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Abstract. This article proposes experiments on decision making based
on the “Winter Survival Task”, one of the scenarios most commonly
applied in behavioral and psychological studies. The goal of the Task
is to identify, out of a predefined list of 12 items, those that are most
likely to increase the chances of survival after the crash of a plane in a
polar area. In our experiments, 60 pairs of unacquainted individuals (120
subjects in total) negotiate a common choice of the items to be retained
after that each subject has performed the task individually. The results of
the negotiations are analyzed in causal terms and show that the choices
made by the subjects individually act as a causal factor with respect to
the outcome of the negotiation.

1 Introduction

In the last years, automatic analysis of human behavior has attracted a large deal
of attention in the computing community (see [1,2] for extensive surveys). The
efforts focused on two main directions, namely (i) the synthesis of human behav-
ior - in particular when it comes to social and affective phenomena that make
embodied conversational agents believable, and (ii) the automatic understanding
of human communication dynamics, with particular attention to the prediction
of behavioral outcomes and the inference of socially relevant information from
nonverbal communication.

Current approaches tend to adopt a purely computational perspective, i.e.
they do not try to understand the phenomena they synthesize or analyze, but
simply to maximize performance metrics like the recognition rate (percentage
of times an approach makes the correct prediction) or the Mean Opinion Score
(average appreciation score assigned by users). Such a perspective is certainly
effective, but the interdisciplinary collaboration with human sciences, inevitable
when dealing with human behavior, shows that no technology can be effective in
the field without understanding human-human and human-machine interactions
in terms of causes and effects [3,4,5].

The statistical literature has studied extensively approaches aimed at learning
cause-effect relationships from data (see [6] for an extensive survey). However,
these approaches were largely neglected in the computing community, in part
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Fig. 1. The plot shows the percentage of calls where there was a disagreement on each
item

because they require the formulation of untested causal assumptions about the
phenomena under analysis, in part because they adopt notations and terminology
different from those commonly used in the machine intelligence community [7].
This paper shows that overcoming these two barriers can be beneficial to the
computational analysis of social interactions from at least two points of view.
The first is that it makes social phenomena more predictable and, hence, easier
to analyze automatically; the second is that it allows a better understanding of
the data being modeled.

2 The Experiment

The experiment adopts the “Winter Survival Task”, a scenario where partici-
pants must identify, out of a list of 12 predefined items, those that maximize
the chances of survival after an emergency landing in Northern Canada (in the
middle of the winter). The main advantage of the scenario, often used in psy-
chological and behavioral experiments, is that the average subject is unlikely
to have experienced a plane crash or to know survival techniques suitable for
a winter beyond the Polar Circle. Hence, the outcomes of the experiment are
likely to depend on social and psychological phenomena during the interactions
and not on skills and knowledge the participants have before and independently
of the experiment.

In this work, the participants earn three British Pounds each time they select
a correct item (there is a gold standard for the task), but loose the same amount
of money when they select a wrong one. In this way, whenever the subjects
disagree about a certain item, they are motivated to persuade their interlocutor.
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2.1 Experimental Protocol

The task was performed by 60 pairs of fully unacquainted subjects that have
never met before the experiment (120 subjects in total). For each pair, the pro-
tocol included the following steps:

– The two subjects are accompanied to different rooms without meeting or
crossing one another.

– Once in their room, the subjects receive a mobile phone (same model for
all participants) and the documentation accompanying the experiment (sce-
nario, questionnaires, etc.), including the list of the 12 items at the core of
the Winter Survival Task.

– Before starting the call, the subjects fill a form where they must write a
decision (“Yes” or “No”) for each item of the list. This makes it possible to
know, for each item, what is the decision made by each subject before any
interaction with their counterpart.

– One of the two subjects, selected randomly, calls the other and starts the
discussion item per item.

– During the call, the subjects discuss item by item and negotiate a common
solution (“Yes” or “No”) that is the final outcome of the task.

At the end of the call, it is possible to know what are the items on which the
participants disagree and, most importantly, what are the subjects that persuade
their interlocutors in case of disagreement, i.e. the subjects that convince others
to adopt their initial decision in case of disagreement. Figure 1 shows, for each
item, the percentage of calls where discussion was needed to reach a common
decision. While some items (e.g., the clothing) were discussed only a few times,
others were frequently debated between participants.

3 Causal Analysis

The main question behind the experiment is what are the causal factors that
increase the chances of persuading others. In other words, whether the decision
about a given item is random (which is what the scenario seems to suggest),
it depends on the characteristics of the subjects, or on their choice prior to
the discussion. The next sections show how the problem was modeled and the
resulting findings.

3.1 Modeling

The problem can be modeled with a set X of observable binary variables:

Role R: R ∈ {0, 1}
Gender G: G ∈ {0, 1}
Initial Choice Y: Y ∈ {0, 1}
Result W: W ∈ {0, 1}
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The variable R stands for the role a participant had in the conversation in terms
of “caller”, the subjects who makes the phone call, or “receiver”, the subject
who receives the call (associated to 1 and 0, respectively). The variable G cor-
responds to the gender of the participant, with 0 and 1 for male and female,
respectively. The variable Y accounts for the initial decision of the participants,
with 0 and 1 corresponding to “No” and “Yes”, respectively. Finally, the vari-
able W accounts for whether the subject persuades the other person (W = 1)
or not (W = 0).

The aim of this work is to make statements about the causal relationship be-
tween Y and W . In particular, we would like to estimate the following quantities:

Post-intervention distribution: The post-intervention distribution estimates
the probability of a subject persuading or not the other person given that
the “treatment” Y = 1 is applied (i.e., given that the initial decision of the
subject is “Yes”):

p(W |do(Y = 1))

where do(Y = 1) is the “do” operator [8] and expresses the probability of an
effect given an “action” on the model (the action will be, for our purposes,
taking an initial choice Y ). It is important to point out that this quantity
has a different and stronger meaning than the probability of an effect given
an “observation”, which is the usual conditional probability.

Counterfactuals: The probabilities of a change of effect, given a change of
treatment. These can be expressed in terms of the following distributions:

PN =
p(W = 1)− p(W = 1|do(Y = 0))

p(W = 1, Y = 1)

PS =
p(W = 1|do(Y = 1))− p(W = 1)

p(W = 0, Y = 0)

PNS = p(W = 1|do(Y = 1))− p(W = 1|do(Y = 0))

that account, respectively, for the probability of Y being a necessary cause
of W , the probability of Y being a sufficient cause of W , and the probability
of Y being a necessary and sufficient cause of W .

Within the framework of causal inference, causal dependencies between variables
are encoded by means of Direct Acyclic Graphs (DAG) [8]. Therefore, DAGs
represent assumptions on the causal relationships between variables that can
then be inferred after data are observed. Once the DAG is built, the first step
to undertake in order estimate causal effects and counterfactuals is to verify
whether these can actually be computed: this problem is called “identifiability”
[8]. At the core of identifiability in DAG is the d-separation criterion, by which it
is possible to derive conditional independence relationships between variables. In
our experiments, d-separation was checked using TETRAD, a publicly available
software package dealing with causal models [9].
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Fig. 2. The picture shows the Directed Acyclic Graph corresponding to the causal
assumptions behind the experiments of this work

3.2 The Causal Model

This section shows the causal model used for the experiments of this work. The
corresponding DAG is depicted in Figure 2 and the underlying causal assump-
tions are as follows:

– An unobserved variable U1 influences the role of the participants;
– Role and gender influence the initial decision of the subjects and the result

of the discussion;
– An unobserved variable U2 influences the initial choice;
– The initial choice influences the result of the discussion;
– An unobserved variable U3 influences the result of the discussion.

Unobserved variables are assumed to be deterministically related to their chil-
dren and mutually independent. According to the graph (and its underlying
assumptions), the joint probability distribution of the four observed variables is
as follows:

p(X) = p(R) p(G) p(Y |G,R) p(W |G, Y,R) . (1)

Table 1. The table reports the Maximum Likelihood estimate of the joint probability
distribution of X as obtained from the data observed in the 60 conversations used in
the experiments

Y = 0 Y = 1

G = 0 0.036 0.021
G = 1 0.026 0.016

Y = 0 Y = 1

G = 0 0.019 0.028
G = 1 0.038 0.028

(R = 0,W = 0) (R = 1,W = 0)

Y = 0 Y = 1

G = 0 0.071 0.123
G = 1 0.075 0.134

Y = 0 Y = 1

G = 0 0.062 0.141
G = 1 0.064 0.120

(R = 0,W = 1) (R = 1,W = 1)
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3.3 Post-Intervention Distribution

The model is Markovian because the associated graph is undirected and acyclic
and the unobserved variables U1, U2, U3 are mutually independent. This guaran-
tees the causal effect p(W |do(Y )) to be identifiable. Performing an “intervention”
on variable Y , that is, using the do-operator do(Y = 1), the post-intervention
distribution is:

p(W,R,G|do(Y = 1)) = p(R) p(G) p(W |Y = 1, R,G) .

Therefore, the following holds:

p(W = 1|do(Y = 1)) =
∑

g,r∈{0,1}
p(r) p(g) p(W = 1|Y = 1, r, g) = 0.849

p(W = 1|do(Y = 0)) =
∑

g,r∈{0,1}
p(r) p(g) p(W = 1|Y = 0, r, g) = 0.700 .

The difference between the two probabilities is:

p(W = 1|do(Y = 1))− p(W = 1|do(Y = 0)) = 0.149

and it expresses the difference between the effects of two different treatments.
Note that the quantity above has also a counterfactual interpretation, as it is
the probability of Y being a necessary and sufficient cause of W (PNS). A
binomial test proportion with null hypothesis for p(W = 1|do(Y = 1)) and
p(W = 1|do(Y = 0)) to be binomially distributed with the same success proba-
bility shows that the observed difference is statistically significant with p-value
lower than 2 · 10−4. This suggests that the value of Y acts as a causal factor
and starting from an initial positive decision significantly increases the chances
of persuading the counterpart.

3.4 Counterfactuals

The observed data show that the following relationship holds for the interactions
used in the experiments:

p(W = 1|do(Y = 1)) ≥ p(W = 1) ≥ p(W = 1|do(Y = 0))

The relation above corresponds to the monotonicity of W relative to Y and
it guarantees the identifiability of the three counterfactuals PN, PS, PNS [8].
According to the data, the values of the counterfactuals are:

PN = 0.171

PS = 0.503

The values are particularly interesting as they show the probability of obtaining
a different result were the initial choices different. In particular, PN gives the
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probability that changing the initial choice from Y = 1 to Y = 0 would have
changed the result from W = 1 to W = 0. Conversely, PS gives the probability
that changing the initial choice from Y = 0 to Y = 1 would have changed the
result from W = 0 to W = 1. The latter represents the probability of Y being
a sufficient cause of W , and suggests the interesting conclusion that in half of
the cases where the initial choice Y = 0 led to W = 0, a different initial choice
Y = 1 would have turn the result to W = 1.

4 Conclusions

This paper has presented a causal analysis of the decision-making behavior of
individuals involved in the “Winter Survival Task”. The experiments have in-
volved 120 subjects and show that, when it comes to binary decisions about the
acceptance of an item in the task, the initial choice of a subject acts as a causal
factor for the final outcome of the discussion. In particular, subjects that start
with an initial positive decision (“the item should be retained”) have a proba-
bility of persuading others three times higher than the subjects starting with a
negative decision (“the item should not be retained”).

While being relatively simple, the experiments involve a large number of sub-
jects that allow one to reliably estimate the causal effects. The main difference
with respect to the application of traditional, associative statistics is that the
estimated probabilities do not simply tell how frequently two or more variables
take certain values, but what is the probability that one or more variables cause
the value of one or more other variables. In this respect, the application promises
to be fruitful not only from a technological point of view, making the prediction
of interaction outcomes easier, but also from a scientific point of view, providing
explanations about the observed results.

In the case of these experiments, all observations of interest could be modeled
with binary variables, but in real-world scenarios, variables of interest are more
likely to be continuous. This does not represent a major problem because all
equations used in this work are independent of the actual expression used to
estimate the probabilities. In other words, the tables used in these experiments
can be replaced by distributions as complex as necessary without changing model
assumptions, identifiability considerations, and formulas estimating the post-
intervention probabilities or counterfactuals.

Future work will focus on those cases where causal modeling can actually
make a major difference with respect to associative statistics, i.e. the analysis of
non-experimental data. Those are data where conditions cannot be manipulated
(as it typically happens in naturalistic settings for human-human and human-
machine interactions), and hence, major effects might be missed by associative
statistics simply because they are less frequent.



344 M. Campo et al.

Acknowledgements. The Authors wish to acknowledge the support from the
College of Science and Engineering of the University of Glasgow, the FP7 funded
European Network of Excellence SSPNet, the Swiss National Center for Com-
petence in Research on Interactive Multimodal Information Management (IM2)
and the project “Human Emotional Interaction” funded by Finnish Ministry for
the Technological Innovation (TEKES).

References

1. Vinciarelli, A., Pantic, M., Bourlard, H.: Social Signal Processing: Survey of an
emerging domain. Image and Vision Computing Journal 27(12), 1743–1759 (2009)

2. Vinciarelli, A., Pantic, M., Heylen, D., Pelachaud, C., Poggi, I., DÉrrico, F.,
Schroeder, M.: Bridging the gap between social animal and unsocial machine: A
survey of social signal processing. IEEE Transactions on Affective Computing 3(1),
69–87 (2012)

3. Brunet, P., Cowie, R.: Towards a conceptual framework of research on social signal
processing. Journal on Multimodal User Interfaces (to appear, 2012)

4. Mehu, M., Scherer, K.: A psycho-ethological approach to social signal processing.
Cognitive Processing 13(2), 397–414 (2012)
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