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between the front and reverse side images due to differences
between both images caused by factors like document skews,
different scales during image capture, and warped surfaces at
books’ spine areas. We are currently working on the development
of a computer-assisted method to do the image overlay.
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Estimating the Intrinsic Dimension of Data
with a Fractal-Based Method

Francesco Camastra and Alessandro Vinciarelli

Abstract—In this paper, the problem of estimating the intrinsic dimension of a data
set is investigated. A fractal-based approach using the Grassberger-Procaccia
algorithm is proposed. Since the Grassberger-Procaccia algorithm performs badly
on sets of high dimensionality, an empirical procedure that improves the original
algorithm has been developed. The procedure has been tested on data sets of
known dimensionality and on time series of Santa Fe competition.

Index Terms—Bayesian information criterion, correlation integral, Grassberger-
Procaccia’s algorithm, intrinsic dimension, nonlinear principal component analysis,
box-counting dimension, fractal dimension, Kolmogorov capacity.
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1 INTRODUCTION

PATTERN recognition problems involve data represented as vectors
of dimension d. The data is then embedded in the space IRd, but
this does not necessarily mean that its intrinsic dimension (ID) is d.
The ID of a data set is the minimum number of free variables
needed to represent the data without information loss. In more
general terms, following Fukunaga [9], a data set � � IRd is said to
have an ID equal to M if its elements lie entirely within an
M-dimensional subspace of IRd (where M < d).

Estimation of the ID is important for many reasons. The use of
more dimensions than strictly necessary leads to several problems.
The first one is the space needed to store the data. As the amount of
available information increases, the compression for storage
purposes becomes even more important. The speed of algorithms
using the data depends on the dimension of the vectors, so a
reduction of the dimension can result in reduced computational
time. Moreover, in the statistical learning theory approach [32], the
capacity and the generalization capability of the classifiers depend
on ID and the use of vectors with smaller dimension often leads to
improved classification performance. Finally, when using an
autoassociative neural network [18] to perform a nonlinear feature
extraction (e.g., nonlinear principal component analysis), the ID
can suggest a reasonable value for the number of hidden neurons.

This paper presents an approach to ID estimation based on fractal
techniques. Fractal techniques have been successfully applied to
estimate the attractor dimension of underlying dynamic systems
generating time series [17]. The literature presents results in the
study of chaotic systems (e.g., Hénon map, Rössler oscillator) [22], in
the analysis of ecological time series (e.g. Canadian lynx population)
[15], in biomedical signal analysis [31], in radar clutter identification
[12], and in the prediction of financial time series [24]. Nevertheless,
in pattern recognition, fractal methods are mainly used to measure
the fractal dimension of an image [13]. As far as we know, the
application of fractal approaches to the problem of ID estimation has
never been proposed before. The proposed ID estimation method is
tested on both artificial and real data showing good results.

The paper is organized as follows: Section 2 presents several
techniques for estimating ID. In Section 3, fractal methods are
reviewed. The procedure to estimate ID is described in Section 4. In
Section 5, some experimental results are reported and, in Section 6,
some conclusions are drawn.
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2 ID ESTIMATION TECHNIQUES

Following the classification proposed in [16], there are two
approaches for estimating ID. The first (global) estimates the
dimensionality of the data set as a whole. The second (local) estimates
ID using the information contained in sample neighborhoods,
avoiding the projection of the data onto a lower-dimensional space.

The literature presents only a few results, mostly based on
projection techniques and topological methods (topological dimension of
data [3]). Projection techniques, which are generally used as global
methods, search for the best subspace to project data by minimizing
the reconstruction error. These methods can be divided into two
families: linear and nonlinear. Linear methods such as Principal
Component Analysis (PCA) are inadequate estimators since they tend
to overestimate the ID [1]. For example, a set formed by points lying
on a curve for PCA has dimension 2 rather than 1. On the other hand,
though nonlinear PCA [18] performs better than linear PCA in some
contexts [7], it presents problems when estimating ID [19]. Among
projection techniques it is worth mentioning the Whitney reduction
network recently proposed by Broomhead and Kirby [2], [18]. This
method is based on Whitney’s concept of good projection, namely, a
projection obtained by means of an injective mapping. As pointed
out in [18], finding good projections can be difficult and can
sometimes involve empirical considerations. Finally, the fractal
approach presented in this paper can be classified as a global method.

Topological methods that are local try to estimate the topological
dimension of the data manifold. Some authors [8] use Topology
Representing Networks (TRN) [21], that optimally represent the
data topology to estimate ID.

The number n of cross-correlations is used as an indicator of the
local dimension of �, assuming that n is close to the number k of
spheres which touch a given sphere, in the Sphere Packing Problem [4].
This approach presents some drawbacks: the above assumption has
not been proven yet, the number k is known exactly only for
dimension values between1and8, andk tends to grow exponentially
with the space dimension. This last peculiarity strongly limits the use
of the conjecture in practical applications where data can have high
dimensionality. Other authors [10] perform a Voronoi tesselation of
data space and, in each Voronoi set, a local PCA is performed. Finally,
Bruske and Sommer [3] after the Voronoi tesselation of the data
space, compute, by means of TRN, an optimal topology preserving
map G. Then, for each node i 2 G, a PCA is performed on the setQi
consisting of the differences between the node i and all of its mi

neighbors inG. The above mentioned [3], [10] methods present some
limits: Since none of the eigenvalues of the covariance matrix will be
null due to noise, it is necessary to use heuristic thresholds in order to
decide whether an eigenvalue is significant or not.

3 FRACTAL METHODS

A unique definition of the dimension has not been given yet. A
popular definition, among many proposed, is the so-called box-
counting dimension [20], belonging to a family of dimension
definitions which are based on fractals [5]. The box-counting
dimension is a simplified version of Haussdorff dimension [5],
[22]. The box-counting dimension DB (or Kolmogorov capacity) of a
set � is defined as follows: If (ðrÞ is the number of the boxes of size
r needed to cover �, then DB is

DB ¼ lim
r!0

lnð(ðrÞÞ
lnð1rÞ

: ð1Þ

Unfortunately, the box-counting dimension can be computed only
for low-dimensional sets because the algorithmic complexity grows
exponentially with the set dimension. Therefore, in our opinion, a
good substitute for the box-counting dimension can be the
correlation dimension [11]. Due to its computational simplicity, the
correlation dimension is successfully used to estimate the dimen-
sion of attractors of dynamical systems. The correlation dimension is
defined as follows: let � ¼ x1;x2; . . . ;xN be a set of points in IRn of
cardinality N . If the correlation integral CmðrÞ is defined as:

CmðrÞ ¼ lim
N!1

2

NðN � 1Þ
XN
i¼1

XN
j¼iþ1

Iðkxj � xik � rÞ; ð2Þ

where I is an indicator function,1 then the correlation dimension D of
� is:

D ¼ lim
r!0

lnðCmðrÞÞ
lnðrÞ : ð3Þ

It has been proven [11] that the correlation dimension is a lower
bound of the box-counting dimension, but, because of noise, the
difference between the two is negligible in real applications. Some
methods [28], [27] have been studied to obtain an optimal estimate
for the correlation dimension, but all of these techniques work only
when the correlation integral assumes a given form;2 otherwise,
the estimators can perform poorly [29]. Moreover, these methods
generally require some heuristics to set the radius r [30]. Therefore,
in our work, we used the original procedure (GP algorithm)
proposed by Grassberger and Procaccia that consists of plotting
lnðCmðrÞÞ versus lnðrÞ and measuring the slope of the linear part of
the curve (Fig. 1).

It has been proven [6], [26] that, in order to get an accurate
estimate of the dimension D, the set cardinality N has to satisfy the
following inequality:

D < 2 log10N: ð4Þ

Inequality (4) shows that the number N of data points needed to
accurately estimate the dimension of a D-dimensional set is at least
10

D
2 . Even for low-dimensional sets this leads to huge values of N .

The effect of N on the measure of the dimension can be seen in
Table 1. This table reports the value of the measures of D obtained
using the GP algorithm over sets of points randomly distributed in
10-dimensional hypercubes (supposed to have D ¼ 10). The
dimension is measured for different values of N and the error
with respect to the supposed true dimension is reduced by
increasing the number of data points from 103 to 10

D
2 ¼ 105. In

order to cope with this problem and to improve the reliability of
the measure for low values of N , we develop an empirical
procedure as described in the following section.

4 INTRINSIC DIMENSION ESTIMATION PROCEDURE

Consider the set � of cardinality N . Our empirical procedure (EP)
consists of the following steps:
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1. Ið*Þ is 1 iff condition * holds, 0 otherwise.
2. For example, Takens’ method is optimal iff CmðrÞ ¼ arD½1þ br2 þ

oðr2Þ� where a; b are constants.

Fig. 1. Plot of lnðCmðrÞÞ versus lnðrÞ.
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1. A set�0, whose ID d is known, with the same cardinalityN as
� is created. For instance,�0 could be constituted byN points
randomly generated in a d-dimensional hypercube.

2. The correlation dimension D of �0 is measured with the
GP algorithm.

3. The previous steps are repeated for T different values of d.
The set C ¼ fðdi; DiÞ : i ¼ 1; 2; . . . ; Tg is obtained.

4. A best-fitting to the points inC is performed. A plot (reference
curve) � ofD versus d is generated (see Fig. 2). The reference
curve allows to estimate the value ofDwhen d is known.

5. The correlation dimension D of � is computed and, using
�, the intrinsic dimension of � can be estimated.

The above method is based on the following assumptions:

1. � depends on N .
2. Since the GP algorithm gives close estimates for sets of the

same dimensionality and cardinality, the dependence of �
on the �0 sets used for its setup is negligible.

In comparison with topological methods, our approach offers the

following advantages: it allows one to estimate the ID of high-

dimensional data, unlike TRN-based method. Moreover, the

proposed approach is based on the estimation of a fractal dimension
and, therefore, allows one to obtain noninteger values. This latter
advantage is quite important, since, due to the presence of noise, real
data can sometimes lie within a fractal-like submanifold, whose
dimension is usually noninteger.

5 EXPERIMENTAL RESULTS

The EP was tested by first creating reference curves for different
values of the cardinalityN , then by using each of them to estimate the
dimension of data sets of the same cardinality and known dimension.

During our experimentation, the sets �0 used for the reference
curve setup were formed by randomly generated points in a
d-hypercube. A plot was generated for the following cardinality
values: 1,000, 2,000, 5,000, 10,000, 30,000, and 100,000. Correspon-
dence to each value, a pair ðd;DÞ was calculated for

d 2 f2; 3; 5; 10; 15; 18; 20; 25; 28; 30; 33; 35; 38; 40; 43; 45; 48; 50g: ð5Þ
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TABLE 1
Dependence of the Estimated Correlation Dimension on the

Number of Data Points Used (the Actual Dimension of Data is 10)

Fig. 2. Reference curves for different values of the cardinality N.

TABLE 2
ID Estimation by the GP Algorithm and EP

of 8- and 23-Dimensional Data Sets

The first column reports the number of points used for the estimation. The second
and third columns show the value of d estimated with GP and EP, respectively, for
the 8-dimensional set. The last two columns show the estimates of d obtained with
GP and EP for the 23-dimensional set.

TABLE 3
Estimation of the Attractor Dimension of

the Series D and A of Santa Fe Competition

The first column reports the number of points used for the estimation. The
dimension values estimated for D series with GP and EP, respectively, are
reported in second and third column. Last two columns show the d estimated with
GP and EP using the data of the A series. A series has only 10,000 points.
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The plot function is estimated by a multilayer-perceptron (MLP)
[1]. Its structure was set up by means of the Bayesian information
criterion [25]. The resulting reference curves can be seen in Fig. 2.

In order to test the method, several sets (with cardinalities
corresponding to the values indicated above) were created
composed of random points generated in hypercubes in spaces with
dimension 8 and 23. These sets were assumed to have ID 8 and 23,
respectively, and were not used to generate the reference curves �.

Following the procedure described in Section 4, the GP
algorithm was first applied for each set, then the plot �
corresponding to the same cardinality as the set being measured
was used to compute the ID. The results are reported in Table 2.

The table shows the dimension estimation obtained with the
GP algorithm and with the empirical procedure proposed here.
Indeed, a remarkable improvement is obtained when the cardinality
is low. Afterwards, in order to validate the EP procedure, the data set
A [14] and D [23] of the Santa Fe time series competition were
considered. Data Set A is a real data time series generated by a
Lorenz-like chaotic system, implemented by NH3-FIR lasers. The
data set D is a synthetic time series generated by a particle motion,
simulated on a computer, with nine freedom degrees. The goal of the
experimentation was to estimate, with the GP procedure, the
attractor dimension of time series A and D. In order to estimate the
attractor dimension, we used the method of delays [17], [22].

Given a time series xðtÞ, with ðt ¼ 1; 2; . . . ; NÞ, a set of points
fXðtÞ : XðtÞ ¼ ½xðtÞ; xðt� 1Þ; . . . ; xðt� dþ 1Þ�g was obtained. If d is
adequately large, between the manifoldM, generated by the points
XðtÞ and the attractor U of the dynamic system that generated the
time series, there is a diffeomorphism. Therefore, it is adequate to
measure the dimension of M to infer the dimension of U .

We applied the method of delays to the data set A, considering its
first 1,000, 2,000, 5,000, 10,000 points. The results, obtained with the
GP and EP algorithms, are reported in Table 3. Since the value of the
fractal dimension of the attractor of Lorenz’s system is approxi-
mately 2:06, the result can be considered satisfactory. We then
applied the method of delays to the data set D, considering the first
1,000, 2,000, 5,000, 10,000, 30,000 points. The results, with GP and EP,
are shown in Table 3. Since the system that generated the data D has
9 degrees of freedom, the result can be considered particularly
satisfactory.

6 CONCLUSIONS

This work has presented a new intrinsic dimension estimation
technique based on a fractal method, namely, the Grassberger-
Procaccia algorithm. The GP algorithm is effective when the
dimension is low, but presents severe limits for high dimensional-
ities. Therefore, an empirical procedure, that improves GP algo-
rithm, has been developed.

A comparison performed over sets, randomly generated in
hypercubes of known dimensionality shows that the proposed
procedure gives a significant improvement over the GP algorithm
for high-dimensional sets. Further experiments, performed on data
series of the Santa Fe competition, confirm this opinion. It is worth
mentioning that the EP algorithm must not necessarily be based on
the GP algorithm. It can be based also on other fractal dimension
estimation methods (e.g., box-counting).

The EP algorithm is based on the assumption that the
dependence of reference curves on the data used for their
generation is negligible. In our experimentation, reference curves
were obtained using data sets of uniformly distributed patterns
whose dimension is known. It can be interesting to use other kinds
of data to generate reference curves. This will allow one to evaluate
the validity of the assumption that the dependence of the curves on
the data used to generate them is negligible.
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