
Evaluating FPGA-acceleration for Real-time
Unstructured Search

SaiRahul Chalamalasetti, Martin Margala, Wim Vanderbauwhede+, Mitch Wright*, Parthasarathy Ranganathan#

University of Massachusetts Lowell, Lowell, MA, USA *Hewlett Packard, Houston, TX USA
+University of Glasgow, Scotland, UK #Hewlet Packard Labs, Palo Alto, CA, USA

Abstract—Emerging data-centric workloads that operate on
and harvest useful insights from large amounts of unstructured
data require corresponding new data-centric system architecture
optimizations. In particular, with the growing importance of
power and cooling costs, a key challenge for such future designs
is to achieve increased performance at high energy efficiency.
At the same time, recent trends towards better support for re-
configurable logic enable the use of energy-efficient accelerators.
Combining these trends, in this paper, we examine the applica-
bility of acceleration in future data-centric system architectures.
We focus on an important class of data-centric workloads, real-
time unstructured search, or information filtering, where large
collections of documents are scored against specific topic profiles,
and present an FPGA-based implementation to accelerate such
workloads. Our implementation, based on the GiDEL PROCStar
IV board using Altera Stratix IV FPGAs, demonstrates excellent
performance and energy efficiency, 20 to 40 times better than
baseline server systems for typical usage scenarios. Our results
also highlight interesting insights for the design of accelerators
in future data-centric systems.

I. INTRODUCTION

The amount of digital data is growing exponentially, even
outpacing Moore’s law. A recent report [1] estimated (conser-
vatively) that enterprise servers processed and moved over 9
zettabytes (1 zettabyte = 1021 bytes) in 2008; this number is
projected to double every two years. An increasing amount of
this data growth is attributed to unstructured or semi-structured
data such as, documents, web pages, images, videos, etc. For
example, Youtube reports that more than 13 million hours of
video were uploaded in 2010 alone, and approximately 48
hours of video continue to be uploaded every minute. Face-
book estimates more than 100 TB of log data generated every
day. This explosive growth in data has led to a corresponding
growth in new workloads – consumer, enterprise, scientific – to
collect, store, access, visualize, analyze, and interpret all this
new information. Some recent examples include search, live
business analytics, social correlation, collaborative filtering,
etc. A common characteristic of these emerging workloads
is the need to achieve better performance for deeper insights
at larger scale (and lower costs).

At the same time, power and cooling have become important
constraints in the design and operation of data centers. Many
cloud data centers ("warehouse-scale computers" [2]) report-
edly spend millions of dollars every month in electricity costs,
and face significant challenges in the design of the associated
power delivery and cooling infrastructure. Also, the energy
consumption of such computing equipment has a significant

environmental impact in terms of unwanted carbon emissions
and destruction of natural resources. Several recent initiatives,
from both governmental agencies like the EPA and industry
consortiums like the Green Grid, now seek to address the
environmental impact of datacenter operation.

The combination of these two trends motivates the need
for new energy-efficient system designs for future data-centric
workloads. Given the parallelism in many data-centric algo-
rithms, FPGA-based acceleration can potentially help achieve
these goals. Additionally, several other recent trends also
motivate a focus on FPGAs. First, FPGA platforms are gaining
adoption in the enterprise market, as evidenced by recent
products from Fusion-IO and Netezza (IBM), and the grow-
ing adoption of FPGAs in the high-performance computing
community [3], [4], [5]. Also, many vendors have recently
announced products that support better integration of FPGAs
and general-purpose CPUs, such as Xilinx’ Extensible Pro-
cessing Platform, Altera’s Embedded Initiatives with ARM
dual-core Cortex-A9 processors, and the Intel E600C products
with integrated Atom cores and FPGAs. In addition, several
vendors (e.g., the GiDEL PROCStar or PLDA XpressGX4
development platforms) now provide pre-defined modules for
interfaces and common functions that significantly simplify
the porting of algorithms to FPGA-based accelerators.

We therefore evaluate the potential of FPGA-based accel-
eration for energy-efficient data-centric system design. We
focus on an important class of data-centric workloads – real-
time unstructured search, or information filtering, where given
a set of information needs, documents are matched against
topic profiles. This task is representative of a large class
of important data-centric workloads, for example detecting
spam, comparing patent applications against existing patents,
monitoring communications for terrorist activity, news story
topic detection and tracking, etc. We present an FPGA de-
sign to accelerate the computationally intensive part of this
workload and implement our design on an existing FPGA
platform (GiDEL PROCStar + Altera Stratix IV). Our results
show that even a conservative FPGA design can achieve high
performance at low power – nearly 800 million terms/second
with 6W per FPGA chip – and with a relatively small
utilization of the FPGA (4% logic utilization and 22% memory
utilization). Compared to baseline server systems, our FPGA
implementation shows significantly higher performance and
energy efficiency, 20 to 40 times for typical usage scenarios,
and lesser variation to changes in input parameters such as the
document and profile sizes.

The rest of the paper is organized as follows. Section II
discusses our choice of workload and describes the algorithm
we focus on. Section III describes our FPGA platform and
our design. Section IV presents our evaluation results and our
analyses. Section V discusses related work, and Section VI
concludes the paper.

II. REAL-TIME UNSTRUCTURED SEARCH

A. Choice of Workload
There is a rich diversity in data-centric workloads and

how they work with data. Of the various operations that can
be performed on data – collect and distribute, maintain and
manage, organize and analyze – in this paper, we mainly focus
on the last category. There are different classes of operations
associated with organization and analysis of data including ad-
hoc retrieval, classification, clustering, and filtering. However,
fundamentally, all of these tasks require the matching between
information items and information needs; for example, a user
query or a pre-determined profile matched against data content.
Representative of these operations, in this paper, we focus on
real-time unstructured search or information filtering where
given a collection of unstructured data sources (e.g., docu-
ments), we identify the match to a pre-determined weighted
feature vector profile (e.g., topic signatures, keywords). With
the growing increase in unstructured and semi-structured data,
this class of workloads is likely to be more important in the
future. Some example applications include searching patent
repositories for related work comparison, searching emails and
sharepoints for enterprise information management, detecting
spam in incoming emails, monitoring communications for
terrorist activity, news story topic detection and tracking,
searching through books, images, and videos for matching
profiles.

B. Algorithm Description
In this work, we employ the model proposed by Lavrenko

and Croft [6] for our algorithm. Applied to the task of
information filtering, the idea is that the odds of an incoming
document being relevant to a topic profile is determined using
a generative probabilistic language model. If a document
scores above a user defined threshold then it is considered
relevant to the topic profile. The algorithm we implement can
be expressed as follows:
• Each document is modeled as a “bag of words”, i.e. a

set D of pairs (t, f) where f , n(t, d) is the number of
occurrences of the term t in the document d; t ∈ N is the
term identifier. We assume all documents are converted
to the bag of words representation through one prior
offline sequential pass. (This approach is also followed
by the Google n-gram project [7].) Note that a “term”
can correspond to a single word, a n-gram, or a fixed
sequence of n words. Inclusion of bigrams and trigrams,
removal of stop words and stemming (reducing words to
their root) leads to better search results.1

1Note that the inclusion of n-grams makes our vocabulary size much larger
than expected. For example, the Oxford Dictionaries FAQ indicates about a
quarter of a million distinct English terms, but the vocabulary size for our
collection is 16 million terms.

• The profile M is a set of pairs p = (t, w) where
the weight w , log

(
(1−λ)P (t|M)

P (t) + λ
)

. Typically, a
bayesian algorithm is used offline to precompute the
profile based on specific user requirements.

• For T , a set of terms occurring both in D and M , the
score of a given document against a given profile is then
given by:

score(D,M) =
∑
∀k∈T

fkwk (1)

This function is representative of the dominant kernel of most
filtering algorithms, the main difference being the weighting of
terms in profiles. For example, the kernel can be used for Naïve
Bayes spam filtering, Support Vector Machine classification,
Relevancy Feedback information filtering and even image
recognition.

III. FPGA IMPLEMENTATION

A. Platform

We implemented our algorithm on the GiDEL PROCStar-
IV development board (Figure 1). This system provides an
extensible high-capacity FPGA platform and supports the
GiDEL PROC-API library-based developer kit for interfacing
with the FPGA.
Hardware. Each board contains four Altera Stratix-IV 530
FPGAs running at 150MHz. Each FPGA supports a five
level memory structure, with three kinds of memory blocks
embedded in the FPGA:
• 6,640 MLAB RAM blocks (320 bits each),
• 1280 M9K RAM blocks (9K bits each), and
• 64 M144K blocks (144K bits each)

and two kinds of external DRAM memory:
• 512 DDR2 SDRAM on-board memory (Bank A) and
• two 2GB SODIMM DDR2 DRAM memories (Bank B

and Bank C).
The embedded FPGA memories run at a maximum frequency
of 300MHz, Bank A, Bank B and Bank C at 667MHz. The
FPGA-board is connected to the host platform via a PCI
Express bus. The host computer transfers data to the FPGA
using 32-bit DMA channels. We studied two different host
systems: a system based on HP BL460 blade servers with
quad-core 64-bit Intel Xeon X5570 at 2.93GHz and 3.5GB
DDR2 DRAM memory, running 32-bit Windows XP, and a
second system based on a dual-core 64-bit Intel Atom board
at 1 GHz with 4GB DDR2 DRAM memory, running 64-bit
Ubuntu GNU/Linux; in this paper, we primarily focus on the
former.
Development environment. FPGA-accelerated applications
for the PROCStar board are implemented in C++ using the
GiDEL PROC-API libraries for interacting with the FPGA.
This API defines a hardware abstraction layer that provides
control over each hardware element in the system – for
example, Memory I/O is implemented using the GiDEL Mul-
tiFIFO and MultiPort IPs. To achieve optimal performance,
we implemented the FPGA algorithm in VHDL (as opposed
to Mitrion-C). The Altera Quartus toolchain is employed to
create the bitstream for the FPGA.

Figure 1. Block diagram of FPGA platform and photograph of experimental hardware

B. FPGA Implementation Description

Figure 2 presents the overall workflow of our implemen-
tation. The input stream of document term pairs is read
from the two SDRAM blocks via a FIFO. A Bloom filter
is used to discard negatives (terms that do not appear in the
profile) for multiple terms in parallel. Profile weights are read
corresponding to the positives, and the scores are computed
for each term in parallel and accumulated to achieve the final
score described in Equation 1. Below, we describe the key
modules for the implementation: document streaming, profile
negative hit filtering, and profile lookup and scoring.
Document streaming. Using a bag-of-words representation
(see Section II-B) for the document, the document stream is a
list of (document id, document term tuple set) pairs. Physically,
the IO width of the FPGA is 64 bits for each SDRAM memory.
As the SDRAM is clocked at 667 MHz, the ProcMultiPort
FIFO combines two contiguous 64-bit words into a single 128-
bit word for each memory bank. The document term tuple
di = (ti, fi) can be encoded in 32 bits: 24 bits for the term id
(supporting a vocabulary of 16 million terms) and 8 bits for
the term frequency, so the algorithm can process 8 terms (256
bits) in parallel. To mark the start and end of a document we
insert a marker word (64 bits) followed by the document id
(64 bits).
Profile negative hit filtering. For every term in the document,
the application needs to look up the corresponding profile
term to obtain the term weight. As the profile is stored in
the external SDRAM, this is an expensive operation (typically
20 cycles per access). The purpose of document filtering is
to identify a small amount of relevant documents from a very
large document set. As most documents are not relevant, most
of the lookups will fail (i.e. most terms in most documents will
not occur in the profile). Therefore, it is important to discard
the negatives first. For this reason, we implemented a Bloom
filter in the FPGA’s on-chip MRAM (M9K blocks).

a) “Trivial” Bloom Filter : A Bloom filter [8] is a data
structure used to test membership of a set. False positives are
possible, but false negatives are not. In this context, the design
we use to reject negatives is a Bloom filter. However, in most
cases a Bloom filter uses a number (k) of hash functions to
compute several keys for each element in the set, and adds the
element to the table (assigns a “1”) if element is in the set.
As a result, hash collisions can lead to false positives.

Our Bloom filter is a “trivial” edge case of such a more
general implementation: our hashing function is the identity
function key = elt, and we only use a single hash function
(k = 1) so every element in the set corresponds to exactly
one entry in the Bloom filter table. As a result, the size of the
Bloom filter is the same as the size of the set and there are
no false positives. Furthermore, no elements are added to the
set at run time.

b) Bloom Filter Dimensioning: The internal block RAMs
of Altera Stratix-IV FPGA that support efficient single-bit ac-
cess are M9K memory modules (around 1280 blocks available
on Stratix-IV 530 FPGA). The current generation of the Bloom
Filter is limited to 4Mb; however, for future work, we will port
our design to an 8Mb Bloom Filter to use all 1280 M9K blocks
[9].On the other hand, the vocabulary size of our document
collection is 16M terms (based on English documents using
unigrams, diagrams and trigrams). We therefore used a very
simple “hashing function”, key = elt � 2. Thus we obtain
one entry for every four elements, which leads to three false
positives out of four on average. This obviously results in a
four times higher access rate to the external memory than if
the Bloom filter would be 16 Mb. As the number of positives
in our application is very low, the effect on performance is
limited. The higher internal bandwidth of the MRAMs leads
to very fast rejection of negatives. Although the MRAM is fast,
concurrent lookups lead to contention. To reduce contention
we designed a distributed Bloom filter. The Bloom filter
memory is distributed over a large number of banks (16 in the

Figure 2. Overall block diagram of FPGA implementation.

Figure 3. Parallelizing lookups using a multi-bank Bloom filter

current design) and a cross-bar switch connects the document
terms streams to the banks. In this way contention (when
multiple tuples access same bank) is significantly reduced.
Profile lookup and scoring. Because of the need for lookup,
the profile must be implemented as some type of map (dic-

tionary). A hash function is an obvious approach; however,
as the size of the profile is not known in advance, it is
impossible to construct a perfect hash; imperfect hashes suffer
from collisions which deteriorate the performance. When the
key space is very large, the contention probability is high.

Our solution is simply to use the term id as the memory
address and to implement the weight lookup from the profile
as a content-addressable data structure from the on-board
SDRAM (Bank A). As the upper limit to the vocabulary size
in our case is 16 million terms, we require 128MB of memory;
the PROCStar-IV provides 512MB of on-board SDRAM. Note
that it is possible to increase the vocabulary size to exceed the
memory capacity, with a very low performance penalty [10].

Using the lookup table architecture and document stream
format as described above, the actual lookup and scoring
system is quite straightforward: the input stream is scanned
for header and footer words. The header word action is to set
the document score to 0; the footer word action is to collect
and output the document score. For every two terms in the
document, first, the Bloom filter is used to discard negatives
and then the weights corresponding to positives are read from
the SDRAM. The score is computed for each of the terms in
parallel and added. The score is accumulated for all terms in
the document and finally the score stream is filtered against
a limit before being output to the host. Figure 4 summarizes
the implementation of the profile lookup and scoring.

Discussion. The implementation above leverages the advan-
tages of an FPGA-based design, in particular the memory

Figure 4. Implementing profile lookup and scoring.

architecture of the FPGA; on a general-purpose CPU-based
system it is not possible to create a very fast, very low-
contention Bloom filter to discard negatives. Also, a general-
purpose CPU-based system only has a single, shared memory.
Consequently, reading the document stream will contend for
memory access with reading the profile terms, and as there is
no Bloom filter, we have to look up each profile term. (We
could of course implement a Bloom filter but as it will be
stored in main memory as well, there is no benefit: looking
up a bit in the Bloom filter is as costly as looking up the term
directly). Furthermore, the FPGA design allows for lookup and
scoring of several terms in parallel.
FPGA utilization details. Our implementation used only
17,652 of the 424,960 Logic Elements (LEs) or a 4% uti-
lization of the logic in the FPGA, and 4,579,824 out of
21,233,664 bits for a 22% utilization of the RAM. Of the
17,652 LEs utilized by whole design on the FPGA, the actual
Document Filtering algorithm only occupied 4,561 LEs, which
is less than 1% of utilization, and rest was used by the
GiDEL Memory IPs. The memory utilized for the whole
design (4,579,824 bits) was mainly for the Bloom Filter
that is mapped on Embedded Memory blocks (i.e., M9k).
The Quartus PowerPlay Analyzer tool estimates the power
consumption of the design to be 6W. The largest contribution
to the power consumption is from the memory I/O.

IV. EVALUATION RESULTS

Below, we discuss our evaluation results. We first discuss
our experimental methodology, and then present data sum-
marizing the performance of our FPGA implementation and
comparison with non-FPGA-accelerated baselines, and finally
conclude with the learnings from our experiments.

A. Creating Synthetic Data Sets

To accurately assess the performance of our FPGA im-
plementation, we need to exercise the system on real-world

Avg. Avg.
Collection # Docs Doc. Len. Uniq. Terms
Aquaint 1,033,461 437 169
USPTO 1,406,200 1718 353

EPO 989,507 3863 705

Table I
SUMMARY STATISTICS FROM REPRESENTATIVE REAL-WORD

COLLECTIONS THAT WE USED AS TEMPLATES FOR OUR SYNTHETIC DATA
SETS.

input data, however it is hard to get access to such real-
world data: large collections such as patents are not freely
available, and governed by licenses that restrict their use. For
example, although the researchers at Glasgow have access to
the TREC Aquaint collection and a large patent corpus, they
are not allowed to share these with a third party. In this paper,
therefore, we use synthetic document collections statistically
matched to real-world collections. Our approach is to leverage
summary information about representative data-sets to create
corresponding language models for the distribution of terms
and the lengths of documents; we then use these language
models to create synthetic data sets statistically identical to
the original data sets. In addition to addressing IP issues,
synthetic document collections have the advantages of being
fast to generate, not taking up large amounts of disk space and
easy to experiment with.
Real-world document collections. We use summary infor-
mation from several document collections – a newspaper
collection (TREC Aquaint) and two collections of patents
from the US Patent Office (USPTO) and the European Patent
Office (EPO). These collections provide good coverage on the
impact of different document lengths and sizes of documents
on filtering time. We used the Lemur2 Information Retrieval
toolkit to determine the rank frequency distribution for all the
terms in the collection. Table I shows the summary data from
the collections we studied as templates.
Modeling distributions of terms. It is well known (see e.g
[11]) that the rank-frequency distribution for natural language
documents is approximately Zipfian:

f(k; s;N) =
1/ks∑N
n=1 1/n

s

where f is frequency of term with rank k in randomly
chosen text of natural language, N is number of terms in the
collection, and s is an empirical constant. If s > 1, the series
becomes a value of a Riemann ζ-function and will therefore
converge. This type of distribution approximates a straight
line on a log-log scale. Consequently, it is easy to match this
distribution to real world data with linear regression.

Special purpose texts (scientific articles, technical instruc-
tions, etc.) follow variants of this distribution. Montemurro
[12] has proposed an extension to Zipf’s law which better
captures the linguistic properties of such collections. His
proposal is based on the observation that in general, after some
pivot point p, the probability of finding a word of rank r in
the text starts to decay much faster than in the beginning. In

2www.lemurproject.org

other words, in log-log scale, the low-frequency part of the
distribution has a steeper slope than the high-frequency part.
Consequently, the distribution can be divided into two regions
each obeying the power law, but with different slopes:

F (r) =

{
a1r + b1 r < p

a2r + b2 otherwise

We determine the coefficients a1, a2, b1, b2 from curve-
fitting on the summary statistics from the real-world data
collections. Specifically, we use the sum of absolute errors
as the merit function combined with a binary search to obtain
the pivot. We then use a least-squares linear regression, with
χ2 statistics as a measure of quality (taken from [13]). A final
normalization step is added to ensure that the piecewise linear
approximation is a proper probability density function.
Modeling document lengths. Document lengths are sampled
from a truncated Gaussian. The hypothesis that the document
lengths in our template collections have a normal distribution
was verified using a χ2 test with 95% confidence. The sampled
values are truncated at the observed minimum and maximum
lengths in the template collection.

Once the models for the distribution of terms and document
lengths are determined, we use these models to create synthetic
documents of varying lengths. Within each document, we
create terms that follow the fitted rank-frequency distribution.
Finally, we convert the documents into the standard bag-
of-words representation, i.e., as a set of unordered (term,
frequency) pairs.

B. Experimental Parameters

Statistically, the synthetic collection will have the same
rank-frequency distribution for the terms as the original data
sets. Consequently, the probability that a term in the collection
matches a term in the profile will be the same in the synthetic
collection and the original collection. The performance of
the algorithm on the system now depends on (1) the size
of the collection, (2) the size of the profile, and (3) the
"hit probability" of the bloom filter, i.e., the probability that
the profile corresponding to a term has a non-zero weight.
To evaluate these effects, we studied a number of different
configurations - with different document sizes, different profile
lengths, and different profile constructions. Specifically, we
studied profile sizes of 4K, 16K, and 64K terms, the first two
are of the same order of magnitude as the profile sizes for
TREC Aquaint and EPO as used in our previous work [10] and
the third, larger profile was added to investigate the impact of
the profile size. We studied two different document collections:
128K documents of 2048 terms, which is representative for
the patent collections, and 512K documents of 512 terms,
similar to the Aquaint collection. Note that the total size of
the collection is not important for the performance evaluation:
for both the CPU and FPGA implementation, the time taken
to filter a collection is proportional to its size.

We evaluated four ways of creating profiles. The first way
(“Random”) is by selecting a number of random documents
from the collection until the desired profile size is reached.
These documents were then used to construct a relevance

Case #Cycles/Term
Best Case 0.125

Worst Case 27
Full Bloom Filter Contention 1.2

External Access 18

Table II
FPGA CYCLE COUNTS FOR DIFFERENT CASES

model. The relevance model defined the profiles which each
document in the collection was matched against (as if it were
being streamed from the network). The second type of profiles
(“Selected”) was obtained by selecting terms that occur in
very few documents (less than ten in a million). This is most
representative of real-world usage, and we hence focus on
these types of profiles in our results. For our performance
evaluation purpose, the main difference between these profiles
is the hit probability, which was 10−5 for the “Random”
profiles and 5.10−4 for the “Selected” profiles. For reference,
we also compared the performance against an “empty” profile
(one that results in no hits) and a “full” profile (where
every term is a hit). While “empty” and “full” are unrealistic
scenarios, they help in bracketing the benefits from our design.

C. FPGA Performance Results

FPGA baseline performance. The performance of the FPGA
was measured using a cycle counter. The latency between
starting the FPGA and the first term score is 22 cycles. For the
subsequent terms, the delay depends on a number of factors.
We considered four different cases:
• “Best Case”: no contention on the Bloom filter access

and no external memory access
• “Worst Case”: contention on the Bloom filter access and

external memory access for every term
• “Full Bloom Filter Contention”: contention on the Bloom

filter access for every term but no external memory access
• “External Access”: no contention on the Bloom filter

access, external memory access for every term
These cases were obtained by creating documents with con-
tending/not contending term pairs and by setting all Bloom
filter bits to 0 (no external access, which corresponds to an
empty profile) or 1 (which correspond to a profile that would
contain all terms in the vocabulary).

The results are shown in Table II. As we read 8 terms in
parallel, the Best Case demonstrates that the FPGA works at
I/O rates.

As explained earlier, the Bloom filter contention depends
on the number of Bloom filter banks (16 in the current
design). The probability for external access depends on the
actual document collection and profile, but as the purpose of
a document filter is to retrieve a small set of highly relevant
documents, this probability is typically very small (<0.00001),
as demonstrated by the experiments discussed in the next
section. Consequently, the typical performance is determined
by the cycle counts for Best Case and Bloom Filter Contention.
At a clock speed of 150 MHz this results in a throughput of
772 million terms per second (772 MT/s) per FPGA.

Full workload results. Table III presents performance results
for our FPGA implementation for various workload types.
Focusing on a selected profile of 16K terms for 128K doc-
uments, our measured performance (shown in column 4) is
3090 million terms/second for the FPGA system (772 million
terms/second per FPGA). Table III also shows the sensitivity
to various other parameters. The performance of the FPGA
design is comparable for different profile sizes and document
sizes. However, as expected, the performance varies based on
different hit probabilities for different profiles. In particular,
there is a big drop-off in performance with the full profile,
which is expected, as this profile has a hit probability of 1.
Note that as discussed earlier, this is a very artificial case (since
it requires the profile to be identical to the entire vocabulary
of the collection), but helps provide bounds on our benefits.

D. Comparison with baseline
To compare the FPGA performance against a conventional

CPU, we ran the experiments discussed in Section IV-A on
an optimized multi-threaded reference implementation, written
in C++, compiled with g++ with optimization -O3, and run
on two different platforms: System1 has an Intel Core 2 Duo
Mobile E8435, 3.06 GHz and 8GB RAM, 1067 MHz bus;
System2 has an quad-core Intel Core i7-2600, 3.4 GHz, with
16GB RAM, 1333MHz bus. These higher memory baselines
are required to enable sufficient memory for the algorithm.
We keep the entire data set in memory because the memory
I/O is much higher than the disk I/O. (We could of course run
the algorithm several times on smaller data sets but then in
that case the time required to read the data from disk would
dominate the performance.)

While an in-memory approach might not be practical on a
CPU-based system, on the FPGA-based system, this is entirely
practical as the PROCStar-IV board has a memory capacity of
32GB. For example, the Novo-G FPGA supercomputer, which
hosts 24 PROCStar-IV boards, can support a collection of
768GB. Note also that the format in which the documents
are stored on the disk is a very efficient bag-of-words rep-
resentation, which is much smaller than the actual textual
representation of the document.
Performance. The results are summarized in Table III. For
example, focusing on one example case, for the selected
profile with 64K terms and 1M documents, compared to
the 3090 million terms/second performance achieved by our
design, System2 system achieves 136 million terms/second and
System1 system achieves 82 million terms/sec. This translates
to a 38× speedup for the FPGA-based design relative to
System1 system and a 23× speedup relative to System2 system.

Additionally, examining the results for various workload
configurations, the FPGA’s performance is relatively constant
across different workload inputs apart from the "Full” profile.
This bears out the rationale for our design: because in general
hits are rare, the FPGA works at the speed determined by
I/O and Bloom Filter performance. The artificial “Full” profile
results in all terms being a hit, and thus the performance for
that case is determined by the external memory access. Unlike
the FPGA-based design, the System2 system sees more vari-
ation in performance with profile size (degraded performance

with increased profile size) and document size (degraded
performance with larger documents) and a bigger drop-off in
performance between various profile types compared to the
FPGA-based design.
Performance-per-Watt. We also measured the power con-
sumption of our systems using the WattsUp Pro power meter.
The measured power consumption for the maximum number
of threads (Table IV) is 67W for System1, 141W for System2.
In contrast, the FPGA-based design consumes 81W (35W of
which is consumed by the host system). Clearly, the FPGA-
based design achieves improved energy efficiency compared
to the baselines. The FPGA-based design achieves energy-
efficiency improvements of 31× and 40× for the System1 and
System2 respectively. Though the FPGA speedup relative to
System1 was higher than that relative to System2, the overall
energy-efficiency improvements are very similar. Our results
illustrate the potential improvements in performance and en-
ergy efficiency relative to traditional baseline implementations.
Performance versus Cost. We use the cost model presented in
[14], which computes the equivalent monthly cost of running
a large data center.

The cost for space, power and cooling is calculated as

cSPC = ucS .nuS + (1 +K1 + L1 +K2L1).ucP .nuP (2)

with uc the unit costs (i.e. $/sqft/month for space,
$/W/month for power/cooling) and nu the number of units
(sqft resp. W). The factors K1, K2, L1 represent power
and cooling burdening and load, as explained in the pa-
per. Typical values are $1000/month for space per rack and
$0.072/W/month for power.

The cost ITdep for the servers is calculated assuming
$100,000 per rack with a 3-year estimated lifetime. The
monthly cost for software, licensing and personnel on a
per-rack basis is estimated at $10,000. We assume similar
assumptions to Shah and Patel’s work [14] for server costs
($2500) and overheads and use the measured power from the
previous sections for operational costs.

We model the cost of the FPGA system at $8000. This is
not based on current prices for high-end FPGA cards, because
these prices tend to be very high because of the low volume
involved. A single 10MW data centre would require about
50,000 cards, which is much more than the total amount of
high-end FPGA cards sold today. Instead, we use the cost of an
NVIDIA Tesla M2050 as a reference, this is typically $2500.
We believe this is representative as the Tesla board contains
a GPU made with a similar process and of comparable gate
count as the FPGA, and a similar amount of SDRAM. As
the GiDEL PROCStar-IV board combines 4 FPGAs, it would
be slightly cheaper than 4 separate boards. Our baseline costs
comparisons hence use $8000 for the FPGA system, but we
also present results showing the sensitivity to this parameter.
The license cost for the FPGA tools and the additional cost of
developing the application are one-off cost that do not scale
with the number of servers, and are therefore negligible for a
large data center.

We calculate the increase in costs as a result of adding
an FPGA card to each server, and based on these costs we
calculate the performance/cost figure using the performance

Profile System1 System2 FPGA board
Random, 4K 269 416 3090
Random, 16K 245 324 3090
Random, 64K 223 379 3090
Selected, 4K 118 232 3088
Selected, 16K 107 164 3088
Selected, 64K 82 136 3088

Empty, 4K 710 1564 3090
Empty, 16K 711 1664 3090
Empty, 64K 710 1338 3090

Full, 4K 8 11 36
Full, 16K 8 12 36
Full, 64K 9 10 36

Profile System1 System2 FPGA board
Random, 4K 292 1118 3090
Random, 16K 288 1014 3090
Random, 64K 253 945 3090
Selected, 4K 120 309 3088
Selected, 16K 94 350 3088
Selected, 64K 72 183 3088

Empty, 4K 911 2005 3090
Empty, 16K 844 1976 3090
Empty, 64K 877 1952 3090

Full, 4K 7 10 36
Full, 16K 8 12 36
Full, 64K 8 11 36

(a) (b)

Table III
THROUGHPUT OF DOCUMENT FILTERING APPLICATION (M TERMS/S) FOR (A) 256K DOCUMENTS OF 4096 TERMS AND (B) 1M DOCUMENTS OF 1024

TERMS

#Threads System1 System2 FPGA System
0 (Idle) 40 67 35

1 67 93 61.5
2 67 107 68
4 67 135 74.5
8 67 141 81

Table IV
POWER CONSUMPTION OF DOCUMENT FILTERING APPLICATION (W) FOR 1M DOCUMENTS OF 1024 TERMS, PROFILE: SELECTED, 64K

Cost Breakdown CPU CPU+FPGA
Space 21M$/y

Power & Cooling 52M$/y 29M$/y
IT Infrastructure 59M$/y 248M$/y

Total 132M$/y 299M$/y
Performance (single system) 136Mops/s 3090Mops/s

Performance/Cost 32Mops/$ 330Mops/$

Table V
PERFORMANCE VERSUS COST

results from the previous section (averaged over all “Random”
and “Selected” runs from Table III). The results are shown in
Table V .

As we can see from the table, the main increase in cost is
due to our high estimate for the price of the FPGA cards:
the IT infrastructure cost is about 4× higher because of
this. The cost for power and cooling decreases with almost
a factor of 2 (from 52M$/y to 29M$/y); space costs are
not affected. As the FPGA card results in a large increase
in performance, the final Performance/Cost figures show that
the FPGA-accelerated solution is almost ten times more cost
efficient than the traditional one, for the typical case.

To explore the effect of the FPGA system’s cost and perfor-
mance, we varied both parameters as shown in Figure 5. The
graph shows the speed-up required for a given FPGA system
cost to achieve a given factor improvement in performance/$.
The most important points are that even in the worst case the
FPGA-based system still outperform the CPU-only solution,
and that the potential for cost reduction is very great.

E. Discussion

Improving benefits from FPGA implementation. While our

Figure 5. Performance/Cost versus FPGA system cost and performance gains

results clearly illustrate the potential benefits from FPGA-
based acceleration, they can potentially be improved further.
The current design uses a 16-bank Bloom filter, which is not
optimal for scoring 8 parallel terms. Extending the design to
64 banks would increase the throughput by almost 40% (from
772MT/s to 1053MT/s). Furthermore, the current Bloom filter
combines 4 terms per bit. We can double the Bloom filter size
(i.e., 8Mb), leading to 2 terms per bit, which will reduce the
rate of false positives accordingly. For the given application
of scoring a known collection of documents, we could also
reorder the terms in each document to reduce contention.
Combined, these improvements can potentially result in a
throughput very close to the I/O limit of 1200MT/s.
Comparison of FPGA versus other alternatives.
ASIC Bloom Filter: As mentioned earlier, the main perfor-
mance improvement from our approach over a general-purpose
CPU is that we can use bit-accessible Bloom filters to discard

negatives. If we could create an ASIC for this purpose it could
potentially have an order-of-magnitude better performance. It
is important to note that the FPGA runs at a very low clock
speed (150MHz), which is the main reason why it is a low
power technology. Consequently, the FPGA implementation
can only win by having more parallelism or by having a better
memory architecture. The Bloom filter is just that: a better
memory-optimized architecture compared to the CPU cache.
In our particular implementation, we have 8x parallelism (per
FPGA) for accessing the document collection, and 16x for
accessing the Bloom filter. The former is dictated by the IO
width and DRAM clock speed; the latter can still be improved
as explained above.

GPGPU Implementation:The same observations as for the
CPU also apply to GPGPUs, with different parameters: the
GPU clock speed is usually only about 2× lower than the CPU
(instead of 20× for the FPGA). Memory I/O is comparable.
Again, the crucial difference, and the reason why the FPGA
can still outperform the GPU for this application, is in the
memory architecture. The GPGPU has a scratch pad per
streaming multiprocessor. However, the size of this memory
is typically 16KB, up to 128KB for high-end GPUs. This
is much too small to store a Bloom filter of the size that
we require (4Mb). So we can’t implement a high-bandwidth
Bloom filter on the GPU local memory to discard negatives.
Furthermore, although the GPU has a large number of data
parallel threads inside each multiprocessor, they contend for
the global memory access, so this becomes the bottleneck.
That means that there is little benefit in the large number of
parallel cores provided by the GPU for this application.

Future work. Considering the wide potential application
domain of information filtering, and the need for power-
and cost-effective system architectures, our future work will
explore a number of different avenues. An optimized FPGA
implementation as explained in Section IV-E is one of them.
We also want to perform a more in-depth characterization
of other diverse workloads. Based on the learnings from this
work, we also want to explore different system architectures
with a low-power, relatively low-performance CPU host (e.g.
ARM-based), as the host power consumption in idle mode is
currently the dominant factor.

Important concerns which hamper the adoption of FPGAs
are the programming complexity and the lack of standardized
APIs. The former can be addressed by the use of high-level
languages such as the C-based Impulse-C, Catapult-C and
others [15], [16] or the MORA framework [17], which offers
a C++ API for high-level FPGA application programming. To
address the latter, it is important to put forward a standard.
OpenCL [18] is the emerging industry standard for program-
ming of multicore and manycore devices, in particular GPUs.
It provides a flexible API for host-device communication and
a C-like language for device kernel programming. Adding FP-
GAs to the set of platforms supported by OpenCL is therefore
very attractive. We are currently working on extending the
MORA framework for an OpenCL-compliant implementation
and plan to port our current design using this framework.

V. RELATED WORK

The present work improves on our previous work [10]
where we implemented a Document Filtering algorithm on
an older-generation Xilinx Virtex IV FPGA as part of a rele-
vancy feedback-based search application for patents. Although
the previous project addresses the application of FPGA for
Information Retrieval and showed good speed-ups over the
software reference implementation, it was not optimized to
leverage the advantages of higher Input/Output (I/O) data
bandwidth and parallelism in the FPGA. As explained above,
the key contribution of the current work is the Bloom Filter
design. Our original Document Filtering implementation uses
a single large Bloom Filter that acts as a lookup table for a
tuple. We modified the Bloom Filter module to be mapped on
multiple banks, which dramatically reduces the contention. As
a result, the current implementation outperforms our original
implementation by more than a factor of 10. (Note also
that compared to a Lemur-based baseline implementation in
the prior work, our study uses an optimized multi-threaded
baseline as well.)

Apart from our work on FPGAs for Information Retrieval
Algorithms, some corporate and academic research systems
have exploited FPGAs to improve the performance of Infor-
mation Retrieval. Netezza [19] is a data warehouse appliance
designed for rapid analysis of large data volumes, with the
potential for performance improvements at a much lower cost
compared to traditional database designs. The FPGAs are
used to filter content as fast as it streams off the disk, so
that irrelevant data does not need to be processed by the
CPU. The differences with our current work are two-fold:
first, disk I/O is orders of magnitude slower than memory
I/O; second, Netezza filters textual data while we filter a bag-
of-words representation. Overall, our application performs at
a much higher I/O rate (800MB/s per FPGA, 3.2GB/s for
the board) than required by Netezza. Other FPGA systems
have also been studied for Information Retrieval, specifically
for mapping Language Classification algorithms using N-
grams [20], [21]. Lockwood [20] implemented a Language
Classification algorithm to differentiate 255 languages. Since
the embedded memory available on FPGAs is limited, they
mapped the Bloom Filter on external memory resulting in
lower throughputs due to the random memory access. Jacob
[21] extended this work to map the Bloom Filter on embedded
memory on FPGA. However, due to the constrained availabil-
ity of Block Memory on FPGA, only a smaller Bloom Filter
for each language can be mapped, which results in higher false
positive rates, correspondingly affecting the accuracy of their
algorithm and increasing the misidentification of languages.

A number of researchers (e.g. van Lunteren [22]) have
implemented a regular expresssion matching system on FPGA.
While similar in that regular expression matching can be
considered a specific type of search, our work differs in not
being concerned with the actual matching of terms, but with
attributing a score to a document based on the importance of
the terms. Thus, our work can potentially complement such
studies. Specifically, every regular expression could constitute
an entry in our “profile”. In this way our algorithm will

perform a relevancy judgement based on the matches, rather
than performing the actual term matching.

Ding et al. [23] have investigated the use of GPUs for
high-performance Information Retrieval. In principle, GPUs
are very interesting target platforms for IR because many IR
problems are parallelisable. In this work, the authors report on
the design of a basic system architecture for GPU-based high-
performance query processing. While thematically similar to
this work, query-based search is actually the dual of document
filtering: as explained in [24], in query-based search, the
query is dynamic (and typically small) and the collection is
static, and abstracted into an “inverted index” datastructure.
In filtering, the query is static (and typically large) and the
collection is dynamic. The work in [23] is a framework for
query-based search; while a direct comparison to our work is
not possible, it is worth noting that the , so a direct comparison
with our work is not possible. However, the obtained speed-
ups for query processing are moderate (factor 2-3), and in
addition, the GPU does not have the benefit of low power
consumption offered by the FPGA.

VI. CONCLUSIONS

Recent trends on "big data" and data-centric computing in
combination with a growing emphasis on "green computing"
motivate new system designs for high performance, and at
improved energy efficiency. In this paper, we present a new
FPGA-accelerated system design for an important class of
data-centric workloads, namely, information retrieval or un-
structured search. We implemented our design on the GiDEL
ProcStar IV board using Altera Stratix IV 530 FPGAs, and
our results show significant performance (nearly 800 million
terms per second per FPGA) at low power (6W). Compared
to baseline server systems running the same algorithm, our
FPGA-based design achieves performance speedup of 23× to
38×, and energy efficiency improvements of 31× to 40×, for
typical workload inputs. These results demonstrate that the
usage of FPGAs as “greener hardware” can deliver tremendous
benefits by both reducing the power consumed, and also
increasing the speed of execution.

Future work will be directed towards: (i) scaling the pro-
totype up to data center scale, and (ii) implementing more
sophisticated filtering algorithms, along with other document
filtering tasks such as classification/clustering (e.g. spam fil-
tering) where efficiency is also paramount. Our analysis of the
benefits of acceleration also illustrates interesting insights that
we believe can be ported to more general-purpose designs, and
we plan to explore these further as well.

VII. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers, Trey
Cain, Jichuan Chang, and Kevin Lim for their useful feedback.
We would also like to thank Kenneth Jansen at HP, Syam Uma
Chander, Baoz Agur at GiDEL and Mike Strickland at Altera
for their support. This research was partly funded by a HP
grant.

REFERENCES

[1] J. Short, R. Bohn, and C. Baru, “How Much Information? 2010 Report
on Enterprise Server Information,” http://hmi.ucsd.edu/pdf/HMI_2010_
EnterpriseReport_Jan_2011.pdf, University of California, San Diego,
2011.

[2] L. Barroso and U. Hölzle, “The datacenter as a computer: An introduc-
tion to the design of warehouse-scale machines,” Synthesis Lectures on
Computer Architecture, vol. 4, no. 1, pp. 1–108, 2009.

[3] “Hybrid-core: The big data computing architecture,” http://www.
conveycomputer.com/sc11/DIS-G500.Convey.Final.pdf, Convery Com-
puters, 2011.

[4] J. Coyne, J. Allred, V. Natoli, and W. Lynch, “A field programmable
gate array co-processor for the basic local alignment search tool,” http://
www.stoneridgetechnology.com/uploads/toolshed/blast_fpl09.pdf, Stone
Ridge Technology, 2009.

[5] N. A. Wood, “Fpga acceleration of european options pricing,” http://
www.xtremedata.com/images/pdf/MonteCarloXtremeRNGWhitePaper_
April2008v1_0.pdf, XtremeData, 2008.

[6] V. Lavrenko and W. B. Croft, “Relevance based language models,” in
Proc. of the 24th ACM SIGIR Conference, 2001, pp. 120–127.

[7] “Google n-gram project,” http://ngrams.googlelabs.com/ngrams/info,
Google, 2010.

[8] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Com. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[9] “Stratix iv handbook,” http://www.altera.com/literature/hb/stratix-iv/
stratix4_handbook.pdf, Altera.

[10] W. Vanderbauwhede, L. Azzopardi, and M. Moadeli, “Fpga-accelerated
information retrieval: High-efficiency document filtering,” in Field Pro-
grammable Logic and Applications, 2009. FPL 2009. International
Conference on. IEEE, 2009, pp. 417–422.

[11] R. Losee, “Term dependence: A basis for luhn and zipf models,” Journal
of the American Society for Information Science and Technology, vol. 52,
no. 12, pp. 1019–1025, 2001.

[12] M. Montemurro, “Beyond the zipf-mandelbrot law in quantitative lin-
guistics,” Physica A: Statistical Mechanics and its Applications, vol.
300, no. 3-4, pp. 567–578, 2001.

[13] W. Press, Numerical recipes: the art of scientific computing. Cambridge
Univ Pr, 2007.

[14] C. Patel and A. Shah, “Cost model for planning, development and
operation of a data center,” Hewlett-Packard Laboratories Technical
Report, 2005.

[15] J. Xu, N. Subramanian, A. Alessio, and S. Hauck, “Impulse c vs. vhdl
for accelerating tomographic reconstruction,” in 2010 18th IEEE Annual
International Symposium on Field-Programmable Custom Computing
Machines. IEEE, 2010, pp. 171–174.

[16] B. Holland, M. Vacas, V. Aggarwal, R. DeVille, I. Troxel, and A. George,
“Survey of c-based application mapping tools for reconfigurable com-
puting,” in Proceedings of the 8th International Conference on Military
and Aerospace Programmable Logic Devices (MAPLD05).

[17] W. Vanderbauwhede, M. Margala, S. R. Chalamalasetti, and S. Purohit,
“A c++-embedded domain-specific language for programming the mora
soft processor array,” in Application-specific Systems Architectures and
Processors (ASAP), 2010 21st IEEE International Conference on, July
2010, pp. 141 –148.

[18] J. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in Science
Engineering, vol. 12, no. 3, pp. 66 –73, May-June 2010.

[19] “Netezza appliance architecture,” http://www.Netezza.com, IBM, 2011.
[20] S. Eick, J. Lockwood, R. Loui, A. Levine, J. Mauger, D. Weishar,

A. Ratner, and J. Byrnes, “Hardware accelerated algorithms for semantic
processing of document streams,” in Aerospace Conference, 2006 IEEE,
2006, p. 14.

[21] A. Jacob and M. Gokhale, “Language classification using n-grams
accelerated by fpga-based bloom filters,” in Proceedings of the 1st
international workshop on High-performance reconfigurable computing
technology and applications: held in conjunction with SC07. ACM,
2007, pp. 31–37.

[22] J. van Lunteren, “High-performance pattern-matching for intrusion de-
tection,” in INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings, april 2006, pp. 1 –13.

[23] S. Ding, J. He, H. Yan, and T. Suel, “Using graphics processors for
high performance ir query processing,” in Proceedings of the 18th
international conference on World wide web. ACM, 2009, pp. 421–430.

[24] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Edinburgh Gate: Pearson Education Limited., 1999.

