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Abstract. In this paper, we explore the bias of term weighting schemes
used by retrieval models. Here, we consider bias as the extent to which
a retrieval model unduly favours certain documents over others because
of characteristics within and about the document. We set out to find the
least biased retrieval model/weighting. This is largely motivated by the
recent proposal of a new suite of retrieval models based on the Divergence
From Independence (DFI) framework. The claim is that such models
provide the fairest term weighting because they do not make assumptions
about the term distribution (unlike most other retrieval models). In this
paper, we empirically examine whether fairness is linked to performance
and answer the question; is fairer better?

1 Introduction
Retrieval bias in retrieval systems and models has been a long standing problem
when developing term weighting schemes [3, 4, 21]. It occurs when a document or
group of documents are overly or unduly favoured due to some document feature
(such as length, term distribution, etc). Bias is largely seen as problematic, espe-
cially, when a retrieval model’s weighting function places too much emphasis on
certain features. This leads to documents being ranked highly, not because they
are relevant, but because of the bias present in the retrieval model’s term weight-
ing scheme. For example in [21], pivoted length normalisation was introduced to
avoid overly favouring longer documents in the vector space model [19]. In [8],
a study of IR heuristics showed how various models violated common sense
principles relating to term weighting schemes. By addressing these violations,
improvements in performance were obtained. Again linking bias with perfor-
mance. In this work, instead of directly focusing on performance or looking at
whether particular heuristics are violated, we will directly measure the bias as-
sociated with different retrieval models and then examine the relationship with
performance.

To this end, we conduct a comprehensive empirical analysis across four TREC
test collections using seventeen term weighting functions from six families of
retrieval models (vector space models, best match models, language models,
DFR, Log-Logistic and DFI models) and issue over 80 million queries in the
process. We show that there is generally quite a strong correlation between
fairness and performance, although this is collection dependent. In the next



section, we shall provide an historical overview of the development of retrieval
models. Following this, we detail the experiment methodology we employed. We
then report our results and discuss the implications of our findings.

2 Retrieval Models and Term Weighting Schemes
The development of retrieval models has been largely driven by the focus on
improving the effectiveness of the retrieval system. Over the years numerous
retrieval models have been developed, each leading to subtle and not so sub-
tle differences in the term weighting schemes. For example in [20] Salton tried
over 1400 term weighting schemes before arriving at TF.IDF. While reasonably
effective, it was later shown that TF.IDF overly favoured the retrieval of long
documents and that this bias is detrimental to retrieval performance [21]. Since
then, document length normalisation has been a key component in most modern
term weighting schemes as a way to mitigate such bias.

Conversely, probabilistic approaches to the term weighting problem have
looked towards modelling different aspects of documents, including their term
distributions and the distributions of relevance depending on the model in or-
der to obtain a more accurate fit of the data [1, 6, 9, 11, 13, 16, 17]. For example,
Harter [11] proposed the 2-Poisson model to represent speciality words and non-
speciality words, where speciality words are those which occur densely in elite
documents. These speciality words contribute to how informative a document
is, while non-speciality words essentially occur at random and do not contribute
to how informative a document is. While the 2-Poisson model worked well for
particular samples of text, it did not perform very well in practice as it was
problematic to estimate the distributions accurately. However, it did lead to the
development of more generalised probabilistic models, which became known as
Best Match (BM) models [13, 18], from which BM25 has become the most com-
monly used. Again, document length normalisation was a key feature in ensuring
that BM25 did not overly favour shorter or longer documents.

In [17], Ponte and Croft proposed the Language Modelling approach which
took an alternative view on estimating the relevance of a document. Language
Models are based on generative probabilistic models, and look to estimate the
probability of a query, given a document [17]. Under this framework, a mutli-
nomial distribution is typically used to model the document [23]. This free-er
form means that the document data can be fitted more accurately. When the
document model is estimated, document statistics are combined/smoothed by
the background collection’s statistics. Terms appearing in the document are akin
to speciality words, while terms in the collection are akin to the non-speciality
words that occur at random. Depending on how the document model is smoothed
determines what features of a document dominate the term weighting function,
and whether any document length normalisation is applied [23]. For instance,
Jelinek-Mercer (JM) smoothing does not include any document length normal-
isation, focusing mainly on the information content of the document to rank
documents1, whereas Bayes smoothing includes document length normalisation.

1 In [12], it was shown that Language Modelling with Jelinek-Mercer smoothing pro-
vides a probabilistic justification for TF.IDF.



In [1], Amati and van Rijsbergen proposed the Divergence from Random-
ness (DFR) framework to construct probabilistic term weighting schemes. The
framework was also inspired by Harter’s 2-Poisson model [11] and further refined
the notion of eliteness using semantic information theory and Popper’s notion of
information content. A DFR model is typically composed of two divergence func-
tions (referred to as Prob1 to characterise the randomness of a term, and Prob2
to model the risk of using the term as a document descriptor [1]) and a nor-
malisation function. Rather than using two Poisson functions, in [1] the authors
explored various distributions to characterise the randomness and eliteness of
terms. Two of the best performing models they found were the Poisson-Laplace
with their second normalisation of term frequency (PL2) and a hyper-geometric
model that used Popper’s normalisation (DPH). It was argued that the bet-
ter fit to the underlying term distributions with the document collection, the
use of information content and the normalisation of term frequency resulted in
superior term weighting schemes (these models have been shown to perform em-
pirically well at subsequent TRECs). It is also worth noting that under the DFR
framework it is also possible to instantiate BM25.

In [5], another statistical model was proposed by Clinchant and Gaussier.
This model attempted to account for the burstiness of terms within text (and
thus obtain a better fit of the data). The term weighting function used a log-
logistic distribution to provide a simpler information-based weighting as an al-
ternative way to represent the eliteness of terms. The log-logistic distribution
(LGD) model bridges Language Models and the Divergence from Randomness
models.

More recently, the Divergence from Independence (DFI) framework has been
proposed by Kocabas et al [14]. The DFI framework is most related to the
DFR framework where the statistical independence takes place of the random-
ness. Rather than treating non-speciality words as random, DFI characterises
them by their independence i.e. does this term occur independently of this doc-
ument, or not? This alternative viewpoint means that DFI is essentially the
non-parametric counterpart of DFR. No assumptions are madea priori about
the distribution of underlying data. Therefore, if the data does not fit the pre-
scribed distribution (i.e. Poisson or Laplace) then the non-parametric approach
should work better, but even if it does, the non-parametric approach should work
just as well. These models are also parameter free - and do not require tuning.
In [14], the authors proposed three variants based on different measures of inde-
pendence (the saturated model of independence, the standardisation model, and
normalised Chi-Square distance). In [7], it was shown that the term weighting
scheme derived from these different methods performed empirically well (and
often the best at TREC). Since these schemes make no assumptions about the
distribution of the data, it is contested that they are fairer than other models,
and thus better. In this work, we shall test this claim.

To summarise, we have described a range of models that are related but make
different assumptions about how to model a term’s relevance. Most models are
composed of two main parts: one to estimate the value of the information content



of the term, and one to regulate the influence of the document’s length. Overly
focusing on one part or another, or ignoring one part invariably leads to some
form of bias creeping into the retrieval model.

3 Experimental Method
The focus of this study is to assess the level of bias exhibited by each retrieval
model/weighting, and then to determine whether there is any relationship be-
tween the level of bias and retrieval performance. Specifically, we wish to deter-
mine whether the recently proposed DFI models are fairer and better, as they
claim to be. To this end, we employed the following methodology. On each test
collection, and for each retrieval model/weighting, we measured the bias using
retrievability measures, and then measured the corresponding performance us-
ing the topics and relevance judgements associated with the collection. Below
we shall first outline the collections and topics used, before describing how we
estimated the bias and set of retrieval models/weightings we used.

3.1 Data and Materials
For our experiments we report results from four TREC collections: TREC 123
(T123), Aquaint (AQ), WT10G (WT) and DotGov (DG)2. These collections are
typical of the collections used to test the models outlined in Section 2, where
the focus is on creating the best term weighting scheme. These collections, while
sufficient, are not so large that it is not possible to estimate the bias associated
with each collection given each term weighting scheme (and parameter setting).
Table 1 shows the collections used along with their statistics. To report perfor-
mance we used a number of standard TREC measures: MAP, P@10, NDCG@100
and Mean Reciprocal Rank.

Collection
AQ TREC 123 DG WT

TREC Topics 301-400 1-200 551-600 451-550

Number of Documents 1,033,461 1,078,166 1,247,753 1,692,096

Number of Queries 273,245 237,810 337,275 212,201

Avg. Doc. Length
All 439 420 1108 617

Pool 623* 3913* 2056* 6737*
Relevant 583* 1280* 2175* 2903*

Avg. Doc. Info. Cont.
All 2.114 2.194 2.498 2.721

Pool 2.059* 2.115* 2.183* 2.626*
Relevant 2.00* 2.120* 2.082* 2.475*

Table 1. Summary of each Collection Statistics. * denotes whether the difference from
the whole collection is significant at p < 0.05.

3.2 Measuring Bias
The retrievability of a document provides an indication of how easily or likely a
document is to be retrieved, given a particular configuration of a retrieval sys-
tem [3]. Intuitively, if a retrieval system has a bias towards longer documents,

2 We also conducted these experiments on AP and TREC678 where we found similar
results and trends.



then we would expect that the retrievability of longer documents to be higher
than shorter documents, and vice versa. If a retrieval system tends to retrieve
documents with a higher information content, then we would expect to see that
the retrievability of such documents would be higher, and vice versa. Formally,
the retrievability r(d) of a document d is defined by: r(d) ∝

∑
q∈Q f(kdq, c)

where q is a query from a large set of queries Q, and kdq is the rank of document
d for query q. While there are various measures of retrievability, the simplest
is the cumulative based measure which defines f(kdq, c) to be equal to 1 if the
document d is retrieved in the top c results for the query q. The retrievability
of a document is essentially the count of how many times the document is re-
trieved in the top c results. The bias that the retrieval model exhibits on the
collection can be summarised by using the Gini Coefficient [10], which is com-
monly used to measure the inequality with a population (usually the wealth of
people in a population). In the context of retrievability, if all documents were
equally retrievable (i.e the retrieval function fairly retrieve all documents) then
the Gini Coefficient would be 0 (denoting equality within the population). Con-
versely if only one document was retrievable and the rest were not, then the
Gini Coefficient would be 1 (denoting total inequality). Usually, documents have
some level of retrievability for any given retrieval function, and thus the Gini
Coefficient is somewhere between 1 and 0. In [2], it was shown that for a given
retrieval model, if a retrieval function was tuned to minimise bias (represented
by the lowest Gini Coefficient) then this led to near optimal retrieval perfor-
mance. Similar relationships were shown in [22] for P@10 and MAP and in [4]
for recall based measures. However, here we examine the relationship between
retrieval bias and performance across the spectrum of retrieval models and term
weighting schemes as opposed to how bias changes when tuning a particular
retrieval model (as done in [2, 4, 22]).

Estimating the retrievability of the documents within a collection requires a
large number of queries. This is usually done by extracting all the bigrams from
the collection and then selecting the most frequent [2–4, 22]. We employed the
same method, but only selected those bigrams that appeared at least 20 times.
Table 1 shows the total number of queries used on each collection (approximately
250,000 queries per collection). These queries were then issued to the retrieval
system with a particular configuration (retrieval model/weighting/parameter
setting). Using the cumulative based retrievability with a cut-off c = 100, we
computed the retrievability of each document and subsequently the Gini Coeffi-
cient for each collection given the term weighting scheme.

3.3 Term Weighting Schemes
For our experiments, we used 17 term-weighting schemes stemming from the 6
model/frameworks presented in Section 2. The score assigned to a document
given a query is determined by: s(q, d) =

∑
t∈q s(t, d) where s(t, d) is the term

weighting assigned to term t in document d and q is the query which is com-
posed of sequence of terms. The following schemes were implemented within the
Lemur/Indri Framework3.

3 See www.projectlemur.org/. Code is freely available on GitHub.



The first four term weighting schemes we used were: (i) Term Frequency

(TF) where s(t, d) = n(t, d), (ii) Normalised TF (NTF) where s(t, d) = n(t,d)
n(d) ,

(iii) Term Frequency Inverse Document Frequency (TF.IDF) where s(t, d) =

n(t, d).idf(t), and (iv) Normalised TF.IDF (NTF.IDF) where s(t, d) = n(t,d)
n(d) .idf(t).

Here, n(t, d) is the number of times t occurs in a document d, n(d) is the to-
tal number of terms in a document, idf(t) = log N

df(t) where N is the number

of documents in the collection, and df(t) is the number of documents in which
t appears. The fifth weighting scheme employed was Pivoted Length Normali-
sation (PTF.IDF) [21] where a(d) is the average number of terms in d in the
collection, and b controls the level of normalisation (0 < b < 1):

s(t, d) =
n(t, d)

(1− b) + b.n(d)a(d)

.idf(t)

From the series of Best Match models [13] we employed BM25 (0 > b > 1),
BM11(b = 0) and BM15 (b = 1):

s(t, d) =
(k1 + 1).n(t, d)(

k1.(1− b) + b.n(d)a(d)

)
+ n(t, d)

.idf(t) (1)

From the space of Language Models we implemented three different smoothing
methods: Laplace smoothing (LP), which doesn’t take into consideration docu-
ment length normalisation and is similar to TF/NTF models (see Equation 2,
where α is the level of smoothing parameter, and V is the number of unique
terms in the collection); Jelinek Mercer Smoothing (JM) which is similar to the
TF.IDF/NTF.IDF models, again without any explicit document length normal-
isation (see Equation 3), where p(t, d) is the maximum likelihood estimate of

the probability of a term appearing in a document, i.e. p(t, d) = n(t,d)
n(d) , and p(t)

is the the maximum likelihood estimate of the probability of a term appearing
in the collection; and Bayes Smoothing with Dirichlet Prior (BS) which is often
the best performing Language Model [23] and has a β parameter which controls
the amount of length normalisation implicitly (see Equation 4).

s(t, d) =
n(t, d) + α

n(d) + V.α
(2)

s(t, d) = λ.p(t, d) + (1− λ).p(t) (3)

s(t, d) =
n(t, d) + β.p(t)

n(d) + β
(4)

From the Divergence from Randomness framework [1], we choose two of the best
performing models, DPH and PL2. DPH is parameter-free model:

s(t, d) =

(
1− p(t, d)

)2
n(t, d) + 1

.

(
n(t, d).N

n(t)
. log

(n(t, d).a(d)

n(d)

)
+

1

2
log
(

2π.n(t, d).
(
1− p(t, d)

)))
(5)

where n(t) is the number of times term t appears in the collection. While PL2
has a parameter c to control document length normalisation:



s(t, d) =
1

n2(t, d, c) + 1
.

(
n2(t, d, c).log2

(n2(t, d, c)

Λ(t)
+

(
Λ(t) +

1

12.n2(t, d, c)
− n2(t, d, c)

)
. log2 e+

1

2
log2(2π.n2(t, d, c)

)
(6)

where the second normalisation component n2(t, d, c) is equal to n(t, d). log2

(
1+

c.a(d)
n(d)

)
and the mean of the Poisson distribution is defined by Λ(t) =

∑
d n(t,d)

N .

As previously mentioned the Log Logistic Distribution (LGD) model [5] bridges
DFR and Language models and is defined as:

s(t, d) = log2

( d(t)
N + log2

(
n(t, d).(1 + c.a(d)

n(d) )
)

log2

(
n(t, d).(1 + c.a(d)

n(d) )
) )

(7)

where the c parameter controls the amount of smoothing (c > 0). Finally, we
explored three of the best Divergence from Independence models [7]): DFIa re-
ferred to as irra12a in [7] based on the saturated model of independence (see
Equation 8), and DFIb referred to as irra12b in [7] which is based on the stan-
dardisation model (see Equation 9):

s(t, d) = log2(1 +
(n(t, d)− e(t, d))2

e(t, d)
) (8)

s(t, d) = log2(1 +
(n(t, d)− e(t, d))√

e(t, d)
) (9)

where e(t, d) = n(t).n(d)
N.a(d) . The third model DFIc based on the normalised Chi-

Square measure of independence (referred to as irra12c in [7]):

s(t, d) =

((
n(t, d) + 1

)
. log2

(n(t, d) + 1√
ep(t, d)

)
− n(t, d). log2

( n(t, d)√
e(t, d)

))
.∆(t, d)

(10)where:

∆(t, d) =

(
n(d)− n(t, d)

n(d)

) 3
4

×
(
n(t, d) + 1

n(t, d)

) 1
4

and:

ep(t, d) =

(
n(t) + 1

)
.
(
n(d) + 1

)
N.a(d)

+ 1

Using this selection of retrieval models and term weighting-schemes we hypoth-
esised that we would observe a reduction in bias as the models evolved over
time from TF and TF.IDF to the more sophisticated DFR/DFI models. While
some of the models are parameter-free (i.e. TF, NTF, TF.IDF, NTF.IDF, DPH,
DFIa,DFIb and DFIc), we were required to estimate the free parameter for the
other models. To estimate the parameters, we explored a parameter sweep, and
selected the setting that resulted in the fairest or least biased model according to
the Gini Coefficient. Setting the model this way requires no recourse to relevance
judgements, and means that we can determine whether a model is capable of



AQ

Model Gini MAP P@10 NDCG MRR
TF 0.979 0.054 0.165 0.132 0.264

TF.IDF 0.977 0.071 0.180 0.148 0.296
NTF 0.971 0.034 0.057 0.039 0.122

NTF.IDF 0.967 0.048 0.086 0.061 0.175
PTF.IDF 0.956 0.063 0.122 0.094 0.227

BM25 0.544 0.162 0.316 0.263 0.478
BS 0.581 0.140 0.290 0.240 0.457
JM 0.669 0.125 0.253 0.206 0.436
LP 0.572 0.127 0.253 0.204 0.436

LGD 0.576 0.145 0.310 0.249 0.448
PL2 0.605 0.169 0.331 0.281 0.503

DPH 0.548 0.181 0.369 0.315 0.564
DFIa 0.612 0.173 0.349 0.297 0.519
DFIb 0.607 0.173 0.349 0.297 0.530
DFIc 0.610 0.135 0.274 0.226 0.439

Correlation -0.941* -0.909* -0.897* -0.925*

T123

Model Gini MAP P@10 NDCG MRR
TF 0.997 0.020 0.040 0.042 0.107

TF.IDF 0.997 0.025 0.048 0.050 0.122
NTF 0.977 0.017 0.031 0.030 0.060

NTF.IDF 0.974 0.024 0.048 0.045 0.085
PTF.IDF 0.957 0.047 0.165 0.164 0.277

BM25 0.575 0.122 0.301 0.307 0.478
BS 0.593 0.111 0.285 0.292 0.461
JM 0.664 0.049 0.253 0.253 0.401
LP 0.586 0.048 0.256 0.253 0.387

LGD 0.787 0.105 0.228 0.229 0.370
PL2 0.656 0.122 0.311 0.312 0.474

DPH 0.837 0.128 0.319 0.327 0.490
DFIa 0.781 0.126 0.319 0.326 0.484
DFIb 0.770 0.128 0.323 0.330 0.489
DFIc 0.690 0.111 0.278 0.285 0.449

Correlation -0.624* -0.807* -0.801* -0.811*

DG

Gini MAP P@10 NDCG MRR
0.987 0.011 0.018 0.021 0.074
0.987 0.014 0.026 0.029 0.094
0.975 0.017 0.032 0.031 0.067
0.971 0.024 0.038 0.040 0.099
0.970 0.049 0.088 0.087 0.160
0.614 0.167 0.222 0.277 0.479
0.637 0.151 0.210 0.257 0.455
0.666 0.108 0.172 0.213 0.410
0.632 0.109 0.166 0.208 0.406
0.715 0.130 0.188 0.228 0.427
0.803 0.182 0.220 0.271 0.440
0.869 0.149 0.196 0.244 0.425
0.870 0.153 0.194 0.243 0.426
0.868 0.154 0.196 0.245 0.426
0.807 0.139 0.196 0.235 0.410

- -0.686* -0.759* -0.765* -0.808*

WT10G

Gini MAP P@10 NDCG MRR
0.996 0.023 0.059 0.064 0.140
0.996 0.030 0.085 0.084 0.169
0.979 0.010 0.006 0.008 0.020
0.975 0.015 0.022 0.017 0.051
0.972 0.031 0.083 0.069 0.115
0.670 0.094 0.183 0.176 0.313
0.657 0.098 0.167 0.160 0.265
0.680 0.058 0.128 0.127 0.260
0.653 0.056 0.126 0.124 0.250
0.816 0.096 0.120 0.107 0.218
0.776 0.098 0.187 0.189 0.318
0.872 0.121 0.226 0.228 0.409
0.859 0.116 0.194 0.198 0.379
0.854 0.116 0.194 0.198 0.379
0.754 0.118 0.194 0.201 0.385

- -0.554* -0.597* -0.570* -0.563*

Table 2. Performance values along with Gini scores for each model. The final rows
report the correlation between each performance measure and Gini. * denote whether
the correlation is significant at p < 0.05.

being the fairest. Furthermore, prior work has shown that setting the model this
way is close to optimal [22], we therefore believe that this is an appropriate way
to determine which model is the fairest, and to see if it also is the best.

With BM25 we used 11 parameter settings for b between 0.0 and 1.0 increas-
ing in steps of 0.1 (where BM11 is when b = 0 and BM15 is when b = 1). For
PL2 and LGD we set parameter c to values between 1 and 10 but also included
0.1 and 100 to test the extremes. For Bayes (BS) and Laplace (LP), we set their
respective smoothing parameters (β and α) to: 1, 10, 100, 500, 1000, 2000, 3000,
5000 and 10000 while on Jelinek Mercer and PTF.IDF we set their respective
parameters (λ and c) between 0.1 and 0.9 increasing in steps of 0.1.

Overall, this resulted in 81 different configurations given the 17 term weight-
ing schemes. With four collections and approximately 250,000 queries per col-
lection, this amounted to well over 80 million queries being issued to generated
the data for the results reported here.

4 Results and Analysis
Table 2 shows the bias (expressed by the Gini Coefficient, where lower is fairer)
along with the performance associated with each model for each of the collec-
tions. For each measure we calculated the Pearson’s correlation with Gini (where
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Fig. 1. AQ (Left) & WT (Right): Gini vs. MAP across the range of retrieval models.

an ∗ denotes whether the result was statistically significant at p < 0.005). For
all the collections and measures we see that a moderate to high negative corre-
lation exists between bias and performance (and is significant in most cases). To
provide an impartial presentation of the results, Figure 1 shows a plot of Gini
versus MAP for AQ (where the strongest correlations were observed) and WT
(where the weakest correlations were observed). On AQ, we see that the fairest
model also obtains the best MAP, while on WT the fairest model is mediocre at
best. From the plots and tables, we can also see that the DFI models were not
the fairest models, but they are all reasonably effective (and the best performing
model on T123, and second best on AQ and WT) with the DFIb term weighting
scheme performing the best out of all DFI models. It is also apparent from the
plots that there are two main groups: the TF/TF.IDF based models which don’t
explicitly perform document length normalisation and the other models, which
do. Within this second group, however, the relationship is bit more complicated,
as can be seen from the WT plot in Figure 1. On WT, without the TF/TF.IDF
models the correlation would appear to be positive.

To explore the relationship between models further and to see what docu-
ment features they make more or less retrievable, we plotted the retrievability of
documents versus document length (and versus average information content of
a document4). This was done by sorting the documents according to the length
or information content, then grouping documents into buckets we calculated the
average length (information content) and the average retrievability. The results
are plotted in Figure 2 for both AQ and WT.

The first observation we can make here is to see that on TF.IDF (blue trian-
gles) longer documents are much more retrievable than shorter documents. How-
ever, when TF is normalised (NTF.IDF shown as yellow triangles), the trend is
reversed and shorter documents become highly retrievable. It is clear that most
of the bias associated with these models stems from the lack of length normal-
isation, similar and corresponding patterns were observed for TF and NTF. Of
note, is the erratic shape of the plot of information content versus retrievability
for TF.IDF (blue triangles), suggesting that the term weighting is not particular
robust or consistent when compared to other models.

4 This was calculated by summing the TF.IDF scores of the all the terms in the
document and then dividing by the document’s length.
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Fig. 2. AQ (Left) & WT (Right) R(d) vs length (top), R(d) vs average information
content (bottom).

As previously mentioned, BM25 is consistently the fairest model. If we ex-
amine the length plots then we can see that across the different lengths BM25
(purple triangles) tends not to overly favour longer documents when compared
to the other retrieval models (though has a tendency to favour average length
documents). In terms of information content, BM25 provides about the same
level of retrievability. Given these plots, it is clear why BM25 is the fairest.

On AQ, we see that DPH (red squares) tends to be very similar to BM25 and
very fair in terms of length. However, on WT, DPH clearly favours documents
proportional to their length such that longer documents are much more retriev-
able. If we examine Table 1, we can see that relevant documents in WT are also
much longer - so this bias seems to improve the performance. PL2 (black stars)
shows a similar bias toward longer documents, however it is somewhat mitigated
when compared to DPH because it has a parameter that can be tuned.

With respect to the Divergence From Independence Models, we have plotted
the best performing model, DFIb (green circles). Much like the DFR models,
on AQ the model is quite fair across document lengths. However, when applied
to the web collections which have much more varied lengths, the DFIb (and
the other DFI models) tend to make longer documents more retrievable. On
the information content plots, DFIb also favours documents which have lower
information content. This perhaps, is to be expected as longer documents tend
to have lots of non-informative words which reduces their overall average infor-
mation content.



On WT, in particular, models that favour documents that are longer and that
contain less information content on average, tend to perform much better than
the fairer models (i.e. DPH, PL2 and DFI all outperform BM25). To examine
why this is the case we examined the length and information content of docu-
ments in the collection, the pool of judged documents the relevant documents.
Table 1 reports the mean values for each collection. To determine whether rele-
vant documents and pooled documents were different, either in terms of length
or information content, compared to other documents in the collection, we per-
formed un-paired t-tests. We found that relevant/pooled documents in these test
collections were longer and had lower information content (this was significantly
so). These results suggest that the pools are not representative of the collection,
a finding which was also shown in [15]. Interestingly however, as the differ-
ence between the average document length (and average information content) of
the collection and the relevant/pooled documents becomes larger, the lower the
correlation between fairness and performance. It is an open question whether
relevant documents are actually longer and/or lower in information content, or
whether this is an artefact of the test collection creation process. Nonetheless,
we observe that when the relevant documents are more like the collection, fairer
is better, as witnessed on the AQ collection.

5 Summary and Conclusions
In this paper, we have measured the retrieval bias of a spectrum of retrieval
model/weightings to determine which model is the fairest. While we have ob-
served that there is strong correlation between fairness and performance, tai-
loring the model to the nuances of the test collection invariably leads to better
performance at the expense of making certain documents less retrievable. With-
out test collections which are representative of the underlying documents, it is
hard to definitely say whether doing so is a good thing or bad thing. However,
without knowing what documents are likely to be relevant (or what their char-
acteristics are) in advance, the most sensible way to select a model/weighting is
to choose the one that is the fairest, then as usage data is obtained to tune the
system accordingly. In this sense, BM25 generally exhibits the least bias on the
collection, while delivering competitive retrieval performance. This is quite re-
markable given all the subsequent models developed. This work prompts further
research questions: (i) how do we optimise performance given such biases, (ii)
how do we make more representative test collections, (iii) what is the impact of
such biases on future sets of queries (i.e. what if shorter and more informative
documents were more likely to be relevant), and (iv) if the performance measures
took into account document length and utility (such as Time Biased Gain and
the U-Measure), would fairer lead to better?
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