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Abstract—This article presents experiments on automatic
detection of laughter and fillers, two of the most important
nonverbal behavioral cues observed in spoken conversations. The
proposed approach is fully automatic and segments audio record-
ings captured with mobile phones into four types of interval:
laughter, filler, speech and silence. The segmentation methods
rely not only on probabilistic sequential models (in particular
Hidden Markov Models), but also on Statistical Language Models
aimed at estimating the a-priori probability of observing a given
sequence of the four classes above. The experiments are speaker
independent and performed over a total of 8 hours and 25 minutes
of data (120 people in total). The results show that F1 scores up
to 0.64 for laughter and 0.58 for fillers can be achieved.

Index Terms—Laughter Detection, Fillers Detection, Nonver-
bal Vocal Behavior, Hidden Markov Model, Statistical Language
Models.

I. INTRODUCTION

The computing community dedicates significant efforts to
the development of socially intelligent technologies, i.e. auto-
matic approaches capable of sensing the social landscape in
the same way as people do in their everyday life [1], [2].
In this context, the detection of nonverbal behavior (facial
expressions, vocalisations, gestures, postures, etc.) plays a
fundamental role because nonverbal cues are one of the main
channels through which we convey social signals, namely
“acts or structures that influence the behavior or internal
state of other individuals” [3], “communicative or informative
signals which [...] provide information about social facts” [4],
or “actions whose function is to bring about some reaction or
to engage in some process” [5].

In particular, this article considers the automatic detection
of laughter and fillers, widely recognized as two of the most
important social signals that can be observed in social inter-
actions. This applies in particular to mobile phone calls, the
setting adopted for the experiments of this work, where people
cannot see one another and, therefore, vocal cues are the only
form of nonverbal behavior that can be adopted. Laughter [6]
corresponds to vocal outbursts typical of amusement, joy, scorn
or embarrassment . Fillers [7] are vocalisations like “uhm”,
“eh”, “ah” etc. “filling” the time that should be occupied by a
word (generally in correspondence of hesitations, uncertainty
or attempts to hold the floor).

The experiments are performed over the SSPNet Vocaliza-
tion Corpus, a collection of 2763 audio clips each including
at least one laughter or filler instance (see Section III for more
details). To the best of our knowledge, this is one of the largest

databases of this type in terms of both amount of instances
(2988 for laughter and 1158 for fillers) and number of subjects
(120 in total). Besides improving the statistical reliability of
the results, this allowed us to reinforce the state-of-the-art (see
Section II for a short survey) under several respects.

The first is the development of speaker independent ap-
proaches, i.e. statistical models trained over individuals dif-
ferent from those used for the tests. In several works of the
literature, this was not possible because the available material
was not sufficient to separate the speakers. The second is that
our approach is not only fully automatic (manual segmentation
into speech and non-speech is not required as in other works),
but also addresses jointly the detection of laughter, fillers,
speech and silence, tasks that are typically separated in other
works of the literature. This makes it possible to introduce the
third important aspect of this work, namely the adoption of
Statistical Language Models aimed at estimating the a-priori
probability of observing a given sequence of the four classes
above. To the best of our knowledge, this was not done before
for detecting vocal cues.

The rest of the article is organized as follows: Section II
surveys the main works dedicated to laughter and fillers
detection, Section III presents the SSPNet Vocalization Corpus
adopted for the experiments, Section IV describes the detection
approach, Section V reports on experiments and results, and
the final Section VI draws some conclusions.

II. STATE-OF-THE-ART

To the best of our knowledge, no major efforts were done to
detect fillers while laughter was the subject of several works.
Therefore, most of the works presented in this section focus on
laughter detection. Two main problems were addressed in the
literature. The first, called classification hereafter, is performed
over collections of audio samples (typically around one second
of length) that include either laughter or other forms of vocal
behavior (speech, silence, etc.). The classification problem
consists in correctly discriminating between laughter samples
and the others. The second problem, called segmentation
hereafter, consists in automatically splitting audio recordings
into intervals corresponding either to laughter or to other
observable behaviors (overlapping speech, hesitations, etc.).
The rest of this section surveys the main works dedicated to
both problems (see Table I for a synopsis).



TABLE I
THE TABLE REPORTS THE DETAILS OF THE MAIN RECENT WORKS ON LAUGHTER DETECTION PRESENTED IN THE LITERATURE. THE FOLLOWING

ABBREVIATIONS ARE USED: A=AUDIO, V=VIDEO, C=CLASSIFICATION, S=SEGMENTATION, ACC=ACCURACY, EER=EQUAL ERROR RATE,

Ref. Dataset Instances Modality Task Performance

[8] ICSI Meetings, 29 meetings, 25 h,
16 subjects

1926 laughter events A C EER 13%

[9] ICSI and CGN, 3 h 38’, 24 sub-
jects, 2 languages

3574 Laughter
(53.3%)

A C Acc. 64.0% (different Language) to 97.0% (same
speakers)

[10] 7 AMI meetings & SAL Dataset,
16’, 25 subjects

218 Laughter, 331
Non-Laughter

AV C Acc. 85.4% − 92.3% for A. Acc. 94.7% for com-
bination with V

[11] AVIC, 21 subjects, 2291 clips 261 Laughter A C 5 classes: Breathing, Consent, Garbage, Hesitation,
Laughter. Acc 77.8%− 80.7%

[12] ICSI Meetings, 29 meetings, 25 h,
16 subjects

1h33’ of laughter
(6.2% )

A S F1 ∼ 0.62

[13], [14] ICSI Meetings, 29 meetings, 25 h,
16 subjects

1h33’ of laughter
(6.2% )

A S Silence manually removed, F1 0.81

[15], [16] ICSI Meetings, 29 meetings, 25 h,
16 subjects

16.6’ of laughter
(2.0% of test set)

A S Automatic detection of silence. F1 0.35 on voiced
laughter, 0.44 on unvoiced laughter.

[17], [18] FreeTalk Data, 3h, 4 subjects 10% is Laughter AV S F1 0.44 − 0.72. Any laughter segment partially
labelled is counted as fully detected for the com-
putation of recall in F1.

A. The Classification Problem

Classification is the most popular task for automatic laugh-
ter detection and was first investigated in [8]. The initial data
consisted of 29 meetings with 8 participants recorded using
tabletop microphones. Clips of one second length were then
extracted and labelled as “laughter” or “non-laughter” based
on the number of participants laughing at the same time.
Therefore, the approach detected only events where several
participants were laughing. Thee experiments were performed
over a corpus of clips including 1926 laughter samples. The
samples were represented with Mel-Frequency Cepstral Co-
efficients (MFCC) and Modulation Spectrum features. The
classification was performed with Support Vector Machines
(SVM) and the best Equal Error Rate, achieved with MFFC
only, was 13%.

In [9], the experiments were performed over 6838 clips for a
total of 3 hours and 38 minutes extracted from meeting record-
ings. The training set was composed of 5102 clips in English
and three test sets where used in order to compare different
conditions (same speakers as in training set, different speakers,
different languages). Four types of features were investigated:
Perceptual Linear Prediction Coding features (PLP), Pitch
and Energy (on a frame by frame basis), Pitch and Voicing
(at the clips level) and Modulation Spectrum features. The
classification was performed with Gaussian Mixture Models
(GMM), SVMs and Multi Layer Perceptrons. The main finding
was that PLP features used with GMM produce the highest
accuracy (82.4% to 93.6%). When combining the output of
several classifiers on different features, the accuracy can be
improved up to 97.1% (by combining GMM trained on PLP
and SVM trained on pitch and voicing features at the utterance
level).

In [10], the authors investigate the joint use of audio
(MFCC, and pitch and energy based statistics) and video

features (head pose and facial expressions are extracted by
tracking landmarks on the face of people) for laughter de-
tection. The dataset is composed of 649 clips (218 laughter
events) extracted from meeting recordings and from interac-
tions between humans and artificial agents. The classifiers were
Neural Networks and achieved an accuracy of 91.6% when
using MFCC, with an improvement to 92.3% when adding
pitch and energy. Adding video features brings the accuracy
to 94.7%.

The only work on classification of laughter versus other
types of non-verbal vocalization we are aware of is in [11].
The data is composed of 2901 clips divided in 5 classes:
Breathing, Consent, Garbage, Hesitation and Laughter. The
authors investigate three models: Hidden Markov Models,
Hidden Conditional Random Fields (hCRF) and SVM. The
performances of the three models using MFCC and PLP
features were compared. The best performance was achieved
with HMMs and PLP features (80.7% accuracy).

B. The Segmentation Problem
The segmentation problem is addressed in this article as

well and, on average, it is more challenging than the classifi-
cation one. In segmentation, the input is not split a-priori into
laughter and non-laughter and the goal is to identify laughter
segments in the data stream. In [12], the authors extended the
work in [9] and assessed their approach on a segmentation
task. The proposed approach adopted PLP features to train
Hidden Markov Models with GMM as emission probability
distributions. The data set consisted of 29 meetings, with 3
meetings held out as a test set. The Markov model achieved
an F1 score of 0.62 for the segmentation of laughter versus the
rest.

The work in [13], [14] investigates the use of Multi-Layer
Perceptrons for the segmentation of laughter in meetings.
The approach used MFCC features, Pitch and Energy. An



HMM model fitted on the output of the MLP to take into
account the temporal dynamics and a F1 score of 0.81 was
achieved. However, the approach was tested only with the
silence segments manually removed. Furthermore, segments
were the subjects were laughing and speaking at the same time
were manually removed.

In [16], [15], the authors presented a system for segmenting
the audio of meetings in three classes: silence, speech and
laughter. Their approach is based on HMMs and uses MFCC
and energy as features. The approach takes into account the
state of all the participants when segmenting a meeting and
achieves a F1 score of 0.35 for laughter.

In [18], audio-visual data from 2 meetings involving 4
speakers were segmented into laughter and non-laughter. Mod-
ulation Spectrum and PLP features were extracted from the
audio. The features extracted from the video did not provide
any improvement when used in combination with the audio
features. The authors used 3 models: HMM, GMM and Echo
State Networks, with the HMM outperforming the other two
models with a F1 score of 0.72. However, the recall was
computed by considering fully detected also laughter events
that were automatically detected only partially. This leads to
an overestimate of recall and F1 score.

III. THE SSPNET VOCALIZATION CORPUS

The SSPNet Vocalisation Corpus (SVC) includes 2763
audio clips (11 seconds long each) annotated in terms of
laughter and fillers for a total duration of 8 hours and 25
minutes. The corpus was extracted from a collection of 60
phone calls involving 120 subjects [19], 63 women and 57
men. The participants of each call were fully unacquainted
and never met face-to-face before or during the experiment.
The calls revolved around the Winter Survival Task: the two
participants had to identify objects (out of a predefined list)
that increase the chances of survival in a polar environment .
The subjects were not given instructions on how to conduct
the conversation, the only constraint was to discuss only one
object at a time. The conversations were recorded on both
phones (model Nokia N900) used during the call.

The clips were recorded with the microphones of the
phones. Therefore they contain the voice of one speaker only.
Each clip lasts for 11 seconds and was selected in such a way
that it contains at least one laughter or filler event between
t = 1.5 seconds and t = 9.5 seconds. Clips from the same
speaker never overlap. In contrast, clips from two subjects
participating in the same call may overlap (for example in the
case of simultaneous laughter). However, they do not contain
the same audio data because they are recorded with different
phones. Overall, the database contains 1158 filler instances
and 2988 laughter events. Both types of vocalisation can be
considered fully spontaneous.

IV. THE APPROACH

The experiments aim at segmenting the clips of the SVC
into laughter, filler, silence and speech. More formally, given a
sequence of acoustic observations X = x1, . . . , xn, extracted

at regular time steps from a clip, we want to find a seg-
mentation Y = (y1, s1), . . . , (ym, sm), with yi ∈ {f, l, p, s}1,
si ∈ {1, . . . , n}, s1 = 0 and si < si+1. This encodes the
sequence of labels and when they start. We set sm+1 = n to
ensure that the segmentation covers the whole sequence.

We will use a maximum a-posteriori approach to find the
following sequence Ŷ of labels:

Ŷ = argmax
Y ∈Y

P(X,Y ), (1)

where Y is the set of all possible label sequences of length
between 1 and n.

The rest of the section is organized in two parts. The
first describes the model we use for estimating P(X,Y ). The
second describes the speech features extracted and the different
parameters that need to be set in the model.

A. Hidden Markov Model

A full description of Hidden Markov Models is available
in [20]. HMMs can be used to model a sequence of real valued
vector observations X = x1, . . . , xn with xi ∈ Rm. The model
assumes the existence of latent variables H = h1, . . . , hn and
defines a joint probability distribution over both latent variables
and observations:

P(X,H) = P(x1 |h1)·P(h1)·
n∏
i=2

P(xi |hi)·P(hi |hi−1). (2)

From this joint distribution, the probability of the observations
can be computed by marginalizing the latent variables:

P(X) =
∑
H∈H

P(X,H). (3)

H is the set of all possible sequences of latent variables of
length n. The sum can be efficiently computed using Viterbi
decoding even thought the size of H make direct summation
intractable.

We train a different HMM Py(X,H) for each label y ∈
{f, l, p, s} using sequences of observations extracted from the
clips of the training set. The four HMMs, called acoustic
models hereafter, capture the acoustic characteristics of the
four classes corresponding to the labels. The probability of
the whole sequence is given by

P(X,Y ) = P(Y ) ·
m∏
i=1

Pyi(Xsi···si+1
), (4)

where Xsi···si+1
= xsi , . . . , xsi+1

, and Pyi corresponds to the
probability given by the HMM model trained on sequences
associated with the label yi. In previous works, P(Y ), usually
called the language model, was assumed to be uniform and was
therefore ignored. In this work, P(Y ) is modeled explicitly:

P(X,Y ) =

m∏
i=1

Pyi(Xsi···si+1)

(
m∏
i=2

P(yi | yi−1)

)λ
, (5)

where P(yi | yi−1) corresponds to a bigram language model.
The parameter λ is used to adjust the relative importance of

1labels are (f)iller, (l)aughter, s(p)eech, (s)ilence



the language model with respect to the acoustic model. When
λ 6= 1 in Equation (5), P(X,Y ) is not normalized. However,
this does not represent a problem because the segmentation
process aims at finding the label sequence Ŷ maximizing the
probability and not its exact value, as shown in Equation (1).

B. Features and Model Parameters

The experiments were conducted using the HTK
Toolkit [21] for both extracting the features and training the
Hidden Markov Models (HMM) used for the segmentation.
The parameters for the feature extraction were set based on the
current state-of-the-art. For each clip, MFCC were extracted
every 10 ms, from a 25 ms long Hamming window. We
extracted 13 MFCC using a Mel filter bank of 26 channels.
The log-energy of every windows was used instead of the
zeroth coefficient. The feature vectors were extended using
first and second order regression coefficients. The resulting
feature vectors have dimension 39.

For the HMM, we used a left-right topology. Four acoustic
models were trained, one for each of the four classes (si-
lence, speech, laughter and fillers). Each model has 9 hidden
states and each hidden state uses a mixture of 8 Gaussian
distributions with diagonal covariance matrix. This topology
has been shown to work well in practice. Furthermore, it
enforces a minimum duration of 90 ms for each segment. The
language model is a back-off bigram model, with Good-Turing
discounting.

V. EXPERIMENTS AND RESULTS

We adopted two experimental protocols. In the first, the
clips in the corpus were split into five folds in order to conduct
cross-validation. The folds were created such that each speaker
is guaranteed to appear only in one fold and such that the
folds are of approximately the same size (between 547 and
555 clips). Each fold was used, iteratively, as a test set while
the others were used as training set. In the second protocol,
the corpus was divided into two parts, using the clips of 60
speakers as training set and the clips of the other 60 speakers as
test set. Both setups guarantee that no speaker appears in both
test and training set. Therefore, all performances reported in
Section V-A are speaker independent. The first protocol aims at
using the entire corpus as test set while maintaining a rigorous
separation between training and test data. The second protocol
corresponds to the experimental setup of the Computational
Paralinguistics Challenge2 (to be held at Interspeech 2013).
This will allow one to compare the results of this work with
those obtained by the challenge participants.

A. Performance Measures

One of the main challenges of the experiments is that the
classes are heavily unbalanced. In the SVC, laughter accounts
for slightly less than 3.5% of the time, fillers account for
5.0%, silence represents 40.2% and speech is 51.3% of the
total time. Given this distribution, accuracy (the percentage of
time frames correctly labelled) is not a suitable performance

2emotion-research.net/sigs/speech-sig/is13-compare
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Fig. 1. The plots show how F1 Score, Precision and Recall change as a
function of the parameter λ, the weight adopted for the Language Model. The
plots have been obtained for the five-fold protocol, but the Figures for the
other setup show similar behaviors.



TABLE II
HMM PERFORMANCE OVER THE 5-FOLD SETUP.

F1 Score Precision π Recall ρ

λ 0 1 10 50 100 0 1 10 50 100 0 1 10 50 100

Filler 0.49 0.51 0.54 0.58 0.57 0.35 0.37 0.40 0.48 0.51 0.82 0.82 0.81 0.74 0.65

Laughter 0.48 0.53 0.58 0.64 0.63 0.35 0.39 0.45 0.60 0.67 0.79 0.80 0.79 0.69 0.61

Speech 0.77 0.79 0.81 0.83 0.84 0.94 0.95 0.94 0.91 0.89 0.65 0.67 0.70 0.76 0.79

Silence 0.87 0.88 0.87 0.87 0.86 0.82 0.82 0.82 0.82 0.82 0.92 0.93 0.93 0.92 0.91

TABLE III
HMM PERFORMANCE OVER THE CHALLENGE SETUP.

F1 Score Precision π Recall ρ

λ 0 1 10 50 100 0 1 10 50 100 0 1 10 50 100

Filler 0.50 0.52 0.54 0.59 0.58 0.36 0.39 0.40 0.49 0.64 0.80 0.76 0.79 0.73 0.64

Laughter 0.49 0.54 0.59 0.65 0.63 0.37 0.42 0.49 0.65 0.56 0.74 0.76 0.74 0.66 0.56

Speech 0.77 0.79 0.80 0.83 0.84 0.94 0.94 0.94 0.91 0.80 0.66 0.68 0.70 0.76 0.80

Silence 0.85 0.86 0.86 0.85 0.85 0.80 0.80 0.80 0.80 0.91 0.91 0.93 0.93 0.91 0.91

measure. Therefore, for each class, we use precision π, recall
ρ and F1 Score. For a given class y, we consider as positive all
frames in the time intervals labelled as y and as negative frames
those of all other intervals. Then, we define true positive
frames (TP) every correctly classified positive frame and false
positive frames (FP) every positive frame incorrectly classified.
Similarly we can define true negative frames (TN) and false
negative frames (FN). We can now define π as follows:

π =
TP

TP + FN
, (6)

the fraction of samples labelled with a given class that actually
belong to such a class. We also define ρ:

ρ =
TP

TP + FP
, (7)

the fraction of samples from the class of interest that are
correctly classified. The F1 Score is a single score that takes
into account both precision and recall and is defined as follows:

F1 = 2 · π · ρ
π + ρ

. (8)

In the rest of this section, when testing if the difference
between two models is statistically significant, we will use the
Kolmogorov-Smirnov test (KS test) to compare the distribution
of F1 Score over the audio clips.

B. Detection Results

Tables II and III present the results for the segmentation task
using different values of λ, for both experimental protocols
described above. Figure 1 shows how π, ρ and F1 Score change
when λ ranges between 1 and 200 to provide a full account
of the effect of such a parameter.

For low values of λ, the Language Model does not influence
the segmentation process and the performances are close to
those obtained when using only the HMMs. The reason is that
the contribution of the HMM term in Equation (5) tends to
dominate with respect to the Language Model term. Hence, the

value of λ must be increased to observe the actual effect of the
bigrams. In fact, when λ = 10, 50, 100, the F1 Score shows a
significant improvement with respect to the application of the
HMMs only. Since the goal of the experiments presented here
is to show that the Language Model carries information useful
for the segmentation process, no cross-validation is performed
to set the λ value leading to the highest F1 Score. The results
are rather reported for several λ values.

When λ is too high, the F1 Score tends to drop for laughter
and fillers (see Figure 1). The reason is that the Language
Model tends to favour the most frequent classes (in this case
speech). Hence, when λ is such that the Language Model
becomes the dominant term of Equation (5), the segmentation
process tends to miss laughter events and fillers. This phe-
nomenon appears clearly when considering the effect of λ on
Precision and Recall for the various classes. For laughter and
fillers, π tends to increase with λ while ρ tends to decrease.
In the case of speech, the effect is inverted, while for silence
no major changes are observed (see Figure 1).

An interesting insight in the working of the model is given
by the confusion matrix in Table IV. The Table applies to the
case λ = 100, but different weights lead to similar matrices.
Most of the confusions occur between fillers and speech, as
well as between laughter and speech. This is due to the fact
that sometimes people speak and laugh at the same time,
but the corresponding frames were still labeled as laughter.
Similarly, fillers and speech both include the emission of voice
and are acoustically similar. The confusion between silence
and laughter is also significant. This is due to the presence of
unvoiced laughter, for which acoustic characteristics are close
to silence (absence of voice emission, low energy).

VI. CONCLUSIONS

This work has proposed experiments on automatic detection
of laughter and fillers in spontaneous phone conversations. The
results were performed over the SSPNet Vocalization Corpus,
one of the largest datasets available in the literature in terms



TABLE IV
CONFUSION MATRIX FOR THE 2-GRAM GRAMMAR WITH λ = 100. THE
LINE CORRESPOND TO THE GROUND TRUTH AND THE COLUMN TO THE

CLASS ATTRIBUTED BY THE CLASSIFIER. EACH CELL IS A TIME IN
SECONDS

filler laughter silence voice

filler 989 8 79 440

laughter 7 601 144 311

silence 83 105 11182 825

voice 584 120 1883 12949

of both number of subjects and amount of laughter events and
fillers (see Section III). To the best of our knowledge, this is
the first attempt to jointly segment spontaneous conversations
into laughter, fillers, speech and silence. Such a task can be
considered more challenging than the simple classification of
audio samples (see Section II) or the application of segmen-
tation processes to audio manually presegmented into silence
and speech.

The most important innovation of the work is the adoption
of Statistical Language Models aimed at estimating the a-priori
probability of segment sequences in the data like, e.g., the
probability of laughing after a silence and before speaking.
The results show that the Language Models can significantly
improve the performance of purely acoustic models. However,
it is necessary to find an appropriate trade-off (by setting the
parameter λ) between the weight of the HMMs and the weight
of the bigrams.

The results of this work can be considered preliminary
and futher work is needed to achieve higher performances. In
particular, the current version of the approach does not discrim-
inate between voiced and unvoiced laughter, a distinction that
has been shown to be effective in several works. Furthermore,
the acoustic features are basic - although they have been shown
to be effective in the literature - and can certainly be improved
to capture subtle differences between, e.g., speech and fillers
or silence and unvoiced laughter.
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