(A.96)

i ⊢i e1 ⇒i (e′1, i
′) i′ ⊢i e2 ⇒i (e′2, i

′′) i′′ ⊢i e3 ⇒i (e′3, i
′′′)

i ⊢i if e1 then e2 else e3 ⇒i (< i′′′, if e′1 then e′2 else e′3 >, i′′′ + 1)
(A.97)

i ⊢i e ⇒i (e′, i′) i′ ⊢i e1 ⇒i (e′1, i
′′) i′′ ⊢i en ⇒i (e′n, i′′′)

i ⊢i match e with p1 → e1‖...‖pn → en ⇒i (< i′′′, match e′ with p1 → e′1‖...‖pn → e′n >, i′′′ + 1)
(A.98)

i ⊢i < i′, e >⇒i (< i′, e >, i)
(A.99)

Figure A.98: Index Semantics of J

APPENDIX A. COST CALCULUS FOR J 170

and then after indexing e2, the current index is i′′ and e2 becomes e′2, then

the index for the application expression is i′′ and the current index becomes

i′′ + 1.

• Equation (A.89) decorates let expressions using the same rules as in Equa-

tion (A.88), Equation (A.90) decorates operation expressions, and Equa-

tion (A.91) decorates lists.

• Equation (A.92) indexes the empty list, which is similar to Equation (A.86).

• In Equation (A.93), user cost expressions e (∗ c ∗) are indexed, where only

e has been indexed.

• In Equation (A.94), map expressions are indexed, which is similar to Equa-

tion (A.88).

• Equation (A.95) indexes tuples, which is similar to Equation (A.91).

• Equation (A.96), and Equation (A.97) index fold and if expressions, which

are similar to Equation (A.88).

• Equation (A.98) indexes match expressions, which is similar to Equation (A.89)

and Equation (A.87), where patterns are not indexed.

• If the expression is an index expression, it should not be indexed again. So

in Equation (A.99), the return expression is the index expression, and the

current index number is still i.

A.2.2 Cost Semantics

In let, fun, and match expressions, p is pattern, which is also expression, and

the syntax of pattern is shown in Figure A.97.

To calculate the cost of let, fun, and match expressions, the cost of pattern

should be got first, so this section first presents the pattern cost semantics, and

then presents the cost semantics.

APPENDIX A. COST CALCULUS FOR J 171

Pattern Cost Semantics of J

Figure A.99 shows the semantics of pattern cost, where ⊢p takes the environment

(env) and an pattern expression, and returns a new environment which is the old

environment extended with the pattern and its cost. The type of this function

is: ⊢p : env → p → env * cost, where (env) is a semantic domain, which stores

the names of variable and the cost of the variable.

E ⊢p id ⇒p ({id, 1} + E, 1)
(A.100)

E ⊢p p1 ⇒p (E1, c1) ... En−1 ⊢p pn ⇒p (En, cn)

En−1 ⊢p (p1...pn) ⇒p (En, c1 + ... + cn)
(A.101)

E ⊢p [] ⇒p (E, 0)
(A.102)

E ⊢p p1 ⇒p (E1, c1) ... En−1 ⊢p pn ⇒p (En, cn)

En−1 ⊢p [p1...pn] ⇒p (En, n + c1 + ... + cn)
(A.103)

E ⊢p p1 ⇒p (E1, c1) E1 ⊢p p2 ⇒p (E2, c2)

En−1 ⊢p (p1 :: p2) ⇒p (E2, 1 + c1 + c2)
(A.104)

Figure A.99: Pattern Cost Semantics of J

• Equation (A.100) shows that the pattern cost of id is 1. The semantic

function ⊢p returns this cost, and at the same time updates the environment

E with id, 1.

• Equation (A.101) shows that the pattern cost of tuples. If the cost of the

first element of tuple (p1...pn) (p1) is c1, and the environment E becomes E1,

and the cost of the last element of the tuple (pn) is cn, and the environment

is updated to En, then the pattern cost of the tuple is c1 + ... + cn, and the

environment becomes En.

• Equation (A.102) shows that the pattern cost of the empty list is 0.

• Equation (A.103) shows that the pattern cost of lists, which is similar to

Equation (A.101).

APPENDIX A. COST CALCULUS FOR J 172

• Equation (A.104) shows if two patterns p1 and p2 are combined together,

the total cost is the pattern cost of p1 (c1) plus the pattern cost of p2 (c1)

and plus 1, which is the cost for combining. The environment is updated

as well.

Cost Semantics of J

Figure A.100 shows the cost semantics of J , where ⊢c takes the environment

(env) and an expression (e), and returns a tuple of the expression and the cost

(cost) of the expression under the environment. The type of this function is: ⊢c

: env → e → e * cost

• Equation (A.105) infers that the cost of an constant is 0 in environment E.

• Equation (A.106) shows that the cost of the value of variable, here c, has

been stored in the environment, if the cost of a variable is needed, we need

to look up the environment {id, c} + E.

• Equation (A.107) performs the cost of operation expressions (e1 op e2). So

if the cost of e1 is c1, and the cost of e2 is c2 then the cost of e1 op e2 is

1 + c1 + c2.

• Equation (A.108) performs the cost of lambda expressions fun p → e,

which have two part, the cost of pattern p (cp), and the cost of the body e.

The cost of pattern p can be get using the pattern cost semantics. Under

the environment E if the cost of e is c, then the cost of fun p → e is cp + c.

• Equation (A.109) shows that under environment E the cost of let expres-

sion let p = e1 in e2 has three parts, the cost of e1 (c1), the cost of e2

(c2), and the cost of p (cp).

• Equation (A.110) shows that the cost of application expression (e1 e2) is

the cost of e1 (c1) and the cost of e2 (c2).

• In any environment E the cost of empty list [] is 0, as shown in Equa-

tion (A.111).

APPENDIX A. COST CALCULUS FOR J 173

E ⊢c c $ 0
(A.105)

{id, c} + E ⊢c id $ c
(A.106)

E ⊢c e1 $ c1 E ⊢c e2 $ c2

E ⊢c e1 op e2 $ 1 + c1 + c2
(A.107)

E ⊢p p ⇒p (E1, cp) E1 ⊢c e $ c

E ⊢c fun p → e $ cp + c
(A.108)

E ⊢p p ⇒p (E1, cp) E1 ⊢c e1 $ c1 E ⊢c e2 $ c2

E ⊢c let p = e1 in e2 $ cp + c1 + c2
(A.109)

E ⊢c e1 $ c1 E ⊢c e2 $ c2

E ⊢c (e1 e2) $ c1 + c2
(A.110)

E ⊢c [] $ 0
(A.111)

E ⊢c e1 $ c1 ... E ⊢c en $ cn

E ⊢c [e1...en] $ c1 + ... + cn
(A.112)

E ⊢c e (∗ c ∗) $ c
(A.113)

E ⊢c e1 $ c1 E ⊢c e2 $ c2

E ⊢c map e1 e2 $ c1 ∗ (length e2) + c2
(A.114)

E ⊢c e1 $ c1 ... E ⊢c en $ cn

E ⊢c (e1...en) $ c1 + ... + cn
(A.115)

E ⊢c e1 $ c1 E ⊢c e2 $ c2 E ⊢c e3 $ c3

E ⊢c fold e1 e2 e3 $ c1 ∗ (length e2) + c2 + c3
(A.116)

E ⊢c e1 $ c1 E ⊢c e2 $ c2 E ⊢c e3 $ c3

E ⊢c if e1 then e2 else e3 $ c1 + max(c2 + c3)
(A.117)

E ⊢c e $ c E ⊢p p1 ⇒p (E1, c1) E1 ⊢c e1 $ c′1 ... En ⊢p pn ⇒p (En, cn) En ⊢c en $ c′n
E ⊢c match e with p1 → e1‖...‖pn → en $ c + c1 + ... + cn + max(c′1...c

′
n)
(A.118)

E ⊢c e $ c

E ⊢c < i, e > $ c
(A.119)

Figure A.100: Cost Semantics of J

APPENDIX A. COST CALCULUS FOR J 174

• Equation (A.112) shows that under environment E the cost of list [e1...en]

is the sum of the costs of every elements in the list.

• Equation (A.113) enables user specified costs. In particular, it is difficult

to get the static cost of recursive functions. So in e (∗ c ∗), the cost of e

is c which is calculated by hand rather by the cost analyser automatically.

The cost is passed to the cost analyser.

• Equation (A.114) infers the cost of a map expression under environment E.

Here only the regular cases of map are considered. Under this condition

function e1 applied to every elements of list e2 has the same cost. So the

total cost of a map expression is c1 ∗ (length e2) + c2, where c1 is the cost

of function e1 applied to the first element of list e2.

• Equation (A.115) shows the cost of tuples, which is similar to the cost of

lists in Equation (A.112).

• Equation (A.116) shows the cost of fold expressions, which is similar to

the cost of map expressions in Equation (A.114).

• Equation (A.117) finds the cost of if expression if e1 then e2 else e3. If

the cost of e1 is c1, the cost of e2 is c2, and the cost of e3 is c3, then the cost

of the if expression is c1 plus the maximum of c2 and c3.

• Equation (A.118) finds the cost of a match expression match e with p1 →

e1 ‖ ... ‖ pn → en. Firstly the cost of patterns from p1 to pn are calculated as

c1 to cn, and at the same time the environment has been updated according

to the pattern semantics in Figure A.99. Then the cost of each expression

from e1 to en should be got as c′1 to c′n. The cost of the match expression is

the sum of c1 to cn plus the maximum of c′1 to c′n.

• Equation (A.119) shows that under environment E the cost of an index

expression < i, e > is the cost of expression e (c).

APPENDIX A. COST CALCULUS FOR J 175

A.2.3 Costafter Semantics

This section introduces the costafter semantics of J . In costafter, definitions of

expression equality and expression contains will be used.

Expression Equality

Figure A.101 shows the definition of expression equality, where ≡ applies expres-

sion equality, which checks if two expressions are the same, presented as: ≡ : e

→ e → boolean.

• Equation (A.120) defines constant expression equality. If expression e is an

constant and its value is equal to c, so expression e is equal to expression c.

• Equation (A.121) defines variable equality. In J , it is assumed that vari-

ables (id) names in the program are unique, so if two variables expressions

have the same name, the two expression are equal.

• Equation (A.122) defines the equality of two operation expressions. Expres-

sion (e1 op e2) equals expression (e3 op e4), if e1 equals e3 and e2 equals

e4.

• Equation (A.123) defines the equality of two lambda expression. Expression

fun (p1 → e1) equals expression fun (p2 → e2), if pattern p1 equals pattern

p2 and expression e1 equals e2. The patterns are also expressions, so the

expression equality can also be used for patterns.

• Equation (A.124), Equation (A.125), and Equation (A.126) define applica-

tion expressions, let expressions and map expressions equality, which are all

similar to Equation (A.123).

• Equation (A.127) shows that two list expressions are equal, if the elements

in one list are equal to the elements in the other list.

• Equation (A.128) shows that empty lists are always equal.

APPENDIX A. COST CALCULUS FOR J 176

e = c

e ≡ c
(A.120)

e = id

e ≡ id
(A.121)

e1 ≡ e3 e2 ≡ e4

(e1 op e2) ≡ (e3 op e4)
(A.122)

p1 ≡ p2 e1 ≡ e2

(fun p1 → e1) ≡ (fun p2 → e2)
(A.123)

e1 ≡ e3 e2 ≡ e4

(e1 e2) ≡ (e3 e4)
(A.124)

p1 ≡ p2 e1 ≡ e3 e2 ≡ e4

(let p1 = e1 in e2) ≡ (let p2 = e3 in e4)
(A.125)

e1 ≡ e3 e2 ≡ e4

(map e1 e2) ≡ (map e3 e4)
(A.126)

ei ≡ e′i i = 1...n

[e1...en] ≡ [e′1...e
′
n]

(A.127)

[] ≡ []
(A.128)

ei ≡ e′i i = 1...n

(e1...en) ≡ (e′1...e
′
n)

(A.129)

e1 ≡ e4 e2 ≡ e5 e3 ≡ e6

(fold e1 e2 e3) ≡ (fold e4 e5 e6)
(A.130)

e1 ≡ e4 e2 ≡ e5 e3 ≡ e6

(if e1 then e2 else e3) ≡ (if e4 then e5 else e6)
(A.131)

e ≡ e′ pi ≡ p′i ei ≡ e′i i = 1..n

(match e with p1 → e1‖...‖pn → en) ≡ (match e′ with p′1 → e′1‖...‖p
′
n → e′n)

(A.132)

e1 ≡ e2 c1 ≡ c2

(e1 (∗ c1 ∗)) ≡ (e2 (∗ c2 ∗))
(A.133)

< i, e1 > ≡ < i, e2 >
(A.134)

Figure A.101: Definition of Expression Equality in J

APPENDIX A. COST CALCULUS FOR J 177

• Equation (A.129) defines the expression equality for tuples, which is similar

to lists equality in Equation (A.127).

• Equation (A.130) defines the expression equality for fold expressions, which

is similar to Equation (A.123).

• Equation (A.131) defines the expression equality for if expressions,

• and Equation (A.132) defines the expression equality for match expressions,

which are all similar to Equation (A.123).

• In Equation (A.133), two user cost expression are equal, if both the expres-

sion parts and cost parts of the expressions are equal.

• In the calculus, the whole program has been indexed, so every expression

in a program has a unique integer as an index, thus two index expressions

are equal to each other only if their indices are equal.

Expression Contains

Figure A.102 and A.103 give the definition of contains, where ∈ takes two ex-

pression. If the second expression contains the first expression it returns true, or

it returns false if not.

• Equation (A.135) identifies that if expression e1 equal to expression e2 then

the two expressions contain each other.

• Equation (A.136) shows that if e1 is contained in e2, then e1 is contained

in fun p → e2.

• Equation (A.137a) to (A.147c) give the definition of contains for different

expressions, which are all similar to Equation (A.136).

Semantics of Costafter

Figure A.104 and A.105 show the semantics of costafter of one expression e.g e in

different expressions, where ⊢a takes the environment (env) and two expressions.

APPENDIX A. COST CALCULUS FOR J 178

e1 ≡ e2

e1 ∈ e2
(A.135)

e1 ∈ e2

e1 ∈ fun p → e2
(A.136)

e1 ∈ e2

e1 ∈ (e2 e3)
(A.137a)

e1 ∈ e3

e1 ∈ (e2 e3)
(A.137b)

e1 ∈ e2

e1 ∈ let p = e2 in e3
(A.138a)

e1 ∈ e3

e1 ∈ let p = e2 in e3
(A.138b)

e1 ∈ e2

e1 ∈ e2 op e3
(A.139a)

e1 ∈ e3

e1 ∈ e2 op e3
(A.139b)

e1 ∈ ei i = 2..n

e1 ∈ [e2 ... en]
(A.140)

e1 ∈ e2

e1 ∈ e2 (∗ c ∗)
(A.141)

e1 ∈ e2

e1 ∈ map e2 e3
(A.142a)

e1 ∈ e3

e1 ∈ map e2 e3
(A.142b)

e1 ∈ e2

e1 ∈< i, e2 >
(A.143)

e1 ∈ ei i = 2..n

e1 ∈ (e2 ... en)
(A.144)

e1 ∈ e2

e1 ∈ fold e2 e3 e4
(A.145a)

e1 ∈ e3

e1 ∈ fold e2 e3 e4
(A.145b)

e1 ∈ e4

e1 ∈ fold e2 e3 e4
(A.145c)

Figure A.102: Definition of Contains in J

APPENDIX A. COST CALCULUS FOR J 179

e1 ∈ e2

e1 ∈ if e2 then e3 else e4
(A.146a)

e1 ∈ e3

e1 ∈ if e2 then e3 else e4
(A.146b)

e1 ∈ e4

e1 ∈ if e2 then e3 else e4
(A.146c)

e1 ∈ e2

e1 ∈ match e2 with p3 → e3‖...‖pn → en
(A.147a)

e1 ∈ pi i = 3...n

e1 ∈ match e2 with p3 → e3‖...‖pn → en
(A.147b)

e1 ∈ ei i = 3...n

e1 ∈ match e2 with p3 → e3‖...‖pn → en
(A.147c)

Figure A.103: Definition of Contains in J Cont.

The return value of ⊢a is a cost, which is the costafter of the first expression in

the second expression. The type of this function is: ⊢a : env → e → e → cost

(1) Equation (A.148) states that if expression e equal to e′ then the costafter

of e in e′ is 0.

(2) Equations (A.149a) and (A.149b) define the costafter of e in lambda ex-

pressions. If the costafter of e in e1 is c, then the costafter of e in lambada

expression fun p → e1 is c too. If e1 does not contains e then the costafter

of e in fun p → e1 is c is 0.

(3) Equations (A.150a), (A.150b), and (A.150c) define the costafter of e in

application expressions e.g. (e1 e2). If e1 contains e, then the costafter of

e in (e1 e2) is the costafter of e in e1, here is c1, plus the cost of e2, here is

c2. If e2 contains e then the costafter of e in (e1 e2) is the cost after e in e2.

If e does not contains in e1 or e2, then the costafter of e in (e1 e2) 0.

(4) Similar to the equations in costafter rule (3), Equation (A.151a), (A.151b),

(A.151c), and (A.151d) define the costafter of e in let expression let p =

e1 in e2.

(5) Equations (A.152a), (A.152b), and (A.152c) define the costafter of e in

operation expressions e.g. (e1 op e2). If e1 contains e, then the costafter of

APPENDIX A. COST CALCULUS FOR J 180

e ≡ e′

E ⊢a e � e′ £ 0
(A.148)

E ⊢a e � e1 £ c

E ⊢a e � fun p → e1 £ c
(A.149a)

E ⊢a e � fun p → e1 £ 0
(A.149b)

e ∈ e1 E ⊢a e � e1 £ c1 E ⊢c e2 $ c2

E ⊢a e � (e1 e2)£ c1 + c2
(A.150a)

e ∈ e2 E ⊢a e � e2 £ c2

E ⊢a e � (e1 e2)£ c2
(A.150b)

E ⊢a e � (e1 e2)£ 0
(A.150c)

notFun e1 e ∈ e1 E ⊢a e � e1 £ c1 E ⊢c e2 $ c2

E ⊢a e � let p = e1 in e2 £ c1 + c2
(A.151a)

notFun e1 e ∈ e2 E ⊢a e � e2 £ c2

E ⊢a e � let p = e1 in e2 £ c2
(A.151b)

e ∈ e2 E ⊢a e � e2 £ c2

E ⊢a e � let p = e1 in e2 £ c2
(A.151c)

E ⊢a e � let p = e1 in e2 £ 0
(A.151d)

e ∈ e1 E ⊢a e � e1 £ c1 E ⊢c e2 $ c2

E ⊢a e � (e1 op e2)£ 1 + c1 + c2
(A.152a)

e ∈ e2 E ⊢a e � e2 £ c2

E ⊢a e � (e1 op e2)£ c2 + 1
(A.152b)

E ⊢a e � (e1 op e2)£ 0
(A.152c)

e ∈ ei E ⊢a e � ei £ ci E ⊢c ei+1 $ ci+1 ... E ⊢c en $ cn

E ⊢a e � [e1 ... en]£ ci + ... + cn
(A.153a)

E ⊢a e � [e1 ... e2]£ 0
(A.153b)

E ⊢a e � []£ 0
(A.154)

E ⊢a e � e1 (∗ c ∗)£ 0
(A.155)

Figure A.104: Costafter Semantics of J

APPENDIX A. COST CALCULUS FOR J 181

e ∈ e1 E ⊢c map e1 e2 $ c E ⊢a e � e1 £ c1 E ⊢c e2 $ c2

E ⊢a e � map e1 e2 £ c + c1 + c2
(A.156a)

e ∈ e2 E ⊢c map e1 e2 $ c E ⊢a e � e2 £ c2

E ⊢a e � map e1 e2 £ c + c2
(A.156b)

E ⊢a e � map e1 e2 £ 0
(A.156c)

E ⊢a e � e1 £ c

E ⊢a e� < i, e1 > £ c
(A.157)

e ∈ ei E ⊢a e � ei £ ci E ⊢c ei+1 $ ci+1 ... E ⊢c en $ cn

E ⊢a e � (e1 ... en)£ ci + ... + cn

(A.158a)

E ⊢a e � (e1 ... en)£ 0
(A.158b)

e ∈ e1 E ⊢a e � e1 £ c1 E ⊢c e2 $ c2 E ⊢c e3 $ c3

E ⊢a e � if e1 then e2 else e3 £ c1 + max(c2, c3)
(A.159a)

e ∈ e2 E ⊢a e � e2 £ c2

E ⊢a e � if e1 then e2 else e3 £ c2
(A.159b)

e ∈ e3 E ⊢a e � e3 £ c3

E ⊢a e � if e1 then e2 else e3 £ c3
(A.159c)

E ⊢a e � if e1 then e2 else e3 £ 0
(A.159d)

e ∈ e1 E ⊢c fold e1 e2 e3 $ c E ⊢a e � e1 £ c1 E ⊢c e2 $ c2 E ⊢c e3 $ c3

E ⊢a e � fold e1 e2 e3 £ c + c1 + c2 + c3
(A.160a)

e ∈ e2 E ⊢c fold e1 e2 e3 $ c E ⊢a e � e2 £ c2 E ⊢c e3 $ c3

E ⊢a e � fold e1 e2 e3 £ c + c2 + c3
(A.160b)

e ∈ e3 E ⊢c fold e1 e2 e3 $ c E ⊢a e � e3 £ c3

E ⊢a e � fold e1 e2 e3 £ c + c3
(A.160c)

E ⊢a e � fold e1 e2 e3 £ 0
(A.160d)

e ∈ e′ E ⊢a e � e′ £ c′ E ⊢p pi ⇒p (Ei, ci) E ⊢c ei $ c′i i = 1..n

E ⊢a e � match e′ with p1 → e1 ‖...‖ pn → en £ c′ + c1 + ... + cn + max(c′1...c
′
n)

(A.161a)
e ∈ ei E ⊢a e � ei £ ci

E ⊢a e � match e′ with p1 → e1 ‖...‖ pn → en £ ci
(A.161b)

E ⊢a e � match e′ with p1 → e1 ‖...‖ pn → en £ 0
(A.161c)

Figure A.105: Costafter Semantics of J Cont.

APPENDIX A. COST CALCULUS FOR J 182

e in (e1 e2) is the costafter of e in e1 (c1), plus the cost of e2 (c2) plus 1,

which is the cost for getting the operator, so is the 1 in Equation (A.152b).

(6) Equation (A.153a) defines that the costafter of e in list [e1...en], if e contains

in ei (i=1..n), then the costafter of e in the list is the costafter of e in ei,

plus the costs of all elements in the list after ei (ei+1...en). If e does not

contains in any element in the list, the costafter of e in the list is 0. See

Equation (A.153b).

(7) According to Equation (A.154), the costafter of any expression e in empty

lists is 0.

(8) The user cost expression give the cost of recursive function, so the costafter

of any expression in a user cost expressions is 0, see Equation (A.155).

(9) Equations (A.156a), (A.156b), and (A.156c) define the costafter of e in map

expression map e1 e2. Equation (A.156a) shows that if e1 contains e, then

the costafter of e in map e1 e2 is the costafter of e in e1, plus the cost of

e2, and plus the cost of map expression, because after we get e1 and e2 the

map expression will be executed. The similar situation of e2 containing e is

defined in Equation (A.156b). Equation (A.156c) shows if e is not contained

in e1 or e2 then the costafter of e in map e1 e2 is 0.

(10) Equation (A.157) shows that the costafter of e in index expression < i, e1 >

is the same as the costafter of e in expression e1.

(11) Equation (A.158a) and Equation (A.158b) define the costafters in tuples,

which are similar to the equations for lists in Equation (A.153a) and (A.153b).

(12) Equation (A.159a) to Equation (A.159d) define the costafter of e in if

expressions. If e is in e1 and the the costafter of e in e1 is c1, then the

costafter of e in the if expression is c plus the maximum cost of e2 (c2) and

e3 (c3). See Equation (A.159a). If e is in e2 and the the costafter of e in e2 is

c2, then the costafter of e in the if expression is c2. See Equation (A.159b).

APPENDIX A. COST CALCULUS FOR J 183

Similarly, if e is in e3 and the the costafter of e in e3 is c3, then the costafter

of e in the if expression is c3. See Equation (A.159c).

(13) Equation (A.160a) to Equation (A.160d) give the costafter e in fold ex-

pressions, which are similar to the costafter in map expression in Equa-

tion (A.156a), (A.156b), and (A.156c).

(14) Equation (A.161a) to Equation (A.161c) define the costafters of e in match

expressions, which are similar to the costafter in if expression in Equa-

tion (A.159a), (A.159b), (A.159c), and (A.159d).

Appendix B

Autonomous Mobility Skeletons

Code

In this appendix, Section B.1 gives the Jocaml code of autonomous mobility

skeletons, Section B.2 gives the Voyager code of autonomous mobility skeletons,

and Section B.3 gives the JavaGo code of AutoIterator.

B.1 Jocaml Autonomous Mobility Skeletons

(* *************************************** *)

(* AN IMPLEMENTATION OF AMSs IN JOCAML *)

(* *************************************** *)

(* Globle Data and Structure *)

type server = {

mutable servername : string; mutable running : bool;

mutable speed:float; mutable cpunum : float;

mutable load:float;mutable relspeed : float

};; (* New type to store the information of locations*)

let hostlist = [

{servername="ncc1710";running=false;speed=0.;cpunum=1.;load=1.;relspeed=0.};

184

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 185

{servername="ncc1711";running=false;speed=0.;cpunum=1.;load=1.;relspeed=0.};

{servername="lxtrinder";running=false;speed=0.;cpunum=1.;load=1.;relspeed=0.};

];;

let current = ref {servername=Unix.gethostname();

running=true ;speed=0.0;cpunum=1.;load=1.;relspeed=0.5

};;

let numofhost = List.length hostlist;;

(* *************************** *)

(* Auxiliary functions *)

(* *************************** *)

let check_running hn =

let running = Unix.system

("rsh "^hn.servername^" ps -A | grep mobilesev")

in

match running with

(WEXITED s) -> if s = 1

then (printf "WEXITED=\%d" s)

else (

hn.running <-true;

)

| (WSIGNALED s) -> printf "WSIGNALED %d" s

| (WSTOPPED s) -> printf "WSTOPPED %d" s;

;;

(* check the CPU speed of server hn *)

let check_speed hn =

let buff = String.create 40 in

let _ = Unix.system ("rsh "^hn.servername^

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 186

" cat /proc/cpuinfo |grep MHz|wc -l >> "^"cpuspeed.tmp")

in ();

let _ = Unix.system ("rsh "^hn.servername^

" cat /proc/cpuinfo |grep MHz >> "^"cpuspeed.tmp")

in ();

let fd_read = Unix.openfile ("cpuspeed.tmp") [O_RDWR] 777

in

let _ = Unix.read fd_read buff 0 40

in Unix.ftruncate fd_read 0;

Unix.close fd_read;

let indcpuNum = String.index buff ’c’ in

let cpuNum = String.sub buff (indcpuNum-2) 2 in

let indspeed = String.index buff ’:’ in

let speedString = String.sub buff (indspeed+2) 7 in

let speed = float_of_string speedString in

hn.speed <-speed;

let cpunum = float_of_string cpuNum in

hn.cpunum <- cpunum;

;;

(* check the relative CPU speed of server hn *)

let check_relspeed current hn =

let getselfcpu () =

let buff = String.create 20

in

let pid = string_of_int (Unix.getpid())

in

let _ = Unix.system ("ps -p "^pid^" -opcpu >> "^"relspeed.tmp") in ();

let fd = Unix.openfile ("relspeed.tmp") [O_RDWR] 777 in

let _ = Unix.read fd buff 0 20 in ();

Unix.ftruncate fd 0;

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 187

Unix.close fd;

let idString = String.sub buff 5 4 in

let id = float_of_string idString in

id

in

let buff = String.create 20 in

let _ = Unix.system ("rsh "^hn.servername^

" /u1/pg/xyd3/showcpu >> "^"relspeed.tmp") in ();

let fd = Unix.openfile ("relspeed.tmp") [O_RDWR] 777

in

let _ = Unix.read fd buff 0 20

in ();

Unix.ftruncate fd 0;

Unix.close fd;

let loadString = String.sub buff 0 5

in

let load =

let load = float_of_string loadString in

if load > (hn.cpunum*. 100.) then (100.*.hn.cpunum)

else load

in

if hn.servername = current.servername

then hn.load <- load -. (getselfcpu())

else hn.load <- load;

hn.relspeed <- (hn.cpunum -.(hn.load/.100.0)) *. hn.speed/.hn.cpunum;

;;

let tcomm n =

let t_c_v = if n<100

then 0.0

else 1.87e-6 *. float(n*n)

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 188

and t_c_c = 0.082 in

t_c_c +. t_c_v

;;

let tcoord p = 0.44 *. (float p);;

let move nserver =

let host = Ns.lookup (nserver.servername) vartype in

go host;;

let timedapply f h =

let time1 = Unix.gettimeofday() in

let fh = f h in

let time2 = Unix.gettimeofday() in

(fh,time2-.time1)

;;

let rec check_next current hostl =

match hostl with

[] -> current |

hosth::hostt ->

if (current.relspeed > hosth.relspeed)

then check_next current hostt

else check_next hosth hostt

;;

let check_move work workleft fhtime=

let t_comm = tc work

and t_h = fhtime *. (float (workleft))

in

map (check_relspeed cur) hostlist;

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 189

let host_next = check_next cur hostlist in

let t_n =

if (cur.servername <> host_next.servername)

then (cur.relspeed) /. (host_next.relspeed) *.t_h +. t_c

else t_h

in

if (t_h > t_n) && (cur.servername <> host_next.servername)

then (

move host_next;

current := host_next

)

else cur

;;

let getGran work f h =

let (fh,fhtime) = timedapply f h

in

let t_static = fhtime *. (float (work))

and t_coord = tcoord (numofhost)

in

let times = Pervasives.truncate((5./.100.*.t_static)/.t_coord)

in

let gran =

if times > 0

then work/(times+1)+1

else work+1

in (fh,fhtime,gran)

;;

let getInfo work workleft gran fhtime f h=

let cur’ = check_move work workleft fhtime

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 190

and (fh’,fhtime’,gran’) = getGran work f h

in

(cur’, gran’, fhtime’,fh’)

;;

let init () =

map check_running hostlist;

check_speed current ;

map check_speed hostlist ;

check_relspeed current current ;

map (check_relspeed current) hostlist ;

;;

let rec take n l =

match n,l with

_,[] -> [] |

0,_ -> [] |

m,h::t -> h::take (m-1) t

;;

let rec drop n l =

match n,l with

_,[] -> [] |

0,l -> l |

m,h::t -> drop (m-1) t

;;

(* *************************************** *)

(* automap *)

(* *************************************** *)

let rec automap’ work workleft gran fhtime f l =

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 191

match l with

[] -> [] |

hd::tl ->

let xs = List.map f (take (gran-1) l)

and (l’) = drop (gran-1) l in

match l’ with

[]->[]|

h::t ->

let (gran’, fhtime’,fh’) = getInfo work workleft gran fhtime f h

in xs@(fh’::automap’ work (workleft-gran) gran’ fhtime’ f t)

;;

let automap f l =

match l with

[] -> [] |

h::t ->

let work = List.length l

in let (fh,fhtime,gran) = getGran work f h

in fh::automap’ work (work-1) gran fhtime f t;;

(* *************************************** *)

(* autofold *)

(* *************************************** *)

let rec autofold’ work workleft gran fhtime f accu l =

match l with

[] -> [] |

_ ->

let xs = foldl f accu (take (gran-1) l)

and (h::t) = drop (gran-1) l

in let (gran’, fhtime’,fh’) = getInfo work workleft gran fhtime (f xs) h

in autofold’ work (workleft-gran) gran’ fhtime’ f fh’ t;;

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 192

let autofold cur f accu l =

match l with

[] -> [] |

h::t ->

let work = length l

in let (fh,fhtime,gran) = getGran work (f accu) h

in fh::autofold’ work (work-1) gran fhtime f accu t;;

B.2 Voyager Autonomous Mobility Skeletons

B.2.1 Auto Class Implementation

/* ** */

/* AN IMPLEMENTATION OF AMSs IN JAVA VOYAGER */

/* ** */

import java.io.*;

import java.util.*;

import java.lang.*;

import java.rmi.*;

import java.rmi.registry.*;

import java.awt.*;

import com.objectspace.voyager.*;

import com.objectspace.voyager.mobility.*;

import com.objectspace.lib.util.*;

public class Auto{

/* Globle Data and Structure */

protected String localName = getLocalName();

protected Server current = new Server(localName) ;

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 193

protected Server next = new Server() ;

protected ILoadServer ls = null;

protected float genCpu=0;

protected Server[] serverlist = null;

protected String getLocalName(){

String hostName = null;

try {

String hostNameLong =

java.net.InetAddress.getLocalHost().getHostName();

int pos = hostNameLong.indexOf(’.’);

if(pos>=0){

hostName = hostNameLong.substring(0,pos);

}

else{

hostName = hostNameLong;

}

}

catch (Exception exception)

{

System.err.println(exception);

}

return hostName;

}

private String getCmdRet (String cmd){

String cmdRet = "";

try{

Process p =Runtime.getRuntime().exec(cmd);

InputStream pin = p.getInputStream();

InputStreamReader cin = new InputStreamReader(pin);

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 194

BufferedReader in = new BufferedReader(cin);

String line = "";

while ((line=in.readLine())!=null){

cmdRet=cmdRet + line;

}

in.close();

}

catch(Exception ex){

System.out.println("getCmdRet " + ex);

}

return cmdRet;

}

/* ************************* *

* Auxiliary functions *

* ************************* */

private native int GetPid();

static {

System.load("/u1/pg/xyd3/Java/loadServerRay/mobile/GetPidImpl.so");

}

private float getselfcpu (){

float load = 0;

int pid = GetPid();

try{

String str = getCmdRet("ps -p "+pid+" -opcpu");

int pos = str.indexOf(’U’);

String loadStr = str.substring(pos+1,pos+5);

load = Float.parseFloat(loadStr);

}

catch(Exception ex){

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 195

System.err.println(ex);

}

return load;

}

protected double tcomm (int n){

double t_comm = 0;

if (n<50)

t_comm = 0.029;

else

t_comm = 0.029+5.07 * 0.000001 * ((double)(n*n));

return t_comm;

}

protected double tcoord (int p){

return 0.25 * (double) p;

}

protected void checkRelSpeed(){

try{

float load = 0;

this.serverlist = ls.getServers();

int ampnum=0;

for (int i=0;i<(this.serverlist.length);i++){

ampnum = this.serverlist[i].ampnum;

if(serverlist[i].servername.equals(current.servername)){

this.current = this.serverlist[i];

load = serverlist[i].load+serverlist[i].comingload

-(this.genCpu/serverlist[i].speed);

if (load < 0){load = 0;}

}

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 196

else{

load = serverlist[i].load + serverlist[i].comingload;

ampnum=ampnum+1;

}

serverlist[i].relspeed =

((serverlist[i].cpunum-(load/100))/ serverlist[i].cpunum)

*serverlist[i].speed / ampnum;

}

}

catch(Exception exception){

System.err.println(exception);

}

return ;

}

protected void checkNext () {

checkRelSpeed();

this.next = this.current;

for (int i=0;i<serverlist.length;i++){

if(((this.next.relspeed)<(serverlist[i].relspeed))

& serverlist[i].running){

this.next = serverlist[i];

}

}

return;

}

protected synchronized void check_move (int datasize,

int workleft,

double fhtime,

IMobility mobility){

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 197

try{

double t_c = tcomm (datasize);

double t_h = fhtime * (double) workleft;

double t_n = t_h;

checkNext();

if (!(current.servername.equals(next.servername))){

t_n = (current.relspeed) / (next.relspeed) * t_h + t_c;

if (t_h > t_n){

// before move set previous location value

ls.setSleepTime(true,3000);

ls.setAmpNum(-1); //previous host Amp -1

//lookup next host

this.ls = (ILoadServer)Naming.lookup

("//"+next.servername+":9000/LS");

ls.setAmpNum(1);

mobility.moveTo("//"+next.servername+":8000"); //move next host

this.current.servername = new String(this.next.servername);

System.out.println("The program is on "+current.servername);

}

}

}

catch(Exception exception){

System.err.println(exception);

}

return;

}

protected int getGran (int work, double fhtime){

double staticTime = fhtime * (double)work;

double coordTime = tcoord (1);

int times = (int)((5.0/100.0*staticTime) / coordTime);

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 198

int gran = work;

if (times > 0)

gran = work/(times+1)+1;

return gran;

}

public Auto () {};

public Auto (String port){

try{

Voyager.startup(port);

String sName = "//"+localName+":9000/LS";

this.ls = (ILoadServer) Naming.lookup(sName);

this.current = ls.getCurrent();

ls.setAmpNum(1);

}

catch(Exception ex){

System.out.println("Start Local Server: " + ex);

}

}

/* ********************************** *

* automap *

* ********************************** */

public Impact[] automap (Superclass obj, Ray[] rays){

Impact[] result=new Impact[rays.length];

try{

long timestart = 0;

long timeend = 0;

double fhtime = 0;

int work = rays.length;

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 199

int gran = work;

int checkPos = 1;

ISuperclass proxy = (ISuperclass) Proxy.of(obj);

IMobility mobility = Mobility.of(proxy); //bulid mobility

for(int i=0;i<work;i++){

if ((i-checkPos) == 0){

timestart = System.currentTimeMillis();

result[i]=(Impact)proxy.mapf(rays[i]);

timeend = System.currentTimeMillis();

fhtime = (double)(timeend-timestart)/1000.0;

gran = getGran (work,fhtime);

checkPos = checkPos + gran;

check_move (obj.datasize,(work-i-1),fhtime,mobility);

//set how ofter should the server check information

ls.setSleepTime(false,(int)(fhtime*1000)*gran);

}

else{

result[i]=(Impact)proxy.mapf(rays[i]);

}

}

ls.setAmpNum(-1); //counting the AMP number

}

catch(Exception exception){

System.err.println(exception);

}

Voyager.shutdown();

return result;

}

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 200

/* ********************************** *

* autofold *

* ********************************** */

public int autofold (Superclass obj,int x,int[] l){

int result = x;

try{

long timestart = 0;

long timeend = 0;

double fhtime = 0;

int work = l.length;

int gran = work;

int checkPos = 1;

double totaltime = 0;

ISuperclass proxy = (ISuperclass) Proxy.of(obj);

IMobility mobility = Mobility.of(proxy); //bulid mobility

for(int i=0;i<work;i++){ // fold

if((i-checkPos) == 0) {

timestart = System.currentTimeMillis();

result = proxy.foldf (result, l[i]);

timeend = System.currentTimeMillis();

fhtime = (double)(timeend-timestart)/1000.0;

gran = getGran (work,fhtime);

checkPos = checkPos + gran;

check_move (obj.datasize,(work-i-1),fhtime,mobility);

}

else {

result = proxy.foldf (result, l[i]);

}

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 201

}

ls.setAmpNum(-1);

}

catch(Exception exception){

System.err.println(exception);

}

Voyager.shutdown();

return result;

}

}

B.2.2 Load Server Implementation

import java.io.*;

import java.util.*;

import java.lang.*;

import java.rmi.*;

import java.rmi.server.*;

import java.rmi.registry.*;

import java.net.*;

public class LoadServer extends UnicastRemoteObject

implements ILoadServer, Serializable{

public String localName = getLocalName();

public Server[] serverlist = {

(new Server("linux02")),

(new Server("linux06")),

(new Server("linux09"))};

public int numOfServer = serverlist.length;

static public int sleeptime = 3000;

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 202

public int ampNum = 0;

public Server next = new Server(localName);

public Server local = new Server(localName) ;

private CheckInfo ci = null;

protected String getLocalName() {

String hostName = null;

String hostNameLong = null;

try {

hostNameLong = java.net.InetAddress.getLocalHost().getHostName();

int pos = hostNameLong.indexOf(’.’);

if(pos>=0){

hostName = hostNameLong.substring(0,pos);

}

else{

hostName = hostNameLong;

}

}

catch (Exception exception)

{

System.err.println(exception);

}

return hostName;

}

private String getCmdRet (String cmd){

String cmdRet = "";

try{

Process p =Runtime.getRuntime().exec(cmd);

InputStream pin = p.getInputStream();

InputStreamReader cin = new InputStreamReader(pin);

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 203

BufferedReader in = new BufferedReader(cin);

String line = "";

while ((line=in.readLine())!=null){

cmdRet=cmdRet + line;

}

in.close();

}

catch(Exception ex){

System.out.println("getCmdRet " + ex);

}

return cmdRet;

}

/* ********************************** *

* get local information functions *

* ********************************** */

protected float checkCpuNum (Server hn){

float num = 1;

String numStr =

getCmdRet ("rsh "+hn.servername+

" cat /proc/cpuinfo |grep MHz|wc -l");

num = Float.parseFloat(numStr);

return num;

}

protected float checkSpeed (Server hn){

float speed = 0;

String str =

getCmdRet ("rsh "+hn.servername+" cat /proc/cpuinfo |grep MHz");

int pos = str.indexOf(’:’);

String speedStr = str.substring(pos+1,pos+9);

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 204

speed = Float.parseFloat(speedStr);

return speed;

}

protected boolean checkRunning (Server hn){

boolean running = false;

String runningStr = getCmdRet ("ps -C voyager");

int pos = runningStr.indexOf("voyager");

if (pos != -1) {

running = true;

}

return running;

}

protected float checkLoad (Server hn){

float load = 0;

String usedCpuStr =

getCmdRet ("/u1/pg/xyd3/showcpu");

float usedCpu = Float.parseFloat(usedCpuStr);

if (usedCpu > (hn.cpunum * 100))

load = 100 * hn.cpunum;

else

load =usedCpu;

return load;

}

protected void checkStaticInfo (){

local.speed=checkSpeed(this.local);

local.cpunum=checkCpuNum(this.local);

return;

}

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 205

protected void check(){

try{

for(int i=0;i<numOfServer;i++){

Server s = this.serverlist[i];

if (!s.servername.equals(localName)){

ILoadServer ls = (ILoadServer)Naming.lookup

("//"+s.servername+":9000/LS");

serverlist[i] = ls.getInfo();

}

else{

serverlist[i].running=checkRunning(serverlist[i]);

serverlist[i].load = checkLoad(serverlist[i]);

}

}

}

catch(Exception ex){

System.out.println("Start Local Server: " + ex);

}

return;

}

/*****************************

*constructor

*****************************/

protected void setLocal(){

for (int i=0;i<numOfServer;i++){

if (serverlist[i].servername.equals(localName)){

this.local = serverlist[i];

serverlist[i].isLocal = true;

serverlist[i].running=checkRunning(serverlist[i]);

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 206

serverlist[i].load = checkLoad(serverlist[i]);

}

}

return;

}

protected void init (){

setLocal();

checkStaticInfo();

ci = new CheckInfo();

ci.start();

}

public LoadServer() throws RemoteException{

try{

init();

}

catch(Exception ex){

System.out.println("Init Server Info: " + ex);

}

}

/* **************************** *

* CheckInformation Thread *

* **************************** */

class CheckInfo extends Thread {

public CheckInfo() {}

public void run(){

try{

while (true){

long timestart = System.currentTimeMillis();

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 207

check();

long timeend = System.currentTimeMillis();

System.out.println("coord Time: " + (timeend-timestart));

sleep(sleeptime);

}

}

catch(Exception ex){

System.out.println("Start Load Server: " + ex);

}

return;

}

}

/* ************************************* *

* remote use motheds *

* ************************************* */

public synchronized Server[] getServers() throws RemoteException{

return this.serverlist;

}

public synchronized Server getCurrent() throws RemoteException{

return this.local;

}

public synchronized Server getNext()throws RemoteException{

return this.next;

}

public synchronized int getAmpNum()throws RemoteException{

return this.local.ampnum;

}

public synchronized void setAmpNum(int io)throws RemoteException{

this.local.ampnum = this.local.ampnum + io;

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 208

return;

}

public synchronized void setFlag(String servername, boolean flag)

throws RemoteException{

int i=0;

while (!serverlist[i].servername.equals(servername)) i++;

serverlist[i].enable = flag;

return;

}

public synchronized void setFlag(boolean flag)throws RemoteException{

local.enable = flag;

return;

}

public synchronized void setComingLoad(float t) throws RemoteException{

local.comingload = local.comingload + t;

}

public synchronized void setComingLoad(String servername,float t)

throws RemoteException{

for(int i=0;i<numOfServer;i++){

if (serverlist[i].servername.equals(servername)){

serverlist[i].comingload = serverlist[i].comingload + t;

}

}

return;

}

public synchronized void setSleepTime(boolean change,int t)

throws RemoteException{

if ((t<this.sleeptime)||(change)){

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 209

this.sleeptime = t;

}

return;

}

public synchronized Server getInfo()throws RemoteException{

return this.local;

}

/* *************************************** *

* main function *

* *************************************** */

public static void main(String[] args)throws Exception {

try{

LoadServer ls = new LoadServer();

String sName = "//"+ls.localName+":9000/LS";

System.out.println(ls.localName);

Naming.rebind(sName, ls);

}

catch(Exception ex){

System.out.println("Start Load Server: " + ex);

}

}

}

B.3 JavaGo Autonomous Mobile Iterator

/* The auxiliary functions and globle structures in Class AutoIterator

are the same as in Class Auto in Java Voyager, so this class only give

the code which are different from Class Auto. */

import java.io.*;

import java.util.*;

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 210

import java.lang.*;

import javago.*;

public class AutoIterator implements Iterator,Serializable{

/* *********************************** *

* Auxiliary functions are omited *

* *********************************** */

private ArrayList list;

private int nextIndex;

private int work;

/* *************************** *

* constructor *

* *************************** */

public AutoIterator(ArrayList theList){

list = theList;

nextIndex = 0;

work = list.size();

try{

init(); //initialize server

}

catch(Exception ex){

System.out.println("Start Local Server: " + ex);

}

}

public boolean hasNext(){

return nextIndex < work;

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 211

}

public Object next() {

if (nextIndex < work)

return list.get(nextIndex++);

else{

throw new NoSuchElementException("No next element");

}

}

private int checkPos = 1;

private long timestart = 0;

private long timeend = 0;

private double fhtime = 0;

private int gran = work;

/* **************************** *

* autoNext *

* **************************** */

public migratory Object autoNext() throws javago.NotifyGone, IOException{

try{

if (nextIndex < work){

if(nextIndex == 0){

timestart = System.currentTimeMillis();

timeend = timestart;

}

else{

if((nextIndex-checkPos) == 0){

if(nextIndex!=1){

check_move (this.datasize,(work-nextIndex-1),fhtime);

}

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 212

timestart = timeend;

timeend = System.currentTimeMillis();

fhtime = (double)(timeend-timestart)/1000.0;

gran = getGran (work,fhtime);

checkPos = checkPos + gran;

}

}

return list.get(nextIndex++);

}

else{

throw new NoSuchElementException("No next element");

}

}

catch(Exception exception){

System.err.println(exception);

}

}

public void remove(){

throw new UnsupportedOperationException("remove not supported");

}

/* ************************************ *

* example: matrix multiplications *

* ************************************ */

public static void main(String args[]){

try{

undock {

String port=null;

int listlength = Integer.parseInt(args[0]);

ArrayList al = new ArrayList();

APPENDIX B. AUTONOMOUS MOBILITY SKELETONS CODE 213

for (int i=0;i<listlength;i++){

MatrixMul ii = new MatrixMul();

al.add(i,ii);

}

long timestart = System.currentTimeMillis();

AutoIterator ai = new AutoIterator(al); /* AutoIterator */

while (ai.hasNext()){

MatrixMul iu = (MatrixMul)ai.autoNext();

int[][] mat = iu.Multiplication();

}

}

}

catch (Exception e) {

System.out.println ("migration failed!");

System.out.println (e.getMessage());

}

}

}

Appendix C

Balance Status of Collections of

AMPs

This appendix shows the behaviour of 20 AMPs on 10 locations with CPU speeds

3139MHz (Loc1-Loc5), 2167MHZ (Loc6), and 1793MHz (Loc7-Loc10). Tables

C.29, C.30, and C.31 show the location information at balance state when there

are 20, 19, or 18 AMPs on the 10 locations. Figures C.106, C.107, and C.108

in Appendix C show the actual relative CPU speed available to 20 AMPs and

then becomes 19 and 18 AMPs. In Figure C.106, most AMPs have average

relative CPU speed from 200MHz to 400MHz (18 out of 20 AMPs). There is one

AMP on Loc1 with CPU speed 650-700MHz. Similar results were got when there

are 19 and 18 AMPs, which are shown in Figure C.107 and Figure C.108. See

Section 5.3.2 for details.

214

APPENDIX C. BALANCE STATUS OF COLLECTIONS OF AMPS 215

Total Number of AMPs Other Loads Relative Speed
AMPs Location CPU speed at each location (CPU%) Each AMP had

s n l r=s*(100-l)%/n
Loc1-Loc5 3193MHz 0 80 -

20 AMPs Loc6 2167MHZ 2 0 1084MHz
Loc7-Loc8 1793MHz 1 0 1793MHz
Loc9-Loc10 1793MHz 2 0 897MHz

Table C.29: Prediction CPU Speed each AMPs Get(20 AMPs on 15 Locations)
Total Number of AMPs Other Loads Relative Speed
AMPs Location CPU speed at each location (CPU%) Each AMP had

s n l r=s*(100-l)%/n
Loc1 3193MHz 1 59 1309MHz

19 AMPs Loc2-Loc5 3193MHz 3 0 1064MHz
Loc6 2167MHZ 2 0 1084MHz

Loc7-Loc10 1793MHz 1 0 1793MHz

Table C.30: Prediction CPU Speed each AMPs Get(19 AMPs on 15 Locations)
Total Number of AMPs Other Loads Relative Speed
AMPs Location CPU speed at each location (CPU%) Each AMP had

s n l r=s*(100-l)%/n
Loc1 3193MHz 1 53 1501MHz

Loc2,3,5 3193MHz 3 0 1064MHz
18 AMPs Loc4 3193MHz 2 0 1597MHz

Loc6 2167MHZ 2 0 1084MHz
Loc7-Loc10 1793MHz 1 0 1793MHz

Table C.31: Prediction CPU Speed each AMPs Get(18 AMPs on 15 Locations)

APPENDIX C. BALANCE STATUS OF COLLECTIONS OF AMPS 216

 0

 1

 2

 3

 4

 5

 6

 7

 8

50 100 150 200 250 300 350 400 450 500 550 600 650 700

N
um

be
r

of
 A

M
P

CPU speed AMP had

Figure C.106: Actual CPU Speed for Each AMP (20 AMPs on 10 Locations)

0

1

2

3

4

5

6

7

8

9

10

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 >800

N
um

be
r

of
 A

M
P

CPU speed AMP had

Figure C.107: Actual CPU Speed for Each AMP (19 AMPs on 10 Locations)

 0

 1

 2

 3

 4

 5

 6

 7

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 >800

N
um

be
r

of
 A

M
P

CPU speed AMP had

Figure C.108: Actual CPU Speed for Each AMP (18 AMPs on 10 Locations)

Appendix D

Automatic Cost Analyser

Validation

Tables D.32 to D.39 compare CAMS to AMS performances. Tables D.40 to D.42

compare the execution times CAMS programs from the analyser automatically

and CAMS programs produced by hand.

(1)ncc1710 (2)jove (3)lxtrinder
Size Static automap Mobile camap Mobile

time time status time status
100*100 0.695 0.700 Stay 0.700 Stay
200*200 5.848 5.866 Stay 5.867 Stay
300*300 19.727 19.808 Stay 19.808 Stay
310*310 21.870 21.950 Stay 21.932 Stay
320*320 24.152 24.116 Stay 24.116 Stay
330*330 26.853 23.191 (1)− > (3) 23.362 (1)− > (3)
340*340 28.880 24.206 (1)− > (3) 24.412 (1)− > (3)
350*350 31.471 25.400 (1)− > (3) 25.571 (1)− > (3)
400*400 47.060 31.768 (1)− > (3) 31.498 (1)− > (3)
500*500 92.984 47.454 (1)− > (3) 46.786 (1)− > (3)
600*600 161.655 68.218 (1)− > (3) 68.217 (1)− > (3)
700*700 259.260 95.104 (1)− > (3) 95.672 (1)− > (3)
800*800 393.167 130.496 (1)− > (3) 130.606 (1)− > (3)
900*900 586.220 174.681 (1)− > (3) 175.023 (1)− > (3)

Table D.32: camap and automap Matrix Mutiplication Movement Comparison

217

APPENDIX D. AUTOMATIC COST ANALYSER VALIDATION 218

(1)ncc1710 (2)jove (3)lxtrinder
Size Static automap Mobile camap Mobile

time time status time status
5*5 0.967 0.971 Stay 0.982 Stay

10*10 3.876 3.931 Stay 3.908 Stay
15*15 8.803 8.822 Stay 8.922 Stay
20*20 15.972 15.873 Stay 15.750 Stay
21*21 17.670 17.709 Stay 17.868 Stay
22*22 19.378 18.449 (1)− > (3) 18.125 (1)− > (3)
23*23 21.305 19.065 (1)− > (3) 18.978 (1)− > (3)
24*24 23.221 19.854 (1)− > (3) 19.408 (1)− > (3)
25*25 25.493 20.679 (1)− > (3) 20.226 (1)− > (3)
30*30 37.376 24.370 (1)− > (3) 24.644 (1)− > (3)
35*35 51.978 28.591 (1)− > (3) 29.057 (1)− > (3)
40*40 69.288 33.977 (1)− > (3) 33.997 (1)− > (3)

Table D.33: camap and automap Ray Tracing Movement Comparison

(1)ncc1710 (2)jove (3)lxtrinder
Size Static automap Mobile camap Mobile

time time status time status
50*50 0.173 0.176 Stay 0.174 Stay

100*100 1.467 1.451 Stay 1.472 Stay
150*150 5.042 4.997 Stay 5.023 Stay
200*200 11.865 11.804 Stay 11.834 Stay
210*210 13.703 13.751 Stay 13.720 Stay
220*220 15.732 15.743 Stay 15.690 Stay
230*230 18.042 17.998 Stay 18.990 (1)− > (3)
240*240 20.426 20.379 Stay 20.358 (1)− > (3)
250*250 23.249 23.087 Stay 21.518 (1)− > (3)
260*260 25.960 25.947 Stay 22.872 (1)− > (3)
270*270 29.000 29.134 Stay 24.631 (1)− > (3)
280*280 32.457 32.442 Stay 25.899 (1)− > (3)
290*290 36.030 36.077 Stay 27.696 (1)− > (3)
300*300 40.131 39.844 Stay 29.222 (1)− > (3)
310*310 44.179 43.946 Stay 30.642 (1)− > (3)
320*320 48.726 48.314 Stay 32.254 (1)− > (3)
330*330 53.299 30.687 (1)− > (3) 33.984 (1)− > (3)
340*340 58.485 33.846 (1)− > (3) 35.733 (1)− > (3)
350*350 63.753 35.475 (1)− > (3) 37.630 (1)− > (3)
400*400 95.571 46.269 (1)− > (3) 47.621 (1)− > (3)
450*450 136.587 59.867 (1)− > (3) 61.256 (1)− > (3)
500*500 187.014 75.013 (1)− > (3) 77.283 (1)− > (3)

Table D.34: camap and automap Double Matrix Multiplication Movement
Comparison

APPENDIX D. AUTOMATIC COST ANALYSER VALIDATION 219

(1)ncc1710 (2)jove (3)lxtrinder
Size Static automap Mobile camap Mobile

time time status time status
50*50 0.175 0.171 Stay 0.172 Stay

100*100 1.437 1.461 Stay 1.422 Stay
150*150 5.005 4.993 Stay 5.011 Stay
200*200 11.876 11.774 Stay 11.691 Stay
210*210 13.692 13.671 Stay 13.712 Stay
220*220 15.731 15.689 Stay 15.717 Stay
230*230 17.997 17.994 Stay 19.162 (1)− > (3)
240*240 20.476 20.440 Stay 20.433 (1)− > (3)
250*250 23.051 23.038 Stay 21.623 (1)− > (3)
260*260 25.976 25.997 Stay 23.019 (1)− > (3)
270*270 28.909 29.128 Stay 24.607 (1)− > (3)
280*280 32.400 32.270 Stay 25.912 (1)− > (3)
290*290 35.872 35.993 Stay 27.631 (1)− > (3)
300*300 39.657 39.780 Stay 29.284 (1)− > (3)
310*310 43.995 43.906 Stay 31.069 (1)− > (3)
320*320 48.518 48.332 Stay 32.510 (1)− > (3)
330*330 52.902 31.053 (1)− > (3) 34.575 (1)− > (3)
340*340 57.844 32.791 (1)− > (3) 36.093 (1)− > (3)
350*350 63.384 34.701 (1)− > (3) 38.025 (1)− > (3)
400*400 94.777 45.322 (1)− > (3) 47.895 (1)− > (3)
450*450 135.806 58.046 (1)− > (3) 61.640 (1)− > (3)
500*500 186.985 73.376 (1)− > (3) 77.369 (1)− > (3)
550*550 249.145 94.038 (1)− > (3) 95.831 (1)− > (3)
600*600 326.493 115.928 (1)− > (3) 116.898 (1)− > (3)
650*650 430.764 142.560 (1)− > (3) 143.259 (1)− > (3)

Table D.35: camap and automap Invertible Matrix Movement Comparison

APPENDIX D. AUTOMATIC COST ANALYSER VALIDATION 220

(1)ncc1710 (2)jove (3)lxtrinder
Size Static automap Mobile camap Mobile

time time status time status
5*5 1.929 1.969 Stay 1.964 Stay

10*10 7.863 7.751 Stay 7.820 Stay
11*11 9.445 9.586 Stay 9.532 Stay
12*12 11.233 11.182 Stay 11.280 Stay
13*13 13.266 13.129 Stay 14.196 Stay
14*14 15.289 15.240 Stay 16.173 Stay
15*15 17.575 17.710 Stay 18.710 Stay
16*16 20.135 20.167 Stay 19.320 (1)− > (3)
17*17 22.844 22.870 Stay 20.566 (1)− > (3)
18*18 25.599 25.705 Stay 21.825 (1)− > (3)
19*19 28.666 28.634 Stay 22.429 (1)− > (3)
20*20 31.773 31.815 Stay 23.888 (1)− > (3)
21*21 35.282 35.177 Stay 25.356 (1)− > (3)
22*22 39.037 22.242 (1)− > (3) 26.703 (1)− > (3)
23*23 42.371 23.490 (1)− > (3) 28.067 (1)− > (3)
24*24 46.133 25.553 (1)− > (3) 29.216 (1)− > (3)
25*25 50.324 25.678 (1)− > (3) 30.404 (1)− > (3)
30*30 74.030 31.933 (1)− > (3) 37.282 (1)− > (3)
35*35 102.907 38.708 (1)− > (3) 44.799 (1)− > (3)
40*40 137.621 47.448 (1)− > (3) 54.451 (1)− > (3)
45*45 181.171 57.037 (1)− > (3) 65.112 (1)− > (3)
50*50 230.401 68.033 (1)− > (3) 77.334 (1)− > (3)

Table D.36: camap and automap Double Ray Tracing Movement Comparison

APPENDIX D. AUTOMATIC COST ANALYSER VALIDATION 221

(1)ncc1710 (2)jove (3)lxtrinder
Size Static automap Mobile camap Mobile

time time status time status
50*50 0.434 0.424 Stay 0.434 Stay

100*100 3.653 3.625 Stay 3.655 Stay
150*150 12.507 12.524 Stay 12.555 Stay
160*160 15.280 15.277 Stay 15.241 Stay
170*170 18.234 18.249 Stay 18.961 (1)− > (3)
180*180 21.628 21.606 Stay 20.772 (1)− > (3)
190*190 25.497 25.480 Stay 22.491 (1)− > (3)
200*200 29.548 29.565 Stay 24.598 (1)− > (3)
210*210 34.290 34.267 Stay 26.623 (1)− > (3)
220*220 39.454 39.348 Stay 28.675 (1)− > (3)
230*230 45.004 45.020 Stay 30.951 (1)− > (3)
240*240 51.214 51.019 Stay 33.346 (1)− > (3)
250*250 57.871 57.827 Stay 35.609 (1)− > (3)
260*260 65.436 64.941 Stay 38.950 (1)− > (3)
270*270 72.719 72.952 Stay 41.647 (1)− > (3)
280*280 81.246 81.422 Stay 44.618 (1)− > (3)
290*290 90.343 90.251 Stay 47.046 (1)− > (3)
300*300 99.482 99.697 Stay 50.197 (1)− > (3)
310*310 109.958 110.152 Stay 53.850 (1)− > (3)
320*320 120.877 121.269 Stay 57.101 (1)− > (3)
330*330 132.859 53.371 (1)− > (3) 61.579 (1)− > (3)
340*340 145.197 56.868 (1)− > (3) 65.193 (1)− > (3)
350*350 158.205 61.013 (1)− > (3) 69.352 (1)− > (3)
360*360 173.871 65.315 (1)− > (3) 73.370 (1)− > (3)
370*370 188.731 70.451 (1)− > (3) 77.500 (1)− > (3)
400*400 238.351 85.709 (1)− > (3) 92.567 (1)− > (3)
450*450 340.371 115.377 (1)− > (3) 123.887 (1)− > (3)
500*500 465.234 151.124 (1)− > (3) 158.788 (1)− > (3)

Table D.37: camap and automap Five Matrix Multiplications Movement
Comparison

APPENDIX D. AUTOMATIC COST ANALYSER VALIDATION 222

(1)ncc1710 (2)jove (3)lxtrinder (4)linux81
Size Static automap Mobile camap Mobile

time time status time status
50*50 0.175 0.171 Stay 0.172 Stay

100*100 1.437 1.461 Stay 1.422 Stay
150*150 5.005 4.993 Stay 5.011 Stay
200*200 11.876 11.774 Stay 11.691 Stay
210*210 13.692 13.671 Stay 13.712 Stay
220*220 15.731 15.689 Stay 15.717 Stay
230*230 17.997 17.994 Stay 19.162 (1)− > (3)
240*240 20.476 20.440 Stay 20.433 (1)− > (3)
250*250 23.051 23.038 Stay 21.623 (1)− > (3)
260*260 25.976 25.997 Stay 23.019 (1)− > (3)
270*270 28.909 29.128 Stay 24.607 (1)− > (3)
280*280 32.400 32.270 Stay 25.912 (1)− > (3)
290*290 35.872 35.993 Stay 27.631 (1)− > (3)
300*300 39.657 39.780 Stay 29.284 (1)− > (3)
310*310 43.995 43.906 Stay 31.069 (1)− > (3)
320*320 48.518 48.332 Stay 32.510 (1)− > (3)
330*330 52.902 31.053 (1)− > (3) 34.575 (1)− > (3)
340*340 57.844 32.791 (1)− > (3) 36.093 (1)− > (3)
350*350 63.384 34.701 (1)− > (3) 38.025 (1)− > (3)
400*400 94.777 45.322 (1)− > (3) 47.895 (1)− > (3)
440*440 126.478 55.173 (1)− > (3) 58.757 (1)− > (3)
450*450 135.806 58.046 (1)− > (3) 61.505 (1)− > (3)− > (4)
500*500 186.985 73.376 (1)− > (3) 73.850 (1)− > (3)− > (4)
550*550 249.146 95.083 (1)− > (3) 86.464 (1)− > (3)− > (4)
600*600 326.493 116.056 (1)− > (3) 102.449 (1)− > (3)− > (4)
650*650 430.764 145.170 (1)− > (3) 120.165 (1)− > (3)− > (4)

Table D.38: camap and automap Invertible Matrix Movement Comparison with
Changing Loads

APPENDIX D. AUTOMATIC COST ANALYSER VALIDATION 223

(1)ncc1720 (2)jove (3)lxtrinder (4)linux81
Size Static automap Mobile camap Mobile

time time status time status
50*50 0.434 0.424 Stay 0.434 Stay

100*100 3.653 3.625 Stay 3.655 Stay
150*150 12.507 12.524 Stay 12.555 Stay
160*160 15.280 15.277 Stay 15.241 Stay
170*170 18.234 18.249 Stay 18.961 (1)− > (3)
180*180 21.628 21.606 Stay 20.772 (1)− > (3)
190*190 25.497 25.480 Stay 22.491 (1)− > (3)
200*200 29.548 29.565 Stay 24.598 (1)− > (3)
210*210 34.290 34.267 Stay 26.623 (1)− > (3)
220*220 39.454 39.348 Stay 28.675 (1)− > (3)
230*230 45.004 45.020 Stay 30.951 (1)− > (3)
240*240 51.214 51.019 Stay 33.346 (1)− > (3)
250*250 57.871 57.827 Stay 35.609 (1)− > (3)
260*260 65.436 64.941 Stay 38.950 (1)− > (3)
270*270 72.719 72.952 Stay 41.647 (1)− > (3)
280*280 81.246 81.422 Stay 44.618 (1)− > (3)
290*290 90.343 90.251 Stay 47.046 (1)− > (3)
300*300 99.482 99.697 Stay 50.197 (1)− > (3)
310*310 109.958 110.152 Stay 53.850 (1)− > (3)
320*320 120.877 121.269 Stay 57.101 (1)− > (3)
330*330 132.859 53.371 (1)− > (3) 60.356 (1)− > (3)− > (4)
340*340 145.197 56.868 (1)− > (3) 63.223 (1)− > (3)− > (4)
350*350 158.205 61.013 (1)− > (3) 66.878 (1)− > (3)− > (4)
360*360 173.871 65.315 (1)− > (3) 69.705 (1)− > (3)− > (4)
370*370 188.731 70.451 (1)− > (3) 72.974 (1)− > (3)− > (4)
400*400 238.351 85.709 (1)− > (3) 84.129 (1)− > (3)− > (4)
450*450 340.371 115.377 (1)− > (3) 104.813 (1)− > (3)− > (4)
500*500 465.234 151.124 (1)− > (3) 130.905 (1)− > (3)− > (4)

Table D.39: camap and automap Five Matrix Multiplications Movement
Comparison with Changing Loads

APPENDIX D. AUTOMATIC COST ANALYSER VALIDATION 224

(1)ncc1710 (2)jove (3)lxtrinder
Size Static Automatic byHand

time time status time status
50*50 0.173 0.171 Stay 0.174 Stay

100*100 1.467 1.473 Stay 1.472 Stay
150*150 5.042 5.006 Stay 5.023 Stay
200*200 11.865 11.869 Stay 11.834 Stay
210*210 13.703 13.677 Stay 13.720 Stay
220*220 15.732 15.740 Stay 15.690 Stay
230*230 18.042 18.836 (1)− > (3) 18.990 (1)− > (3)
240*240 20.426 20.510 (1)− > (3) 20.358 (1)− > (3)
250*250 23.249 21.253 (1)− > (3) 21.518 (1)− > (3)
260*260 23.249 22.616 (1)− > (3) 22.872 (1)− > (3)
270*270 29.000 24.605 (1)− > (3) 24.631 (1)− > (3)
280*280 32.457 25.912 (1)− > (3) 25.899 (1)− > (3)
290*290 36.030 27.371 (1)− > (3) 27.696 (1)− > (3)
300*300 40.131 29.286 (1)− > (3) 29.222 (1)− > (3)
310*310 44.179 30.724 (1)− > (3) 30.642 (1)− > (3)
320*320 48.726 32.341 (1)− > (3) 32.254 (1)− > (3)
330*330 53.299 34.165 (1)− > (3) 33.984 (1)− > (3)
340*340 58.485 35.769 (1)− > (3) 35.733 (1)− > (3)
350*350 63.753 37.569 (1)− > (3) 37.630 (1)− > (3)
400*400 95.571 48.255 (1)− > (3) 47.621 (1)− > (3)
450*450 136.587 61.946 (1)− > (3) 61.256 (1)− > (3)
500*500 187.014 77.085 (1)− > (3) 77.283 (1)− > (3)

Table D.40: Automatic and Byhand Cost Double Matrix Multiplications
Movement Comparison

APPENDIX D. AUTOMATIC COST ANALYSER VALIDATION 225

(1)ncc1710 (2)jove (3)lxtrinder
Size Static automatic byHand

time time status time status
50*50 0.175 0.171 Stay 0.172 Stay

100*100 1.437 1.455 Stay 1.422 Stay
150*150 5.005 5.037 Stay 5.011 Stay
200*200 11.876 11.839 Stay 11.691 Stay
210*210 13.692 13.711 Stay 13.712 Stay
220*220 15.731 15.736 Stay 15.717 Stay
230*230 17.997 18.973 (1)− > (3) 19.162 (1)− > (3)
240*240 20.476 20.758 (1)− > (3) 20.433 (1)− > (3)
250*250 23.051 21.774 (1)− > (3) 21.623 (1)− > (3)
260*260 25.976 22.928 (1)− > (3) 23.019 (1)− > (3)
270*270 28.909 24.543 (1)− > (3) 24.607 (1)− > (3)
280*280 32.400 25.951 (1)− > (3) 25.912 (1)− > (3)
290*290 35.872 27.565 (1)− > (3) 27.631 (1)− > (3)
300*300 39.657 29.110 (1)− > (3) 29.284 (1)− > (3)
310*310 43.995 30.994 (1)− > (3) 31.069 (1)− > (3)
320*320 48.518 32.581 (1)− > (3) 32.510 (1)− > (3)
330*330 52.902 34.290 (1)− > (3) 34.575 (1)− > (3)
340*340 57.844 36.039 (1)− > (3) 36.093 (1)− > (3)
350*350 63.384 38.170 (1)− > (3) 38.025 (1)− > (3)
400*400 94.777 48.063 (1)− > (3) 47.895 (1)− > (3)
450*450 135.806 61.364 (1)− > (3) 61.640 (1)− > (3)
500*500 186.985 77.417 (1)− > (3) 77.369 (1)− > (3)

Table D.41: Automatic and Byhand Cost Invertible Matrix Movement
Comparison

APPENDIX D. AUTOMATIC COST ANALYSER VALIDATION 226

(1)ncc1710 (2)jove (3)lxtrinder
Size Static Automatic byHand

time time status time status
5*5 1.929 1.952 Stay 1.964 Stay

10*10 7.863 7.882 Stay 7.820 Stay
11*11 9.445 9.528 Stay 9.532 Stay
12*12 11.233 11.478 Stay 11.280 Stay
13*13 13.266 14.408 Stay 14.196 Stay
14*14 15.289 16.647 Stay 16.173 Stay
15*15 17.575 18.926 Stay 18.710 Stay
16*16 20.135 19.493 (1)− > (3) 19.320 (1)− > (3)
17*17 22.844 20.543 (1)− > (3) 20.566 (1)− > (3)
18*18 25.599 21.868 (1)− > (3) 21.825 (1)− > (3)
19*19 28.666 22.787 (1)− > (3) 22.429 (1)− > (3)
20*20 31.773 24.058 (1)− > (3) 23.888 (1)− > (3)
21*21 35.282 25.348 (1)− > (3) 25.356 (1)− > (3)
22*22 39.037 26.718 (1)− > (3) 26.703 (1)− > (3)
23*23 42.371 28.065 (1)− > (3) 28.067 (1)− > (3)
24*24 46.133 29.420 (1)− > (3) 29.216 (1)− > (3)
25*25 50.324 30.705 (1)− > (3) 30.404 (1)− > (3)
30*30 74.030 37.258 (1)− > (3) 37.282 (1)− > (3)
35*35 102.907 45.125 (1)− > (3) 44.799 (1)− > (3)
40*40 137.621 54.417 (1)− > (3) 54.451 (1)− > (3)
45*45 181.171 65.127 (1)− > (3) 65.112 (1)− > (3)
50*50 230.401 77.895 (1)− > (3) 77.334 (1)− > (3)

Table D.42: Automatic and Byhand Costs Double Ray Tracing Movement
Comparison

Bibliography

[1] Haskell 98 Language and Libraries The Revised Report. Technical report,

December 2002. http://www.haskell.org/onlinereport/.

[2] Emergent, 2003, accessed 2007. http://www.beart.org.uk/Emergent/.

[3] TCP, Transmission Control Protocol, 2007. Accessed: March 2007,

http://www.networksorcery.com/enp/protocol/tcp.htm.

[4] The Jocaml System, accessed: 2005. http://pauillac.inria.fr/jocaml/.

[5] ASAP Research Theme: Multi-Agents. University of Nothtingham,

School of CS, ASAP, Accessed: 2007. http://www.asap.cs.nott.ac.uk/

themes/ma.shtml.

[6] J. Abawajy. Autonomic Job Scheduling Policy for Grid Computing. In

Lecture Notes in Computer Science, LNCS 3516, pages 213–220, Germany,

May 2005. Internation Conference on Computationl Science - ICCS 2005,

part 3, Springer.

[7] A. Acharya, M. Ranganathan, and J. H. Saltz. Sumatra: A Language for

Resource-Aware Mobile Programs. In Selected Presentations and Invited

Papers Second International Workshop on Mobile Object Systems - Towards

the Programmable Internet, pages 111–130, London, UK, 1997. Springer-

Verlag.

[8] I. Ahmad, A. Ghafoor, and K. Mehrotra. Performance prediction of dis-

tributed load balancing on multicomputer systems. In Supercomputing ’91:

Proceedings of the 1991 ACM/IEEE conference on Supercomputing, pages

227

BIBLIOGRAPHY 228

830–839, Albuquerque, New Mexico, United States, 1991. ACM Press, New

York, USA.

[9] A. V. Aho and J. E. Hopcroft. The Design and Analysis of Computer

Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1974.

[10] A. Al Zain. Integrated High Performance Computation on a Grid Network.

Technical report, Department of Computer Sciences:Heriot-Watt Univer-

sity, January 2003.

[11] M. Antonioletti. Load Sharing Across Networked Computers. Technical

report, Edinburgh Parallel Computing Centre:The University of Edinburgh,

December 1997.

[12] A. Barak, S. Guday, and R. Wheeler. The Mosix Distributed Operating

System: Load Balancing for Unix. Springer-Verlag, 1993.

[13] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. PVM:

Parallel Virtual Machine - A Users’ Guide and Tutorial for Networked Par-

allel Computing. Scientific and Engineering Computation. MIT Press, Jan.

1995.

[14] Z. Bellahsene and M. Roantree. Querying Distributed Data in a Super-Peer

Based Architecture. In Database and Expert Systems Applications, volume

3180/2004 of Lecture Notes in Computer Science, pages 296–305. Springer

Berlin / Heidelberg, October 2004.

[15] G. Bernat, A. Burns, and A. Wellings. Portable Worst-Case Execution

Time Analysis Using Java Byte Code. In the 12th EuroMicro Conference

on Real-Time Systems, pages 81–88, Stockholm, Sweden, June 2000.

[16] G. Bernat, A. Colin, and S. M. Petters. WCET Analysis of Probabilistic

Hard Real-Time Systems. In RTSS ’02: Proceedings of the 23rd IEEE Real-

Time Systems Symposium (RTSS’02), page 279, Washington, DC, USA,

2002. IEEE Computer Society.

BIBLIOGRAPHY 229

[17] A. R. D. Bois. Mobile Computation in a Purely Functional Language. PhD

thesis, School of Mathematical and Computer Science, Heriot-Watt Uni-

veristy, Edinburgh, UK, August 2005.

[18] A. R. D. Bois, P. Trinder, and H. Loidl. Towards Mobility Skeletons. Par-

allel Processing Letters, 15(3):273–288, 2005.

[19] A. Bonenfant, C. Ferdinand, K. Hammond, and R. Heckmann. Worst-

case execution times for a purely functional language. In 18th IFL 2006,

Budapest. Springer, 2006.

[20] D. J. Busvine. Detecting parallel structures in functional programs. PhD

thesis, Department of Computing and Electrical Engineering, Heriot-Watt

University, April 1993.

[21] L. Cardelli. A language with distributed scope. In Proceedings of the 22nd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 286–297, San Francisco, California, United States, 1995. ACM

Press.

[22] L. Cardelli. Abstrations for Mobile Computation. Secure Internet Program-

ming, pages 51–94, 1999.

[23] A. Carzaniga, G. P. Picco, and G. Vigna. Designing distributed applica-

tions with mobile code paradigms. In Proceedings of the 19th International

Conference on Software Engineering, pages 22–32, Boston, Massachusetts,

United States, 1997. ACM Press.

[24] T. Casavant and J. Kuhl. A Taxonomy of Scheduling in General-Pupose

distributed Computing Systems. IEEE Transactions on Software Engineer-

ing, 14(2):141–154, February 1988.

[25] G. Chen, M. Odersky, C. Zenger, and M. Zenger. A Functional View of

Join. Technical Report ACRC-99-016, LAMP, University of South Aus-

tralia, 1999.

BIBLIOGRAPHY 230

[26] J. Cohen. Computer-assisted microanalysis of programs. Commun. ACM,

25(10):724–733, 1982.

[27] J. Cohen and A. Weitzman. Software tools for micro-analysis of programs.

Software - Practice and Experience, 22(9):777–808, 1992.

[28] J. Cohen and C. Zuckerman. Two Languages for Estimating Program Ef-

ficiency. Commun. ACM, 17(6):301–308, 1974.

[29] M. Cole. Algorithmic skeletons: structured management of parallel compu-

tation. MIT Press, 1989.

[30] S. Dal Zilio. Mobile Processes: a Commented Bibliography. In MOVEP’2k

– 4th Summer school on Modelling and Verification of Parallel processes,

volume 2067 of Lecture Notes in Computer Science, pages 206–222, Nantes,

France, June 2000. Springer Berlin / Heidelberg.

[31] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp,

and Q. Wu. Parallel Programming Using Skeleton Functions. In PARLE

’93: the 5th International Conference on Parallel Architectures and Lan-

guages Europe, pages 146–160, London, UK, 1993. Springer-Verlag.

[32] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters. In OSDI’04: Sixth Symposium on Operating System Design

and Implementation, pages 137–150, San Francisco, USA, 2004.

[33] X. Y. Deng, G. Michaelson, and P. Trinder. Towards High Level Au-

tonomous Mobility. In H.-W. Loidl, editor, Draft Proceedings of Trends

in Functional Programming, pages 97–112, Munich, Germany, November

2004.

[34] X. Y. Deng, G. Michaelson, and P. Trinder. Autonomous Mobility Skele-

tons. Journal of Parallel Computing, Volume 32, Issues 7-8:Pages 463–478

Algorithmic Skeletons, September 2006.

BIBLIOGRAPHY 231

[35] X. Y. Deng, P. Trinder, and G. Michaelson. Autonomous Mobile Programs.

In IAT ’06: Proceedings of the IEEE/WIC/ACM International Conference

on Intelligent Agent Technology (IAT 2006 Main Conference Proceedings)

(IAT’06), pages 177–186, Hong Kong, December 2006. IEEE Computer

Society, Washington, DC, USA.

[36] F. Douglis and J. K. Ousterhout. Transparent Process Migration: Design

Alternatives and the Sprite Implementation. Software - Practice and Expe-

rience, 21(8):757–785, 1991.

[37] A. Du Bois, P. Trinder, and H. Loidl. mHaskell: Mobile Computation in

a Purely Functional Language. Journal of Universal Computer Science,

11(7):1234–1254, 2005.

[38] A. Du Bois, P. Trinder, and H.-W. Loidl. Implementing Mobile Haskell.

In Trends in Functional Programming, volume 4, pages 79–94, Edinburgh,

Scotland, September 2003.

[39] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive Load Sharing in

Homogeneous Distributed System. IEEE Transactions on Software Engi-

neering, SE-12(5):662–675, 1986.

[40] First Int’l. Conf. on Foundations of Software Science and Computation

Structures. Mobile Ambients. Springer-Verlag, 1998.

[41] I. Foster, N. R. Jennings, and C. Kesselman. Brain Meets Brawn: Why Grid

and Agents Need Each Other. In AAMAS ’04: Proceedings of the Third

International Joint Conference on Autonomous Agents and Multiagent Sys-

tems, pages 8–15, New York, 2004. IEEE Computer Society, Washington,

DC, USA.

[42] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling

Scalable Virtual Organization . International Journal of High Performance

Computing Applications, 15:200–222, 2001.

BIBLIOGRAPHY 232

[43] C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Pro-

gramming. PhD thesis, Ecole Polytechnique, Palaiseau, France, November

1998.

[44] C. Fournet, F. L. Fessant, L. Maranget, and A. Schmitt. Jocaml: a Lan-

guage for Concurrent Distributed and Mobile Programming. In Proceedings

of the Fourth Summer School on Advanced Functional Programming, pages

19–24, St Anne’s College, Oxford, August 2002. Springer-Verlag.

[45] C. Fournet and G. Gonthier. The Reflexive CHAM and the Join-calculus. In

Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 372–385, St. Petersburg Beach, Florida,

United States, 1996. ACM Press.

[46] C. Fournet, G. Gonthier, and J. J. Levy. A Calculus of Mobile Agents. In

Proceedings of the 7th International Conference on Concurrency Theory,

pages 406–421, London, UK, 1996. Springer-Verlag.

[47] D. P. Friedman, M. Wand, and C. T. Haynes. Essentials of Programming

Languages. MIT Press, 1992.

[48] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code Mobility.

IEEE Transactions on Software Engineering, 24(5):342–361, 1998.

[49] A. Giacalone, P. Mishra, and S. Prasad. Facile: a symmetric integra-

tion of concurrent and functional programming. Int. J. Parallel Program.,

18(2):121–160, 1989.

[50] M. J. Gordon. The Denotational Description of Programming Languages

An Introduction. Springer-Verlag, 1979.

[51] R. S. Gray. Agent TCL: A Transportable Agent System. In T. Finin

and J. Mayfield, editors, Proceedings of the CIKM Workshop on Intelligent

Information Agents, Fourth International Conference on Information and

Knowledge Management (CIKM ’95), Baltimore, Maryland, 1995. ACM

Press New York, USA.

BIBLIOGRAPHY 233

[52] A. Group. Sun’s Grid Computing Solutions Outdistance the Competition,

May 2002. http://www.sun.com/software/grid/docs/Grid competitive.pdf.

[53] X. Guan, Y. Yang, and J. You. Making ambients more robust. In Int’l.

Conf. on Software: Theory and Practice, pages 377–384, Beijing, China,

Aug 2000.

[54] M. Hamdan. A Combinational Framework for Parallel Programming Using

Algorithmic Skeletons. PhD thesis, Department of Computing and Electrial

Engineering, Heriot-Watt University, Edinburgh, Scotland, January 2000.

[55] K. Hammond and G. Michaelson. Research Directions in Parallel Func-

tional Programming. Springer, 1999.

[56] K. Hammond and G. Michaelson. Hume: a Domain-Specific Language

for Real-Time Embedded Systems. In Proceedings of GPCE 03 Genera-

tive Programming and Component Engineering, LNCS, pages 37–56, Erfurt,

Germany, September 2003. Springer-Verlag.

[57] K. Hammond, G. Michaelson, and P. Vasconcelos. Bounded Space Pro-

gramming using Finite State Machines and Recursive Functions: the Hume

Approach. ACM Transactions on Software Engineering Methodology, 2006.

Submitted.

[58] M. R. Hansen and H. Rischel. Introduction to Programming using SML.

Addison-Wesley, 1999.

[59] P. B. Hansen. The Programming Language Concurrent Pascal. The Origin

of Concurrent Programming: from Semaphores to Remote Procedure Calls,

pages 297–318, 2002. Springer-Verlag New York, Inc.

[60] M. Hashimoto and A. Yonezawa. MobileML: A Programming Language for

Mobile Computation. In Proceedings of the 4th International Conference

on Coordination Languages and Models, volume 1906 of Lecture Notes In

Computer Science, pages 198–215. Springer-Verlag London, UK, 2000.

BIBLIOGRAPHY 234

[61] C. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[62] J. Hoffmeyer. The Swarming Body. In Proceedings of the Fifth Congress of

the International Association for Semiotic Studies, pages 937–940, Berkeley,

1994.

[63] M. Hofmann and S. Jost. Static prediction of heap space usage for first-

order functional programs. In POPL ’03: Proceedings of the 30th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

pages 185–197, New Orleans, Louisiana, USA, 2003. ACM Press New York,

NY, USA.

[64] M. Hofmann and H.-W. Loidl. Automatic Prediction of Resource Bounds

for Embedded Systems. Technical report, Ludwig-Maximilians Universitat,

Munchen, March 2005.

[65] A. I. Houston and J. M. McNamara. Animal Behaviour. volume 36, pages

166–174. 1988.

[66] Institut National de Recherche en Informatique et en Automatique. The

JoCaml language beta release: Documentation and user’s manual, January

2001.

[67] N. R. Jennings. An agent-based approach for building complex software

systems. Commun. ACM, 44(4):35–41, 2001.

[68] R. Jha, J. K. II, and D. Cornhill. Ada Program Partitioning Language:

A Notion for Distributing Ada Programs. IEEE Transactions on Software

Engineering, 15(3):271–280, 1989. IEEE Computer Society, Los Alamitos,

CA, USA.

[69] J.Hawkins and A.Abdallah. A Generic Functional Genetic Algorithm. In

P.Trinder and G.Michaelson, editors, Draft proceedings of the First Scottish

Functional Programming Workshop, pages 151–168, Heriot-Watt Univer-

sity, Edinburgh, 1999.

BIBLIOGRAPHY 235

[70] J. O. Kephart and D. M. Chess. The Vision of Autonomic Computing.

Computer, 36(1):41–50, 2003.

[71] Z. Kirli. Mobile Computation with Functions. PhD thesis, University of

Edinburgh, Laboratory for Foundations of Computer Science:Division of

Informatics, 2001.

[72] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms.

Addison Wesley, Reading, Massachusetts, vol. 1 edition, July 1997.

[73] P. Krueger and M. Livny. A Comparison of Preemptive and Non-

Preemptive Load Distributing. In 8th International Conference on Dis-

tributed Computing Systems, 1988., pages 123–130, San Jose, CA, USA,

June 1988. IEEE Xplore.

[74] D. B. Lange and M. Oshima. Mobile agents with Java: The Aglet API.

World Wide Web, 1(3):111–121, 1998.

[75] D. B. Lange and M. Oshima. Seven good reasons for mobile agents. Com-

mun. ACM, 42(3):88–89, 1999.

[76] X. Leroy and D. Doligez. The Objective Caml system release 3.07: Docu-

mentation and user’s manual. Institut National de Recherche en Informa-

tique et en Automatique, September 2003.

[77] F. Levi and D. Sangiorgi. Controlling Interference in Ambients. In Pro-

ceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 352–364, Boston, MA, USA, 2000. ACM

Press.

[78] C. Liu. Dynamic Load Balancing in Parallel and Distributed Com-

putation: A Survey, accessed: Jan 2004. http://www.cs.nmsu.edu/˜

cliu/ilp/loadbalance/survey.html.

[79] H. Liu and M. Parashar. A Component Based Programming Framework

for Autonomic Applications. In the International Conference on Autonomic

BIBLIOGRAPHY 236

Computing, pages 10–17, New York, NY, USA, 2004. IEEE Computer So-

ciety.

[80] H.-W. Loidl. Granularity in Large-Scale Parallel Functional Programming.

PhD thesis, University of Glasgow, April 1998. Department of Computing

Science.

[81] A. Merlin and G. Hains. A Generic Cost Model For Concurrent and Data-

parallel Meta-computing. In Forth Workshop on Automated Verification of

Critical Systems (AVOCS’04), Electronic Notes in Theoretical Computer

Science, London, UK, September 2004. Springer. Long preliminary version

appears as LIFO RR2004-06.

[82] P. E. Merloti. Optimization Algorithms Inspired by Biological Ants and

Swarm Behavior. Technical report, San Diego State University, Artificial

Intelligence, CS550, San Diego, June 2004.

[83] G. Michaelson. Elementary Standard ML. UCL Press, 1995.

[84] G. Michaelson and P. Trinder. Distributed and Parallel Technologies. lec-

ture notes, 2004. Heriot-Watt University.

[85] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[86] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge

University Press, 1999.

[87] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes Pt.1.

Information and Computation, 100(1):1–40, Sept 1992.

[88] D. Milojicic, F. Douglis, and R. Wheeler. Mobility: processes, computers,

and agents. ACM Press/Addison-Wesley Publishing Co., New York, NY,

USA, 1999.

[89] S. A. Mondal. Survey on Load Balancing in a LAN Environment, Jun 1999.

http://www.infy.com/knowledge-capital/thought-papers/loadbal2.pdf.

BIBLIOGRAPHY 237

[90] R. Murch. Autonomic Computing. Published by IBM Press, 1st edition,

March 2004.

[91] H. Nishikawa and P. Steenkiste. A General Architecture for Load Balanc-

ing in A Distributed-Memory Environment. In ICDCS’1993: 13th IEEE

International Conference on Distributed Computing Systems, pages 47–54,

Pittsburgh, PA, USA, May 1993. IEEE Computer Society Press.

[92] S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Pro-

ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 295–308, St. Petersburg Beach, Florida,

United States, 1996. ACM Press.

[93] B. C. Pierce and D. N. Turner. Pict: A Programming Language Based on

the Pi-Calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof,

Language and Interaction: Essays in Honour of Robin Milner, Foundations

of Computing, pages 455–494. MIT Press, 2000.

[94] Platform Computing, Inc. LSF 6.0 User’s Guide, Accessed: November

2003. http://www.platform.com/Products/Platform.LSF.Family/.

[95] P. Puschner and G. Bernat. WCET Analysis of Reusable Portable Code. In

ECRTS ’01: Proceedings of the 13th Euromicro Conference on Real-Time

Systems, page 45, Delft University of Technology, Delft, The Netherlands,

2001. IEEE Computer Society, Washington, DC, USA.

[96] M. J. Quinn. Parallel Programming in C with MPI and OpenMP, chapter

4: Message-Passing Programming, pages 92–96. McGraw Hill Professional,

2003.

[97] K. Qureshi and M. Hatanaka. An Introduction to Load Balancing for Paral-

lel Raytracing on HDC Systems. Current Science, Tutorials, 78(7):818–820,

April 2000.

[98] L. H. Ramshaw. Formalizing the Analysis of Algorithms. PhD thesis, Stan-

ford University Department of Computer Secience, 1979.

BIBLIOGRAPHY 238

[99] R. Rangaswami. A Cost Analysis for a Higher-order Parallel Programming

Model. PhD thesis, Department of Computer Science, Edinburgh Univer-

sity, 1996.

[100] Recursion Software, Inc, 2591 North Dallas Parkway, Suite 200, Frisco,

TX 75034. Voyager User Guide, May 2005. http://www.recursionsw.com/

Voyager/Voyager User Guide.pdf.

[101] B. Reistad and D. K. Gifford. Static dependent costs for estimating ex-

ecution time. In LFP ’94: Proceedings of the 1994 ACM conference on

LISP and Functional Programming, pages 65–78, Orlando, Florida, United

States, 1994. ACM Press New York, NY, USA.

[102] J. Riley and M. Hennessy. A Typed Language for Distributed Mobile Pro-

cesses (extended abstract). In Proceedings of the 25th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 378–

390, San Diego, California, United States, 1998. ACM Press.

[103] M. Rosendahl. Automatic Complexity Analysis. In FPCA ’89: Proceed-

ings of the fourth international conference on Functional programming lan-

guages and computer architecture, pages 144–156, Imperial College, London,

United Kingdom, 1989. ACM Press New York, NY, USA.

[104] S. Russell and P. Norvig, editors. Artificial Intelligence: A Modern Ap-

proach. 1995.

[105] S. Sahni. Data Structures, Algorithms, and Applications in Java. Mc Graw

Hill, University of Florida, 2000.

[106] N. Scaife. A Dual Source Parallel Architecture for Computer Vision. PhD

thesis, Deptment of Computing and Electrical Engineering, Heriot-Watt

University, May 2000.

[107] T. Schnekenburger. Load Balancing in CORBA: A Survey of Concepts,

Patterns, and Techniques. J. Supercomput., 15(2):141–161, 2000.

BIBLIOGRAPHY 239

[108] T. Sekiguchi. JavaGo, May 2006. http://homepage.mac.com/t.sekiguchi/

javago/index.html.

[109] T. Sekiguchi, H. Masuhara, and A. Yonezawa. A Simple Extension of Java

Language for Controllable Transparent Migration and Its Portable Imple-

mentation. In COORDINATION ’99: Proceedings of the Third Interna-

tional Conference on Coordination Languages and Models, pages 211–226,

London, UK, 1999. Springer-Verlag.

[110] B. A. Shirazi, A. R. Hurson, and K. M. Kavi, editors. Scheduling and Load

Balancing in Parallel and Distributed Systems. IEEE Computer Society

Press, 1995.

[111] D. B. Skillicorn. Parallelism and the Bird-Meertens Formalism. Depart-

ment of Computing and Information Science, Queen’s University, Kingston,

Ontario, 1992.

[112] D. B. Skillicorn. Foundations of Parallel Programming. Cambridge Univer-

sity Press, 1995.

[113] D. B. Skillicorn and W. Cai. A cost calculus for parallel functional pro-

gramming. J. Parallel Distrib. Comput., 28(1):65–83, 1995.

[114] H. Sreekantaswamy, S. Chanson, and A. Wagner. Performance Predic-

tion Modeling of Multicomputers. In Proceedings of the 12th International

Conference on Distributed Computing Systems, pages 278–285, Yokohama,

Japan, Jun 1992. IEEE Xplore.

[115] D. C. Submitted. CLUMPS: A Candidate Model Of Efficient, General Pur-

pose Parallel Computation. PhD thesis, Department of Computer Science,

the University of Exeter, Oct. 1994.

[116] K. P. Sycara. The Many Faces of Agents. AI Magazine, 19(2): Summer:11–

12, 1998.

BIBLIOGRAPHY 240

[117] D. Teller, P. Zimmer, and D. Hirschkoff. Using Ambients to Control Re-

sources. International Journal of Information Security, 2(3):126–144, 2004.

[118] M. M. Theimer, K. A. Lantz, and D. R. Cheriton. Preemptable Remote

Execution Facilities for the V-system. In SOSP ’85: Proceedings of the

tenth ACM symposium on Operating systems principles, pages 2–12, Orcas

Island, Washington, United States, 1985. ACM Press, New York, NY, USA.

[119] S. Thompson. The Craft of Functional Programming. Addison-Wesley,

second edition, 1999.

[120] B. Thomsen, L. Leth, S. Prasad, T.-S. Kuo, A. Kramer, F. Knabe, and

A. Giacalone. Facile Antigua Release – Programming Guide. Technical Re-

port ECRC-93-20, European Computer-Industry Research Centre, Munich,

Germany, 1993.

[121] H. W. To. Optimising the Parallel Behaviour of Combinations of Program

Components. PhD thesis, University of London Imperial College of Science,

Technology and Medicine Department of Computing, 1995.

[122] P. T. Tosic and G. A. Agha. Towards a Hierarchical Taxonomy of Au-

tonomous Agents. In IEEE SMC’2004: International Conference on Sys-

tems, Man and Cybernetics, pages 3421–3426, Hague, The Netherlands,

October 2004. IEEE Xplore.

[123] M. Vancea and A. Vancea. A Cost Model for the AND Parallel Execution

of Logic Programs, 2002. STUDIA UNIV. BABES-BOLYAI, INFORMAT-

ICA, Volume XLVII, Number 2: 67-74.

[124] P. Wadler. Strictness Analysis Aids Time Analysis. In POPL ’88: Pro-

ceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 119–132, San Diego, California, United

States, 1988. ACM Press, New York, USA.

[125] B. Wegbreit. Mechanical Program Analysis. Commun. ACM, 18(9):528–

539, 1975.

BIBLIOGRAPHY 241

[126] B. Wegbreit. Verifying program performance. J. ACM, 23(4):691–699, 1976.

[127] T. Wheeler. Voyager Architecture Best Practices. Technical report, Recur-

sion Software, March 2005. http://www.recursionsw.com/Voyager/2005-

03-31-Voyager Architecture Best Practices.pdf.

[128] J. E. White. Mobile Agents. In J. Bradshaw, editor, Software Agents, pages

437–472, Menlo Park, CA, 1997. AAAI/MIT Press.

[129] Wikipedia. Mean absolute percentage error. December 2006, Accessed:

March 2006. http://en.wikipedia.org/wiki/Mean Absolute Percentage

Error.

[130] Wikipedia. Continuation. February 2007, Accessed: March 2007.

http://en.wikipedia.org/wiki/Continuation.

[131] P. Wojciechowski and P. Sewell. Nomadic Pict: Language and Infras-

tructure Design for Mobile Agents. In First International Symposium on

Agent Systems and Applications (ASA’99)/Third International Symposium

on Mobile Agents (MA’99), pages 42–52, Palm Springs, CA, USA, 2000.

IEEE Educational Activities Department.

[132] P. T. Wojciechowski. Nomadic Pict: Language and Infrastructure Design

for Mobile Computation. PhD thesis, Wolfson College, University of Cam-

bridge, April 2000.

[133] M. Wooldridge. Agent-Based Software Engineering. IEE Proceedings Soft-

ware Engineering, 144(1):26–37, 1997.

[134] M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Prac-

tice. Knowledge Engineering Review, 10(2):115–152, June 1995.

[135] J. Xu. Comparative Evaluation of a Parallel Genetic Algorithm. Master’s

thesis, Department of Computing and Electrical Engineering, Heriot-Watt

University, September 2002.

BIBLIOGRAPHY 242

[136] S. Zhou, X. Zheng, J. Wang, and P. Delisle. Utopia: a Load Sharing

Facility for Large, Heterogeneous Distributed Computer Systems. Software

- Practice and Experience, 23(12):1305–1336, 1993.

[137] A. Y. Zomaya and Y.-H. Teh. Observations on Using Genetic Algorithms for

Dynamic Load-Balancing. IEEE Trans. Parallel Distrib. Syst., 12(9):899–

911, 2001.

