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Introduction to Sequence Analysis for Human
Behavior Understanding

Hugues Salamin and Alessandro Vinciarelli

1.1 Introduction

Human sciences recognize sequence analysis as a key aspect of any serious attempt
of understanding human behavior [1]. While recognizing that nonsequential analysis
can provide important insights, the literature still observes that taking into account
sequential aspects “provide[s] an additional level of information about whatever
behavior we are observing, a level that is not accessible to nonsequential anal-
yses.” [2]. The emphasis on sequential aspects is even higher when it comes to
domains related to social interactions like, e.g., Conversation Analysis: “[...] it is
through the knowledge of the place of an action in a sequence that one reaches an
understanding of what the action was (or turned out to be).” [4]. Furthermore, social
interactions are typically defined as “sequences of social actions” in the cognitive
psychology literature [21].

In parallel, and independently of human sciences, sequence analysis is an impor-
tant topic in machine learning and pattern recognition [5, 7]. Probabilistic sequential
models, i.e. probability distributions defined over sequences of discrete or continu-
ous stochastic variables, have been shown to be effective in a wide range of problems
involving sequential information like, e.g., speech and handwriting recognition [6],
bioinformatics [3] and, more recently, Social Signal Processing and social behavior
understanding [28].

Given a sequence X = (x1, . . . ,xN), where xt is generally a D-dimensional vector
with continuous components, the sequence analysis problem (in machine learning)
takes typically two forms: The first is called classification and it consists in assigning
X a class c belonging to a predefined set C = {c1, . . . ,cK}. The second is called la-
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beling and it corresponds to mapping X into a sequence Z = (z1, . . . ,zN) of the same
length as X, where each zt belongs to a discrete set S = {s1, . . . ,sT}. An example
of classification in Human Behavior Understanding is the recognition of gestures,
where a sequence of hand positions is mapped into a particular gesture (e.g., hand
waving) [30]. An example of labeling is role recognition in conversations, where a
sequence of turns is mapped into a sequence of roles assigned to the speaker of each
turn [24].

In both cases, the problem can be thought of as finding the value Y∗ satisfying
the following equation:

Y∗ = argmax
Y

P(X,Y) (1.1)

where Y∗ can be one of the classes belonging to C, or a sequence Z of the same
length as X. In this respect, the main problem is to find a model P(X,Y) suitable
for the problem at hand, i.e. an actual expression of the probability to be used in
the equation above. This chapter adopts the unifying framework of graphical mod-
els [14] to introduce two of the most common probabilistic sequential models used
to estimate P(X,Y), namely Bayesian Networks (in particular Markov Models and
Hidden Markov Models [10, 23]) and Conditional Random Fields [15, 27].

The chapter focuses in particular on two major aspects of the sequence analysis
problem: On one hand, the role that conditional independence assumptions have in
making the problem tractable and, on the other hand, the relationship between in-
dependence assumptions and the particular factorization that the models mentioned
above show. The text provides some details about inference and training as well,
including pointers to the relevant literature.

The rest of the chapter is organized as follows: Section 1.2 describes the graphi-
cal models framework, Section 1.3 and 1.4 introduce Bayesian Networks and Condi-
tional Random Fields respectively, Section 1.5 propose training and inference meth-
ods and Section 1.6 draws some conclusions.

1.2 Graphical Models

The main problem in estimating P(X,Y) is that the state spaces of the random vari-
ables X and Y increase exponentially with the length of X. The resulting challenge
is to find a suitable trade-off between two conflicting needs: to use a compact and
tractable representation of P(X,Y) on one side and to take into account (possibly
long-term) time dependencies on the other side. Probability theory offers two main
means to tackle the above, the first is to factorize the probability distribution, i.e.
to express it as a product of factors that involve only part of the random variables
in X and Y (e.g., only a subsequence of X). In this way, the global problem is bro-
ken into small, possibly simpler, problems. The second is to make independence
assumptions about the random variables, i.e. to make hypotheses about what are the
variables that actually influence one another in the problem.
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As an example of how factorization and independence assumptions can be effec-
tive, consider the simple case where Y is a sequence of binary variables. By applying
the chain rule, it is possible to write the following:

P(Y1, . . . ,YN) = P(Y1)
N

∏
i=2

P(Yi |Y1, . . . ,Yi−1). (1.2)

As the number of possible sequences is 2N , a probability distribution expressed
as a table of experimental frequencies (the percentage of times each sequence is
observed) requires 2N−1 parameters.

In this respect, the factorization helps to concentrate on a subset of the variables
at a time and maybe to better understand the problem (if there is a good way of
selecting the order of the variables), but still it does not help in making the rep-
resentation more compact, the number of the parameters is the same as before the
factorization. In order to decrease the number of parameters, it is necessary to make
independence assumptions like, e.g., the following (known as Markov property):

P(Yi |Y1, . . . ,Yi−1) = P(Yi |Yi−1). (1.3)

The above transforms Equation (1.2) as follows:

P(Y1, . . . ,YN) = P(Y1)
N

∏
i=2

P(Yi |Yi−1), (1.4)

where the number of parameters is only 2(N−1)+1, way much less than the orig-
inal 2N −1. The number of parameters can be reduced to just 3 if we consider that
P(Yi |Yi−1) is independent of i, thus it does not change depending on the particular
point of the sequence. The combination of factorization and independence assump-
tions has thus made it possible to reduce the number of parameters and model long
sequences with a compact and tractable representation.

Probabilistic graphical models offer a theoretic framework where factorization
and independence assumptions are equivalent. Distributions P(X,Y) are represented
with graphs where the nodes correspond to the random variables and the missing
edges account for the independence assumptions. More in particular, the graph acts
as a filter that, out of all possible P(X,Y), selects only the set DF of those that fac-
torize over the graph (see below what this means depending on the type of graph). In
parallel the graph acts as a filter that selects the set DI of those distributions P(X,Y)
that respect the independence assumptions encoded by the graph (see below how to
identify such independence assumptions). The main advantage of graphical mod-
els is that DF = DI, i.e. factorization and independence assumptions are equivalent
(see [5] for an extensive description of this point). Furthermore, inference and train-
ing techniques developed for a certain type of graph can be extended to all of the
distributions encompassed by the same type of graph (see [13] for an extensive ac-
count of training techniques in graphical models).
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Fig. 1.1 Probabilistic graphical models: each node corresponds to a random variable and the graph
represents the joint probability distribution over all of the variables. The edges can be directed (left
graph) or undirected (right graph).

The rest of this section introduces notions and terminology that will be used
throughout the rest of this chapter.

1.2.1 Graph Theory

The basic data-structure used in the chapter is the graph.

Definition 1. A graph is a data structure composed of a set of nodes and a set of
edges. Two nodes can be connected by a directed or undirected edge.

We will denote by G= (N,E) a graph, where N is the set of nodes and E is the set
of the edges. We write ni→n j when two nodes are connected by a directed edge and
ni —n j when they are connected by an undirected one. If there is an edge between
ni and n j, we say that these are connected and we write that ni
n j. An element of
E is denoted with (i, j) meaning that nodes ni and n j are connected.

Definition 2. If n
m, then m is said to be a neighbour of n (and vice-versa). The
set of all neighbours of n is called the neighbourhood and it is denoted by Nb(n).
The set of the parents of a node n contains all nodes m such that m→n. This set is
denoted by Pa(n). Similarly, the set of the children of a node n contains all nodes m
such that n→m. This is set is denoted by Ch(n).

Definition 3. A path is a list of nodes (p1, . . . , pn) such that pi→ pi+1 or pi — pi+1
holds for all i. A trail is a list of nodes (p1, . . . , pn) such that pi
 pi+1 holds for all
i.

The difference between a trail and a path is that a trail can contain pi ← pi+1
edges. In other words, in a trail it is possible to follow a directed edge in the wrong
direction. In undirected graphs, there is no difference between paths and trails
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Definition 4. A cycle is a path (p1, . . . , pn) such that p1 = pn. A graph is acyclic if
there are no cycles in it.

1.2.2 Conditional Independence

Consider two random variables X and Y that can take values in Val(X) and Val(Y ),
respectively.

Definition 5. Two random variables X and Y are independent, if and only if P(Y |X)=
P(X) ∀x ∈ Val(X),∀y ∈ Val(Y ). When X and Y are independent, we write that
P |= (X⊥Y ).

The definition can be easily extended to sets of variables X and Y:

Definition 6. Two sets of random variables X and Y are independent, if and only
if P(Y |X) = P(X) ∀X ∈ Val(X),∀Y ∈ Val(Y). When X and Y are independent, we
write that P |= (X⊥Y).

Definition 7. Let X,Y, and Z be sets of random variables. We say that X is condi-
tionally independent of Y given Z if and only if:

P(X,Y |Z) = P(X |Z)P(Y |Z)

We write that P |= (X⊥Y |Z).

The rest of the chapter shows how the notion of conditional independence is more
useful, in practice, than the simple independence. Fore example, the Markov prop-
erty (see above) can be seen as a conditional independence assumption where the
future Xt+1 is conditionally independent of the past (X1, . . . ,Xt−1) given the present
Xt . Such an assumption might not be true in reality (Xt is likely to be dependent
on X1, . . . ,Xt−1), but it introduces a simplification that makes the simple model of
Equation (1.4) tractable.

1.3 Bayesian Networks

Bayesian Networks [11, 12, 20] are probabilistic graphical models encompassed by
Directed Acyclic Graphs (DAGs), i.e. those graphs where the edges are directed
and no cycles are allowed. The rest of the section shows how a probability distri-
bution factorizes over a DAG and how the structure of the edges encodes condi-
tional independence assumptions. As factorization and independence assumptions
are equivalent for graphical models, it is possible to say that all of the distributions
that factorize over a DAG respect the conditional independence assumptions that
the DAG encodes. Inference and training approaches will not be presented for di-
rected models because each directed graph can be transformed into an equivalent
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Fig. 1.2 The picture shows the three ways it is possible to pass through a node (Z in this case)
along a trail going from X to Y : head-to-tail, tail-to-tail and head-to-head.

undirected one and related inference and training approaches can be applied. The
interested reader can refer to [9, 13] for extensive surveys of these aspects.

1.3.1 Factorization

Definition 8. Let X = (Xi, . . . ,XN) be a set of random variables and G be a DAG
whose node set is X. The probability distribution P over X is said to factorize over
G if

P(X) =
n

∏
i=1

P(Xi |Pa(Xi)). (1.5)

A pair (G,P) where P factorizes over G is called Bayesian Network.

1.3.2 The d-Separation Criterion

A DAG allows one to read conditional independence assumptions through the con-
cept of d-separation for directed graphs.

Definition 9. Let (G,P) be a Bayesian Network and X1
 . . .
XN a path in G. Let
Z be a subset of variables. The path is blocked by Z if there is a node W such that
either:

• W has converging arrows along the path (→W ←) and neither W nor its descen-
dants are in Z
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• W does not have converging arrows (→W → or←W →), and W ∈ Z

Definition 10. The set Z d-separates X and Y if every undirected path between any
X ∈ X and any Y ∈ Y is blocked by Z

The definition is more clear if we consider the three structures depicted in Figure 1.2.
In the case of Figure 1.2 (a), Z, d-separates X and Y and we can write the following:

P(X ,Y,Z) = P(X)P(Z |X)P(Y |Z) = P(Z)P(X |Z)P(Y |Z). (1.6)

As P(X ,Y,Z) = P(X ,Y |Z)P(Z), the above means that P |= (X⊥Y |Z). The case of
Figure 1.2 (b) leads to the same result (the demonstration is left to the reader), while
the structure of Figure 1.2 (c) has a different outcome:

P(X ,Y |Z) = P(X |Z)P(Y |Z)P(Z). (1.7)

In this case, Z does not d-separate X and Y and it is not true that P |= (X⊥Y |Z),
even if P |= (X⊥Y ). This phenomenon is called explaining away and it is the rea-
son of the condition about the nodes with converging arrows in the definition of
d-separation. In more general terms, the equivalence between d-separation and con-
ditional independence is stated as follows:

Theorem 1. Let (G,P) be a Bayesian Network. Then if Z d-separates X and Y,
P |= (X⊥Y |Z) holds.

Thus, the conditional independence assumptions underlying a Bayesian Network
can be obtained by simply applying the d-separation criterion to the corresponding
directed graph.

1.3.3 Hidden Markov Models

The example presented in Section 1.2, known as Markov Model, can be thought of
as a Bayesian Network where Pa(Yt) = {Yt−1}:

P(Y1, . . . ,YN) = P(Y1)
N

∏
i=2

P(Yi |Yi−1) =
N

∏
i=1

P(Yi |Pa(Yi)), (1.8)

The DAG corresponding to this distribution is a linear chain of random variables.
An important related model is the Hidden Markov Model (HMM) [10, 23], where

the variables can be split into two sets, the states Y and the observations X:

P(X,Y) = P(Y1)P(X1 |Y1)
N

∏
t=2

P(Yt |Yt−1)P(Xt |Yt) (1.9)

where the terms P(Yt |Yt−1) are called transition probabilities, the terms P(Xt |Yt)
are called emission probability functions, and the term P(Y1) is called initial state
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Fig. 1.3 The figure depicts the Bayesian Networks representing a Markov Model (a) and a Hidden
Markov Model (b).

probability. The underlying assumptions are the Markov Property for the states and,
for what concerns the observations, the conditional independence of one observation
with respect to all of the others given the state at the same time.

HMMs have been used extensively for both classification and labeling problems.
In the first case, one class is assigned to the whole sequence X. For C classes, dif-
ferent sequences of states Yi are used to estimate the probability P(X,Yi) and the
one leading to the highest value is retained as the winning one:

k = arg max
i∈[1,C]

= P(X,Yi), (1.10)

where k is assigned to X as class. In the labeling case, the sequence of states Ŷ that
satisfies the following equation:

Ŷ = arg max
Y∈Y

= P(X,Y), (1.11)

is used to label the observations of X (Y is the set of the state sequences of the same
length as X). Each element Xt is labeled with the value yt of variable Ŷt in Ŷ.

HMM have been widely used for speaker diarization (i.e. the task of segmenting
an audio recording in speaker turn). In this scenario, the HMM is used as an unsu-
pervised clustering algorithm. The hidden states Y of the model correspond to the
speakers and the observations are features extracted from the audio spectrum (usu-
ally Mel-frequency cepstral coefficients [17]). For a description of a state of the art
system using this approach see [8].
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HMM suffers from two main limitations. The first is that the observations are
assumed to be independent given the states. In the case of human behavior analysis,
this assumption does not generally hold. The model presented in the next section,
the Conditional Random Field, can address this problem.

The second limitation is that the Markov property makes it difficult to model
the duration of the hidden states, i.e. the number of consecutive observations la-
beled with the same state. The reason is that the probability of transition to a state
yt depends only on yt−1. The Hidden Semi-Markov Model [26] was developed to
address this limitation. A complete description of this model is beyond the scope of
this chapter, but the key idea is to have the transition probabilities to yt that depend
not only on yt−1, but also on the number of consecutive observations that have been
labeled with yt−1.

1.4 Conditional Random Fields

Conditional Random Fields [14, 15, 27] differ from Bayesian Networks under two
main respects: The first is that they are encompassed by undirected graphical mod-
els, the second is that they are discriminative, i.e. they model P(Y |X) and not
P(X,Y). The former aspect influences the factorization as well as the way the graph
encodes conditional independence assumptions. The latter aspect brings the impor-
tant advantage that no assumptions about X need to be made (see below for more
detail).

1.4.1 Factorization and Conditional Independence

Definition 11. Let G = (N,E) be a graph such that the random variables in Y cor-
respond to the nodes of G and let P be a joint probability distribution defined over
Y. A pair (G,P) is a Markov Random Field if:

P(Y |Y\{Y}) = P(Y |Nb(Y ))∀Y ∈ Y. (1.12)

The factorization of P is given by the following theorem:

Theorem 2. Let (G,P) be a Markov Random Field, then there exists a set of func-
tions {ϕc |c is a clique of G} such that

P(Y) =
1
Z ∏

c
ϕc(Y|c), (1.13)

where Y|c is the subset of Y that includes only variables associated to the nodes in
c, and Z is a normalization constant:
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Z = ∑
y

∏
c

ϕc(y|c), (1.14)

where y iterates over all possible assignments on Y.

The functions ϕc are often called potentials. They need to be positive functions
but they do not necessarily need to be probabilities, i.e. they are not bound to range
between 0 and 1. The conditional independence assumptions underlying the factor-
ization above can be inferred by considering the definition of the Markov Network.
Each variable is conditionally independent of all of the others given those who cor-
respond to the nodes in its neighborhood: P |= (Y ⊥Y\{Y,Nb(Y )}|Nb(Y )).

Conditional Random Fields are based on Markov Networks and are defined as
follows:

Definition 12. Let G = (N,E) be a graph such that the random variables in Y cor-
respond to the nodes of G. The pair (X,Y) is a Conditional Random Field (CRF)
if the random variables in Y obey the Markov property with respect to the graph G
when conditioned on X :

P(Y |X,Y\Y ) = P(Y |X,Nb(Y )). (1.15)

the variables in X are called observations and those in Y labels.

The definition above does not require any assumption about X and this is an
important advantage. In both labeling and classification problems, X is a constant
and the value of P(X,Y) must be maximized with respect to Y:

Y∗ = argmax
Y

P(Y |X)P(X) = argmax
Y

P(Y |X) (1.16)

Thus, modeling explicitly X (like it happens, e.g., in Hidden Markov Models) is not
really necessary. The model does not require conditional independence assumptions
for the observations that might make the models too restrictive for the data and affect
negatively the performance. In this respect, modeling P(Y |X) makes the model
more fit to the actual needs of labeling and classification (see equation above) and
limits the need of conditional independence assumptions to the only Y.

The factorization of Conditional Random Fields is as follows:

Theorem 3. Le (G,P) be a Markov Network, then there exists a set of functions
{ϕc |c is a clique of G} such that

P(y |x) = 1
Z(x) ∏

c
ϕc(y|c,x). (1.17)

Z is is a normalization constant called the partition function:

Z(x) = ∑
y

∏
c

ϕc(y|c,x), (1.18)

where y iterates over all possible assignments on Y.
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Fig. 1.4 Conditional Random Fields. The potentials are defined over cliques and have as argument
the variables corresponding to the nodes of the clique and an arbitrary subset of the observation
sequence X .

The problem left open so far is the definition of the potentials. As this chapter fo-
cuses on sequence analysis, the rest of this section will consider the particular case
of Linear Chain Conditional Random Fields, one of the models most commonly
applied for the sequence labeling problem.

1.4.2 Linear Chain Conditional Random Fields

In linear chain CRFs, the cliques are pairs of nodes corresponding to adjacent ele-
ments in the sequence of the labels or individual nodes (see Figure 1.5):

Definition 13. A graph is a chain if and only if E = {(yi,yi+1),1≤ i < |Y |}.

where E is the set of the edges and (yi,yi+1) represents the edge between the nodes
corresponding to elements Yi and Yi+1 in Y.

The following assumptions must be made about the potentials to make the model
tractable:

1. The potential over {yt ,yt+1} depends only on yt and yt+1.
2. The potential over {yt} depends only on yt and xt .
3. The potentials are the same for all t.
4. The potentials are never zero.

These first three assumptions mean that the marginal distribution for yt is fully de-
termined by yt−1, yt+1 and xt . The fourth assumption means that every sequence



12 Hugues Salamin and Alessandro Vinciarelli

Y1 Y2 Y3 Y4

X4X3X2X1

Y5

X5

fY Y1 2
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Fig. 1.5 Linear Chain Conditional Random Fields. The cliques in a chain are pair of adjacent
labels or individual labels. The potentials are function of adjacent nodes or of a node and the
corresponding observation.

of labels Y has a probability strictly greater than zero. This last assumption is im-
portant in practice because it allows the product of potentials to be replaced by the
exponential of a sum as follows [14] :

P(Y |X) =
exp
(
∑

N
t=1 f1(yt ,xt)+∑

N−1
t=1 f2(yt ,yt+1)

)
Z(X)

Z(X) = ∑
Y∈Y N

exp

(
N

∑
t=1

f1(yt ,xt)+
N−1

∑
t=1

f2(yt ,yt+1)

)

where f1 and f2 represent potentials having as argument only one label yt or a pair
of adjacent labels {yt ,yt+1}. Thus, the potentials have been represented as a linear
combination of simpler terms called feature functions.

In general, the feature functions used for f1 are as follows:

fy,t(yt ,x) =

{
xt if yt = y
0 otherwise

(1.19)

where xt is the observation at time t. This family of feature functions can capture
linear relations between a label and an observation xt . For f2, the feature functions
are typically as follows:

fy,y′(yt ,yt+1) =

{
1 if yt = y and yt+1 = y′

0 otherwise
(1.20)

In summary, Linear Chain CRFs estimate p(Y|X) as follows:
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Fig. 1.6 hidden Conditional Random Fields. The class is represented by the C. The variables Yi
are not observed. The potentials are function of adjacent nodes and the class ( fYiYi+1C) or of a node
the corresponding observation and the class ( fYiC). The potentials fYiC are not drawn connected to
C to keep the figure readable.

p(Y|X,α) =
1

Z(X)
exp


N

∑
t=1

∑
y∈Y

αy fy,t(yt ,xt)+

N−1

∑
t=1

∑
(y,y′)∈Y 2

αy,y′ fy,y′(yt ,yt+1)

 (1.21)

The weights αy of the feature functions of form fy,t(X,Y) account for how much
the value of a given observation is related to a particular label. The weights of the
feature functions of form fy,y′(X,Y) account for how frequent it is to find label y
followed by label y′.

Linear Chain CRF have been used with success in role recognition [25], where
the goal is to map each turn into a role. In this case, the labels correspond to a
sequence of roles. The observations are feature vectors accounting for prosody and
turn taking patterns associated to each turn.

CRFs have several extensions aimed at addressing the weaknesses of the basic
model, in particular the impossibility of labeling sequences as a whole and of mod-
eling latent dynamics. Two effective extensions are obtained by introducing latent
variables in the model. The first of these extensions is the hidden Conditional Ran-
dom Field (hCRF) [22] and it aims at labeling a sequence as a whole. The hCRFs
are based on linear chain CRFs, where the chain of labels Y is latent and a new
variable C is added (see Figure 1.6). The new variable C represents the class of the
observations and is connected connected to every label. All of the potentials are
modified to depend on the class C (see Figure 1.6).

The second extension aims at modeling latent dynamics like, for example, a sin-
gle gesture (e.g., hand waving) that can have several states (hand moving left and
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Fig. 1.7 Latent Dynamic Conditional Random Fields. The variables Hi are not observed and cap-
ture the latent dynamic. The potentials are function of adjacent hidden states, a hidden state and
the corresponding label, or an hidden state and the corresponding observation.

hand moving right) associated with a single label. CRFs cannot model these states
and the dynamics associated with them. The Latent Discriminative Conditional Ran-
dom Fields (LDCRF) [18] were introduced to overcome this drawback. LDCRF in-
troduce a linear chain of latent variables between the observations and the labels
(see Figure 1.7). The labels are disconnected and thus assumed to be conditionally
independent given the hidden states. Also, the labels are not directly connected to
the observations.

1.5 Training and Inference

The models presented so far cannot be used without appropriate training and infer-
ence techniques. The training consists in finding the parameters of a model (e.g.,
the transition probabilities in a Hidden Markov Model or the α coefficients in a
Conditional Random Field) that better fit the data of a training set, i.e. a collection
of pairs T = {(Xi,Yi)} (i = 1, . . . , |T |) where each observation is accompanied
by a label supposed to be true. By “better fit” it is meant the optimization of some
criterion like, e.g., the maximization of the likelihood or the maximization of the
entropy (see below for more details).

The inference consists in finding the value of Y that better fits an observation
sequence X, whether this means to find the individual value of each Yj that better
matches each X:

P(Yj = y |X) = ∑
Y∈{Y,Y j=y}

P(Y |X) (1.22)

or finding the sequence Y∗ that globally better matches X:
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Y∗ = argmax
Y

P(Y |X). (1.23)

The number of possible sequences increases exponentially with Y, thus training and
inference cannot be performed by simply estimating P(Y |X) for every possible Y.
The next two sections introduce some of the key techniques necessary to address
both tasks with a reasonable computational load.

1.5.1 Message Passing

One of the main issues in both training and inference is to estimate the probability
P(Yj = y) that a given label Yj takes the value y. The Message Passing algorithm
allows one to perform such a task in an efficient way by exploiting the local struc-
ture of the graph around the node corresponding to Yj (see [31] for an extensive
survey of the subject). In particular, the key idea is that the marginal distribution of
a node Yj can be determined if the value of the variables corresponding to its neigh-
boring nodes are known. In practice, those values are unknown, but it is possible
to estimate the belief that measures the relative probability of the different values.
For this reason, the message passing algorithm is sometimes referred to as belief
propagation.

This section will focus in particular on the message passing algorithm for Pair-
wise Markov Networks, namely Markov Networks where the cliques include no
more than two nodes. While being an important constraint, still it includes cases of
major practical importance such as chains, trees and grids (the Linear Chain Condi-
tional Random Fields fall in this class).

The beliefs are defined as follows:

b j(y j) = φ j(y j) ∏
k∈Nb(Y j)

mk j(y j) (1.24)

where ϕ j(y j) is the potential for node Yj, mk j is the message from node Yk to node
Yj (see below for the definition of the messages). Formally, a belief is a function that
maps each possible value of Yj into a real number.

A message is another function that maps the value of one node into a real number
and it represents the influence that the sending node has on the receiving one:

mk j(y j) = ∑
yk

ϕk(yk)ϕ jk(y j,yk) ∏
n∈Nb(Yk)\{Y j}

mnk(yk)

 (1.25)

where ϕ jk is the potential of the clique including Yj and Yk (this equation moti-
vates the name sum-product algorithm that it is used sometimes for this algorithm).

The belief propagation requires the variables to be ordered and this might create
problems when a graph contain cycles. When cycles are absent (which is the case
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for the models considered in this chapter), the following procedures allow one to
find a suitable ordering:

1. Choose a root node
2. Compute messages starting at the leaf moving to the root
3. Compute messages starting at the root, going to the leafs

It is important to note that the value of the message is independent of the order in
which the messages are passed.

At the end of the procedure, each node is associated with a belief that can be used
to compute the marginal probabilities as shown by the following:

Theorem 4. Let G be a pairwise random field on Y and b j the beliefs computed
using the message passing algorithm, then the following holds:

P(Yj = y j) =
b j(y j)

∑yi b j(yi)
. (1.26)

In the case of Conditional Random Fields, the observations in X have to be taken
into account. The message and the beliefs are now dependent on X:

b j(y j,X) = ϕ j(y j,X) ∏
Yk∈Nb(Y j)

mk j(y j,X) (1.27)

mk j(y j,X) = ∑
yk,X

ϕk(yk,X)ϕ jk(y j,yk,X) ∏
Yn∈Nb(Yk)\{Y j}

mnk(yk,X)

 (1.28)

(1.29)

As X is a constant and it is known a-priori, it is possible to apply exactly the
same equations as those used for the Markov Networks.

1.5.1.1 Inference

There are two possible inference scenarios (see beginning of this section): The first
consists in finding, for each label, the assignment that maximizes the marginal prob-
ability. The second consists in finding the assignment that maximizes the joint prob-
ability distribution over the entire labels sequence Y.

The first case is a straightforward application of the message passing algorithm.
For a given label Yj, it is sufficient to use the beliefs to find the particular value y∗

that maximizes the following probability:

y∗ = argmax
y

P(Yj = y) = argmax
y

b j(y). (1.30)

It can be demonstrated that this particular way of assigning the values to the labels
minimizes the misclassification rate.
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In the second case, the expression of the messages in Equation (1.25) must be
modified as follows:

mk j(y j) = max
yk

ϕk(yk)ϕ jk(y j,yk) ∏
n∈Nb(Yk)\{Y j}

mnk(yk)

 (1.31)

where the initial sum has been changed to a maximization. This ensures that the
message received by the node corresponding to label Yj brings information about
the sequence (Y1, . . . ,Yj−1) with the highest possible probability rather than about
the sum of the probabilities over all possible sequences.

It is again possible to assign to each Yj, the value y∗j that maximize the beliefs
obtained using the modified messages:

y∗j = argmax
y

b j(y). (1.32)

It can be shown that the resulting assignment Y ∗ = {y∗1, . . . ,y∗n} is the sequence with
the maximum probability:

Y ∗ = argmax
Y

P(Y ) (1.33)

1.5.1.2 Training

The last important aspect of probabilistic sequential models is the training. The topic
is way too extensive to be covered in detail and the section will focus in particular on
Markov Networks as this can be a good starting point towards training Conditional
Random Fields. If the assumption is made that the potentials are strictly greater than
zero, then Markov Networks can be factorized as follows:

P(Y |α) =
1
Z

exp

(
∑
c

nc

∑
i=1

α
i
c f i

c(Y|c)

)
(1.34)

Z = ∑
Y

exp

(
∑
c

nc

∑
i=1

α
i
c f i

c(Y|c)

)
(1.35)

where the f i
c(Y |c) are feature functions defined over a clique c. The same expres-

sion as the same as the one used for Conditional Random Fields, but without the
observations X.

Training such a model it means to find the values of the coefficients α that opti-
mize some criteria over a training set. This section considers in particular the maxi-
mization of the likelihood:

α
∗ = argmax

α
∑

j
logP(Yj |α) (1.36)

where the Yj are the sequences of the training set.
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The main problem is that solving the above equation leads to an expression for
the α coefficients which is not in closed form, thus it is necessary to apply gradient
ascent techniques. On the other hand, these are effective because of the following:

Theorem 5. The log-likelihood function is concave with respect to the weights.

In practice, the LBFGS algorithm [16] works well and this has two main motiva-
tions: The first is that the algorithm approximates the second derivative and thus
converges faster, the second is that has a low memory usage and work well on large
scale problems. One of the main steps of the LFBGS is the estimation of the deriva-
tive of the loglikelihood with respect to α .

∂

∂αc
i

∑
j

logP(Yj) =
∂

∂αc
i

∑
j

log

(
1
Z

exp

(
∑
c

nc

∑
i=1

α
i
c f i

c(Y
j|c)

))
(1.37)

=
∂

∂αc
i

∑
j

(
∑
c

nc

∑
i=1

α
i
c f i

c(Y
j|c)

)
− ∂

∂αc
i

∑
j

logZ (1.38)

= ∑
j

(
f i
c(Y

j|c)−E[ f i
c]
)

(1.39)

The equation above shows that the optimal solution is the one where the theoretical
expected value of the feature functions is equal to their empirical expected value.
This corresponds to the application of the Maximum Entropy Principle and it further
explains the close relationship between Conditional Random Fields and Maximum
Entropy Principle introduced in this section.

1.6 Conclusions

This chapter has introduced the problem of sequence analysis in machine learning.
The problem has been formulated in terms of two major issues, namely classification
(assigning a label to an entire sequence of observations) and labeling (assigning a
label to each observation in a sequence). The chapter has introduced some of the
most important statistical models for sequence analysis, Hidden Markov Models
and Conditional Random Fields. The unifying framework of Probabilistic Graphical
Models has been used in both cases and the accent has been put on factorization and
conditional independence assumptions. Some details about training and inference
issues have been provided for Conditional Random Fields and, more generally, for
undirected graphical models.

The models introduced in this chapter are not aimed in particular at human be-
havior understanding, but they have been used successfully in the domain (see [28]
for an extensive survey of the domain). Sequences arise naturally in many behavior
analysis problems, especially in the case of social interactions where two or more
individuals react to one another and produce sequences of social actions [21].
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While trying to provide an extensive description of the sequence analysis prob-
lem in machine learning, this chapter cannot be considered exhaustive. However,
the chapter, and the references therein, can be considered a good starting point to-
wards a deeper understanding of the problem. In particular, graphical models have
been the subject of both tutorials (see, e.g., [19] and Chapter 8 of [5]) and dedicated
monographies [14], the same applies to Hidden Markov Models (see, e.g., [23] for a
tutorial and [10] for a monography) and Conditional Random Fields (see, e.g., [29]
for a tutorial and [14] for a monography).

Last, but not least, so far Human Sciences and Computing Science (in particular
machine learning) have looked at the sequence analysis problem in an independent
way. As the cross-pollination between the two domains improves, it is likely to
expect models more explicitly aimed at the human behavior understanding problem.

Questions

Question 1. What is the rationale behind Equation (1.1)?

Question 2. Consider the graph represented in Figure 1.2 (c). Let X , Y and Z be
binary random variables. Let the probability of the Bayesian Network be defined by
the following conditional probabilities:

X P(X)
0 0.6
1 0.4

Y P(Y )
0 0.5
1 0.5

X Y P(Z = 0 |X ,Y ) P(Z = 1 |X ,Y )
0 0 0.8 0.2
0 1 0.6 0.4
1 0 0.5 0.5
1 1 0.6 0.4

Without using Theorem 1, prove the following:

1. P |= (X⊥Y )
2. P 6|= (X⊥Y |Z)

Question 3. Consider the Markov Model (MM) and the Hidden Makov Model
(HMM) presented in Figure 1.3. Find a smallest possible set that:

1. d-separates Y1 from YN in the case of MM.
2. d-separates Y1 from YN in the case of HMM.

Prove that there is no subset of the observations X that d-separates Y1 from YN in the
case of HMMs.

Question 4. What is the conditional independence assumption made by the Linear
Chain Conditional Random Fields?

Question 5. Let (G,P) be a Markov Random Field, where G is the undirected graph
in Figure 1.1. By applying Equations (1.25) and (1.24) give the expressions for:
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1. m45(y5).
2. b5(y5).
3. ∑y5

b5(y5).

Remark that the product in the third case can be rearranged to yield Z as this is a
special case of Theorem 4.

Question 6. Prove Theorem 5: The log-likelihood function is concave with respect
to the weights. This proof requires some background in analysis and use materials
not presented in this chapter. A proof is given in [14], Chapter 20.3.

Glossary

Probabilistic Sequential Model Probability distribution defined over sequences of
continuous or discrete random variables.

Sequence Ordered set of continuous or discrete random variables (typically cor-
responding to measurements collected at regular steps in time or space).

Probabilistic Graphical Model Joint probability distribution defined over a set of
random variables corresponding to the nodes of a (directed or undirected) graph.

Graph Data structure composed of a set of nodes and a set of edges, two nodes
can be connected by a directed or undirected edge.

Conditional Independence Let X,Y, and Z be sets of random variables. We say
that X is conditionally independent of Y given Z if and only if:

P(X,Y |Z) = P(X |Z)P(Y |Z)
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