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Abstract—This paper presents a system for the offline recognition of large vocabulary unconstrained handwritten texts. The only

assumption made about the data is that it is written in English. This allows the application of Statistical Language Models in order to

improve the performance of our system. Several experiments have been performed using both single and multiple writer data. Lexica

of variable size (from 10,000 to 50,000 words) have been used. The use of language models is shown to improve the accuracy of the

system (when the lexicon contains 50,000 words, the error rate is reduced by � 50 percent for single writer data and by � 25 percent

for multiple writer data). Our approach is described in detail and compared with other methods presented in the literature to deal with

the same problem. An experimental setup to correctly deal with unconstrained text recognition is proposed.

Index Terms—Offline cursive handwriting recognition, statistical language models, N-grams, continuous density Hidden Markov

Models.

�

1 INTRODUCTION

OFFLINE cursive handwriting recognition systems pre-
sented in the literature deal, almost without exception,

with single words [1], [2], [3]. This happened, in our opinion,
because research focused on application domains (hand-
written address recognition and bank check reading) where
only single words are involved.Moreover, only recently data
sets allowing experiments on the recognition of texts were
made available [4], [5], [6]. In a few works (see Section 2),
postal addresses or legal amounts have been recognized as
phrases. The solution of such problems relies on important
information coming from the application environment (zip
code, courtesy amount, etc.).Moreover, the address lines and
the courtesy amounts have a structure that is not very
variable. In both cases, the data is made of a few recurring
elements that change at most their order in the phrase. The
lexica involved are relatively small (20-30 words for bank
checks and 10-1,000 for address lines) and, even more
important, are closed. This means that all words appearing
in the data are represented in the lexicon.

This work presents an offline cursive recognition system
dealing with large vocabulary unconstrained handwritten
texts. This application is different from the above-mentioned
onesunder several aspects. Thevariability in the texts ismuch
higher in terms of phrase structure. The only hypothesis that
can bemade about anunconstrained text is that it iswritten in
a certain language. No other constraints can be applied to
make the problemeasier. Anunconstrained text canhave any

kind of content and this makes it very difficult to select a
lexicon. The dictionary must be extracted from data inde-
pendent from the test set and, regardless of its size, it will
never contain all the words represented in the data to be
recognized. In other words, the lexicon cannot be closed and
the data contains Out Of Vocabularywords (OOVs).

The texts we recognize are the transcription of documents
belonging to corpora assumed to reproduce the statistics of
average English. This allows us to apply Statistical Language
Models (SLMs) in order to improve the performance of our
system[7].WeusedN-grammodels (themost successful SLM
applied until now [8]) of order 1, 2, and 3 (called unigrams,
bigrams, and trigrams, respectively).

Previous works typically preferred the application of
syntax-based postprocessing in order to include linguistic
knowledge in the recognition. This approach has the
important limit of separating the recognition of handwritten
data from the application of language modeling. For this
reason, this work applies a different approach where hand-
writing recognition and language modeling are tightly
integrated and performed at the same time. This represents
an important element of novelty with respect to previous
works in the literature (see Section 2) and has several
advantages (see Section 5.3).

When passing from single word to text line recognition,
several changes in the experimental setup are necessary. The
most important one concerns the selection of the lexicon (see
above). In order to deal with unconstrained texts, the lexicon
must be large enough to have a high probability of containing
thewords appearing in the text.On theotherhand, if there are
too many dictionary entries, the recognition problem
becomes difficult. A good trade off between these two effects
must be found.

Another important difference is in the way the perfor-
manceof thesystemismeasured. Insinglewordrecognition,a
sample is correctly or incorrectly recognized (there is a single
kind of error). In text recognition, there are several kinds of
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error. A word can be not only misclassified, but also deleted.
Moreover, words not appearing in the text can be inserted
during the decoding. This leads to different performance
metrics thatmustbeselecteddependingonthetaskthesystem
is used for. Several experiments (changing the size of the
lexicon from 10,000 to 50,000 and the order of the language
model from 1 to 3) were performed over both single and
multiple writer data. Part of the data sets used are publicly
available in order to allow a comparison with other systems.

To our knowledge, the recognition of unconstrained texts
has been addressed in very fewworks [9], [10]. The approach
used in [9] is significantlydifferent fromours (seeSection2 for
more details). The system described in [10] does not apply
trigrams and uses a closed vocabulary which leads to an
overestimation of the performance. Part of the results
presented in this work have been shown in [11].

The rest of this paper is organized as follows: Section 2
gives an overview of the works dealing with word
sentences, Section 3 provides the statistical foundations of
our approach, Section 4 presents SLMs and N-gram models,
Section 5 describes the recognition system used in our work,
Section 6 reports experiments and results obtained, and
Section 7 draws some conclusions.

2 PREVIOUS WORK

This section presents a survey of the works dedicated to the
recognition of handwritten word sequences or phrases. They
can be grouped into three classes depending on the kind of
data involved: postal addresses, courtesy amounts, and
unconstrained texts.

The recognition of legal amounts on bank checks involves
small lexica (20-30 words) and a very low variability. Even if
the amounts change, their structure is always the same.
Moreover, the courtesy amount (amount written in digits)
can be used to support and validate the recognition. In most
cases, the recognition systems simply transcribe the different
parts of the amount separately (e.g., three hundred fifty-five),
but, in a fewworks, the fact that the amount canbe considered
as a phrase is used. In [12], [13], the amount is first segmented
into single words that are recognized separately, then a
syntactical postprocessing is applied in order to discard
solutions that arenotplausible froma linguistic point of view.
Such an approach is effective in this problem because the
grammars modeling the amounts are relatively simple. The
use of the same approach in problems involving more
variable data (especially unconstrained texts) is less effective
or requires theuse of tags grouping thewords into fewclasses
(e.g., verbs, adjectives, etc.).

The goal of postal address recognition is the selection of a
delivery point, i.e., of a postal plantwhere a certainmail piece
must be routed in order to reach its recipient. An address line
contains several elements: a topographic name (e.g., street or
road), a street name, and a number. Different versions of the
same element (e.g., Street, St., and Str.) and different ordering
of the elements are the main sources of variability. On the
other hand, only the street name is relevant to the delivery
point selection. This is thus the only information that needs to
be correctly transcribed. Two important constraints help to
solve the problem. The first is that the number of elements in
an address line is very limited (three or four, rarelymore) and
that the same elements are always present. The second is that
the dictionaries are closed, i.e., no OOVs are expected.

Several approaches have beenproposed to the problem. In
[14], [15], [16], a systemthat segments the lines intowords and
then recognizes them separately is presented. In thisway, the
phrase recognition is reduced to a sequence of single word
recognition steps. The main limit of the approach is the
segmentation of a line into words. This is a difficult process
and requires a large effort. Moreover, the segmentation
process is not perfect and represents an important source of
error: The method described in [15] incorrectly segments
around 10 percent of the lines.

An alternative approach is proposed in [17], [18], where a
keyword spotting technique is used to detect the name of the
street. The important advantage of such an approach is that
no segmentation of the line into words is required. The
keyword spotting step obtains, in fact, the segmentation as a
byproduct. The use of keyword spotting is possible because it
is not necessary to recognize other words than the street
name. The topographic name can be recognized only to apply
lexicon reduction mechanisms: Once the topographic name
is recognized (e.g., Road), all street names associated with
different topographic entities (Street, Avenue, etc.) are
discarded.

Few works were dedicated to the recognition of uncon-
strained texts. Such a problem assumes that no hypothesis
can be made about the content of the data except for the fact
that they are written in a certain language. This allows the
application of language models. Also, in this case, several
approaches have been proposed to solve the problem.

An approach based on segmentation and recognition of
single words is proposed in [19], [20], [21]. After the words of
a line have been recognized, a linguistic postprocessing is
applied in order to use context information. The words are
tagged following gramatical categories and a model of the
transition betweendifferent categories is used to reweight the
recognition scores. Since the segmentation is not a perfect
process, several segmentation hypotheses must be consid-
ered. The segmentation poses the same problems described
above and it is an important source of error. It is not clear in
the cited works how the lexica were selected. It is especially
important to know whether the lexicon is closed (no OOVs
expected) or not. A closed dictionary is a simplifying
condition, but is a strong constraint on the texts that can be
recognized.Moreover, in order to have a closed dictionary, it
is necessary to have information about the test set when
building the system. This is not realistic when working on
unconstrained texts.

An approach based on HMMs and N-grams has been
proposed in [10]. This approach has the important advantage
of avoiding the segmentation (which is a byproduct of the
recognition). Themain limit of this work is the use of a closed
vocabulary of small size (less than 10,000words). The lexicon
has been extracted from the data used to test the system and
this is not correct because no information coming from such a
set should be used when building the system. Moreover, the
resulting system is overfitted to the test set, leading to an
overestimation of the performance. In such a configuration,
the system is also not robust with respect to a change of data.
When moving to data having a different topic, most of the
words will not be represented in the lexicon and the
recognition performance will be dramatically decreased.
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3 STATISTICAL FOUNDATIONS

This section describes the problem of handwritten text
recognition from a statistical point of view. The handwritten
pages are split into lines before recognition and each line is
decoded separately. Since the system is supposed to
recognize unconstrained texts, no information is available
about the content of thedata. Theonlyhypothesismadeabout
the lines is that they are written in English. They are thus
supposed to respect, on average, the statistics of any fragment
of English text. The above aspects will be shown to have an
important influence on the recognition results.

When the recognition is performed offline, only the image
of the handwritten data is available. The image is converted
into a sequence O ¼ ðo1; o2; . . . ; omÞ of observation vectors
and the recognition task can be thought of as finding a word
sequence ŴW maximizing the a posteriori probability:

ŴW ¼ argmax
W

pðW jOÞ; ð1Þ

where W ¼ ðw1; w2; . . . ; wnÞ is a sequence of words belong-
ing to a fixed vocabulary V . By applying Bayes theorem, (1)
can be rewritten as follows:

ŴW ¼ argmax
W

pðOjWÞpðWÞ
pðOÞ ð2Þ

and, since O is constant during recognition:

ŴW ¼ argmax
W

pðOjWÞpðWÞ: ð3Þ

The right side of (3) shows the role of the different sources
of information in the recognition problem. The term pðOjWÞ
is the probability of the observation sequence O being
generated by a model of sentence W . This probability is
estimated with HMMs.

IfW is composedofnwordsandthesizeof thedictionary is
jV j, then the number of possibleword sequences is jV jn. Even
for small values of jV j and n, this amounts to a huge number,
making the task of the recognizer difficult. Moreover, n is not
known inadvance andsuchanamountmust thusbe summed
over all possible values. The term pðWÞ provides an a priori
probability of the word sequence W being written and it is
often estimated using a Statistical Language Model. A good
SLMcan significantly constrain the search space so that all the
sentences that are unlikely to be written (from a linguistic
point of view) have a low probability.

In the singleword recognition problem, pðWÞ is typically a
uniform distribution over the words of the lexicon. This
means that the recognition relies only on the HMMs and (3)
corresponds to:

ŵw ¼ argmax
w

pðOjwÞ; ð4Þ

where w is a word belonging to the lexicon. In the next
section, SLMs and N-gram models, in particular, are
described in detail.

4 STATISTICAL LANGUAGE MODELS

Statistical Language Modeling involves attempts to capture
regularities of natural language in order to improve the
performance of various natural language applications, e.g.,
Information Retrieval, Machine Translation, and Document
Classification [7]. This section is focused on the use of SLMs

in our specific problem, i.e., the decoding of handwritten
texts. As shown in (3), the SLM is supposed to give the
a priori probability of a certain sentence to be written [8],
[22]. If W contains n words, pðWÞ can be decomposed as
follows:

pðWÞ ¼
Yn
i¼1

pðwijwi�1
1 Þ ¼

Yn
i¼1

pðwijhiÞ; ð5Þ

where wi�1
1 ¼ ðw1; . . . ; wi�1Þ and hi is referred to as history of

word i.
The fact that the probability of word wi being written

depends only on the previous words of the sentence makes
decomposition in (5) especially suitable for Viterbi decoding
[23]. However, (5) poses an important problem: For a
vocabulary of reasonable dimension (in the order of tens of
thousands), most of the possible histories appear too few
times or even never in a reasonable training set. This does not
allow the application of a statistical approach. The solution to
such a problem is to group the histories into a tractable
number of equivalence classes. Equation (5) can then be
rewritten as follows:

pðWÞ ¼
Yn
i¼1

pðwijwi�1
1 Þ ¼

Yn
i¼1

pðwij�ðhiÞÞ; ð6Þ

where � : fhg ! C associates a history h to an equivalence
class belonging to a finite set C.

The nature of �ðhÞ allows one to distinguish between the
different SLM techniques presented in the literature (see [7]
for an extensive survey). In most cases, �ðhÞ incorporates
some linguistic knowledge. Attempts were made to replace
the words wi with corresponding classes CðwiÞ obtained
through word clustering. Decision Trees, Classification and
Regression Trees, and different kinds of grammars were
applied.TheN-gramshavean important advantage:Theycan
be easily included in a decoding tehnique that integrates
recognition and language modeling (see Section 5.3). The
integration of other language models into decoding algo-
rithms has been tried in speech recognition and it leads to
poor performance improvementswith respect to the increase
of complexity it requires [8]. For this reason, N-grams are
preferred in this work.

In the next three sections, N-gram models, smoothing
techniques, and an SLM performance measure are analyzed.

4.1 N-gram Language Models

An N-gram model makes an equivalence class out of all the
histories ending with the same N � 1 words:

pðW Þ ¼
Yn
i¼1

pðwijwi�1
i�Nþ1Þ; ð7Þ

where N is called the order of the model. Even for low
orders, the number of equivalence classes quickly becomes
intractable. In practice, only unigrams, bigrams, and
trigrams are used. The probabilities pðwijwi�1

i�Nþ1Þ are
estimated by simply counting the number of times a certain
sequence of N words appears in a corpus of training texts:

pðwijwi�1
i�Nþ1Þ ¼

Cðwi
i�Nþ1Þ

Cðwi�1
i�Nþ1Þ

; ð8Þ

where Cð:Þ is the number of times the argument is counted.
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This corresponds to a Maximum Likelihood (ML) estima-
tion of the probabilities pðwijwi�1

i�Nþ1Þ. In other words, the
model resulting from (8) maximizes the likelihood of the
training set of the corpusused toobtain theLanguageModels.
This leaves an important problem open: All the sequences of
N words not appearing in the training text have zero
probability. Moreover, many N-grams appear too few times
(a frequence threshold a is set empirically) to allow a good
statistical estimation of their probability pðwijwi�1

i�Nþ1Þ. This is
problematic because, in the case of unconstrained texts, no
corpus is wide enough to contain all possible N-grams.
Evaluations performed over a patent description data set
(around 1.8 million words) showed that, when splitting the
data into training (1.5millionwords) and test sets (0.3million
words), only 77 percent of the trigrams represented in the
training setwere also represented in the test set [22] (although
the database is homogeneous). In order to solve this problem,
themodels are smoothed, i.e., the probabilitymass estimated
over N-grams appearing more than a times with (8) is
redistributed across all possible sequences of N words. In
such away, amodel trained over a certain corpus can be used
for any other text, but N-grams that are not possible from a
linguistic point of view will also have nonzero probability.
This is the main limitation ofN-grammodels.

4.2 Smoothing

Smoothing is supposed to redistribute the probability mass
estimated withML across all possible sequences ofN words.
Many smoothing techniques have been proposed in the
literature, but none of them seems to be systematically
superior to the others [24]. In this work, we selected a
combination of discounting and backing-off following the
schema proposed in [25].

Discounting is necessary because ML overestimates the
frequences of the represented N-grams and correspondingly
underestimates the frequences of the nonrepresented ones.
After discounting is applied, the frequence r of a certain
word sequence is changed to r� according to:

r� ¼ nrþ1

nr
ðrþ 1Þ; ð9Þ

where nr is the number of events with frequence r. This is
calledGood-Turing discounting (originally proposed in [26])
and is based on the inverse proportionality between r and nr.
This property of many natural phenomena is known as Zipf
Lawand, in the case of texts,means thatwords appearing few
times are more numerous than those appearing many times.
The Good-Turing algorithm was selected because, being
based on a natural law, it makes the discounting strategy
more robust with respect to a change of data. Several
discounting strategies are available in the literature and their
performances are essentially equivalent [24].

The amount of frequence r� r� (summed up over all
events) is redistributed across all possible N-grams not
detected (or appearing less than a certain number of times)
in the training text. In the most simple case, the redistribu-
tion is performed uniformly. Such a solution is not optimal
because it does not take into account information present in
the training corpus. For this reason, the redistribution is
typically made through the so-called back-off. The trigram
version of the back-off can be represented as follows:

pðwijwi�1
i�2Þ ¼

pðwijwi�1
i�2Þ if Cðwi

i�2Þ > a
�1pðwijwi�1Þ if Cðwi

i�2Þ � a
and Cðwi

i�1Þ > b
�2pðwiÞ otherwise:

8>><
>>:

ð10Þ

This means that, when an N-gram is not represented, lower
order models are used. The constants a and b must be set
empirically. The coefficients�i ensure that theprobabilities of
the nonrepresented trigrams sum up to the amount of
frequence to be redistributed. By using bigram and trigram
statistics, theprobability isno longer redistributeduniformly,
but according to the information extracted from the corpus.

4.3 Perplexity

The perplexity (PP) is the measure most commonly used to
evaluate the performance of a language model. The PP is
estimated as follows:

PP ¼ 2H; ð11Þ

where H ¼ 1
n

P
i log pðwijhiÞ is an estimate of the entropy of

themodel (measured over a text containing nwords). The PP
is the average branching factor of the model, i.e., the average
number of words having a probability significantly higher
than zero at each step of the decoding [8]. In a problemwhere
all the words have the same probability of being written, the
PP corresponds to the size of the lexicon. For this reason, the
PP is often interpreted as the dictionary size in the case of
single word recognition. Such interpretations show that the
lower the perplexity, the better the model.

Unfortunately, the relationship between the PP of an
SLM and the recognition rate of the system using it cannot
be modeled clearly [27]. A decrease of the PP does not
necessarily lead to a better recognition rate for a system (it
can even have negative effects) and vice versa.

5 THE RECOGNITION SYSTEM

This section presents the recognition system used in this
paper. The recognizer was originally developed to work on
single words [28], [29], but no modifications were necessary
to use it for handwritten texts. The system is based on a
sliding window approach: A fixed width window shifts
column by column from left to right and, at each position, a
feature vector is extracted. The sequence of vectors so
obtained is modeled with continuous density Hidden
Markov Models. In the next two sections, the single steps
of the recognition process are shown in detail.

5.1 Normalization and Feature Extraction

The first step of the recognition is the normalization, i.e., the
removal of slant (the angle between the vertical direction
and the direction of the strokes supposed to be vertical in an
ideal model of handwriting) and slope (the angle between
the horizontal direction and the direction of the line the
words are aligned on). The normalization technique we
applied is described in detail in [30].

The slope removal method gives first a rough approxima-
tion of the core region. The stroke minima closer to its lower
limit are used to fit the baseline, i.e., the line on which the
words are aligned. The image is rotated until the estimated
baseline is horizontal and the resulting image is desloped.
The deslanting is based on the hypothesis that, when the
word is deslanted, the number of columns containing a
continuous stroke is maximum [30]. A shear transform
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corresponding to all angles in a reasonable interval is applied.
The following histogram is collected from each shear
transformed image:

H�ðiÞ ¼
vðiÞ
�yðiÞ ; ð12Þ

where vðiÞ is the vertical density in column i (number of
foreground pixels in column i), and �yðiÞ is the distance
between the highest and lowest pixel in the same column.
When the column contains a continuous stroke, H�ðiÞ ¼ 1,
otherwise H�ðiÞ 2 ½0; 1½. The deslantedness of the shear
transformed image corresponding to angle � is measured
with the following function:

Sð�Þ ¼
X

fi:H�ðiÞ¼1g
vðiÞ2: ð13Þ

The use of vðiÞ2 rather than vðiÞ enhances the contribution of
the longer strokes. The slant angle is estimated as follows:

�� ¼ argmax
�

Sð�Þ: ð14Þ

The normalization method described above has the impor-
tant advantage of avoiding the use of any parameter to be set
manually. This allows one to avoid the heavy experimental
effort needed to find theoptimalparameter set.Moreover, the
method is shown to improve the recognition rate of the
system with respect to more traditional techniques [30].

After the normalization, a window shifts column by
column from left to right and, at each position, a feature
vector is extracted. This approach avoids the segmentation
(a difficult and error prone process) and allows the system
to convert the text image into a sequence of vectors. The
feature extraction is described in [28], [29]: The area in the
window content actually containing pixels is first isolated,
then partitioned into cells regularly arranged in a 4� 4 grid.
The number ni of foreground pixels in each cell is counted
and a feature vector is obtained as follows:

f ¼ n1

N
;
n2

N
; . . . ;

n16

N

� �
; ð15Þ

where N is the total number of foreground pixels in the
window. This feature extraction method is based on
averaging rather than on exact reconstruction of the pattern
in order to be more robust with respect to noise and cursive
variability.

5.2 Recognition

HMMs are probability density functions over the space of
vector sequences. This makes them suitable to model the
feature vectors extracted from the handwritten data. We use
continuous density HMMs (for a detailed introduction, see
[8], [31]) where the emission probability is expressed with
mixtures of Gaussians. A different model is obtained for
each character and models for strings can be obtained by
concatenating single character models.

Several approximations are applied: The first one is that,
although certain characters are longer than others, all the
letter models have the same number S of states and G of
Gaussians per state. The parameters S and G are selected
through a validation procedure described in Section 6.3. The
second one is that the samemodel is used for both upper and
lower case letters. Suchanapproximation ismadebecause the

number of available capital letters in our data sets is not
sufficient for reliable training.Moreover, theupper and lower
case versions of the same letter are often similar and differ
only for their dimension (e.g., p and P). If a scale invariant
feature set is used (as in our case), this allows one to make a
single class out of the two letter versions. The third one is that
only the letters are modeled, the other symbols appearing in
the text lines (punctuationmarks, parentheses, digits, etc.) are
considered as noise. This approximation is applied for two
reasons: The first one is that not enough of these symbols
samples are available for a good model training. The second
one is that, by simply recognizing thewords, the systemdoes
not give a perfect transcription of the text, but allows the
application of content-based techniques (Topic Detection,
DocumentCategorization, InformationRetrieval)where only
the words play a role.

The models are trained using the Baum-Welch algorithm
(a specific case of Expectation-Maximization) thatmaximizes
the likelihood of the training set given the models [32], [33],
[34]. The recognition isperformedusing theViterbi algorithm
[8], [23]. This gives the best likelihood � that can be obtained
by following a unique state sequence with the vectors
extracted from the handwritten data. The state sequence
giving the highest value of � is selected as transcription of the
handwritten data.

5.3 Decoding

The approaches used until now to recognize word sequences
never integrate handwriting recognition and language
modeling (see Section 2). The recognition process is typically
split into two parts: First, the handwritten data is transcribed,
then a languagemodel is applied to estimate how likely (from
a linguistic point of view) the recognition result is. This
approach has several problems: Typically, it requires a
segmentation into single words, a difficult and error-prone
process. Moreover (especially when using grammar-based
models), the top scoring transcription is often not enough.
The N-best list is necessary in order to identify the
transcriptions most likely from a linguistic point of view
and this requires a significant amount of computation.

This work proposes a decoding technique where hand-
writing recognition and language modeling are tightly
integrated. This has several advantages: First, no segmenta-
tion is necessary because the likelihood of a certain point
being the separation between two words can be estimated
during the decoding. In this way, the segmentation is a
byproduct of the recognition and not a process to be
performed independently. Moreover, the sentence having
the best likelihood is the one that is, at the same time, themost
likely from both handwriting and language point of view.

The decoding can be thought of as the search of the path
optimally matching the observation sequence in the so-
called search space. In our case, the search space is a network
of word HMMs where the transition between different
words is modeled by the language model P ðWÞ. The search
must be performed at both state and word levels. At each
observation vector, the state-word pair belonging to the
globally most likely path must be found. This task is
performed with the Viterbi Algorithm. The algorithm is
based on a recursion that exploits the Viterbi approximation
in (3) and Bellman’s Principle of Optimality [35].

The emission probability densities give the likelihood of
the tth observation vector ot given a state s. In our system, the
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words are modeled as letter sequences and the number of
states to check is given by S �M, where S is the number of
states per letter model (see Section 6) and M is the total
number of models (in our case,M ¼ 27, 26 models for letters
and 1 for blank space). Since we are recognizing words, we
need to know not only the probability that a vector has been
emitted by a certain letter state, but also that the letter belongs
to a word w. This probability is defined by Qðt; ðs;wÞÞ and is
estimated as follows:

Qðt; ðs;wÞÞ ¼
max
s0

fpðotjðs;wÞÞpððs;wÞjðs0;wÞÞ �Qðt� 1; ðs0; wÞÞ; ð16Þ

where s0 6¼ 0, pðotjðs;wÞÞ is the emission probability of state s
in word w and pððs;wÞjðs0;wÞÞ is the transition probability
between states s0 and s in wordw. This equation applies to all
intraword states, but, when the transition is between the last
state of the last letter of a wordw and the first state of the first
letter of the nextword, then the languagemodel termmust be
added:

Qðt; ðs ¼ 0;wÞÞ ¼ maxhfpðwjhÞ �Qðt; ðS;hÞÞg; ð17Þ

where sð0;wÞ and ðS;hÞ denote the first state of word w and
last state of history h, respectively. The history is made of
N � 1 words when an N-gram model is being applied. The
above equation corresponds to (3) where Qðt; ðs;wÞÞ is the
likelihood of a subset of the observation sequence being
producedbywordmodelwandpðwjhÞ is the languagemodel.

The two above equations define the Dynamic Program-
ming recurrence equations for searching through the state
network. The difference with respect to other approaches
(see Section 2) is that the hypothesis of being at the
transition between a word and the following one is
measured at each observation vector. For this reason, it is
not necessary to segment the sentence into words. More-
over, the score of the word boundary hypothesis is not
based on a local measure, but on the score of the whole path
leading to that specific node of the network.

At each node of the network, the information about the
best path leading to it is retained. In this way, when the last
observation is reachedand themost likely state it corresponds
to is found, it is possible to backtrack the sequence of states
leading to it. The sentence corresponding to the sequence of
states is the transcription of the handwritten line.

One of the most important aspects of this approach is that
the best path is identified by taking into account the whole
observation sequence. No decision is taken before reaching
the last observation vector. This is important because any
error determined by local problems (e.g., a letter written
ambiguously or a small scratch) canbe recoveredbyusing the
rest of the line.On the other hand, this forces the system touse
the whole sequence to build the search space network. Its
dimension (i.e., the number of nodes it contains) grows with
thenumberofvectors in the sequenceand,when the sequence
is too long, the computational burden becomes too high.

This is a limit for systems producing, as in our case, many
observations per unit length: If the number of vectors per line
is high, it is not possible to concatenate several lines and this
limits the performance of N-grams with higher order N . In
fact, a line contains on average around 10words and only the
words after the N � 1th one can take an actual advantage
from the N-grams. This results in a saturation of the
improvement given by the N-grams when N increases. A

possible solution is the inclusion of the previous line only at
the linguistic level. The simplest solution is to keep memory
of the lastN � 1words in theprevious line, but this canhave a
negative influence. In fact, if the last words of the previous
line are recognized incorrectly, they can lead to very low
probabilities for the actually written words. The error can
then propagate and decrease the recognition performance.
On the other hand, the development of more sophisticated
techniques to include the previous line at the linguistic level
can be difficult and has an important drawback. The optimal
path would no longer be the one maximizing the probability
in (3) because the term pðOjWÞ would not include the last
observations of the previous line.

6 EXPERIMENTS AND RESULTS

Experiments were performed using three different data sets.
The first is composedof a textwrittenbya singlepersonand is
publicly available on the Web.1 The second is composed of
pages written by many poeple and can be obtained at the
University of Bern [4], [6]. The third is composed of
documents extracted from the the Reuters-21578 text data-
base [36]. These three data sets will be referred to as the
Cambridge, IAM, and Reuters databases, respectively. The
Cambridge database was originally presented in [5] and
contains 353 handwritten text lines split into training
(153 lines), validation (83 lines), and test (117 lines) sets. The
lines are kept in the same order as they were written. This
reproduces a realistic situation where the data available at a
certain time is used to obtain a system capable of recognizing
the data that will be written in the future.

A subsetwas randomly selected from the IAMdatabase. It
wassplit into training,validation, and test sets containing416,
206, and 306 lines, respectively. The data is split in such away
that the writers represented in the training set are not
represented in the test set. This is assumed to reproduce a
realistic situation where the data produced by a certain
number of writers is used to recognize the data written by
other persons.

The Reuters database contains single writer data and is
composed of 70 documents. The documents are ordered
temporally since they are extracted from a news bulletin and
they have a date. For this reason, we selected the first
30 documents for training and the last 40 for testing. The
number of lines in training, validation, and test set is 255, 101,
and 447, respectively. The language models for Cambridge
and IAM databases were obtained using the TDT-2 Corpus
[37], a collection of news transcriptions obtained from several
journals and broadcasting companies. The corpus is com-
pletely independent of the texts in the handwriting data sets.
In this way, the language models are not fitted to the specific
texts they have to model and the experimental setup reflects
the actual condition of unconstrained text recognition. The
language models for the Reuters database were obtained
using the Reuters-21578 corpus [36]. In order to have
language models independent of the specific texts being
recognized (see above), the documents belonging to our
handwriting data set have been eliminated from it.

In the next sections, we show in more detail how the
lexicon was selected (Section 6.1), how the language models
were trained and tested (Section 6.2), and the results obtained
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over the Cambridge (Section 6.3), IAM (Section 6.4), and
Reuters (Section 6.5) databases.

6.1 Lexicon Selection

In single word recognition, the lexicon is always implicitly
assumed to cover 100 percent of the data. Every handwritten
word is supposed to be in the dictionary and this happens
because the lexicon is determined from information coming
from the application environment (e.g., the zip code in postal
address recognition). This is not the case for the recognition of
unconstrained texts. The presence of proper names, technical
terms, andmorphological variations of a single stemmakes it
impossible to define a universal lexicon.

The only available source of information at the linguistic
level is the textcorpusweuseto trainthe languagemodels. It is
therefore reasonable to extract the lexicon from it. The TDT-2
corpus is 20,407,827 words in length. It is composed using
196,209uniquewords. Inorder tobuilda lexiconof sizeM,we
simply selected theMmost frequentwords in the lexicon.The
same technique has been used for the Reuters database that is
1,730,515words long (for a total of 34,574 unique terms). This
approach is based on the hypothesis that the most frequent
words in a text are typically functional words (prepositions,
articles, conjunctions, verbs of common use, etc.), hence, we
can expect to find them in any other text.Moreover, the use of
the most frequent words allows us to obtain more reliable
estimates of theN-gram probabilities. In this way, five lexica
have been obtained corresponding toM values ranging from
10,000 to 50,000 (30,000 for the Reuters database) step 10,000
(5,000 for the Reuters database). Such lexica are used in our
experiments to show the effect of the dictionary size on the
recognition rate. The plot in Fig. 1 shows the coverage
(percentage of text words actually represented in the dic-
tionary) of the lexica obtained with the above-mentioned
criterion in functionof their size. The coverage ismeasuredon
the test set of the Cambridge, IAM, andReuters data sets. The
coverage represents, for agiven lexiconsize, theupper limit of
system recognition performance using the corresponding
lexicon.

6.2 N-gram Model Training

The N-gram models for the IAM and Cambridge databases
were trained over the TDT-2 corpus [37], a collection of
transcriptions from several broadcast and newswire sources
(ABC, CNN, NBC, MSNBC, Associated Press, New York
Times, Voice of America, Public Radio International). The
language models for the Reuters database were obtained
using the Reuters-21578 corpus [36], a newswire economic
bulletin. For each one of the lexica described in Section 6.1,
three models (based on unigrams, bigrams, and trigrams,
respectively) were created. The plots in Figs. 2, 3, and 4 show
the perplexities of the SLMs as a function of the lexicon size.
Theperplexity is estimatedover thepart of the text coveredby
the lexicon, without taking into account OOV words. This
happens because the only part of the text where the language
model can be effective is the one covered by the lexicon. For
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Fig. 1. Test set coverage versus lexicon size. The plots show the percentage of words covered by a lexicon in the test set as a function of the lexicon
size. (a) Cambridge and IAM databases (they share the same lexicon) and (b) Reuters database.

Fig. 2. Language Model perplexity. The plot shows the perplexity of the
language models over the test set of the Cambridge database as a
function of the dictionary size.
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this reason,we are interested in knowing the languagemodel
performance only over such part of the text.

Inpractice,whenanOOVword is encountered, thehistory
is reset.Thefirst termafter theOOVwordcanbemodeledonly
withunigrams, the secondoneatmostwithbigrams, andonly
the third one can make use of trigrams. This significantly
increases the perplexity and simulates the fact that the
language model can only guess wrong words in correspon-
dence of OOVwords.

The perplexity measured including the OOV words is
lower, but less realisticwith respect to the recognition task. In
fact, during the recognition, the information about the
presence of an OOVword is not available and the model can
only guess a wrong word (independently of its perplexity).

The models show similar behavior over the different sets.
A significant improvement is obtained when passing from
unigrams tobigrams, butno further improvement is obtained
when applying trigrams. This happens for several reasons.
The first is that the handwritten text is split into lines andonly
the words after the third one can take some advantages from
the trigrammodel. Since a line contains on average 10words,
this means that only � 80 percent of the data can actually
benefit from the trigram model (while 90 percent of the data
can be modeled with bigrams).

A second problem is that the percentage of trigrams
covered by the corpus in the test set of all databases is
� 40 percent. This further reduces the number of words
where the trigram model can have a positive effect. The
coverage in terms of bigrams is much higher (around
85 percent) and the percentage of words over which the
model can have an effect is around 90 percent. On average,
when trigrams are applied, � 45 percent of the words in the
test set are modeled with a trigram, � 40 percent with a
bigram, and � 15 percent with a unigram. This results in an
average history length of 2:3. On the other hand, when the
language ismodeledwith bigrams,� 85percent of thewords
are guessed with bigrams and � 15 percent with unigrams.
The resulting average history length is 1:8. For these reasons,
the bigram and trigrammodels have a similar perplexity and

do not make a big difference in terms of recognition
performance.

The perplexity over the test set of IAM and Cambridge
databases (seeFigs.2and3) ismuchhigher thantheperplexity
over the test set of theReutersdatabase (seeFig. 4). The reason
is that, for this database, the texts to be recognized have been
producedbythesamesource thatalsoproducedthetextsused
to train the language models. In other words, the language
model is better aligned with the data to recognize.

6.3 Cambridge Database Results

This section reports the results obtained on the Cambridge
database. Since it is not possible to set a priori the number of
states S and the number of Gaussians G in the models, a
validation phase is necessary. Models with 10 � S � 14 and
10 � G � 15 are trained over the training set and tested,
without using SLMs, over the validation set. The system
corresponding to the couple ðS;GÞ giving the best results
(over the validation set) is selected as optimal. The system
selected in the validation phase (S ¼ 12 and G ¼ 12) is
retrained over the union of training and validation set and
the resulting system is used in the actual recognition
experiments.

For each one of the five lexica described in Section 6.1, four
versions of the system are tested over the test set. The first
version (called baseline) makes no use of SLMs, the other ones
use unigram, bigram, and trigram models corresponding to
the lexicon under consideration. The performance is mea-
sured using two different metrics: accuracy and recognition
rate. In the recognition of a text, there are several sources of
errors. A word can be misclassified and the corresponding
error is called a substitution. Second, it can be split into two
parts leading not only to an incorrect transcription, but also to
the introduction of a word that does not exist in the original
text. In this case, the error is referred to as insertion. Finally,
when the space between twowords ismissed, they are joined
together, giving rise to a substitution error and to the
disappearance of a word existing in the original text. The
error, in this case, is called a deletion. The different
performance metrics depend on the sources of error that are
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Fig. 3. Language Model perplexity. The plot shows the perplexity of the

language models over the test set of the Bern database as a function of

the dictionary size.

Fig. 4. Language Model perplexity. The plot on the left shows the

perplexity of the language models over the test set of the Reuters

database as a function of the dictionary size.
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taken into account. The accuracy is obtained as 100� s� d
(where s is the substitution rate and d is the deletion rate). The
accuracy is thus the percentage of words correctly classified.
The recognition is estimated as 100� d� s� i, where i is the
insertion rate. The recognition is not a percentage and can be
negative. Its highest value is 100.When the task is to correctly
transcribe the text, the recognition is the most appropriate
performance measure. It takes into account insertions that
represent important deviations with respect to the original
text. When the task is related to content modeling (e.g.,
indexing), the accuracy is a good metric since the only
important factor is how many words are correctly classified.

In our experiments, we used both metrics: Fig. 5 shows
the recognition (Fig. 5a) and the accuracy (Fig. 5b),
respectively, as a function of the lexicon size. In both cases,
the performance is the result of a trade off between the
improvement of the test set coverage and the increase of the
lexicon size. The application of the N-gram models has a
significantly positive effect on both recognition rate and
accuracy (the statistical confidence is higher than 90 per-
cent). Moreover, the SLMs make the system more robust
with respect to the increase of the lexicon size so that it is
possible to maximize the benefit of the improved coverage.

The insertions have an important influence on the
performance of the system. Sometimes, when part of a word
corresponds to an entry in the lexicon (e.g., unmentionable is
composed of the entries un, mention, and able), the decoder
favors the transcription splitting the bigger word, especially
when the shorter words are more frequently represented in
the training corpus. No deletion error is observed. This is due
to the fact that the spaces between neighboring words are
typicallyevidentandarenevermissed(conditionnecessaryto
observe a deletion).

The systems using unigrams, bigrams, and trigrams are
equivalent in terms of performance. This is due, in our
opinion, to the fact that the handwriting model alone has a
high performance. The space for improvement is thus
reduced. Most content words are recognized without the

help of the language models. N-grams are actually helpful
only to recognize functional words that are an important
source of error because they are typically short (two or three
letters). On the other hand, the performance of the language
models over the functional words is not significantly
improved by increasing their order. For this reason, the use
of bigrams and trigrams does not result in a higher
recognition or accuracy.

The situation isdifferent formultiplewriterdatawhere the
handwriting model alone is weak. In this case, the HMMs
have a low performance over the words where N-grams of
different order have a significantly different effectiveness.
This leads to an improvement when passing from unigrams
to trigrams.

6.4 IAM Database Results

This section describes the results obtained over the IAM
database. The parameters S and G were set using the same
method as described in the previous section for the Cam-
bridge database. Models with 19 � S � 23 and 10 � G � 15
are trained over the training set and tested, without using
SLMs, over the validation set. The selectedmodel (S ¼ 20 and
G ¼ 12) is retrained over the union of training and validation
set and it is used in the actual recognition experiments.

The dictionaries and the language models are the same
as those used in the single writer experiments. The
performance of the systems is measured in terms of
accuracy and recognition (see the previous section). For
each dictionary, four recognizers are tested: The first (called
baseline) makes no use of language models. The others use,
alternatively, unigrams, bigrams, and trigrams.

Also, in this case, the use of N-grams has a two-fold
positive effect: The performance is not only improved
(independently of the metric used), but the system is also
more robust with respect to an increase of the lexicon size.
Fig. 6 shows that the performance of the systems using the
language models is stable when the lexicon size passes from
10,000 to 50,000, while accuracy and recognition of the
baseline system are significantly lowered.
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Fig. 5. System performance over Cambridge database. The plot in (a) ((b)) shows the recognition rate (accuracy) of the system. The performance is

measured over the test set for the four systems considered: baseline (no SLM), unigrams, bigrams, and trigrams.
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The increase of the language model order produces an
improvement (statistical significance higher than 90 per-
cent). The language models can play a role not only over the
functional words (see the previous section), but also over
the content words where the difference of the order results
in a better local perplexity. The error is mostly due to
substitution (around 45 percent). Insertion and deletion
rates are about 9 percent and 4 percent, respectively. No
other systems have been tested over the same data, thus no
direct comparison is possible. The system presented in [10]
has higher accuracy (� 60 percent), but the lexicon is smaller
than ours (� 7; 000 words) and it is closed.

6.5 Reuters Database Results

This section shows the results obtained over the Reuters
database.Thevaluesof theparametersS andGwereobtained

using the same method applied for the other databases. The
models selected through the validation have S ¼ 11 and
G ¼ 11. Since the corpus used to train the language models
hasonly� 35; 000uniquewords, lexicaof sizebetween10,000
and30,000 (step5,000)wereused.The results (seeFig. 7) show
once again the improvement that can be obtained with the
language models, but there are some important differences
with respect to the previous experiments. The improvement
when passing from the baseline system to the systems using
language models is much higher. Moreover, the difference
between the performance of 1-gramsonone side and2-grams
and 3-grams on the other side ismore evident. The reason for
such differences is, in our opinion, the better alignment of the
language model with the data to recognize. On the other
hand, the difference between 2-grams and 3-grams remains
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Fig. 6. System performance over IAM database. The plot in (a) ((b)) shows the recognition (accuracy) of the system. The performance is measured

over the test set for the four systems considered: baseline (no SLM), unigrams, bigrams, and trigrams.

Fig. 7. System performance over Reuters database. The plot in (a) ((b)) shows the recognition (accuracy) of the system. The performance is

measured over the test set for the four systems considered: baseline (no SLM), unigrams, bigrams, and trigrams.
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small and it seems to favor bigrams (trigrams have slightly
higher substitution rate). This is probably due to the line by
line decoding (see end of Section 6.2).

7 CONCLUSIONS

This work presented a system for the offline recognition
of handwritten texts. The recognizer is based on contin-
uous density Hidden Markov models and Statistical
Language models (unigrams, bigrams, and trigrams).
Several experiments were performed using both single
and multiple writer data.

The experimental setup reproduces the conditions of
unconstrained text recognition: No information about the
content of the documents to be transcribed is used, except for
the fact that they are written in English. The differences with
respect to the case of singleword recognition are highlighted.
Lexica of different sizes, (from 10,000 to 50,000 words)
extracted on a statistical basis from the corpus used to train
the language models, were used. The performance of the
system was measured in terms of accuracy and recognition.

The effect of the SLMs changes depending on the data. In
all our experiments, the N-grams were able to significantly
improve the performance of the system independently of the
metric used. On the other hand, to pass from unigrams to
trigrams results in an improvement of recognition and
accuracy only for IAM and Reuters databases. This happens,
in our opinion, because the models trained over Cambridge
data have already a very high performance without SLMs.
The space left for improvement is thus reduced and limited to
a part of the text (namely, the functional words) where
models of different order have a similar perplexity (see
Sections 6.3 and 6.4).

The improvement obtained with SLMs is especially high
for theReutersdatabase.The reason is, inouropinion, that the
language model is better aligned with the data to be
recognized. The SLMs have been trained over a corpus of
documents produced by the same source (the Reuters
newswire bulletin) that created the data to recognize. This
makes the system more constrained, but more effective. It
must be taken into account the fact that SLMs are penalized in
our experimental setup because of an important aspect: The
lines are decoded separately, so the models of higher order
are effective on a smaller part of the data (see the end of
Section 6.2). A solution to this problem can be the concatena-
tion of different lines before the recognition, but this requires
the system to produce few observations per line in order to
reduce the dimension of the search space (see Section 5.3).

In its current configuration, the system appears to bemore
suitable for the application of content modeling techniques
(Indexing, Information Retrieval, Topic Detection, etc.) than
for the actual transcription of texts. All symbols other than
letters are in fact notmodeled and treated as noise. This is due
to the fact that only the letters are represented sufficiently for
a reliable training. In order to obtain a system more oriented
toward the exact transcription of documents, it is necessary to
increase the amount of training material (especially for the
less represented symbols).

At the present state-of-the-art in language modeling, the
possibility of havingmodels performing better thanN-grams
seems unlikely. The application of other language modeling
techniques (e.g., grammars or decision trees) seems to be
limitedtoveryconstrainedproblems, likebankcheckreading,

dateprocessing, orpostal address recognition.Thepossibility
of adapting generic N-grammodels to specific problems can
beexploredinthesamewayaswriter independentHMMscan
be adapted to writer dependent data.

Since very few works have been dedicated to the offline
recognition of handwritten texts, the above list of possible
futuredirections is far frombeingexhaustive. Theavailability
of systems for text recognition can give rise to new
applications that were not considered until now. Especially,
from this point of view, the recognition of handwritten texts
represents an interesting and promising research domain.
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